netfilter: drop outermost socket lock in getsockopt()
[pandora-kernel.git] / fs / ubifs / debug.c
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 51
17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18  *
19  * Authors: Artem Bityutskiy (Битюцкий Артём)
20  *          Adrian Hunter
21  */
22
23 /*
24  * This file implements most of the debugging stuff which is compiled in only
25  * when it is enabled. But some debugging check functions are implemented in
26  * corresponding subsystem, just because they are closely related and utilize
27  * various local functions of those subsystems.
28  */
29
30 #include <linux/module.h>
31 #include <linux/debugfs.h>
32 #include <linux/math64.h>
33 #include <linux/uaccess.h>
34 #include <linux/random.h>
35 #include "ubifs.h"
36
37 #ifdef CONFIG_UBIFS_FS_DEBUG
38
39 DEFINE_SPINLOCK(dbg_lock);
40
41 static char dbg_key_buf0[128];
42 static char dbg_key_buf1[128];
43
44 static const char *get_key_fmt(int fmt)
45 {
46         switch (fmt) {
47         case UBIFS_SIMPLE_KEY_FMT:
48                 return "simple";
49         default:
50                 return "unknown/invalid format";
51         }
52 }
53
54 static const char *get_key_hash(int hash)
55 {
56         switch (hash) {
57         case UBIFS_KEY_HASH_R5:
58                 return "R5";
59         case UBIFS_KEY_HASH_TEST:
60                 return "test";
61         default:
62                 return "unknown/invalid name hash";
63         }
64 }
65
66 static const char *get_key_type(int type)
67 {
68         switch (type) {
69         case UBIFS_INO_KEY:
70                 return "inode";
71         case UBIFS_DENT_KEY:
72                 return "direntry";
73         case UBIFS_XENT_KEY:
74                 return "xentry";
75         case UBIFS_DATA_KEY:
76                 return "data";
77         case UBIFS_TRUN_KEY:
78                 return "truncate";
79         default:
80                 return "unknown/invalid key";
81         }
82 }
83
84 static const char *get_dent_type(int type)
85 {
86         switch (type) {
87         case UBIFS_ITYPE_REG:
88                 return "file";
89         case UBIFS_ITYPE_DIR:
90                 return "dir";
91         case UBIFS_ITYPE_LNK:
92                 return "symlink";
93         case UBIFS_ITYPE_BLK:
94                 return "blkdev";
95         case UBIFS_ITYPE_CHR:
96                 return "char dev";
97         case UBIFS_ITYPE_FIFO:
98                 return "fifo";
99         case UBIFS_ITYPE_SOCK:
100                 return "socket";
101         default:
102                 return "unknown/invalid type";
103         }
104 }
105
106 static void sprintf_key(const struct ubifs_info *c, const union ubifs_key *key,
107                         char *buffer)
108 {
109         char *p = buffer;
110         int type = key_type(c, key);
111
112         if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) {
113                 switch (type) {
114                 case UBIFS_INO_KEY:
115                         sprintf(p, "(%lu, %s)", (unsigned long)key_inum(c, key),
116                                get_key_type(type));
117                         break;
118                 case UBIFS_DENT_KEY:
119                 case UBIFS_XENT_KEY:
120                         sprintf(p, "(%lu, %s, %#08x)",
121                                 (unsigned long)key_inum(c, key),
122                                 get_key_type(type), key_hash(c, key));
123                         break;
124                 case UBIFS_DATA_KEY:
125                         sprintf(p, "(%lu, %s, %u)",
126                                 (unsigned long)key_inum(c, key),
127                                 get_key_type(type), key_block(c, key));
128                         break;
129                 case UBIFS_TRUN_KEY:
130                         sprintf(p, "(%lu, %s)",
131                                 (unsigned long)key_inum(c, key),
132                                 get_key_type(type));
133                         break;
134                 default:
135                         sprintf(p, "(bad key type: %#08x, %#08x)",
136                                 key->u32[0], key->u32[1]);
137                 }
138         } else
139                 sprintf(p, "bad key format %d", c->key_fmt);
140 }
141
142 const char *dbg_key_str0(const struct ubifs_info *c, const union ubifs_key *key)
143 {
144         /* dbg_lock must be held */
145         sprintf_key(c, key, dbg_key_buf0);
146         return dbg_key_buf0;
147 }
148
149 const char *dbg_key_str1(const struct ubifs_info *c, const union ubifs_key *key)
150 {
151         /* dbg_lock must be held */
152         sprintf_key(c, key, dbg_key_buf1);
153         return dbg_key_buf1;
154 }
155
156 const char *dbg_ntype(int type)
157 {
158         switch (type) {
159         case UBIFS_PAD_NODE:
160                 return "padding node";
161         case UBIFS_SB_NODE:
162                 return "superblock node";
163         case UBIFS_MST_NODE:
164                 return "master node";
165         case UBIFS_REF_NODE:
166                 return "reference node";
167         case UBIFS_INO_NODE:
168                 return "inode node";
169         case UBIFS_DENT_NODE:
170                 return "direntry node";
171         case UBIFS_XENT_NODE:
172                 return "xentry node";
173         case UBIFS_DATA_NODE:
174                 return "data node";
175         case UBIFS_TRUN_NODE:
176                 return "truncate node";
177         case UBIFS_IDX_NODE:
178                 return "indexing node";
179         case UBIFS_CS_NODE:
180                 return "commit start node";
181         case UBIFS_ORPH_NODE:
182                 return "orphan node";
183         default:
184                 return "unknown node";
185         }
186 }
187
188 static const char *dbg_gtype(int type)
189 {
190         switch (type) {
191         case UBIFS_NO_NODE_GROUP:
192                 return "no node group";
193         case UBIFS_IN_NODE_GROUP:
194                 return "in node group";
195         case UBIFS_LAST_OF_NODE_GROUP:
196                 return "last of node group";
197         default:
198                 return "unknown";
199         }
200 }
201
202 const char *dbg_cstate(int cmt_state)
203 {
204         switch (cmt_state) {
205         case COMMIT_RESTING:
206                 return "commit resting";
207         case COMMIT_BACKGROUND:
208                 return "background commit requested";
209         case COMMIT_REQUIRED:
210                 return "commit required";
211         case COMMIT_RUNNING_BACKGROUND:
212                 return "BACKGROUND commit running";
213         case COMMIT_RUNNING_REQUIRED:
214                 return "commit running and required";
215         case COMMIT_BROKEN:
216                 return "broken commit";
217         default:
218                 return "unknown commit state";
219         }
220 }
221
222 const char *dbg_jhead(int jhead)
223 {
224         switch (jhead) {
225         case GCHD:
226                 return "0 (GC)";
227         case BASEHD:
228                 return "1 (base)";
229         case DATAHD:
230                 return "2 (data)";
231         default:
232                 return "unknown journal head";
233         }
234 }
235
236 static void dump_ch(const struct ubifs_ch *ch)
237 {
238         printk(KERN_DEBUG "\tmagic          %#x\n", le32_to_cpu(ch->magic));
239         printk(KERN_DEBUG "\tcrc            %#x\n", le32_to_cpu(ch->crc));
240         printk(KERN_DEBUG "\tnode_type      %d (%s)\n", ch->node_type,
241                dbg_ntype(ch->node_type));
242         printk(KERN_DEBUG "\tgroup_type     %d (%s)\n", ch->group_type,
243                dbg_gtype(ch->group_type));
244         printk(KERN_DEBUG "\tsqnum          %llu\n",
245                (unsigned long long)le64_to_cpu(ch->sqnum));
246         printk(KERN_DEBUG "\tlen            %u\n", le32_to_cpu(ch->len));
247 }
248
249 void dbg_dump_inode(struct ubifs_info *c, const struct inode *inode)
250 {
251         const struct ubifs_inode *ui = ubifs_inode(inode);
252         struct qstr nm = { .name = NULL };
253         union ubifs_key key;
254         struct ubifs_dent_node *dent, *pdent = NULL;
255         int count = 2;
256
257         printk(KERN_DEBUG "Dump in-memory inode:");
258         printk(KERN_DEBUG "\tinode          %lu\n", inode->i_ino);
259         printk(KERN_DEBUG "\tsize           %llu\n",
260                (unsigned long long)i_size_read(inode));
261         printk(KERN_DEBUG "\tnlink          %u\n", inode->i_nlink);
262         printk(KERN_DEBUG "\tuid            %u\n", (unsigned int)inode->i_uid);
263         printk(KERN_DEBUG "\tgid            %u\n", (unsigned int)inode->i_gid);
264         printk(KERN_DEBUG "\tatime          %u.%u\n",
265                (unsigned int)inode->i_atime.tv_sec,
266                (unsigned int)inode->i_atime.tv_nsec);
267         printk(KERN_DEBUG "\tmtime          %u.%u\n",
268                (unsigned int)inode->i_mtime.tv_sec,
269                (unsigned int)inode->i_mtime.tv_nsec);
270         printk(KERN_DEBUG "\tctime          %u.%u\n",
271                (unsigned int)inode->i_ctime.tv_sec,
272                (unsigned int)inode->i_ctime.tv_nsec);
273         printk(KERN_DEBUG "\tcreat_sqnum    %llu\n", ui->creat_sqnum);
274         printk(KERN_DEBUG "\txattr_size     %u\n", ui->xattr_size);
275         printk(KERN_DEBUG "\txattr_cnt      %u\n", ui->xattr_cnt);
276         printk(KERN_DEBUG "\txattr_names    %u\n", ui->xattr_names);
277         printk(KERN_DEBUG "\tdirty          %u\n", ui->dirty);
278         printk(KERN_DEBUG "\txattr          %u\n", ui->xattr);
279         printk(KERN_DEBUG "\tbulk_read      %u\n", ui->xattr);
280         printk(KERN_DEBUG "\tsynced_i_size  %llu\n",
281                (unsigned long long)ui->synced_i_size);
282         printk(KERN_DEBUG "\tui_size        %llu\n",
283                (unsigned long long)ui->ui_size);
284         printk(KERN_DEBUG "\tflags          %d\n", ui->flags);
285         printk(KERN_DEBUG "\tcompr_type     %d\n", ui->compr_type);
286         printk(KERN_DEBUG "\tlast_page_read %lu\n", ui->last_page_read);
287         printk(KERN_DEBUG "\tread_in_a_row  %lu\n", ui->read_in_a_row);
288         printk(KERN_DEBUG "\tdata_len       %d\n", ui->data_len);
289
290         if (!S_ISDIR(inode->i_mode))
291                 return;
292
293         printk(KERN_DEBUG "List of directory entries:\n");
294         ubifs_assert(!mutex_is_locked(&c->tnc_mutex));
295
296         lowest_dent_key(c, &key, inode->i_ino);
297         while (1) {
298                 dent = ubifs_tnc_next_ent(c, &key, &nm);
299                 if (IS_ERR(dent)) {
300                         if (PTR_ERR(dent) != -ENOENT)
301                                 printk(KERN_DEBUG "error %ld\n", PTR_ERR(dent));
302                         break;
303                 }
304
305                 printk(KERN_DEBUG "\t%d: %s (%s)\n",
306                        count++, dent->name, get_dent_type(dent->type));
307
308                 nm.name = dent->name;
309                 nm.len = le16_to_cpu(dent->nlen);
310                 kfree(pdent);
311                 pdent = dent;
312                 key_read(c, &dent->key, &key);
313         }
314         kfree(pdent);
315 }
316
317 void dbg_dump_node(const struct ubifs_info *c, const void *node)
318 {
319         int i, n;
320         union ubifs_key key;
321         const struct ubifs_ch *ch = node;
322
323         if (dbg_is_tst_rcvry(c))
324                 return;
325
326         /* If the magic is incorrect, just hexdump the first bytes */
327         if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) {
328                 printk(KERN_DEBUG "Not a node, first %zu bytes:", UBIFS_CH_SZ);
329                 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
330                                (void *)node, UBIFS_CH_SZ, 1);
331                 return;
332         }
333
334         spin_lock(&dbg_lock);
335         dump_ch(node);
336
337         switch (ch->node_type) {
338         case UBIFS_PAD_NODE:
339         {
340                 const struct ubifs_pad_node *pad = node;
341
342                 printk(KERN_DEBUG "\tpad_len        %u\n",
343                        le32_to_cpu(pad->pad_len));
344                 break;
345         }
346         case UBIFS_SB_NODE:
347         {
348                 const struct ubifs_sb_node *sup = node;
349                 unsigned int sup_flags = le32_to_cpu(sup->flags);
350
351                 printk(KERN_DEBUG "\tkey_hash       %d (%s)\n",
352                        (int)sup->key_hash, get_key_hash(sup->key_hash));
353                 printk(KERN_DEBUG "\tkey_fmt        %d (%s)\n",
354                        (int)sup->key_fmt, get_key_fmt(sup->key_fmt));
355                 printk(KERN_DEBUG "\tflags          %#x\n", sup_flags);
356                 printk(KERN_DEBUG "\t  big_lpt      %u\n",
357                        !!(sup_flags & UBIFS_FLG_BIGLPT));
358                 printk(KERN_DEBUG "\t  space_fixup  %u\n",
359                        !!(sup_flags & UBIFS_FLG_SPACE_FIXUP));
360                 printk(KERN_DEBUG "\tmin_io_size    %u\n",
361                        le32_to_cpu(sup->min_io_size));
362                 printk(KERN_DEBUG "\tleb_size       %u\n",
363                        le32_to_cpu(sup->leb_size));
364                 printk(KERN_DEBUG "\tleb_cnt        %u\n",
365                        le32_to_cpu(sup->leb_cnt));
366                 printk(KERN_DEBUG "\tmax_leb_cnt    %u\n",
367                        le32_to_cpu(sup->max_leb_cnt));
368                 printk(KERN_DEBUG "\tmax_bud_bytes  %llu\n",
369                        (unsigned long long)le64_to_cpu(sup->max_bud_bytes));
370                 printk(KERN_DEBUG "\tlog_lebs       %u\n",
371                        le32_to_cpu(sup->log_lebs));
372                 printk(KERN_DEBUG "\tlpt_lebs       %u\n",
373                        le32_to_cpu(sup->lpt_lebs));
374                 printk(KERN_DEBUG "\torph_lebs      %u\n",
375                        le32_to_cpu(sup->orph_lebs));
376                 printk(KERN_DEBUG "\tjhead_cnt      %u\n",
377                        le32_to_cpu(sup->jhead_cnt));
378                 printk(KERN_DEBUG "\tfanout         %u\n",
379                        le32_to_cpu(sup->fanout));
380                 printk(KERN_DEBUG "\tlsave_cnt      %u\n",
381                        le32_to_cpu(sup->lsave_cnt));
382                 printk(KERN_DEBUG "\tdefault_compr  %u\n",
383                        (int)le16_to_cpu(sup->default_compr));
384                 printk(KERN_DEBUG "\trp_size        %llu\n",
385                        (unsigned long long)le64_to_cpu(sup->rp_size));
386                 printk(KERN_DEBUG "\trp_uid         %u\n",
387                        le32_to_cpu(sup->rp_uid));
