Pull bugzilla-7880 into release branch
[pandora-kernel.git] / fs / udf / inode.c
1 /*
2  * inode.c
3  *
4  * PURPOSE
5  *  Inode handling routines for the OSTA-UDF(tm) filesystem.
6  *
7  * COPYRIGHT
8  *  This file is distributed under the terms of the GNU General Public
9  *  License (GPL). Copies of the GPL can be obtained from:
10  *    ftp://prep.ai.mit.edu/pub/gnu/GPL
11  *  Each contributing author retains all rights to their own work.
12  *
13  *  (C) 1998 Dave Boynton
14  *  (C) 1998-2004 Ben Fennema
15  *  (C) 1999-2000 Stelias Computing Inc
16  *
17  * HISTORY
18  *
19  *  10/04/98 dgb  Added rudimentary directory functions
20  *  10/07/98      Fully working udf_block_map! It works!
21  *  11/25/98      bmap altered to better support extents
22  *  12/06/98 blf  partition support in udf_iget, udf_block_map and udf_read_inode
23  *  12/12/98      rewrote udf_block_map to handle next extents and descs across
24  *                block boundaries (which is not actually allowed)
25  *  12/20/98      added support for strategy 4096
26  *  03/07/99      rewrote udf_block_map (again)
27  *                New funcs, inode_bmap, udf_next_aext
28  *  04/19/99      Support for writing device EA's for major/minor #
29  */
30
31 #include "udfdecl.h"
32 #include <linux/mm.h>
33 #include <linux/smp_lock.h>
34 #include <linux/module.h>
35 #include <linux/pagemap.h>
36 #include <linux/buffer_head.h>
37 #include <linux/writeback.h>
38 #include <linux/slab.h>
39
40 #include "udf_i.h"
41 #include "udf_sb.h"
42
43 MODULE_AUTHOR("Ben Fennema");
44 MODULE_DESCRIPTION("Universal Disk Format Filesystem");
45 MODULE_LICENSE("GPL");
46
47 #define EXTENT_MERGE_SIZE 5
48
49 static mode_t udf_convert_permissions(struct fileEntry *);
50 static int udf_update_inode(struct inode *, int);
51 static void udf_fill_inode(struct inode *, struct buffer_head *);
52 static int udf_alloc_i_data(struct inode *inode, size_t size);
53 static struct buffer_head *inode_getblk(struct inode *, sector_t, int *,
54                                         long *, int *);
55 static int8_t udf_insert_aext(struct inode *, struct extent_position,
56                               kernel_lb_addr, uint32_t);
57 static void udf_split_extents(struct inode *, int *, int, int,
58                               kernel_long_ad[EXTENT_MERGE_SIZE], int *);
59 static void udf_prealloc_extents(struct inode *, int, int,
60                                  kernel_long_ad[EXTENT_MERGE_SIZE], int *);
61 static void udf_merge_extents(struct inode *,
62                               kernel_long_ad[EXTENT_MERGE_SIZE], int *);
63 static void udf_update_extents(struct inode *,
64                                kernel_long_ad[EXTENT_MERGE_SIZE], int, int,
65                                struct extent_position *);
66 static int udf_get_block(struct inode *, sector_t, struct buffer_head *, int);
67
68 /*
69  * udf_delete_inode
70  *
71  * PURPOSE
72  *      Clean-up before the specified inode is destroyed.
73  *
74  * DESCRIPTION
75  *      This routine is called when the kernel destroys an inode structure
76  *      ie. when iput() finds i_count == 0.
77  *
78  * HISTORY
79  *      July 1, 1997 - Andrew E. Mileski
80  *      Written, tested, and released.
81  *
82  *  Called at the last iput() if i_nlink is zero.
83  */
84 void udf_delete_inode(struct inode *inode)
85 {
86         truncate_inode_pages(&inode->i_data, 0);
87
88         if (is_bad_inode(inode))
89                 goto no_delete;
90
91         inode->i_size = 0;
92         udf_truncate(inode);
93         lock_kernel();
94
95         udf_update_inode(inode, IS_SYNC(inode));
96         udf_free_inode(inode);
97
98         unlock_kernel();
99         return;
100
101 no_delete:
102         clear_inode(inode);
103 }
104
105 /*
106  * If we are going to release inode from memory, we discard preallocation and
107  * truncate last inode extent to proper length. We could use drop_inode() but
108  * it's called under inode_lock and thus we cannot mark inode dirty there.  We
109  * use clear_inode() but we have to make sure to write inode as it's not written
110  * automatically.
111  */
112 void udf_clear_inode(struct inode *inode)
113 {
114         if (!(inode->i_sb->s_flags & MS_RDONLY)) {
115                 lock_kernel();
116                 /* Discard preallocation for directories, symlinks, etc. */
117                 udf_discard_prealloc(inode);
118                 udf_truncate_tail_extent(inode);
119                 unlock_kernel();
120                 write_inode_now(inode, 1);
121         }
122         kfree(UDF_I_DATA(inode));
123         UDF_I_DATA(inode) = NULL;
124 }
125
126 static int udf_writepage(struct page *page, struct writeback_control *wbc)
127 {
128         return block_write_full_page(page, udf_get_block, wbc);
129 }
130
131 static int udf_readpage(struct file *file, struct page *page)
132 {
133         return block_read_full_page(page, udf_get_block);
134 }
135
136 static int udf_prepare_write(struct file *file, struct page *page,
137                              unsigned from, unsigned to)
138 {
139         return block_prepare_write(page, from, to, udf_get_block);
140 }
141
142 static sector_t udf_bmap(struct address_space *mapping, sector_t block)
143 {
144         return generic_block_bmap(mapping, block, udf_get_block);
145 }
146
147 const struct address_space_operations udf_aops = {
148         .readpage       = udf_readpage,
149         .writepage      = udf_writepage,
150         .sync_page      = block_sync_page,
151         .prepare_write  = udf_prepare_write,
152         .commit_write   = generic_commit_write,
153         .bmap           = udf_bmap,
154 };
155
156 void udf_expand_file_adinicb(struct inode *inode, int newsize, int *err)
157 {
158         struct page *page;
159         char *kaddr;
160         struct writeback_control udf_wbc = {
161                 .sync_mode = WB_SYNC_NONE,
162                 .nr_to_write = 1,
163         };
164
165         /* from now on we have normal address_space methods */
166         inode->i_data.a_ops = &udf_aops;
167
168         if (!UDF_I_LENALLOC(inode)) {
169                 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
170                         UDF_I_ALLOCTYPE(inode) = ICBTAG_FLAG_AD_SHORT;
171                 else
172                         UDF_I_ALLOCTYPE(inode) = ICBTAG_FLAG_AD_LONG;
173                 mark_inode_dirty(inode);
174                 return;
175         }
176
177         page = grab_cache_page(inode->i_mapping, 0);
178         BUG_ON(!PageLocked(page));
179
180         if (!PageUptodate(page)) {
181                 kaddr = kmap(page);
182                 memset(kaddr + UDF_I_LENALLOC(inode), 0x00,
183                        PAGE_CACHE_SIZE - UDF_I_LENALLOC(inode));
184                 memcpy(kaddr, UDF_I_DATA(inode) + UDF_I_LENEATTR(inode),
185                        UDF_I_LENALLOC(inode));
186                 flush_dcache_page(page);
187                 SetPageUptodate(page);
188                 kunmap(page);
189         }
190         memset(UDF_I_DATA(inode) + UDF_I_LENEATTR(inode), 0x00,
191                UDF_I_LENALLOC(inode));
192         UDF_I_LENALLOC(inode) = 0;
193         if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
194                 UDF_I_ALLOCTYPE(inode) = ICBTAG_FLAG_AD_SHORT;
195         else
196                 UDF_I_ALLOCTYPE(inode) = ICBTAG_FLAG_AD_LONG;
197
198         inode->i_data.a_ops->writepage(page, &udf_wbc);
199         page_cache_release(page);
200
201         mark_inode_dirty(inode);
202 }
203
204 struct buffer_head *udf_expand_dir_adinicb(struct inode *inode, int *block,
205                                            int *err)
206 {
207         int newblock;
208         struct buffer_head *dbh = NULL;
209         kernel_lb_addr eloc;
210         uint32_t elen;
211         uint8_t alloctype;
212         struct extent_position epos;
213
214         struct udf_fileident_bh sfibh, dfibh;
215         loff_t f_pos = udf_ext0_offset(inode) >> 2;
216         int size = (udf_ext0_offset(inode) + inode->i_size) >> 2;
217         struct fileIdentDesc cfi, *sfi, *dfi;
218
219         if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
220                 alloctype = ICBTAG_FLAG_AD_SHORT;
221         else
222                 alloctype = ICBTAG_FLAG_AD_LONG;
223
224         if (!inode->i_size) {
225                 UDF_I_ALLOCTYPE(inode) = alloctype;
226                 mark_inode_dirty(inode);
227                 return NULL;
228         }
229
230         /* alloc block, and copy data to it */
231         *block = udf_new_block(inode->i_sb, inode,
232                                UDF_I_LOCATION(inode).partitionReferenceNum,
233                                UDF_I_LOCATION(inode).logicalBlockNum, err);
234         if (!(*block))
235                 return NULL;
236         newblock = udf_get_pblock(inode->i_sb, *block,
237                                   UDF_I_LOCATION(inode).partitionReferenceNum, 0);
238         if (!newblock)
239                 return NULL;
240         dbh = udf_tgetblk(inode->i_sb, newblock);
241         if (!dbh)
242                 return NULL;
243         lock_buffer(dbh);
244         memset(dbh->b_data, 0x00, inode->i_sb->s_blocksize);
245         set_buffer_uptodate(dbh);
246         unlock_buffer(dbh);
247         mark_buffer_dirty_inode(dbh, inode);
248
249         sfibh.soffset = sfibh.eoffset = (f_pos & ((inode->i_sb->s_blocksize - 1) >> 2)) << 2;
250         sfibh.sbh = sfibh.ebh = NULL;
251         dfibh.soffset = dfibh.eoffset = 0;
252         dfibh.sbh = dfibh.ebh = dbh;
253         while ((f_pos < size)) {
254                 UDF_I_ALLOCTYPE(inode) = ICBTAG_FLAG_AD_IN_ICB;
255                 sfi = udf_fileident_read(inode, &f_pos, &sfibh, &cfi, NULL, NULL, NULL, NULL);
