Merge branches 'acpi', 'idle', 'mrst-pmu' and 'pm-tools' into next
[pandora-kernel.git] / fs / udf / super.c
1 /*
2  * super.c
3  *
4  * PURPOSE
5  *  Super block routines for the OSTA-UDF(tm) filesystem.
6  *
7  * DESCRIPTION
8  *  OSTA-UDF(tm) = Optical Storage Technology Association
9  *  Universal Disk Format.
10  *
11  *  This code is based on version 2.00 of the UDF specification,
12  *  and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
13  *    http://www.osta.org/
14  *    http://www.ecma.ch/
15  *    http://www.iso.org/
16  *
17  * COPYRIGHT
18  *  This file is distributed under the terms of the GNU General Public
19  *  License (GPL). Copies of the GPL can be obtained from:
20  *    ftp://prep.ai.mit.edu/pub/gnu/GPL
21  *  Each contributing author retains all rights to their own work.
22  *
23  *  (C) 1998 Dave Boynton
24  *  (C) 1998-2004 Ben Fennema
25  *  (C) 2000 Stelias Computing Inc
26  *
27  * HISTORY
28  *
29  *  09/24/98 dgb  changed to allow compiling outside of kernel, and
30  *                added some debugging.
31  *  10/01/98 dgb  updated to allow (some) possibility of compiling w/2.0.34
32  *  10/16/98      attempting some multi-session support
33  *  10/17/98      added freespace count for "df"
34  *  11/11/98 gr   added novrs option
35  *  11/26/98 dgb  added fileset,anchor mount options
36  *  12/06/98 blf  really hosed things royally. vat/sparing support. sequenced
37  *                vol descs. rewrote option handling based on isofs
38  *  12/20/98      find the free space bitmap (if it exists)
39  */
40
41 #include "udfdecl.h"
42
43 #include <linux/blkdev.h>
44 #include <linux/slab.h>
45 #include <linux/kernel.h>
46 #include <linux/module.h>
47 #include <linux/parser.h>
48 #include <linux/stat.h>
49 #include <linux/cdrom.h>
50 #include <linux/nls.h>
51 #include <linux/buffer_head.h>
52 #include <linux/vfs.h>
53 #include <linux/vmalloc.h>
54 #include <linux/errno.h>
55 #include <linux/mount.h>
56 #include <linux/seq_file.h>
57 #include <linux/bitmap.h>
58 #include <linux/crc-itu-t.h>
59 #include <asm/byteorder.h>
60
61 #include "udf_sb.h"
62 #include "udf_i.h"
63
64 #include <linux/init.h>
65 #include <asm/uaccess.h>
66
67 #define VDS_POS_PRIMARY_VOL_DESC        0
68 #define VDS_POS_UNALLOC_SPACE_DESC      1
69 #define VDS_POS_LOGICAL_VOL_DESC        2
70 #define VDS_POS_PARTITION_DESC          3
71 #define VDS_POS_IMP_USE_VOL_DESC        4
72 #define VDS_POS_VOL_DESC_PTR            5
73 #define VDS_POS_TERMINATING_DESC        6
74 #define VDS_POS_LENGTH                  7
75
76 #define UDF_DEFAULT_BLOCKSIZE 2048
77
78 static char error_buf[1024];
79
80 /* These are the "meat" - everything else is stuffing */
81 static int udf_fill_super(struct super_block *, void *, int);
82 static void udf_put_super(struct super_block *);
83 static int udf_sync_fs(struct super_block *, int);
84 static int udf_remount_fs(struct super_block *, int *, char *);
85 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
86 static int udf_find_fileset(struct super_block *, struct kernel_lb_addr *,
87                             struct kernel_lb_addr *);
88 static void udf_load_fileset(struct super_block *, struct buffer_head *,
89                              struct kernel_lb_addr *);
90 static void udf_open_lvid(struct super_block *);
91 static void udf_close_lvid(struct super_block *);
92 static unsigned int udf_count_free(struct super_block *);
93 static int udf_statfs(struct dentry *, struct kstatfs *);
94 static int udf_show_options(struct seq_file *, struct vfsmount *);
95 static void udf_error(struct super_block *sb, const char *function,
96                       const char *fmt, ...);
97
98 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct udf_sb_info *sbi)
99 {
100         struct logicalVolIntegrityDesc *lvid =
101                 (struct logicalVolIntegrityDesc *)sbi->s_lvid_bh->b_data;
102         __u32 number_of_partitions = le32_to_cpu(lvid->numOfPartitions);
103         __u32 offset = number_of_partitions * 2 *
104                                 sizeof(uint32_t)/sizeof(uint8_t);
105         return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]);
106 }
107
108 /* UDF filesystem type */
109 static struct dentry *udf_mount(struct file_system_type *fs_type,
110                       int flags, const char *dev_name, void *data)
111 {
112         return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super);
113 }
114
115 static struct file_system_type udf_fstype = {
116         .owner          = THIS_MODULE,
117         .name           = "udf",
118         .mount          = udf_mount,
119         .kill_sb        = kill_block_super,
120         .fs_flags       = FS_REQUIRES_DEV,
121 };
122
123 static struct kmem_cache *udf_inode_cachep;
124
125 static struct inode *udf_alloc_inode(struct super_block *sb)
126 {
127         struct udf_inode_info *ei;
128         ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL);
129         if (!ei)
130                 return NULL;
131
132         ei->i_unique = 0;
133         ei->i_lenExtents = 0;
134         ei->i_next_alloc_block = 0;
135         ei->i_next_alloc_goal = 0;
136         ei->i_strat4096 = 0;
137         init_rwsem(&ei->i_data_sem);
138
139         return &ei->vfs_inode;
140 }
141
142 static void udf_i_callback(struct rcu_head *head)
143 {
144         struct inode *inode = container_of(head, struct inode, i_rcu);
145         INIT_LIST_HEAD(&inode->i_dentry);
146         kmem_cache_free(udf_inode_cachep, UDF_I(inode));
147 }
148
149 static void udf_destroy_inode(struct inode *inode)
150 {
151         call_rcu(&inode->i_rcu, udf_i_callback);
152 }
153
154 static void init_once(void *foo)
155 {
156         struct udf_inode_info *ei = (struct udf_inode_info *)foo;
157
158         ei->i_ext.i_data = NULL;
159         inode_init_once(&ei->vfs_inode);
160 }
161
162 static int init_inodecache(void)
163 {
164         udf_inode_cachep = kmem_cache_create("udf_inode_cache",
165                                              sizeof(struct udf_inode_info),
166                                              0, (SLAB_RECLAIM_ACCOUNT |
167                                                  SLAB_MEM_SPREAD),
168                                              init_once);
169         if (!udf_inode_cachep)
170                 return -ENOMEM;
171         return 0;
172 }
173
174 static void destroy_inodecache(void)
175 {
176         kmem_cache_destroy(udf_inode_cachep);
177 }
178
179 /* Superblock operations */
180 static const struct super_operations udf_sb_ops = {
181         .alloc_inode    = udf_alloc_inode,
182         .destroy_inode  = udf_destroy_inode,
183         .write_inode    = udf_write_inode,
184         .evict_inode    = udf_evict_inode,
185         .put_super      = udf_put_super,
186         .sync_fs        = udf_sync_fs,
187         .statfs         = udf_statfs,
188         .remount_fs     = udf_remount_fs,
189         .show_options   = udf_show_options,
190 };
191
192 struct udf_options {
193         unsigned char novrs;
194         unsigned int blocksize;
195         unsigned int session;
196         unsigned int lastblock;
197         unsigned int anchor;
198         unsigned int volume;
199         unsigned short partition;
200         unsigned int fileset;
201         unsigned int rootdir;
202         unsigned int flags;
203         mode_t umask;
204         gid_t gid;
205         uid_t uid;
206         mode_t fmode;
207         mode_t dmode;
208         struct nls_table *nls_map;
209 };
210
211 static int __init init_udf_fs(void)
212 {
213         int err;
214
215         err = init_inodecache();
216         if (err)
217                 goto out1;
218         err = register_filesystem(&udf_fstype);
219         if (err)
220                 goto out;
221
222         return 0;
223
224 out:
225         destroy_inodecache();
226
227 out1:
228         return err;
229 }
230
231 static void __exit exit_udf_fs(void)
232 {
233         unregister_filesystem(&udf_fstype);
234         destroy_inodecache();
235 }
236
237 module_init(init_udf_fs)
238 module_exit(exit_udf_fs)
239
240 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
241 {
242         struct udf_sb_info *sbi = UDF_SB(sb);
243
244         sbi->s_partmaps = kcalloc(count, sizeof(struct udf_part_map),
245                                   GFP_KERNEL);
246         if (!sbi->s_partmaps) {
247                 udf_error(sb, __func__,
248                           "Unable to allocate space for %d partition maps",
249                           count);
250                 sbi->s_partitions = 0;
251                 return -ENOMEM;
252         }
253
254         sbi->s_partitions = count;
255         return 0;
256 }
257
258 static int udf_show_options(struct seq_file *seq, struct vfsmount *mnt)
259 {
260         struct super_block *sb = mnt->mnt_sb;
261         struct udf_sb_info *sbi = UDF_SB(sb);
262
263         if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
264                 seq_puts(seq, ",nostrict");
265         if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
266                 seq_printf(seq, ",bs=%lu", sb->s_blocksize);
267         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
268                 seq_puts(seq, ",unhide");
269         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
270                 seq_puts(seq, ",undelete");
271         if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
272                 seq_puts(seq, ",noadinicb");
273         if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
274                 seq_puts(seq, ",shortad");
275         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
276                 seq_puts(seq, ",uid=forget");
277         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_IGNORE))
278                 seq_puts(seq, ",uid=ignore");
279         if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
280                 seq_puts(seq, ",gid=forget");
281         if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_IGNORE))
282                 seq_puts(seq, ",gid=ignore");
283         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
284                 seq_printf(seq, ",uid=%u", sbi->s_uid);
285         if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
286                 seq_printf(seq, ",gid=%u", sbi->s_gid);
287         if (sbi->s_umask != 0)
288                 seq_printf(seq, ",umask=%o", sbi->s_umask);
289         if (sbi->s_fmode != UDF_INVALID_MODE)
290                 seq_printf(seq, ",mode=%o", sbi->s_fmode);
291         if (sbi->s_dmode != UDF_INVALID_MODE)
292                 seq_printf(seq, ",dmode=%o", sbi->s_dmode);
293         if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
294                 seq_printf(seq, ",session=%u", sbi->s_session);
295         if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
296                 seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
297         if (sbi->s_anchor != 0)
298                 seq_printf(seq, ",anchor=%u", sbi->s_anchor);
299         /*
300          * volume, partition, fileset and rootdir seem to be ignored
301          * currently
302          */
303         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8))
304                 seq_puts(seq, ",utf8");
305         if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map)
306                 seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
307
308         return 0;
309 }
310
311 /*
312  * udf_parse_options
313  *
314  * PURPOSE
315  *      Parse mount options.
