Merge branch 'stable-3.2' into pandora-3.2
[pandora-kernel.git] / fs / ubifs / lprops.c
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 51
17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18  *
19  * Authors: Adrian Hunter
20  *          Artem Bityutskiy (Битюцкий Артём)
21  */
22
23 /*
24  * This file implements the functions that access LEB properties and their
25  * categories. LEBs are categorized based on the needs of UBIFS, and the
26  * categories are stored as either heaps or lists to provide a fast way of
27  * finding a LEB in a particular category. For example, UBIFS may need to find
28  * an empty LEB for the journal, or a very dirty LEB for garbage collection.
29  */
30
31 #include "ubifs.h"
32
33 /**
34  * get_heap_comp_val - get the LEB properties value for heap comparisons.
35  * @lprops: LEB properties
36  * @cat: LEB category
37  */
38 static int get_heap_comp_val(struct ubifs_lprops *lprops, int cat)
39 {
40         switch (cat) {
41         case LPROPS_FREE:
42                 return lprops->free;
43         case LPROPS_DIRTY_IDX:
44                 return lprops->free + lprops->dirty;
45         default:
46                 return lprops->dirty;
47         }
48 }
49
50 /**
51  * move_up_lpt_heap - move a new heap entry up as far as possible.
52  * @c: UBIFS file-system description object
53  * @heap: LEB category heap
54  * @lprops: LEB properties to move
55  * @cat: LEB category
56  *
57  * New entries to a heap are added at the bottom and then moved up until the
58  * parent's value is greater.  In the case of LPT's category heaps, the value
59  * is either the amount of free space or the amount of dirty space, depending
60  * on the category.
61  */
62 static void move_up_lpt_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap,
63                              struct ubifs_lprops *lprops, int cat)
64 {
65         int val1, val2, hpos;
66
67         hpos = lprops->hpos;
68         if (!hpos)
69                 return; /* Already top of the heap */
70         val1 = get_heap_comp_val(lprops, cat);
71         /* Compare to parent and, if greater, move up the heap */
72         do {
73                 int ppos = (hpos - 1) / 2;
74
75                 val2 = get_heap_comp_val(heap->arr[ppos], cat);
76                 if (val2 >= val1)
77                         return;
78                 /* Greater than parent so move up */
79                 heap->arr[ppos]->hpos = hpos;
80                 heap->arr[hpos] = heap->arr[ppos];
81                 heap->arr[ppos] = lprops;
82                 lprops->hpos = ppos;
83                 hpos = ppos;
84         } while (hpos);
85 }
86
87 /**
88  * adjust_lpt_heap - move a changed heap entry up or down the heap.
89  * @c: UBIFS file-system description object
90  * @heap: LEB category heap
91  * @lprops: LEB properties to move
92  * @hpos: heap position of @lprops
93  * @cat: LEB category
94  *
95  * Changed entries in a heap are moved up or down until the parent's value is
96  * greater.  In the case of LPT's category heaps, the value is either the amount
97  * of free space or the amount of dirty space, depending on the category.
98  */
99 static void adjust_lpt_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap,
100                             struct ubifs_lprops *lprops, int hpos, int cat)
101 {
102         int val1, val2, val3, cpos;
103
104         val1 = get_heap_comp_val(lprops, cat);
105         /* Compare to parent and, if greater than parent, move up the heap */
106         if (hpos) {
107                 int ppos = (hpos - 1) / 2;
108
109                 val2 = get_heap_comp_val(heap->arr[ppos], cat);
110                 if (val1 > val2) {
111                         /* Greater than parent so move up */
112                         while (1) {
113                                 heap->arr[ppos]->hpos = hpos;
114                                 heap->arr[hpos] = heap->arr[ppos];
115                                 heap->arr[ppos] = lprops;
116                                 lprops->hpos = ppos;
117                                 hpos = ppos;
118                                 if (!hpos)
119                                         return;
120                                 ppos = (hpos - 1) / 2;
121                                 val2 = get_heap_comp_val(heap->arr[ppos], cat);
122                                 if (val1 <= val2)
123                                         return;
124                                 /* Still greater than parent so keep going */
125                         }
126                 }
127         }
128
129         /* Not greater than parent, so compare to children */
130         while (1) {
131                 /* Compare to left child */
132                 cpos = hpos * 2 + 1;
133                 if (cpos >= heap->cnt)
134                         return;
135                 val2 = get_heap_comp_val(heap->arr[cpos], cat);
136                 if (val1 < val2) {
137                         /* Less than left child, so promote biggest child */
138                         if (cpos + 1 < heap->cnt) {
139                                 val3 = get_heap_comp_val(heap->arr[cpos + 1],
140                                                          cat);
141                                 if (val3 > val2)
142                                         cpos += 1; /* Right child is bigger */
143                         }
144                         heap->arr[cpos]->hpos = hpos;
145                         heap->arr[hpos] = heap->arr[cpos];
146                         heap->arr[cpos] = lprops;
147                         lprops->hpos = cpos;
148                         hpos = cpos;
149                         continue;
150                 }
151                 /* Compare to right child */
152                 cpos += 1;
153                 if (cpos >= heap->cnt)
154                         return;
155                 val3 = get_heap_comp_val(heap->arr[cpos], cat);
156                 if (val1 < val3) {
157                         /* Less than right child, so promote right child */
158                         heap->arr[cpos]->hpos = hpos;
159                         heap->arr[hpos] = heap->arr[cpos];
160                         heap->arr[cpos] = lprops;
161                         lprops->hpos = cpos;
162                         hpos = cpos;
163                         continue;
164                 }
165                 return;
166         }
167 }
168
169 /**
170  * add_to_lpt_heap - add LEB properties to a LEB category heap.
171  * @c: UBIFS file-system description object
172  * @lprops: LEB properties to add
173  * @cat: LEB category
174  *
175  * This function returns %1 if @lprops is added to the heap for LEB category
176  * @cat, otherwise %0 is returned because the heap is full.