388                 printk(KERN_DEBUG "\trp_gid         %u\n",
389                        le32_to_cpu(sup->rp_gid));
390                 printk(KERN_DEBUG "\tfmt_version    %u\n",
391                        le32_to_cpu(sup->fmt_version));
392                 printk(KERN_DEBUG "\ttime_gran      %u\n",
393                        le32_to_cpu(sup->time_gran));
394                 printk(KERN_DEBUG "\tUUID           %pUB\n",
395                        sup->uuid);
396                 break;
397         }
398         case UBIFS_MST_NODE:
399         {
400                 const struct ubifs_mst_node *mst = node;
401
402                 printk(KERN_DEBUG "\thighest_inum   %llu\n",
403                        (unsigned long long)le64_to_cpu(mst->highest_inum));
404                 printk(KERN_DEBUG "\tcommit number  %llu\n",
405                        (unsigned long long)le64_to_cpu(mst->cmt_no));
406                 printk(KERN_DEBUG "\tflags          %#x\n",
407                        le32_to_cpu(mst->flags));
408                 printk(KERN_DEBUG "\tlog_lnum       %u\n",
409                        le32_to_cpu(mst->log_lnum));
410                 printk(KERN_DEBUG "\troot_lnum      %u\n",
411                        le32_to_cpu(mst->root_lnum));
412                 printk(KERN_DEBUG "\troot_offs      %u\n",
413                        le32_to_cpu(mst->root_offs));
414                 printk(KERN_DEBUG "\troot_len       %u\n",
415                        le32_to_cpu(mst->root_len));
416                 printk(KERN_DEBUG "\tgc_lnum        %u\n",
417                        le32_to_cpu(mst->gc_lnum));
418                 printk(KERN_DEBUG "\tihead_lnum     %u\n",
419                        le32_to_cpu(mst->ihead_lnum));
420                 printk(KERN_DEBUG "\tihead_offs     %u\n",
421                        le32_to_cpu(mst->ihead_offs));
422                 printk(KERN_DEBUG "\tindex_size     %llu\n",
423                        (unsigned long long)le64_to_cpu(mst->index_size));
424                 printk(KERN_DEBUG "\tlpt_lnum       %u\n",
425                        le32_to_cpu(mst->lpt_lnum));
426                 printk(KERN_DEBUG "\tlpt_offs       %u\n",
427                        le32_to_cpu(mst->lpt_offs));
428                 printk(KERN_DEBUG "\tnhead_lnum     %u\n",
429                        le32_to_cpu(mst->nhead_lnum));
430                 printk(KERN_DEBUG "\tnhead_offs     %u\n",
431                        le32_to_cpu(mst->nhead_offs));
432                 printk(KERN_DEBUG "\tltab_lnum      %u\n",
433                        le32_to_cpu(mst->ltab_lnum));
434                 printk(KERN_DEBUG "\tltab_offs      %u\n",
435                        le32_to_cpu(mst->ltab_offs));
436                 printk(KERN_DEBUG "\tlsave_lnum     %u\n",
437                        le32_to_cpu(mst->lsave_lnum));
438                 printk(KERN_DEBUG "\tlsave_offs     %u\n",
439                        le32_to_cpu(mst->lsave_offs));
440                 printk(KERN_DEBUG "\tlscan_lnum     %u\n",
441                        le32_to_cpu(mst->lscan_lnum));
442                 printk(KERN_DEBUG "\tleb_cnt        %u\n",
443                        le32_to_cpu(mst->leb_cnt));
444                 printk(KERN_DEBUG "\tempty_lebs     %u\n",
445                        le32_to_cpu(mst->empty_lebs));
446                 printk(KERN_DEBUG "\tidx_lebs       %u\n",
447                        le32_to_cpu(mst->idx_lebs));
448                 printk(KERN_DEBUG "\ttotal_free     %llu\n",
449                        (unsigned long long)le64_to_cpu(mst->total_free));
450                 printk(KERN_DEBUG "\ttotal_dirty    %llu\n",
451                        (unsigned long long)le64_to_cpu(mst->total_dirty));
452                 printk(KERN_DEBUG "\ttotal_used     %llu\n",
453                        (unsigned long long)le64_to_cpu(mst->total_used));
454                 printk(KERN_DEBUG "\ttotal_dead     %llu\n",
455                        (unsigned long long)le64_to_cpu(mst->total_dead));
456                 printk(KERN_DEBUG "\ttotal_dark     %llu\n",
457                        (unsigned long long)le64_to_cpu(mst->total_dark));
458                 break;
459         }
460         case UBIFS_REF_NODE:
461         {
462                 const struct ubifs_ref_node *ref = node;
463
464                 printk(KERN_DEBUG "\tlnum           %u\n",
465                        le32_to_cpu(ref->lnum));
466                 printk(KERN_DEBUG "\toffs           %u\n",
467                        le32_to_cpu(ref->offs));
468                 printk(KERN_DEBUG "\tjhead          %u\n",
469                        le32_to_cpu(ref->jhead));
470                 break;
471         }
472         case UBIFS_INO_NODE:
473         {
474                 const struct ubifs_ino_node *ino = node;
475
476                 key_read(c, &ino->key, &key);
477                 printk(KERN_DEBUG "\tkey            %s\n", DBGKEY(&key));
478                 printk(KERN_DEBUG "\tcreat_sqnum    %llu\n",
479                        (unsigned long long)le64_to_cpu(ino->creat_sqnum));
480                 printk(KERN_DEBUG "\tsize           %llu\n",
481                        (unsigned long long)le64_to_cpu(ino->size));
482                 printk(KERN_DEBUG "\tnlink          %u\n",
483                        le32_to_cpu(ino->nlink));
484                 printk(KERN_DEBUG "\tatime          %lld.%u\n",
485                        (long long)le64_to_cpu(ino->atime_sec),
486                        le32_to_cpu(ino->atime_nsec));
487                 printk(KERN_DEBUG "\tmtime          %lld.%u\n",
488                        (long long)le64_to_cpu(ino->mtime_sec),
489                        le32_to_cpu(ino->mtime_nsec));
490                 printk(KERN_DEBUG "\tctime          %lld.%u\n",
491                        (long long)le64_to_cpu(ino->ctime_sec),
492                        le32_to_cpu(ino->ctime_nsec));
493                 printk(KERN_DEBUG "\tuid            %u\n",
494                        le32_to_cpu(ino->uid));
495                 printk(KERN_DEBUG "\tgid            %u\n",
496                        le32_to_cpu(ino->gid));
497                 printk(KERN_DEBUG "\tmode           %u\n",
498                        le32_to_cpu(ino->mode));
499                 printk(KERN_DEBUG "\tflags          %#x\n",
500                        le32_to_cpu(ino->flags));
501                 printk(KERN_DEBUG "\txattr_cnt      %u\n",
502                        le32_to_cpu(ino->xattr_cnt));
503                 printk(KERN_DEBUG "\txattr_size     %u\n",
504                        le32_to_cpu(ino->xattr_size));
505                 printk(KERN_DEBUG "\txattr_names    %u\n",
506                        le32_to_cpu(ino->xattr_names));
507                 printk(KERN_DEBUG "\tcompr_type     %#x\n",
508                        (int)le16_to_cpu(ino->compr_type));
509                 printk(KERN_DEBUG "\tdata len       %u\n",
510                        le32_to_cpu(ino->data_len));
511                 break;
512         }
513         case UBIFS_DENT_NODE:
514         case UBIFS_XENT_NODE:
515         {
516                 const struct ubifs_dent_node *dent = node;
517                 int nlen = le16_to_cpu(dent->nlen);
518
519                 key_read(c, &dent->key, &key);
520                 printk(KERN_DEBUG "\tkey            %s\n", DBGKEY(&key));
521                 printk(KERN_DEBUG "\tinum           %llu\n",
522                        (unsigned long long)le64_to_cpu(dent->inum));
523                 printk(KERN_DEBUG "\ttype           %d\n", (int)dent->type);
524                 printk(KERN_DEBUG "\tnlen           %d\n", nlen);
525                 printk(KERN_DEBUG "\tname           ");
526
527                 if (nlen > UBIFS_MAX_NLEN)
528                         printk(KERN_DEBUG "(bad name length, not printing, "
529                                           "bad or corrupted node)");
530                 else {
531                         for (i = 0; i < nlen && dent->name[i]; i++)
532                                 printk(KERN_CONT "%c", dent->name[i]);
533                 }
534                 printk(KERN_CONT "\n");
535
536                 break;
537         }
538         case UBIFS_DATA_NODE:
539         {
540                 const struct ubifs_data_node *dn = node;
541                 int dlen = le32_to_cpu(ch->len) - UBIFS_DATA_NODE_SZ;
542
543                 key_read(c, &dn->key, &key);
544                 printk(KERN_DEBUG "\tkey            %s\n", DBGKEY(&key));
545                 printk(KERN_DEBUG "\tsize           %u\n",
546                        le32_to_cpu(dn->size));
547                 printk(KERN_DEBUG "\tcompr_typ      %d\n",
548                        (int)le16_to_cpu(dn->compr_type));
549                 printk(KERN_DEBUG "\tdata size      %d\n",
550                        dlen);
551                 printk(KERN_DEBUG "\tdata:\n");
552                 print_hex_dump(KERN_DEBUG, "\t", DUMP_PREFIX_OFFSET, 32, 1,
553                                (void *)&dn->data, dlen, 0);
554                 break;
555         }
556         case UBIFS_TRUN_NODE:
557         {
558                 const struct ubifs_trun_node *trun = node;
559
560                 printk(KERN_DEBUG "\tinum           %u\n",
561                        le32_to_cpu(trun->inum));
562                 printk(KERN_DEBUG "\told_size       %llu\n",
563                        (unsigned long long)le64_to_cpu(trun->old_size));
564                 printk(KERN_DEBUG "\tnew_size       %llu\n",
565                        (unsigned long long)le64_to_cpu(trun->new_size));
566                 break;
567         }
568         case UBIFS_IDX_NODE:
569         {
570                 const struct ubifs_idx_node *idx = node;
571
572                 n = le16_to_cpu(idx->child_cnt);
573                 printk(KERN_DEBUG "\tchild_cnt      %d\n", n);
574                 printk(KERN_DEBUG "\tlevel          %d\n",
575                        (int)le16_to_cpu(idx->level));
576                 printk(KERN_DEBUG "\tBranches:\n");
577
578                 for (i = 0; i < n && i < c->fanout - 1; i++) {
579                         const struct ubifs_branch *br;
580
581                         br = ubifs_idx_branch(c, idx, i);
582                         key_read(c, &br->key, &key);
583                         printk(KERN_DEBUG "\t%d: LEB %d:%d len %d key %s\n",
584                                i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs),
585                                le32_to_cpu(br->len), DBGKEY(&key));
586                 }
587                 break;
588         }
589         case UBIFS_CS_NODE:
590                 break;
591         case UBIFS_ORPH_NODE:
592         {
593                 const struct ubifs_orph_node *orph = node;
594
595                 printk(KERN_DEBUG "\tcommit number  %llu\n",
596                        (unsigned long long)
597                                 le64_to_cpu(orph->cmt_no) & LLONG_MAX);
598                 printk(KERN_DEBUG "\tlast node flag %llu\n",
599                        (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63);
600                 n = (le32_to_cpu(ch->len) - UBIFS_ORPH_NODE_SZ) >> 3;
601                 printk(KERN_DEBUG "\t%d orphan inode numbers:\n", n);
602                 for (i = 0; i < n; i++)
603                         printk(KERN_DEBUG "\t  ino %llu\n",
604                                (unsigned long long)le64_to_cpu(orph->inos[i]));
605                 break;
606         }
607         default:
608                 printk(KERN_DEBUG "node type %d was not recognized\n",
609                        (int)ch->node_type);
610         }
611         spin_unlock(&dbg_lock);
612 }
613
614 void dbg_dump_budget_req(const struct ubifs_budget_req *req)
615 {
616         spin_lock(&dbg_lock);
617         printk(KERN_DEBUG "Budgeting request: new_ino %d, dirtied_ino %d\n",
618                req->new_ino, req->dirtied_ino);
619         printk(KERN_DEBUG "\tnew_ino_d   %d, dirtied_ino_d %d\n",
620                req->new_ino_d, req->dirtied_ino_d);
621         printk(KERN_DEBUG "\tnew_page    %d, dirtied_page %d\n",
622                req->new_page, req->dirtied_page);
623         printk(KERN_DEBUG "\tnew_dent    %d, mod_dent     %d\n",
624                req->new_dent, req->mod_dent);
625         printk(KERN_DEBUG "\tidx_growth  %d\n", req->idx_growth);
626         printk(KERN_DEBUG "\tdata_growth %d dd_growth     %d\n",
627                req->data_growth, req->dd_growth);
628         spin_unlock(&dbg_lock);
629 }
630
631 void dbg_dump_lstats(const struct ubifs_lp_stats *lst)
632 {
633         spin_lock(&dbg_lock);
634         printk(KERN_DEBUG "(pid %d) Lprops statistics: empty_lebs %d, "
635                "idx_lebs  %d\n", current->pid, lst->empty_lebs, lst->idx_lebs);
636         printk(KERN_DEBUG "\ttaken_empty_lebs %d, total_free %lld, "
637                "total_dirty %lld\n", lst->taken_empty_lebs, lst->total_free,
638                lst->total_dirty);
639         printk(KERN_DEBUG "\ttotal_used %lld, total_dark %lld, "
640                "total_dead %lld\n", lst->total_used, lst->total_dark,
641                lst->total_dead);
642         spin_unlock(&dbg_lock);
643 }
644
645 void dbg_dump_budg(struct ubifs_info *c, const struct ubifs_budg_info *bi)
646 {
647         int i;
648         struct rb_node *rb;
649         struct ubifs_bud *bud;
650         struct ubifs_gced_idx_leb *idx_gc;
651         long long available, outstanding, free;
652
653         spin_lock(&c->space_lock);
654         spin_lock(&dbg_lock);
655         printk(KERN_DEBUG "(pid %d) Budgeting info: data budget sum %lld, "
656                "total budget sum %lld\n", current->pid,
657                bi->data_growth + bi->dd_growth,
658                bi->data_growth + bi->dd_growth + bi->idx_growth);
659         printk(KERN_DEBUG "\tbudg_data_growth %lld, budg_dd_growth %lld, "
660                "budg_idx_growth %lld\n", bi->data_growth, bi->dd_growth,
661                bi->idx_growth);
662         printk(KERN_DEBUG "\tmin_idx_lebs %d, old_idx_sz %llu, "
663                "uncommitted_idx %lld\n", bi->min_idx_lebs, bi->old_idx_sz,
664                bi->uncommitted_idx);
665         printk(KERN_DEBUG "\tpage_budget %d, inode_budget %d, dent_budget %d\n",
666                bi->page_budget, bi->inode_budget, bi->dent_budget);
667         printk(KERN_DEBUG "\tnospace %u, nospace_rp %u\n",
668                bi->nospace, bi->nospace_rp);
669         printk(KERN_DEBUG "\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n",
670                c->dark_wm, c->dead_wm, c->max_idx_node_sz);
671
672         if (bi != &c->bi)
673                 /*
674                  * If we are dumping saved budgeting data, do not print
675                  * additional information which is about the current state, not
676                  * the old one which corresponded to the saved budgeting data.
