Merge git://git.kernel.org/pub/scm/linux/kernel/git/mason/btrfs-unstable
[pandora-kernel.git] / fs / ubifs / debug.c
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 51
17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18  *
19  * Authors: Artem Bityutskiy (Битюцкий Артём)
20  *          Adrian Hunter
21  */
22
23 /*
24  * This file implements most of the debugging stuff which is compiled in only
25  * when it is enabled. But some debugging check functions are implemented in
26  * corresponding subsystem, just because they are closely related and utilize
27  * various local functions of those subsystems.
28  */
29
30 #define UBIFS_DBG_PRESERVE_UBI
31
32 #include "ubifs.h"
33 #include <linux/module.h>
34 #include <linux/moduleparam.h>
35 #include <linux/debugfs.h>
36 #include <linux/math64.h>
37
38 #ifdef CONFIG_UBIFS_FS_DEBUG
39
40 DEFINE_SPINLOCK(dbg_lock);
41
42 static char dbg_key_buf0[128];
43 static char dbg_key_buf1[128];
44
45 unsigned int ubifs_msg_flags = UBIFS_MSG_FLAGS_DEFAULT;
46 unsigned int ubifs_chk_flags = UBIFS_CHK_FLAGS_DEFAULT;
47 unsigned int ubifs_tst_flags;
48
49 module_param_named(debug_msgs, ubifs_msg_flags, uint, S_IRUGO | S_IWUSR);
50 module_param_named(debug_chks, ubifs_chk_flags, uint, S_IRUGO | S_IWUSR);
51 module_param_named(debug_tsts, ubifs_tst_flags, uint, S_IRUGO | S_IWUSR);
52
53 MODULE_PARM_DESC(debug_msgs, "Debug message type flags");
54 MODULE_PARM_DESC(debug_chks, "Debug check flags");
55 MODULE_PARM_DESC(debug_tsts, "Debug special test flags");
56
57 static const char *get_key_fmt(int fmt)
58 {
59         switch (fmt) {
60         case UBIFS_SIMPLE_KEY_FMT:
61                 return "simple";
62         default:
63                 return "unknown/invalid format";
64         }
65 }
66
67 static const char *get_key_hash(int hash)
68 {
69         switch (hash) {
70         case UBIFS_KEY_HASH_R5:
71                 return "R5";
72         case UBIFS_KEY_HASH_TEST:
73                 return "test";
74         default:
75                 return "unknown/invalid name hash";
76         }
77 }
78
79 static const char *get_key_type(int type)
80 {
81         switch (type) {
82         case UBIFS_INO_KEY:
83                 return "inode";
84         case UBIFS_DENT_KEY:
85                 return "direntry";
86         case UBIFS_XENT_KEY:
87                 return "xentry";
88         case UBIFS_DATA_KEY:
89                 return "data";
90         case UBIFS_TRUN_KEY:
91                 return "truncate";
92         default:
93                 return "unknown/invalid key";
94         }
95 }
96
97 static void sprintf_key(const struct ubifs_info *c, const union ubifs_key *key,
98                         char *buffer)
99 {
100         char *p = buffer;
101         int type = key_type(c, key);
102
103         if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) {
104                 switch (type) {
105                 case UBIFS_INO_KEY:
106                         sprintf(p, "(%lu, %s)", (unsigned long)key_inum(c, key),
107                                get_key_type(type));
108                         break;
109                 case UBIFS_DENT_KEY:
110                 case UBIFS_XENT_KEY:
111                         sprintf(p, "(%lu, %s, %#08x)",
112                                 (unsigned long)key_inum(c, key),
113                                 get_key_type(type), key_hash(c, key));
114                         break;
115                 case UBIFS_DATA_KEY:
116                         sprintf(p, "(%lu, %s, %u)",
117                                 (unsigned long)key_inum(c, key),
118                                 get_key_type(type), key_block(c, key));
119                         break;
120                 case UBIFS_TRUN_KEY:
121                         sprintf(p, "(%lu, %s)",
122                                 (unsigned long)key_inum(c, key),
123                                 get_key_type(type));
124                         break;
125                 default:
126                         sprintf(p, "(bad key type: %#08x, %#08x)",
127                                 key->u32[0], key->u32[1]);
128                 }
129         } else
130                 sprintf(p, "bad key format %d", c->key_fmt);
131 }
132
133 const char *dbg_key_str0(const struct ubifs_info *c, const union ubifs_key *key)
134 {
135         /* dbg_lock must be held */
136         sprintf_key(c, key, dbg_key_buf0);
137         return dbg_key_buf0;
138 }
139
140 const char *dbg_key_str1(const struct ubifs_info *c, const union ubifs_key *key)
141 {
142         /* dbg_lock must be held */
143         sprintf_key(c, key, dbg_key_buf1);
144         return dbg_key_buf1;
145 }
146
147 const char *dbg_ntype(int type)
148 {
149         switch (type) {
150         case UBIFS_PAD_NODE:
151                 return "padding node";
152         case UBIFS_SB_NODE:
153                 return "superblock node";
154         case UBIFS_MST_NODE:
155                 return "master node";
156         case UBIFS_REF_NODE:
157                 return "reference node";
158         case UBIFS_INO_NODE:
159                 return "inode node";
160         case UBIFS_DENT_NODE:
161                 return "direntry node";
162         case UBIFS_XENT_NODE:
163                 return "xentry node";
164         case UBIFS_DATA_NODE:
165                 return "data node";
166         case UBIFS_TRUN_NODE:
167                 return "truncate node";
168         case UBIFS_IDX_NODE:
169                 return "indexing node";
170         case UBIFS_CS_NODE:
171                 return "commit start node";
172         case UBIFS_ORPH_NODE:
173                 return "orphan node";
174         default:
175                 return "unknown node";
176         }
177 }
178
179 static const char *dbg_gtype(int type)
180 {
181         switch (type) {
182         case UBIFS_NO_NODE_GROUP:
183                 return "no node group";
184         case UBIFS_IN_NODE_GROUP:
185                 return "in node group";
186         case UBIFS_LAST_OF_NODE_GROUP:
187                 return "last of node group";
188         default:
