xfs: add blockdev name to kthreads
[pandora-kernel.git] / fs / xfs / linux-2.6 / xfs_buf.c
1 /*
2  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include <linux/stddef.h>
20 #include <linux/errno.h>
21 #include <linux/gfp.h>
22 #include <linux/pagemap.h>
23 #include <linux/init.h>
24 #include <linux/vmalloc.h>
25 #include <linux/bio.h>
26 #include <linux/sysctl.h>
27 #include <linux/proc_fs.h>
28 #include <linux/workqueue.h>
29 #include <linux/percpu.h>
30 #include <linux/blkdev.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/migrate.h>
34 #include <linux/backing-dev.h>
35 #include <linux/freezer.h>
36 #include <linux/list_sort.h>
37
38 #include "xfs_sb.h"
39 #include "xfs_inum.h"
40 #include "xfs_ag.h"
41 #include "xfs_dmapi.h"
42 #include "xfs_mount.h"
43 #include "xfs_trace.h"
44
45 static kmem_zone_t *xfs_buf_zone;
46 STATIC int xfsbufd(void *);
47 STATIC int xfsbufd_wakeup(int, gfp_t);
48 STATIC void xfs_buf_delwri_queue(xfs_buf_t *, int);
49 static struct shrinker xfs_buf_shake = {
50         .shrink = xfsbufd_wakeup,
51         .seeks = DEFAULT_SEEKS,
52 };
53
54 static struct workqueue_struct *xfslogd_workqueue;
55 struct workqueue_struct *xfsdatad_workqueue;
56 struct workqueue_struct *xfsconvertd_workqueue;
57
58 #ifdef XFS_BUF_LOCK_TRACKING
59 # define XB_SET_OWNER(bp)       ((bp)->b_last_holder = current->pid)
60 # define XB_CLEAR_OWNER(bp)     ((bp)->b_last_holder = -1)
61 # define XB_GET_OWNER(bp)       ((bp)->b_last_holder)
62 #else
63 # define XB_SET_OWNER(bp)       do { } while (0)
64 # define XB_CLEAR_OWNER(bp)     do { } while (0)
65 # define XB_GET_OWNER(bp)       do { } while (0)
66 #endif
67
68 #define xb_to_gfp(flags) \
69         ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : \
70           ((flags) & XBF_DONT_BLOCK) ? GFP_NOFS : GFP_KERNEL) | __GFP_NOWARN)
71
72 #define xb_to_km(flags) \
73          (((flags) & XBF_DONT_BLOCK) ? KM_NOFS : KM_SLEEP)
74
75 #define xfs_buf_allocate(flags) \
76         kmem_zone_alloc(xfs_buf_zone, xb_to_km(flags))
77 #define xfs_buf_deallocate(bp) \
78         kmem_zone_free(xfs_buf_zone, (bp));
79
80 static inline int
81 xfs_buf_is_vmapped(
82         struct xfs_buf  *bp)
83 {
84         /*
85          * Return true if the buffer is vmapped.
86          *
87          * The XBF_MAPPED flag is set if the buffer should be mapped, but the
88          * code is clever enough to know it doesn't have to map a single page,
89          * so the check has to be both for XBF_MAPPED and bp->b_page_count > 1.
90          */
91         return (bp->b_flags & XBF_MAPPED) && bp->b_page_count > 1;
92 }
93
94 static inline int
95 xfs_buf_vmap_len(
96         struct xfs_buf  *bp)
97 {
98         return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
99 }
100
101 /*
102  *      Page Region interfaces.
103  *
104  *      For pages in filesystems where the blocksize is smaller than the
105  *      pagesize, we use the page->private field (long) to hold a bitmap
106  *      of uptodate regions within the page.
107  *
108  *      Each such region is "bytes per page / bits per long" bytes long.
109  *
110  *      NBPPR == number-of-bytes-per-page-region
111  *      BTOPR == bytes-to-page-region (rounded up)
112  *      BTOPRT == bytes-to-page-region-truncated (rounded down)
113  */
114 #if (BITS_PER_LONG == 32)
115 #define PRSHIFT         (PAGE_CACHE_SHIFT - 5)  /* (32 == 1<<5) */
116 #elif (BITS_PER_LONG == 64)
117 #define PRSHIFT         (PAGE_CACHE_SHIFT - 6)  /* (64 == 1<<6) */
118 #else
119 #error BITS_PER_LONG must be 32 or 64
120 #endif
121 #define NBPPR           (PAGE_CACHE_SIZE/BITS_PER_LONG)
122 #define BTOPR(b)        (((unsigned int)(b) + (NBPPR - 1)) >> PRSHIFT)
123 #define BTOPRT(b)       (((unsigned int)(b) >> PRSHIFT))
124
125 STATIC unsigned long
126 page_region_mask(
127         size_t          offset,
128         size_t          length)
129 {
130         unsigned long   mask;
131         int             first, final;
132
133         first = BTOPR(offset);
134         final = BTOPRT(offset + length - 1);
135         first = min(first, final);
136
137         mask = ~0UL;
138         mask <<= BITS_PER_LONG - (final - first);
139         mask >>= BITS_PER_LONG - (final);
140
141         ASSERT(offset + length <= PAGE_CACHE_SIZE);
142         ASSERT((final - first) < BITS_PER_LONG && (final - first) >= 0);
143
144         return mask;
145 }
146
147 STATIC void
148 set_page_region(
149         struct page     *page,
150         size_t          offset,
151         size_t          length)
152 {
153         set_page_private(page,
154                 page_private(page) | page_region_mask(offset, length));
155         if (page_private(page) == ~0UL)
156                 SetPageUptodate(page);
157 }
158
159 STATIC int
160 test_page_region(
161         struct page     *page,
162         size_t          offset,
163         size_t          length)
164 {
165         unsigned long   mask = page_region_mask(offset, length);
166
167         return (mask && (page_private(page) & mask) == mask);
168 }
169
170 /*
171  *      Internal xfs_buf_t object manipulation
172  */
173
174 STATIC void
175 _xfs_buf_initialize(
176         xfs_buf_t               *bp,
177         xfs_buftarg_t           *target,
178         xfs_off_t               range_base,
179         size_t                  range_length,
180         xfs_buf_flags_t         flags)
181 {
182         /*
183          * We don't want certain flags to appear in b_flags.
184          */
185         flags &= ~(XBF_LOCK|XBF_MAPPED|XBF_DONT_BLOCK|XBF_READ_AHEAD);
186
187         memset(bp, 0, sizeof(xfs_buf_t));
188         atomic_set(&bp->b_hold, 1);
189         init_completion(&bp->b_iowait);
190         INIT_LIST_HEAD(&bp->b_list);
191         INIT_LIST_HEAD(&bp->b_hash_list);
192         init_MUTEX_LOCKED(&bp->b_sema); /* held, no waiters */
193         XB_SET_OWNER(bp);
194         bp->b_target = target;
195         bp->b_file_offset = range_base;
196         /*
197          * Set buffer_length and count_desired to the same value initially.
198          * I/O routines should use count_desired, which will be the same in
199          * most cases but may be reset (e.g. XFS recovery).
200          */
201         bp->b_buffer_length = bp->b_count_desired = range_length;
202         bp->b_flags = flags;
203         bp->b_bn = XFS_BUF_DADDR_NULL;
204         atomic_set(&bp->b_pin_count, 0);
205         init_waitqueue_head(&bp->b_waiters);
206
207         XFS_STATS_INC(xb_create);
208
209         trace_xfs_buf_init(bp, _RET_IP_);
210 }
211
212 /*
213  *      Allocate a page array capable of holding a specified number
214  *      of pages, and point the page buf at it.
215  */
216 STATIC int
217 _xfs_buf_get_pages(
218         xfs_buf_t               *bp,
219         int                     page_count,
220         xfs_buf_flags_t         flags)
221 {
222         /* Make sure that we have a page list */
223         if (bp->b_pages == NULL) {
224                 bp->b_offset = xfs_buf_poff(bp->b_file_offset);
225                 bp->b_page_count = page_count;
226                 if (page_count <= XB_PAGES) {
227                         bp->b_pages = bp->b_page_array;
228                 } else {
229                         bp->b_pages = kmem_alloc(sizeof(struct page *) *
230                                         page_count, xb_to_km(flags));
231                         if (bp->b_pages == NULL)
232                                 return -ENOMEM;
233                 }
234                 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
235         }
236         return 0;
237 }
238
239 /*
240  *      Frees b_pages if it was allocated.
241  */
242 STATIC void
243 _xfs_buf_free_pages(
244         xfs_buf_t       *bp)
245 {
246         if (bp->b_pages != bp->b_page_array) {
247                 kmem_free(bp->b_pages);
248                 bp->b_pages = NULL;
249         }
250 }
251
252 /*
253  *      Releases the specified buffer.
254  *
255  *      The modification state of any associated pages is left unchanged.