677                  */
678                 goto out_unlock;
679
680         printk(KERN_DEBUG "\tfreeable_cnt %d, calc_idx_sz %lld, idx_gc_cnt %d\n",
681                c->freeable_cnt, c->calc_idx_sz, c->idx_gc_cnt);
682         printk(KERN_DEBUG "\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, "
683                "clean_zn_cnt %ld\n", atomic_long_read(&c->dirty_pg_cnt),
684                atomic_long_read(&c->dirty_zn_cnt),
685                atomic_long_read(&c->clean_zn_cnt));
686         printk(KERN_DEBUG "\tgc_lnum %d, ihead_lnum %d\n",
687                c->gc_lnum, c->ihead_lnum);
688
689         /* If we are in R/O mode, journal heads do not exist */
690         if (c->jheads)
691                 for (i = 0; i < c->jhead_cnt; i++)
692                         printk(KERN_DEBUG "\tjhead %s\t LEB %d\n",
693                                dbg_jhead(c->jheads[i].wbuf.jhead),
694                                c->jheads[i].wbuf.lnum);
695         for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) {
696                 bud = rb_entry(rb, struct ubifs_bud, rb);
697                 printk(KERN_DEBUG "\tbud LEB %d\n", bud->lnum);
698         }
699         list_for_each_entry(bud, &c->old_buds, list)
700                 printk(KERN_DEBUG "\told bud LEB %d\n", bud->lnum);
701         list_for_each_entry(idx_gc, &c->idx_gc, list)
702                 printk(KERN_DEBUG "\tGC'ed idx LEB %d unmap %d\n",
703                        idx_gc->lnum, idx_gc->unmap);
704         printk(KERN_DEBUG "\tcommit state %d\n", c->cmt_state);
705
706         /* Print budgeting predictions */
707         available = ubifs_calc_available(c, c->bi.min_idx_lebs);
708         outstanding = c->bi.data_growth + c->bi.dd_growth;
709         free = ubifs_get_free_space_nolock(c);
710         printk(KERN_DEBUG "Budgeting predictions:\n");
711         printk(KERN_DEBUG "\tavailable: %lld, outstanding %lld, free %lld\n",
712                available, outstanding, free);
713 out_unlock:
714         spin_unlock(&dbg_lock);
715         spin_unlock(&c->space_lock);
716 }
717
718 void dbg_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp)
719 {
720         int i, spc, dark = 0, dead = 0;
721         struct rb_node *rb;
722         struct ubifs_bud *bud;
723
724         spc = lp->free + lp->dirty;
725         if (spc < c->dead_wm)
726                 dead = spc;
727         else
728                 dark = ubifs_calc_dark(c, spc);
729
730         if (lp->flags & LPROPS_INDEX)
731                 printk(KERN_DEBUG "LEB %-7d free %-8d dirty %-8d used %-8d "
732                        "free + dirty %-8d flags %#x (", lp->lnum, lp->free,
733                        lp->dirty, c->leb_size - spc, spc, lp->flags);
734         else
735                 printk(KERN_DEBUG "LEB %-7d free %-8d dirty %-8d used %-8d "
736                        "free + dirty %-8d dark %-4d dead %-4d nodes fit %-3d "
737                        "flags %#-4x (", lp->lnum, lp->free, lp->dirty,
738                        c->leb_size - spc, spc, dark, dead,
739                        (int)(spc / UBIFS_MAX_NODE_SZ), lp->flags);
740
741         if (lp->flags & LPROPS_TAKEN) {
742                 if (lp->flags & LPROPS_INDEX)
743                         printk(KERN_CONT "index, taken");
744                 else
745                         printk(KERN_CONT "taken");
746         } else {
747                 const char *s;
748
749                 if (lp->flags & LPROPS_INDEX) {
750                         switch (lp->flags & LPROPS_CAT_MASK) {
751                         case LPROPS_DIRTY_IDX:
752                                 s = "dirty index";
753                                 break;
754                         case LPROPS_FRDI_IDX:
755                                 s = "freeable index";
756                                 break;
757                         default:
758                                 s = "index";
759                         }
760                 } else {
761                         switch (lp->flags & LPROPS_CAT_MASK) {
762                         case LPROPS_UNCAT:
763                                 s = "not categorized";
764                                 break;
765                         case LPROPS_DIRTY:
766                                 s = "dirty";
767                                 break;
768                         case LPROPS_FREE:
769                                 s = "free";
770                                 break;
771                         case LPROPS_EMPTY:
772                                 s = "empty";
773                                 break;
774                         case LPROPS_FREEABLE:
775                                 s = "freeable";
776                                 break;
777                         default:
778                                 s = NULL;
779                                 break;
780                         }
781                 }
782                 printk(KERN_CONT "%s", s);
783         }
784
785         for (rb = rb_first((struct rb_root *)&c->buds); rb; rb = rb_next(rb)) {
786                 bud = rb_entry(rb, struct ubifs_bud, rb);
787                 if (bud->lnum == lp->lnum) {
788                         int head = 0;
789                         for (i = 0; i < c->jhead_cnt; i++) {
790                                 /*
791                                  * Note, if we are in R/O mode or in the middle
792                                  * of mounting/re-mounting, the write-buffers do
793                                  * not exist.
794                                  */
795                                 if (c->jheads &&
796                                     lp->lnum == c->jheads[i].wbuf.lnum) {
797                                         printk(KERN_CONT ", jhead %s",
798                                                dbg_jhead(i));
799                                         head = 1;
800                                 }
801                         }
802                         if (!head)
803                                 printk(KERN_CONT ", bud of jhead %s",
804                                        dbg_jhead(bud->jhead));
805                 }
806         }
807         if (lp->lnum == c->gc_lnum)
808                 printk(KERN_CONT ", GC LEB");
809         printk(KERN_CONT ")\n");
810 }
811
812 void dbg_dump_lprops(struct ubifs_info *c)
813 {
814         int lnum, err;
815         struct ubifs_lprops lp;
816         struct ubifs_lp_stats lst;
817
818         printk(KERN_DEBUG "(pid %d) start dumping LEB properties\n",
819                current->pid);
820         ubifs_get_lp_stats(c, &lst);
821         dbg_dump_lstats(&lst);
822
823         for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) {
824                 err = ubifs_read_one_lp(c, lnum, &lp);
825                 if (err)
826                         ubifs_err("cannot read lprops for LEB %d", lnum);
827
828                 dbg_dump_lprop(c, &lp);
829         }
830         printk(KERN_DEBUG "(pid %d) finish dumping LEB properties\n",
831                current->pid);
832 }
833
834 void dbg_dump_lpt_info(struct ubifs_info *c)
835 {
836         int i;
837
838         spin_lock(&dbg_lock);
839         printk(KERN_DEBUG "(pid %d) dumping LPT information\n", current->pid);
840         printk(KERN_DEBUG "\tlpt_sz:        %lld\n", c->lpt_sz);
841         printk(KERN_DEBUG "\tpnode_sz:      %d\n", c->pnode_sz);
842         printk(KERN_DEBUG "\tnnode_sz:      %d\n", c->nnode_sz);
843         printk(KERN_DEBUG "\tltab_sz:       %d\n", c->ltab_sz);
844         printk(KERN_DEBUG "\tlsave_sz:      %d\n", c->lsave_sz);
845         printk(KERN_DEBUG "\tbig_lpt:       %d\n", c->big_lpt);
846         printk(KERN_DEBUG "\tlpt_hght:      %d\n", c->lpt_hght);
847         printk(KERN_DEBUG "\tpnode_cnt:     %d\n", c->pnode_cnt);
848         printk(KERN_DEBUG "\tnnode_cnt:     %d\n", c->nnode_cnt);
849         printk(KERN_DEBUG "\tdirty_pn_cnt:  %d\n", c->dirty_pn_cnt);
850         printk(KERN_DEBUG "\tdirty_nn_cnt:  %d\n", c->dirty_nn_cnt);
851         printk(KERN_DEBUG "\tlsave_cnt:     %d\n", c->lsave_cnt);
852         printk(KERN_DEBUG "\tspace_bits:    %d\n", c->space_bits);
853         printk(KERN_DEBUG "\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits);
854         printk(KERN_DEBUG "\tlpt_offs_bits: %d\n", c->lpt_offs_bits);
855         printk(KERN_DEBUG "\tlpt_spc_bits:  %d\n", c->lpt_spc_bits);
856         printk(KERN_DEBUG "\tpcnt_bits:     %d\n", c->pcnt_bits);
857         printk(KERN_DEBUG "\tlnum_bits:     %d\n", c->lnum_bits);
858         printk(KERN_DEBUG "\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs);
859         printk(KERN_DEBUG "\tLPT head is at %d:%d\n",
860                c->nhead_lnum, c->nhead_offs);
861         printk(KERN_DEBUG "\tLPT ltab is at %d:%d\n",
862                c->ltab_lnum, c->ltab_offs);
863         if (c->big_lpt)
864                 printk(KERN_DEBUG "\tLPT lsave is at %d:%d\n",
865                        c->lsave_lnum, c->lsave_offs);
866         for (i = 0; i < c->lpt_lebs; i++)
867                 printk(KERN_DEBUG "\tLPT LEB %d free %d dirty %d tgc %d "
868                        "cmt %d\n", i + c->lpt_first, c->ltab[i].free,
869                        c->ltab[i].dirty, c->ltab[i].tgc, c->ltab[i].cmt);
870         spin_unlock(&dbg_lock);
871 }
872
873 void dbg_dump_sleb(const struct ubifs_info *c,
874                    const struct ubifs_scan_leb *sleb, int offs)
875 {
876         struct ubifs_scan_node *snod;
877
878         printk(KERN_DEBUG "(pid %d) start dumping scanned data from LEB %d:%d\n",
879                current->pid, sleb->lnum, offs);
880
881         list_for_each_entry(snod, &sleb->nodes, list) {
882                 cond_resched();
883                 printk(KERN_DEBUG "Dumping node at LEB %d:%d len %d\n", sleb->lnum,
884                        snod->offs, snod->len);
885                 dbg_dump_node(c, snod->node);
886         }
887 }
888
889 void dbg_dump_leb(const struct ubifs_info *c, int lnum)
890 {
891         struct ubifs_scan_leb *sleb;
892         struct ubifs_scan_node *snod;
893         void *buf;
894
895         if (dbg_is_tst_rcvry(c))
896                 return;
897
898         printk(KERN_DEBUG "(pid %d) start dumping LEB %d\n",
899                current->pid, lnum);
900
901         buf = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
902         if (!buf) {
903                 ubifs_err("cannot allocate memory for dumping LEB %d", lnum);
904                 return;
905         }
906
907         sleb = ubifs_scan(c, lnum, 0, buf, 0);
908         if (IS_ERR(sleb)) {
909                 ubifs_err("scan error %d", (int)PTR_ERR(sleb));
910                 goto out;
911         }
912
913         printk(KERN_DEBUG "LEB %d has %d nodes ending at %d\n", lnum,
914                sleb->nodes_cnt, sleb->endpt);
915
916         list_for_each_entry(snod, &sleb->nodes, list) {
917                 cond_resched();
918                 printk(KERN_DEBUG "Dumping node at LEB %d:%d len %d\n", lnum,
919                        snod->offs, snod->len);
920                 dbg_dump_node(c, snod->node);
921         }
922
923         printk(KERN_DEBUG "(pid %d) finish dumping LEB %d\n",
924                current->pid, lnum);
925         ubifs_scan_destroy(sleb);
926
927 out:
928         vfree(buf);
929         return;
930 }
931
932 void dbg_dump_znode(const struct ubifs_info *c,
933                     const struct ubifs_znode *znode)
934 {
935         int n;
936         const struct ubifs_zbranch *zbr;
937
938         spin_lock(&dbg_lock);
939         if (znode->parent)
940                 zbr = &znode->parent->zbranch[znode->iip];
941         else
942                 zbr = &c->zroot;
943
944         printk(KERN_DEBUG "znode %p, LEB %d:%d len %d parent %p iip %d level %d"
945                " child_cnt %d flags %lx\n", znode, zbr->lnum, zbr->offs,
946                zbr->len, znode->parent, znode->iip, znode->level,
947                znode->child_cnt, znode->flags);
948
949         if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
950                 spin_unlock(&dbg_lock);
951                 return;
952         }
953
954         printk(KERN_DEBUG "zbranches:\n");
955         for (n = 0; n < znode->child_cnt; n++) {
956                 zbr = &znode->zbranch[n];
957                 if (znode->level > 0)
958                         printk(KERN_DEBUG "\t%d: znode %p LEB %d:%d len %d key "
959                                           "%s\n", n, zbr->znode, zbr->lnum,
960                                           zbr->offs, zbr->len,
961                                           DBGKEY(&zbr->key));
962                 else
963                         printk(KERN_DEBUG "\t%d: LNC %p LEB %d:%d len %d key "
964                                           "%s\n", n, zbr->znode, zbr->lnum,
965                                           zbr->offs, zbr->len,
966                                           DBGKEY(&zbr->key));
967         }
968         spin_unlock(&dbg_lock);
969 }
970
971 void dbg_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat)
972 {
973         int i;
974
975         printk(KERN_DEBUG "(pid %d) start dumping heap cat %d (%d elements)\n",
976                current->pid, cat, heap->cnt);
977         for (i = 0; i < heap->cnt; i++) {
978                 struct ubifs_lprops *lprops = heap->arr[i];
979
980                 printk(KERN_DEBUG "\t%d. LEB %d hpos %d free %d dirty %d "
981                        "flags %d\n", i, lprops->lnum, lprops->hpos,
982                        lprops->free, lprops->dirty, lprops->flags);
983         }
984         printk(KERN_DEBUG "(pid %d) finish dumping heap\n", current->pid);
985 }
986
987 void dbg_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
988                     struct ubifs_nnode *parent, int iip)
989 {
990         int i;
991
992         printk(KERN_DEBUG "(pid %d) dumping pnode:\n", current->pid);
993         printk(KERN_DEBUG "\taddress %zx parent %zx cnext %zx\n",
994                (size_t)pnode, (size_t)parent, (size_t)pnode->cnext);
995         printk(KERN_DEBUG "\tflags %lu iip %d level %d num %d\n",
996                pnode->flags, iip, pnode->level, pnode->num);
997         for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
998                 struct ubifs_lprops *lp = &pnode->lprops[i];
999
1000                 printk(KERN_DEBUG "\t%d: free %d dirty %d flags %d lnum %d\n",
1001                        i, lp->free, lp->dirty, lp->flags, lp->lnum);
1002         }
1003 }
1004
1005 void dbg_dump_tnc(struct ubifs_info *c)
1006 {
1007         struct ubifs_znode *znode;
1008         int level;
1009
1010         printk(KERN_DEBUG "\n");
1011         printk(KERN_DEBUG "(pid %d) start dumping TNC tree\n", current->pid);
1012         znode = ubifs_tnc_levelorder_next(c->zroot.znode, NULL);
1013         level = znode->level;
1014         printk(KERN_DEBUG "== Level %d ==\n", level);
1015         while (znode) {
1016                 if (level != znode->level) {
1017                         level = znode->level;
1018                         printk(KERN_DEBUG "== Level %d ==\n", level);
1019                 }
1020                 dbg_dump_znode(c, znode);
1021                 znode = ubifs_tnc_levelorder_next(c->zroot.znode, znode);
1022         }
1023         printk(KERN_DEBUG "(pid %d) finish dumping TNC tree\n", current->pid);
1024 }
1025
1026 static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode,
1027                       void *priv)
1028 {
1029         dbg_dump_znode(c, znode);
1030         return 0;
1031 }
1032
1033 /**
1034  * dbg_dump_index - dump the on-flash index.
1035  * @c: UBIFS file-system description object
1036  *
1037  * This function dumps whole UBIFS indexing B-tree, unlike 'dbg_dump_tnc()'
1038  * which dumps only in-memory znodes and does not read znodes which from flash.
1039  */
1040 void dbg_dump_index(struct ubifs_info *c)
1041 {
1042         dbg_walk_index(c, NULL, dump_znode, NULL);
1043 }
1044
1045 /**
1046  * dbg_save_space_info - save information about flash space.