256                 if (!sfi) {
257                         brelse(dbh);
258                         return NULL;
259                 }
260                 UDF_I_ALLOCTYPE(inode) = alloctype;
261                 sfi->descTag.tagLocation = cpu_to_le32(*block);
262                 dfibh.soffset = dfibh.eoffset;
263                 dfibh.eoffset += (sfibh.eoffset - sfibh.soffset);
264                 dfi = (struct fileIdentDesc *)(dbh->b_data + dfibh.soffset);
265                 if (udf_write_fi(inode, sfi, dfi, &dfibh, sfi->impUse,
266                                  sfi->fileIdent + le16_to_cpu(sfi->lengthOfImpUse))) {
267                         UDF_I_ALLOCTYPE(inode) = ICBTAG_FLAG_AD_IN_ICB;
268                         brelse(dbh);
269                         return NULL;
270                 }
271         }
272         mark_buffer_dirty_inode(dbh, inode);
273
274         memset(UDF_I_DATA(inode) + UDF_I_LENEATTR(inode), 0, UDF_I_LENALLOC(inode));
275         UDF_I_LENALLOC(inode) = 0;
276         eloc.logicalBlockNum = *block;
277         eloc.partitionReferenceNum = UDF_I_LOCATION(inode).partitionReferenceNum;
278         elen = inode->i_size;
279         UDF_I_LENEXTENTS(inode) = elen;
280         epos.bh = NULL;
281         epos.block = UDF_I_LOCATION(inode);
282         epos.offset = udf_file_entry_alloc_offset(inode);
283         udf_add_aext(inode, &epos, eloc, elen, 0);
284         /* UniqueID stuff */
285
286         brelse(epos.bh);
287         mark_inode_dirty(inode);
288         return dbh;
289 }
290
291 static int udf_get_block(struct inode *inode, sector_t block,
292                          struct buffer_head *bh_result, int create)
293 {
294         int err, new;
295         struct buffer_head *bh;
296         unsigned long phys;
297
298         if (!create) {
299                 phys = udf_block_map(inode, block);
300                 if (phys)
301                         map_bh(bh_result, inode->i_sb, phys);
302                 return 0;
303         }
304
305         err = -EIO;
306         new = 0;
307         bh = NULL;
308
309         lock_kernel();
310
311         if (block < 0)
312                 goto abort_negative;
313
314         if (block == UDF_I_NEXT_ALLOC_BLOCK(inode) + 1) {
315                 UDF_I_NEXT_ALLOC_BLOCK(inode)++;
316                 UDF_I_NEXT_ALLOC_GOAL(inode)++;
317         }
318
319         err = 0;
320
321         bh = inode_getblk(inode, block, &err, &phys, &new);
322         BUG_ON(bh);
323         if (err)
324                 goto abort;
325         BUG_ON(!phys);
326
327         if (new)
328                 set_buffer_new(bh_result);
329         map_bh(bh_result, inode->i_sb, phys);
330
331 abort:
332         unlock_kernel();
333         return err;
334
335 abort_negative:
336         udf_warning(inode->i_sb, "udf_get_block", "block < 0");
337         goto abort;
338 }
339
340 static struct buffer_head *udf_getblk(struct inode *inode, long block,
341                                       int create, int *err)
342 {
343         struct buffer_head *bh;
344         struct buffer_head dummy;
345
346         dummy.b_state = 0;
347         dummy.b_blocknr = -1000;
348         *err = udf_get_block(inode, block, &dummy, create);
349         if (!*err && buffer_mapped(&dummy)) {
350                 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
351                 if (buffer_new(&dummy)) {
352                         lock_buffer(bh);
353                         memset(bh->b_data, 0x00, inode->i_sb->s_blocksize);
354                         set_buffer_uptodate(bh);
355                         unlock_buffer(bh);
356                         mark_buffer_dirty_inode(bh, inode);
357                 }
358                 return bh;
359         }
360
361         return NULL;
362 }
363
364 /* Extend the file by 'blocks' blocks, return the number of extents added */
365 int udf_extend_file(struct inode *inode, struct extent_position *last_pos,
366                     kernel_long_ad * last_ext, sector_t blocks)
367 {
368         sector_t add;
369         int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
370         struct super_block *sb = inode->i_sb;
371         kernel_lb_addr prealloc_loc = {};
372         int prealloc_len = 0;
373
374         /* The previous extent is fake and we should not extend by anything
375          * - there's nothing to do... */
376         if (!blocks && fake)
377                 return 0;
378
379         /* Round the last extent up to a multiple of block size */
380         if (last_ext->extLength & (sb->s_blocksize - 1)) {
381                 last_ext->extLength =
382                         (last_ext->extLength & UDF_EXTENT_FLAG_MASK) |
383                         (((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) +
384                           sb->s_blocksize - 1) & ~(sb->s_blocksize - 1));
385                 UDF_I_LENEXTENTS(inode) =
386                         (UDF_I_LENEXTENTS(inode) + sb->s_blocksize - 1) &
387                         ~(sb->s_blocksize - 1);
388         }
389
390         /* Last extent are just preallocated blocks? */
391         if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) == EXT_NOT_RECORDED_ALLOCATED) {
392                 /* Save the extent so that we can reattach it to the end */
393                 prealloc_loc = last_ext->extLocation;
394                 prealloc_len = last_ext->extLength;
395                 /* Mark the extent as a hole */
396                 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
397                         (last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
398                 last_ext->extLocation.logicalBlockNum = 0;
399                 last_ext->extLocation.partitionReferenceNum = 0;
400         }
401
402         /* Can we merge with the previous extent? */
403         if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) == EXT_NOT_RECORDED_NOT_ALLOCATED) {
404                 add = ((1 << 30) - sb->s_blocksize - (last_ext->extLength &
405                                                       UDF_EXTENT_LENGTH_MASK)) >> sb->s_blocksize_bits;
406                 if (add > blocks)
407                         add = blocks;
408                 blocks -= add;
409                 last_ext->extLength += add << sb->s_blocksize_bits;
410         }
411
412         if (fake) {
413                 udf_add_aext(inode, last_pos, last_ext->extLocation,
414                              last_ext->extLength, 1);
415                 count++;
416         } else {
417                 udf_write_aext(inode, last_pos, last_ext->extLocation, last_ext->extLength, 1);
418         }
419
420         /* Managed to do everything necessary? */
421         if (!blocks)
422                 goto out;
423
424         /* All further extents will be NOT_RECORDED_NOT_ALLOCATED */
425         last_ext->extLocation.logicalBlockNum = 0;
426         last_ext->extLocation.partitionReferenceNum = 0;
427         add = (1 << (30-sb->s_blocksize_bits)) - 1;
428         last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | (add << sb->s_blocksize_bits);
429
430         /* Create enough extents to cover the whole hole */
431         while (blocks > add) {
432                 blocks -= add;
433                 if (udf_add_aext(inode, last_pos, last_ext->extLocation,
434                                  last_ext->extLength, 1) == -1)
435                         return -1;
436                 count++;
437         }
438         if (blocks) {
439                 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
440                         (blocks << sb->s_blocksize_bits);
441                 if (udf_add_aext(inode, last_pos, last_ext->extLocation,
442                                  last_ext->extLength, 1) == -1)
443                         return -1;
444                 count++;
445         }
446
447 out:
448         /* Do we have some preallocated blocks saved? */
449         if (prealloc_len) {
450                 if (udf_add_aext(inode, last_pos, prealloc_loc, prealloc_len, 1) == -1)
451                         return -1;
452                 last_ext->extLocation = prealloc_loc;
453                 last_ext->extLength = prealloc_len;
454                 count++;
455         }
456
457         /* last_pos should point to the last written extent... */
458         if (UDF_I_ALLOCTYPE(inode) == ICBTAG_FLAG_AD_SHORT)
459                 last_pos->offset -= sizeof(short_ad);
460         else if (UDF_I_ALLOCTYPE(inode) == ICBTAG_FLAG_AD_LONG)
461                 last_pos->offset -= sizeof(long_ad);
462         else
463                 return -1;
464
465         return count;
466 }
467
468 static struct buffer_head *inode_getblk(struct inode *inode, sector_t block,
469                                         int *err, long *phys, int *new)
470 {
471         static sector_t last_block;
472         struct buffer_head *result = NULL;
473         kernel_long_ad laarr[EXTENT_MERGE_SIZE];
474         struct extent_position prev_epos, cur_epos, next_epos;
475         int count = 0, startnum = 0, endnum = 0;
476         uint32_t elen = 0, tmpelen;
477         kernel_lb_addr eloc, tmpeloc;
478         int c = 1;
479         loff_t lbcount = 0, b_off = 0;
480         uint32_t newblocknum, newblock;
481         sector_t offset = 0;
482         int8_t etype;
483         int goal = 0, pgoal = UDF_I_LOCATION(inode).logicalBlockNum;
484         int lastblock = 0;
485
486         prev_epos.offset = udf_file_entry_alloc_offset(inode);
487         prev_epos.block = UDF_I_LOCATION(inode);
488         prev_epos.bh = NULL;
489         cur_epos = next_epos = prev_epos;
490         b_off = (loff_t)block << inode->i_sb->s_blocksize_bits;
491
492         /* find the extent which contains the block we are looking for.