177  */
178 static int add_to_lpt_heap(struct ubifs_info *c, struct ubifs_lprops *lprops,
179                            int cat)
180 {
181         struct ubifs_lpt_heap *heap = &c->lpt_heap[cat - 1];
182
183         if (heap->cnt >= heap->max_cnt) {
184                 const int b = LPT_HEAP_SZ / 2 - 1;
185                 int cpos, val1, val2;
186
187                 /* Compare to some other LEB on the bottom of heap */
188                 /* Pick a position kind of randomly */
189                 cpos = (((size_t)lprops >> 4) & b) + b;
190                 ubifs_assert(cpos >= b);
191                 ubifs_assert(cpos < LPT_HEAP_SZ);
192                 ubifs_assert(cpos < heap->cnt);
193
194                 val1 = get_heap_comp_val(lprops, cat);
195                 val2 = get_heap_comp_val(heap->arr[cpos], cat);
196                 if (val1 > val2) {
197                         struct ubifs_lprops *lp;
198
199                         lp = heap->arr[cpos];
200                         lp->flags &= ~LPROPS_CAT_MASK;
201                         lp->flags |= LPROPS_UNCAT;
202                         list_add(&lp->list, &c->uncat_list);
203                         lprops->hpos = cpos;
204                         heap->arr[cpos] = lprops;
205                         move_up_lpt_heap(c, heap, lprops, cat);
206                         dbg_check_heap(c, heap, cat, lprops->hpos);
207                         return 1; /* Added to heap */
208                 }
209                 dbg_check_heap(c, heap, cat, -1);
210                 return 0; /* Not added to heap */
211         } else {
212                 lprops->hpos = heap->cnt++;
213                 heap->arr[lprops->hpos] = lprops;
214                 move_up_lpt_heap(c, heap, lprops, cat);
215                 dbg_check_heap(c, heap, cat, lprops->hpos);
216                 return 1; /* Added to heap */
217         }
218 }
219
220 /**
221  * remove_from_lpt_heap - remove LEB properties from a LEB category heap.
222  * @c: UBIFS file-system description object
223  * @lprops: LEB properties to remove
224  * @cat: LEB category
225  */
226 static void remove_from_lpt_heap(struct ubifs_info *c,
227                                  struct ubifs_lprops *lprops, int cat)
228 {
229         struct ubifs_lpt_heap *heap;
230         int hpos = lprops->hpos;
231
232         heap = &c->lpt_heap[cat - 1];
233         ubifs_assert(hpos >= 0 && hpos < heap->cnt);
234         ubifs_assert(heap->arr[hpos] == lprops);
235         heap->cnt -= 1;
236         if (hpos < heap->cnt) {
237                 heap->arr[hpos] = heap->arr[heap->cnt];
238                 heap->arr[hpos]->hpos = hpos;
239                 adjust_lpt_heap(c, heap, heap->arr[hpos], hpos, cat);
240         }
241         dbg_check_heap(c, heap, cat, -1);
242 }
243
244 /**
245  * lpt_heap_replace - replace lprops in a category heap.
246  * @c: UBIFS file-system description object
247  * @old_lprops: LEB properties to replace
248  * @new_lprops: LEB properties with which to replace
249  * @cat: LEB category
250  *
251  * During commit it is sometimes necessary to copy a pnode (see dirty_cow_pnode)
252  * and the lprops that the pnode contains.  When that happens, references in
253  * the category heaps to those lprops must be updated to point to the new
254  * lprops.  This function does that.
255  */
256 static void lpt_heap_replace(struct ubifs_info *c,
257                              struct ubifs_lprops *old_lprops,
258                              struct ubifs_lprops *new_lprops, int cat)
259 {
260         struct ubifs_lpt_heap *heap;
261         int hpos = new_lprops->hpos;
262
263         heap = &c->lpt_heap[cat - 1];
264         heap->arr[hpos] = new_lprops;
265 }
266
267 /**
268  * ubifs_add_to_cat - add LEB properties to a category list or heap.
269  * @c: UBIFS file-system description object
270  * @lprops: LEB properties to add
271  * @cat: LEB category to which to add
272  *
273  * LEB properties are categorized to enable fast find operations.
274  */
275 void ubifs_add_to_cat(struct ubifs_info *c, struct ubifs_lprops *lprops,
276                       int cat)
277 {
278         switch (cat) {
279         case LPROPS_DIRTY:
280         case LPROPS_DIRTY_IDX:
281         case LPROPS_FREE:
282                 if (add_to_lpt_heap(c, lprops, cat))
283                         break;
284                 /* No more room on heap so make it un-categorized */
285                 cat = LPROPS_UNCAT;
286                 /* Fall through */
287         case LPROPS_UNCAT:
288                 list_add(&lprops->list, &c->uncat_list);
289                 break;
290         case LPROPS_EMPTY:
291                 list_add(&lprops->list, &c->empty_list);
292                 break;
293         case LPROPS_FREEABLE:
294                 list_add(&lprops->list, &c->freeable_list);
295                 c->freeable_cnt += 1;
296                 break;
297         case LPROPS_FRDI_IDX:
298                 list_add(&lprops->list, &c->frdi_idx_list);
299                 break;
300         default:
301                 ubifs_assert(0);
302         }
303
304         lprops->flags &= ~LPROPS_CAT_MASK;
305         lprops->flags |= cat;
306         c->in_a_category_cnt += 1;
307         ubifs_assert(c->in_a_category_cnt <= c->main_lebs);
308 }
309
310 /**
311  * ubifs_remove_from_cat - remove LEB properties from a category list or heap.
312  * @c: UBIFS file-system description object
313  * @lprops: LEB properties to remove
314  * @cat: LEB category from which to remove
315  *
316  * LEB properties are categorized to enable fast find operations.
317  */
318 static void ubifs_remove_from_cat(struct ubifs_info *c,
319                                   struct ubifs_lprops *lprops, int cat)
320 {
321         switch (cat) {
322         case LPROPS_DIRTY:
323         case LPROPS_DIRTY_IDX:
324         case LPROPS_FREE:
325                 remove_from_lpt_heap(c, lprops, cat);
326                 break;
327         case LPROPS_FREEABLE:
328                 c->freeable_cnt -= 1;
329                 ubifs_assert(c->freeable_cnt >= 0);
330                 /* Fall through */
331         case LPROPS_UNCAT:
332         case LPROPS_EMPTY:
333         case LPROPS_FRDI_IDX:
334                 ubifs_assert(!list_empty(&lprops->list));
335                 list_del(&lprops->list);
336                 break;
337         default:
338                 ubifs_assert(0);
339         }
340
341         c->in_a_category_cnt -= 1;
342         ubifs_assert(c->in_a_category_cnt >= 0);
343 }
344
345 /**
346  * ubifs_replace_cat - replace lprops in a category list or heap.