1047  * @c: UBIFS file-system description object
1048  *
1049  * This function saves information about UBIFS free space, dirty space, etc, in
1050  * order to check it later.
1051  */
1052 void dbg_save_space_info(struct ubifs_info *c)
1053 {
1054         struct ubifs_debug_info *d = c->dbg;
1055         int freeable_cnt;
1056
1057         spin_lock(&c->space_lock);
1058         memcpy(&d->saved_lst, &c->lst, sizeof(struct ubifs_lp_stats));
1059         memcpy(&d->saved_bi, &c->bi, sizeof(struct ubifs_budg_info));
1060         d->saved_idx_gc_cnt = c->idx_gc_cnt;
1061
1062         /*
1063          * We use a dirty hack here and zero out @c->freeable_cnt, because it
1064          * affects the free space calculations, and UBIFS might not know about
1065          * all freeable eraseblocks. Indeed, we know about freeable eraseblocks
1066          * only when we read their lprops, and we do this only lazily, upon the
1067          * need. So at any given point of time @c->freeable_cnt might be not
1068          * exactly accurate.
1069          *
1070          * Just one example about the issue we hit when we did not zero
1071          * @c->freeable_cnt.
1072          * 1. The file-system is mounted R/O, c->freeable_cnt is %0. We save the
1073          *    amount of free space in @d->saved_free
1074          * 2. We re-mount R/W, which makes UBIFS to read the "lsave"
1075          *    information from flash, where we cache LEBs from various
1076          *    categories ('ubifs_remount_fs()' -> 'ubifs_lpt_init()'
1077          *    -> 'lpt_init_wr()' -> 'read_lsave()' -> 'ubifs_lpt_lookup()'
1078          *    -> 'ubifs_get_pnode()' -> 'update_cats()'
1079          *    -> 'ubifs_add_to_cat()').
1080          * 3. Lsave contains a freeable eraseblock, and @c->freeable_cnt
1081          *    becomes %1.
1082          * 4. We calculate the amount of free space when the re-mount is
1083          *    finished in 'dbg_check_space_info()' and it does not match
1084          *    @d->saved_free.
1085          */
1086         freeable_cnt = c->freeable_cnt;
1087         c->freeable_cnt = 0;
1088         d->saved_free = ubifs_get_free_space_nolock(c);
1089         c->freeable_cnt = freeable_cnt;
1090         spin_unlock(&c->space_lock);
1091 }
1092
1093 /**
1094  * dbg_check_space_info - check flash space information.
1095  * @c: UBIFS file-system description object
1096  *
1097  * This function compares current flash space information with the information
1098  * which was saved when the 'dbg_save_space_info()' function was called.
1099  * Returns zero if the information has not changed, and %-EINVAL it it has
1100  * changed.
1101  */
1102 int dbg_check_space_info(struct ubifs_info *c)
1103 {
1104         struct ubifs_debug_info *d = c->dbg;
1105         struct ubifs_lp_stats lst;
1106         long long free;
1107         int freeable_cnt;
1108
1109         spin_lock(&c->space_lock);
1110         freeable_cnt = c->freeable_cnt;
1111         c->freeable_cnt = 0;
1112         free = ubifs_get_free_space_nolock(c);
1113         c->freeable_cnt = freeable_cnt;
1114         spin_unlock(&c->space_lock);
1115
1116         if (free != d->saved_free) {
1117                 ubifs_err("free space changed from %lld to %lld",
1118                           d->saved_free, free);
1119                 goto out;
1120         }
1121
1122         return 0;
1123
1124 out:
1125         ubifs_msg("saved lprops statistics dump");
1126         dbg_dump_lstats(&d->saved_lst);
1127         ubifs_msg("saved budgeting info dump");
1128         dbg_dump_budg(c, &d->saved_bi);
1129         ubifs_msg("saved idx_gc_cnt %d", d->saved_idx_gc_cnt);
1130         ubifs_msg("current lprops statistics dump");
1131         ubifs_get_lp_stats(c, &lst);
1132         dbg_dump_lstats(&lst);
1133         ubifs_msg("current budgeting info dump");
1134         dbg_dump_budg(c, &c->bi);
1135         dump_stack();
1136         return -EINVAL;
1137 }
1138
1139 /**
1140  * dbg_check_synced_i_size - check synchronized inode size.
1141  * @c: UBIFS file-system description object
1142  * @inode: inode to check
1143  *
1144  * If inode is clean, synchronized inode size has to be equivalent to current
1145  * inode size. This function has to be called only for locked inodes (@i_mutex
1146  * has to be locked). Returns %0 if synchronized inode size if correct, and
1147  * %-EINVAL if not.
1148  */
1149 int dbg_check_synced_i_size(const struct ubifs_info *c, struct inode *inode)
1150 {
1151         int err = 0;
1152         struct ubifs_inode *ui = ubifs_inode(inode);
1153
1154         if (!dbg_is_chk_gen(c))
1155                 return 0;
1156         if (!S_ISREG(inode->i_mode))
1157                 return 0;
1158
1159         mutex_lock(&ui->ui_mutex);
1160         spin_lock(&ui->ui_lock);
1161         if (ui->ui_size != ui->synced_i_size && !ui->dirty) {
1162                 ubifs_err("ui_size is %lld, synced_i_size is %lld, but inode "
1163                           "is clean", ui->ui_size, ui->synced_i_size);
1164                 ubifs_err("i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino,
1165                           inode->i_mode, i_size_read(inode));
1166                 dbg_dump_stack();
1167                 err = -EINVAL;
1168         }
1169         spin_unlock(&ui->ui_lock);
1170         mutex_unlock(&ui->ui_mutex);
1171         return err;
1172 }
1173
1174 /*
1175  * dbg_check_dir - check directory inode size and link count.
1176  * @c: UBIFS file-system description object
1177  * @dir: the directory to calculate size for
1178  * @size: the result is returned here
1179  *
1180  * This function makes sure that directory size and link count are correct.
1181  * Returns zero in case of success and a negative error code in case of
1182  * failure.
1183  *
1184  * Note, it is good idea to make sure the @dir->i_mutex is locked before
1185  * calling this function.
1186  */
1187 int dbg_check_dir(struct ubifs_info *c, const struct inode *dir)
1188 {
1189         unsigned int nlink = 2;
1190         union ubifs_key key;
1191         struct ubifs_dent_node *dent, *pdent = NULL;
1192         struct qstr nm = { .name = NULL };
1193         loff_t size = UBIFS_INO_NODE_SZ;
1194
1195         if (!dbg_is_chk_gen(c))
1196                 return 0;
1197
1198         if (!S_ISDIR(dir->i_mode))
1199                 return 0;
1200
1201         lowest_dent_key(c, &key, dir->i_ino);
1202         while (1) {
1203                 int err;
1204
1205                 dent = ubifs_tnc_next_ent(c, &key, &nm);
1206                 if (IS_ERR(dent)) {
1207                         err = PTR_ERR(dent);
1208                         if (err == -ENOENT)
1209                                 break;
1210                         return err;
1211                 }
1212
1213                 nm.name = dent->name;
1214                 nm.len = le16_to_cpu(dent->nlen);
1215                 size += CALC_DENT_SIZE(nm.len);
1216                 if (dent->type == UBIFS_ITYPE_DIR)
1217                         nlink += 1;
1218                 kfree(pdent);
1219                 pdent = dent;
1220                 key_read(c, &dent->key, &key);
1221         }
1222         kfree(pdent);
1223
1224         if (i_size_read(dir) != size) {
1225                 ubifs_err("directory inode %lu has size %llu, "
1226                           "but calculated size is %llu", dir->i_ino,
1227                           (unsigned long long)i_size_read(dir),
1228                           (unsigned long long)size);
1229                 dbg_dump_inode(c, dir);
1230                 dump_stack();
1231                 return -EINVAL;
1232         }
1233         if (dir->i_nlink != nlink) {
1234                 ubifs_err("directory inode %lu has nlink %u, but calculated "
1235                           "nlink is %u", dir->i_ino, dir->i_nlink, nlink);
1236                 dbg_dump_inode(c, dir);
1237                 dump_stack();
1238                 return -EINVAL;
1239         }
1240
1241         return 0;
1242 }
1243
1244 /**
1245  * dbg_check_key_order - make sure that colliding keys are properly ordered.
1246  * @c: UBIFS file-system description object
1247  * @zbr1: first zbranch
1248  * @zbr2: following zbranch
1249  *
1250  * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of
1251  * names of the direntries/xentries which are referred by the keys. This
1252  * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes
1253  * sure the name of direntry/xentry referred by @zbr1 is less than
1254  * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not,
1255  * and a negative error code in case of failure.
1256  */
1257 static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1,
1258                                struct ubifs_zbranch *zbr2)
1259 {
1260         int err, nlen1, nlen2, cmp;
1261         struct ubifs_dent_node *dent1, *dent2;
1262         union ubifs_key key;
1263
1264         ubifs_assert(!keys_cmp(c, &zbr1->key, &zbr2->key));
1265         dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1266         if (!dent1)
1267                 return -ENOMEM;
1268         dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1269         if (!dent2) {
1270                 err = -ENOMEM;
1271                 goto out_free;
1272         }
1273
1274         err = ubifs_tnc_read_node(c, zbr1, dent1);
1275         if (err)
1276                 goto out_free;
1277         err = ubifs_validate_entry(c, dent1);
1278         if (err)
1279                 goto out_free;
1280
1281         err = ubifs_tnc_read_node(c, zbr2, dent2);
1282         if (err)
1283                 goto out_free;
1284         err = ubifs_validate_entry(c, dent2);
1285         if (err)
1286                 goto out_free;
1287
1288         /* Make sure node keys are the same as in zbranch */
1289         err = 1;
1290         key_read(c, &dent1->key, &key);
1291         if (keys_cmp(c, &zbr1->key, &key)) {
1292                 dbg_err("1st entry at %d:%d has key %s", zbr1->lnum,
1293                         zbr1->offs, DBGKEY(&key));
1294                 dbg_err("but it should have key %s according to tnc",
1295                         DBGKEY(&zbr1->key));
1296                 dbg_dump_node(c, dent1);
1297                 goto out_free;
1298         }
1299
1300         key_read(c, &dent2->key, &key);
1301         if (keys_cmp(c, &zbr2->key, &key)) {
1302                 dbg_err("2nd entry at %d:%d has key %s", zbr1->lnum,
1303                         zbr1->offs, DBGKEY(&key));
1304                 dbg_err("but it should have key %s according to tnc",
1305                         DBGKEY(&zbr2->key));
1306                 dbg_dump_node(c, dent2);
1307                 goto out_free;
1308         }
1309
1310         nlen1 = le16_to_cpu(dent1->nlen);
1311         nlen2 = le16_to_cpu(dent2->nlen);
1312
1313         cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2));
1314         if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) {
1315                 err = 0;
1316                 goto out_free;
1317         }
1318         if (cmp == 0 && nlen1 == nlen2)
1319                 dbg_err("2 xent/dent nodes with the same name");
1320         else
1321                 dbg_err("bad order of colliding key %s",
1322                         DBGKEY(&key));
1323
1324         ubifs_msg("first node at %d:%d\n", zbr1->lnum, zbr1->offs);
1325         dbg_dump_node(c, dent1);
1326         ubifs_msg("second node at %d:%d\n", zbr2->lnum, zbr2->offs);
1327         dbg_dump_node(c, dent2);
1328
1329 out_free:
1330         kfree(dent2);
1331         kfree(dent1);
1332         return err;
1333 }
1334
1335 /**
1336  * dbg_check_znode - check if znode is all right.
1337  * @c: UBIFS file-system description object
1338  * @zbr: zbranch which points to this znode
1339  *
1340  * This function makes sure that znode referred to by @zbr is all right.
1341  * Returns zero if it is, and %-EINVAL if it is not.
1342  */
1343 static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr)
1344 {
1345         struct ubifs_znode *znode = zbr->znode;
1346         struct ubifs_znode *zp = znode->parent;
1347         int n, err, cmp;
1348
1349         if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
1350                 err = 1;
1351                 goto out;
1352         }
1353         if (znode->level < 0) {
1354                 err = 2;
1355                 goto out;
1356         }
1357         if (znode->iip < 0 || znode->iip >= c->fanout) {
1358                 err = 3;
1359                 goto out;
1360         }
1361
1362         if (zbr->len == 0)
1363                 /* Only dirty zbranch may have no on-flash nodes */
1364                 if (!ubifs_zn_dirty(znode)) {
1365                         err = 4;
1366                         goto out;
1367                 }
1368
1369         if (ubifs_zn_dirty(znode)) {
1370                 /*
1371                  * If znode is dirty, its parent has to be dirty as well. The
1372                  * order of the operation is important, so we have to have
1373                  * memory barriers.
1374                  */
1375                 smp_mb();
1376                 if (zp && !ubifs_zn_dirty(zp)) {
1377                         /*
1378                          * The dirty flag is atomic and is cleared outside the
1379                          * TNC mutex, so znode's dirty flag may now have
1380                          * been cleared. The child is always cleared before the
1381                          * parent, so we just need to check again.
1382                          */
1383                         smp_mb();
1384                         if (ubifs_zn_dirty(znode)) {
1385                                 err = 5;
1386                                 goto out;
1387                         }
1388                 }
1389         }
1390
1391         if (zp) {
1392                 const union ubifs_key *min, *max;
1393
1394                 if (znode->level != zp->level - 1) {
1395                         err = 6;
1396                         goto out;
1397                 }
1398
1399                 /* Make sure the 'parent' pointer in our znode is correct */
1400                 err = ubifs_search_zbranch(c, zp, &zbr->key, &n);
1401                 if (!err) {
1402                         /* This zbranch does not exist in the parent */
1403                         err = 7;
1404                         goto out;
1405                 }
1406
1407                 if (znode->iip >= zp->child_cnt) {
1408                         err = 8;
1409                         goto out;
1410                 }
1411
1412                 if (znode->iip != n) {
1413                         /* This may happen only in case of collisions */
1414                         if (keys_cmp(c, &zp->zbranch[n].key,
1415                                      &zp->zbranch[znode->iip].key)) {
1416                                 err = 9;
1417                                 goto out;
1418                         }
1419                         n = znode->iip;
1420                 }
1421
1422                 /*
1423                  * Make sure that the first key in our znode is greater than or
1424                  * equal to the key in the pointing zbranch.
1425                  */
1426                 min = &zbr->key;
1427                 cmp = keys_cmp(c, min, &znode->zbranch[0].key);
1428                 if (cmp == 1) {
1429                         err = 10;
1430                         goto out;
1431                 }
1432
1433                 if (n + 1 < zp->child_cnt) {
1434                         max = &zp->zbranch[n + 1].key;
1435
1436                         /*
1437                          * Make sure the last key in our znode is less or
1438                          * equivalent than the key in the zbranch which goes
1439                          * after our pointing zbranch.
1440                          */
1441                         cmp = keys_cmp(c, max,
1442                                 &znode->zbranch[znode->child_cnt - 1].key);
1443                         if (cmp == -1) {
1444                                 err = 11;
1445                                 goto out;
1446                         }
1447                 }
1448         } else {
1449                 /* This may only be root znode */
1450                 if (zbr != &c->zroot) {
1451                         err = 12;
1452                         goto out;
1453                 }
1454         }
1455
1456         /*
1457          * Make sure that next key is greater or equivalent then the previous
1458          * one.