493            alternate between laarr[0] and laarr[1] for locations of the
494            current extent, and the previous extent */
495         do {
496                 if (prev_epos.bh != cur_epos.bh) {
497                         brelse(prev_epos.bh);
498                         get_bh(cur_epos.bh);
499                         prev_epos.bh = cur_epos.bh;
500                 }
501                 if (cur_epos.bh != next_epos.bh) {
502                         brelse(cur_epos.bh);
503                         get_bh(next_epos.bh);
504                         cur_epos.bh = next_epos.bh;
505                 }
506
507                 lbcount += elen;
508
509                 prev_epos.block = cur_epos.block;
510                 cur_epos.block = next_epos.block;
511
512                 prev_epos.offset = cur_epos.offset;
513                 cur_epos.offset = next_epos.offset;
514
515                 if ((etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1)) == -1)
516                         break;
517
518                 c = !c;
519
520                 laarr[c].extLength = (etype << 30) | elen;
521                 laarr[c].extLocation = eloc;
522
523                 if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
524                         pgoal = eloc.logicalBlockNum +
525                                 ((elen + inode->i_sb->s_blocksize - 1) >>
526                                  inode->i_sb->s_blocksize_bits);
527
528                 count++;
529         } while (lbcount + elen <= b_off);
530
531         b_off -= lbcount;
532         offset = b_off >> inode->i_sb->s_blocksize_bits;
533         /*
534          * Move prev_epos and cur_epos into indirect extent if we are at
535          * the pointer to it
536          */
537         udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0);
538         udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0);
539
540         /* if the extent is allocated and recorded, return the block
541            if the extent is not a multiple of the blocksize, round up */
542
543         if (etype == (EXT_RECORDED_ALLOCATED >> 30)) {
544                 if (elen & (inode->i_sb->s_blocksize - 1)) {
545                         elen = EXT_RECORDED_ALLOCATED |
546                                 ((elen + inode->i_sb->s_blocksize - 1) &
547                                  ~(inode->i_sb->s_blocksize - 1));
548                         etype = udf_write_aext(inode, &cur_epos, eloc, elen, 1);
549                 }
550                 brelse(prev_epos.bh);
551                 brelse(cur_epos.bh);
552                 brelse(next_epos.bh);
553                 newblock = udf_get_lb_pblock(inode->i_sb, eloc, offset);
554                 *phys = newblock;
555                 return NULL;
556         }
557
558         last_block = block;
559         /* Are we beyond EOF? */
560         if (etype == -1) {
561                 int ret;
562
563                 if (count) {
564                         if (c)
565                                 laarr[0] = laarr[1];
566                         startnum = 1;
567                 } else {
568                         /* Create a fake extent when there's not one */
569                         memset(&laarr[0].extLocation, 0x00, sizeof(kernel_lb_addr));
570                         laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
571                         /* Will udf_extend_file() create real extent from a fake one? */
572                         startnum = (offset > 0);
573                 }
574                 /* Create extents for the hole between EOF and offset */
575                 ret = udf_extend_file(inode, &prev_epos, laarr, offset);
576                 if (ret == -1) {
577                         brelse(prev_epos.bh);
578                         brelse(cur_epos.bh);
579                         brelse(next_epos.bh);
580                         /* We don't really know the error here so we just make
581                          * something up */
582                         *err = -ENOSPC;
583                         return NULL;
584                 }
585                 c = 0;
586                 offset = 0;
587                 count += ret;
588                 /* We are not covered by a preallocated extent? */
589                 if ((laarr[0].extLength & UDF_EXTENT_FLAG_MASK) != EXT_NOT_RECORDED_ALLOCATED) {
590                         /* Is there any real extent? - otherwise we overwrite
591                          * the fake one... */
592                         if (count)
593                                 c = !c;
594                         laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
595                                 inode->i_sb->s_blocksize;
596                         memset(&laarr[c].extLocation, 0x00, sizeof(kernel_lb_addr));
597                         count++;
598                         endnum++;
599                 }
600                 endnum = c + 1;
601                 lastblock = 1;
602         } else {
603                 endnum = startnum = ((count > 2) ? 2 : count);
604
605                 /* if the current extent is in position 0, swap it with the previous */
606                 if (!c && count != 1) {
607                         laarr[2] = laarr[0];
608                         laarr[0] = laarr[1];
609                         laarr[1] = laarr[2];
610                         c = 1;
611                 }
612
613                 /* if the current block is located in an extent, read the next extent */
614                 if ((etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0)) != -1) {
615                         laarr[c + 1].extLength = (etype << 30) | elen;
616                         laarr[c + 1].extLocation = eloc;
617                         count++;
618                         startnum++;
619                         endnum++;
620                 } else {
621                         lastblock = 1;
622                 }
623         }
624
625         /* if the current extent is not recorded but allocated, get the
626          * block in the extent corresponding to the requested block */
627         if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
628                 newblocknum = laarr[c].extLocation.logicalBlockNum + offset;
629         } else { /* otherwise, allocate a new block */
630                 if (UDF_I_NEXT_ALLOC_BLOCK(inode) == block)
631                         goal = UDF_I_NEXT_ALLOC_GOAL(inode);
632
633                 if (!goal) {
634                         if (!(goal = pgoal))
635                                 goal = UDF_I_LOCATION(inode).logicalBlockNum + 1;
636                 }
637
638                 if (!(newblocknum = udf_new_block(inode->i_sb, inode,
639                                                   UDF_I_LOCATION(inode).partitionReferenceNum,
640                                                   goal, err))) {
641                         brelse(prev_epos.bh);
642                         *err = -ENOSPC;
643                         return NULL;
644                 }
645                 UDF_I_LENEXTENTS(inode) += inode->i_sb->s_blocksize;
646         }
647
648         /* if the extent the requsted block is located in contains multiple blocks,
649          * split the extent into at most three extents. blocks prior to requested
650          * block, requested block, and blocks after requested block */
651         udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum);
652
653 #ifdef UDF_PREALLOCATE
654         /* preallocate blocks */
655         udf_prealloc_extents(inode, c, lastblock, laarr, &endnum);
656 #endif
657
658         /* merge any continuous blocks in laarr */
659         udf_merge_extents(inode, laarr, &endnum);
660
661         /* write back the new extents, inserting new extents if the new number
662          * of extents is greater than the old number, and deleting extents if
663          * the new number of extents is less than the old number */
664         udf_update_extents(inode, laarr, startnum, endnum, &prev_epos);
665
666         brelse(prev_epos.bh);
667
668         if (!(newblock = udf_get_pblock(inode->i_sb, newblocknum,
669                                         UDF_I_LOCATION(inode).partitionReferenceNum, 0))) {
670                 return NULL;
671         }
672         *phys = newblock;
673         *err = 0;
674         *new = 1;
675         UDF_I_NEXT_ALLOC_BLOCK(inode) = block;
676         UDF_I_NEXT_ALLOC_GOAL(inode) = newblocknum;
677         inode->i_ctime = current_fs_time(inode->i_sb);
678
679         if (IS_SYNC(inode))
680                 udf_sync_inode(inode);
681         else
682                 mark_inode_dirty(inode);
683
684         return result;
685 }
686
687 static void udf_split_extents(struct inode *inode, int *c, int offset,
688                               int newblocknum,
689                               kernel_long_ad laarr[EXTENT_MERGE_SIZE],
690                               int *endnum)
691 {
692         if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) ||
693             (laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
694                 int curr = *c;
695                 int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) +
696                             inode->i_sb->s_blocksize - 1) >> inode->i_sb->s_blocksize_bits;
697                 int8_t etype = (laarr[curr].extLength >> 30);
698
699                 if (blen == 1) {
700                         ;
701                 } else if (!offset || blen == offset + 1) {
702                         laarr[curr + 2] = laarr[curr + 1];
703                         laarr[curr + 1] = laarr[curr];
704                 } else {
705                         laarr[curr + 3] = laarr[curr + 1];
706                         laarr[curr + 2] = laarr[curr + 1] = laarr[curr];
707                 }
708
709                 if (offset) {
710                         if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
711                                 udf_free_blocks(inode->i_sb, inode, laarr[curr].extLocation, 0, offset);
712                                 laarr[curr].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
713                                         (offset << inode->i_sb->s_blocksize_bits);
714                                 laarr[curr].extLocation.logicalBlockNum = 0;
715                                 laarr[curr].extLocation.partitionReferenceNum = 0;
716                         } else {
717                                 laarr[curr].extLength = (etype << 30) |
718                                         (offset << inode->i_sb->s_blocksize_bits);
719                         }
720                         curr++;
721                         (*c)++;
722                         (*endnum)++;
723                 }
724
725                 laarr[curr].extLocation.logicalBlockNum = newblocknum;
726                 if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
727                         laarr[curr].extLocation.partitionReferenceNum =
728                                 UDF_I_LOCATION(inode).partitionReferenceNum;
729                 laarr[curr].extLength = EXT_RECORDED_ALLOCATED |
730                         inode->i_sb->s_blocksize;
731                 curr++;
732
733                 if (blen != offset + 1) {
734                         if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30))
735                                 laarr[curr].extLocation.logicalBlockNum += (offset + 1);
736                         laarr[curr].extLength = (etype << 30) |
737                                 ((blen - (offset + 1)) << inode->i_sb->s_blocksize_bits);
738                         curr++;
739                         (*endnum)++;
740                 }
741         }
742 }
743
744 static void udf_prealloc_extents(struct inode *inode, int c, int lastblock,
745                                  kernel_long_ad laarr[EXTENT_MERGE_SIZE],
746                                  int *endnum)
747 {
748         int start, length = 0, currlength = 0, i;
749
750         if (*endnum >= (c + 1)) {
751                 if (!lastblock)
752                         return;
753                 else
754                         start = c;
755         } else {
756                 if ((laarr[c + 1].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
757                         start = c + 1;
758                         length = currlength = (((laarr[c + 1].extLength & UDF_EXTENT_LENGTH_MASK) +
759                                                 inode->i_sb->s_blocksize - 1) >> inode->i_sb->s_blocksize_bits);
760                 } else {
761                         start = c;
762                 }
763         }
764
765         for (i = start + 1; i <= *endnum; i++) {
766                 if (i == *endnum) {
767                         if (lastblock)
768                                 length += UDF_DEFAULT_PREALLOC_BLOCKS;
769                 } else if ((laarr[i].extLength >> 30) == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