347  * @c: UBIFS file-system description object
348  * @old_lprops: LEB properties to replace
349  * @new_lprops: LEB properties with which to replace
350  *
351  * During commit it is sometimes necessary to copy a pnode (see dirty_cow_pnode)
352  * and the lprops that the pnode contains. When that happens, references in
353  * category lists and heaps must be replaced. This function does that.
354  */
355 void ubifs_replace_cat(struct ubifs_info *c, struct ubifs_lprops *old_lprops,
356                        struct ubifs_lprops *new_lprops)
357 {
358         int cat;
359
360         cat = new_lprops->flags & LPROPS_CAT_MASK;
361         switch (cat) {
362         case LPROPS_DIRTY:
363         case LPROPS_DIRTY_IDX:
364         case LPROPS_FREE:
365                 lpt_heap_replace(c, old_lprops, new_lprops, cat);
366                 break;
367         case LPROPS_UNCAT:
368         case LPROPS_EMPTY:
369         case LPROPS_FREEABLE:
370         case LPROPS_FRDI_IDX:
371                 list_replace(&old_lprops->list, &new_lprops->list);
372                 break;
373         default:
374                 ubifs_assert(0);
375         }
376 }
377
378 /**
379  * ubifs_ensure_cat - ensure LEB properties are categorized.
380  * @c: UBIFS file-system description object
381  * @lprops: LEB properties
382  *
383  * A LEB may have fallen off of the bottom of a heap, and ended up as
384  * un-categorized even though it has enough space for us now. If that is the
385  * case this function will put the LEB back onto a heap.
386  */
387 void ubifs_ensure_cat(struct ubifs_info *c, struct ubifs_lprops *lprops)
388 {
389         int cat = lprops->flags & LPROPS_CAT_MASK;
390
391         if (cat != LPROPS_UNCAT)
392                 return;
393         cat = ubifs_categorize_lprops(c, lprops);
394         if (cat == LPROPS_UNCAT)
395                 return;
396         ubifs_remove_from_cat(c, lprops, LPROPS_UNCAT);
397         ubifs_add_to_cat(c, lprops, cat);
398 }
399
400 /**
401  * ubifs_categorize_lprops - categorize LEB properties.
402  * @c: UBIFS file-system description object
403  * @lprops: LEB properties to categorize
404  *
405  * LEB properties are categorized to enable fast find operations. This function
406  * returns the LEB category to which the LEB properties belong. Note however
407  * that if the LEB category is stored as a heap and the heap is full, the
408  * LEB properties may have their category changed to %LPROPS_UNCAT.
409  */
410 int ubifs_categorize_lprops(const struct ubifs_info *c,
411                             const struct ubifs_lprops *lprops)
412 {
413         if (lprops->flags & LPROPS_TAKEN)
414                 return LPROPS_UNCAT;
415
416         if (lprops->free == c->leb_size) {
417                 ubifs_assert(!(lprops->flags & LPROPS_INDEX));
418                 return LPROPS_EMPTY;
419         }
420
421         if (lprops->free + lprops->dirty == c->leb_size) {
422                 if (lprops->flags & LPROPS_INDEX)
423                         return LPROPS_FRDI_IDX;
424                 else
425                         return LPROPS_FREEABLE;
426         }
427
428         if (lprops->flags & LPROPS_INDEX) {
429                 if (lprops->dirty + lprops->free >= c->min_idx_node_sz)
430                         return LPROPS_DIRTY_IDX;
431         } else {
432                 if (lprops->dirty >= c->dead_wm &&
433                     lprops->dirty > lprops->free)
434                         return LPROPS_DIRTY;
435                 if (lprops->free > 0)
436                         return LPROPS_FREE;
437         }
438
439         return LPROPS_UNCAT;
440 }
441
442 /**
443  * change_category - change LEB properties category.
444  * @c: UBIFS file-system description object
445  * @lprops: LEB properties to re-categorize
446  *
447  * LEB properties are categorized to enable fast find operations. When the LEB
448  * properties change they must be re-categorized.
449  */
450 static void change_category(struct ubifs_info *c, struct ubifs_lprops *lprops)
451 {
452         int old_cat = lprops->flags & LPROPS_CAT_MASK;
453         int new_cat = ubifs_categorize_lprops(c, lprops);
454
455         if (old_cat == new_cat) {
456                 struct ubifs_lpt_heap *heap;
457
458                 /* lprops on a heap now must be moved up or down */
459                 if (new_cat < 1 || new_cat > LPROPS_HEAP_CNT)
460                         return; /* Not on a heap */
461                 heap = &c->lpt_heap[new_cat - 1];
462                 adjust_lpt_heap(c, heap, lprops, lprops->hpos, new_cat);
463         } else {
464                 ubifs_remove_from_cat(c, lprops, old_cat);
465                 ubifs_add_to_cat(c, lprops, new_cat);
466         }
467 }
468
469 /**
470  * ubifs_calc_dark - calculate LEB dark space size.
471  * @c: the UBIFS file-system description object
472  * @spc: amount of free and dirty space in the LEB
473  *
474  * This function calculates and returns amount of dark space in an LEB which
475  * has @spc bytes of free and dirty space.
476  *
477  * UBIFS is trying to account the space which might not be usable, and this
478  * space is called "dark space". For example, if an LEB has only %512 free
479  * bytes, it is dark space, because it cannot fit a large data node.
480  */
481 int ubifs_calc_dark(const struct ubifs_info *c, int spc)
482 {
483         ubifs_assert(!(spc & 7));
484
485         if (spc < c->dark_wm)
486                 return spc;
487
488         /*
489          * If we have slightly more space then the dark space watermark, we can
490          * anyway safely assume it we'll be able to write a node of the
491          * smallest size there.
492          */
493         if (spc - c->dark_wm < MIN_WRITE_SZ)
494                 return spc - MIN_WRITE_SZ;
495
496         return c->dark_wm;
497 }
498
499 /**
500  * is_lprops_dirty - determine if LEB properties are dirty.
501  * @c: the UBIFS file-system description object
502  * @lprops: LEB properties to test
503  */
504 static int is_lprops_dirty(struct ubifs_info *c, struct ubifs_lprops *lprops)
505 {
506         struct ubifs_pnode *pnode;
507         int pos;
508
509         pos = (lprops->lnum - c->main_first) & (UBIFS_LPT_FANOUT - 1);
510         pnode = (struct ubifs_pnode *)container_of(lprops - pos,
511                                                    struct ubifs_pnode,
512                                                    lprops[0]);
513         return !test_bit(COW_CNODE, &pnode->flags) &&
514                test_bit(DIRTY_CNODE, &pnode->flags);
515 }
516
517 /**
518  * ubifs_change_lp - change LEB properties.