256  *      The buffer most not be on any hash - use xfs_buf_rele instead for
257  *      hashed and refcounted buffers
258  */
259 void
260 xfs_buf_free(
261         xfs_buf_t               *bp)
262 {
263         trace_xfs_buf_free(bp, _RET_IP_);
264
265         ASSERT(list_empty(&bp->b_hash_list));
266
267         if (bp->b_flags & (_XBF_PAGE_CACHE|_XBF_PAGES)) {
268                 uint            i;
269
270                 if (xfs_buf_is_vmapped(bp))
271                         vm_unmap_ram(bp->b_addr - bp->b_offset,
272                                         bp->b_page_count);
273
274                 for (i = 0; i < bp->b_page_count; i++) {
275                         struct page     *page = bp->b_pages[i];
276
277                         if (bp->b_flags & _XBF_PAGE_CACHE)
278                                 ASSERT(!PagePrivate(page));
279                         page_cache_release(page);
280                 }
281         }
282         _xfs_buf_free_pages(bp);
283         xfs_buf_deallocate(bp);
284 }
285
286 /*
287  *      Finds all pages for buffer in question and builds it's page list.
288  */
289 STATIC int
290 _xfs_buf_lookup_pages(
291         xfs_buf_t               *bp,
292         uint                    flags)
293 {
294         struct address_space    *mapping = bp->b_target->bt_mapping;
295         size_t                  blocksize = bp->b_target->bt_bsize;
296         size_t                  size = bp->b_count_desired;
297         size_t                  nbytes, offset;
298         gfp_t                   gfp_mask = xb_to_gfp(flags);
299         unsigned short          page_count, i;
300         pgoff_t                 first;
301         xfs_off_t               end;
302         int                     error;
303
304         end = bp->b_file_offset + bp->b_buffer_length;
305         page_count = xfs_buf_btoc(end) - xfs_buf_btoct(bp->b_file_offset);
306
307         error = _xfs_buf_get_pages(bp, page_count, flags);
308         if (unlikely(error))
309                 return error;
310         bp->b_flags |= _XBF_PAGE_CACHE;
311
312         offset = bp->b_offset;
313         first = bp->b_file_offset >> PAGE_CACHE_SHIFT;
314
315         for (i = 0; i < bp->b_page_count; i++) {
316                 struct page     *page;
317                 uint            retries = 0;
318
319               retry:
320                 page = find_or_create_page(mapping, first + i, gfp_mask);
321                 if (unlikely(page == NULL)) {
322                         if (flags & XBF_READ_AHEAD) {
323                                 bp->b_page_count = i;
324                                 for (i = 0; i < bp->b_page_count; i++)
325                                         unlock_page(bp->b_pages[i]);
326                                 return -ENOMEM;
327                         }
328
329                         /*
330                          * This could deadlock.
331                          *
332                          * But until all the XFS lowlevel code is revamped to
333                          * handle buffer allocation failures we can't do much.
334                          */
335                         if (!(++retries % 100))
336                                 printk(KERN_ERR
337                                         "XFS: possible memory allocation "
338                                         "deadlock in %s (mode:0x%x)\n",
339                                         __func__, gfp_mask);
340
341                         XFS_STATS_INC(xb_page_retries);
342                         xfsbufd_wakeup(0, gfp_mask);
343                         congestion_wait(BLK_RW_ASYNC, HZ/50);
344                         goto retry;
345                 }
346
347                 XFS_STATS_INC(xb_page_found);
348
349                 nbytes = min_t(size_t, size, PAGE_CACHE_SIZE - offset);
350                 size -= nbytes;
351
352                 ASSERT(!PagePrivate(page));
353                 if (!PageUptodate(page)) {
354                         page_count--;
355                         if (blocksize >= PAGE_CACHE_SIZE) {
356                                 if (flags & XBF_READ)
357                                         bp->b_flags |= _XBF_PAGE_LOCKED;
358                         } else if (!PagePrivate(page)) {
359                                 if (test_page_region(page, offset, nbytes))
360                                         page_count++;
361                         }
362                 }
363
364                 bp->b_pages[i] = page;
365                 offset = 0;
366         }
367
368         if (!(bp->b_flags & _XBF_PAGE_LOCKED)) {
369                 for (i = 0; i < bp->b_page_count; i++)
370                         unlock_page(bp->b_pages[i]);
371         }
372
373         if (page_count == bp->b_page_count)
374                 bp->b_flags |= XBF_DONE;
375
376         return error;
377 }
378
379 /*
380  *      Map buffer into kernel address-space if nessecary.
381  */
382 STATIC int
383 _xfs_buf_map_pages(
384         xfs_buf_t               *bp,
385         uint                    flags)
386 {
387         /* A single page buffer is always mappable */
388         if (bp->b_page_count == 1) {
389                 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
390                 bp->b_flags |= XBF_MAPPED;
391         } else if (flags & XBF_MAPPED) {
392                 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
393                                         -1, PAGE_KERNEL);
394                 if (unlikely(bp->b_addr == NULL))
395                         return -ENOMEM;
396                 bp->b_addr += bp->b_offset;
397                 bp->b_flags |= XBF_MAPPED;
398         }
399
400         return 0;
401 }
402
403 /*
404  *      Finding and Reading Buffers
405  */
406
407 /*
408  *      Look up, and creates if absent, a lockable buffer for
409  *      a given range of an inode.  The buffer is returned
410  *      locked.  If other overlapping buffers exist, they are
411  *      released before the new buffer is created and locked,
412  *      which may imply that this call will block until those buffers
413  *      are unlocked.  No I/O is implied by this call.
414  */
415 xfs_buf_t *
416 _xfs_buf_find(
417         xfs_buftarg_t           *btp,   /* block device target          */
418         xfs_off_t               ioff,   /* starting offset of range     */
419         size_t                  isize,  /* length of range              */
420         xfs_buf_flags_t         flags,
421         xfs_buf_t               *new_bp)
422 {
423         xfs_off_t               range_base;
424         size_t                  range_length;
425         xfs_bufhash_t           *hash;
426         xfs_buf_t               *bp, *n;
427
428         range_base = (ioff << BBSHIFT);
429         range_length = (isize << BBSHIFT);
430
431         /* Check for IOs smaller than the sector size / not sector aligned */
432         ASSERT(!(range_length < (1 << btp->bt_sshift)));
433         ASSERT(!(range_base & (xfs_off_t)btp->bt_smask));
434
435         hash = &btp->bt_hash[hash_long((unsigned long)ioff, btp->bt_hashshift)];
436
437         spin_lock(&hash->bh_lock);
438
439         list_for_each_entry_safe(bp, n, &hash->bh_list, b_hash_list) {
440                 ASSERT(btp == bp->b_target);
441                 if (bp->b_file_offset == range_base &&
442                     bp->b_buffer_length == range_length) {
443                         /*
444                          * If we look at something, bring it to the
445                          * front of the list for next time.
446                          */
447                         atomic_inc(&bp->b_hold);
448                         list_move(&bp->b_hash_list, &hash->bh_list);
449                         goto found;
450                 }
451         }
452
453         /* No match found */
454         if (new_bp) {
455                 _xfs_buf_initialize(new_bp, btp, range_base,
456                                 range_length, flags);
457                 new_bp->b_hash = hash;
458                 list_add(&new_bp->b_hash_list, &hash->bh_list);
459         } else {
460                 XFS_STATS_INC(xb_miss_locked);
461         }
462
463         spin_unlock(&hash->bh_lock);
464         return new_bp;
465
466 found:
467         spin_unlock(&hash->bh_lock);
468
469         /* Attempt to get the semaphore without sleeping,
470          * if this does not work then we need to drop the
471          * spinlock and do a hard attempt on the semaphore.
472          */
473         if (down_trylock(&bp->b_sema)) {
474                 if (!(flags & XBF_TRYLOCK)) {
475                         /* wait for buffer ownership */
476                         xfs_buf_lock(bp);
477                         XFS_STATS_INC(xb_get_locked_waited);
478                 } else {
479                         /* We asked for a trylock and failed, no need
480                          * to look at file offset and length here, we
481                          * know that this buffer at least overlaps our
482                          * buffer and is locked, therefore our buffer
483                          * either does not exist, or is this buffer.
484                          */
485                         xfs_buf_rele(bp);
486                         XFS_STATS_INC(xb_busy_locked);
487                         return NULL;
488                 }
489         } else {
490                 /* trylock worked */
491                 XB_SET_OWNER(bp);
492         }
493
494         if (bp->b_flags & XBF_STALE) {
495                 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
496                 bp->b_flags &= XBF_MAPPED;
497         }
498
499         trace_xfs_buf_find(bp, flags, _RET_IP_);
500         XFS_STATS_INC(xb_get_locked);
501         return bp;
502 }
503
504 /*
505  *      Assembles a buffer covering the specified range.
506  *      Storage in memory for all portions of the buffer will be allocated,
507  *      although backing storage may not be.