1459          */
1460         for (n = 1; n < znode->child_cnt; n++) {
1461                 cmp = keys_cmp(c, &znode->zbranch[n - 1].key,
1462                                &znode->zbranch[n].key);
1463                 if (cmp > 0) {
1464                         err = 13;
1465                         goto out;
1466                 }
1467                 if (cmp == 0) {
1468                         /* This can only be keys with colliding hash */
1469                         if (!is_hash_key(c, &znode->zbranch[n].key)) {
1470                                 err = 14;
1471                                 goto out;
1472                         }
1473
1474                         if (znode->level != 0 || c->replaying)
1475                                 continue;
1476
1477                         /*
1478                          * Colliding keys should follow binary order of
1479                          * corresponding xentry/dentry names.
1480                          */
1481                         err = dbg_check_key_order(c, &znode->zbranch[n - 1],
1482                                                   &znode->zbranch[n]);
1483                         if (err < 0)
1484                                 return err;
1485                         if (err) {
1486                                 err = 15;
1487                                 goto out;
1488                         }
1489                 }
1490         }
1491
1492         for (n = 0; n < znode->child_cnt; n++) {
1493                 if (!znode->zbranch[n].znode &&
1494                     (znode->zbranch[n].lnum == 0 ||
1495                      znode->zbranch[n].len == 0)) {
1496                         err = 16;
1497                         goto out;
1498                 }
1499
1500                 if (znode->zbranch[n].lnum != 0 &&
1501                     znode->zbranch[n].len == 0) {
1502                         err = 17;
1503                         goto out;
1504                 }
1505
1506                 if (znode->zbranch[n].lnum == 0 &&
1507                     znode->zbranch[n].len != 0) {
1508                         err = 18;
1509                         goto out;
1510                 }
1511
1512                 if (znode->zbranch[n].lnum == 0 &&
1513                     znode->zbranch[n].offs != 0) {
1514                         err = 19;
1515                         goto out;
1516                 }
1517
1518                 if (znode->level != 0 && znode->zbranch[n].znode)
1519                         if (znode->zbranch[n].znode->parent != znode) {
1520                                 err = 20;
1521                                 goto out;
1522                         }
1523         }
1524
1525         return 0;
1526
1527 out:
1528         ubifs_err("failed, error %d", err);
1529         ubifs_msg("dump of the znode");
1530         dbg_dump_znode(c, znode);
1531         if (zp) {
1532                 ubifs_msg("dump of the parent znode");
1533                 dbg_dump_znode(c, zp);
1534         }
1535         dump_stack();
1536         return -EINVAL;
1537 }
1538
1539 /**
1540  * dbg_check_tnc - check TNC tree.
1541  * @c: UBIFS file-system description object
1542  * @extra: do extra checks that are possible at start commit
1543  *
1544  * This function traverses whole TNC tree and checks every znode. Returns zero
1545  * if everything is all right and %-EINVAL if something is wrong with TNC.
1546  */
1547 int dbg_check_tnc(struct ubifs_info *c, int extra)
1548 {
1549         struct ubifs_znode *znode;
1550         long clean_cnt = 0, dirty_cnt = 0;
1551         int err, last;
1552
1553         if (!dbg_is_chk_index(c))
1554                 return 0;
1555
1556         ubifs_assert(mutex_is_locked(&c->tnc_mutex));
1557         if (!c->zroot.znode)
1558                 return 0;
1559
1560         znode = ubifs_tnc_postorder_first(c->zroot.znode);
1561         while (1) {
1562                 struct ubifs_znode *prev;
1563                 struct ubifs_zbranch *zbr;
1564
1565                 if (!znode->parent)
1566                         zbr = &c->zroot;
1567                 else
1568                         zbr = &znode->parent->zbranch[znode->iip];
1569
1570                 err = dbg_check_znode(c, zbr);
1571                 if (err)
1572                         return err;
1573
1574                 if (extra) {
1575                         if (ubifs_zn_dirty(znode))
1576                                 dirty_cnt += 1;
1577                         else
1578                                 clean_cnt += 1;
1579                 }
1580
1581                 prev = znode;
1582                 znode = ubifs_tnc_postorder_next(znode);
1583                 if (!znode)
1584                         break;
1585
1586                 /*
1587                  * If the last key of this znode is equivalent to the first key
1588                  * of the next znode (collision), then check order of the keys.
1589                  */
1590                 last = prev->child_cnt - 1;
1591                 if (prev->level == 0 && znode->level == 0 && !c->replaying &&
1592                     !keys_cmp(c, &prev->zbranch[last].key,
1593                               &znode->zbranch[0].key)) {
1594                         err = dbg_check_key_order(c, &prev->zbranch[last],
1595                                                   &znode->zbranch[0]);
1596                         if (err < 0)
1597                                 return err;
1598                         if (err) {
1599                                 ubifs_msg("first znode");
1600                                 dbg_dump_znode(c, prev);
1601                                 ubifs_msg("second znode");
1602                                 dbg_dump_znode(c, znode);
1603                                 return -EINVAL;
1604                         }
1605                 }
1606         }
1607
1608         if (extra) {
1609                 if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) {
1610                         ubifs_err("incorrect clean_zn_cnt %ld, calculated %ld",
1611                                   atomic_long_read(&c->clean_zn_cnt),
1612                                   clean_cnt);
1613                         return -EINVAL;
1614                 }
1615                 if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) {
1616                         ubifs_err("incorrect dirty_zn_cnt %ld, calculated %ld",
1617                                   atomic_long_read(&c->dirty_zn_cnt),
1618                                   dirty_cnt);
1619                         return -EINVAL;
1620                 }
1621         }
1622
1623         return 0;
1624 }
1625
1626 /**
1627  * dbg_walk_index - walk the on-flash index.
1628  * @c: UBIFS file-system description object
1629  * @leaf_cb: called for each leaf node
1630  * @znode_cb: called for each indexing node
1631  * @priv: private data which is passed to callbacks
1632  *
1633  * This function walks the UBIFS index and calls the @leaf_cb for each leaf
1634  * node and @znode_cb for each indexing node. Returns zero in case of success
1635  * and a negative error code in case of failure.
1636  *
1637  * It would be better if this function removed every znode it pulled to into
1638  * the TNC, so that the behavior more closely matched the non-debugging
1639  * behavior.
1640  */
1641 int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb,
1642                    dbg_znode_callback znode_cb, void *priv)
1643 {
1644         int err;
1645         struct ubifs_zbranch *zbr;
1646         struct ubifs_znode *znode, *child;
1647
1648         mutex_lock(&c->tnc_mutex);
1649         /* If the root indexing node is not in TNC - pull it */
1650         if (!c->zroot.znode) {
1651                 c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1652                 if (IS_ERR(c->zroot.znode)) {
1653                         err = PTR_ERR(c->zroot.znode);
1654                         c->zroot.znode = NULL;
1655                         goto out_unlock;
1656                 }
1657         }
1658
1659         /*
1660          * We are going to traverse the indexing tree in the postorder manner.
1661          * Go down and find the leftmost indexing node where we are going to
1662          * start from.
1663          */
1664         znode = c->zroot.znode;
1665         while (znode->level > 0) {
1666                 zbr = &znode->zbranch[0];
1667                 child = zbr->znode;
1668                 if (!child) {
1669                         child = ubifs_load_znode(c, zbr, znode, 0);
1670                         if (IS_ERR(child)) {
1671                                 err = PTR_ERR(child);
1672                                 goto out_unlock;
1673                         }
1674                         zbr->znode = child;
1675                 }
1676
1677                 znode = child;
1678         }
1679
1680         /* Iterate over all indexing nodes */
1681         while (1) {
1682                 int idx;
1683
1684                 cond_resched();
1685
1686                 if (znode_cb) {
1687                         err = znode_cb(c, znode, priv);
1688                         if (err) {
1689                                 ubifs_err("znode checking function returned "
1690                                           "error %d", err);
1691                                 dbg_dump_znode(c, znode);
1692                                 goto out_dump;
1693                         }
1694                 }
1695                 if (leaf_cb && znode->level == 0) {
1696                         for (idx = 0; idx < znode->child_cnt; idx++) {
1697                                 zbr = &znode->zbranch[idx];
1698                                 err = leaf_cb(c, zbr, priv);
1699                                 if (err) {
1700                                         ubifs_err("leaf checking function "
1701                                                   "returned error %d, for leaf "
1702                                                   "at LEB %d:%d",
1703                                                   err, zbr->lnum, zbr->offs);
1704                                         goto out_dump;
1705                                 }
1706                         }
1707                 }
1708
1709                 if (!znode->parent)
1710                         break;
1711
1712                 idx = znode->iip + 1;
1713                 znode = znode->parent;
1714                 if (idx < znode->child_cnt) {
1715                         /* Switch to the next index in the parent */
1716                         zbr = &znode->zbranch[idx];
1717                         child = zbr->znode;
1718                         if (!child) {
1719                                 child = ubifs_load_znode(c, zbr, znode, idx);
1720                                 if (IS_ERR(child)) {
1721                                         err = PTR_ERR(child);
1722                                         goto out_unlock;
1723                                 }
1724                                 zbr->znode = child;
1725                         }
1726                         znode = child;
1727                 } else
1728                         /*
1729                          * This is the last child, switch to the parent and
1730                          * continue.
1731                          */
1732                         continue;
1733
1734                 /* Go to the lowest leftmost znode in the new sub-tree */
1735                 while (znode->level > 0) {
1736                         zbr = &znode->zbranch[0];
1737                         child = zbr->znode;
1738                         if (!child) {
1739                                 child = ubifs_load_znode(c, zbr, znode, 0);
1740                                 if (IS_ERR(child)) {
1741                                         err = PTR_ERR(child);
1742                                         goto out_unlock;
1743                                 }
1744                                 zbr->znode = child;
1745                         }
1746                         znode = child;
1747                 }
1748         }
1749
1750         mutex_unlock(&c->tnc_mutex);
1751         return 0;
1752
1753 out_dump:
1754         if (znode->parent)
1755                 zbr = &znode->parent->zbranch[znode->iip];
1756         else
1757                 zbr = &c->zroot;
1758         ubifs_msg("dump of znode at LEB %d:%d", zbr->lnum, zbr->offs);
1759         dbg_dump_znode(c, znode);
1760 out_unlock:
1761         mutex_unlock(&c->tnc_mutex);
1762         return err;
1763 }
1764
1765 /**
1766  * add_size - add znode size to partially calculated index size.
1767  * @c: UBIFS file-system description object
1768  * @znode: znode to add size for
1769  * @priv: partially calculated index size
1770  *
1771  * This is a helper function for 'dbg_check_idx_size()' which is called for
1772  * every indexing node and adds its size to the 'long long' variable pointed to
1773  * by @priv.
1774  */
1775 static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv)
1776 {
1777         long long *idx_size = priv;
1778         int add;
1779
1780         add = ubifs_idx_node_sz(c, znode->child_cnt);
1781         add = ALIGN(add, 8);
1782         *idx_size += add;
1783         return 0;
1784 }
1785
1786 /**
1787  * dbg_check_idx_size - check index size.
1788  * @c: UBIFS file-system description object
1789  * @idx_size: size to check
1790  *
1791  * This function walks the UBIFS index, calculates its size and checks that the
1792  * size is equivalent to @idx_size. Returns zero in case of success and a
1793  * negative error code in case of failure.
1794  */
1795 int dbg_check_idx_size(struct ubifs_info *c, long long idx_size)
1796 {
1797         int err;
1798         long long calc = 0;
1799
1800         if (!dbg_is_chk_index(c))
1801                 return 0;
1802
1803         err = dbg_walk_index(c, NULL, add_size, &calc);
1804         if (err) {
1805                 ubifs_err("error %d while walking the index", err);
1806                 return err;
1807         }
1808
1809         if (calc != idx_size) {
1810                 ubifs_err("index size check failed: calculated size is %lld, "
1811                           "should be %lld", calc, idx_size);
1812                 dump_stack();
1813                 return -EINVAL;
1814         }
1815
1816         return 0;
1817 }
1818
1819 /**
1820  * struct fsck_inode - information about an inode used when checking the file-system.
1821  * @rb: link in the RB-tree of inodes
1822  * @inum: inode number
1823  * @mode: inode type, permissions, etc
1824  * @nlink: inode link count
1825  * @xattr_cnt: count of extended attributes
1826  * @references: how many directory/xattr entries refer this inode (calculated
1827  *              while walking the index)
1828  * @calc_cnt: for directory inode count of child directories
1829  * @size: inode size (read from on-flash inode)
1830  * @xattr_sz: summary size of all extended attributes (read from on-flash
1831  *            inode)
1832  * @calc_sz: for directories calculated directory size
1833  * @calc_xcnt: count of extended attributes
1834  * @calc_xsz: calculated summary size of all extended attributes
1835  * @xattr_nms: sum of lengths of all extended attribute names belonging to this
1836  *             inode (read from on-flash inode)
1837  * @calc_xnms: calculated sum of lengths of all extended attribute names
1838  */
1839 struct fsck_inode {
1840         struct rb_node rb;
1841         ino_t inum;
1842         umode_t mode;
1843         unsigned int nlink;
1844         unsigned int xattr_cnt;
1845         int references;
1846         int calc_cnt;
1847         long long size;
1848         unsigned int xattr_sz;
1849         long long calc_sz;
1850         long long calc_xcnt;
1851         long long calc_xsz;
1852         unsigned int xattr_nms;
1853         long long calc_xnms;
1854 };
1855
1856 /**
1857  * struct fsck_data - private FS checking information.
1858  * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects)
1859  */
1860 struct fsck_data {
1861         struct rb_root inodes;
1862 };
1863
1864 /**
1865  * add_inode - add inode information to RB-tree of inodes.
1866  * @c: UBIFS file-system description object
1867  * @fsckd: FS checking information
1868  * @ino: raw UBIFS inode to add
1869  *
1870  * This is a helper function for 'check_leaf()' which adds information about
1871  * inode @ino to the RB-tree of inodes. Returns inode information pointer in
1872  * case of success and a negative error code in case of failure.
1873  */
1874 static struct fsck_inode *add_inode(struct ubifs_info *c,
1875                                     struct fsck_data *fsckd,
1876                                     struct ubifs_ino_node *ino)
1877 {
1878         struct rb_node **p, *parent = NULL;
1879         struct fsck_inode *fscki;
1880         ino_t inum = key_inum_flash(c, &ino->key);
1881         struct inode *inode;
1882         struct ubifs_inode *ui;
1883
1884         p = &fsckd->inodes.rb_node;
1885         while (*p) {
1886                 parent = *p;
1887                 fscki = rb_entry(parent, struct fsck_inode, rb);
1888                 if (inum < fscki->inum)
1889                         p = &(*p)->rb_left;
1890                 else if (inum > fscki->inum)
1891                         p = &(*p)->rb_right;
1892                 else
1893                         return fscki;
1894         }
1895
1896         if (inum > c->highest_inum) {
1897                 ubifs_err("too high inode number, max. is %lu",
1898                           (unsigned long)c->highest_inum);
1899                 return ERR_PTR(-EINVAL);
1900         }
1901
1902         fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS);
1903         if (!fscki)
1904                 return ERR_PTR(-ENOMEM);
1905
1906         inode = ilookup(c->vfs_sb, inum);
1907
1908         fscki->inum = inum;
1909         /*
1910          * If the inode is present in the VFS inode cache, use it instead of
1911          * the on-flash inode which might be out-of-date. E.g., the size might
1912          * be out-of-date. If we do not do this, the following may happen, for
1913          * example:
1914          *   1. A power cut happens
1915          *   2. We mount the file-system R/O, the replay process fixes up the
1916          *      inode size in the VFS cache, but on on-flash.