519  * @c: the UBIFS file-system description object
520  * @lp: LEB properties to change
521  * @free: new free space amount
522  * @dirty: new dirty space amount
523  * @flags: new flags
524  * @idx_gc_cnt: change to the count of @idx_gc list
525  *
526  * This function changes LEB properties (@free, @dirty or @flag). However, the
527  * property which has the %LPROPS_NC value is not changed. Returns a pointer to
528  * the updated LEB properties on success and a negative error code on failure.
529  *
530  * Note, the LEB properties may have had to be copied (due to COW) and
531  * consequently the pointer returned may not be the same as the pointer
532  * passed.
533  */
534 const struct ubifs_lprops *ubifs_change_lp(struct ubifs_info *c,
535                                            const struct ubifs_lprops *lp,
536                                            int free, int dirty, int flags,
537                                            int idx_gc_cnt)
538 {
539         /*
540          * This is the only function that is allowed to change lprops, so we
541          * discard the "const" qualifier.
542          */
543         struct ubifs_lprops *lprops = (struct ubifs_lprops *)lp;
544
545         dbg_lp("LEB %d, free %d, dirty %d, flags %d",
546                lprops->lnum, free, dirty, flags);
547
548         ubifs_assert(mutex_is_locked(&c->lp_mutex));
549         ubifs_assert(c->lst.empty_lebs >= 0 &&
550                      c->lst.empty_lebs <= c->main_lebs);
551         ubifs_assert(c->freeable_cnt >= 0);
552         ubifs_assert(c->freeable_cnt <= c->main_lebs);
553         ubifs_assert(c->lst.taken_empty_lebs >= 0);
554         ubifs_assert(c->lst.taken_empty_lebs <= c->lst.empty_lebs);
555         ubifs_assert(!(c->lst.total_free & 7) && !(c->lst.total_dirty & 7));
556         ubifs_assert(!(c->lst.total_dead & 7) && !(c->lst.total_dark & 7));
557         ubifs_assert(!(c->lst.total_used & 7));
558         ubifs_assert(free == LPROPS_NC || free >= 0);
559         ubifs_assert(dirty == LPROPS_NC || dirty >= 0);
560
561         if (!is_lprops_dirty(c, lprops)) {
562                 lprops = ubifs_lpt_lookup_dirty(c, lprops->lnum);
563                 if (IS_ERR(lprops))
564                         return lprops;
565         } else
566                 ubifs_assert(lprops == ubifs_lpt_lookup_dirty(c, lprops->lnum));
567
568         ubifs_assert(!(lprops->free & 7) && !(lprops->dirty & 7));
569
570         spin_lock(&c->space_lock);
571         if ((lprops->flags & LPROPS_TAKEN) && lprops->free == c->leb_size)
572                 c->lst.taken_empty_lebs -= 1;
573
574         if (!(lprops->flags & LPROPS_INDEX)) {
575                 int old_spc;
576
577                 old_spc = lprops->free + lprops->dirty;
578                 if (old_spc < c->dead_wm)
579                         c->lst.total_dead -= old_spc;
580                 else
581                         c->lst.total_dark -= ubifs_calc_dark(c, old_spc);
582
583                 c->lst.total_used -= c->leb_size - old_spc;
584         }
585
586         if (free != LPROPS_NC) {
587                 free = ALIGN(free, 8);
588                 c->lst.total_free += free - lprops->free;
589
590                 /* Increase or decrease empty LEBs counter if needed */
591                 if (free == c->leb_size) {
592                         if (lprops->free != c->leb_size)
593                                 c->lst.empty_lebs += 1;
594                 } else if (lprops->free == c->leb_size)
595                         c->lst.empty_lebs -= 1;
596                 lprops->free = free;
597         }
598
599         if (dirty != LPROPS_NC) {
600                 dirty = ALIGN(dirty, 8);
601                 c->lst.total_dirty += dirty - lprops->dirty;
602                 lprops->dirty = dirty;
603         }
604
605         if (flags != LPROPS_NC) {
606                 /* Take care about indexing LEBs counter if needed */
607                 if ((lprops->flags & LPROPS_INDEX)) {
608                         if (!(flags & LPROPS_INDEX))
609                                 c->lst.idx_lebs -= 1;
610                 } else if (flags & LPROPS_INDEX)
611                         c->lst.idx_lebs += 1;
612                 lprops->flags = flags;
613         }
614
615         if (!(lprops->flags & LPROPS_INDEX)) {
616                 int new_spc;
617
618                 new_spc = lprops->free + lprops->dirty;
619                 if (new_spc < c->dead_wm)
620                         c->lst.total_dead += new_spc;
621                 else
622                         c->lst.total_dark += ubifs_calc_dark(c, new_spc);
623
624                 c->lst.total_used += c->leb_size - new_spc;
625         }
626
627         if ((lprops->flags & LPROPS_TAKEN) && lprops->free == c->leb_size)
628                 c->lst.taken_empty_lebs += 1;
629
630         change_category(c, lprops);
631         c->idx_gc_cnt += idx_gc_cnt;
632         spin_unlock(&c->space_lock);
633         return lprops;
634 }
635
636 /**
637  * ubifs_get_lp_stats - get lprops statistics.
638  * @c: UBIFS file-system description object
639  * @st: return statistics
640  */
641 void ubifs_get_lp_stats(struct ubifs_info *c, struct ubifs_lp_stats *lst)
642 {
643         spin_lock(&c->space_lock);
644         memcpy(lst, &c->lst, sizeof(struct ubifs_lp_stats));
645         spin_unlock(&c->space_lock);
646 }
647
648 /**
649  * ubifs_change_one_lp - change LEB properties.
650  * @c: the UBIFS file-system description object
651  * @lnum: LEB to change properties for
652  * @free: amount of free space
653  * @dirty: amount of dirty space
654  * @flags_set: flags to set
655  * @flags_clean: flags to clean
656  * @idx_gc_cnt: change to the count of idx_gc list
657  *
658  * This function changes properties of LEB @lnum. It is a helper wrapper over
659  * 'ubifs_change_lp()' which hides lprops get/release. The arguments are the
660  * same as in case of 'ubifs_change_lp()'. Returns zero in case of success and
661  * a negative error code in case of failure.