508  */
509 xfs_buf_t *
510 xfs_buf_get(
511         xfs_buftarg_t           *target,/* target for buffer            */
512         xfs_off_t               ioff,   /* starting offset of range     */
513         size_t                  isize,  /* length of range              */
514         xfs_buf_flags_t         flags)
515 {
516         xfs_buf_t               *bp, *new_bp;
517         int                     error = 0, i;
518
519         new_bp = xfs_buf_allocate(flags);
520         if (unlikely(!new_bp))
521                 return NULL;
522
523         bp = _xfs_buf_find(target, ioff, isize, flags, new_bp);
524         if (bp == new_bp) {
525                 error = _xfs_buf_lookup_pages(bp, flags);
526                 if (error)
527                         goto no_buffer;
528         } else {
529                 xfs_buf_deallocate(new_bp);
530                 if (unlikely(bp == NULL))
531                         return NULL;
532         }
533
534         for (i = 0; i < bp->b_page_count; i++)
535                 mark_page_accessed(bp->b_pages[i]);
536
537         if (!(bp->b_flags & XBF_MAPPED)) {
538                 error = _xfs_buf_map_pages(bp, flags);
539                 if (unlikely(error)) {
540                         printk(KERN_WARNING "%s: failed to map pages\n",
541                                         __func__);
542                         goto no_buffer;
543                 }
544         }
545
546         XFS_STATS_INC(xb_get);
547
548         /*
549          * Always fill in the block number now, the mapped cases can do
550          * their own overlay of this later.
551          */
552         bp->b_bn = ioff;
553         bp->b_count_desired = bp->b_buffer_length;
554
555         trace_xfs_buf_get(bp, flags, _RET_IP_);
556         return bp;
557
558  no_buffer:
559         if (flags & (XBF_LOCK | XBF_TRYLOCK))
560                 xfs_buf_unlock(bp);
561         xfs_buf_rele(bp);
562         return NULL;
563 }
564
565 STATIC int
566 _xfs_buf_read(
567         xfs_buf_t               *bp,
568         xfs_buf_flags_t         flags)
569 {
570         int                     status;
571
572         ASSERT(!(flags & (XBF_DELWRI|XBF_WRITE)));
573         ASSERT(bp->b_bn != XFS_BUF_DADDR_NULL);
574
575         bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_DELWRI | \
576                         XBF_READ_AHEAD | _XBF_RUN_QUEUES);
577         bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | \
578                         XBF_READ_AHEAD | _XBF_RUN_QUEUES);
579
580         status = xfs_buf_iorequest(bp);
581         if (!status && !(flags & XBF_ASYNC))
582                 status = xfs_buf_iowait(bp);
583         return status;
584 }
585
586 xfs_buf_t *
587 xfs_buf_read(
588         xfs_buftarg_t           *target,
589         xfs_off_t               ioff,
590         size_t                  isize,
591         xfs_buf_flags_t         flags)
592 {
593         xfs_buf_t               *bp;
594
595         flags |= XBF_READ;
596
597         bp = xfs_buf_get(target, ioff, isize, flags);
598         if (bp) {
599                 trace_xfs_buf_read(bp, flags, _RET_IP_);
600
601                 if (!XFS_BUF_ISDONE(bp)) {
602                         XFS_STATS_INC(xb_get_read);
603                         _xfs_buf_read(bp, flags);
604                 } else if (flags & XBF_ASYNC) {
605                         /*
606                          * Read ahead call which is already satisfied,
607                          * drop the buffer
608                          */
609                         goto no_buffer;
610                 } else {
611                         /* We do not want read in the flags */
612                         bp->b_flags &= ~XBF_READ;
613                 }
614         }
615
616         return bp;
617
618  no_buffer:
619         if (flags & (XBF_LOCK | XBF_TRYLOCK))
620                 xfs_buf_unlock(bp);
621         xfs_buf_rele(bp);
622         return NULL;
623 }
624
625 /*
626  *      If we are not low on memory then do the readahead in a deadlock
627  *      safe manner.
628  */
629 void
630 xfs_buf_readahead(
631         xfs_buftarg_t           *target,
632         xfs_off_t               ioff,
633         size_t                  isize,
634         xfs_buf_flags_t         flags)
635 {
636         struct backing_dev_info *bdi;
637
638         bdi = target->bt_mapping->backing_dev_info;
639         if (bdi_read_congested(bdi))
640                 return;
641
642         flags |= (XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD);
643         xfs_buf_read(target, ioff, isize, flags);
644 }
645
646 xfs_buf_t *
647 xfs_buf_get_empty(
648         size_t                  len,
649         xfs_buftarg_t           *target)
650 {
651         xfs_buf_t               *bp;
652
653         bp = xfs_buf_allocate(0);
654         if (bp)
655                 _xfs_buf_initialize(bp, target, 0, len, 0);
656         return bp;
657 }
658
659 static inline struct page *
660 mem_to_page(
661         void                    *addr)
662 {
663         if ((!is_vmalloc_addr(addr))) {
664                 return virt_to_page(addr);
665         } else {
666                 return vmalloc_to_page(addr);
667         }
668 }
669
670 int
671 xfs_buf_associate_memory(
672         xfs_buf_t               *bp,
673         void                    *mem,
674         size_t                  len)
675 {
676         int                     rval;
677         int                     i = 0;
678         unsigned long           pageaddr;
679         unsigned long           offset;
680         size_t                  buflen;
681         int                     page_count;
682
683         pageaddr = (unsigned long)mem & PAGE_CACHE_MASK;
684         offset = (unsigned long)mem - pageaddr;
685         buflen = PAGE_CACHE_ALIGN(len + offset);
686         page_count = buflen >> PAGE_CACHE_SHIFT;
687
688         /* Free any previous set of page pointers */
689         if (bp->b_pages)
690                 _xfs_buf_free_pages(bp);
691
692         bp->b_pages = NULL;
693         bp->b_addr = mem;
694
695         rval = _xfs_buf_get_pages(bp, page_count, XBF_DONT_BLOCK);
696         if (rval)
697                 return rval;
698
699         bp->b_offset = offset;
700
701         for (i = 0; i < bp->b_page_count; i++) {
702                 bp->b_pages[i] = mem_to_page((void *)pageaddr);
703                 pageaddr += PAGE_CACHE_SIZE;
704         }
705
706         bp->b_count_desired = len;
707         bp->b_buffer_length = buflen;
708         bp->b_flags |= XBF_MAPPED;
709         bp->b_flags &= ~_XBF_PAGE_LOCKED;
710
711         return 0;
712 }
713
714 xfs_buf_t *
715 xfs_buf_get_noaddr(
716         size_t                  len,
717         xfs_buftarg_t           *target)
718 {
719         unsigned long           page_count = PAGE_ALIGN(len) >> PAGE_SHIFT;
720         int                     error, i;
721         xfs_buf_t               *bp;
722
723         bp = xfs_buf_allocate(0);
724         if (unlikely(bp == NULL))
725                 goto fail;
726         _xfs_buf_initialize(bp, target, 0, len, 0);
727
728         error = _xfs_buf_get_pages(bp, page_count, 0);
729         if (error)
730                 goto fail_free_buf;
731
732         for (i = 0; i < page_count; i++) {
733                 bp->b_pages[i] = alloc_page(GFP_KERNEL);
734                 if (!bp->b_pages[i])
735                         goto fail_free_mem;
736         }
737         bp->b_flags |= _XBF_PAGES;
738
739         error = _xfs_buf_map_pages(bp, XBF_MAPPED);
740         if (unlikely(error)) {
741                 printk(KERN_WARNING "%s: failed to map pages\n",
742                                 __func__);
743                 goto fail_free_mem;
744         }
745
746         xfs_buf_unlock(bp);
747
748         trace_xfs_buf_get_noaddr(bp, _RET_IP_);
749         return bp;
750
751  fail_free_mem:
752         while (--i >= 0)
753                 __free_page(bp->b_pages[i]);
754         _xfs_buf_free_pages(bp);
755  fail_free_buf:
756         xfs_buf_deallocate(bp);
757  fail:
758         return NULL;
759 }
760
761 /*
762  *      Increment reference count on buffer, to hold the buffer concurrently
763  *      with another thread which may release (free) the buffer asynchronously.
764  *      Must hold the buffer already to call this function.
765  */
766 void
767 xfs_buf_hold(
768         xfs_buf_t               *bp)
769 {
770         trace_xfs_buf_hold(bp, _RET_IP_);
771         atomic_inc(&bp->b_hold);
772 }
773
774 /*
775  *      Releases a hold on the specified buffer.  If the
776  *      the hold count is 1, calls xfs_buf_free.