189                 return "unknown";
190         }
191 }
192
193 const char *dbg_cstate(int cmt_state)
194 {
195         switch (cmt_state) {
196         case COMMIT_RESTING:
197                 return "commit resting";
198         case COMMIT_BACKGROUND:
199                 return "background commit requested";
200         case COMMIT_REQUIRED:
201                 return "commit required";
202         case COMMIT_RUNNING_BACKGROUND:
203                 return "BACKGROUND commit running";
204         case COMMIT_RUNNING_REQUIRED:
205                 return "commit running and required";
206         case COMMIT_BROKEN:
207                 return "broken commit";
208         default:
209                 return "unknown commit state";
210         }
211 }
212
213 const char *dbg_jhead(int jhead)
214 {
215         switch (jhead) {
216         case GCHD:
217                 return "0 (GC)";
218         case BASEHD:
219                 return "1 (base)";
220         case DATAHD:
221                 return "2 (data)";
222         default:
223                 return "unknown journal head";
224         }
225 }
226
227 static void dump_ch(const struct ubifs_ch *ch)
228 {
229         printk(KERN_DEBUG "\tmagic          %#x\n", le32_to_cpu(ch->magic));
230         printk(KERN_DEBUG "\tcrc            %#x\n", le32_to_cpu(ch->crc));
231         printk(KERN_DEBUG "\tnode_type      %d (%s)\n", ch->node_type,
232                dbg_ntype(ch->node_type));
233         printk(KERN_DEBUG "\tgroup_type     %d (%s)\n", ch->group_type,
234                dbg_gtype(ch->group_type));
235         printk(KERN_DEBUG "\tsqnum          %llu\n",
236                (unsigned long long)le64_to_cpu(ch->sqnum));
237         printk(KERN_DEBUG "\tlen            %u\n", le32_to_cpu(ch->len));
238 }
239
240 void dbg_dump_inode(const struct ubifs_info *c, const struct inode *inode)
241 {
242         const struct ubifs_inode *ui = ubifs_inode(inode);
243
244         printk(KERN_DEBUG "Dump in-memory inode:");
245         printk(KERN_DEBUG "\tinode          %lu\n", inode->i_ino);
246         printk(KERN_DEBUG "\tsize           %llu\n",
247                (unsigned long long)i_size_read(inode));
248         printk(KERN_DEBUG "\tnlink          %u\n", inode->i_nlink);
249         printk(KERN_DEBUG "\tuid            %u\n", (unsigned int)inode->i_uid);
250         printk(KERN_DEBUG "\tgid            %u\n", (unsigned int)inode->i_gid);
251         printk(KERN_DEBUG "\tatime          %u.%u\n",
252                (unsigned int)inode->i_atime.tv_sec,
253                (unsigned int)inode->i_atime.tv_nsec);
254         printk(KERN_DEBUG "\tmtime          %u.%u\n",
255                (unsigned int)inode->i_mtime.tv_sec,
256                (unsigned int)inode->i_mtime.tv_nsec);
257         printk(KERN_DEBUG "\tctime          %u.%u\n",
258                (unsigned int)inode->i_ctime.tv_sec,
259                (unsigned int)inode->i_ctime.tv_nsec);
260         printk(KERN_DEBUG "\tcreat_sqnum    %llu\n", ui->creat_sqnum);
261         printk(KERN_DEBUG "\txattr_size     %u\n", ui->xattr_size);
262         printk(KERN_DEBUG "\txattr_cnt      %u\n", ui->xattr_cnt);
263         printk(KERN_DEBUG "\txattr_names    %u\n", ui->xattr_names);
264         printk(KERN_DEBUG "\tdirty          %u\n", ui->dirty);
265         printk(KERN_DEBUG "\txattr          %u\n", ui->xattr);
266         printk(KERN_DEBUG "\tbulk_read      %u\n", ui->xattr);
267         printk(KERN_DEBUG "\tsynced_i_size  %llu\n",
268                (unsigned long long)ui->synced_i_size);
269         printk(KERN_DEBUG "\tui_size        %llu\n",
270                (unsigned long long)ui->ui_size);
271         printk(KERN_DEBUG "\tflags          %d\n", ui->flags);
272         printk(KERN_DEBUG "\tcompr_type     %d\n", ui->compr_type);
273         printk(KERN_DEBUG "\tlast_page_read %lu\n", ui->last_page_read);
274         printk(KERN_DEBUG "\tread_in_a_row  %lu\n", ui->read_in_a_row);
275         printk(KERN_DEBUG "\tdata_len       %d\n", ui->data_len);
276 }
277
278 void dbg_dump_node(const struct ubifs_info *c, const void *node)
279 {
280         int i, n;
281         union ubifs_key key;
282         const struct ubifs_ch *ch = node;
283
284         if (dbg_failure_mode)
285                 return;
286
287         /* If the magic is incorrect, just hexdump the first bytes */
288         if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) {
289                 printk(KERN_DEBUG "Not a node, first %zu bytes:", UBIFS_CH_SZ);
290                 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
291                                (void *)node, UBIFS_CH_SZ, 1);
292                 return;
293         }
294
295         spin_lock(&dbg_lock);
296         dump_ch(node);
297
298         switch (ch->node_type) {
299         case UBIFS_PAD_NODE:
300         {
301                 const struct ubifs_pad_node *pad = node;
302
303                 printk(KERN_DEBUG "\tpad_len        %u\n",
304                        le32_to_cpu(pad->pad_len));
305                 break;
306         }
307         case UBIFS_SB_NODE:
308         {
309                 const struct ubifs_sb_node *sup = node;
310                 unsigned int sup_flags = le32_to_cpu(sup->flags);
311
312                 printk(KERN_DEBUG "\tkey_hash       %d (%s)\n",
313                        (int)sup->key_hash, get_key_hash(sup->key_hash));
314                 printk(KERN_DEBUG "\tkey_fmt        %d (%s)\n",
315                        (int)sup->key_fmt, get_key_fmt(sup->key_fmt));
316                 printk(KERN_DEBUG "\tflags          %#x\n", sup_flags);
317                 printk(KERN_DEBUG "\t  big_lpt      %u\n",
318                        !!(sup_flags & UBIFS_FLG_BIGLPT));
319                 printk(KERN_DEBUG "\tmin_io_size    %u\n",
320                        le32_to_cpu(sup->min_io_size));
321                 printk(KERN_DEBUG "\tleb_size       %u\n",
322                        le32_to_cpu(sup->leb_size));
323                 printk(KERN_DEBUG "\tleb_cnt        %u\n",
324                        le32_to_cpu(sup->leb_cnt));