1917          *   3. 'check_leaf()' fails because it hits a data node beyond inode
1918          *      size.
1919          */
1920         if (!inode) {
1921                 fscki->nlink = le32_to_cpu(ino->nlink);
1922                 fscki->size = le64_to_cpu(ino->size);
1923                 fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
1924                 fscki->xattr_sz = le32_to_cpu(ino->xattr_size);
1925                 fscki->xattr_nms = le32_to_cpu(ino->xattr_names);
1926                 fscki->mode = le32_to_cpu(ino->mode);
1927         } else {
1928                 ui = ubifs_inode(inode);
1929                 fscki->nlink = inode->i_nlink;
1930                 fscki->size = inode->i_size;
1931                 fscki->xattr_cnt = ui->xattr_cnt;
1932                 fscki->xattr_sz = ui->xattr_size;
1933                 fscki->xattr_nms = ui->xattr_names;
1934                 fscki->mode = inode->i_mode;
1935                 iput(inode);
1936         }
1937
1938         if (S_ISDIR(fscki->mode)) {
1939                 fscki->calc_sz = UBIFS_INO_NODE_SZ;
1940                 fscki->calc_cnt = 2;
1941         }
1942
1943         rb_link_node(&fscki->rb, parent, p);
1944         rb_insert_color(&fscki->rb, &fsckd->inodes);
1945
1946         return fscki;
1947 }
1948
1949 /**
1950  * search_inode - search inode in the RB-tree of inodes.
1951  * @fsckd: FS checking information
1952  * @inum: inode number to search
1953  *
1954  * This is a helper function for 'check_leaf()' which searches inode @inum in
1955  * the RB-tree of inodes and returns an inode information pointer or %NULL if
1956  * the inode was not found.
1957  */
1958 static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum)
1959 {
1960         struct rb_node *p;
1961         struct fsck_inode *fscki;
1962
1963         p = fsckd->inodes.rb_node;
1964         while (p) {
1965                 fscki = rb_entry(p, struct fsck_inode, rb);
1966                 if (inum < fscki->inum)
1967                         p = p->rb_left;
1968                 else if (inum > fscki->inum)
1969                         p = p->rb_right;
1970                 else
1971                         return fscki;
1972         }
1973         return NULL;
1974 }
1975
1976 /**
1977  * read_add_inode - read inode node and add it to RB-tree of inodes.
1978  * @c: UBIFS file-system description object
1979  * @fsckd: FS checking information
1980  * @inum: inode number to read
1981  *
1982  * This is a helper function for 'check_leaf()' which finds inode node @inum in
1983  * the index, reads it, and adds it to the RB-tree of inodes. Returns inode
1984  * information pointer in case of success and a negative error code in case of
1985  * failure.
1986  */
1987 static struct fsck_inode *read_add_inode(struct ubifs_info *c,
1988                                          struct fsck_data *fsckd, ino_t inum)
1989 {
1990         int n, err;
1991         union ubifs_key key;
1992         struct ubifs_znode *znode;
1993         struct ubifs_zbranch *zbr;
1994         struct ubifs_ino_node *ino;
1995         struct fsck_inode *fscki;
1996
1997         fscki = search_inode(fsckd, inum);
1998         if (fscki)
1999                 return fscki;
2000
2001         ino_key_init(c, &key, inum);
2002         err = ubifs_lookup_level0(c, &key, &znode, &n);
2003         if (!err) {
2004                 ubifs_err("inode %lu not found in index", (unsigned long)inum);
2005                 return ERR_PTR(-ENOENT);
2006         } else if (err < 0) {
2007                 ubifs_err("error %d while looking up inode %lu",
2008                           err, (unsigned long)inum);
2009                 return ERR_PTR(err);
2010         }
2011
2012         zbr = &znode->zbranch[n];
2013         if (zbr->len < UBIFS_INO_NODE_SZ) {
2014                 ubifs_err("bad node %lu node length %d",
2015                           (unsigned long)inum, zbr->len);
2016                 return ERR_PTR(-EINVAL);
2017         }
2018
2019         ino = kmalloc(zbr->len, GFP_NOFS);
2020         if (!ino)
2021                 return ERR_PTR(-ENOMEM);
2022
2023         err = ubifs_tnc_read_node(c, zbr, ino);
2024         if (err) {
2025                 ubifs_err("cannot read inode node at LEB %d:%d, error %d",
2026                           zbr->lnum, zbr->offs, err);
2027                 kfree(ino);
2028                 return ERR_PTR(err);
2029         }
2030
2031         fscki = add_inode(c, fsckd, ino);
2032         kfree(ino);
2033         if (IS_ERR(fscki)) {
2034                 ubifs_err("error %ld while adding inode %lu node",
2035                           PTR_ERR(fscki), (unsigned long)inum);
2036                 return fscki;
2037         }
2038
2039         return fscki;
2040 }
2041
2042 /**
2043  * check_leaf - check leaf node.
2044  * @c: UBIFS file-system description object
2045  * @zbr: zbranch of the leaf node to check
2046  * @priv: FS checking information
2047  *
2048  * This is a helper function for 'dbg_check_filesystem()' which is called for
2049  * every single leaf node while walking the indexing tree. It checks that the
2050  * leaf node referred from the indexing tree exists, has correct CRC, and does
2051  * some other basic validation. This function is also responsible for building
2052  * an RB-tree of inodes - it adds all inodes into the RB-tree. It also
2053  * calculates reference count, size, etc for each inode in order to later
2054  * compare them to the information stored inside the inodes and detect possible
2055  * inconsistencies. Returns zero in case of success and a negative error code
2056  * in case of failure.
2057  */
2058 static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr,
2059                       void *priv)
2060 {
2061         ino_t inum;
2062         void *node;
2063         struct ubifs_ch *ch;
2064         int err, type = key_type(c, &zbr->key);
2065         struct fsck_inode *fscki;
2066
2067         if (zbr->len < UBIFS_CH_SZ) {
2068                 ubifs_err("bad leaf length %d (LEB %d:%d)",
2069                           zbr->len, zbr->lnum, zbr->offs);
2070                 return -EINVAL;
2071         }
2072
2073         node = kmalloc(zbr->len, GFP_NOFS);
2074         if (!node)
2075                 return -ENOMEM;
2076
2077         err = ubifs_tnc_read_node(c, zbr, node);
2078         if (err) {
2079                 ubifs_err("cannot read leaf node at LEB %d:%d, error %d",
2080                           zbr->lnum, zbr->offs, err);
2081                 goto out_free;
2082         }
2083
2084         /* If this is an inode node, add it to RB-tree of inodes */
2085         if (type == UBIFS_INO_KEY) {
2086                 fscki = add_inode(c, priv, node);
2087                 if (IS_ERR(fscki)) {
2088                         err = PTR_ERR(fscki);
2089                         ubifs_err("error %d while adding inode node", err);
2090                         goto out_dump;
2091                 }
2092                 goto out;
2093         }
2094
2095         if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY &&
2096             type != UBIFS_DATA_KEY) {
2097                 ubifs_err("unexpected node type %d at LEB %d:%d",
2098                           type, zbr->lnum, zbr->offs);
2099                 err = -EINVAL;
2100                 goto out_free;
2101         }
2102
2103         ch = node;
2104         if (le64_to_cpu(ch->sqnum) > c->max_sqnum) {
2105                 ubifs_err("too high sequence number, max. is %llu",
2106                           c->max_sqnum);
2107                 err = -EINVAL;
2108                 goto out_dump;
2109         }
2110
2111         if (type == UBIFS_DATA_KEY) {
2112                 long long blk_offs;
2113                 struct ubifs_data_node *dn = node;
2114
2115                 /*
2116                  * Search the inode node this data node belongs to and insert
2117                  * it to the RB-tree of inodes.
2118                  */
2119                 inum = key_inum_flash(c, &dn->key);
2120                 fscki = read_add_inode(c, priv, inum);
2121                 if (IS_ERR(fscki)) {
2122                         err = PTR_ERR(fscki);
2123                         ubifs_err("error %d while processing data node and "
2124                                   "trying to find inode node %lu",
2125                                   err, (unsigned long)inum);
2126                         goto out_dump;
2127                 }
2128
2129                 /* Make sure the data node is within inode size */
2130                 blk_offs = key_block_flash(c, &dn->key);
2131                 blk_offs <<= UBIFS_BLOCK_SHIFT;
2132                 blk_offs += le32_to_cpu(dn->size);
2133                 if (blk_offs > fscki->size) {
2134                         ubifs_err("data node at LEB %d:%d is not within inode "
2135                                   "size %lld", zbr->lnum, zbr->offs,
2136                                   fscki->size);
2137                         err = -EINVAL;
2138                         goto out_dump;
2139                 }
2140         } else {
2141                 int nlen;
2142                 struct ubifs_dent_node *dent = node;
2143                 struct fsck_inode *fscki1;
2144
2145                 err = ubifs_validate_entry(c, dent);
2146                 if (err)
2147                         goto out_dump;
2148
2149                 /*
2150                  * Search the inode node this entry refers to and the parent
2151                  * inode node and insert them to the RB-tree of inodes.
2152                  */
2153                 inum = le64_to_cpu(dent->inum);
2154                 fscki = read_add_inode(c, priv, inum);
2155                 if (IS_ERR(fscki)) {
2156                         err = PTR_ERR(fscki);
2157                         ubifs_err("error %d while processing entry node and "
2158                                   "trying to find inode node %lu",
2159                                   err, (unsigned long)inum);
2160                         goto out_dump;
2161                 }
2162
2163                 /* Count how many direntries or xentries refers this inode */
2164                 fscki->references += 1;
2165
2166                 inum = key_inum_flash(c, &dent->key);
2167                 fscki1 = read_add_inode(c, priv, inum);
2168                 if (IS_ERR(fscki1)) {
2169                         err = PTR_ERR(fscki1);
2170                         ubifs_err("error %d while processing entry node and "
2171                                   "trying to find parent inode node %lu",
2172                                   err, (unsigned long)inum);
2173                         goto out_dump;
2174                 }
2175
2176                 nlen = le16_to_cpu(dent->nlen);
2177                 if (type == UBIFS_XENT_KEY) {
2178                         fscki1->calc_xcnt += 1;
2179                         fscki1->calc_xsz += CALC_DENT_SIZE(nlen);
2180                         fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size);
2181                         fscki1->calc_xnms += nlen;
2182                 } else {
2183                         fscki1->calc_sz += CALC_DENT_SIZE(nlen);
2184                         if (dent->type == UBIFS_ITYPE_DIR)
2185                                 fscki1->calc_cnt += 1;
2186                 }
2187         }
2188
2189 out:
2190         kfree(node);
2191         return 0;
2192
2193 out_dump:
2194         ubifs_msg("dump of node at LEB %d:%d", zbr->lnum, zbr->offs);
2195         dbg_dump_node(c, node);
2196 out_free:
2197         kfree(node);
2198         return err;
2199 }
2200
2201 /**
2202  * free_inodes - free RB-tree of inodes.
2203  * @fsckd: FS checking information
2204  */
2205 static void free_inodes(struct fsck_data *fsckd)
2206 {
2207         struct rb_node *this = fsckd->inodes.rb_node;
2208         struct fsck_inode *fscki;
2209
2210         while (this) {
2211                 if (this->rb_left)
2212                         this = this->rb_left;
2213                 else if (this->rb_right)
2214                         this = this->rb_right;
2215                 else {
2216                         fscki = rb_entry(this, struct fsck_inode, rb);
2217                         this = rb_parent(this);
2218                         if (this) {
2219                                 if (this->rb_left == &fscki->rb)
2220                                         this->rb_left = NULL;
2221                                 else
2222                                         this->rb_right = NULL;
2223                         }
2224                         kfree(fscki);
2225                 }
2226         }
2227 }
2228
2229 /**
2230  * check_inodes - checks all inodes.
2231  * @c: UBIFS file-system description object
2232  * @fsckd: FS checking information
2233  *
2234  * This is a helper function for 'dbg_check_filesystem()' which walks the
2235  * RB-tree of inodes after the index scan has been finished, and checks that
2236  * inode nlink, size, etc are correct. Returns zero if inodes are fine,
2237  * %-EINVAL if not, and a negative error code in case of failure.
2238  */
2239 static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd)
2240 {
2241         int n, err;
2242         union ubifs_key key;
2243         struct ubifs_znode *znode;
2244         struct ubifs_zbranch *zbr;
2245         struct ubifs_ino_node *ino;
2246         struct fsck_inode *fscki;
2247         struct rb_node *this = rb_first(&fsckd->inodes);
2248
2249         while (this) {
2250                 fscki = rb_entry(this, struct fsck_inode, rb);
2251                 this = rb_next(this);
2252
2253                 if (S_ISDIR(fscki->mode)) {
2254                         /*
2255                          * Directories have to have exactly one reference (they
2256                          * cannot have hardlinks), although root inode is an
2257                          * exception.
2258                          */
2259                         if (fscki->inum != UBIFS_ROOT_INO &&
2260                             fscki->references != 1) {
2261                                 ubifs_err("directory inode %lu has %d "
2262                                           "direntries which refer it, but "
2263                                           "should be 1",
2264                                           (unsigned long)fscki->inum,
2265                                           fscki->references);
2266                                 goto out_dump;
2267                         }
2268                         if (fscki->inum == UBIFS_ROOT_INO &&
2269                             fscki->references != 0) {
2270                                 ubifs_err("root inode %lu has non-zero (%d) "
2271                                           "direntries which refer it",
2272                                           (unsigned long)fscki->inum,
2273                                           fscki->references);
2274                                 goto out_dump;
2275                         }
2276                         if (fscki->calc_sz != fscki->size) {
2277                                 ubifs_err("directory inode %lu size is %lld, "
2278                                           "but calculated size is %lld",
2279                                           (unsigned long)fscki->inum,
2280                                           fscki->size, fscki->calc_sz);
2281                                 goto out_dump;
2282                         }
2283                         if (fscki->calc_cnt != fscki->nlink) {
2284                                 ubifs_err("directory inode %lu nlink is %d, "
2285                                           "but calculated nlink is %d",
2286                                           (unsigned long)fscki->inum,
2287                                           fscki->nlink, fscki->calc_cnt);
2288                                 goto out_dump;
2289                         }
2290                 } else {
2291                         if (fscki->references != fscki->nlink) {
2292                                 ubifs_err("inode %lu nlink is %d, but "
2293                                           "calculated nlink is %d",
2294                                           (unsigned long)fscki->inum,
2295                                           fscki->nlink, fscki->references);
2296                                 goto out_dump;
2297                         }
2298                 }
2299                 if (fscki->xattr_sz != fscki->calc_xsz) {
2300                         ubifs_err("inode %lu has xattr size %u, but "
2301                                   "calculated size is %lld",
2302                                   (unsigned long)fscki->inum, fscki->xattr_sz,
2303                                   fscki->calc_xsz);
2304                         goto out_dump;
2305                 }
2306                 if (fscki->xattr_cnt != fscki->calc_xcnt) {
2307                         ubifs_err("inode %lu has %u xattrs, but "
2308                                   "calculated count is %lld",
2309                                   (unsigned long)fscki->inum,
2310                                   fscki->xattr_cnt, fscki->calc_xcnt);
2311                         goto out_dump;
2312                 }
2313                 if (fscki->xattr_nms != fscki->calc_xnms) {
2314                         ubifs_err("inode %lu has xattr names' size %u, but "
2315                                   "calculated names' size is %lld",
2316                                   (unsigned long)fscki->inum, fscki->xattr_nms,
2317                                   fscki->calc_xnms);
2318                         goto out_dump;
2319                 }
2320         }
2321
2322         return 0;
2323
2324 out_dump:
2325         /* Read the bad inode and dump it */
2326         ino_key_init(c, &key, fscki->inum);
2327         err = ubifs_lookup_level0(c, &key, &znode, &n);
2328         if (!err) {
2329                 ubifs_err("inode %lu not found in index",
2330                           (unsigned long)fscki->inum);
2331                 return -ENOENT;
2332         } else if (err < 0) {
2333                 ubifs_err("error %d while looking up inode %lu",
2334                           err, (unsigned long)fscki->inum);
2335                 return err;
2336         }
2337
2338         zbr = &znode->zbranch[n];
2339         ino = kmalloc(zbr->len, GFP_NOFS);
2340         if (!ino)
2341                 return -ENOMEM;
2342
2343         err = ubifs_tnc_read_node(c, zbr, ino);
2344         if (err) {
2345                 ubifs_err("cannot read inode node at LEB %d:%d, error %d",
2346                           zbr->lnum, zbr->offs, err);
2347                 kfree(ino);
2348                 return err;
2349         }
2350
2351         ubifs_msg("dump of the inode %lu sitting in LEB %d:%d",
2352                   (unsigned long)fscki->inum, zbr->lnum, zbr->offs);
2353         dbg_dump_node(c, ino);
2354         kfree(ino);
2355         return -EINVAL;
2356 }
2357
2358 /**
2359  * dbg_check_filesystem - check the file-system.