777  */
778 void
779 xfs_buf_rele(
780         xfs_buf_t               *bp)
781 {
782         xfs_bufhash_t           *hash = bp->b_hash;
783
784         trace_xfs_buf_rele(bp, _RET_IP_);
785
786         if (unlikely(!hash)) {
787                 ASSERT(!bp->b_relse);
788                 if (atomic_dec_and_test(&bp->b_hold))
789                         xfs_buf_free(bp);
790                 return;
791         }
792
793         ASSERT(atomic_read(&bp->b_hold) > 0);
794         if (atomic_dec_and_lock(&bp->b_hold, &hash->bh_lock)) {
795                 if (bp->b_relse) {
796                         atomic_inc(&bp->b_hold);
797                         spin_unlock(&hash->bh_lock);
798                         (*(bp->b_relse)) (bp);
799                 } else if (bp->b_flags & XBF_FS_MANAGED) {
800                         spin_unlock(&hash->bh_lock);
801                 } else {
802                         ASSERT(!(bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)));
803                         list_del_init(&bp->b_hash_list);
804                         spin_unlock(&hash->bh_lock);
805                         xfs_buf_free(bp);
806                 }
807         }
808 }
809
810
811 /*
812  *      Mutual exclusion on buffers.  Locking model:
813  *
814  *      Buffers associated with inodes for which buffer locking
815  *      is not enabled are not protected by semaphores, and are
816  *      assumed to be exclusively owned by the caller.  There is a
817  *      spinlock in the buffer, used by the caller when concurrent
818  *      access is possible.
819  */
820
821 /*
822  *      Locks a buffer object, if it is not already locked.
823  *      Note that this in no way locks the underlying pages, so it is only
824  *      useful for synchronizing concurrent use of buffer objects, not for
825  *      synchronizing independent access to the underlying pages.
826  */
827 int
828 xfs_buf_cond_lock(
829         xfs_buf_t               *bp)
830 {
831         int                     locked;
832
833         locked = down_trylock(&bp->b_sema) == 0;
834         if (locked)
835                 XB_SET_OWNER(bp);
836
837         trace_xfs_buf_cond_lock(bp, _RET_IP_);
838         return locked ? 0 : -EBUSY;
839 }
840
841 int
842 xfs_buf_lock_value(
843         xfs_buf_t               *bp)
844 {
845         return bp->b_sema.count;
846 }
847
848 /*
849  *      Locks a buffer object.
850  *      Note that this in no way locks the underlying pages, so it is only
851  *      useful for synchronizing concurrent use of buffer objects, not for
852  *      synchronizing independent access to the underlying pages.
853  */
854 void
855 xfs_buf_lock(
856         xfs_buf_t               *bp)
857 {
858         trace_xfs_buf_lock(bp, _RET_IP_);
859
860         if (atomic_read(&bp->b_io_remaining))
861                 blk_run_address_space(bp->b_target->bt_mapping);
862         down(&bp->b_sema);
863         XB_SET_OWNER(bp);
864
865         trace_xfs_buf_lock_done(bp, _RET_IP_);
866 }
867
868 /*
869  *      Releases the lock on the buffer object.
870  *      If the buffer is marked delwri but is not queued, do so before we
871  *      unlock the buffer as we need to set flags correctly.  We also need to
872  *      take a reference for the delwri queue because the unlocker is going to
873  *      drop their's and they don't know we just queued it.
874  */
875 void
876 xfs_buf_unlock(
877         xfs_buf_t               *bp)
878 {
879         if ((bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)) == XBF_DELWRI) {
880                 atomic_inc(&bp->b_hold);
881                 bp->b_flags |= XBF_ASYNC;
882                 xfs_buf_delwri_queue(bp, 0);
883         }
884
885         XB_CLEAR_OWNER(bp);
886         up(&bp->b_sema);
887
888         trace_xfs_buf_unlock(bp, _RET_IP_);
889 }
890
891
892 /*
893  *      Pinning Buffer Storage in Memory
894  *      Ensure that no attempt to force a buffer to disk will succeed.
895  */
896 void
897 xfs_buf_pin(
898         xfs_buf_t               *bp)
899 {
900         trace_xfs_buf_pin(bp, _RET_IP_);
901         atomic_inc(&bp->b_pin_count);
902 }
903
904 void
905 xfs_buf_unpin(
906         xfs_buf_t               *bp)
907 {
908         trace_xfs_buf_unpin(bp, _RET_IP_);
909
910         if (atomic_dec_and_test(&bp->b_pin_count))
911                 wake_up_all(&bp->b_waiters);
912 }
913
914 int
915 xfs_buf_ispin(
916         xfs_buf_t               *bp)
917 {
918         return atomic_read(&bp->b_pin_count);
919 }
920
921 STATIC void
922 xfs_buf_wait_unpin(
923         xfs_buf_t               *bp)
924 {
925         DECLARE_WAITQUEUE       (wait, current);
926
927         if (atomic_read(&bp->b_pin_count) == 0)
928                 return;
929
930         add_wait_queue(&bp->b_waiters, &wait);
931         for (;;) {
932                 set_current_state(TASK_UNINTERRUPTIBLE);
933                 if (atomic_read(&bp->b_pin_count) == 0)
934                         break;
935                 if (atomic_read(&bp->b_io_remaining))
936                         blk_run_address_space(bp->b_target->bt_mapping);
937                 schedule();
938         }
939         remove_wait_queue(&bp->b_waiters, &wait);
940         set_current_state(TASK_RUNNING);
941 }
942
943 /*
944  *      Buffer Utility Routines
945  */
946
947 STATIC void
948 xfs_buf_iodone_work(
949         struct work_struct      *work)
950 {
951         xfs_buf_t               *bp =
952                 container_of(work, xfs_buf_t, b_iodone_work);
953
954         /*
955          * We can get an EOPNOTSUPP to ordered writes.  Here we clear the
956          * ordered flag and reissue them.  Because we can't tell the higher
957          * layers directly that they should not issue ordered I/O anymore, they
958          * need to check if the _XFS_BARRIER_FAILED flag was set during I/O completion.
959          */
960         if ((bp->b_error == EOPNOTSUPP) &&
961             (bp->b_flags & (XBF_ORDERED|XBF_ASYNC)) == (XBF_ORDERED|XBF_ASYNC)) {
962                 trace_xfs_buf_ordered_retry(bp, _RET_IP_);
963                 bp->b_flags &= ~XBF_ORDERED;
964                 bp->b_flags |= _XFS_BARRIER_FAILED;
965                 xfs_buf_iorequest(bp);
966         } else if (bp->b_iodone)
967                 (*(bp->b_iodone))(bp);
968         else if (bp->b_flags & XBF_ASYNC)
969                 xfs_buf_relse(bp);
970 }
971
972 void
973 xfs_buf_ioend(
974         xfs_buf_t               *bp,
975         int                     schedule)
976 {
977         trace_xfs_buf_iodone(bp, _RET_IP_);
978
979         bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
980         if (bp->b_error == 0)
981                 bp->b_flags |= XBF_DONE;
982
983         if ((bp->b_iodone) || (bp->b_flags & XBF_ASYNC)) {
984                 if (schedule) {
985                         INIT_WORK(&bp->b_iodone_work, xfs_buf_iodone_work);
986                         queue_work(xfslogd_workqueue, &bp->b_iodone_work);
987                 } else {
988                         xfs_buf_iodone_work(&bp->b_iodone_work);
989                 }
990         } else {
991                 complete(&bp->b_iowait);
992         }
993 }
994
995 void
996 xfs_buf_ioerror(
997         xfs_buf_t               *bp,
998         int                     error)
999 {
1000         ASSERT(error >= 0 && error <= 0xffff);
1001         bp->b_error = (unsigned short)error;
1002         trace_xfs_buf_ioerror(bp, error, _RET_IP_);
1003 }
1004
1005 int
1006 xfs_bwrite(
1007         struct xfs_mount        *mp,
1008         struct xfs_buf          *bp)
1009 {
1010         int                     iowait = (bp->b_flags & XBF_ASYNC) == 0;
1011         int                     error = 0;
1012
1013         bp->b_strat = xfs_bdstrat_cb;
1014         bp->b_mount = mp;
1015         bp->b_flags |= XBF_WRITE;
1016         if (!iowait)
1017                 bp->b_flags |= _XBF_RUN_QUEUES;
1018
1019         xfs_buf_delwri_dequeue(bp);
1020         xfs_buf_iostrategy(bp);
1021
1022         if (iowait) {
1023                 error = xfs_buf_iowait(bp);
1024                 if (error)
1025                         xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1026                 xfs_buf_relse(bp);
1027         }
1028
1029         return error;
1030 }
1031
1032 void
1033 xfs_bdwrite(
1034         void                    *mp,
1035         struct xfs_buf          *bp)
1036 {
1037         trace_xfs_buf_bdwrite(bp, _RET_IP_);
1038
1039         bp->b_strat = xfs_bdstrat_cb;
1040         bp->b_mount = mp;
1041
1042         bp->b_flags &= ~XBF_READ;
1043         bp->b_flags |= (XBF_DELWRI | XBF_ASYNC);
1044
1045         xfs_buf_delwri_queue(bp, 1);
1046 }
1047
1048 /*
1049  * Called when we want to stop a buffer from getting written or read.
1050  * We attach the EIO error, muck with its flags, and call biodone
1051  * so that the proper iodone callbacks get called.