325                 printk(KERN_DEBUG "\tmax_leb_cnt    %u\n",
326                        le32_to_cpu(sup->max_leb_cnt));
327                 printk(KERN_DEBUG "\tmax_bud_bytes  %llu\n",
328                        (unsigned long long)le64_to_cpu(sup->max_bud_bytes));
329                 printk(KERN_DEBUG "\tlog_lebs       %u\n",
330                        le32_to_cpu(sup->log_lebs));
331                 printk(KERN_DEBUG "\tlpt_lebs       %u\n",
332                        le32_to_cpu(sup->lpt_lebs));
333                 printk(KERN_DEBUG "\torph_lebs      %u\n",
334                        le32_to_cpu(sup->orph_lebs));
335                 printk(KERN_DEBUG "\tjhead_cnt      %u\n",
336                        le32_to_cpu(sup->jhead_cnt));
337                 printk(KERN_DEBUG "\tfanout         %u\n",
338                        le32_to_cpu(sup->fanout));
339                 printk(KERN_DEBUG "\tlsave_cnt      %u\n",
340                        le32_to_cpu(sup->lsave_cnt));
341                 printk(KERN_DEBUG "\tdefault_compr  %u\n",
342                        (int)le16_to_cpu(sup->default_compr));
343                 printk(KERN_DEBUG "\trp_size        %llu\n",
344                        (unsigned long long)le64_to_cpu(sup->rp_size));
345                 printk(KERN_DEBUG "\trp_uid         %u\n",
346                        le32_to_cpu(sup->rp_uid));
347                 printk(KERN_DEBUG "\trp_gid         %u\n",
348                        le32_to_cpu(sup->rp_gid));
349                 printk(KERN_DEBUG "\tfmt_version    %u\n",
350                        le32_to_cpu(sup->fmt_version));
351                 printk(KERN_DEBUG "\ttime_gran      %u\n",
352                        le32_to_cpu(sup->time_gran));
353                 printk(KERN_DEBUG "\tUUID           %pUB\n",
354                        sup->uuid);
355                 break;
356         }
357         case UBIFS_MST_NODE:
358         {
359                 const struct ubifs_mst_node *mst = node;
360
361                 printk(KERN_DEBUG "\thighest_inum   %llu\n",
362                        (unsigned long long)le64_to_cpu(mst->highest_inum));
363                 printk(KERN_DEBUG "\tcommit number  %llu\n",
364                        (unsigned long long)le64_to_cpu(mst->cmt_no));
365                 printk(KERN_DEBUG "\tflags          %#x\n",
366                        le32_to_cpu(mst->flags));
367                 printk(KERN_DEBUG "\tlog_lnum       %u\n",
368                        le32_to_cpu(mst->log_lnum));
369                 printk(KERN_DEBUG "\troot_lnum      %u\n",
370                        le32_to_cpu(mst->root_lnum));
371                 printk(KERN_DEBUG "\troot_offs      %u\n",
372                        le32_to_cpu(mst->root_offs));
373                 printk(KERN_DEBUG "\troot_len       %u\n",
374                        le32_to_cpu(mst->root_len));
375                 printk(KERN_DEBUG "\tgc_lnum        %u\n",
376                        le32_to_cpu(mst->gc_lnum));
377                 printk(KERN_DEBUG "\tihead_lnum     %u\n",
378                        le32_to_cpu(mst->ihead_lnum));
379                 printk(KERN_DEBUG "\tihead_offs     %u\n",
380                        le32_to_cpu(mst->ihead_offs));
381                 printk(KERN_DEBUG "\tindex_size     %llu\n",
382                        (unsigned long long)le64_to_cpu(mst->index_size));
383                 printk(KERN_DEBUG "\tlpt_lnum       %u\n",
384                        le32_to_cpu(mst->lpt_lnum));
385                 printk(KERN_DEBUG "\tlpt_offs       %u\n",
386                        le32_to_cpu(mst->lpt_offs));
387                 printk(KERN_DEBUG "\tnhead_lnum     %u\n",
388                        le32_to_cpu(mst->nhead_lnum));
389                 printk(KERN_DEBUG "\tnhead_offs     %u\n",
390                        le32_to_cpu(mst->nhead_offs));
391                 printk(KERN_DEBUG "\tltab_lnum      %u\n",
392                        le32_to_cpu(mst->ltab_lnum));
393                 printk(KERN_DEBUG "\tltab_offs      %u\n",
394                        le32_to_cpu(mst->ltab_offs));
395                 printk(KERN_DEBUG "\tlsave_lnum     %u\n",
396                        le32_to_cpu(mst->lsave_lnum));
397                 printk(KERN_DEBUG "\tlsave_offs     %u\n",
398                        le32_to_cpu(mst->lsave_offs));
399                 printk(KERN_DEBUG "\tlscan_lnum     %u\n",
400                        le32_to_cpu(mst->lscan_lnum));
401                 printk(KERN_DEBUG "\tleb_cnt        %u\n",
402                        le32_to_cpu(mst->leb_cnt));
403                 printk(KERN_DEBUG "\tempty_lebs     %u\n",
404                        le32_to_cpu(mst->empty_lebs));
405                 printk(KERN_DEBUG "\tidx_lebs       %u\n",
406                        le32_to_cpu(mst->idx_lebs));
407                 printk(KERN_DEBUG "\ttotal_free     %llu\n",
408                        (unsigned long long)le64_to_cpu(mst->total_free));
409                 printk(KERN_DEBUG "\ttotal_dirty    %llu\n",
410                        (unsigned long long)le64_to_cpu(mst->total_dirty));
411                 printk(KERN_DEBUG "\ttotal_used     %llu\n",
412                        (unsigned long long)le64_to_cpu(mst->total_used));
413                 printk(KERN_DEBUG "\ttotal_dead     %llu\n",
414                        (unsigned long long)le64_to_cpu(mst->total_dead));
415                 printk(KERN_DEBUG "\ttotal_dark     %llu\n",
416                        (unsigned long long)le64_to_cpu(mst->total_dark));
417                 break;
418         }
419         case UBIFS_REF_NODE:
420         {
421                 const struct ubifs_ref_node *ref = node;
422
423                 printk(KERN_DEBUG "\tlnum           %u\n",
424                        le32_to_cpu(ref->lnum));
425                 printk(KERN_DEBUG "\toffs           %u\n",
426                        le32_to_cpu(ref->offs));
427                 printk(KERN_DEBUG "\tjhead          %u\n",
428                        le32_to_cpu(ref->jhead));
429                 break;
430         }
431         case UBIFS_INO_NODE:
432         {