662  */
663 int ubifs_change_one_lp(struct ubifs_info *c, int lnum, int free, int dirty,
664                         int flags_set, int flags_clean, int idx_gc_cnt)
665 {
666         int err = 0, flags;
667         const struct ubifs_lprops *lp;
668
669         ubifs_get_lprops(c);
670
671         lp = ubifs_lpt_lookup_dirty(c, lnum);
672         if (IS_ERR(lp)) {
673                 err = PTR_ERR(lp);
674                 goto out;
675         }
676
677         flags = (lp->flags | flags_set) & ~flags_clean;
678         lp = ubifs_change_lp(c, lp, free, dirty, flags, idx_gc_cnt);
679         if (IS_ERR(lp))
680                 err = PTR_ERR(lp);
681
682 out:
683         ubifs_release_lprops(c);
684         if (err)
685                 ubifs_err("cannot change properties of LEB %d, error %d",
686                           lnum, err);
687         return err;
688 }
689
690 /**
691  * ubifs_update_one_lp - update LEB properties.
692  * @c: the UBIFS file-system description object
693  * @lnum: LEB to change properties for
694  * @free: amount of free space
695  * @dirty: amount of dirty space to add
696  * @flags_set: flags to set
697  * @flags_clean: flags to clean
698  *
699  * This function is the same as 'ubifs_change_one_lp()' but @dirty is added to
700  * current dirty space, not substitutes it.
701  */
702 int ubifs_update_one_lp(struct ubifs_info *c, int lnum, int free, int dirty,
703                         int flags_set, int flags_clean)
704 {
705         int err = 0, flags;
706         const struct ubifs_lprops *lp;
707
708         ubifs_get_lprops(c);
709
710         lp = ubifs_lpt_lookup_dirty(c, lnum);
711         if (IS_ERR(lp)) {
712                 err = PTR_ERR(lp);
713                 goto out;
714         }
715
716         flags = (lp->flags | flags_set) & ~flags_clean;
717         lp = ubifs_change_lp(c, lp, free, lp->dirty + dirty, flags, 0);
718         if (IS_ERR(lp))
719                 err = PTR_ERR(lp);
720
721 out:
722         ubifs_release_lprops(c);
723         if (err)
724                 ubifs_err("cannot update properties of LEB %d, error %d",
725                           lnum, err);
726         return err;
727 }
728
729 /**
730  * ubifs_read_one_lp - read LEB properties.
731  * @c: the UBIFS file-system description object
732  * @lnum: LEB to read properties for
733  * @lp: where to store read properties
734  *
735  * This helper function reads properties of a LEB @lnum and stores them in @lp.
736  * Returns zero in case of success and a negative error code in case of
737  * failure.
738  */
739 int ubifs_read_one_lp(struct ubifs_info *c, int lnum, struct ubifs_lprops *lp)
740 {
741         int err = 0;
742         const struct ubifs_lprops *lpp;
743
744         ubifs_get_lprops(c);
745
746         lpp = ubifs_lpt_lookup(c, lnum);
747         if (IS_ERR(lpp)) {
748                 err = PTR_ERR(lpp);
749                 ubifs_err("cannot read properties of LEB %d, error %d",
750                           lnum, err);
751                 goto out;
752         }
753
754         memcpy(lp, lpp, sizeof(struct ubifs_lprops));
755
756 out:
757         ubifs_release_lprops(c);
758         return err;
759 }
760
761 /**
762  * ubifs_fast_find_free - try to find a LEB with free space quickly.
763  * @c: the UBIFS file-system description object
764  *
765  * This function returns LEB properties for a LEB with free space or %NULL if
766  * the function is unable to find a LEB quickly.
767  */
768 const struct ubifs_lprops *ubifs_fast_find_free(struct ubifs_info *c)
769 {
770         struct ubifs_lprops *lprops;
771         struct ubifs_lpt_heap *heap;
772
773         ubifs_assert(mutex_is_locked(&c->lp_mutex));
774
775         heap = &c->lpt_heap[LPROPS_FREE - 1];
776         if (heap->cnt == 0)
777                 return NULL;
778
779         lprops = heap->arr[0];
780         ubifs_assert(!(lprops->flags & LPROPS_TAKEN));
781         ubifs_assert(!(lprops->flags & LPROPS_INDEX));
782         return lprops;
783 }
784
785 /**
786  * ubifs_fast_find_empty - try to find an empty LEB quickly.
787  * @c: the UBIFS file-system description object
788  *
789  * This function returns LEB properties for an empty LEB or %NULL if the
790  * function is unable to find an empty LEB quickly.
791  */
792 const struct ubifs_lprops *ubifs_fast_find_empty(struct ubifs_info *c)
793 {
794         struct ubifs_lprops *lprops;
795
796         ubifs_assert(mutex_is_locked(&c->lp_mutex));
797
798         if (list_empty(&c->empty_list))
799                 return NULL;
800
801         lprops = list_entry(c->empty_list.next, struct ubifs_lprops, list);
802         ubifs_assert(!(lprops->flags & LPROPS_TAKEN));
803         ubifs_assert(!(lprops->flags & LPROPS_INDEX));
804         ubifs_assert(lprops->free == c->leb_size);
805         return lprops;
806 }
807
808 /**
809  * ubifs_fast_find_freeable - try to find a freeable LEB quickly.
810  * @c: the UBIFS file-system description object
811  *
812  * This function returns LEB properties for a freeable LEB or %NULL if the
813  * function is unable to find a freeable LEB quickly.
814  */
815 const struct ubifs_lprops *ubifs_fast_find_freeable(struct ubifs_info *c)
816 {
817         struct ubifs_lprops *lprops;
818
819         ubifs_assert(mutex_is_locked(&c->lp_mutex));
820
821         if (list_empty(&c->freeable_list))
822                 return NULL;
823
824         lprops = list_entry(c->freeable_list.next, struct ubifs_lprops, list);
825         ubifs_assert(!(lprops->flags & LPROPS_TAKEN));
826         ubifs_assert(!(lprops->flags & LPROPS_INDEX));
827         ubifs_assert(lprops->free + lprops->dirty == c->leb_size);
828         ubifs_assert(c->freeable_cnt > 0);
829         return lprops;
830 }
831
832 /**
833  * ubifs_fast_find_frdi_idx - try to find a freeable index LEB quickly.