316  *
317  * DESCRIPTION
318  *      The following mount options are supported:
319  *
320  *      gid=            Set the default group.
321  *      umask=          Set the default umask.
322  *      mode=           Set the default file permissions.
323  *      dmode=          Set the default directory permissions.
324  *      uid=            Set the default user.
325  *      bs=             Set the block size.
326  *      unhide          Show otherwise hidden files.
327  *      undelete        Show deleted files in lists.
328  *      adinicb         Embed data in the inode (default)
329  *      noadinicb       Don't embed data in the inode
330  *      shortad         Use short ad's
331  *      longad          Use long ad's (default)
332  *      nostrict        Unset strict conformance
333  *      iocharset=      Set the NLS character set
334  *
335  *      The remaining are for debugging and disaster recovery:
336  *
337  *      novrs           Skip volume sequence recognition
338  *
339  *      The following expect a offset from 0.
340  *
341  *      session=        Set the CDROM session (default= last session)
342  *      anchor=         Override standard anchor location. (default= 256)
343  *      volume=         Override the VolumeDesc location. (unused)
344  *      partition=      Override the PartitionDesc location. (unused)
345  *      lastblock=      Set the last block of the filesystem/
346  *
347  *      The following expect a offset from the partition root.
348  *
349  *      fileset=        Override the fileset block location. (unused)
350  *      rootdir=        Override the root directory location. (unused)
351  *              WARNING: overriding the rootdir to a non-directory may
352  *              yield highly unpredictable results.
353  *
354  * PRE-CONDITIONS
355  *      options         Pointer to mount options string.
356  *      uopts           Pointer to mount options variable.
357  *
358  * POST-CONDITIONS
359  *      <return>        1       Mount options parsed okay.
360  *      <return>        0       Error parsing mount options.
361  *
362  * HISTORY
363  *      July 1, 1997 - Andrew E. Mileski
364  *      Written, tested, and released.
365  */
366
367 enum {
368         Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
369         Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
370         Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
371         Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
372         Opt_rootdir, Opt_utf8, Opt_iocharset,
373         Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore,
374         Opt_fmode, Opt_dmode
375 };
376
377 static const match_table_t tokens = {
378         {Opt_novrs,     "novrs"},
379         {Opt_nostrict,  "nostrict"},
380         {Opt_bs,        "bs=%u"},
381         {Opt_unhide,    "unhide"},
382         {Opt_undelete,  "undelete"},
383         {Opt_noadinicb, "noadinicb"},
384         {Opt_adinicb,   "adinicb"},
385         {Opt_shortad,   "shortad"},
386         {Opt_longad,    "longad"},
387         {Opt_uforget,   "uid=forget"},
388         {Opt_uignore,   "uid=ignore"},
389         {Opt_gforget,   "gid=forget"},
390         {Opt_gignore,   "gid=ignore"},
391         {Opt_gid,       "gid=%u"},
392         {Opt_uid,       "uid=%u"},
393         {Opt_umask,     "umask=%o"},
394         {Opt_session,   "session=%u"},
395         {Opt_lastblock, "lastblock=%u"},
396         {Opt_anchor,    "anchor=%u"},
397         {Opt_volume,    "volume=%u"},
398         {Opt_partition, "partition=%u"},
399         {Opt_fileset,   "fileset=%u"},
400         {Opt_rootdir,   "rootdir=%u"},
401         {Opt_utf8,      "utf8"},
402         {Opt_iocharset, "iocharset=%s"},
403         {Opt_fmode,     "mode=%o"},
404         {Opt_dmode,     "dmode=%o"},
405         {Opt_err,       NULL}
406 };
407
408 static int udf_parse_options(char *options, struct udf_options *uopt,
409                              bool remount)
410 {
411         char *p;
412         int option;
413
414         uopt->novrs = 0;
415         uopt->partition = 0xFFFF;
416         uopt->session = 0xFFFFFFFF;
417         uopt->lastblock = 0;
418         uopt->anchor = 0;
419         uopt->volume = 0xFFFFFFFF;
420         uopt->rootdir = 0xFFFFFFFF;
421         uopt->fileset = 0xFFFFFFFF;
422         uopt->nls_map = NULL;
423
424         if (!options)
425                 return 1;
426
427         while ((p = strsep(&options, ",")) != NULL) {
428                 substring_t args[MAX_OPT_ARGS];
429                 int token;
430                 if (!*p)
431                         continue;
432
433                 token = match_token(p, tokens, args);
434                 switch (token) {
435                 case Opt_novrs:
436                         uopt->novrs = 1;
437                         break;
438                 case Opt_bs:
439                         if (match_int(&args[0], &option))
440                                 return 0;
441                         uopt->blocksize = option;
442                         uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
443                         break;
444                 case Opt_unhide:
445                         uopt->flags |= (1 << UDF_FLAG_UNHIDE);
446                         break;
447                 case Opt_undelete:
448                         uopt->flags |= (1 << UDF_FLAG_UNDELETE);
449                         break;
450                 case Opt_noadinicb:
451                         uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
452                         break;
453                 case Opt_adinicb:
454                         uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
455                         break;
456                 case Opt_shortad:
457                         uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
458                         break;
459                 case Opt_longad:
460                         uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
461                         break;
462                 case Opt_gid:
463                         if (match_int(args, &option))
464                                 return 0;
465                         uopt->gid = option;
466                         uopt->flags |= (1 << UDF_FLAG_GID_SET);
467                         break;
468                 case Opt_uid:
469                         if (match_int(args, &option))
470                                 return 0;
471                         uopt->uid = option;
472                         uopt->flags |= (1 << UDF_FLAG_UID_SET);
473                         break;
474                 case Opt_umask:
475                         if (match_octal(args, &option))
476                                 return 0;
477                         uopt->umask = option;
478                         break;
479                 case Opt_nostrict:
480                         uopt->flags &= ~(1 << UDF_FLAG_STRICT);
481                         break;
482                 case Opt_session:
483                         if (match_int(args, &option))
484                                 return 0;
485                         uopt->session = option;
486                         if (!remount)
487                                 uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
488                         break;
489                 case Opt_lastblock:
490                         if (match_int(args, &option))
491                                 return 0;
492                         uopt->lastblock = option;
493                         if (!remount)
494                                 uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
495                         break;
496                 case Opt_anchor:
497                         if (match_int(args, &option))
498                                 return 0;
499                         uopt->anchor = option;
500                         break;
501                 case Opt_volume:
502                         if (match_int(args, &option))
503                                 return 0;
504                         uopt->volume = option;
505                         break;
506                 case Opt_partition:
507                         if (match_int(args, &option))
508                                 return 0;
509                         uopt->partition = option;
510                         break;
511                 case Opt_fileset:
512                         if (match_int(args, &option))
513                                 return 0;
514                         uopt->fileset = option;
515                         break;
516                 case Opt_rootdir:
517                         if (match_int(args, &option))
518                                 return 0;
519                         uopt->rootdir = option;
520                         break;
521                 case Opt_utf8:
522                         uopt->flags |= (1 << UDF_FLAG_UTF8);
523                         break;
524 #ifdef CONFIG_UDF_NLS
525                 case Opt_iocharset:
526                         uopt->nls_map = load_nls(args[0].from);
527                         uopt->flags |= (1 << UDF_FLAG_NLS_MAP);
528                         break;
529 #endif
530                 case Opt_uignore:
531                         uopt->flags |= (1 << UDF_FLAG_UID_IGNORE);
532                         break;
533                 case Opt_uforget:
534                         uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
535                         break;
536                 case Opt_gignore:
537                         uopt->flags |= (1 << UDF_FLAG_GID_IGNORE);
538                         break;
539                 case Opt_gforget:
540                         uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
541                         break;
542                 case Opt_fmode:
543                         if (match_octal(args, &option))
544                                 return 0;
545                         uopt->fmode = option & 0777;
546                         break;
547                 case Opt_dmode:
548                         if (match_octal(args, &option))
549                                 return 0;
550                         uopt->dmode = option & 0777;
551                         break;
552                 default:
553                         printk(KERN_ERR "udf: bad mount option \"%s\" "
554                                "or missing value\n", p);
555                         return 0;
556                 }
557         }
558         return 1;
559 }
560
561 static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
562 {
563         struct udf_options uopt;
564         struct udf_sb_info *sbi = UDF_SB(sb);
565         int error = 0;
566
567         uopt.flags = sbi->s_flags;
568         uopt.uid   = sbi->s_uid;
569         uopt.gid   = sbi->s_gid;
570         uopt.umask = sbi->s_umask;
571         uopt.fmode = sbi->s_fmode;
572         uopt.dmode = sbi->s_dmode;
573
574         if (!udf_parse_options(options, &uopt, true))
575                 return -EINVAL;
576
577         write_lock(&sbi->s_cred_lock);
578         sbi->s_flags = uopt.flags;
579         sbi->s_uid   = uopt.uid;
580         sbi->s_gid   = uopt.gid;
581         sbi->s_umask = uopt.umask;
582         sbi->s_fmode = uopt.fmode;
583         sbi->s_dmode = uopt.dmode;
584         write_unlock(&sbi->s_cred_lock);
585
586         if (sbi->s_lvid_bh) {
587                 int write_rev = le16_to_cpu(udf_sb_lvidiu(sbi)->minUDFWriteRev);
588                 if (write_rev > UDF_MAX_WRITE_VERSION)
589                         *flags |= MS_RDONLY;
590         }
591
592         if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
593                 goto out_unlock;
594
595         if (*flags & MS_RDONLY)
596                 udf_close_lvid(sb);
597         else
598                 udf_open_lvid(sb);
599
600 out_unlock:
601         return error;
602 }
603
604 /* Check Volume Structure Descriptors (ECMA 167 2/9.1) */
605 /* We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) */
606 static loff_t udf_check_vsd(struct super_block *sb)
607 {
608         struct volStructDesc *vsd = NULL;
609         loff_t sector = 32768;
610         int sectorsize;
611         struct buffer_head *bh = NULL;
612         int nsr02 = 0;
613         int nsr03 = 0;
614         struct udf_sb_info *sbi;
615
616         sbi = UDF_SB(sb);
617         if (sb->s_blocksize < sizeof(struct volStructDesc))
618                 sectorsize = sizeof(struct volStructDesc);
619         else
620                 sectorsize = sb->s_blocksize;
621
622         sector += (sbi->s_session << sb->s_blocksize_bits);
623
624         udf_debug("Starting at sector %u (%ld byte sectors)\n",
625                   (unsigned int)(sector >> sb->s_blocksize_bits),
626                   sb->s_blocksize);
627         /* Process the sequence (if applicable) */
628         for (; !nsr02 && !nsr03; sector += sectorsize) {
629                 /* Read a block */
630                 bh = udf_tread(sb, sector >> sb->s_blocksize_bits);
631                 if (!bh)
632                         break;
633
634                 /* Look for ISO  descriptors */
635                 vsd = (struct volStructDesc *)(bh->b_data +