433                 const struct ubifs_ino_node *ino = node;
434
435                 key_read(c, &ino->key, &key);
436                 printk(KERN_DEBUG "\tkey            %s\n", DBGKEY(&key));
437                 printk(KERN_DEBUG "\tcreat_sqnum    %llu\n",
438                        (unsigned long long)le64_to_cpu(ino->creat_sqnum));
439                 printk(KERN_DEBUG "\tsize           %llu\n",
440                        (unsigned long long)le64_to_cpu(ino->size));
441                 printk(KERN_DEBUG "\tnlink          %u\n",
442                        le32_to_cpu(ino->nlink));
443                 printk(KERN_DEBUG "\tatime          %lld.%u\n",
444                        (long long)le64_to_cpu(ino->atime_sec),
445                        le32_to_cpu(ino->atime_nsec));
446                 printk(KERN_DEBUG "\tmtime          %lld.%u\n",
447                        (long long)le64_to_cpu(ino->mtime_sec),
448                        le32_to_cpu(ino->mtime_nsec));
449                 printk(KERN_DEBUG "\tctime          %lld.%u\n",
450                        (long long)le64_to_cpu(ino->ctime_sec),
451                        le32_to_cpu(ino->ctime_nsec));
452                 printk(KERN_DEBUG "\tuid            %u\n",
453                        le32_to_cpu(ino->uid));
454                 printk(KERN_DEBUG "\tgid            %u\n",
455                        le32_to_cpu(ino->gid));
456                 printk(KERN_DEBUG "\tmode           %u\n",
457                        le32_to_cpu(ino->mode));
458                 printk(KERN_DEBUG "\tflags          %#x\n",
459                        le32_to_cpu(ino->flags));
460                 printk(KERN_DEBUG "\txattr_cnt      %u\n",
461                        le32_to_cpu(ino->xattr_cnt));
462                 printk(KERN_DEBUG "\txattr_size     %u\n",
463                        le32_to_cpu(ino->xattr_size));
464                 printk(KERN_DEBUG "\txattr_names    %u\n",
465                        le32_to_cpu(ino->xattr_names));
466                 printk(KERN_DEBUG "\tcompr_type     %#x\n",
467                        (int)le16_to_cpu(ino->compr_type));
468                 printk(KERN_DEBUG "\tdata len       %u\n",
469                        le32_to_cpu(ino->data_len));
470                 break;
471         }
472         case UBIFS_DENT_NODE:
473         case UBIFS_XENT_NODE:
474         {
475                 const struct ubifs_dent_node *dent = node;
476                 int nlen = le16_to_cpu(dent->nlen);
477
478                 key_read(c, &dent->key, &key);
479                 printk(KERN_DEBUG "\tkey            %s\n", DBGKEY(&key));
480                 printk(KERN_DEBUG "\tinum           %llu\n",
481                        (unsigned long long)le64_to_cpu(dent->inum));
482                 printk(KERN_DEBUG "\ttype           %d\n", (int)dent->type);
483                 printk(KERN_DEBUG "\tnlen           %d\n", nlen);
484                 printk(KERN_DEBUG "\tname           ");
485
486                 if (nlen > UBIFS_MAX_NLEN)
487                         printk(KERN_DEBUG "(bad name length, not printing, "
488                                           "bad or corrupted node)");
489                 else {
490                         for (i = 0; i < nlen && dent->name[i]; i++)
491                                 printk(KERN_CONT "%c", dent->name[i]);
492                 }
493                 printk(KERN_CONT "\n");
494
495                 break;
496         }
497         case UBIFS_DATA_NODE:
498         {
499                 const struct ubifs_data_node *dn = node;
500                 int dlen = le32_to_cpu(ch->len) - UBIFS_DATA_NODE_SZ;
501
502                 key_read(c, &dn->key, &key);
503                 printk(KERN_DEBUG "\tkey            %s\n", DBGKEY(&key));
504                 printk(KERN_DEBUG "\tsize           %u\n",
505                        le32_to_cpu(dn->size));
506                 printk(KERN_DEBUG "\tcompr_typ      %d\n",
507                        (int)le16_to_cpu(dn->compr_type));
508                 printk(KERN_DEBUG "\tdata size      %d\n",
509                        dlen);
510                 printk(KERN_DEBUG "\tdata:\n");
511                 print_hex_dump(KERN_DEBUG, "\t", DUMP_PREFIX_OFFSET, 32, 1,
512                                (void *)&dn->data, dlen, 0);
513                 break;
514         }
515         case UBIFS_TRUN_NODE:
516         {
517                 const struct ubifs_trun_node *trun = node;
518
519                 printk(KERN_DEBUG "\tinum           %u\n",
520                        le32_to_cpu(trun->inum));
521                 printk(KERN_DEBUG "\told_size       %llu\n",
522                        (unsigned long long)le64_to_cpu(trun->old_size));
523                 printk(KERN_DEBUG "\tnew_size       %llu\n",
524                        (unsigned long long)le64_to_cpu(trun->new_size));
525                 break;
526         }
527         case UBIFS_IDX_NODE:
528         {
529                 const struct ubifs_idx_node *idx = node;
530
531                 n = le16_to_cpu(idx->child_cnt);
532                 printk(KERN_DEBUG "\tchild_cnt      %d\n", n);
533                 printk(KERN_DEBUG "\tlevel          %d\n",
534                        (int)le16_to_cpu(idx->level));
535                 printk(KERN_DEBUG "\tBranches:\n");
536
537                 for (i = 0; i < n && i < c->fanout - 1; i++) {
538                         const struct ubifs_branch *br;
539
540                         br = ubifs_idx_branch(c, idx, i);
541                         key_read(c, &br->key, &key);
542                         printk(KERN_DEBUG "\t%d: LEB %d:%d len %d key %s\n",
543                                i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs),
544                                le32_to_cpu(br->len), DBGKEY(&key));
545                 }
546                 break;
547         }
548         case UBIFS_CS_NODE:
549                 break;
550         case UBIFS_ORPH_NODE:
551         {
552                 const struct ubifs_orph_node *orph = node;
553
554                 printk(KERN_DEBUG "\tcommit number  %llu\n",