770                         length += (((laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) +
771                                     inode->i_sb->s_blocksize - 1) >> inode->i_sb->s_blocksize_bits);
772                 } else {
773                         break;
774                 }
775         }
776
777         if (length) {
778                 int next = laarr[start].extLocation.logicalBlockNum +
779                         (((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) +
780                           inode->i_sb->s_blocksize - 1) >> inode->i_sb->s_blocksize_bits);
781                 int numalloc = udf_prealloc_blocks(inode->i_sb, inode,
782                                                    laarr[start].extLocation.partitionReferenceNum,
783                                                    next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ? length :
784                                                           UDF_DEFAULT_PREALLOC_BLOCKS) - currlength);
785                 if (numalloc)   {
786                         if (start == (c + 1)) {
787                                 laarr[start].extLength +=
788                                         (numalloc << inode->i_sb->s_blocksize_bits);
789                         } else {
790                                 memmove(&laarr[c + 2], &laarr[c + 1],
791                                         sizeof(long_ad) * (*endnum - (c + 1)));
792                                 (*endnum)++;
793                                 laarr[c + 1].extLocation.logicalBlockNum = next;
794                                 laarr[c + 1].extLocation.partitionReferenceNum =
795                                         laarr[c].extLocation.partitionReferenceNum;
796                                 laarr[c + 1].extLength = EXT_NOT_RECORDED_ALLOCATED |
797                                         (numalloc << inode->i_sb->s_blocksize_bits);
798                                 start = c + 1;
799                         }
800
801                         for (i = start + 1; numalloc && i < *endnum; i++) {
802                                 int elen = ((laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) +
803                                             inode->i_sb->s_blocksize - 1) >> inode->i_sb->s_blocksize_bits;
804
805                                 if (elen > numalloc) {
806                                         laarr[i].extLength -=
807                                                 (numalloc << inode->i_sb->s_blocksize_bits);
808                                         numalloc = 0;
809                                 } else {
810                                         numalloc -= elen;
811                                         if (*endnum > (i + 1))
812                                                 memmove(&laarr[i], &laarr[i + 1],
813                                                         sizeof(long_ad) * (*endnum - (i + 1)));
814                                         i--;
815                                         (*endnum)--;
816                                 }
817                         }
818                         UDF_I_LENEXTENTS(inode) += numalloc << inode->i_sb->s_blocksize_bits;
819                 }
820         }
821 }
822
823 static void udf_merge_extents(struct inode *inode,
824                               kernel_long_ad laarr[EXTENT_MERGE_SIZE],
825                               int *endnum)
826 {
827         int i;
828
829         for (i = 0; i < (*endnum - 1); i++) {
830                 if ((laarr[i].extLength >> 30) == (laarr[i + 1].extLength >> 30)) {
831                         if (((laarr[i].extLength >> 30) == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) ||
832                             ((laarr[i + 1].extLocation.logicalBlockNum - laarr[i].extLocation.logicalBlockNum) ==
833                              (((laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) +
834                                inode->i_sb->s_blocksize - 1) >> inode->i_sb->s_blocksize_bits))) {
835                                 if (((laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) +
836                                      (laarr[i + 1].extLength & UDF_EXTENT_LENGTH_MASK) +
837                                      inode->i_sb->s_blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
838                                         laarr[i + 1].extLength = (laarr[i + 1].extLength -
839                                                                   (laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) +
840                                                                   UDF_EXTENT_LENGTH_MASK) & ~(inode->i_sb->s_blocksize - 1);
841                                         laarr[i].extLength = (laarr[i].extLength & UDF_EXTENT_FLAG_MASK) +
842                                                 (UDF_EXTENT_LENGTH_MASK + 1) - inode->i_sb->s_blocksize;
843                                         laarr[i + 1].extLocation.logicalBlockNum =
844                                                 laarr[i].extLocation.logicalBlockNum +
845                                                 ((laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) >>
846                                                  inode->i_sb->s_blocksize_bits);
847                                 } else {
848                                         laarr[i].extLength = laarr[i + 1].extLength +
849                                                 (((laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) +
850                                                   inode->i_sb->s_blocksize - 1) & ~(inode->i_sb->s_blocksize - 1));
851                                         if (*endnum > (i + 2))
852                                                 memmove(&laarr[i + 1], &laarr[i + 2],
853                                                         sizeof(long_ad) * (*endnum - (i + 2)));
854                                         i--;
855                                         (*endnum)--;
856                                 }
857                         }
858                 } else if (((laarr[i].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30)) &&
859                            ((laarr[i + 1].extLength >> 30) == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) {
860                         udf_free_blocks(inode->i_sb, inode, laarr[i].extLocation, 0,
861                                         ((laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) +
862                                          inode->i_sb->s_blocksize - 1) >> inode->i_sb->s_blocksize_bits);
863                         laarr[i].extLocation.logicalBlockNum = 0;
864                         laarr[i].extLocation.partitionReferenceNum = 0;
865
866                         if (((laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) +
867                              (laarr[i + 1].extLength & UDF_EXTENT_LENGTH_MASK) +
868                              inode->i_sb->s_blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
869                                 laarr[i + 1].extLength = (laarr[i + 1].extLength -
870                                                           (laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) +
871                                                           UDF_EXTENT_LENGTH_MASK) & ~(inode->i_sb->s_blocksize - 1);
872                                 laarr[i].extLength = (laarr[i].extLength & UDF_EXTENT_FLAG_MASK) +
873                                         (UDF_EXTENT_LENGTH_MASK + 1) - inode->i_sb->s_blocksize;
874                         } else {
875                                 laarr[i].extLength = laarr[i + 1].extLength +
876                                         (((laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) +
877                                           inode->i_sb->s_blocksize - 1) & ~(inode->i_sb->s_blocksize - 1));
878                                 if (*endnum > (i + 2))
879                                         memmove(&laarr[i + 1], &laarr[i + 2],
880                                                 sizeof(long_ad) * (*endnum - (i + 2)));
881                                 i--;
882                                 (*endnum)--;
883                         }
884                 } else if ((laarr[i].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
885                         udf_free_blocks(inode->i_sb, inode, laarr[i].extLocation, 0,
886                                         ((laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) +
887                                          inode->i_sb->s_blocksize - 1) >> inode->i_sb->s_blocksize_bits);
888                         laarr[i].extLocation.logicalBlockNum = 0;
889                         laarr[i].extLocation.partitionReferenceNum = 0;
890                         laarr[i].extLength = (laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) |
891                                 EXT_NOT_RECORDED_NOT_ALLOCATED;
892                 }
893         }
894 }
895
896 static void udf_update_extents(struct inode *inode,
897                                kernel_long_ad laarr[EXTENT_MERGE_SIZE],
898                                int startnum, int endnum,
899                                struct extent_position *epos)
900 {
901         int start = 0, i;
902         kernel_lb_addr tmploc;
903         uint32_t tmplen;
904
905         if (startnum > endnum) {
906                 for (i = 0; i < (startnum - endnum); i++)
907                         udf_delete_aext(inode, *epos, laarr[i].extLocation,
908                                         laarr[i].extLength);
909         } else if (startnum < endnum) {
910                 for (i = 0; i < (endnum - startnum); i++) {
911                         udf_insert_aext(inode, *epos, laarr[i].extLocation,
912                                         laarr[i].extLength);
913                         udf_next_aext(inode, epos, &laarr[i].extLocation,
914                                       &laarr[i].extLength, 1);
915                         start++;
916                 }
917         }
918
919         for (i = start; i < endnum; i++) {
920                 udf_next_aext(inode, epos, &tmploc, &tmplen, 0);
921                 udf_write_aext(inode, epos, laarr[i].extLocation,
922                                laarr[i].extLength, 1);
923         }
924 }
925
926 struct buffer_head *udf_bread(struct inode *inode, int block,
927                               int create, int *err)
928 {
929         struct buffer_head *bh = NULL;
930
931         bh = udf_getblk(inode, block, create, err);
932         if (!bh)
933                 return NULL;
934
935         if (buffer_uptodate(bh))
936                 return bh;
937
938         ll_rw_block(READ, 1, &bh);
939
940         wait_on_buffer(bh);
941         if (buffer_uptodate(bh))
942                 return bh;
943
944         brelse(bh);
945         *err = -EIO;
946         return NULL;
947 }
948
949 void udf_truncate(struct inode *inode)
950 {
951         int offset;
952         int err;
953
954         if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
955               S_ISLNK(inode->i_mode)))
956                 return;
957         if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
958                 return;
959
960         lock_kernel();
961         if (UDF_I_ALLOCTYPE(inode) == ICBTAG_FLAG_AD_IN_ICB) {
962                 if (inode->i_sb->s_blocksize < (udf_file_entry_alloc_offset(inode) +
963                                                 inode->i_size)) {
964                         udf_expand_file_adinicb(inode, inode->i_size, &err);
965                         if (UDF_I_ALLOCTYPE(inode) == ICBTAG_FLAG_AD_IN_ICB) {
966                                 inode->i_size = UDF_I_LENALLOC(inode);
967                                 unlock_kernel();
968                                 return;
969                         } else {
970                                 udf_truncate_extents(inode);
971                         }
972                 } else {
973                         offset = inode->i_size & (inode->i_sb->s_blocksize - 1);
974                         memset(UDF_I_DATA(inode) + UDF_I_LENEATTR(inode) + offset, 0x00,
975                                inode->i_sb->s_blocksize - offset - udf_file_entry_alloc_offset(inode));
976                         UDF_I_LENALLOC(inode) = inode->i_size;
977                 }
978         } else {
979                 block_truncate_page(inode->i_mapping, inode->i_size, udf_get_block);
980                 udf_truncate_extents(inode);
981         }
982
983         inode->i_mtime = inode->i_ctime = current_fs_time(inode->i_sb);
984         if (IS_SYNC(inode))
985                 udf_sync_inode(inode);
986         else
987                 mark_inode_dirty(inode);
988         unlock_kernel();
989 }
990
991 static void __udf_read_inode(struct inode *inode)
992 {
993         struct buffer_head *bh = NULL;
994         struct fileEntry *fe;
995         uint16_t ident;
996
997         /*
998          * Set defaults, but the inode is still incomplete!