1052  */
1053 STATIC int
1054 xfs_bioerror(
1055         xfs_buf_t *bp)
1056 {
1057 #ifdef XFSERRORDEBUG
1058         ASSERT(XFS_BUF_ISREAD(bp) || bp->b_iodone);
1059 #endif
1060
1061         /*
1062          * No need to wait until the buffer is unpinned, we aren't flushing it.
1063          */
1064         XFS_BUF_ERROR(bp, EIO);
1065
1066         /*
1067          * We're calling biodone, so delete XBF_DONE flag.
1068          */
1069         XFS_BUF_UNREAD(bp);
1070         XFS_BUF_UNDELAYWRITE(bp);
1071         XFS_BUF_UNDONE(bp);
1072         XFS_BUF_STALE(bp);
1073
1074         XFS_BUF_CLR_BDSTRAT_FUNC(bp);
1075         xfs_biodone(bp);
1076
1077         return EIO;
1078 }
1079
1080 /*
1081  * Same as xfs_bioerror, except that we are releasing the buffer
1082  * here ourselves, and avoiding the biodone call.
1083  * This is meant for userdata errors; metadata bufs come with
1084  * iodone functions attached, so that we can track down errors.
1085  */
1086 STATIC int
1087 xfs_bioerror_relse(
1088         struct xfs_buf  *bp)
1089 {
1090         int64_t         fl = XFS_BUF_BFLAGS(bp);
1091         /*
1092          * No need to wait until the buffer is unpinned.
1093          * We aren't flushing it.
1094          *
1095          * chunkhold expects B_DONE to be set, whether
1096          * we actually finish the I/O or not. We don't want to
1097          * change that interface.
1098          */
1099         XFS_BUF_UNREAD(bp);
1100         XFS_BUF_UNDELAYWRITE(bp);
1101         XFS_BUF_DONE(bp);
1102         XFS_BUF_STALE(bp);
1103         XFS_BUF_CLR_IODONE_FUNC(bp);
1104         XFS_BUF_CLR_BDSTRAT_FUNC(bp);
1105         if (!(fl & XBF_ASYNC)) {
1106                 /*
1107                  * Mark b_error and B_ERROR _both_.
1108                  * Lot's of chunkcache code assumes that.
1109                  * There's no reason to mark error for
1110                  * ASYNC buffers.
1111                  */
1112                 XFS_BUF_ERROR(bp, EIO);
1113                 XFS_BUF_FINISH_IOWAIT(bp);
1114         } else {
1115                 xfs_buf_relse(bp);
1116         }
1117
1118         return EIO;
1119 }
1120
1121
1122 /*
1123  * All xfs metadata buffers except log state machine buffers
1124  * get this attached as their b_bdstrat callback function.
1125  * This is so that we can catch a buffer
1126  * after prematurely unpinning it to forcibly shutdown the filesystem.
1127  */
1128 int
1129 xfs_bdstrat_cb(
1130         struct xfs_buf  *bp)
1131 {
1132         if (XFS_FORCED_SHUTDOWN(bp->b_mount)) {
1133                 trace_xfs_bdstrat_shut(bp, _RET_IP_);
1134                 /*
1135                  * Metadata write that didn't get logged but
1136                  * written delayed anyway. These aren't associated
1137                  * with a transaction, and can be ignored.
1138                  */
1139                 if (!bp->b_iodone && !XFS_BUF_ISREAD(bp))
1140                         return xfs_bioerror_relse(bp);
1141                 else
1142                         return xfs_bioerror(bp);
1143         }
1144
1145         xfs_buf_iorequest(bp);
1146         return 0;
1147 }
1148
1149 /*
1150  * Wrapper around bdstrat so that we can stop data from going to disk in case
1151  * we are shutting down the filesystem.  Typically user data goes thru this
1152  * path; one of the exceptions is the superblock.
1153  */
1154 void
1155 xfsbdstrat(
1156         struct xfs_mount        *mp,
1157         struct xfs_buf          *bp)
1158 {
1159         if (XFS_FORCED_SHUTDOWN(mp)) {
1160                 trace_xfs_bdstrat_shut(bp, _RET_IP_);
1161                 xfs_bioerror_relse(bp);
1162                 return;
1163         }
1164
1165         xfs_buf_iorequest(bp);
1166 }
1167
1168 STATIC void
1169 _xfs_buf_ioend(
1170         xfs_buf_t               *bp,
1171         int                     schedule)
1172 {
1173         if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1174                 bp->b_flags &= ~_XBF_PAGE_LOCKED;
1175                 xfs_buf_ioend(bp, schedule);
1176         }
1177 }
1178
1179 STATIC void
1180 xfs_buf_bio_end_io(
1181         struct bio              *bio,
1182         int                     error)
1183 {
1184         xfs_buf_t               *bp = (xfs_buf_t *)bio->bi_private;
1185         unsigned int            blocksize = bp->b_target->bt_bsize;
1186         struct bio_vec          *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1187
1188         xfs_buf_ioerror(bp, -error);
1189
1190         if (!error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1191                 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1192
1193         do {
1194                 struct page     *page = bvec->bv_page;
1195
1196                 ASSERT(!PagePrivate(page));
1197                 if (unlikely(bp->b_error)) {
1198                         if (bp->b_flags & XBF_READ)
1199                                 ClearPageUptodate(page);
1200                 } else if (blocksize >= PAGE_CACHE_SIZE) {
1201                         SetPageUptodate(page);
1202                 } else if (!PagePrivate(page) &&
1203                                 (bp->b_flags & _XBF_PAGE_CACHE)) {
1204                         set_page_region(page, bvec->bv_offset, bvec->bv_len);
1205                 }
1206
1207                 if (--bvec >= bio->bi_io_vec)
1208                         prefetchw(&bvec->bv_page->flags);
1209
1210                 if (bp->b_flags & _XBF_PAGE_LOCKED)
1211                         unlock_page(page);
1212         } while (bvec >= bio->bi_io_vec);
1213
1214         _xfs_buf_ioend(bp, 1);
1215         bio_put(bio);
1216 }
1217
1218 STATIC void
1219 _xfs_buf_ioapply(
1220         xfs_buf_t               *bp)
1221 {
1222         int                     rw, map_i, total_nr_pages, nr_pages;
1223         struct bio              *bio;
1224         int                     offset = bp->b_offset;
1225         int                     size = bp->b_count_desired;
1226         sector_t                sector = bp->b_bn;
1227         unsigned int            blocksize = bp->b_target->bt_bsize;
1228
1229         total_nr_pages = bp->b_page_count;
1230         map_i = 0;
1231
1232         if (bp->b_flags & XBF_ORDERED) {
1233                 ASSERT(!(bp->b_flags & XBF_READ));
1234                 rw = WRITE_BARRIER;
1235         } else if (bp->b_flags & XBF_LOG_BUFFER) {
1236                 ASSERT(!(bp->b_flags & XBF_READ_AHEAD));
1237                 bp->b_flags &= ~_XBF_RUN_QUEUES;
1238                 rw = (bp->b_flags & XBF_WRITE) ? WRITE_SYNC : READ_SYNC;
1239         } else if (bp->b_flags & _XBF_RUN_QUEUES) {
1240                 ASSERT(!(bp->b_flags & XBF_READ_AHEAD));
1241                 bp->b_flags &= ~_XBF_RUN_QUEUES;
1242                 rw = (bp->b_flags & XBF_WRITE) ? WRITE_META : READ_META;
1243         } else {
1244                 rw = (bp->b_flags & XBF_WRITE) ? WRITE :
1245                      (bp->b_flags & XBF_READ_AHEAD) ? READA : READ;
1246         }
1247
1248         /* Special code path for reading a sub page size buffer in --
1249          * we populate up the whole page, and hence the other metadata
1250          * in the same page.  This optimization is only valid when the
1251          * filesystem block size is not smaller than the page size.