555                        (unsigned long long)
556                                 le64_to_cpu(orph->cmt_no) & LLONG_MAX);
557                 printk(KERN_DEBUG "\tlast node flag %llu\n",
558                        (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63);
559                 n = (le32_to_cpu(ch->len) - UBIFS_ORPH_NODE_SZ) >> 3;
560                 printk(KERN_DEBUG "\t%d orphan inode numbers:\n", n);
561                 for (i = 0; i < n; i++)
562                         printk(KERN_DEBUG "\t  ino %llu\n",
563                                (unsigned long long)le64_to_cpu(orph->inos[i]));
564                 break;
565         }
566         default:
567                 printk(KERN_DEBUG "node type %d was not recognized\n",
568                        (int)ch->node_type);
569         }
570         spin_unlock(&dbg_lock);
571 }
572
573 void dbg_dump_budget_req(const struct ubifs_budget_req *req)
574 {
575         spin_lock(&dbg_lock);
576         printk(KERN_DEBUG "Budgeting request: new_ino %d, dirtied_ino %d\n",
577                req->new_ino, req->dirtied_ino);
578         printk(KERN_DEBUG "\tnew_ino_d   %d, dirtied_ino_d %d\n",
579                req->new_ino_d, req->dirtied_ino_d);
580         printk(KERN_DEBUG "\tnew_page    %d, dirtied_page %d\n",
581                req->new_page, req->dirtied_page);
582         printk(KERN_DEBUG "\tnew_dent    %d, mod_dent     %d\n",
583                req->new_dent, req->mod_dent);
584         printk(KERN_DEBUG "\tidx_growth  %d\n", req->idx_growth);
585         printk(KERN_DEBUG "\tdata_growth %d dd_growth     %d\n",
586                req->data_growth, req->dd_growth);
587         spin_unlock(&dbg_lock);
588 }
589
590 void dbg_dump_lstats(const struct ubifs_lp_stats *lst)
591 {
592         spin_lock(&dbg_lock);
593         printk(KERN_DEBUG "(pid %d) Lprops statistics: empty_lebs %d, "
594                "idx_lebs  %d\n", current->pid, lst->empty_lebs, lst->idx_lebs);
595         printk(KERN_DEBUG "\ttaken_empty_lebs %d, total_free %lld, "
596                "total_dirty %lld\n", lst->taken_empty_lebs, lst->total_free,
597                lst->total_dirty);
598         printk(KERN_DEBUG "\ttotal_used %lld, total_dark %lld, "
599                "total_dead %lld\n", lst->total_used, lst->total_dark,
600                lst->total_dead);
601         spin_unlock(&dbg_lock);
602 }
603
604 void dbg_dump_budg(struct ubifs_info *c)
605 {
606         int i;
607         struct rb_node *rb;
608         struct ubifs_bud *bud;
609         struct ubifs_gced_idx_leb *idx_gc;
610         long long available, outstanding, free;
611
612         ubifs_assert(spin_is_locked(&c->space_lock));
613         spin_lock(&dbg_lock);
614         printk(KERN_DEBUG "(pid %d) Budgeting info: budg_data_growth %lld, "
615                "budg_dd_growth %lld, budg_idx_growth %lld\n", current->pid,
616                c->budg_data_growth, c->budg_dd_growth, c->budg_idx_growth);
617         printk(KERN_DEBUG "\tdata budget sum %lld, total budget sum %lld, "
618                "freeable_cnt %d\n", c->budg_data_growth + c->budg_dd_growth,
619                c->budg_data_growth + c->budg_dd_growth + c->budg_idx_growth,
620                c->freeable_cnt);
621         printk(KERN_DEBUG "\tmin_idx_lebs %d, old_idx_sz %lld, "
622                "calc_idx_sz %lld, idx_gc_cnt %d\n", c->min_idx_lebs,
623                c->old_idx_sz, c->calc_idx_sz, c->idx_gc_cnt);
624         printk(KERN_DEBUG "\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, "
625                "clean_zn_cnt %ld\n", atomic_long_read(&c->dirty_pg_cnt),
626                atomic_long_read(&c->dirty_zn_cnt),
627                atomic_long_read(&c->clean_zn_cnt));
628         printk(KERN_DEBUG "\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n",
629                c->dark_wm, c->dead_wm, c->max_idx_node_sz);
630         printk(KERN_DEBUG "\tgc_lnum %d, ihead_lnum %d\n",
631                c->gc_lnum, c->ihead_lnum);
632         /* If we are in R/O mode, journal heads do not exist */
633         if (c->jheads)
634                 for (i = 0; i < c->jhead_cnt; i++)
635                         printk(KERN_DEBUG "\tjhead %s\t LEB %d\n",
636                                dbg_jhead(c->jheads[i].wbuf.jhead),
637                                c->jheads[i].wbuf.lnum);
638         for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) {
639                 bud = rb_entry(rb, struct ubifs_bud, rb);
640                 printk(KERN_DEBUG "\tbud LEB %d\n", bud->lnum);
641         }
642         list_for_each_entry(bud, &c->old_buds, list)
643                 printk(KERN_DEBUG "\told bud LEB %d\n", bud->lnum);
644         list_for_each_entry(idx_gc, &c->idx_gc, list)
645                 printk(KERN_DEBUG "\tGC'ed idx LEB %d unmap %d\n",
646                        idx_gc->lnum, idx_gc->unmap);
647         printk(KERN_DEBUG "\tcommit state %d\n", c->cmt_state);
648
649         /* Print budgeting predictions */
650         available = ubifs_calc_available(c, c->min_idx_lebs);
651         outstanding = c->budg_data_growth + c->budg_dd_growth;
652         free = ubifs_get_free_space_nolock(c);
653         printk(KERN_DEBUG "Budgeting predictions:\n");
654         printk(KERN_DEBUG "\tavailable: %lld, outstanding %lld, free %lld\n",
655                available, outstanding, free);
656         spin_unlock(&dbg_lock);
657 }
658
659 void dbg_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp)
660 {
661         int i, spc, dark = 0, dead = 0;
662         struct rb_node *rb;
663         struct ubifs_bud *bud;
664
665         spc = lp->free + lp->dirty;
666         if (spc < c->dead_wm)
667                 dead = spc;
668         else
669                 dark = ubifs_calc_dark(c, spc);
670
671         if (lp->flags & LPROPS_INDEX)
672                 printk(KERN_DEBUG "LEB %-7d free %-8d dirty %-8d used %-8d "
673                        "free + dirty %-8d flags %#x (", lp->lnum, lp->free,
674                        lp->dirty, c->leb_size - spc, spc, lp->flags);
675         else
676                 printk(KERN_DEBUG "LEB %-7d free %-8d dirty %-8d used %-8d "