636                                               (sector & (sb->s_blocksize - 1)));
637
638                 if (vsd->stdIdent[0] == 0) {
639                         brelse(bh);
640                         break;
641                 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_CD001,
642                                     VSD_STD_ID_LEN)) {
643                         switch (vsd->structType) {
644                         case 0:
645                                 udf_debug("ISO9660 Boot Record found\n");
646                                 break;
647                         case 1:
648                                 udf_debug("ISO9660 Primary Volume Descriptor "
649                                           "found\n");
650                                 break;
651                         case 2:
652                                 udf_debug("ISO9660 Supplementary Volume "
653                                           "Descriptor found\n");
654                                 break;
655                         case 3:
656                                 udf_debug("ISO9660 Volume Partition Descriptor "
657                                           "found\n");
658                                 break;
659                         case 255:
660                                 udf_debug("ISO9660 Volume Descriptor Set "
661                                           "Terminator found\n");
662                                 break;
663                         default:
664                                 udf_debug("ISO9660 VRS (%u) found\n",
665                                           vsd->structType);
666                                 break;
667                         }
668                 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BEA01,
669                                     VSD_STD_ID_LEN))
670                         ; /* nothing */
671                 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_TEA01,
672                                     VSD_STD_ID_LEN)) {
673                         brelse(bh);
674                         break;
675                 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR02,
676                                     VSD_STD_ID_LEN))
677                         nsr02 = sector;
678                 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR03,
679                                     VSD_STD_ID_LEN))
680                         nsr03 = sector;
681                 brelse(bh);
682         }
683
684         if (nsr03)
685                 return nsr03;
686         else if (nsr02)
687                 return nsr02;
688         else if (sector - (sbi->s_session << sb->s_blocksize_bits) == 32768)
689                 return -1;
690         else
691                 return 0;
692 }
693
694 static int udf_find_fileset(struct super_block *sb,
695                             struct kernel_lb_addr *fileset,
696                             struct kernel_lb_addr *root)
697 {
698         struct buffer_head *bh = NULL;
699         long lastblock;
700         uint16_t ident;
701         struct udf_sb_info *sbi;
702
703         if (fileset->logicalBlockNum != 0xFFFFFFFF ||
704             fileset->partitionReferenceNum != 0xFFFF) {
705                 bh = udf_read_ptagged(sb, fileset, 0, &ident);
706
707                 if (!bh) {
708                         return 1;
709                 } else if (ident != TAG_IDENT_FSD) {
710                         brelse(bh);
711                         return 1;
712                 }
713
714         }
715
716         sbi = UDF_SB(sb);
717         if (!bh) {
718                 /* Search backwards through the partitions */
719                 struct kernel_lb_addr newfileset;
720
721 /* --> cvg: FIXME - is it reasonable? */
722                 return 1;
723
724                 for (newfileset.partitionReferenceNum = sbi->s_partitions - 1;
725                      (newfileset.partitionReferenceNum != 0xFFFF &&
726                       fileset->logicalBlockNum == 0xFFFFFFFF &&
727                       fileset->partitionReferenceNum == 0xFFFF);
728                      newfileset.partitionReferenceNum--) {
729                         lastblock = sbi->s_partmaps
730                                         [newfileset.partitionReferenceNum]
731                                                 .s_partition_len;
732                         newfileset.logicalBlockNum = 0;
733
734                         do {
735                                 bh = udf_read_ptagged(sb, &newfileset, 0,
736                                                       &ident);
737                                 if (!bh) {
738                                         newfileset.logicalBlockNum++;
739                                         continue;
740                                 }
741
742                                 switch (ident) {
743                                 case TAG_IDENT_SBD:
744                                 {
745                                         struct spaceBitmapDesc *sp;
746                                         sp = (struct spaceBitmapDesc *)
747                                                                 bh->b_data;
748                                         newfileset.logicalBlockNum += 1 +
749                                                 ((le32_to_cpu(sp->numOfBytes) +
750                                                   sizeof(struct spaceBitmapDesc)
751                                                   - 1) >> sb->s_blocksize_bits);
752                                         brelse(bh);
753                                         break;
754                                 }
755                                 case TAG_IDENT_FSD:
756                                         *fileset = newfileset;
757                                         break;
758                                 default:
759                                         newfileset.logicalBlockNum++;
760                                         brelse(bh);
761                                         bh = NULL;
762                                         break;
763                                 }
764                         } while (newfileset.logicalBlockNum < lastblock &&
765                                  fileset->logicalBlockNum == 0xFFFFFFFF &&
766                                  fileset->partitionReferenceNum == 0xFFFF);
767                 }
768         }
769
770         if ((fileset->logicalBlockNum != 0xFFFFFFFF ||
771              fileset->partitionReferenceNum != 0xFFFF) && bh) {
772                 udf_debug("Fileset at block=%d, partition=%d\n",
773                           fileset->logicalBlockNum,
774                           fileset->partitionReferenceNum);
775
776                 sbi->s_partition = fileset->partitionReferenceNum;
777                 udf_load_fileset(sb, bh, root);
778                 brelse(bh);
779                 return 0;
780         }
781         return 1;
782 }
783
784 static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
785 {
786         struct primaryVolDesc *pvoldesc;
787         struct ustr *instr, *outstr;
788         struct buffer_head *bh;
789         uint16_t ident;
790         int ret = 1;
791
792         instr = kmalloc(sizeof(struct ustr), GFP_NOFS);
793         if (!instr)
794                 return 1;
795
796         outstr = kmalloc(sizeof(struct ustr), GFP_NOFS);
797         if (!outstr)
798                 goto out1;
799
800         bh = udf_read_tagged(sb, block, block, &ident);
801         if (!bh)
802                 goto out2;
803
804         BUG_ON(ident != TAG_IDENT_PVD);
805
806         pvoldesc = (struct primaryVolDesc *)bh->b_data;
807
808         if (udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
809                               pvoldesc->recordingDateAndTime)) {
810 #ifdef UDFFS_DEBUG
811                 struct timestamp *ts = &pvoldesc->recordingDateAndTime;
812                 udf_debug("recording time %04u/%02u/%02u"
813                           " %02u:%02u (%x)\n",
814                           le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
815                           ts->minute, le16_to_cpu(ts->typeAndTimezone));
816 #endif
817         }
818
819         if (!udf_build_ustr(instr, pvoldesc->volIdent, 32))
820                 if (udf_CS0toUTF8(outstr, instr)) {
821                         strncpy(UDF_SB(sb)->s_volume_ident, outstr->u_name,
822                                 outstr->u_len > 31 ? 31 : outstr->u_len);
823                         udf_debug("volIdent[] = '%s'\n",
824                                         UDF_SB(sb)->s_volume_ident);
825                 }
826
827         if (!udf_build_ustr(instr, pvoldesc->volSetIdent, 128))
828                 if (udf_CS0toUTF8(outstr, instr))
829                         udf_debug("volSetIdent[] = '%s'\n", outstr->u_name);
830
831         brelse(bh);
832         ret = 0;
833 out2:
834         kfree(outstr);
835 out1:
836         kfree(instr);
837         return ret;
838 }
839
840 static int udf_load_metadata_files(struct super_block *sb, int partition)
841 {
842         struct udf_sb_info *sbi = UDF_SB(sb);
843         struct udf_part_map *map;
844         struct udf_meta_data *mdata;
845         struct kernel_lb_addr addr;
846         int fe_error = 0;
847
848         map = &sbi->s_partmaps[partition];
849         mdata = &map->s_type_specific.s_metadata;
850
851         /* metadata address */
852         addr.logicalBlockNum =  mdata->s_meta_file_loc;
853         addr.partitionReferenceNum = map->s_partition_num;
854
855         udf_debug("Metadata file location: block = %d part = %d\n",
856                           addr.logicalBlockNum, addr.partitionReferenceNum);
857
858         mdata->s_metadata_fe = udf_iget(sb, &addr);
859
860         if (mdata->s_metadata_fe == NULL) {
861                 udf_warning(sb, __func__, "metadata inode efe not found, "
862                                 "will try mirror inode.");
863                 fe_error = 1;
864         } else if (UDF_I(mdata->s_metadata_fe)->i_alloc_type !=
865                  ICBTAG_FLAG_AD_SHORT) {
866                 udf_warning(sb, __func__, "metadata inode efe does not have "
867                         "short allocation descriptors!");
868                 fe_error = 1;
869                 iput(mdata->s_metadata_fe);
870                 mdata->s_metadata_fe = NULL;
871         }
872
873         /* mirror file entry */
874         addr.logicalBlockNum = mdata->s_mirror_file_loc;
875         addr.partitionReferenceNum = map->s_partition_num;
876
877         udf_debug("Mirror metadata file location: block = %d part = %d\n",
878                           addr.logicalBlockNum, addr.partitionReferenceNum);
879
880         mdata->s_mirror_fe = udf_iget(sb, &addr);
881
882         if (mdata->s_mirror_fe == NULL) {
883                 if (fe_error) {
884                         udf_error(sb, __func__, "mirror inode efe not found "
885                         "and metadata inode is missing too, exiting...");
886                         goto error_exit;
887                 } else
888                         udf_warning(sb, __func__, "mirror inode efe not found,"
889                                         " but metadata inode is OK");
890         } else if (UDF_I(mdata->s_mirror_fe)->i_alloc_type !=
891                  ICBTAG_FLAG_AD_SHORT) {
892                 udf_warning(sb, __func__, "mirror inode efe does not have "
893                         "short allocation descriptors!");
894                 iput(mdata->s_mirror_fe);
895                 mdata->s_mirror_fe = NULL;
896                 if (fe_error)
897                         goto error_exit;
898         }
899
900         /*
901          * bitmap file entry
902          * Note:
903          * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
904         */
905         if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
906                 addr.logicalBlockNum = mdata->s_bitmap_file_loc;
907                 addr.partitionReferenceNum = map->s_partition_num;
908
909                 udf_debug("Bitmap file location: block = %d part = %d\n",
910                         addr.logicalBlockNum, addr.partitionReferenceNum);
911
912                 mdata->s_bitmap_fe = udf_iget(sb, &addr);
913
914                 if (mdata->s_bitmap_fe == NULL) {
915                         if (sb->s_flags & MS_RDONLY)
916                                 udf_warning(sb, __func__, "bitmap inode efe "
917                                         "not found but it's ok since the disc"
918                                         " is mounted read-only");
919                         else {
920                                 udf_error(sb, __func__, "bitmap inode efe not "
921                                         "found and attempted read-write mount");
922                                 goto error_exit;
923                         }
924                 }
925         }
926
927         udf_debug("udf_load_metadata_files Ok\n");
928
929         return 0;
930
931 error_exit:
932         return 1;
933 }
934
935 static void udf_load_fileset(struct super_block *sb, struct buffer_head *bh,
936                              struct kernel_lb_addr *root)
937 {