2360  * @c: UBIFS file-system description object
2361  *
2362  * This function checks the file system, namely:
2363  * o makes sure that all leaf nodes exist and their CRCs are correct;
2364  * o makes sure inode nlink, size, xattr size/count are correct (for all
2365  *   inodes).
2366  *
2367  * The function reads whole indexing tree and all nodes, so it is pretty
2368  * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if
2369  * not, and a negative error code in case of failure.
2370  */
2371 int dbg_check_filesystem(struct ubifs_info *c)
2372 {
2373         int err;
2374         struct fsck_data fsckd;
2375
2376         if (!dbg_is_chk_fs(c))
2377                 return 0;
2378
2379         fsckd.inodes = RB_ROOT;
2380         err = dbg_walk_index(c, check_leaf, NULL, &fsckd);
2381         if (err)
2382                 goto out_free;
2383
2384         err = check_inodes(c, &fsckd);
2385         if (err)
2386                 goto out_free;
2387
2388         free_inodes(&fsckd);
2389         return 0;
2390
2391 out_free:
2392         ubifs_err("file-system check failed with error %d", err);
2393         dump_stack();
2394         free_inodes(&fsckd);
2395         return err;
2396 }
2397
2398 /**
2399  * dbg_check_data_nodes_order - check that list of data nodes is sorted.
2400  * @c: UBIFS file-system description object
2401  * @head: the list of nodes ('struct ubifs_scan_node' objects)
2402  *
2403  * This function returns zero if the list of data nodes is sorted correctly,
2404  * and %-EINVAL if not.
2405  */
2406 int dbg_check_data_nodes_order(struct ubifs_info *c, struct list_head *head)
2407 {
2408         struct list_head *cur;
2409         struct ubifs_scan_node *sa, *sb;
2410
2411         if (!dbg_is_chk_gen(c))
2412                 return 0;
2413
2414         for (cur = head->next; cur->next != head; cur = cur->next) {
2415                 ino_t inuma, inumb;
2416                 uint32_t blka, blkb;
2417
2418                 cond_resched();
2419                 sa = container_of(cur, struct ubifs_scan_node, list);
2420                 sb = container_of(cur->next, struct ubifs_scan_node, list);
2421
2422                 if (sa->type != UBIFS_DATA_NODE) {
2423                         ubifs_err("bad node type %d", sa->type);
2424                         dbg_dump_node(c, sa->node);
2425                         return -EINVAL;
2426                 }
2427                 if (sb->type != UBIFS_DATA_NODE) {
2428                         ubifs_err("bad node type %d", sb->type);
2429                         dbg_dump_node(c, sb->node);
2430                         return -EINVAL;
2431                 }
2432
2433                 inuma = key_inum(c, &sa->key);
2434                 inumb = key_inum(c, &sb->key);
2435
2436                 if (inuma < inumb)
2437                         continue;
2438                 if (inuma > inumb) {
2439                         ubifs_err("larger inum %lu goes before inum %lu",
2440                                   (unsigned long)inuma, (unsigned long)inumb);
2441                         goto error_dump;
2442                 }
2443
2444                 blka = key_block(c, &sa->key);
2445                 blkb = key_block(c, &sb->key);
2446
2447                 if (blka > blkb) {
2448                         ubifs_err("larger block %u goes before %u", blka, blkb);
2449                         goto error_dump;
2450                 }
2451                 if (blka == blkb) {
2452                         ubifs_err("two data nodes for the same block");
2453                         goto error_dump;
2454                 }
2455         }
2456
2457         return 0;
2458
2459 error_dump:
2460         dbg_dump_node(c, sa->node);
2461         dbg_dump_node(c, sb->node);
2462         return -EINVAL;
2463 }
2464
2465 /**
2466  * dbg_check_nondata_nodes_order - check that list of data nodes is sorted.
2467  * @c: UBIFS file-system description object
2468  * @head: the list of nodes ('struct ubifs_scan_node' objects)
2469  *
2470  * This function returns zero if the list of non-data nodes is sorted correctly,
2471  * and %-EINVAL if not.
2472  */
2473 int dbg_check_nondata_nodes_order(struct ubifs_info *c, struct list_head *head)
2474 {
2475         struct list_head *cur;
2476         struct ubifs_scan_node *sa, *sb;
2477
2478         if (!dbg_is_chk_gen(c))
2479                 return 0;
2480
2481         for (cur = head->next; cur->next != head; cur = cur->next) {
2482                 ino_t inuma, inumb;
2483                 uint32_t hasha, hashb;
2484
2485                 cond_resched();
2486                 sa = container_of(cur, struct ubifs_scan_node, list);
2487                 sb = container_of(cur->next, struct ubifs_scan_node, list);
2488
2489                 if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2490                     sa->type != UBIFS_XENT_NODE) {
2491                         ubifs_err("bad node type %d", sa->type);
2492                         dbg_dump_node(c, sa->node);
2493                         return -EINVAL;
2494                 }
2495                 if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2496                     sa->type != UBIFS_XENT_NODE) {
2497                         ubifs_err("bad node type %d", sb->type);
2498                         dbg_dump_node(c, sb->node);
2499                         return -EINVAL;
2500                 }
2501
2502                 if (sa->type != UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2503                         ubifs_err("non-inode node goes before inode node");
2504                         goto error_dump;
2505                 }
2506
2507                 if (sa->type == UBIFS_INO_NODE && sb->type != UBIFS_INO_NODE)
2508                         continue;
2509
2510                 if (sa->type == UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2511                         /* Inode nodes are sorted in descending size order */
2512                         if (sa->len < sb->len) {
2513                                 ubifs_err("smaller inode node goes first");
2514                                 goto error_dump;
2515                         }
2516                         continue;
2517                 }
2518
2519                 /*
2520                  * This is either a dentry or xentry, which should be sorted in
2521                  * ascending (parent ino, hash) order.
2522                  */
2523                 inuma = key_inum(c, &sa->key);
2524                 inumb = key_inum(c, &sb->key);
2525
2526                 if (inuma < inumb)
2527                         continue;
2528                 if (inuma > inumb) {
2529                         ubifs_err("larger inum %lu goes before inum %lu",
2530                                   (unsigned long)inuma, (unsigned long)inumb);
2531                         goto error_dump;
2532                 }
2533
2534                 hasha = key_block(c, &sa->key);
2535                 hashb = key_block(c, &sb->key);
2536
2537                 if (hasha > hashb) {
2538                         ubifs_err("larger hash %u goes before %u",
2539                                   hasha, hashb);
2540                         goto error_dump;
2541                 }
2542         }
2543
2544         return 0;
2545
2546 error_dump:
2547         ubifs_msg("dumping first node");
2548         dbg_dump_node(c, sa->node);
2549         ubifs_msg("dumping second node");
2550         dbg_dump_node(c, sb->node);
2551         return -EINVAL;
2552         return 0;
2553 }
2554
2555 static inline int chance(unsigned int n, unsigned int out_of)
2556 {
2557         return !!((random32() % out_of) + 1 <= n);
2558
2559 }
2560
2561 static int power_cut_emulated(struct ubifs_info *c, int lnum, int write)
2562 {
2563         struct ubifs_debug_info *d = c->dbg;
2564
2565         ubifs_assert(dbg_is_tst_rcvry(c));
2566
2567         if (!d->pc_cnt) {
2568                 /* First call - decide delay to the power cut */
2569                 if (chance(1, 2)) {
2570                         unsigned long delay;
2571
2572                         if (chance(1, 2)) {
2573                                 d->pc_delay = 1;
2574                                 /* Fail withing 1 minute */
2575                                 delay = random32() % 60000;
2576                                 d->pc_timeout = jiffies;
2577                                 d->pc_timeout += msecs_to_jiffies(delay);
2578                                 ubifs_warn("failing after %lums", delay);
2579                         } else {
2580                                 d->pc_delay = 2;
2581                                 delay = random32() % 10000;
2582                                 /* Fail within 10000 operations */
2583                                 d->pc_cnt_max = delay;
2584                                 ubifs_warn("failing after %lu calls", delay);
2585                         }
2586                 }
2587
2588                 d->pc_cnt += 1;
2589         }
2590
2591         /* Determine if failure delay has expired */
2592         if (d->pc_delay == 1 && time_before(jiffies, d->pc_timeout))
2593                         return 0;
2594         if (d->pc_delay == 2 && d->pc_cnt++ < d->pc_cnt_max)
2595                         return 0;
2596
2597         if (lnum == UBIFS_SB_LNUM) {
2598                 if (write && chance(1, 2))
2599                         return 0;
2600                 if (chance(19, 20))
2601                         return 0;
2602                 ubifs_warn("failing in super block LEB %d", lnum);
2603         } else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) {
2604                 if (chance(19, 20))
2605                         return 0;
2606                 ubifs_warn("failing in master LEB %d", lnum);
2607         } else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) {
2608                 if (write && chance(99, 100))
2609                         return 0;
2610                 if (chance(399, 400))
2611                         return 0;
2612                 ubifs_warn("failing in log LEB %d", lnum);
2613         } else if (lnum >= c->lpt_first && lnum <= c->lpt_last) {
2614                 if (write && chance(7, 8))
2615                         return 0;
2616                 if (chance(19, 20))
2617                         return 0;
2618                 ubifs_warn("failing in LPT LEB %d", lnum);
2619         } else if (lnum >= c->orph_first && lnum <= c->orph_last) {
2620                 if (write && chance(1, 2))
2621                         return 0;
2622                 if (chance(9, 10))
2623                         return 0;
2624                 ubifs_warn("failing in orphan LEB %d", lnum);
2625         } else if (lnum == c->ihead_lnum) {
2626                 if (chance(99, 100))
2627                         return 0;
2628                 ubifs_warn("failing in index head LEB %d", lnum);
2629         } else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) {
2630                 if (chance(9, 10))
2631                         return 0;
2632                 ubifs_warn("failing in GC head LEB %d", lnum);
2633         } else if (write && !RB_EMPTY_ROOT(&c->buds) &&
2634                    !ubifs_search_bud(c, lnum)) {
2635                 if (chance(19, 20))
2636                         return 0;
2637                 ubifs_warn("failing in non-bud LEB %d", lnum);
2638         } else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND ||
2639                    c->cmt_state == COMMIT_RUNNING_REQUIRED) {
2640                 if (chance(999, 1000))
2641                         return 0;
2642                 ubifs_warn("failing in bud LEB %d commit running", lnum);
2643         } else {
2644                 if (chance(9999, 10000))
2645                         return 0;
2646                 ubifs_warn("failing in bud LEB %d commit not running", lnum);
2647         }
2648
2649         d->pc_happened = 1;
2650         ubifs_warn("========== Power cut emulated ==========");
2651         dump_stack();
2652         return 1;
2653 }
2654
2655 static void cut_data(const void *buf, unsigned int len)
2656 {
2657         unsigned int from, to, i, ffs = chance(1, 2);
2658         unsigned char *p = (void *)buf;
2659
2660         from = random32() % (len + 1);
2661         if (chance(1, 2))
2662                 to = random32() % (len - from + 1);
2663         else
2664                 to = len;
2665
2666         if (from < to)
2667                 ubifs_warn("filled bytes %u-%u with %s", from, to - 1,
2668                            ffs ? "0xFFs" : "random data");
2669
2670         if (ffs)
2671                 for (i = from; i < to; i++)
2672                         p[i] = 0xFF;
2673         else
2674                 for (i = from; i < to; i++)
2675                         p[i] = random32() % 0x100;
2676 }
2677
2678 int dbg_leb_write(struct ubifs_info *c, int lnum, const void *buf,
2679                   int offs, int len, int dtype)
2680 {
2681         int err, failing;
2682
2683         if (c->dbg->pc_happened)
2684                 return -EROFS;
2685
2686         failing = power_cut_emulated(c, lnum, 1);
2687         if (failing)
2688                 cut_data(buf, len);
2689         err = ubi_leb_write(c->ubi, lnum, buf, offs, len, dtype);
2690         if (err)
2691                 return err;
2692         if (failing)
2693                 return -EROFS;
2694         return 0;
2695 }
2696
2697 int dbg_leb_change(struct ubifs_info *c, int lnum, const void *buf,
2698                    int len, int dtype)
2699 {
2700         int err;
2701
2702         if (c->dbg->pc_happened)
2703                 return -EROFS;
2704         if (power_cut_emulated(c, lnum, 1))
2705                 return -EROFS;
2706         err = ubi_leb_change(c->ubi, lnum, buf, len, dtype);
2707         if (err)
2708                 return err;
2709         if (power_cut_emulated(c, lnum, 1))
2710                 return -EROFS;
2711         return 0;
2712 }
2713
2714 int dbg_leb_unmap(struct ubifs_info *c, int lnum)
2715 {
2716         int err;
2717
2718         if (c->dbg->pc_happened)
2719                 return -EROFS;
2720         if (power_cut_emulated(c, lnum, 0))
2721                 return -EROFS;
2722         err = ubi_leb_unmap(c->ubi, lnum);
2723         if (err)
2724                 return err;
2725         if (power_cut_emulated(c, lnum, 0))
2726                 return -EROFS;
2727         return 0;
2728 }
2729
2730 int dbg_leb_map(struct ubifs_info *c, int lnum, int dtype)
2731 {
2732         int err;
2733
2734         if (c->dbg->pc_happened)
2735                 return -EROFS;
2736         if (power_cut_emulated(c, lnum, 0))
2737                 return -EROFS;
2738         err = ubi_leb_map(c->ubi, lnum, dtype);
2739         if (err)
2740                 return err;
2741         if (power_cut_emulated(c, lnum, 0))
2742                 return -EROFS;
2743         return 0;
2744 }
2745
2746 /*
2747  * Root directory for UBIFS stuff in debugfs. Contains sub-directories which
2748  * contain the stuff specific to particular file-system mounts.