677                        "free + dirty %-8d dark %-4d dead %-4d nodes fit %-3d "
678                        "flags %#-4x (", lp->lnum, lp->free, lp->dirty,
679                        c->leb_size - spc, spc, dark, dead,
680                        (int)(spc / UBIFS_MAX_NODE_SZ), lp->flags);
681
682         if (lp->flags & LPROPS_TAKEN) {
683                 if (lp->flags & LPROPS_INDEX)
684                         printk(KERN_CONT "index, taken");
685                 else
686                         printk(KERN_CONT "taken");
687         } else {
688                 const char *s;
689
690                 if (lp->flags & LPROPS_INDEX) {
691                         switch (lp->flags & LPROPS_CAT_MASK) {
692                         case LPROPS_DIRTY_IDX:
693                                 s = "dirty index";
694                                 break;
695                         case LPROPS_FRDI_IDX:
696                                 s = "freeable index";
697                                 break;
698                         default:
699                                 s = "index";
700                         }
701                 } else {
702                         switch (lp->flags & LPROPS_CAT_MASK) {
703                         case LPROPS_UNCAT:
704                                 s = "not categorized";
705                                 break;
706                         case LPROPS_DIRTY:
707                                 s = "dirty";
708                                 break;
709                         case LPROPS_FREE:
710                                 s = "free";
711                                 break;
712                         case LPROPS_EMPTY:
713                                 s = "empty";
714                                 break;
715                         case LPROPS_FREEABLE:
716                                 s = "freeable";
717                                 break;
718                         default:
719                                 s = NULL;
720                                 break;
721                         }
722                 }
723                 printk(KERN_CONT "%s", s);
724         }
725
726         for (rb = rb_first((struct rb_root *)&c->buds); rb; rb = rb_next(rb)) {
727                 bud = rb_entry(rb, struct ubifs_bud, rb);
728                 if (bud->lnum == lp->lnum) {
729                         int head = 0;
730                         for (i = 0; i < c->jhead_cnt; i++) {
731                                 if (lp->lnum == c->jheads[i].wbuf.lnum) {
732                                         printk(KERN_CONT ", jhead %s",
733                                                dbg_jhead(i));
734                                         head = 1;
735                                 }
736                         }
737                         if (!head)
738                                 printk(KERN_CONT ", bud of jhead %s",
739                                        dbg_jhead(bud->jhead));
740                 }
741         }
742         if (lp->lnum == c->gc_lnum)
743                 printk(KERN_CONT ", GC LEB");
744         printk(KERN_CONT ")\n");
745 }
746
747 void dbg_dump_lprops(struct ubifs_info *c)
748 {
749         int lnum, err;
750         struct ubifs_lprops lp;
751         struct ubifs_lp_stats lst;
752
753         printk(KERN_DEBUG "(pid %d) start dumping LEB properties\n",
754                current->pid);
755         ubifs_get_lp_stats(c, &lst);
756         dbg_dump_lstats(&lst);
757
758         for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) {
759                 err = ubifs_read_one_lp(c, lnum, &lp);
760                 if (err)
761                         ubifs_err("cannot read lprops for LEB %d", lnum);
762
763                 dbg_dump_lprop(c, &lp);
764         }
765         printk(KERN_DEBUG "(pid %d) finish dumping LEB properties\n",
766                current->pid);
767 }
768
769 void dbg_dump_lpt_info(struct ubifs_info *c)
770 {
771         int i;
772
773         spin_lock(&dbg_lock);
774         printk(KERN_DEBUG "(pid %d) dumping LPT information\n", current->pid);
775         printk(KERN_DEBUG "\tlpt_sz:        %lld\n", c->lpt_sz);
776         printk(KERN_DEBUG "\tpnode_sz:      %d\n", c->pnode_sz);
777         printk(KERN_DEBUG "\tnnode_sz:      %d\n", c->nnode_sz);
778         printk(KERN_DEBUG "\tltab_sz:       %d\n", c->ltab_sz);
779         printk(KERN_DEBUG "\tlsave_sz:      %d\n", c->lsave_sz);
780         printk(KERN_DEBUG "\tbig_lpt:       %d\n", c->big_lpt);
781         printk(KERN_DEBUG "\tlpt_hght:      %d\n", c->lpt_hght);
782         printk(KERN_DEBUG "\tpnode_cnt:     %d\n", c->pnode_cnt);
783         printk(KERN_DEBUG "\tnnode_cnt:     %d\n", c->nnode_cnt);
784         printk(KERN_DEBUG "\tdirty_pn_cnt:  %d\n", c->dirty_pn_cnt);
785         printk(KERN_DEBUG "\tdirty_nn_cnt:  %d\n", c->dirty_nn_cnt);
786         printk(KERN_DEBUG "\tlsave_cnt:     %d\n", c->lsave_cnt);
787         printk(KERN_DEBUG "\tspace_bits:    %d\n", c->space_bits);
788         printk(KERN_DEBUG "\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits);
789         printk(KERN_DEBUG "\tlpt_offs_bits: %d\n", c->lpt_offs_bits);
790         printk(KERN_DEBUG "\tlpt_spc_bits:  %d\n", c->lpt_spc_bits);
791         printk(KERN_DEBUG "\tpcnt_bits:     %d\n", c->pcnt_bits);
792         printk(KERN_DEBUG "\tlnum_bits:     %d\n", c->lnum_bits);
793         printk(KERN_DEBUG "\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs);
794         printk(KERN_DEBUG "\tLPT head is at %d:%d\n",
795                c->nhead_lnum, c->nhead_offs);
796         printk(KERN_DEBUG "\tLPT ltab is at %d:%d\n",
797                c->ltab_lnum, c->ltab_offs);
798         if (c->big_lpt)
799                 printk(KERN_DEBUG "\tLPT lsave is at %d:%d\n",
800                        c->lsave_lnum, c->lsave_offs);
801         for (i = 0; i < c->lpt_lebs; i++)
802                 printk(KERN_DEBUG "\tLPT LEB %d free %d dirty %d tgc %d "
803                        "cmt %d\n", i + c->lpt_first, c->ltab[i].free,