938         struct fileSetDesc *fset;
939
940         fset = (struct fileSetDesc *)bh->b_data;
941
942         *root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
943
944         UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
945
946         udf_debug("Rootdir at block=%d, partition=%d\n",
947                   root->logicalBlockNum, root->partitionReferenceNum);
948 }
949
950 int udf_compute_nr_groups(struct super_block *sb, u32 partition)
951 {
952         struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
953         return DIV_ROUND_UP(map->s_partition_len +
954                             (sizeof(struct spaceBitmapDesc) << 3),
955                             sb->s_blocksize * 8);
956 }
957
958 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
959 {
960         struct udf_bitmap *bitmap;
961         int nr_groups;
962         int size;
963
964         nr_groups = udf_compute_nr_groups(sb, index);
965         size = sizeof(struct udf_bitmap) +
966                 (sizeof(struct buffer_head *) * nr_groups);
967
968         if (size <= PAGE_SIZE)
969                 bitmap = kzalloc(size, GFP_KERNEL);
970         else
971                 bitmap = vzalloc(size); /* TODO: get rid of vzalloc */
972
973         if (bitmap == NULL) {
974                 udf_error(sb, __func__,
975                           "Unable to allocate space for bitmap "
976                           "and %d buffer_head pointers", nr_groups);
977                 return NULL;
978         }
979
980         bitmap->s_block_bitmap = (struct buffer_head **)(bitmap + 1);
981         bitmap->s_nr_groups = nr_groups;
982         return bitmap;
983 }
984
985 static int udf_fill_partdesc_info(struct super_block *sb,
986                 struct partitionDesc *p, int p_index)
987 {
988         struct udf_part_map *map;
989         struct udf_sb_info *sbi = UDF_SB(sb);
990         struct partitionHeaderDesc *phd;
991
992         map = &sbi->s_partmaps[p_index];
993
994         map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
995         map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
996
997         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
998                 map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
999         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
1000                 map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
1001         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
1002                 map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
1003         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
1004                 map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
1005
1006         udf_debug("Partition (%d type %x) starts at physical %d, "
1007                   "block length %d\n", p_index,
1008                   map->s_partition_type, map->s_partition_root,
1009                   map->s_partition_len);
1010
1011         if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
1012             strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
1013                 return 0;
1014
1015         phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1016         if (phd->unallocSpaceTable.extLength) {
1017                 struct kernel_lb_addr loc = {
1018                         .logicalBlockNum = le32_to_cpu(
1019                                 phd->unallocSpaceTable.extPosition),
1020                         .partitionReferenceNum = p_index,
1021                 };
1022
1023                 map->s_uspace.s_table = udf_iget(sb, &loc);
1024                 if (!map->s_uspace.s_table) {
1025                         udf_debug("cannot load unallocSpaceTable (part %d)\n",
1026                                         p_index);
1027                         return 1;
1028                 }
1029                 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1030                 udf_debug("unallocSpaceTable (part %d) @ %ld\n",
1031                                 p_index, map->s_uspace.s_table->i_ino);
1032         }
1033
1034         if (phd->unallocSpaceBitmap.extLength) {
1035                 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1036                 if (!bitmap)
1037                         return 1;
1038                 map->s_uspace.s_bitmap = bitmap;
1039                 bitmap->s_extLength = le32_to_cpu(
1040                                 phd->unallocSpaceBitmap.extLength);
1041                 bitmap->s_extPosition = le32_to_cpu(
1042                                 phd->unallocSpaceBitmap.extPosition);
1043                 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1044                 udf_debug("unallocSpaceBitmap (part %d) @ %d\n", p_index,
1045                                                 bitmap->s_extPosition);
1046         }
1047
1048         if (phd->partitionIntegrityTable.extLength)
1049                 udf_debug("partitionIntegrityTable (part %d)\n", p_index);
1050
1051         if (phd->freedSpaceTable.extLength) {
1052                 struct kernel_lb_addr loc = {
1053                         .logicalBlockNum = le32_to_cpu(
1054                                 phd->freedSpaceTable.extPosition),
1055                         .partitionReferenceNum = p_index,
1056                 };
1057
1058                 map->s_fspace.s_table = udf_iget(sb, &loc);
1059                 if (!map->s_fspace.s_table) {
1060                         udf_debug("cannot load freedSpaceTable (part %d)\n",
1061                                 p_index);
1062                         return 1;
1063                 }
1064
1065                 map->s_partition_flags |= UDF_PART_FLAG_FREED_TABLE;
1066                 udf_debug("freedSpaceTable (part %d) @ %ld\n",
1067                                 p_index, map->s_fspace.s_table->i_ino);
1068         }
1069
1070         if (phd->freedSpaceBitmap.extLength) {
1071                 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1072                 if (!bitmap)
1073                         return 1;
1074                 map->s_fspace.s_bitmap = bitmap;
1075                 bitmap->s_extLength = le32_to_cpu(
1076                                 phd->freedSpaceBitmap.extLength);
1077                 bitmap->s_extPosition = le32_to_cpu(
1078                                 phd->freedSpaceBitmap.extPosition);
1079                 map->s_partition_flags |= UDF_PART_FLAG_FREED_BITMAP;
1080                 udf_debug("freedSpaceBitmap (part %d) @ %d\n", p_index,
1081                                         bitmap->s_extPosition);
1082         }
1083         return 0;
1084 }
1085
1086 static void udf_find_vat_block(struct super_block *sb, int p_index,
1087                                int type1_index, sector_t start_block)
1088 {
1089         struct udf_sb_info *sbi = UDF_SB(sb);
1090         struct udf_part_map *map = &sbi->s_partmaps[p_index];
1091         sector_t vat_block;
1092         struct kernel_lb_addr ino;
1093
1094         /*
1095          * VAT file entry is in the last recorded block. Some broken disks have
1096          * it a few blocks before so try a bit harder...
1097          */
1098         ino.partitionReferenceNum = type1_index;
1099         for (vat_block = start_block;
1100              vat_block >= map->s_partition_root &&
1101              vat_block >= start_block - 3 &&
1102              !sbi->s_vat_inode; vat_block--) {
1103                 ino.logicalBlockNum = vat_block - map->s_partition_root;
1104                 sbi->s_vat_inode = udf_iget(sb, &ino);
1105         }
1106 }
1107
1108 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1109 {
1110         struct udf_sb_info *sbi = UDF_SB(sb);
1111         struct udf_part_map *map = &sbi->s_partmaps[p_index];
1112         struct buffer_head *bh = NULL;
1113         struct udf_inode_info *vati;
1114         uint32_t pos;
1115         struct virtualAllocationTable20 *vat20;
1116         sector_t blocks = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
1117
1118         udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block);
1119         if (!sbi->s_vat_inode &&
1120             sbi->s_last_block != blocks - 1) {
1121                 printk(KERN_NOTICE "UDF-fs: Failed to read VAT inode from the"
1122                        " last recorded block (%lu), retrying with the last "
1123                        "block of the device (%lu).\n",
1124                        (unsigned long)sbi->s_last_block,
1125                        (unsigned long)blocks - 1);
1126                 udf_find_vat_block(sb, p_index, type1_index, blocks - 1);
1127         }
1128         if (!sbi->s_vat_inode)
1129                 return 1;
1130
1131         if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1132                 map->s_type_specific.s_virtual.s_start_offset = 0;
1133                 map->s_type_specific.s_virtual.s_num_entries =
1134                         (sbi->s_vat_inode->i_size - 36) >> 2;
1135         } else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1136                 vati = UDF_I(sbi->s_vat_inode);
1137                 if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1138                         pos = udf_block_map(sbi->s_vat_inode, 0);
1139                         bh = sb_bread(sb, pos);
1140                         if (!bh)
1141                                 return 1;
1142                         vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1143                 } else {
1144                         vat20 = (struct virtualAllocationTable20 *)
1145                                                         vati->i_ext.i_data;
1146                 }
1147
1148                 map->s_type_specific.s_virtual.s_start_offset =
1149                         le16_to_cpu(vat20->lengthHeader);
1150                 map->s_type_specific.s_virtual.s_num_entries =
1151                         (sbi->s_vat_inode->i_size -
1152                                 map->s_type_specific.s_virtual.
1153                                         s_start_offset) >> 2;
1154                 brelse(bh);
1155         }
1156         return 0;
1157 }
1158
1159 static int udf_load_partdesc(struct super_block *sb, sector_t block)
1160 {
1161         struct buffer_head *bh;
1162         struct partitionDesc *p;
1163         struct udf_part_map *map;
1164         struct udf_sb_info *sbi = UDF_SB(sb);
1165         int i, type1_idx;
1166         uint16_t partitionNumber;
1167         uint16_t ident;
1168         int ret = 0;
1169
1170         bh = udf_read_tagged(sb, block, block, &ident);
1171         if (!bh)
1172                 return 1;
1173         if (ident != TAG_IDENT_PD)
1174                 goto out_bh;
1175
1176         p = (struct partitionDesc *)bh->b_data;
1177         partitionNumber = le16_to_cpu(p->partitionNumber);
1178
1179         /* First scan for TYPE1, SPARABLE and METADATA partitions */
1180         for (i = 0; i < sbi->s_partitions; i++) {
1181                 map = &sbi->s_partmaps[i];
1182                 udf_debug("Searching map: (%d == %d)\n",
1183                           map->s_partition_num, partitionNumber);
1184                 if (map->s_partition_num == partitionNumber &&
1185                     (map->s_partition_type == UDF_TYPE1_MAP15 ||
1186                      map->s_partition_type == UDF_SPARABLE_MAP15))
1187                         break;
1188         }
1189
1190         if (i >= sbi->s_partitions) {
1191                 udf_debug("Partition (%d) not found in partition map\n",
1192                           partitionNumber);
1193                 goto out_bh;
1194         }
1195
1196         ret = udf_fill_partdesc_info(sb, p, i);
1197
1198         /*
1199          * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1200          * PHYSICAL partitions are already set up
1201          */
1202         type1_idx = i;
1203         for (i = 0; i < sbi->s_partitions; i++) {
1204                 map = &sbi->s_partmaps[i];
1205
1206                 if (map->s_partition_num == partitionNumber &&
1207                     (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1208                      map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1209                      map->s_partition_type == UDF_METADATA_MAP25))
1210                         break;
1211         }
1212
1213         if (i >= sbi->s_partitions)
1214                 goto out_bh;
1215
1216         ret = udf_fill_partdesc_info(sb, p, i);
1217         if (ret)
1218                 goto out_bh;
1219
1220         if (map->s_partition_type == UDF_METADATA_MAP25) {
1221                 ret = udf_load_metadata_files(sb, i);
1222                 if (ret) {
1223                         printk(KERN_ERR "UDF-fs: error loading MetaData "
1224                         "partition map %d\n", i);
1225                         goto out_bh;
1226                 }
1227         } else {
1228                 ret = udf_load_vat(sb, i, type1_idx);
1229                 if (ret)
1230                         goto out_bh;
1231                 /*
1232                  * Mark filesystem read-only if we have a partition with
1233                  * virtual map since we don't handle writing to it (we
1234                  * overwrite blocks instead of relocating them).