2749  */
2750 static struct dentry *dfs_rootdir;
2751
2752 static int dfs_file_open(struct inode *inode, struct file *file)
2753 {
2754         file->private_data = inode->i_private;
2755         return nonseekable_open(inode, file);
2756 }
2757
2758 /**
2759  * provide_user_output - provide output to the user reading a debugfs file.
2760  * @val: boolean value for the answer
2761  * @u: the buffer to store the answer at
2762  * @count: size of the buffer
2763  * @ppos: position in the @u output buffer
2764  *
2765  * This is a simple helper function which stores @val boolean value in the user
2766  * buffer when the user reads one of UBIFS debugfs files. Returns amount of
2767  * bytes written to @u in case of success and a negative error code in case of
2768  * failure.
2769  */
2770 static int provide_user_output(int val, char __user *u, size_t count,
2771                                loff_t *ppos)
2772 {
2773         char buf[3];
2774
2775         if (val)
2776                 buf[0] = '1';
2777         else
2778                 buf[0] = '0';
2779         buf[1] = '\n';
2780         buf[2] = 0x00;
2781
2782         return simple_read_from_buffer(u, count, ppos, buf, 2);
2783 }
2784
2785 static ssize_t dfs_file_read(struct file *file, char __user *u, size_t count,
2786                              loff_t *ppos)
2787 {
2788         struct dentry *dent = file->f_path.dentry;
2789         struct ubifs_info *c = file->private_data;
2790         struct ubifs_debug_info *d = c->dbg;
2791         int val;
2792
2793         if (dent == d->dfs_chk_gen)
2794                 val = d->chk_gen;
2795         else if (dent == d->dfs_chk_index)
2796                 val = d->chk_index;
2797         else if (dent == d->dfs_chk_orph)
2798                 val = d->chk_orph;
2799         else if (dent == d->dfs_chk_lprops)
2800                 val = d->chk_lprops;
2801         else if (dent == d->dfs_chk_fs)
2802                 val = d->chk_fs;
2803         else if (dent == d->dfs_tst_rcvry)
2804                 val = d->tst_rcvry;
2805         else
2806                 return -EINVAL;
2807
2808         return provide_user_output(val, u, count, ppos);
2809 }
2810
2811 /**
2812  * interpret_user_input - interpret user debugfs file input.
2813  * @u: user-provided buffer with the input
2814  * @count: buffer size
2815  *
2816  * This is a helper function which interpret user input to a boolean UBIFS
2817  * debugfs file. Returns %0 or %1 in case of success and a negative error code
2818  * in case of failure.
2819  */
2820 static int interpret_user_input(const char __user *u, size_t count)
2821 {
2822         size_t buf_size;
2823         char buf[8];
2824
2825         buf_size = min_t(size_t, count, (sizeof(buf) - 1));
2826         if (copy_from_user(buf, u, buf_size))
2827                 return -EFAULT;
2828
2829         if (buf[0] == '1')
2830                 return 1;
2831         else if (buf[0] == '0')
2832                 return 0;
2833
2834         return -EINVAL;
2835 }
2836
2837 static ssize_t dfs_file_write(struct file *file, const char __user *u,
2838                               size_t count, loff_t *ppos)
2839 {
2840         struct ubifs_info *c = file->private_data;
2841         struct ubifs_debug_info *d = c->dbg;
2842         struct dentry *dent = file->f_path.dentry;
2843         int val;
2844
2845         /*
2846          * TODO: this is racy - the file-system might have already been
2847          * unmounted and we'd oops in this case. The plan is to fix it with
2848          * help of 'iterate_supers_type()' which we should have in v3.0: when
2849          * a debugfs opened, we rember FS's UUID in file->private_data. Then
2850          * whenever we access the FS via a debugfs file, we iterate all UBIFS
2851          * superblocks and fine the one with the same UUID, and take the
2852          * locking right.
2853          *
2854          * The other way to go suggested by Al Viro is to create a separate
2855          * 'ubifs-debug' file-system instead.
2856          */
2857         if (file->f_path.dentry == d->dfs_dump_lprops) {
2858                 dbg_dump_lprops(c);
2859                 return count;
2860         }
2861         if (file->f_path.dentry == d->dfs_dump_budg) {
2862                 dbg_dump_budg(c, &c->bi);
2863                 return count;
2864         }
2865         if (file->f_path.dentry == d->dfs_dump_tnc) {
2866                 mutex_lock(&c->tnc_mutex);
2867                 dbg_dump_tnc(c);
2868                 mutex_unlock(&c->tnc_mutex);
2869                 return count;
2870         }
2871
2872         val = interpret_user_input(u, count);
2873         if (val < 0)
2874                 return val;
2875
2876         if (dent == d->dfs_chk_gen)
2877                 d->chk_gen = val;
2878         else if (dent == d->dfs_chk_index)
2879                 d->chk_index = val;
2880         else if (dent == d->dfs_chk_orph)
2881                 d->chk_orph = val;
2882         else if (dent == d->dfs_chk_lprops)
2883                 d->chk_lprops = val;
2884         else if (dent == d->dfs_chk_fs)
2885                 d->chk_fs = val;
2886         else if (dent == d->dfs_tst_rcvry)
2887                 d->tst_rcvry = val;
2888         else
2889                 return -EINVAL;
2890
2891         return count;
2892 }
2893
2894 static const struct file_operations dfs_fops = {
2895         .open = dfs_file_open,
2896         .read = dfs_file_read,
2897         .write = dfs_file_write,
2898         .owner = THIS_MODULE,
2899         .llseek = no_llseek,
2900 };
2901
2902 /**
2903  * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance.
2904  * @c: UBIFS file-system description object
2905  *
2906  * This function creates all debugfs files for this instance of UBIFS. Returns
2907  * zero in case of success and a negative error code in case of failure.
2908  *
2909  * Note, the only reason we have not merged this function with the
2910  * 'ubifs_debugging_init()' function is because it is better to initialize
2911  * debugfs interfaces at the very end of the mount process, and remove them at
2912  * the very beginning of the mount process.
2913  */
2914 int dbg_debugfs_init_fs(struct ubifs_info *c)
2915 {
2916         int err, n;
2917         const char *fname;
2918         struct dentry *dent;
2919         struct ubifs_debug_info *d = c->dbg;
2920
2921         n = snprintf(d->dfs_dir_name, UBIFS_DFS_DIR_LEN + 1, UBIFS_DFS_DIR_NAME,
2922                      c->vi.ubi_num, c->vi.vol_id);
2923         if (n == UBIFS_DFS_DIR_LEN) {
2924                 /* The array size is too small */
2925                 fname = UBIFS_DFS_DIR_NAME;
2926                 dent = ERR_PTR(-EINVAL);
2927                 goto out;
2928         }
2929
2930         fname = d->dfs_dir_name;
2931         dent = debugfs_create_dir(fname, dfs_rootdir);
2932         if (IS_ERR_OR_NULL(dent))
2933                 goto out;
2934         d->dfs_dir = dent;
2935
2936         fname = "dump_lprops";
2937         dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2938         if (IS_ERR_OR_NULL(dent))
2939                 goto out_remove;
2940         d->dfs_dump_lprops = dent;
2941
2942         fname = "dump_budg";
2943         dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2944         if (IS_ERR_OR_NULL(dent))
2945                 goto out_remove;
2946         d->dfs_dump_budg = dent;
2947
2948         fname = "dump_tnc";
2949         dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2950         if (IS_ERR_OR_NULL(dent))
2951                 goto out_remove;
2952         d->dfs_dump_tnc = dent;
2953
2954         fname = "chk_general";
2955         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2956                                    &dfs_fops);
2957         if (IS_ERR_OR_NULL(dent))
2958                 goto out_remove;
2959         d->dfs_chk_gen = dent;
2960
2961         fname = "chk_index";
2962         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2963                                    &dfs_fops);
2964         if (IS_ERR_OR_NULL(dent))
2965                 goto out_remove;
2966         d->dfs_chk_index = dent;
2967
2968         fname = "chk_orphans";
2969         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2970                                    &dfs_fops);
2971         if (IS_ERR_OR_NULL(dent))
2972                 goto out_remove;
2973         d->dfs_chk_orph = dent;
2974
2975         fname = "chk_lprops";
2976         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2977                                    &dfs_fops);
2978         if (IS_ERR_OR_NULL(dent))
2979                 goto out_remove;
2980         d->dfs_chk_lprops = dent;
2981
2982         fname = "chk_fs";
2983         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2984                                    &dfs_fops);
2985         if (IS_ERR_OR_NULL(dent))
2986                 goto out_remove;
2987         d->dfs_chk_fs = dent;
2988
2989         fname = "tst_recovery";
2990         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2991                                    &dfs_fops);
2992         if (IS_ERR_OR_NULL(dent))
2993                 goto out_remove;
2994         d->dfs_tst_rcvry = dent;
2995
2996         return 0;
2997
2998 out_remove:
2999         debugfs_remove_recursive(d->dfs_dir);
3000 out:
3001         err = dent ? PTR_ERR(dent) : -ENODEV;
3002         ubifs_err("cannot create \"%s\" debugfs file or directory, error %d\n",
3003                   fname, err);
3004         return err;
3005 }
3006
3007 /**
3008  * dbg_debugfs_exit_fs - remove all debugfs files.
3009  * @c: UBIFS file-system description object
3010  */
3011 void dbg_debugfs_exit_fs(struct ubifs_info *c)
3012 {
3013         debugfs_remove_recursive(c->dbg->dfs_dir);
3014 }
3015
3016 struct ubifs_global_debug_info ubifs_dbg;
3017
3018 static struct dentry *dfs_chk_gen;
3019 static struct dentry *dfs_chk_index;
3020 static struct dentry *dfs_chk_orph;
3021 static struct dentry *dfs_chk_lprops;
3022 static struct dentry *dfs_chk_fs;
3023 static struct dentry *dfs_tst_rcvry;
3024
3025 static ssize_t dfs_global_file_read(struct file *file, char __user *u,
3026                                     size_t count, loff_t *ppos)
3027 {
3028         struct dentry *dent = file->f_path.dentry;
3029         int val;
3030
3031         if (dent == dfs_chk_gen)
3032                 val = ubifs_dbg.chk_gen;
3033         else if (dent == dfs_chk_index)
3034                 val = ubifs_dbg.chk_index;
3035         else if (dent == dfs_chk_orph)
3036                 val = ubifs_dbg.chk_orph;
3037         else if (dent == dfs_chk_lprops)
3038                 val = ubifs_dbg.chk_lprops;
3039         else if (dent == dfs_chk_fs)
3040                 val = ubifs_dbg.chk_fs;
3041         else if (dent == dfs_tst_rcvry)
3042                 val = ubifs_dbg.tst_rcvry;
3043         else
3044                 return -EINVAL;
3045
3046         return provide_user_output(val, u, count, ppos);
3047 }
3048
3049 static ssize_t dfs_global_file_write(struct file *file, const char __user *u,
3050                                      size_t count, loff_t *ppos)
3051 {
3052         struct dentry *dent = file->f_path.dentry;
3053         int val;
3054
3055         val = interpret_user_input(u, count);
3056         if (val < 0)
3057                 return val;
3058
3059         if (dent == dfs_chk_gen)
3060                 ubifs_dbg.chk_gen = val;
3061         else if (dent == dfs_chk_index)
3062                 ubifs_dbg.chk_index = val;
3063         else if (dent == dfs_chk_orph)
3064                 ubifs_dbg.chk_orph = val;
3065         else if (dent == dfs_chk_lprops)
3066                 ubifs_dbg.chk_lprops = val;
3067         else if (dent == dfs_chk_fs)
3068                 ubifs_dbg.chk_fs = val;
3069         else if (dent == dfs_tst_rcvry)
3070                 ubifs_dbg.tst_rcvry = val;
3071         else
3072                 return -EINVAL;
3073
3074         return count;
3075 }
3076
3077 static const struct file_operations dfs_global_fops = {
3078         .read = dfs_global_file_read,
3079         .write = dfs_global_file_write,
3080         .owner = THIS_MODULE,
3081         .llseek = no_llseek,
3082 };
3083
3084 /**
3085  * dbg_debugfs_init - initialize debugfs file-system.
3086  *
3087  * UBIFS uses debugfs file-system to expose various debugging knobs to
3088  * user-space. This function creates "ubifs" directory in the debugfs
3089  * file-system. Returns zero in case of success and a negative error code in
3090  * case of failure.
3091  */
3092 int dbg_debugfs_init(void)
3093 {
3094         int err;
3095         const char *fname;
3096         struct dentry *dent;
3097
3098         fname = "ubifs";
3099         dent = debugfs_create_dir(fname, NULL);
3100         if (IS_ERR_OR_NULL(dent))
3101                 goto out;
3102         dfs_rootdir = dent;
3103
3104         fname = "chk_general";
3105         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3106                                    &dfs_global_fops);
3107         if (IS_ERR_OR_NULL(dent))
3108                 goto out_remove;
3109         dfs_chk_gen = dent;
3110
3111         fname = "chk_index";
3112         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3113                                    &dfs_global_fops);
3114         if (IS_ERR_OR_NULL(dent))
3115                 goto out_remove;
3116         dfs_chk_index = dent;
3117
3118         fname = "chk_orphans";
3119         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3120                                    &dfs_global_fops);
3121         if (IS_ERR_OR_NULL(dent))
3122                 goto out_remove;
3123         dfs_chk_orph = dent;
3124
3125         fname = "chk_lprops";
3126         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3127                                    &dfs_global_fops);
3128         if (IS_ERR_OR_NULL(dent))
3129                 goto out_remove;
3130         dfs_chk_lprops = dent;
3131
3132         fname = "chk_fs";
3133         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3134                                    &dfs_global_fops);
3135         if (IS_ERR_OR_NULL(dent))
3136                 goto out_remove;
3137         dfs_chk_fs = dent;
3138
3139         fname = "tst_recovery";
3140         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3141                                    &dfs_global_fops);
3142         if (IS_ERR_OR_NULL(dent))
3143                 goto out_remove;
3144         dfs_tst_rcvry = dent;
3145
3146         return 0;
3147
3148 out_remove:
3149         debugfs_remove_recursive(dfs_rootdir);
3150 out:
3151         err = dent ? PTR_ERR(dent) : -ENODEV;
3152         ubifs_err("cannot create \"%s\" debugfs file or directory, error %d\n",
3153                   fname, err);
3154         return err;
3155 }
3156
3157 /**
3158  * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system.
3159  */
3160 void dbg_debugfs_exit(void)
3161 {
3162         debugfs_remove_recursive(dfs_rootdir);
3163 }
3164
3165 /**
3166  * ubifs_debugging_init - initialize UBIFS debugging.
3167  * @c: UBIFS file-system description object
3168  *
3169  * This function initializes debugging-related data for the file system.
3170  * Returns zero in case of success and a negative error code in case of
3171  * failure.
3172  */
3173 int ubifs_debugging_init(struct ubifs_info *c)
3174 {
3175         c->dbg = kzalloc(sizeof(struct ubifs_debug_info), GFP_KERNEL);
3176         if (!c->dbg)
3177                 return -ENOMEM;
3178
3179         return 0;
3180 }
3181
3182 /**
3183  * ubifs_debugging_exit - free debugging data.
3184  * @c: UBIFS file-system description object
3185  */
3186 void ubifs_debugging_exit(struct ubifs_info *c)
3187 {
3188         kfree(c->dbg);
3189 }
3190
3191 #endif /* CONFIG_UBIFS_FS_DEBUG */