804                        c->ltab[i].dirty, c->ltab[i].tgc, c->ltab[i].cmt);
805         spin_unlock(&dbg_lock);
806 }
807
808 void dbg_dump_leb(const struct ubifs_info *c, int lnum)
809 {
810         struct ubifs_scan_leb *sleb;
811         struct ubifs_scan_node *snod;
812
813         if (dbg_failure_mode)
814                 return;
815
816         printk(KERN_DEBUG "(pid %d) start dumping LEB %d\n",
817                current->pid, lnum);
818         sleb = ubifs_scan(c, lnum, 0, c->dbg->buf, 0);
819         if (IS_ERR(sleb)) {
820                 ubifs_err("scan error %d", (int)PTR_ERR(sleb));
821                 return;
822         }
823
824         printk(KERN_DEBUG "LEB %d has %d nodes ending at %d\n", lnum,
825                sleb->nodes_cnt, sleb->endpt);
826
827         list_for_each_entry(snod, &sleb->nodes, list) {
828                 cond_resched();
829                 printk(KERN_DEBUG "Dumping node at LEB %d:%d len %d\n", lnum,
830                        snod->offs, snod->len);
831                 dbg_dump_node(c, snod->node);
832         }
833
834         printk(KERN_DEBUG "(pid %d) finish dumping LEB %d\n",
835                current->pid, lnum);
836         ubifs_scan_destroy(sleb);
837         return;
838 }
839
840 void dbg_dump_znode(const struct ubifs_info *c,
841                     const struct ubifs_znode *znode)
842 {
843         int n;
844         const struct ubifs_zbranch *zbr;
845
846         spin_lock(&dbg_lock);
847         if (znode->parent)
848                 zbr = &znode->parent->zbranch[znode->iip];
849         else
850                 zbr = &c->zroot;
851
852         printk(KERN_DEBUG "znode %p, LEB %d:%d len %d parent %p iip %d level %d"
853                " child_cnt %d flags %lx\n", znode, zbr->lnum, zbr->offs,
854                zbr->len, znode->parent, znode->iip, znode->level,
855                znode->child_cnt, znode->flags);
856
857         if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
858                 spin_unlock(&dbg_lock);
859                 return;
860         }
861
862         printk(KERN_DEBUG "zbranches:\n");
863         for (n = 0; n < znode->child_cnt; n++) {
864                 zbr = &znode->zbranch[n];
865                 if (znode->level > 0)
866                         printk(KERN_DEBUG "\t%d: znode %p LEB %d:%d len %d key "
867                                           "%s\n", n, zbr->znode, zbr->lnum,
868                                           zbr->offs, zbr->len,
869                                           DBGKEY(&zbr->key));
870                 else
871                         printk(KERN_DEBUG "\t%d: LNC %p LEB %d:%d len %d key "
872                                           "%s\n", n, zbr->znode, zbr->lnum,
873                                           zbr->offs, zbr->len,
874                                           DBGKEY(&zbr->key));
875         }
876         spin_unlock(&dbg_lock);
877 }
878
879 void dbg_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat)
880 {
881         int i;
882
883         printk(KERN_DEBUG "(pid %d) start dumping heap cat %d (%d elements)\n",
884                current->pid, cat, heap->cnt);
885         for (i = 0; i < heap->cnt; i++) {
886                 struct ubifs_lprops *lprops = heap->arr[i];
887
888                 printk(KERN_DEBUG "\t%d. LEB %d hpos %d free %d dirty %d "
889                        "flags %d\n", i, lprops->lnum, lprops->hpos,
890                        lprops->free, lprops->dirty, lprops->flags);
891         }
892         printk(KERN_DEBUG "(pid %d) finish dumping heap\n", current->pid);
893 }
894
895 void dbg_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
896                     struct ubifs_nnode *parent, int iip)
897 {
898         int i;
899
900         printk(KERN_DEBUG "(pid %d) dumping pnode:\n", current->pid);
901         printk(KERN_DEBUG "\taddress %zx parent %zx cnext %zx\n",
902                (size_t)pnode, (size_t)parent, (size_t)pnode->cnext);
903         printk(KERN_DEBUG "\tflags %lu iip %d level %d num %d\n",
904                pnode->flags, iip, pnode->level, pnode->num);
905         for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
906                 struct ubifs_lprops *lp = &pnode->lprops[i];
907
908                 printk(KERN_DEBUG "\t%d: free %d dirty %d flags %d lnum %d\n",
909                        i, lp->free, lp->dirty, lp->flags, lp->lnum);
910         }
911 }
912
913 void dbg_dump_tnc(struct ubifs_info *c)
914 {
915         struct ubifs_znode *znode;
916         int level;
917
918         printk(KERN_DEBUG "\n");
919         printk(KERN_DEBUG "(pid %d) start dumping TNC tree\n", current->pid);
920         znode = ubifs_tnc_levelorder_next(c->zroot.znode, NULL);
921         level = znode->level;
922         printk(KERN_DEBUG "== Level %d ==\n", level);
923         while (znode) {
924                 if (level != znode->level) {
925                         level = znode->level;
926                         printk(KERN_DEBUG "== Level %d ==\n", level);
927                 }
928                 dbg_dump_znode(c, znode);
929                 znode = ubifs_tnc_levelorder_next(c->zroot.znode, znode);
930         }
931         printk(KERN_DEBUG "(pid %d) finish dumping TNC tree\n", current->pid);
932 }
933
934 static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode,
935                       void *priv)
936 {
937         dbg_dump_znode(c, znode);
938         return 0;
939 }
940
941 /**
942  * dbg_dump_index - dump the on-flash index.
943  * @c: UBIFS file-system description object
944  *
945  * This function dumps whole UBIFS indexing B-tree, unlike 'dbg_dump_tnc()'
946  * which dumps only in-memory znodes and does not read znodes which from flash.
947  */
948 void dbg_dump_index(struct ubifs_info *c)
949 {
950         dbg_walk_index(c, NULL, dump_znode, NULL);
951 }
952
953 /**
954  * dbg_save_space_info - save information about flash space.
955  * @c: UBIFS file-system description object
956  *
957  * This function saves information about UBIFS free space, dirty space, etc, in
958  * order to check it later.