1252          */
1253         if ((bp->b_buffer_length < PAGE_CACHE_SIZE) &&
1254             ((bp->b_flags & (XBF_READ|_XBF_PAGE_LOCKED)) ==
1255               (XBF_READ|_XBF_PAGE_LOCKED)) &&
1256             (blocksize >= PAGE_CACHE_SIZE)) {
1257                 bio = bio_alloc(GFP_NOIO, 1);
1258
1259                 bio->bi_bdev = bp->b_target->bt_bdev;
1260                 bio->bi_sector = sector - (offset >> BBSHIFT);
1261                 bio->bi_end_io = xfs_buf_bio_end_io;
1262                 bio->bi_private = bp;
1263
1264                 bio_add_page(bio, bp->b_pages[0], PAGE_CACHE_SIZE, 0);
1265                 size = 0;
1266
1267                 atomic_inc(&bp->b_io_remaining);
1268
1269                 goto submit_io;
1270         }
1271
1272 next_chunk:
1273         atomic_inc(&bp->b_io_remaining);
1274         nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
1275         if (nr_pages > total_nr_pages)
1276                 nr_pages = total_nr_pages;
1277
1278         bio = bio_alloc(GFP_NOIO, nr_pages);
1279         bio->bi_bdev = bp->b_target->bt_bdev;
1280         bio->bi_sector = sector;
1281         bio->bi_end_io = xfs_buf_bio_end_io;
1282         bio->bi_private = bp;
1283
1284         for (; size && nr_pages; nr_pages--, map_i++) {
1285                 int     rbytes, nbytes = PAGE_CACHE_SIZE - offset;
1286
1287                 if (nbytes > size)
1288                         nbytes = size;
1289
1290                 rbytes = bio_add_page(bio, bp->b_pages[map_i], nbytes, offset);
1291                 if (rbytes < nbytes)
1292                         break;
1293
1294                 offset = 0;
1295                 sector += nbytes >> BBSHIFT;
1296                 size -= nbytes;
1297                 total_nr_pages--;
1298         }
1299
1300 submit_io:
1301         if (likely(bio->bi_size)) {
1302                 if (xfs_buf_is_vmapped(bp)) {
1303                         flush_kernel_vmap_range(bp->b_addr,
1304                                                 xfs_buf_vmap_len(bp));
1305                 }
1306                 submit_bio(rw, bio);
1307                 if (size)
1308                         goto next_chunk;
1309         } else {
1310                 bio_put(bio);
1311                 xfs_buf_ioerror(bp, EIO);
1312         }
1313 }
1314
1315 int
1316 xfs_buf_iorequest(
1317         xfs_buf_t               *bp)
1318 {
1319         trace_xfs_buf_iorequest(bp, _RET_IP_);
1320
1321         if (bp->b_flags & XBF_DELWRI) {
1322                 xfs_buf_delwri_queue(bp, 1);
1323                 return 0;
1324         }
1325
1326         if (bp->b_flags & XBF_WRITE) {
1327                 xfs_buf_wait_unpin(bp);
1328         }
1329
1330         xfs_buf_hold(bp);
1331
1332         /* Set the count to 1 initially, this will stop an I/O
1333          * completion callout which happens before we have started
1334          * all the I/O from calling xfs_buf_ioend too early.
1335          */
1336         atomic_set(&bp->b_io_remaining, 1);
1337         _xfs_buf_ioapply(bp);
1338         _xfs_buf_ioend(bp, 0);
1339
1340         xfs_buf_rele(bp);
1341         return 0;
1342 }
1343
1344 /*
1345  *      Waits for I/O to complete on the buffer supplied.
1346  *      It returns immediately if no I/O is pending.
1347  *      It returns the I/O error code, if any, or 0 if there was no error.
1348  */
1349 int
1350 xfs_buf_iowait(
1351         xfs_buf_t               *bp)
1352 {
1353         trace_xfs_buf_iowait(bp, _RET_IP_);
1354
1355         if (atomic_read(&bp->b_io_remaining))
1356                 blk_run_address_space(bp->b_target->bt_mapping);
1357         wait_for_completion(&bp->b_iowait);
1358
1359         trace_xfs_buf_iowait_done(bp, _RET_IP_);
1360         return bp->b_error;
1361 }
1362
1363 xfs_caddr_t
1364 xfs_buf_offset(
1365         xfs_buf_t               *bp,
1366         size_t                  offset)
1367 {
1368         struct page             *page;
1369
1370         if (bp->b_flags & XBF_MAPPED)
1371                 return XFS_BUF_PTR(bp) + offset;
1372
1373         offset += bp->b_offset;
1374         page = bp->b_pages[offset >> PAGE_CACHE_SHIFT];
1375         return (xfs_caddr_t)page_address(page) + (offset & (PAGE_CACHE_SIZE-1));
1376 }
1377
1378 /*
1379  *      Move data into or out of a buffer.
1380  */
1381 void
1382 xfs_buf_iomove(
1383         xfs_buf_t               *bp,    /* buffer to process            */
1384         size_t                  boff,   /* starting buffer offset       */
1385         size_t                  bsize,  /* length to copy               */
1386         void                    *data,  /* data address                 */
1387         xfs_buf_rw_t            mode)   /* read/write/zero flag         */
1388 {
1389         size_t                  bend, cpoff, csize;
1390         struct page             *page;
1391
1392         bend = boff + bsize;
1393         while (boff < bend) {
1394                 page = bp->b_pages[xfs_buf_btoct(boff + bp->b_offset)];
1395                 cpoff = xfs_buf_poff(boff + bp->b_offset);
1396                 csize = min_t(size_t,
1397                               PAGE_CACHE_SIZE-cpoff, bp->b_count_desired-boff);
1398
1399                 ASSERT(((csize + cpoff) <= PAGE_CACHE_SIZE));
1400
1401                 switch (mode) {
1402                 case XBRW_ZERO:
1403                         memset(page_address(page) + cpoff, 0, csize);
1404                         break;
1405                 case XBRW_READ:
1406                         memcpy(data, page_address(page) + cpoff, csize);
1407                         break;
1408                 case XBRW_WRITE:
1409                         memcpy(page_address(page) + cpoff, data, csize);
1410                 }
1411
1412                 boff += csize;
1413                 data += csize;
1414         }
1415 }
1416
1417 /*
1418  *      Handling of buffer targets (buftargs).
1419  */
1420
1421 /*
1422  *      Wait for any bufs with callbacks that have been submitted but
1423  *      have not yet returned... walk the hash list for the target.
1424  */
1425 void
1426 xfs_wait_buftarg(
1427         xfs_buftarg_t   *btp)
1428 {
1429         xfs_buf_t       *bp, *n;
1430         xfs_bufhash_t   *hash;
1431         uint            i;
1432
1433         for (i = 0; i < (1 << btp->bt_hashshift); i++) {
1434                 hash = &btp->bt_hash[i];
1435 again:
1436                 spin_lock(&hash->bh_lock);
1437                 list_for_each_entry_safe(bp, n, &hash->bh_list, b_hash_list) {
1438                         ASSERT(btp == bp->b_target);
1439                         if (!(bp->b_flags & XBF_FS_MANAGED)) {
1440                                 spin_unlock(&hash->bh_lock);
1441                                 /*
1442                                  * Catch superblock reference count leaks
1443                                  * immediately
1444                                  */
1445                                 BUG_ON(bp->b_bn == 0);
1446                                 delay(100);
1447                                 goto again;
1448                         }
1449                 }
1450                 spin_unlock(&hash->bh_lock);
1451         }
1452 }
1453
1454 /*
1455  *      Allocate buffer hash table for a given target.
1456  *      For devices containing metadata (i.e. not the log/realtime devices)
1457  *      we need to allocate a much larger hash table.
1458  */
1459 STATIC void
1460 xfs_alloc_bufhash(
1461         xfs_buftarg_t           *btp,
1462         int                     external)
1463 {
1464         unsigned int            i;
1465
1466         btp->bt_hashshift = external ? 3 : 8;   /* 8 or 256 buckets */
1467         btp->bt_hashmask = (1 << btp->bt_hashshift) - 1;
1468         btp->bt_hash = kmem_zalloc_large((1 << btp->bt_hashshift) *
1469                                          sizeof(xfs_bufhash_t));
1470         for (i = 0; i < (1 << btp->bt_hashshift); i++) {
1471                 spin_lock_init(&btp->bt_hash[i].bh_lock);
1472                 INIT_LIST_HEAD(&btp->bt_hash[i].bh_list);
1473         }
1474 }
1475
1476 STATIC void
1477 xfs_free_bufhash(
1478         xfs_buftarg_t           *btp)
1479 {
1480         kmem_free_large(btp->bt_hash);
1481         btp->bt_hash = NULL;
1482 }
1483
1484 /*
1485  *      buftarg list for delwrite queue processing
1486  */
1487 static LIST_HEAD(xfs_buftarg_list);
1488 static DEFINE_SPINLOCK(xfs_buftarg_lock);
1489
1490 STATIC void
1491 xfs_register_buftarg(
1492         xfs_buftarg_t           *btp)
1493 {
1494         spin_lock(&xfs_buftarg_lock);
1495         list_add(&btp->bt_list, &xfs_buftarg_list);
1496         spin_unlock(&xfs_buftarg_lock);
1497 }
1498
1499 STATIC void
1500 xfs_unregister_buftarg(
1501         xfs_buftarg_t           *btp)
1502 {
1503         spin_lock(&xfs_buftarg_lock);
1504         list_del(&btp->bt_list);
1505         spin_unlock(&xfs_buftarg_lock);
1506 }
1507
1508 void
1509 xfs_free_buftarg(
1510         struct xfs_mount        *mp,
1511         struct xfs_buftarg      *btp)
1512 {
1513         xfs_flush_buftarg(btp, 1);
1514         if (mp->m_flags & XFS_MOUNT_BARRIER)
1515                 xfs_blkdev_issue_flush(btp);
1516         xfs_free_bufhash(btp);
1517         iput(btp->bt_mapping->host);
1518
1519         /* Unregister the buftarg first so that we don't get a
1520          * wakeup finding a non-existent task
1521          */
1522         xfs_unregister_buftarg(btp);
1523         kthread_stop(btp->bt_task);
1524
1525         kmem_free(btp);
1526 }
1527
1528 STATIC int
1529 xfs_setsize_buftarg_flags(
1530         xfs_buftarg_t           *btp,
1531         unsigned int            blocksize,
1532         unsigned int            sectorsize,
1533         int                     verbose)
1534 {
1535         btp->bt_bsize = blocksize;
1536         btp->bt_sshift = ffs(sectorsize) - 1;
1537         btp->bt_smask = sectorsize - 1;
1538
1539         if (set_blocksize(btp->bt_bdev, sectorsize)) {
1540                 printk(KERN_WARNING
1541                         "XFS: Cannot set_blocksize to %u on device %s\n",
1542                         sectorsize, XFS_BUFTARG_NAME(btp));
1543                 return EINVAL;
1544         }
1545
1546         if (verbose &&
1547             (PAGE_CACHE_SIZE / BITS_PER_LONG) > sectorsize) {
1548                 printk(KERN_WARNING
1549                         "XFS: %u byte sectors in use on device %s.  "
1550                         "This is suboptimal; %u or greater is ideal.\n",
1551                         sectorsize, XFS_BUFTARG_NAME(btp),
1552                         (unsigned int)PAGE_CACHE_SIZE / BITS_PER_LONG);
1553         }
1554
1555         return 0;
1556 }
1557
1558 /*
1559  *      When allocating the initial buffer target we have not yet
1560  *      read in the superblock, so don't know what sized sectors
1561  *      are being used is at this early stage.  Play safe.