1235                  */
1236                 sb->s_flags |= MS_RDONLY;
1237                 printk(KERN_NOTICE "UDF-fs: Filesystem marked read-only "
1238                         "because writing to pseudooverwrite partition is "
1239                         "not implemented.\n");
1240         }
1241 out_bh:
1242         /* In case loading failed, we handle cleanup in udf_fill_super */
1243         brelse(bh);
1244         return ret;
1245 }
1246
1247 static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1248                                struct kernel_lb_addr *fileset)
1249 {
1250         struct logicalVolDesc *lvd;
1251         int i, j, offset;
1252         uint8_t type;
1253         struct udf_sb_info *sbi = UDF_SB(sb);
1254         struct genericPartitionMap *gpm;
1255         uint16_t ident;
1256         struct buffer_head *bh;
1257         int ret = 0;
1258
1259         bh = udf_read_tagged(sb, block, block, &ident);
1260         if (!bh)
1261                 return 1;
1262         BUG_ON(ident != TAG_IDENT_LVD);
1263         lvd = (struct logicalVolDesc *)bh->b_data;
1264
1265         i = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1266         if (i != 0) {
1267                 ret = i;
1268                 goto out_bh;
1269         }
1270
1271         for (i = 0, offset = 0;
1272              i < sbi->s_partitions && offset < le32_to_cpu(lvd->mapTableLength);
1273              i++, offset += gpm->partitionMapLength) {
1274                 struct udf_part_map *map = &sbi->s_partmaps[i];
1275                 gpm = (struct genericPartitionMap *)
1276                                 &(lvd->partitionMaps[offset]);
1277                 type = gpm->partitionMapType;
1278                 if (type == 1) {
1279                         struct genericPartitionMap1 *gpm1 =
1280                                 (struct genericPartitionMap1 *)gpm;
1281                         map->s_partition_type = UDF_TYPE1_MAP15;
1282                         map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1283                         map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1284                         map->s_partition_func = NULL;
1285                 } else if (type == 2) {
1286                         struct udfPartitionMap2 *upm2 =
1287                                                 (struct udfPartitionMap2 *)gpm;
1288                         if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1289                                                 strlen(UDF_ID_VIRTUAL))) {
1290                                 u16 suf =
1291                                         le16_to_cpu(((__le16 *)upm2->partIdent.
1292                                                         identSuffix)[0]);
1293                                 if (suf < 0x0200) {
1294                                         map->s_partition_type =
1295                                                         UDF_VIRTUAL_MAP15;
1296                                         map->s_partition_func =
1297                                                         udf_get_pblock_virt15;
1298                                 } else {
1299                                         map->s_partition_type =
1300                                                         UDF_VIRTUAL_MAP20;
1301                                         map->s_partition_func =
1302                                                         udf_get_pblock_virt20;
1303                                 }
1304                         } else if (!strncmp(upm2->partIdent.ident,
1305                                                 UDF_ID_SPARABLE,
1306                                                 strlen(UDF_ID_SPARABLE))) {
1307                                 uint32_t loc;
1308                                 struct sparingTable *st;
1309                                 struct sparablePartitionMap *spm =
1310                                         (struct sparablePartitionMap *)gpm;
1311
1312                                 map->s_partition_type = UDF_SPARABLE_MAP15;
1313                                 map->s_type_specific.s_sparing.s_packet_len =
1314                                                 le16_to_cpu(spm->packetLength);
1315                                 for (j = 0; j < spm->numSparingTables; j++) {
1316                                         struct buffer_head *bh2;
1317
1318                                         loc = le32_to_cpu(
1319                                                 spm->locSparingTable[j]);
1320                                         bh2 = udf_read_tagged(sb, loc, loc,
1321                                                              &ident);
1322                                         map->s_type_specific.s_sparing.
1323                                                         s_spar_map[j] = bh2;
1324
1325                                         if (bh2 == NULL)
1326                                                 continue;
1327
1328                                         st = (struct sparingTable *)bh2->b_data;
1329                                         if (ident != 0 || strncmp(
1330                                                 st->sparingIdent.ident,
1331                                                 UDF_ID_SPARING,
1332                                                 strlen(UDF_ID_SPARING))) {
1333                                                 brelse(bh2);
1334                                                 map->s_type_specific.s_sparing.
1335                                                         s_spar_map[j] = NULL;
1336                                         }
1337                                 }
1338                                 map->s_partition_func = udf_get_pblock_spar15;
1339                         } else if (!strncmp(upm2->partIdent.ident,
1340                                                 UDF_ID_METADATA,
1341                                                 strlen(UDF_ID_METADATA))) {
1342                                 struct udf_meta_data *mdata =
1343                                         &map->s_type_specific.s_metadata;
1344                                 struct metadataPartitionMap *mdm =
1345                                                 (struct metadataPartitionMap *)
1346                                                 &(lvd->partitionMaps[offset]);
1347                                 udf_debug("Parsing Logical vol part %d "
1348                                         "type %d  id=%s\n", i, type,
1349                                         UDF_ID_METADATA);
1350
1351                                 map->s_partition_type = UDF_METADATA_MAP25;
1352                                 map->s_partition_func = udf_get_pblock_meta25;
1353
1354                                 mdata->s_meta_file_loc   =
1355                                         le32_to_cpu(mdm->metadataFileLoc);
1356                                 mdata->s_mirror_file_loc =
1357                                         le32_to_cpu(mdm->metadataMirrorFileLoc);
1358                                 mdata->s_bitmap_file_loc =
1359                                         le32_to_cpu(mdm->metadataBitmapFileLoc);
1360                                 mdata->s_alloc_unit_size =
1361                                         le32_to_cpu(mdm->allocUnitSize);
1362                                 mdata->s_align_unit_size =
1363                                         le16_to_cpu(mdm->alignUnitSize);
1364                                 mdata->s_dup_md_flag     =
1365                                         mdm->flags & 0x01;
1366
1367                                 udf_debug("Metadata Ident suffix=0x%x\n",
1368                                         (le16_to_cpu(
1369                                          ((__le16 *)
1370                                               mdm->partIdent.identSuffix)[0])));
1371                                 udf_debug("Metadata part num=%d\n",
1372                                         le16_to_cpu(mdm->partitionNum));
1373                                 udf_debug("Metadata part alloc unit size=%d\n",
1374                                         le32_to_cpu(mdm->allocUnitSize));
1375                                 udf_debug("Metadata file loc=%d\n",
1376                                         le32_to_cpu(mdm->metadataFileLoc));
1377                                 udf_debug("Mirror file loc=%d\n",
1378                                        le32_to_cpu(mdm->metadataMirrorFileLoc));
1379                                 udf_debug("Bitmap file loc=%d\n",
1380                                        le32_to_cpu(mdm->metadataBitmapFileLoc));
1381                                 udf_debug("Duplicate Flag: %d %d\n",
1382                                         mdata->s_dup_md_flag, mdm->flags);
1383                         } else {
1384                                 udf_debug("Unknown ident: %s\n",
1385                                           upm2->partIdent.ident);
1386                                 continue;
1387                         }
1388                         map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1389                         map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1390                 }
1391                 udf_debug("Partition (%d:%d) type %d on volume %d\n",
1392                           i, map->s_partition_num, type,
1393                           map->s_volumeseqnum);
1394         }
1395
1396         if (fileset) {
1397                 struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1398
1399                 *fileset = lelb_to_cpu(la->extLocation);
1400                 udf_debug("FileSet found in LogicalVolDesc at block=%d, "
1401                           "partition=%d\n", fileset->logicalBlockNum,
1402                           fileset->partitionReferenceNum);
1403         }
1404         if (lvd->integritySeqExt.extLength)
1405                 udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1406
1407 out_bh:
1408         brelse(bh);
1409         return ret;
1410 }
1411
1412 /*
1413  * udf_load_logicalvolint
1414  *
1415  */
1416 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1417 {
1418         struct buffer_head *bh = NULL;
1419         uint16_t ident;
1420         struct udf_sb_info *sbi = UDF_SB(sb);
1421         struct logicalVolIntegrityDesc *lvid;
1422
1423         while (loc.extLength > 0 &&
1424                (bh = udf_read_tagged(sb, loc.extLocation,
1425                                      loc.extLocation, &ident)) &&
1426                ident == TAG_IDENT_LVID) {
1427                 sbi->s_lvid_bh = bh;
1428                 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1429
1430                 if (lvid->nextIntegrityExt.extLength)
1431                         udf_load_logicalvolint(sb,
1432                                 leea_to_cpu(lvid->nextIntegrityExt));
1433
1434                 if (sbi->s_lvid_bh != bh)
1435                         brelse(bh);
1436                 loc.extLength -= sb->s_blocksize;
1437                 loc.extLocation++;
1438         }
1439         if (sbi->s_lvid_bh != bh)
1440                 brelse(bh);
1441 }
1442
1443 /*
1444  * udf_process_sequence
1445  *
1446  * PURPOSE
1447  *      Process a main/reserve volume descriptor sequence.
1448  *
1449  * PRE-CONDITIONS
1450  *      sb                      Pointer to _locked_ superblock.
1451  *      block                   First block of first extent of the sequence.
1452  *      lastblock               Lastblock of first extent of the sequence.
1453  *
1454  * HISTORY
1455  *      July 1, 1997 - Andrew E. Mileski
1456  *      Written, tested, and released.