999          * Note: get_new_inode() sets the following on a new inode:
1000          *      i_sb = sb
1001          *      i_no = ino
1002          *      i_flags = sb->s_flags
1003          *      i_state = 0
1004          * clean_inode(): zero fills and sets
1005          *      i_count = 1
1006          *      i_nlink = 1
1007          *      i_op = NULL;
1008          */
1009         bh = udf_read_ptagged(inode->i_sb, UDF_I_LOCATION(inode), 0, &ident);
1010         if (!bh) {
1011                 printk(KERN_ERR "udf: udf_read_inode(ino %ld) failed !bh\n",
1012                        inode->i_ino);
1013                 make_bad_inode(inode);
1014                 return;
1015         }
1016
1017         if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE &&
1018             ident != TAG_IDENT_USE) {
1019                 printk(KERN_ERR "udf: udf_read_inode(ino %ld) failed ident=%d\n",
1020                        inode->i_ino, ident);
1021                 brelse(bh);
1022                 make_bad_inode(inode);
1023                 return;
1024         }
1025
1026         fe = (struct fileEntry *)bh->b_data;
1027
1028         if (le16_to_cpu(fe->icbTag.strategyType) == 4096) {
1029                 struct buffer_head *ibh = NULL, *nbh = NULL;
1030                 struct indirectEntry *ie;
1031
1032                 ibh = udf_read_ptagged(inode->i_sb, UDF_I_LOCATION(inode), 1, &ident);
1033                 if (ident == TAG_IDENT_IE) {
1034                         if (ibh) {
1035                                 kernel_lb_addr loc;
1036                                 ie = (struct indirectEntry *)ibh->b_data;
1037
1038                                 loc = lelb_to_cpu(ie->indirectICB.extLocation);
1039
1040                                 if (ie->indirectICB.extLength &&
1041                                     (nbh = udf_read_ptagged(inode->i_sb, loc, 0, &ident))) {
1042                                         if (ident == TAG_IDENT_FE ||
1043                                             ident == TAG_IDENT_EFE) {
1044                                                 memcpy(&UDF_I_LOCATION(inode), &loc,
1045                                                        sizeof(kernel_lb_addr));
1046                                                 brelse(bh);
1047                                                 brelse(ibh);
1048                                                 brelse(nbh);
1049                                                 __udf_read_inode(inode);
1050                                                 return;
1051                                         } else {
1052                                                 brelse(nbh);
1053                                                 brelse(ibh);
1054                                         }
1055                                 } else {
1056                                         brelse(ibh);
1057                                 }
1058                         }
1059                 } else {
1060                         brelse(ibh);
1061                 }
1062         } else if (le16_to_cpu(fe->icbTag.strategyType) != 4) {
1063                 printk(KERN_ERR "udf: unsupported strategy type: %d\n",
1064                        le16_to_cpu(fe->icbTag.strategyType));
1065                 brelse(bh);
1066                 make_bad_inode(inode);
1067                 return;
1068         }
1069         udf_fill_inode(inode, bh);
1070
1071         brelse(bh);
1072 }
1073
1074 static void udf_fill_inode(struct inode *inode, struct buffer_head *bh)
1075 {
1076         struct fileEntry *fe;
1077         struct extendedFileEntry *efe;
1078         time_t convtime;
1079         long convtime_usec;
1080         int offset;
1081
1082         fe = (struct fileEntry *)bh->b_data;
1083         efe = (struct extendedFileEntry *)bh->b_data;
1084
1085         if (le16_to_cpu(fe->icbTag.strategyType) == 4)
1086                 UDF_I_STRAT4096(inode) = 0;
1087         else /* if (le16_to_cpu(fe->icbTag.strategyType) == 4096) */
1088                 UDF_I_STRAT4096(inode) = 1;
1089
1090         UDF_I_ALLOCTYPE(inode) = le16_to_cpu(fe->icbTag.flags) & ICBTAG_FLAG_AD_MASK;
1091         UDF_I_UNIQUE(inode) = 0;
1092         UDF_I_LENEATTR(inode) = 0;
1093         UDF_I_LENEXTENTS(inode) = 0;
1094         UDF_I_LENALLOC(inode) = 0;
1095         UDF_I_NEXT_ALLOC_BLOCK(inode) = 0;
1096         UDF_I_NEXT_ALLOC_GOAL(inode) = 0;
1097         if (le16_to_cpu(fe->descTag.tagIdent) == TAG_IDENT_EFE) {
1098                 UDF_I_EFE(inode) = 1;
1099                 UDF_I_USE(inode) = 0;
1100                 if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize - sizeof(struct extendedFileEntry))) {
1101                         make_bad_inode(inode);
1102                         return;
1103                 }
1104                 memcpy(UDF_I_DATA(inode), bh->b_data + sizeof(struct extendedFileEntry),
1105                        inode->i_sb->s_blocksize - sizeof(struct extendedFileEntry));
1106         } else if (le16_to_cpu(fe->descTag.tagIdent) == TAG_IDENT_FE) {
1107                 UDF_I_EFE(inode) = 0;
1108                 UDF_I_USE(inode) = 0;
1109                 if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize - sizeof(struct fileEntry))) {
1110                         make_bad_inode(inode);
1111                         return;
1112                 }
1113                 memcpy(UDF_I_DATA(inode), bh->b_data + sizeof(struct fileEntry),
1114                        inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1115         } else if (le16_to_cpu(fe->descTag.tagIdent) == TAG_IDENT_USE) {
1116                 UDF_I_EFE(inode) = 0;
1117                 UDF_I_USE(inode) = 1;
1118                 UDF_I_LENALLOC(inode) =
1119                     le32_to_cpu(((struct unallocSpaceEntry *)bh->b_data)->lengthAllocDescs);
1120                 if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize - sizeof(struct unallocSpaceEntry))) {
1121                         make_bad_inode(inode);
1122                         return;
1123                 }
1124                 memcpy(UDF_I_DATA(inode), bh->b_data + sizeof(struct unallocSpaceEntry),
1125                        inode->i_sb->s_blocksize - sizeof(struct unallocSpaceEntry));
1126                 return;
1127         }
1128
1129         inode->i_uid = le32_to_cpu(fe->uid);
1130         if (inode->i_uid == -1 || UDF_QUERY_FLAG(inode->i_sb,
1131                                                  UDF_FLAG_UID_IGNORE))
1132                 inode->i_uid = UDF_SB(inode->i_sb)->s_uid;
1133
1134         inode->i_gid = le32_to_cpu(fe->gid);
1135         if (inode->i_gid == -1 || UDF_QUERY_FLAG(inode->i_sb,
1136                                                  UDF_FLAG_GID_IGNORE))
1137                 inode->i_gid = UDF_SB(inode->i_sb)->s_gid;
1138
1139         inode->i_nlink = le16_to_cpu(fe->fileLinkCount);
1140         if (!inode->i_nlink)
1141                 inode->i_nlink = 1;
1142
1143         inode->i_size = le64_to_cpu(fe->informationLength);
1144         UDF_I_LENEXTENTS(inode) = inode->i_size;
1145
1146         inode->i_mode = udf_convert_permissions(fe);
1147         inode->i_mode &= ~UDF_SB(inode->i_sb)->s_umask;
1148
1149         if (UDF_I_EFE(inode) == 0) {
1150                 inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) <<
1151                         (inode->i_sb->s_blocksize_bits - 9);
1152
1153                 if (udf_stamp_to_time(&convtime, &convtime_usec,
1154                                       lets_to_cpu(fe->accessTime))) {
1155                         inode->i_atime.tv_sec = convtime;
1156                         inode->i_atime.tv_nsec = convtime_usec * 1000;
1157                 } else {
1158                         inode->i_atime = UDF_SB_RECORDTIME(inode->i_sb);
1159                 }
1160
1161                 if (udf_stamp_to_time(&convtime, &convtime_usec,
1162                                       lets_to_cpu(fe->modificationTime))) {
1163                         inode->i_mtime.tv_sec = convtime;
1164                         inode->i_mtime.tv_nsec = convtime_usec * 1000;
1165                 } else {
1166                         inode->i_mtime = UDF_SB_RECORDTIME(inode->i_sb);
1167                 }
1168
1169                 if (udf_stamp_to_time(&convtime, &convtime_usec,
1170                                       lets_to_cpu(fe->attrTime))) {
1171                         inode->i_ctime.tv_sec = convtime;
1172                         inode->i_ctime.tv_nsec = convtime_usec * 1000;
1173                 } else {
1174                         inode->i_ctime = UDF_SB_RECORDTIME(inode->i_sb);
1175                 }
1176
1177                 UDF_I_UNIQUE(inode) = le64_to_cpu(fe->uniqueID);
1178                 UDF_I_LENEATTR(inode) = le32_to_cpu(fe->lengthExtendedAttr);
1179                 UDF_I_LENALLOC(inode) = le32_to_cpu(fe->lengthAllocDescs);
1180                 offset = sizeof(struct fileEntry) + UDF_I_LENEATTR(inode);
1181         } else {
1182                 inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) <<
1183                     (inode->i_sb->s_blocksize_bits - 9);
1184
1185                 if (udf_stamp_to_time(&convtime, &convtime_usec,
1186                                       lets_to_cpu(efe->accessTime))) {
1187                         inode->i_atime.tv_sec = convtime;
1188                         inode->i_atime.tv_nsec = convtime_usec * 1000;
1189                 } else {
1190                         inode->i_atime = UDF_SB_RECORDTIME(inode->i_sb);
1191                 }
1192
1193                 if (udf_stamp_to_time(&convtime, &convtime_usec,
1194                                       lets_to_cpu(efe->modificationTime))) {
1195                         inode->i_mtime.tv_sec = convtime;
1196                         inode->i_mtime.tv_nsec = convtime_usec * 1000;
1197                 } else {
1198                         inode->i_mtime = UDF_SB_RECORDTIME(inode->i_sb);
1199                 }
1200
1201                 if (udf_stamp_to_time(&convtime, &convtime_usec,
1202                                       lets_to_cpu(efe->createTime))) {
1203                         UDF_I_CRTIME(inode).tv_sec = convtime;
1204                         UDF_I_CRTIME(inode).tv_nsec = convtime_usec * 1000;
1205                 } else {
1206                         UDF_I_CRTIME(inode) = UDF_SB_RECORDTIME(inode->i_sb);
1207                 }
1208
1209                 if (udf_stamp_to_time(&convtime, &convtime_usec,
1210                                       lets_to_cpu(efe->attrTime))) {
1211                         inode->i_ctime.tv_sec = convtime;
1212                         inode->i_ctime.tv_nsec = convtime_usec * 1000;
1213                 } else {
1214                         inode->i_ctime = UDF_SB_RECORDTIME(inode->i_sb);
1215                 }
1216
1217                 UDF_I_UNIQUE(inode) = le64_to_cpu(efe->uniqueID);
1218                 UDF_I_LENEATTR(inode) = le32_to_cpu(efe->lengthExtendedAttr);
1219                 UDF_I_LENALLOC(inode) = le32_to_cpu(efe->lengthAllocDescs);
1220                 offset = sizeof(struct extendedFileEntry) + UDF_I_LENEATTR(inode);
1221         }
1222
1223         switch (fe->icbTag.fileType) {
1224         case ICBTAG_FILE_TYPE_DIRECTORY:
1225                 inode->i_op = &udf_dir_inode_operations;
1226                 inode->i_fop = &udf_dir_operations;
1227                 inode->i_mode |= S_IFDIR;
1228                 inc_nlink(inode);
1229                 break;
1230         case ICBTAG_FILE_TYPE_REALTIME:
1231         case ICBTAG_FILE_TYPE_REGULAR:
1232         case ICBTAG_FILE_TYPE_UNDEF:
1233                 if (UDF_I_ALLOCTYPE(inode) == ICBTAG_FLAG_AD_IN_ICB)
1234                         inode->i_data.a_ops = &udf_adinicb_aops;
1235                 else
1236                         inode->i_data.a_ops = &udf_aops;
1237                 inode->i_op = &udf_file_inode_operations;
1238                 inode->i_fop = &udf_file_operations;
1239                 inode->i_mode |= S_IFREG;
1240                 break;
1241         case ICBTAG_FILE_TYPE_BLOCK:
1242                 inode->i_mode |= S_IFBLK;
1243                 break;
1244         case ICBTAG_FILE_TYPE_CHAR:
1245                 inode->i_mode |= S_IFCHR;
1246                 break;
1247         case ICBTAG_FILE_TYPE_FIFO:
1248                 init_special_inode(inode, inode->i_mode | S_IFIFO, 0);
1249                 break;
1250         case ICBTAG_FILE_TYPE_SOCKET:
1251                 init_special_inode(inode, inode->i_mode | S_IFSOCK, 0);
1252                 break;
1253         case ICBTAG_FILE_TYPE_SYMLINK:
1254                 inode->i_data.a_ops = &udf_symlink_aops;
1255                 inode->i_op = &page_symlink_inode_operations;
1256                 inode->i_mode = S_IFLNK | S_IRWXUGO;
1257                 break;
1258         default:
1259                 printk(KERN_ERR "udf: udf_fill_inode(ino %ld) failed unknown file type=%d\n",
1260                        inode->i_ino, fe->icbTag.fileType);
1261                 make_bad_inode(inode);
1262                 return;
1263         }
1264         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1265                 struct deviceSpec *dsea = (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1266                 if (dsea) {
1267                         init_special_inode(inode, inode->i_mode,
1268                                            MKDEV(le32_to_cpu(dsea->majorDeviceIdent),
1269                                                  le32_to_cpu(dsea->minorDeviceIdent)));
1270                         /* Developer ID ??? */
1271                 } else {
1272                         make_bad_inode(inode);
1273                 }
1274         }
1275 }
1276
1277 static int udf_alloc_i_data(struct inode *inode, size_t size)
1278 {
1279         UDF_I_DATA(inode) = kmalloc(size, GFP_KERNEL);
1280
1281         if (!UDF_I_DATA(inode)) {
1282                 printk(KERN_ERR "udf:udf_alloc_i_data (ino %ld) no free memory\n",
1283                        inode->i_ino);
1284                 return -ENOMEM;
1285         }
1286
1287         return 0;
1288 }
1289
1290 static mode_t udf_convert_permissions(struct fileEntry *fe)
1291 {
1292         mode_t mode;
1293         uint32_t permissions;
1294         uint32_t flags;
1295
1296         permissions = le32_to_cpu(fe->permissions);
1297         flags = le16_to_cpu(fe->icbTag.flags);
1298
1299         mode =  (( permissions      ) & S_IRWXO) |
1300                 (( permissions >> 2 ) & S_IRWXG) |
1301                 (( permissions >> 4 ) & S_IRWXU) |
1302                 (( flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) |
1303                 (( flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) |
1304                 (( flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0);
1305
1306         return mode;
1307 }
1308
1309 /*
1310  * udf_write_inode
1311  *
1312  * PURPOSE
1313  *      Write out the specified inode.