1562  */
1563 STATIC int
1564 xfs_setsize_buftarg_early(
1565         xfs_buftarg_t           *btp,
1566         struct block_device     *bdev)
1567 {
1568         return xfs_setsize_buftarg_flags(btp,
1569                         PAGE_CACHE_SIZE, bdev_logical_block_size(bdev), 0);
1570 }
1571
1572 int
1573 xfs_setsize_buftarg(
1574         xfs_buftarg_t           *btp,
1575         unsigned int            blocksize,
1576         unsigned int            sectorsize)
1577 {
1578         return xfs_setsize_buftarg_flags(btp, blocksize, sectorsize, 1);
1579 }
1580
1581 STATIC int
1582 xfs_mapping_buftarg(
1583         xfs_buftarg_t           *btp,
1584         struct block_device     *bdev)
1585 {
1586         struct backing_dev_info *bdi;
1587         struct inode            *inode;
1588         struct address_space    *mapping;
1589         static const struct address_space_operations mapping_aops = {
1590                 .sync_page = block_sync_page,
1591                 .migratepage = fail_migrate_page,
1592         };
1593
1594         inode = new_inode(bdev->bd_inode->i_sb);
1595         if (!inode) {
1596                 printk(KERN_WARNING
1597                         "XFS: Cannot allocate mapping inode for device %s\n",
1598                         XFS_BUFTARG_NAME(btp));
1599                 return ENOMEM;
1600         }
1601         inode->i_mode = S_IFBLK;
1602         inode->i_bdev = bdev;
1603         inode->i_rdev = bdev->bd_dev;
1604         bdi = blk_get_backing_dev_info(bdev);
1605         if (!bdi)
1606                 bdi = &default_backing_dev_info;
1607         mapping = &inode->i_data;
1608         mapping->a_ops = &mapping_aops;
1609         mapping->backing_dev_info = bdi;
1610         mapping_set_gfp_mask(mapping, GFP_NOFS);
1611         btp->bt_mapping = mapping;
1612         return 0;
1613 }
1614
1615 STATIC int
1616 xfs_alloc_delwrite_queue(
1617         xfs_buftarg_t           *btp,
1618         const char              *fsname)
1619 {
1620         int     error = 0;
1621
1622         INIT_LIST_HEAD(&btp->bt_list);
1623         INIT_LIST_HEAD(&btp->bt_delwrite_queue);
1624         spin_lock_init(&btp->bt_delwrite_lock);
1625         btp->bt_flags = 0;
1626         btp->bt_task = kthread_run(xfsbufd, btp, "xfsbufd/%s", fsname);
1627         if (IS_ERR(btp->bt_task)) {
1628                 error = PTR_ERR(btp->bt_task);
1629                 goto out_error;
1630         }
1631         xfs_register_buftarg(btp);
1632 out_error:
1633         return error;
1634 }
1635
1636 xfs_buftarg_t *
1637 xfs_alloc_buftarg(
1638         struct block_device     *bdev,
1639         int                     external,
1640         const char              *fsname)
1641 {
1642         xfs_buftarg_t           *btp;
1643
1644         btp = kmem_zalloc(sizeof(*btp), KM_SLEEP);
1645
1646         btp->bt_dev =  bdev->bd_dev;
1647         btp->bt_bdev = bdev;
1648         if (xfs_setsize_buftarg_early(btp, bdev))
1649                 goto error;
1650         if (xfs_mapping_buftarg(btp, bdev))
1651                 goto error;
1652         if (xfs_alloc_delwrite_queue(btp, fsname))
1653                 goto error;
1654         xfs_alloc_bufhash(btp, external);
1655         return btp;
1656
1657 error:
1658         kmem_free(btp);
1659         return NULL;
1660 }
1661
1662
1663 /*
1664  *      Delayed write buffer handling
1665  */
1666 STATIC void
1667 xfs_buf_delwri_queue(
1668         xfs_buf_t               *bp,
1669         int                     unlock)
1670 {
1671         struct list_head        *dwq = &bp->b_target->bt_delwrite_queue;
1672         spinlock_t              *dwlk = &bp->b_target->bt_delwrite_lock;
1673
1674         trace_xfs_buf_delwri_queue(bp, _RET_IP_);
1675
1676         ASSERT((bp->b_flags&(XBF_DELWRI|XBF_ASYNC)) == (XBF_DELWRI|XBF_ASYNC));
1677
1678         spin_lock(dwlk);
1679         /* If already in the queue, dequeue and place at tail */
1680         if (!list_empty(&bp->b_list)) {
1681                 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1682                 if (unlock)
1683                         atomic_dec(&bp->b_hold);
1684                 list_del(&bp->b_list);
1685         }
1686
1687         if (list_empty(dwq)) {
1688                 /* start xfsbufd as it is about to have something to do */
1689                 wake_up_process(bp->b_target->bt_task);
1690         }
1691
1692         bp->b_flags |= _XBF_DELWRI_Q;
1693         list_add_tail(&bp->b_list, dwq);
1694         bp->b_queuetime = jiffies;
1695         spin_unlock(dwlk);
1696
1697         if (unlock)
1698                 xfs_buf_unlock(bp);
1699 }
1700
1701 void
1702 xfs_buf_delwri_dequeue(
1703         xfs_buf_t               *bp)
1704 {
1705         spinlock_t              *dwlk = &bp->b_target->bt_delwrite_lock;
1706         int                     dequeued = 0;
1707
1708         spin_lock(dwlk);
1709         if ((bp->b_flags & XBF_DELWRI) && !list_empty(&bp->b_list)) {
1710                 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1711                 list_del_init(&bp->b_list);
1712                 dequeued = 1;
1713         }
1714         bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q);
1715         spin_unlock(dwlk);
1716
1717         if (dequeued)
1718                 xfs_buf_rele(bp);
1719
1720         trace_xfs_buf_delwri_dequeue(bp, _RET_IP_);
1721 }
1722
1723 /*
1724  * If a delwri buffer needs to be pushed before it has aged out, then promote
1725  * it to the head of the delwri queue so that it will be flushed on the next
1726  * xfsbufd run. We do this by resetting the queuetime of the buffer to be older
1727  * than the age currently needed to flush the buffer. Hence the next time the
1728  * xfsbufd sees it is guaranteed to be considered old enough to flush.
1729  */
1730 void
1731 xfs_buf_delwri_promote(
1732         struct xfs_buf  *bp)
1733 {
1734         struct xfs_buftarg *btp = bp->b_target;
1735         long            age = xfs_buf_age_centisecs * msecs_to_jiffies(10) + 1;
1736
1737         ASSERT(bp->b_flags & XBF_DELWRI);
1738         ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1739
1740         /*
1741          * Check the buffer age before locking the delayed write queue as we
1742          * don't need to promote buffers that are already past the flush age.