1457  */
1458 static noinline int udf_process_sequence(struct super_block *sb, long block,
1459                                 long lastblock, struct kernel_lb_addr *fileset)
1460 {
1461         struct buffer_head *bh = NULL;
1462         struct udf_vds_record vds[VDS_POS_LENGTH];
1463         struct udf_vds_record *curr;
1464         struct generic_desc *gd;
1465         struct volDescPtr *vdp;
1466         int done = 0;
1467         uint32_t vdsn;
1468         uint16_t ident;
1469         long next_s = 0, next_e = 0;
1470
1471         memset(vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1472
1473         /*
1474          * Read the main descriptor sequence and find which descriptors
1475          * are in it.
1476          */
1477         for (; (!done && block <= lastblock); block++) {
1478
1479                 bh = udf_read_tagged(sb, block, block, &ident);
1480                 if (!bh) {
1481                         printk(KERN_ERR "udf: Block %Lu of volume descriptor "
1482                                "sequence is corrupted or we could not read "
1483                                "it.\n", (unsigned long long)block);
1484                         return 1;
1485                 }
1486
1487                 /* Process each descriptor (ISO 13346 3/8.3-8.4) */
1488                 gd = (struct generic_desc *)bh->b_data;
1489                 vdsn = le32_to_cpu(gd->volDescSeqNum);
1490                 switch (ident) {
1491                 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1492                         curr = &vds[VDS_POS_PRIMARY_VOL_DESC];
1493                         if (vdsn >= curr->volDescSeqNum) {
1494                                 curr->volDescSeqNum = vdsn;
1495                                 curr->block = block;
1496                         }
1497                         break;
1498                 case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1499                         curr = &vds[VDS_POS_VOL_DESC_PTR];
1500                         if (vdsn >= curr->volDescSeqNum) {
1501                                 curr->volDescSeqNum = vdsn;
1502                                 curr->block = block;
1503
1504                                 vdp = (struct volDescPtr *)bh->b_data;
1505                                 next_s = le32_to_cpu(
1506                                         vdp->nextVolDescSeqExt.extLocation);
1507                                 next_e = le32_to_cpu(
1508                                         vdp->nextVolDescSeqExt.extLength);
1509                                 next_e = next_e >> sb->s_blocksize_bits;
1510                                 next_e += next_s;
1511                         }
1512                         break;
1513                 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1514                         curr = &vds[VDS_POS_IMP_USE_VOL_DESC];
1515                         if (vdsn >= curr->volDescSeqNum) {
1516                                 curr->volDescSeqNum = vdsn;
1517                                 curr->block = block;
1518                         }
1519                         break;
1520                 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1521                         curr = &vds[VDS_POS_PARTITION_DESC];
1522                         if (!curr->block)
1523                                 curr->block = block;
1524                         break;
1525                 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1526                         curr = &vds[VDS_POS_LOGICAL_VOL_DESC];
1527                         if (vdsn >= curr->volDescSeqNum) {
1528                                 curr->volDescSeqNum = vdsn;
1529                                 curr->block = block;
1530                         }
1531                         break;
1532                 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1533                         curr = &vds[VDS_POS_UNALLOC_SPACE_DESC];
1534                         if (vdsn >= curr->volDescSeqNum) {
1535                                 curr->volDescSeqNum = vdsn;
1536                                 curr->block = block;
1537                         }
1538                         break;
1539                 case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1540                         vds[VDS_POS_TERMINATING_DESC].block = block;
1541                         if (next_e) {
1542                                 block = next_s;
1543                                 lastblock = next_e;
1544                                 next_s = next_e = 0;
1545                         } else
1546                                 done = 1;
1547                         break;
1548                 }
1549                 brelse(bh);
1550         }
1551         /*
1552          * Now read interesting descriptors again and process them
1553          * in a suitable order
1554          */
1555         if (!vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1556                 printk(KERN_ERR "udf: Primary Volume Descriptor not found!\n");
1557                 return 1;
1558         }
1559         if (udf_load_pvoldesc(sb, vds[VDS_POS_PRIMARY_VOL_DESC].block))
1560                 return 1;
1561
1562         if (vds[VDS_POS_LOGICAL_VOL_DESC].block && udf_load_logicalvol(sb,
1563             vds[VDS_POS_LOGICAL_VOL_DESC].block, fileset))
1564                 return 1;
1565
1566         if (vds[VDS_POS_PARTITION_DESC].block) {
1567                 /*
1568                  * We rescan the whole descriptor sequence to find
1569                  * partition descriptor blocks and process them.
1570                  */
1571                 for (block = vds[VDS_POS_PARTITION_DESC].block;
1572                      block < vds[VDS_POS_TERMINATING_DESC].block;
1573                      block++)
1574                         if (udf_load_partdesc(sb, block))
1575                                 return 1;
1576         }
1577
1578         return 0;
1579 }
1580
1581 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1582                              struct kernel_lb_addr *fileset)
1583 {
1584         struct anchorVolDescPtr *anchor;
1585         long main_s, main_e, reserve_s, reserve_e;
1586
1587         anchor = (struct anchorVolDescPtr *)bh->b_data;
1588
1589         /* Locate the main sequence */
1590         main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1591         main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1592         main_e = main_e >> sb->s_blocksize_bits;
1593         main_e += main_s;
1594
1595         /* Locate the reserve sequence */
1596         reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1597         reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1598         reserve_e = reserve_e >> sb->s_blocksize_bits;
1599         reserve_e += reserve_s;
1600
1601         /* Process the main & reserve sequences */
1602         /* responsible for finding the PartitionDesc(s) */
1603         if (!udf_process_sequence(sb, main_s, main_e, fileset))
1604                 return 1;
1605         return !udf_process_sequence(sb, reserve_s, reserve_e, fileset);
1606 }
1607
1608 /*
1609  * Check whether there is an anchor block in the given block and
1610  * load Volume Descriptor Sequence if so.
1611  */
1612 static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1613                                   struct kernel_lb_addr *fileset)
1614 {
1615         struct buffer_head *bh;
1616         uint16_t ident;
1617         int ret;
1618
1619         if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) &&
1620             udf_fixed_to_variable(block) >=
1621             sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits)
1622                 return 0;
1623
1624         bh = udf_read_tagged(sb, block, block, &ident);
1625         if (!bh)
1626                 return 0;
1627         if (ident != TAG_IDENT_AVDP) {
1628                 brelse(bh);
1629                 return 0;
1630         }
1631         ret = udf_load_sequence(sb, bh, fileset);
1632         brelse(bh);
1633         return ret;
1634 }
1635
1636 /* Search for an anchor volume descriptor pointer */
1637 static sector_t udf_scan_anchors(struct super_block *sb, sector_t lastblock,
1638                                  struct kernel_lb_addr *fileset)
1639 {
1640         sector_t last[6];
1641         int i;
1642         struct udf_sb_info *sbi = UDF_SB(sb);
1643         int last_count = 0;
1644
1645         /* First try user provided anchor */
1646         if (sbi->s_anchor) {
1647                 if (udf_check_anchor_block(sb, sbi->s_anchor, fileset))
1648                         return lastblock;
1649         }
1650         /*
1651          * according to spec, anchor is in either:
1652          *     block 256
1653          *     lastblock-256
1654          *     lastblock
1655          *  however, if the disc isn't closed, it could be 512.
1656          */
1657         if (udf_check_anchor_block(sb, sbi->s_session + 256, fileset))
1658                 return lastblock;
1659         /*
1660          * The trouble is which block is the last one. Drives often misreport
1661          * this so we try various possibilities.
1662          */
1663         last[last_count++] = lastblock;
1664         if (lastblock >= 1)
1665                 last[last_count++] = lastblock - 1;
1666         last[last_count++] = lastblock + 1;
1667         if (lastblock >= 2)
1668                 last[last_count++] = lastblock - 2;
1669         if (lastblock >= 150)
1670                 last[last_count++] = lastblock - 150;
1671         if (lastblock >= 152)
1672                 last[last_count++] = lastblock - 152;
1673
1674         for (i = 0; i < last_count; i++) {
1675                 if (last[i] >= sb->s_bdev->bd_inode->i_size >>
1676                                 sb->s_blocksize_bits)
1677                         continue;
1678                 if (udf_check_anchor_block(sb, last[i], fileset))
1679                         return last[i];
1680                 if (last[i] < 256)
1681                         continue;
1682                 if (udf_check_anchor_block(sb, last[i] - 256, fileset))
1683                         return last[i];
1684         }
1685
1686         /* Finally try block 512 in case media is open */
1687         if (udf_check_anchor_block(sb, sbi->s_session + 512, fileset))
1688                 return last[0];
1689         return 0;
1690 }
1691
1692 /*
1693  * Find an anchor volume descriptor and load Volume Descriptor Sequence from
1694  * area specified by it. The function expects sbi->s_lastblock to be the last
1695  * block on the media.
1696  *
1697  * Return 1 if ok, 0 if not found.