1314  *
1315  * DESCRIPTION
1316  *      This routine is called whenever an inode is synced.
1317  *      Currently this routine is just a placeholder.
1318  *
1319  * HISTORY
1320  *      July 1, 1997 - Andrew E. Mileski
1321  *      Written, tested, and released.
1322  */
1323
1324 int udf_write_inode(struct inode *inode, int sync)
1325 {
1326         int ret;
1327
1328         lock_kernel();
1329         ret = udf_update_inode(inode, sync);
1330         unlock_kernel();
1331
1332         return ret;
1333 }
1334
1335 int udf_sync_inode(struct inode *inode)
1336 {
1337         return udf_update_inode(inode, 1);
1338 }
1339
1340 static int udf_update_inode(struct inode *inode, int do_sync)
1341 {
1342         struct buffer_head *bh = NULL;
1343         struct fileEntry *fe;
1344         struct extendedFileEntry *efe;
1345         uint32_t udfperms;
1346         uint16_t icbflags;
1347         uint16_t crclen;
1348         int i;
1349         kernel_timestamp cpu_time;
1350         int err = 0;
1351
1352         bh = udf_tread(inode->i_sb, udf_get_lb_pblock(inode->i_sb, UDF_I_LOCATION(inode), 0));
1353         if (!bh) {
1354                 udf_debug("bread failure\n");
1355                 return -EIO;
1356         }
1357
1358         memset(bh->b_data, 0x00, inode->i_sb->s_blocksize);
1359
1360         fe = (struct fileEntry *)bh->b_data;
1361         efe = (struct extendedFileEntry *)bh->b_data;
1362
1363         if (le16_to_cpu(fe->descTag.tagIdent) == TAG_IDENT_USE) {
1364                 struct unallocSpaceEntry *use =
1365                         (struct unallocSpaceEntry *)bh->b_data;
1366
1367                 use->lengthAllocDescs = cpu_to_le32(UDF_I_LENALLOC(inode));
1368                 memcpy(bh->b_data + sizeof(struct unallocSpaceEntry), UDF_I_DATA(inode),
1369                        inode->i_sb->s_blocksize - sizeof(struct unallocSpaceEntry));
1370                 crclen = sizeof(struct unallocSpaceEntry) + UDF_I_LENALLOC(inode) - sizeof(tag);
1371                 use->descTag.tagLocation = cpu_to_le32(UDF_I_LOCATION(inode).logicalBlockNum);
1372                 use->descTag.descCRCLength = cpu_to_le16(crclen);
1373                 use->descTag.descCRC = cpu_to_le16(udf_crc((char *)use + sizeof(tag), crclen, 0));
1374
1375                 use->descTag.tagChecksum = 0;
1376                 for (i = 0; i < 16; i++) {
1377                         if (i != 4)
1378                                 use->descTag.tagChecksum += ((uint8_t *)&(use->descTag))[i];
1379                 }
1380
1381                 mark_buffer_dirty(bh);
1382                 brelse(bh);
1383                 return err;
1384         }
1385
1386         if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET))
1387                 fe->uid = cpu_to_le32(-1);
1388         else
1389                 fe->uid = cpu_to_le32(inode->i_uid);
1390
1391         if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET))
1392                 fe->gid = cpu_to_le32(-1);
1393         else
1394                 fe->gid = cpu_to_le32(inode->i_gid);
1395
1396         udfperms =      ((inode->i_mode & S_IRWXO)     ) |
1397                         ((inode->i_mode & S_IRWXG) << 2) |
1398                         ((inode->i_mode & S_IRWXU) << 4);
1399
1400         udfperms |=     (le32_to_cpu(fe->permissions) &
1401                         (FE_PERM_O_DELETE | FE_PERM_O_CHATTR |
1402                          FE_PERM_G_DELETE | FE_PERM_G_CHATTR |
1403                          FE_PERM_U_DELETE | FE_PERM_U_CHATTR));
1404         fe->permissions = cpu_to_le32(udfperms);
1405
1406         if (S_ISDIR(inode->i_mode))
1407                 fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1);
1408         else
1409                 fe->fileLinkCount = cpu_to_le16(inode->i_nlink);
1410
1411         fe->informationLength = cpu_to_le64(inode->i_size);
1412
1413         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1414                 regid *eid;
1415                 struct deviceSpec *dsea =
1416                         (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1417                 if (!dsea) {
1418                         dsea = (struct deviceSpec *)
1419                                 udf_add_extendedattr(inode,
1420                                                      sizeof(struct deviceSpec) +
1421                                                      sizeof(regid), 12, 0x3);
1422                         dsea->attrType = cpu_to_le32(12);
1423                         dsea->attrSubtype = 1;
1424                         dsea->attrLength = cpu_to_le32(sizeof(struct deviceSpec) +
1425                                                        sizeof(regid));
1426                         dsea->impUseLength = cpu_to_le32(sizeof(regid));
1427                 }
1428                 eid = (regid *)dsea->impUse;
1429                 memset(eid, 0, sizeof(regid));
1430                 strcpy(eid->ident, UDF_ID_DEVELOPER);
1431                 eid->identSuffix[0] = UDF_OS_CLASS_UNIX;
1432                 eid->identSuffix[1] = UDF_OS_ID_LINUX;
1433                 dsea->majorDeviceIdent = cpu_to_le32(imajor(inode));
1434                 dsea->minorDeviceIdent = cpu_to_le32(iminor(inode));
1435         }
1436
1437         if (UDF_I_EFE(inode) == 0) {
1438                 memcpy(bh->b_data + sizeof(struct fileEntry), UDF_I_DATA(inode),
1439                        inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1440                 fe->logicalBlocksRecorded = cpu_to_le64(
1441                         (inode->i_blocks + (1 << (inode->i_sb->s_blocksize_bits - 9)) - 1) >>
1442                         (inode->i_sb->s_blocksize_bits - 9));
1443
1444                 if (udf_time_to_stamp(&cpu_time, inode->i_atime))
1445                         fe->accessTime = cpu_to_lets(cpu_time);
1446                 if (udf_time_to_stamp(&cpu_time, inode->i_mtime))
1447                         fe->modificationTime = cpu_to_lets(cpu_time);
1448                 if (udf_time_to_stamp(&cpu_time, inode->i_ctime))
1449                         fe->attrTime = cpu_to_lets(cpu_time);
1450                 memset(&(fe->impIdent), 0, sizeof(regid));
1451                 strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER);
1452                 fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1453                 fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1454                 fe->uniqueID = cpu_to_le64(UDF_I_UNIQUE(inode));
1455                 fe->lengthExtendedAttr = cpu_to_le32(UDF_I_LENEATTR(inode));
1456                 fe->lengthAllocDescs = cpu_to_le32(UDF_I_LENALLOC(inode));
1457                 fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE);
1458                 crclen = sizeof(struct fileEntry);
1459         } else {
1460                 memcpy(bh->b_data + sizeof(struct extendedFileEntry), UDF_I_DATA(inode),
1461                        inode->i_sb->s_blocksize - sizeof(struct extendedFileEntry));
1462                 efe->objectSize = cpu_to_le64(inode->i_size);
1463                 efe->logicalBlocksRecorded = cpu_to_le64(
1464                         (inode->i_blocks + (1 << (inode->i_sb->s_blocksize_bits - 9)) - 1) >>
1465                         (inode->i_sb->s_blocksize_bits - 9));
1466
1467                 if (UDF_I_CRTIME(inode).tv_sec > inode->i_atime.tv_sec ||
1468                     (UDF_I_CRTIME(inode).tv_sec == inode->i_atime.tv_sec &&
1469                      UDF_I_CRTIME(inode).tv_nsec > inode->i_atime.tv_nsec)) {
1470                         UDF_I_CRTIME(inode) = inode->i_atime;
1471                 }
1472                 if (UDF_I_CRTIME(inode).tv_sec > inode->i_mtime.tv_sec ||
1473                     (UDF_I_CRTIME(inode).tv_sec == inode->i_mtime.tv_sec &&
1474                      UDF_I_CRTIME(inode).tv_nsec > inode->i_mtime.tv_nsec)) {
1475                         UDF_I_CRTIME(inode) = inode->i_mtime;
1476                 }
1477                 if (UDF_I_CRTIME(inode).tv_sec > inode->i_ctime.tv_sec ||
1478                     (UDF_I_CRTIME(inode).tv_sec == inode->i_ctime.tv_sec &&
1479                      UDF_I_CRTIME(inode).tv_nsec > inode->i_ctime.tv_nsec)) {
1480                         UDF_I_CRTIME(inode) = inode->i_ctime;
1481                 }
1482
1483                 if (udf_time_to_stamp(&cpu_time, inode->i_atime))
1484                         efe->accessTime = cpu_to_lets(cpu_time);
1485                 if (udf_time_to_stamp(&cpu_time, inode->i_mtime))
1486                         efe->modificationTime = cpu_to_lets(cpu_time);
1487                 if (udf_time_to_stamp(&cpu_time, UDF_I_CRTIME(inode)))
1488                         efe->createTime = cpu_to_lets(cpu_time);
1489                 if (udf_time_to_stamp(&cpu_time, inode->i_ctime))
1490                         efe->attrTime = cpu_to_lets(cpu_time);
1491
1492                 memset(&(efe->impIdent), 0, sizeof(regid));
1493                 strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER);
1494                 efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1495                 efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1496                 efe->uniqueID = cpu_to_le64(UDF_I_UNIQUE(inode));
1497                 efe->lengthExtendedAttr = cpu_to_le32(UDF_I_LENEATTR(inode));
1498                 efe->lengthAllocDescs = cpu_to_le32(UDF_I_LENALLOC(inode));
1499                 efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE);
1500                 crclen = sizeof(struct extendedFileEntry);
1501         }
1502         if (UDF_I_STRAT4096(inode)) {
1503                 fe->icbTag.strategyType = cpu_to_le16(4096);
1504                 fe->icbTag.strategyParameter = cpu_to_le16(1);
1505                 fe->icbTag.numEntries = cpu_to_le16(2);
1506         } else {
1507                 fe->icbTag.strategyType = cpu_to_le16(4);
1508                 fe->icbTag.numEntries = cpu_to_le16(1);
1509         }
1510
1511         if (S_ISDIR(inode->i_mode))
1512                 fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY;
1513         else if (S_ISREG(inode->i_mode))
1514                 fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR;
1515         else if (S_ISLNK(inode->i_mode))
1516                 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK;
1517         else if (S_ISBLK(inode->i_mode))
1518                 fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK;
1519         else if (S_ISCHR(inode->i_mode))
1520                 fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR;