834  * @c: the UBIFS file-system description object
835  *
836  * This function returns LEB properties for a freeable index LEB or %NULL if the
837  * function is unable to find a freeable index LEB quickly.
838  */
839 const struct ubifs_lprops *ubifs_fast_find_frdi_idx(struct ubifs_info *c)
840 {
841         struct ubifs_lprops *lprops;
842
843         ubifs_assert(mutex_is_locked(&c->lp_mutex));
844
845         if (list_empty(&c->frdi_idx_list))
846                 return NULL;
847
848         lprops = list_entry(c->frdi_idx_list.next, struct ubifs_lprops, list);
849         ubifs_assert(!(lprops->flags & LPROPS_TAKEN));
850         ubifs_assert((lprops->flags & LPROPS_INDEX));
851         ubifs_assert(lprops->free + lprops->dirty == c->leb_size);
852         return lprops;
853 }
854
855 /*
856  * Everything below is related to debugging.
857  */
858
859 /**
860  * dbg_check_cats - check category heaps and lists.
861  * @c: UBIFS file-system description object
862  *
863  * This function returns %0 on success and a negative error code on failure.
864  */
865 int dbg_check_cats(struct ubifs_info *c)
866 {
867         struct ubifs_lprops *lprops;
868         struct list_head *pos;
869         int i, cat;
870
871         if (!dbg_is_chk_gen(c) && !dbg_is_chk_lprops(c))
872                 return 0;
873
874         list_for_each_entry(lprops, &c->empty_list, list) {
875                 if (lprops->free != c->leb_size) {
876                         ubifs_err("non-empty LEB %d on empty list (free %d dirty %d flags %d)",
877                                   lprops->lnum, lprops->free, lprops->dirty,
878                                   lprops->flags);
879                         return -EINVAL;
880                 }
881                 if (lprops->flags & LPROPS_TAKEN) {
882                         ubifs_err("taken LEB %d on empty list (free %d dirty %d flags %d)",
883                                   lprops->lnum, lprops->free, lprops->dirty,
884                                   lprops->flags);
885                         return -EINVAL;
886                 }
887         }
888
889         i = 0;
890         list_for_each_entry(lprops, &c->freeable_list, list) {
891                 if (lprops->free + lprops->dirty != c->leb_size) {
892                         ubifs_err("non-freeable LEB %d on freeable list (free %d dirty %d flags %d)",
893                                   lprops->lnum, lprops->free, lprops->dirty,
894                                   lprops->flags);
895                         return -EINVAL;
896                 }
897                 if (lprops->flags & LPROPS_TAKEN) {
898                         ubifs_err("taken LEB %d on freeable list (free %d dirty %d flags %d)",
899                                   lprops->lnum, lprops->free, lprops->dirty,
900                                   lprops->flags);
901                         return -EINVAL;
902                 }
903                 i += 1;
904         }
905         if (i != c->freeable_cnt) {
906                 ubifs_err("freeable list count %d expected %d", i,
907                           c->freeable_cnt);
908                 return -EINVAL;
909         }
910
911         i = 0;
912         list_for_each(pos, &c->idx_gc)
913                 i += 1;
914         if (i != c->idx_gc_cnt) {
915                 ubifs_err("idx_gc list count %d expected %d", i,
916                           c->idx_gc_cnt);
917                 return -EINVAL;
918         }
919
920         list_for_each_entry(lprops, &c->frdi_idx_list, list) {
921                 if (lprops->free + lprops->dirty != c->leb_size) {
922                         ubifs_err("non-freeable LEB %d on frdi_idx list (free %d dirty %d flags %d)",
923                                   lprops->lnum, lprops->free, lprops->dirty,
924                                   lprops->flags);
925                         return -EINVAL;
926                 }
927                 if (lprops->flags & LPROPS_TAKEN) {
928                         ubifs_err("taken LEB %d on frdi_idx list (free %d dirty %d flags %d)",
929                                   lprops->lnum, lprops->free, lprops->dirty,
930                                   lprops->flags);
931                         return -EINVAL;
932                 }
933                 if (!(lprops->flags & LPROPS_INDEX)) {
934                         ubifs_err("non-index LEB %d on frdi_idx list (free %d dirty %d flags %d)",
935                                   lprops->lnum, lprops->free, lprops->dirty,
936                                   lprops->flags);
937                         return -EINVAL;
938                 }
939         }
940
941         for (cat = 1; cat <= LPROPS_HEAP_CNT; cat++) {
942                 struct ubifs_lpt_heap *heap = &c->lpt_heap[cat - 1];
943
944                 for (i = 0; i < heap->cnt; i++) {
945                         lprops = heap->arr[i];
946                         if (!lprops) {
947                                 ubifs_err("null ptr in LPT heap cat %d", cat);
948                                 return -EINVAL;
949                         }
950                         if (lprops->hpos != i) {
951                                 ubifs_err("bad ptr in LPT heap cat %d", cat);
952                                 return -EINVAL;
953                         }
954                         if (lprops->flags & LPROPS_TAKEN) {
955                                 ubifs_err("taken LEB in LPT heap cat %d", cat);
956                                 return -EINVAL;
957                         }
958                 }
959         }
960
961         return 0;
962 }
963
964 void dbg_check_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat,
965                     int add_pos)
966 {
967         int i = 0, j, err = 0;
968
969         if (!dbg_is_chk_gen(c) && !dbg_is_chk_lprops(c))
970                 return;
971
972         for (i = 0; i < heap->cnt; i++) {
973                 struct ubifs_lprops *lprops = heap->arr[i];
974                 struct ubifs_lprops *lp;
975
976                 if (i != add_pos)
977                         if ((lprops->flags & LPROPS_CAT_MASK) != cat) {
978                                 err = 1;
979                                 goto out;
980                         }
981                 if (lprops->hpos != i) {
982                         err = 2;
983                         goto out;
984                 }
985                 lp = ubifs_lpt_lookup(c, lprops->lnum);
986                 if (IS_ERR(lp)) {
987                         err = 3;
988                         goto out;
989                 }
990                 if (lprops != lp) {
991                         ubifs_err("lprops %zx lp %zx lprops->lnum %d lp->lnum %d",
992                                   (size_t)lprops, (size_t)lp, lprops->lnum,
993                                   lp->lnum);
994                         err = 4;
995                         goto out;
996                 }
997                 for (j = 0; j < i; j++) {
998                         lp = heap->arr[j];
999                         if (lp == lprops) {
1000                                 err = 5;
1001                                 goto out;
1002                         }
1003                         if (lp->lnum == lprops->lnum) {
1004                                 err = 6;
1005                                 goto out;
1006                         }
1007                 }
1008         }
1009 out:
1010         if (err) {
1011                 ubifs_err("failed cat %d hpos %d err %d", cat, i, err);
1012                 dump_stack();
1013                 ubifs_dump_heap(c, heap, cat);
1014         }
1015 }
1016
1017 /**
1018  * scan_check_cb - scan callback.