1698  *
1699  */
1700 static int udf_find_anchor(struct super_block *sb,
1701                            struct kernel_lb_addr *fileset)
1702 {
1703         sector_t lastblock;
1704         struct udf_sb_info *sbi = UDF_SB(sb);
1705
1706         lastblock = udf_scan_anchors(sb, sbi->s_last_block, fileset);
1707         if (lastblock)
1708                 goto out;
1709
1710         /* No anchor found? Try VARCONV conversion of block numbers */
1711         UDF_SET_FLAG(sb, UDF_FLAG_VARCONV);
1712         /* Firstly, we try to not convert number of the last block */
1713         lastblock = udf_scan_anchors(sb,
1714                                 udf_variable_to_fixed(sbi->s_last_block),
1715                                 fileset);
1716         if (lastblock)
1717                 goto out;
1718
1719         /* Secondly, we try with converted number of the last block */
1720         lastblock = udf_scan_anchors(sb, sbi->s_last_block, fileset);
1721         if (!lastblock) {
1722                 /* VARCONV didn't help. Clear it. */
1723                 UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV);
1724                 return 0;
1725         }
1726 out:
1727         sbi->s_last_block = lastblock;
1728         return 1;
1729 }
1730
1731 /*
1732  * Check Volume Structure Descriptor, find Anchor block and load Volume
1733  * Descriptor Sequence
1734  */
1735 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
1736                         int silent, struct kernel_lb_addr *fileset)
1737 {
1738         struct udf_sb_info *sbi = UDF_SB(sb);
1739         loff_t nsr_off;
1740
1741         if (!sb_set_blocksize(sb, uopt->blocksize)) {
1742                 if (!silent)
1743                         printk(KERN_WARNING "UDF-fs: Bad block size\n");
1744                 return 0;
1745         }
1746         sbi->s_last_block = uopt->lastblock;
1747         if (!uopt->novrs) {
1748                 /* Check that it is NSR02 compliant */
1749                 nsr_off = udf_check_vsd(sb);
1750                 if (!nsr_off) {
1751                         if (!silent)
1752                                 printk(KERN_WARNING "UDF-fs: No VRS found\n");
1753                         return 0;
1754                 }
1755                 if (nsr_off == -1)
1756                         udf_debug("Failed to read byte 32768. Assuming open "
1757                                   "disc. Skipping validity check\n");
1758                 if (!sbi->s_last_block)
1759                         sbi->s_last_block = udf_get_last_block(sb);
1760         } else {
1761                 udf_debug("Validity check skipped because of novrs option\n");
1762         }
1763
1764         /* Look for anchor block and load Volume Descriptor Sequence */
1765         sbi->s_anchor = uopt->anchor;
1766         if (!udf_find_anchor(sb, fileset)) {
1767                 if (!silent)
1768                         printk(KERN_WARNING "UDF-fs: No anchor found\n");
1769                 return 0;
1770         }
1771         return 1;
1772 }
1773
1774 static void udf_open_lvid(struct super_block *sb)
1775 {
1776         struct udf_sb_info *sbi = UDF_SB(sb);
1777         struct buffer_head *bh = sbi->s_lvid_bh;
1778         struct logicalVolIntegrityDesc *lvid;
1779         struct logicalVolIntegrityDescImpUse *lvidiu;
1780
1781         if (!bh)
1782                 return;
1783
1784         mutex_lock(&sbi->s_alloc_mutex);
1785         lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1786         lvidiu = udf_sb_lvidiu(sbi);
1787
1788         lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1789         lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1790         udf_time_to_disk_stamp(&lvid->recordingDateAndTime,
1791                                 CURRENT_TIME);
1792         lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
1793
1794         lvid->descTag.descCRC = cpu_to_le16(
1795                 crc_itu_t(0, (char *)lvid + sizeof(struct tag),
1796                         le16_to_cpu(lvid->descTag.descCRCLength)));
1797
1798         lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
1799         mark_buffer_dirty(bh);
1800         sbi->s_lvid_dirty = 0;
1801         mutex_unlock(&sbi->s_alloc_mutex);
1802 }
1803
1804 static void udf_close_lvid(struct super_block *sb)
1805 {
1806         struct udf_sb_info *sbi = UDF_SB(sb);
1807         struct buffer_head *bh = sbi->s_lvid_bh;
1808         struct logicalVolIntegrityDesc *lvid;
1809         struct logicalVolIntegrityDescImpUse *lvidiu;
1810
1811         if (!bh)
1812                 return;
1813
1814         mutex_lock(&sbi->s_alloc_mutex);
1815         lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1816         lvidiu = udf_sb_lvidiu(sbi);
1817         lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1818         lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1819         udf_time_to_disk_stamp(&lvid->recordingDateAndTime, CURRENT_TIME);
1820         if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
1821                 lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
1822         if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
1823                 lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
1824         if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
1825                 lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
1826         lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
1827
1828         lvid->descTag.descCRC = cpu_to_le16(
1829                         crc_itu_t(0, (char *)lvid + sizeof(struct tag),
1830                                 le16_to_cpu(lvid->descTag.descCRCLength)));
1831
1832         lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
1833         mark_buffer_dirty(bh);
1834         sbi->s_lvid_dirty = 0;
1835         mutex_unlock(&sbi->s_alloc_mutex);
1836 }
1837
1838 u64 lvid_get_unique_id(struct super_block *sb)
1839 {
1840         struct buffer_head *bh;
1841         struct udf_sb_info *sbi = UDF_SB(sb);
1842         struct logicalVolIntegrityDesc *lvid;
1843         struct logicalVolHeaderDesc *lvhd;
1844         u64 uniqueID;
1845         u64 ret;
1846
1847         bh = sbi->s_lvid_bh;
1848         if (!bh)
1849                 return 0;
1850
1851         lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1852         lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse;
1853
1854         mutex_lock(&sbi->s_alloc_mutex);
1855         ret = uniqueID = le64_to_cpu(lvhd->uniqueID);
1856         if (!(++uniqueID & 0xFFFFFFFF))
1857                 uniqueID += 16;
1858         lvhd->uniqueID = cpu_to_le64(uniqueID);
1859         mutex_unlock(&sbi->s_alloc_mutex);
1860         mark_buffer_dirty(bh);
1861
1862         return ret;
1863 }
1864
1865 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
1866 {
1867         int i;
1868         int nr_groups = bitmap->s_nr_groups;
1869         int size = sizeof(struct udf_bitmap) + (sizeof(struct buffer_head *) *
1870                                                 nr_groups);
1871
1872         for (i = 0; i < nr_groups; i++)
1873                 if (bitmap->s_block_bitmap[i])
1874                         brelse(bitmap->s_block_bitmap[i]);
1875
1876         if (size <= PAGE_SIZE)
1877                 kfree(bitmap);
1878         else
1879                 vfree(bitmap);
1880 }
1881
1882 static void udf_free_partition(struct udf_part_map *map)
1883 {
1884         int i;
1885         struct udf_meta_data *mdata;
1886
1887         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
1888                 iput(map->s_uspace.s_table);
1889         if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE)
1890                 iput(map->s_fspace.s_table);
1891         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
1892                 udf_sb_free_bitmap(map->s_uspace.s_bitmap);
1893         if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP)
1894                 udf_sb_free_bitmap(map->s_fspace.s_bitmap);
1895         if (map->s_partition_type == UDF_SPARABLE_MAP15)
1896                 for (i = 0; i < 4; i++)
1897                         brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
1898         else if (map->s_partition_type == UDF_METADATA_MAP25) {
1899                 mdata = &map->s_type_specific.s_metadata;
1900                 iput(mdata->s_metadata_fe);
1901                 mdata->s_metadata_fe = NULL;
1902
1903                 iput(mdata->s_mirror_fe);
1904                 mdata->s_mirror_fe = NULL;
1905
1906                 iput(mdata->s_bitmap_fe);
1907                 mdata->s_bitmap_fe = NULL;
1908         }
1909 }
1910
1911 static int udf_fill_super(struct super_block *sb, void *options, int silent)
1912 {
1913         int i;
1914         int ret;
1915         struct inode *inode = NULL;
1916         struct udf_options uopt;
1917         struct kernel_lb_addr rootdir, fileset;
1918         struct udf_sb_info *sbi;
1919
1920         uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
1921         uopt.uid = -1;
1922         uopt.gid = -1;
1923         uopt.umask = 0;
1924         uopt.fmode = UDF_INVALID_MODE;
1925         uopt.dmode = UDF_INVALID_MODE;
1926
1927         sbi = kzalloc(sizeof(struct udf_sb_info), GFP_KERNEL);
1928         if (!sbi)
1929                 return -ENOMEM;
1930
1931         sb->s_fs_info = sbi;
1932
1933         mutex_init(&sbi->s_alloc_mutex);
1934
1935         if (!udf_parse_options((char *)options, &uopt, false))
1936                 goto error_out;
1937
1938         if (uopt.flags & (1 << UDF_FLAG_UTF8) &&
1939             uopt.flags & (1 << UDF_FLAG_NLS_MAP)) {
1940                 udf_error(sb, "udf_read_super",
1941                           "utf8 cannot be combined with iocharset\n");
1942                 goto error_out;
1943         }
1944 #ifdef CONFIG_UDF_NLS
1945         if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) {
1946                 uopt.nls_map = load_nls_default();
1947                 if (!uopt.nls_map)
1948                         uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP);
1949                 else
1950                         udf_debug("Using default NLS map\n");
1951         }
1952 #endif
1953         if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP)))
1954                 uopt.flags |= (1 << UDF_FLAG_UTF8);
1955
1956         fileset.logicalBlockNum = 0xFFFFFFFF;
1957         fileset.partitionReferenceNum = 0xFFFF;
1958
1959         sbi->s_flags = uopt.flags;
1960         sbi->s_uid = uopt.uid;
1961         sbi->s_gid = uopt.gid;
1962         sbi->s_umask = uopt.umask;
1963         sbi->s_fmode = uopt.fmode;
1964         sbi->s_dmode = uopt.dmode;
1965         sbi->s_nls_map = uopt.nls_map;
1966         rwlock_init(&sbi->s_cred_lock);
1967
1968         if (uopt.session == 0xFFFFFFFF)
1969                 sbi->s_session = udf_get_last_session(sb);
1970         else
1971                 sbi->s_session = uopt.session;
1972
1973         udf_debug("Multi-session=%d\n", sbi->s_session);
1974
1975         /* Fill in the rest of the superblock */
1976         sb->s_op = &udf_sb_ops;
1977         sb->s_export_op = &udf_export_ops;
1978
1979         sb->s_dirt = 0;
1980         sb->s_magic = UDF_SUPER_MAGIC;
1981         sb->s_time_gran = 1000;
1982
1983         if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
1984                 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
1985         } else {
1986                 uopt.blocksize = bdev_logical_block_size(sb->s_bdev);
1987                 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
1988                 if (!ret && uopt.blocksize != UDF_DEFAULT_BLOCKSIZE) {
1989                         if (!silent)
1990                                 printk(KERN_NOTICE
1991                                        "UDF-fs: Rescanning with blocksize "
1992                                        "%d\n", UDF_DEFAULT_BLOCKSIZE);
1993                         uopt.blocksize = UDF_DEFAULT_BLOCKSIZE;
1994                         ret = udf_load_vrs(sb, &uopt, silent, &fileset);
1995                 }
1996         }
1997         if (!ret) {
1998                 printk(KERN_WARNING "UDF-fs: No partition found (1)\n");
1999                 goto error_out;
2000         }
2001
2002         udf_debug("Lastblock=%d\n", sbi->s_last_block);
2003
2004         if (sbi->s_lvid_bh) {
2005                 struct logicalVolIntegrityDescImpUse *lvidiu =
2006                                                         udf_sb_lvidiu(sbi);
2007                 uint16_t minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
2008                 uint16_t minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
2009                 /* uint16_t maxUDFWriteRev =
2010                                 le16_to_cpu(lvidiu->maxUDFWriteRev); */
2011
2012                 if (minUDFReadRev > UDF_MAX_READ_VERSION) {
2013                         printk(KERN_ERR "UDF-fs: minUDFReadRev=%x "
2014                                         "(max is %x)\n",
2015                                le16_to_cpu(lvidiu->minUDFReadRev),
2016                                UDF_MAX_READ_VERSION);
2017                         goto error_out;
2018                 } else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION)
2019                         sb->s_flags |= MS_RDONLY;
2020
2021                 sbi->s_udfrev = minUDFWriteRev;
2022
2023                 if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
2024                         UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
2025                 if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
2026                         UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
2027         }
2028
2029         if (!sbi->s_partitions) {
2030                 printk(KERN_WARNING "UDF-fs: No partition found (2)\n");
2031                 goto error_out;
2032         }
2033
2034         if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
2035                         UDF_PART_FLAG_READ_ONLY) {
2036                 printk(KERN_NOTICE "UDF-fs: Partition marked readonly; "
2037                                    "forcing readonly mount\n");
2038                 sb->s_flags |= MS_RDONLY;
2039         }
2040
2041         if (udf_find_fileset(sb, &fileset, &rootdir)) {
2042                 printk(KERN_WARNING "UDF-fs: No fileset found\n");
2043                 goto error_out;
2044         }
2045
2046         if (!silent) {
2047                 struct timestamp ts;
2048                 udf_time_to_disk_stamp(&ts, sbi->s_record_time);
2049                 udf_info("UDF: Mounting volume '%s', "
2050                          "timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
2051                          sbi->s_volume_ident, le16_to_cpu(ts.year), ts.month, ts.day,
2052                          ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
2053         }
2054         if (!(sb->s_flags & MS_RDONLY))
2055                 udf_open_lvid(sb);
2056
2057         /* Assign the root inode */
2058         /* assign inodes by physical block number */
2059         /* perhaps it's not extensible enough, but for now ... */
2060         inode = udf_iget(sb, &rootdir);
2061         if (!inode) {
2062                 printk(KERN_ERR "UDF-fs: Error in udf_iget, block=%d, "
2063                                 "partition=%d\n",
2064                        rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
2065                 goto error_out;
2066         }
2067
2068         /* Allocate a dentry for the root inode */
2069         sb->s_root = d_alloc_root(inode);
2070         if (!sb->s_root) {
2071                 printk(KERN_ERR "UDF-fs: Couldn't allocate root dentry\n");
2072                 iput(inode);
2073                 goto error_out;
2074         }
2075         sb->s_maxbytes = MAX_LFS_FILESIZE;
2076         return 0;
2077
2078 error_out:
2079         if (sbi->s_vat_inode)
2080                 iput(sbi->s_vat_inode);
2081         if (sbi->s_partitions)
2082                 for (i = 0; i < sbi->s_partitions; i++)
2083                         udf_free_partition(&sbi->s_partmaps[i]);
2084 #ifdef CONFIG_UDF_NLS
2085         if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2086                 unload_nls(sbi->s_nls_map);
2087 #endif
2088         if (!(sb->s_flags & MS_RDONLY))
2089                 udf_close_lvid(sb);
2090         brelse(sbi->s_lvid_bh);
2091
2092         kfree(sbi->s_partmaps);
2093         kfree(sbi);
2094         sb->s_fs_info = NULL;
2095
2096         return -EINVAL;
2097 }
2098
2099 static void udf_error(struct super_block *sb, const char *function,
2100                       const char *fmt, ...)