1521         else if (S_ISFIFO(inode->i_mode))
1522                 fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO;
1523         else if (S_ISSOCK(inode->i_mode))
1524                 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET;
1525
1526         icbflags =      UDF_I_ALLOCTYPE(inode) |
1527                         ((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) |
1528                         ((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) |
1529                         ((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) |
1530                         (le16_to_cpu(fe->icbTag.flags) &
1531                                 ~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID |
1532                                 ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY));
1533
1534         fe->icbTag.flags = cpu_to_le16(icbflags);
1535         if (UDF_SB_UDFREV(inode->i_sb) >= 0x0200)
1536                 fe->descTag.descVersion = cpu_to_le16(3);
1537         else
1538                 fe->descTag.descVersion = cpu_to_le16(2);
1539         fe->descTag.tagSerialNum = cpu_to_le16(UDF_SB_SERIALNUM(inode->i_sb));
1540         fe->descTag.tagLocation = cpu_to_le32(UDF_I_LOCATION(inode).logicalBlockNum);
1541         crclen += UDF_I_LENEATTR(inode) + UDF_I_LENALLOC(inode) - sizeof(tag);
1542         fe->descTag.descCRCLength = cpu_to_le16(crclen);
1543         fe->descTag.descCRC = cpu_to_le16(udf_crc((char *)fe + sizeof(tag), crclen, 0));
1544
1545         fe->descTag.tagChecksum = 0;
1546         for (i = 0; i < 16; i++) {
1547                 if (i != 4)
1548                         fe->descTag.tagChecksum += ((uint8_t *)&(fe->descTag))[i];
1549         }
1550
1551         /* write the data blocks */
1552         mark_buffer_dirty(bh);
1553         if (do_sync) {
1554                 sync_dirty_buffer(bh);
1555                 if (buffer_req(bh) && !buffer_uptodate(bh)) {
1556                         printk("IO error syncing udf inode [%s:%08lx]\n",
1557                                inode->i_sb->s_id, inode->i_ino);
1558                         err = -EIO;
1559                 }
1560         }
1561         brelse(bh);
1562
1563         return err;
1564 }
1565
1566 struct inode *udf_iget(struct super_block *sb, kernel_lb_addr ino)
1567 {
1568         unsigned long block = udf_get_lb_pblock(sb, ino, 0);
1569         struct inode *inode = iget_locked(sb, block);
1570
1571         if (!inode)
1572                 return NULL;
1573
1574         if (inode->i_state & I_NEW) {
1575                 memcpy(&UDF_I_LOCATION(inode), &ino, sizeof(kernel_lb_addr));
1576                 __udf_read_inode(inode);
1577                 unlock_new_inode(inode);
1578         }
1579
1580         if (is_bad_inode(inode))
1581                 goto out_iput;
1582
1583         if (ino.logicalBlockNum >= UDF_SB_PARTLEN(sb, ino.partitionReferenceNum)) {
1584                 udf_debug("block=%d, partition=%d out of range\n",
1585                           ino.logicalBlockNum, ino.partitionReferenceNum);
1586                 make_bad_inode(inode);
1587                 goto out_iput;
1588         }
1589
1590         return inode;
1591
1592  out_iput:
1593         iput(inode);
1594         return NULL;
1595 }
1596
1597 int8_t udf_add_aext(struct inode * inode, struct extent_position * epos,
1598                     kernel_lb_addr eloc, uint32_t elen, int inc)
1599 {
1600         int adsize;
1601         short_ad *sad = NULL;
1602         long_ad *lad = NULL;
1603         struct allocExtDesc *aed;
1604         int8_t etype;
1605         uint8_t *ptr;
1606
1607         if (!epos->bh)
1608                 ptr = UDF_I_DATA(inode) + epos->offset - udf_file_entry_alloc_offset(inode) + UDF_I_LENEATTR(inode);
1609         else
1610                 ptr = epos->bh->b_data + epos->offset;
1611
1612         if (UDF_I_ALLOCTYPE(inode) == ICBTAG_FLAG_AD_SHORT)
1613                 adsize = sizeof(short_ad);
1614         else if (UDF_I_ALLOCTYPE(inode) == ICBTAG_FLAG_AD_LONG)
1615                 adsize = sizeof(long_ad);
1616         else
1617                 return -1;
1618
1619         if (epos->offset + (2 * adsize) > inode->i_sb->s_blocksize) {
1620                 char *sptr, *dptr;
1621                 struct buffer_head *nbh;
1622                 int err, loffset;
1623                 kernel_lb_addr obloc = epos->block;
1624
1625                 if (!(epos->block.logicalBlockNum = udf_new_block(inode->i_sb, NULL,
1626                                                                   obloc.partitionReferenceNum,
1627                                                                   obloc.logicalBlockNum, &err))) {
1628                         return -1;
1629                 }
1630                 if (!(nbh = udf_tgetblk(inode->i_sb, udf_get_lb_pblock(inode->i_sb,
1631                                                                        epos->block, 0)))) {
1632                         return -1;
1633                 }
1634                 lock_buffer(nbh);
1635                 memset(nbh->b_data, 0x00, inode->i_sb->s_blocksize);
1636                 set_buffer_uptodate(nbh);
1637                 unlock_buffer(nbh);
1638                 mark_buffer_dirty_inode(nbh, inode);
1639
1640                 aed = (struct allocExtDesc *)(nbh->b_data);
1641                 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT))
1642                         aed->previousAllocExtLocation = cpu_to_le32(obloc.logicalBlockNum);
1643                 if (epos->offset + adsize > inode->i_sb->s_blocksize) {
1644                         loffset = epos->offset;
1645                         aed->lengthAllocDescs = cpu_to_le32(adsize);
1646                         sptr = ptr - adsize;
1647                         dptr = nbh->b_data + sizeof(struct allocExtDesc);
1648                         memcpy(dptr, sptr, adsize);
1649                         epos->offset = sizeof(struct allocExtDesc) + adsize;
1650                 } else {
1651                         loffset = epos->offset + adsize;
1652                         aed->lengthAllocDescs = cpu_to_le32(0);
1653                         sptr = ptr;
1654                         epos->offset = sizeof(struct allocExtDesc);
1655
1656                         if (epos->bh) {
1657                                 aed = (struct allocExtDesc *)epos->bh->b_data;
1658                                 aed->lengthAllocDescs =
1659                                         cpu_to_le32(le32_to_cpu(aed->lengthAllocDescs) + adsize);
1660                         } else {
1661                                 UDF_I_LENALLOC(inode) += adsize;
1662                                 mark_inode_dirty(inode);
1663                         }
1664                 }
1665                 if (UDF_SB_UDFREV(inode->i_sb) >= 0x0200)
1666                         udf_new_tag(nbh->b_data, TAG_IDENT_AED, 3, 1,
1667                                     epos->block.logicalBlockNum, sizeof(tag));
1668                 else
1669                         udf_new_tag(nbh->b_data, TAG_IDENT_AED, 2, 1,
1670                                     epos->block.logicalBlockNum, sizeof(tag));
1671                 switch (UDF_I_ALLOCTYPE(inode)) {
1672                 case ICBTAG_FLAG_AD_SHORT:
1673                         sad = (short_ad *)sptr;
1674                         sad->extLength = cpu_to_le32(EXT_NEXT_EXTENT_ALLOCDECS |
1675                                                      inode->i_sb->s_blocksize);
1676                         sad->extPosition = cpu_to_le32(epos->block.logicalBlockNum);
1677                         break;
1678                 case ICBTAG_FLAG_AD_LONG:
1679                         lad = (long_ad *)sptr;
1680                         lad->extLength = cpu_to_le32(EXT_NEXT_EXTENT_ALLOCDECS |
1681                                                      inode->i_sb->s_blocksize);
1682                         lad->extLocation = cpu_to_lelb(epos->block);
1683                         memset(lad->impUse, 0x00, sizeof(lad->impUse));
1684                         break;
1685                 }
1686                 if (epos->bh) {
1687                         if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1688                             UDF_SB_UDFREV(inode->i_sb) >= 0x0201)
1689                                 udf_update_tag(epos->bh->b_data, loffset);
1690                         else
1691                                 udf_update_tag(epos->bh->b_data, sizeof(struct allocExtDesc));
1692                         mark_buffer_dirty_inode(epos->bh, inode);
1693                         brelse(epos->bh);
1694                 } else {
1695                         mark_inode_dirty(inode);
1696                 }
1697                 epos->bh = nbh;
1698         }
1699
1700         etype = udf_write_aext(inode, epos, eloc, elen, inc);
1701
1702         if (!epos->bh) {
1703                 UDF_I_LENALLOC(inode) += adsize;
1704                 mark_inode_dirty(inode);
1705         } else {
1706                 aed = (struct allocExtDesc *)epos->bh->b_data;
1707                 aed->lengthAllocDescs =
1708                         cpu_to_le32(le32_to_cpu(aed->lengthAllocDescs) + adsize);
1709                 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || UDF_SB_UDFREV(inode->i_sb) >= 0x0201)
1710                         udf_update_tag(epos->bh->b_data, epos->offset + (inc ? 0 : adsize));
1711                 else
1712                         udf_update_tag(epos->bh->b_data, sizeof(struct allocExtDesc));
1713                 mark_buffer_dirty_inode(epos->bh, inode);
1714         }
1715
1716         return etype;
1717 }
1718
1719 int8_t udf_write_aext(struct inode * inode, struct extent_position * epos,
1720                       kernel_lb_addr eloc, uint32_t elen, int inc)
1721 {
1722         int adsize;
1723         uint8_t *ptr;
1724         short_ad *sad;
1725         long_ad *lad;
1726
1727         if (!epos->bh)
1728                 ptr = UDF_I_DATA(inode) + epos->offset - udf_file_entry_alloc_offset(inode) + UDF_I_LENEATTR(inode);
1729         else
1730                 ptr = epos->bh->b_data + epos->offset;
1731
1732         switch (UDF_I_ALLOCTYPE(inode)) {
1733         case ICBTAG_FLAG_AD_SHORT:
1734                 sad = (short_ad *)ptr;
1735                 sad->extLength = cpu_to_le32(elen);
1736                 sad->extPosition = cpu_to_le32(eloc.logicalBlockNum);
1737                 adsize = sizeof(short_ad);