1019  * @c: the UBIFS file-system description object
1020  * @lp: LEB properties to scan
1021  * @in_tree: whether the LEB properties are in main memory
1022  * @lst: lprops statistics to update
1023  *
1024  * This function returns a code that indicates whether the scan should continue
1025  * (%LPT_SCAN_CONTINUE), whether the LEB properties should be added to the tree
1026  * in main memory (%LPT_SCAN_ADD), or whether the scan should stop
1027  * (%LPT_SCAN_STOP).
1028  */
1029 static int scan_check_cb(struct ubifs_info *c,
1030                          const struct ubifs_lprops *lp, int in_tree,
1031                          struct ubifs_lp_stats *lst)
1032 {
1033         struct ubifs_scan_leb *sleb;
1034         struct ubifs_scan_node *snod;
1035         int cat, lnum = lp->lnum, is_idx = 0, used = 0, free, dirty, ret;
1036         void *buf = NULL;
1037
1038         cat = lp->flags & LPROPS_CAT_MASK;
1039         if (cat != LPROPS_UNCAT) {
1040                 cat = ubifs_categorize_lprops(c, lp);
1041                 if (cat != (lp->flags & LPROPS_CAT_MASK)) {
1042                         ubifs_err("bad LEB category %d expected %d",
1043                                   (lp->flags & LPROPS_CAT_MASK), cat);
1044                         return -EINVAL;
1045                 }
1046         }
1047
1048         /* Check lp is on its category list (if it has one) */
1049         if (in_tree) {
1050                 struct list_head *list = NULL;
1051
1052                 switch (cat) {
1053                 case LPROPS_EMPTY:
1054                         list = &c->empty_list;
1055                         break;
1056                 case LPROPS_FREEABLE:
1057                         list = &c->freeable_list;
1058                         break;
1059                 case LPROPS_FRDI_IDX:
1060                         list = &c->frdi_idx_list;
1061                         break;
1062                 case LPROPS_UNCAT:
1063                         list = &c->uncat_list;
1064                         break;
1065                 }
1066                 if (list) {
1067                         struct ubifs_lprops *lprops;
1068                         int found = 0;
1069
1070                         list_for_each_entry(lprops, list, list) {
1071                                 if (lprops == lp) {
1072                                         found = 1;
1073                                         break;
1074                                 }
1075                         }
1076                         if (!found) {
1077                                 ubifs_err("bad LPT list (category %d)", cat);
1078                                 return -EINVAL;
1079                         }
1080                 }
1081         }
1082
1083         /* Check lp is on its category heap (if it has one) */
1084         if (in_tree && cat > 0 && cat <= LPROPS_HEAP_CNT) {
1085                 struct ubifs_lpt_heap *heap = &c->lpt_heap[cat - 1];
1086
1087                 if ((lp->hpos != -1 && heap->arr[lp->hpos]->lnum != lnum) ||
1088                     lp != heap->arr[lp->hpos]) {
1089                         ubifs_err("bad LPT heap (category %d)", cat);
1090                         return -EINVAL;
1091                 }
1092         }
1093
1094         buf = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
1095         if (!buf)
1096                 return -ENOMEM;
1097
1098         /*
1099          * After an unclean unmount, empty and freeable LEBs
1100          * may contain garbage - do not scan them.
1101          */
1102         if (lp->free == c->leb_size) {
1103                 lst->empty_lebs += 1;
1104                 lst->total_free += c->leb_size;
1105                 lst->total_dark += ubifs_calc_dark(c, c->leb_size);
1106                 return LPT_SCAN_CONTINUE;
1107         }
1108         if (lp->free + lp->dirty == c->leb_size &&
1109             !(lp->flags & LPROPS_INDEX)) {
1110                 lst->total_free  += lp->free;
1111                 lst->total_dirty += lp->dirty;
1112                 lst->total_dark  +=  ubifs_calc_dark(c, c->leb_size);
1113                 return LPT_SCAN_CONTINUE;
1114         }
1115
1116         sleb = ubifs_scan(c, lnum, 0, buf, 0);
1117         if (IS_ERR(sleb)) {
1118                 ret = PTR_ERR(sleb);
1119                 if (ret == -EUCLEAN) {
1120                         ubifs_dump_lprops(c);
1121                         ubifs_dump_budg(c, &c->bi);
1122                 }
1123                 goto out;
1124         }
1125
1126         is_idx = -1;
1127         list_for_each_entry(snod, &sleb->nodes, list) {
1128                 int found, level = 0;
1129
1130                 cond_resched();
1131
1132                 if (is_idx == -1)
1133                         is_idx = (snod->type == UBIFS_IDX_NODE) ? 1 : 0;
1134
1135                 if (is_idx && snod->type != UBIFS_IDX_NODE) {
1136                         ubifs_err("indexing node in data LEB %d:%d",
1137                                   lnum, snod->offs);
1138                         goto out_destroy;
1139                 }
1140
1141                 if (snod->type == UBIFS_IDX_NODE) {
1142                         struct ubifs_idx_node *idx = snod->node;
1143
1144                         key_read(c, ubifs_idx_key(c, idx), &snod->key);
1145                         level = le16_to_cpu(idx->level);
1146                 }
1147
1148                 found = ubifs_tnc_has_node(c, &snod->key, level, lnum,
1149                                            snod->offs, is_idx);
1150                 if (found) {
1151                         if (found < 0)
1152                                 goto out_destroy;
1153                         used += ALIGN(snod->len, 8);
1154                 }
1155         }
1156
1157         free = c->leb_size - sleb->endpt;
1158         dirty = sleb->endpt - used;
1159
1160         if (free > c->leb_size || free < 0 || dirty > c->leb_size ||
1161             dirty < 0) {
1162                 ubifs_err("bad calculated accounting for LEB %d: free %d, dirty %d",
1163                           lnum, free, dirty);
1164                 goto out_destroy;
1165         }
1166
1167         if (lp->free + lp->dirty == c->leb_size &&
1168             free + dirty == c->leb_size)
1169                 if ((is_idx && !(lp->flags & LPROPS_INDEX)) ||
1170                     (!is_idx && free == c->leb_size) ||
1171                     lp->free == c->leb_size) {
1172                         /*
1173                          * Empty or freeable LEBs could contain index
1174                          * nodes from an uncompleted commit due to an
1175                          * unclean unmount. Or they could be empty for
1176                          * the same reason. Or it may simply not have been
1177                          * unmapped.