2101 {
2102         va_list args;
2103
2104         if (!(sb->s_flags & MS_RDONLY)) {
2105                 /* mark sb error */
2106                 sb->s_dirt = 1;
2107         }
2108         va_start(args, fmt);
2109         vsnprintf(error_buf, sizeof(error_buf), fmt, args);
2110         va_end(args);
2111         printk(KERN_CRIT "UDF-fs error (device %s): %s: %s\n",
2112                 sb->s_id, function, error_buf);
2113 }
2114
2115 void udf_warning(struct super_block *sb, const char *function,
2116                  const char *fmt, ...)
2117 {
2118         va_list args;
2119
2120         va_start(args, fmt);
2121         vsnprintf(error_buf, sizeof(error_buf), fmt, args);
2122         va_end(args);
2123         printk(KERN_WARNING "UDF-fs warning (device %s): %s: %s\n",
2124                sb->s_id, function, error_buf);
2125 }
2126
2127 static void udf_put_super(struct super_block *sb)
2128 {
2129         int i;
2130         struct udf_sb_info *sbi;
2131
2132         sbi = UDF_SB(sb);
2133
2134         if (sbi->s_vat_inode)
2135                 iput(sbi->s_vat_inode);
2136         if (sbi->s_partitions)
2137                 for (i = 0; i < sbi->s_partitions; i++)
2138                         udf_free_partition(&sbi->s_partmaps[i]);
2139 #ifdef CONFIG_UDF_NLS
2140         if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2141                 unload_nls(sbi->s_nls_map);
2142 #endif
2143         if (!(sb->s_flags & MS_RDONLY))
2144                 udf_close_lvid(sb);
2145         brelse(sbi->s_lvid_bh);
2146         kfree(sbi->s_partmaps);
2147         kfree(sb->s_fs_info);
2148         sb->s_fs_info = NULL;
2149 }
2150
2151 static int udf_sync_fs(struct super_block *sb, int wait)
2152 {
2153         struct udf_sb_info *sbi = UDF_SB(sb);
2154
2155         mutex_lock(&sbi->s_alloc_mutex);
2156         if (sbi->s_lvid_dirty) {
2157                 /*
2158                  * Blockdevice will be synced later so we don't have to submit
2159                  * the buffer for IO
2160                  */
2161                 mark_buffer_dirty(sbi->s_lvid_bh);
2162                 sb->s_dirt = 0;
2163                 sbi->s_lvid_dirty = 0;
2164         }
2165         mutex_unlock(&sbi->s_alloc_mutex);
2166
2167         return 0;
2168 }
2169
2170 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2171 {
2172         struct super_block *sb = dentry->d_sb;
2173         struct udf_sb_info *sbi = UDF_SB(sb);
2174         struct logicalVolIntegrityDescImpUse *lvidiu;
2175         u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2176
2177         if (sbi->s_lvid_bh != NULL)
2178                 lvidiu = udf_sb_lvidiu(sbi);
2179         else
2180                 lvidiu = NULL;
2181
2182         buf->f_type = UDF_SUPER_MAGIC;
2183         buf->f_bsize = sb->s_blocksize;
2184         buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2185         buf->f_bfree = udf_count_free(sb);
2186         buf->f_bavail = buf->f_bfree;
2187         buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2188                                           le32_to_cpu(lvidiu->numDirs)) : 0)
2189                         + buf->f_bfree;
2190         buf->f_ffree = buf->f_bfree;
2191         buf->f_namelen = UDF_NAME_LEN - 2;
2192         buf->f_fsid.val[0] = (u32)id;
2193         buf->f_fsid.val[1] = (u32)(id >> 32);
2194
2195         return 0;
2196 }
2197
2198 static unsigned int udf_count_free_bitmap(struct super_block *sb,
2199                                           struct udf_bitmap *bitmap)
2200 {
2201         struct buffer_head *bh = NULL;
2202         unsigned int accum = 0;
2203         int index;
2204         int block = 0, newblock;
2205         struct kernel_lb_addr loc;
2206         uint32_t bytes;
2207         uint8_t *ptr;
2208         uint16_t ident;
2209         struct spaceBitmapDesc *bm;
2210
2211         loc.logicalBlockNum = bitmap->s_extPosition;
2212         loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2213         bh = udf_read_ptagged(sb, &loc, 0, &ident);
2214
2215         if (!bh) {
2216                 printk(KERN_ERR "udf: udf_count_free failed\n");
2217                 goto out;
2218         } else if (ident != TAG_IDENT_SBD) {
2219                 brelse(bh);
2220                 printk(KERN_ERR "udf: udf_count_free failed\n");
2221                 goto out;
2222         }
2223
2224         bm = (struct spaceBitmapDesc *)bh->b_data;
2225         bytes = le32_to_cpu(bm->numOfBytes);
2226         index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2227         ptr = (uint8_t *)bh->b_data;
2228
2229         while (bytes > 0) {
2230                 u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2231                 accum += bitmap_weight((const unsigned long *)(ptr + index),
2232                                         cur_bytes * 8);
2233                 bytes -= cur_bytes;
2234                 if (bytes) {
2235                         brelse(bh);
2236                         newblock = udf_get_lb_pblock(sb, &loc, ++block);
2237                         bh = udf_tread(sb, newblock);
2238                         if (!bh) {
2239                                 udf_debug("read failed\n");
2240                                 goto out;
2241                         }
2242                         index = 0;
2243                         ptr = (uint8_t *)bh->b_data;
2244                 }
2245         }
2246         brelse(bh);
2247 out:
2248         return accum;
2249 }
2250
2251 static unsigned int udf_count_free_table(struct super_block *sb,
2252                                          struct inode *table)
2253 {
2254         unsigned int accum = 0;
2255         uint32_t elen;
2256         struct kernel_lb_addr eloc;
2257         int8_t etype;
2258         struct extent_position epos;
2259
2260         mutex_lock(&UDF_SB(sb)->s_alloc_mutex);
2261         epos.block = UDF_I(table)->i_location;
2262         epos.offset = sizeof(struct unallocSpaceEntry);
2263         epos.bh = NULL;
2264
2265         while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1)
2266                 accum += (elen >> table->i_sb->s_blocksize_bits);
2267
2268         brelse(epos.bh);
2269         mutex_unlock(&UDF_SB(sb)->s_alloc_mutex);
2270
2271         return accum;
2272 }
2273
2274 static unsigned int udf_count_free(struct super_block *sb)
2275 {
2276         unsigned int accum = 0;
2277         struct udf_sb_info *sbi;
2278         struct udf_part_map *map;
2279
2280         sbi = UDF_SB(sb);
2281         if (sbi->s_lvid_bh) {
2282                 struct logicalVolIntegrityDesc *lvid =
2283                         (struct logicalVolIntegrityDesc *)
2284                         sbi->s_lvid_bh->b_data;
2285                 if (le32_to_cpu(lvid->numOfPartitions) > sbi->s_partition) {
2286                         accum = le32_to_cpu(
2287                                         lvid->freeSpaceTable[sbi->s_partition]);
2288                         if (accum == 0xFFFFFFFF)
2289                                 accum = 0;
2290                 }
2291         }
2292
2293         if (accum)
2294                 return accum;
2295
2296         map = &sbi->s_partmaps[sbi->s_partition];
2297         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2298                 accum += udf_count_free_bitmap(sb,
2299                                                map->s_uspace.s_bitmap);
2300         }
2301         if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) {
2302                 accum += udf_count_free_bitmap(sb,
2303                                                map->s_fspace.s_bitmap);
2304         }
2305         if (accum)
2306                 return accum;
2307
2308         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2309                 accum += udf_count_free_table(sb,
2310                                               map->s_uspace.s_table);
2311         }
2312         if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) {
2313                 accum += udf_count_free_table(sb,
2314                                               map->s_fspace.s_table);
2315         }
2316
2317         return accum;
2318 }