1738                 break;
1739         case ICBTAG_FLAG_AD_LONG:
1740                 lad = (long_ad *)ptr;
1741                 lad->extLength = cpu_to_le32(elen);
1742                 lad->extLocation = cpu_to_lelb(eloc);
1743                 memset(lad->impUse, 0x00, sizeof(lad->impUse));
1744                 adsize = sizeof(long_ad);
1745                 break;
1746         default:
1747                 return -1;
1748         }
1749
1750         if (epos->bh) {
1751                 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1752                     UDF_SB_UDFREV(inode->i_sb) >= 0x0201) {
1753                         struct allocExtDesc *aed = (struct allocExtDesc *)epos->bh->b_data;
1754                         udf_update_tag(epos->bh->b_data,
1755                                        le32_to_cpu(aed->lengthAllocDescs) + sizeof(struct allocExtDesc));
1756                 }
1757                 mark_buffer_dirty_inode(epos->bh, inode);
1758         } else {
1759                 mark_inode_dirty(inode);
1760         }
1761
1762         if (inc)
1763                 epos->offset += adsize;
1764
1765         return (elen >> 30);
1766 }
1767
1768 int8_t udf_next_aext(struct inode * inode, struct extent_position * epos,
1769                      kernel_lb_addr * eloc, uint32_t * elen, int inc)
1770 {
1771         int8_t etype;
1772
1773         while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) ==
1774                (EXT_NEXT_EXTENT_ALLOCDECS >> 30)) {
1775                 epos->block = *eloc;
1776                 epos->offset = sizeof(struct allocExtDesc);
1777                 brelse(epos->bh);
1778                 if (!(epos->bh = udf_tread(inode->i_sb, udf_get_lb_pblock(inode->i_sb, epos->block, 0)))) {
1779                         udf_debug("reading block %d failed!\n",
1780                                   udf_get_lb_pblock(inode->i_sb, epos->block, 0));
1781                         return -1;
1782                 }
1783         }
1784
1785         return etype;
1786 }
1787
1788 int8_t udf_current_aext(struct inode * inode, struct extent_position * epos,
1789                         kernel_lb_addr * eloc, uint32_t * elen, int inc)
1790 {
1791         int alen;
1792         int8_t etype;
1793         uint8_t *ptr;
1794         short_ad *sad;
1795         long_ad *lad;
1796
1797
1798         if (!epos->bh) {
1799                 if (!epos->offset)
1800                         epos->offset = udf_file_entry_alloc_offset(inode);
1801                 ptr = UDF_I_DATA(inode) + epos->offset - udf_file_entry_alloc_offset(inode) + UDF_I_LENEATTR(inode);
1802                 alen = udf_file_entry_alloc_offset(inode) + UDF_I_LENALLOC(inode);
1803         } else {
1804                 if (!epos->offset)
1805                         epos->offset = sizeof(struct allocExtDesc);
1806                 ptr = epos->bh->b_data + epos->offset;
1807                 alen = sizeof(struct allocExtDesc) +
1808                         le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)->lengthAllocDescs);
1809         }
1810
1811         switch (UDF_I_ALLOCTYPE(inode)) {
1812         case ICBTAG_FLAG_AD_SHORT:
1813                 if (!(sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc)))
1814                         return -1;
1815                 etype = le32_to_cpu(sad->extLength) >> 30;
1816                 eloc->logicalBlockNum = le32_to_cpu(sad->extPosition);
1817                 eloc->partitionReferenceNum = UDF_I_LOCATION(inode).partitionReferenceNum;
1818                 *elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK;
1819                 break;
1820         case ICBTAG_FLAG_AD_LONG:
1821                 if (!(lad = udf_get_filelongad(ptr, alen, &epos->offset, inc)))
1822                         return -1;
1823                 etype = le32_to_cpu(lad->extLength) >> 30;
1824                 *eloc = lelb_to_cpu(lad->extLocation);
1825                 *elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK;
1826                 break;
1827         default:
1828                 udf_debug("alloc_type = %d unsupported\n", UDF_I_ALLOCTYPE(inode));
1829                 return -1;
1830         }
1831
1832         return etype;
1833 }
1834
1835 static int8_t udf_insert_aext(struct inode *inode, struct extent_position epos,
1836                               kernel_lb_addr neloc, uint32_t nelen)
1837 {
1838         kernel_lb_addr oeloc;
1839         uint32_t oelen;
1840         int8_t etype;
1841
1842         if (epos.bh)
1843                 get_bh(epos.bh);
1844
1845         while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) {
1846                 udf_write_aext(inode, &epos, neloc, nelen, 1);
1847                 neloc = oeloc;
1848                 nelen = (etype << 30) | oelen;
1849         }
1850         udf_add_aext(inode, &epos, neloc, nelen, 1);
1851         brelse(epos.bh);
1852
1853         return (nelen >> 30);
1854 }
1855
1856 int8_t udf_delete_aext(struct inode * inode, struct extent_position epos,
1857                        kernel_lb_addr eloc, uint32_t elen)
1858 {
1859         struct extent_position oepos;
1860         int adsize;
1861         int8_t etype;
1862         struct allocExtDesc *aed;
1863
1864         if (epos.bh) {
1865                 get_bh(epos.bh);
1866                 get_bh(epos.bh);
1867         }
1868
1869         if (UDF_I_ALLOCTYPE(inode) == ICBTAG_FLAG_AD_SHORT)
1870                 adsize = sizeof(short_ad);
1871         else if (UDF_I_ALLOCTYPE(inode) == ICBTAG_FLAG_AD_LONG)
1872                 adsize = sizeof(long_ad);
1873         else
1874                 adsize = 0;
1875
1876         oepos = epos;
1877         if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1)
1878                 return -1;
1879
1880         while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) {
1881                 udf_write_aext(inode, &oepos, eloc, (etype << 30) | elen, 1);
1882                 if (oepos.bh != epos.bh) {
1883                         oepos.block = epos.block;
1884                         brelse(oepos.bh);
1885                         get_bh(epos.bh);
1886                         oepos.bh = epos.bh;
1887                         oepos.offset = epos.offset - adsize;
1888                 }
1889         }
1890         memset(&eloc, 0x00, sizeof(kernel_lb_addr));
1891         elen = 0;
1892
1893         if (epos.bh != oepos.bh) {
1894                 udf_free_blocks(inode->i_sb, inode, epos.block, 0, 1);
1895                 udf_write_aext(inode, &oepos, eloc, elen, 1);
1896                 udf_write_aext(inode, &oepos, eloc, elen, 1);
1897                 if (!oepos.bh) {
1898                         UDF_I_LENALLOC(inode) -= (adsize * 2);
1899                         mark_inode_dirty(inode);
1900                 } else {
1901                         aed = (struct allocExtDesc *)oepos.bh->b_data;
1902                         aed->lengthAllocDescs =
1903                                 cpu_to_le32(le32_to_cpu(aed->lengthAllocDescs) - (2 * adsize));
1904                         if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1905                             UDF_SB_UDFREV(inode->i_sb) >= 0x0201)
1906                                 udf_update_tag(oepos.bh->b_data, oepos.offset - (2 * adsize));
1907                         else
1908                                 udf_update_tag(oepos.bh->b_data, sizeof(struct allocExtDesc));
1909                         mark_buffer_dirty_inode(oepos.bh, inode);
1910                 }
1911         } else {
1912                 udf_write_aext(inode, &oepos, eloc, elen, 1);
1913                 if (!oepos.bh) {
1914                         UDF_I_LENALLOC(inode) -= adsize;
1915                         mark_inode_dirty(inode);
1916                 } else {
1917                         aed = (struct allocExtDesc *)oepos.bh->b_data;
1918                         aed->lengthAllocDescs =
1919                                 cpu_to_le32(le32_to_cpu(aed->lengthAllocDescs) - adsize);
1920                         if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1921                             UDF_SB_UDFREV(inode->i_sb) >= 0x0201)
1922                                 udf_update_tag(oepos.bh->b_data, epos.offset - adsize);
1923                         else
1924                                 udf_update_tag(oepos.bh->b_data, sizeof(struct allocExtDesc));
1925                         mark_buffer_dirty_inode(oepos.bh, inode);
1926                 }
1927         }
1928
1929         brelse(epos.bh);
1930         brelse(oepos.bh);
1931
1932         return (elen >> 30);
1933 }
1934
1935 int8_t inode_bmap(struct inode * inode, sector_t block,
1936                   struct extent_position * pos, kernel_lb_addr * eloc,
1937                   uint32_t * elen, sector_t * offset)
1938 {
1939         loff_t lbcount = 0, bcount =
1940             (loff_t) block << inode->i_sb->s_blocksize_bits;
1941         int8_t etype;
1942
1943         if (block < 0) {
1944                 printk(KERN_ERR "udf: inode_bmap: block < 0\n");
1945                 return -1;
1946         }
1947
1948         pos->offset = 0;
1949         pos->block = UDF_I_LOCATION(inode);
1950         pos->bh = NULL;
1951         *elen = 0;
1952
1953         do {
1954                 if ((etype = udf_next_aext(inode, pos, eloc, elen, 1)) == -1) {
1955                         *offset = (bcount - lbcount) >> inode->i_sb->s_blocksize_bits;
1956                         UDF_I_LENEXTENTS(inode) = lbcount;
1957                         return -1;
1958                 }
1959                 lbcount += *elen;
1960         } while (lbcount <= bcount);
1961
1962         *offset = (bcount + *elen - lbcount) >> inode->i_sb->s_blocksize_bits;
1963
1964         return etype;
1965 }
1966
1967 long udf_block_map(struct inode *inode, sector_t block)
1968 {
1969         kernel_lb_addr eloc;
1970         uint32_t elen;
1971         sector_t offset;
1972         struct extent_position epos = {};
1973         int ret;
1974
1975         lock_kernel();
1976
1977         if (inode_bmap(inode, block, &epos, &eloc, &elen, &offset) == (EXT_RECORDED_ALLOCATED >> 30))
1978                 ret = udf_get_lb_pblock(inode->i_sb, eloc, offset);
1979         else
1980                 ret = 0;
1981
1982         unlock_kernel();
1983         brelse(epos.bh);
1984
1985         if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_VARCONV))
1986                 return udf_fixed_to_variable(ret);
1987         else
1988                 return ret;
1989 }