1178                          */
1179                         free = lp->free;
1180                         dirty = lp->dirty;
1181                         is_idx = 0;
1182                     }
1183
1184         if (is_idx && lp->free + lp->dirty == free + dirty &&
1185             lnum != c->ihead_lnum) {
1186                 /*
1187                  * After an unclean unmount, an index LEB could have a different
1188                  * amount of free space than the value recorded by lprops. That
1189                  * is because the in-the-gaps method may use free space or
1190                  * create free space (as a side-effect of using ubi_leb_change
1191                  * and not writing the whole LEB). The incorrect free space
1192                  * value is not a problem because the index is only ever
1193                  * allocated empty LEBs, so there will never be an attempt to
1194                  * write to the free space at the end of an index LEB - except
1195                  * by the in-the-gaps method for which it is not a problem.
1196                  */
1197                 free = lp->free;
1198                 dirty = lp->dirty;
1199         }
1200
1201         if (lp->free != free || lp->dirty != dirty)
1202                 goto out_print;
1203
1204         if (is_idx && !(lp->flags & LPROPS_INDEX)) {
1205                 if (free == c->leb_size)
1206                         /* Free but not unmapped LEB, it's fine */
1207                         is_idx = 0;
1208                 else {
1209                         ubifs_err("indexing node without indexing flag");
1210                         goto out_print;
1211                 }
1212         }
1213
1214         if (!is_idx && (lp->flags & LPROPS_INDEX)) {
1215                 ubifs_err("data node with indexing flag");
1216                 goto out_print;
1217         }
1218
1219         if (free == c->leb_size)
1220                 lst->empty_lebs += 1;
1221
1222         if (is_idx)
1223                 lst->idx_lebs += 1;
1224
1225         if (!(lp->flags & LPROPS_INDEX))
1226                 lst->total_used += c->leb_size - free - dirty;
1227         lst->total_free += free;
1228         lst->total_dirty += dirty;
1229
1230         if (!(lp->flags & LPROPS_INDEX)) {
1231                 int spc = free + dirty;
1232
1233                 if (spc < c->dead_wm)
1234                         lst->total_dead += spc;
1235                 else
1236                         lst->total_dark += ubifs_calc_dark(c, spc);
1237         }
1238
1239         ubifs_scan_destroy(sleb);
1240         vfree(buf);
1241         return LPT_SCAN_CONTINUE;
1242
1243 out_print:
1244         ubifs_err("bad accounting of LEB %d: free %d, dirty %d flags %#x, should be free %d, dirty %d",
1245                   lnum, lp->free, lp->dirty, lp->flags, free, dirty);
1246         ubifs_dump_leb(c, lnum);
1247 out_destroy:
1248         ubifs_scan_destroy(sleb);
1249         ret = -EINVAL;
1250 out:
1251         vfree(buf);
1252         return ret;
1253 }
1254
1255 /**
1256  * dbg_check_lprops - check all LEB properties.
1257  * @c: UBIFS file-system description object
1258  *
1259  * This function checks all LEB properties and makes sure they are all correct.
1260  * It returns zero if everything is fine, %-EINVAL if there is an inconsistency
1261  * and other negative error codes in case of other errors. This function is
1262  * called while the file system is locked (because of commit start), so no
1263  * additional locking is required. Note that locking the LPT mutex would cause
1264  * a circular lock dependency with the TNC mutex.
1265  */
1266 int dbg_check_lprops(struct ubifs_info *c)
1267 {
1268         int i, err;
1269         struct ubifs_lp_stats lst;
1270
1271         if (!dbg_is_chk_lprops(c))
1272                 return 0;
1273
1274         /*
1275          * As we are going to scan the media, the write buffers have to be
1276          * synchronized.
1277          */
1278         for (i = 0; i < c->jhead_cnt; i++) {
1279                 err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
1280                 if (err)
1281                         return err;
1282         }
1283
1284         memset(&lst, 0, sizeof(struct ubifs_lp_stats));
1285         err = ubifs_lpt_scan_nolock(c, c->main_first, c->leb_cnt - 1,
1286                                     (ubifs_lpt_scan_callback)scan_check_cb,
1287                                     &lst);
1288         if (err && err != -ENOSPC)
1289                 goto out;
1290
1291         if (lst.empty_lebs != c->lst.empty_lebs ||
1292             lst.idx_lebs != c->lst.idx_lebs ||
1293             lst.total_free != c->lst.total_free ||
1294             lst.total_dirty != c->lst.total_dirty ||
1295             lst.total_used != c->lst.total_used) {
1296                 ubifs_err("bad overall accounting");
1297                 ubifs_err("calculated: empty_lebs %d, idx_lebs %d, total_free %lld, total_dirty %lld, total_used %lld",
1298                           lst.empty_lebs, lst.idx_lebs, lst.total_free,
1299                           lst.total_dirty, lst.total_used);
1300                 ubifs_err("read from lprops: empty_lebs %d, idx_lebs %d, total_free %lld, total_dirty %lld, total_used %lld",
1301                           c->lst.empty_lebs, c->lst.idx_lebs, c->lst.total_free,
1302                           c->lst.total_dirty, c->lst.total_used);
1303                 err = -EINVAL;
1304                 goto out;
1305         }
1306
1307         if (lst.total_dead != c->lst.total_dead ||
1308             lst.total_dark != c->lst.total_dark) {
1309                 ubifs_err("bad dead/dark space accounting");
1310                 ubifs_err("calculated: total_dead %lld, total_dark %lld",
1311                           lst.total_dead, lst.total_dark);
1312                 ubifs_err("read from lprops: total_dead %lld, total_dark %lld",
1313                           c->lst.total_dead, c->lst.total_dark);
1314                 err = -EINVAL;
1315                 goto out;
1316         }
1317
1318         err = dbg_check_cats(c);
1319 out:
1320         return err;
1321 }