1743          */
1744         if (bp->b_queuetime < jiffies - age)
1745                 return;
1746         bp->b_queuetime = jiffies - age;
1747         spin_lock(&btp->bt_delwrite_lock);
1748         list_move(&bp->b_list, &btp->bt_delwrite_queue);
1749         spin_unlock(&btp->bt_delwrite_lock);
1750 }
1751
1752 STATIC void
1753 xfs_buf_runall_queues(
1754         struct workqueue_struct *queue)
1755 {
1756         flush_workqueue(queue);
1757 }
1758
1759 STATIC int
1760 xfsbufd_wakeup(
1761         int                     priority,
1762         gfp_t                   mask)
1763 {
1764         xfs_buftarg_t           *btp;
1765
1766         spin_lock(&xfs_buftarg_lock);
1767         list_for_each_entry(btp, &xfs_buftarg_list, bt_list) {
1768                 if (test_bit(XBT_FORCE_SLEEP, &btp->bt_flags))
1769                         continue;
1770                 if (list_empty(&btp->bt_delwrite_queue))
1771                         continue;
1772                 set_bit(XBT_FORCE_FLUSH, &btp->bt_flags);
1773                 wake_up_process(btp->bt_task);
1774         }
1775         spin_unlock(&xfs_buftarg_lock);
1776         return 0;
1777 }
1778
1779 /*
1780  * Move as many buffers as specified to the supplied list
1781  * idicating if we skipped any buffers to prevent deadlocks.
1782  */
1783 STATIC int
1784 xfs_buf_delwri_split(
1785         xfs_buftarg_t   *target,
1786         struct list_head *list,
1787         unsigned long   age)
1788 {
1789         xfs_buf_t       *bp, *n;
1790         struct list_head *dwq = &target->bt_delwrite_queue;
1791         spinlock_t      *dwlk = &target->bt_delwrite_lock;
1792         int             skipped = 0;
1793         int             force;
1794
1795         force = test_and_clear_bit(XBT_FORCE_FLUSH, &target->bt_flags);
1796         INIT_LIST_HEAD(list);
1797         spin_lock(dwlk);
1798         list_for_each_entry_safe(bp, n, dwq, b_list) {
1799                 trace_xfs_buf_delwri_split(bp, _RET_IP_);
1800                 ASSERT(bp->b_flags & XBF_DELWRI);
1801
1802                 if (!xfs_buf_ispin(bp) && !xfs_buf_cond_lock(bp)) {
1803                         if (!force &&
1804                             time_before(jiffies, bp->b_queuetime + age)) {
1805                                 xfs_buf_unlock(bp);
1806                                 break;
1807                         }
1808
1809                         bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q|
1810                                          _XBF_RUN_QUEUES);
1811                         bp->b_flags |= XBF_WRITE;
1812                         list_move_tail(&bp->b_list, list);
1813                 } else
1814                         skipped++;
1815         }
1816         spin_unlock(dwlk);
1817
1818         return skipped;
1819
1820 }
1821
1822 /*
1823  * Compare function is more complex than it needs to be because
1824  * the return value is only 32 bits and we are doing comparisons
1825  * on 64 bit values
1826  */
1827 static int
1828 xfs_buf_cmp(
1829         void            *priv,
1830         struct list_head *a,
1831         struct list_head *b)
1832 {
1833         struct xfs_buf  *ap = container_of(a, struct xfs_buf, b_list);
1834         struct xfs_buf  *bp = container_of(b, struct xfs_buf, b_list);
1835         xfs_daddr_t             diff;
1836
1837         diff = ap->b_bn - bp->b_bn;
1838         if (diff < 0)
1839                 return -1;
1840         if (diff > 0)
1841                 return 1;
1842         return 0;
1843 }
1844
1845 void
1846 xfs_buf_delwri_sort(
1847         xfs_buftarg_t   *target,
1848         struct list_head *list)
1849 {
1850         list_sort(NULL, list, xfs_buf_cmp);
1851 }
1852
1853 STATIC int
1854 xfsbufd(
1855         void            *data)
1856 {
1857         xfs_buftarg_t   *target = (xfs_buftarg_t *)data;
1858
1859         current->flags |= PF_MEMALLOC;
1860
1861         set_freezable();
1862
1863         do {
1864                 long    age = xfs_buf_age_centisecs * msecs_to_jiffies(10);
1865                 long    tout = xfs_buf_timer_centisecs * msecs_to_jiffies(10);
1866                 int     count = 0;
1867                 struct list_head tmp;
1868
1869                 if (unlikely(freezing(current))) {
1870                         set_bit(XBT_FORCE_SLEEP, &target->bt_flags);
1871                         refrigerator();
1872                 } else {
1873                         clear_bit(XBT_FORCE_SLEEP, &target->bt_flags);
1874                 }
1875
1876                 /* sleep for a long time if there is nothing to do. */
1877                 if (list_empty(&target->bt_delwrite_queue))
1878                         tout = MAX_SCHEDULE_TIMEOUT;
1879                 schedule_timeout_interruptible(tout);
1880
1881                 xfs_buf_delwri_split(target, &tmp, age);
1882                 list_sort(NULL, &tmp, xfs_buf_cmp);
1883                 while (!list_empty(&tmp)) {
1884                         struct xfs_buf *bp;
1885                         bp = list_first_entry(&tmp, struct xfs_buf, b_list);
1886                         list_del_init(&bp->b_list);
1887                         xfs_buf_iostrategy(bp);
1888                         count++;
1889                 }
1890                 if (count)
1891                         blk_run_address_space(target->bt_mapping);
1892
1893         } while (!kthread_should_stop());
1894
1895         return 0;
1896 }
1897
1898 /*
1899  *      Go through all incore buffers, and release buffers if they belong to
1900  *      the given device. This is used in filesystem error handling to
1901  *      preserve the consistency of its metadata.
1902  */
1903 int
1904 xfs_flush_buftarg(
1905         xfs_buftarg_t   *target,
1906         int             wait)
1907 {
1908         xfs_buf_t       *bp;
1909         int             pincount = 0;
1910         LIST_HEAD(tmp_list);
1911         LIST_HEAD(wait_list);
1912
1913         xfs_buf_runall_queues(xfsconvertd_workqueue);
1914         xfs_buf_runall_queues(xfsdatad_workqueue);
1915         xfs_buf_runall_queues(xfslogd_workqueue);
1916
1917         set_bit(XBT_FORCE_FLUSH, &target->bt_flags);
1918         pincount = xfs_buf_delwri_split(target, &tmp_list, 0);
1919
1920         /*
1921          * Dropped the delayed write list lock, now walk the temporary list.
1922          * All I/O is issued async and then if we need to wait for completion
1923          * we do that after issuing all the IO.
1924          */
1925         list_sort(NULL, &tmp_list, xfs_buf_cmp);
1926         while (!list_empty(&tmp_list)) {
1927                 bp = list_first_entry(&tmp_list, struct xfs_buf, b_list);
1928                 ASSERT(target == bp->b_target);
1929                 list_del_init(&bp->b_list);
1930                 if (wait) {
1931                         bp->b_flags &= ~XBF_ASYNC;
1932                         list_add(&bp->b_list, &wait_list);
1933                 }
1934                 xfs_buf_iostrategy(bp);
1935         }
1936
1937         if (wait) {
1938                 /* Expedite and wait for IO to complete. */
1939                 blk_run_address_space(target->bt_mapping);
1940                 while (!list_empty(&wait_list)) {
1941                         bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
1942
1943                         list_del_init(&bp->b_list);
1944                         xfs_iowait(bp);
1945                         xfs_buf_relse(bp);
1946                 }
1947         }
1948
1949         return pincount;
1950 }
1951
1952 int __init
1953 xfs_buf_init(void)
1954 {
1955         xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
1956                                                 KM_ZONE_HWALIGN, NULL);
1957         if (!xfs_buf_zone)
1958                 goto out;
1959
1960         xfslogd_workqueue = create_workqueue("xfslogd");
1961         if (!xfslogd_workqueue)
1962                 goto out_free_buf_zone;
1963
1964         xfsdatad_workqueue = create_workqueue("xfsdatad");
1965         if (!xfsdatad_workqueue)
1966                 goto out_destroy_xfslogd_workqueue;
1967
1968         xfsconvertd_workqueue = create_workqueue("xfsconvertd");
1969         if (!xfsconvertd_workqueue)
1970                 goto out_destroy_xfsdatad_workqueue;
1971
1972         register_shrinker(&xfs_buf_shake);
1973         return 0;
1974
1975  out_destroy_xfsdatad_workqueue:
1976         destroy_workqueue(xfsdatad_workqueue);
1977  out_destroy_xfslogd_workqueue:
1978         destroy_workqueue(xfslogd_workqueue);
1979  out_free_buf_zone:
1980         kmem_zone_destroy(xfs_buf_zone);
1981  out:
1982         return -ENOMEM;
1983 }
1984
1985 void
1986 xfs_buf_terminate(void)
1987 {
1988         unregister_shrinker(&xfs_buf_shake);
1989         destroy_workqueue(xfsconvertd_workqueue);
1990         destroy_workqueue(xfsdatad_workqueue);
1991         destroy_workqueue(xfslogd_workqueue);
1992         kmem_zone_destroy(xfs_buf_zone);
1993 }
1994
1995 #ifdef CONFIG_KDB_MODULES
1996 struct list_head *
1997 xfs_get_buftarg_list(void)
1998 {
1999         return &xfs_buftarg_list;
2000 }
2001 #endif