959  */
960 void dbg_save_space_info(struct ubifs_info *c)
961 {
962         struct ubifs_debug_info *d = c->dbg;
963
964         ubifs_get_lp_stats(c, &d->saved_lst);
965
966         spin_lock(&c->space_lock);
967         d->saved_free = ubifs_get_free_space_nolock(c);
968         spin_unlock(&c->space_lock);
969 }
970
971 /**
972  * dbg_check_space_info - check flash space information.
973  * @c: UBIFS file-system description object
974  *
975  * This function compares current flash space information with the information
976  * which was saved when the 'dbg_save_space_info()' function was called.
977  * Returns zero if the information has not changed, and %-EINVAL it it has
978  * changed.
979  */
980 int dbg_check_space_info(struct ubifs_info *c)
981 {
982         struct ubifs_debug_info *d = c->dbg;
983         struct ubifs_lp_stats lst;
984         long long avail, free;
985
986         spin_lock(&c->space_lock);
987         avail = ubifs_calc_available(c, c->min_idx_lebs);
988         spin_unlock(&c->space_lock);
989         free = ubifs_get_free_space(c);
990
991         if (free != d->saved_free) {
992                 ubifs_err("free space changed from %lld to %lld",
993                           d->saved_free, free);
994                 goto out;
995         }
996
997         return 0;
998
999 out:
1000         ubifs_msg("saved lprops statistics dump");
1001         dbg_dump_lstats(&d->saved_lst);
1002         ubifs_get_lp_stats(c, &lst);
1003
1004         ubifs_msg("current lprops statistics dump");
1005         dbg_dump_lstats(&lst);
1006
1007         spin_lock(&c->space_lock);
1008         dbg_dump_budg(c);
1009         spin_unlock(&c->space_lock);
1010         dump_stack();
1011         return -EINVAL;
1012 }
1013
1014 /**
1015  * dbg_check_synced_i_size - check synchronized inode size.
1016  * @inode: inode to check
1017  *
1018  * If inode is clean, synchronized inode size has to be equivalent to current
1019  * inode size. This function has to be called only for locked inodes (@i_mutex
1020  * has to be locked). Returns %0 if synchronized inode size if correct, and
1021  * %-EINVAL if not.
1022  */
1023 int dbg_check_synced_i_size(struct inode *inode)
1024 {
1025         int err = 0;
1026         struct ubifs_inode *ui = ubifs_inode(inode);
1027
1028         if (!(ubifs_chk_flags & UBIFS_CHK_GEN))
1029                 return 0;
1030         if (!S_ISREG(inode->i_mode))
1031                 return 0;
1032
1033         mutex_lock(&ui->ui_mutex);
1034         spin_lock(&ui->ui_lock);
1035         if (ui->ui_size != ui->synced_i_size && !ui->dirty) {
1036                 ubifs_err("ui_size is %lld, synced_i_size is %lld, but inode "
1037                           "is clean", ui->ui_size, ui->synced_i_size);
1038                 ubifs_err("i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino,
1039                           inode->i_mode, i_size_read(inode));
1040                 dbg_dump_stack();
1041                 err = -EINVAL;
1042         }
1043         spin_unlock(&ui->ui_lock);
1044         mutex_unlock(&ui->ui_mutex);
1045         return err;
1046 }
1047
1048 /*
1049  * dbg_check_dir - check directory inode size and link count.
1050  * @c: UBIFS file-system description object
1051  * @dir: the directory to calculate size for
1052  * @size: the result is returned here
1053  *
1054  * This function makes sure that directory size and link count are correct.
1055  * Returns zero in case of success and a negative error code in case of
1056  * failure.
1057  *
1058  * Note, it is good idea to make sure the @dir->i_mutex is locked before
1059  * calling this function.
1060  */
1061 int dbg_check_dir_size(struct ubifs_info *c, const struct inode *dir)
1062 {
1063         unsigned int nlink = 2;
1064         union ubifs_key key;
1065         struct ubifs_dent_node *dent, *pdent = NULL;
1066         struct qstr nm = { .name = NULL };
1067         loff_t size = UBIFS_INO_NODE_SZ;
1068
1069         if (!(ubifs_chk_flags & UBIFS_CHK_GEN))
1070                 return 0;
1071
1072         if (!S_ISDIR(dir->i_mode))
1073                 return 0;
1074
1075         lowest_dent_key(c, &key, dir->i_ino);
1076         while (1) {
1077                 int err;
1078
1079                 dent = ubifs_tnc_next_ent(c, &key, &nm);
1080                 if (IS_ERR(dent)) {
1081                         err = PTR_ERR(dent);
1082                         if (err == -ENOENT)
1083                                 break;
1084                         return err;
1085                 }
1086
1087                 nm.name = dent->name;
1088                 nm.len = le16_to_cpu(dent->nlen);
1089                 size += CALC_DENT_SIZE(nm.len);
1090                 if (dent->type == UBIFS_ITYPE_DIR)
1091                         nlink += 1;
1092                 kfree(pdent);
1093                 pdent = dent;
1094                 key_read(c, &dent->key, &key);
1095         }
1096         kfree(pdent);
1097
1098         if (i_size_read(dir) != size) {
1099                 ubifs_err("directory inode %lu has size %llu, "
1100                           "but calculated size is %llu", dir->i_ino,
1101                           (unsigned long long)i_size_read(dir),
1102                           (unsigned long long)size);
1103                 dump_stack();
1104                 return -EINVAL;
1105         }
1106         if (dir->i_nlink != nlink) {
1107                 ubifs_err("directory inode %lu has nlink %u, but calculated "
1108                           "nlink is %u", dir->i_ino, dir->i_nlink, nlink);
1109                 dump_stack();
1110                 return -EINVAL;
1111         }
1112
1113         return 0;
1114 }
1115
1116 /**
1117  * dbg_check_key_order - make sure that colliding keys are properly ordered.
1118  * @c: UBIFS file-system description object
1119  * @zbr1: first zbranch
1120  * @zbr2: following zbranch
1121  *
1122  * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of
1123  * names of the direntries/xentries which are referred by the keys. This
1124  * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes
1125  * sure the name of direntry/xentry referred by @zbr1 is less than
1126  * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not,
1127  * and a negative error code in case of failure.
1128  */
1129 static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1,
1130                                struct ubifs_zbranch *zbr2)
1131 {
1132         int err, nlen1, nlen2, cmp;
1133         struct ubifs_dent_node *dent1, *dent2;
1134         union ubifs_key key;
1135
1136         ubifs_assert(!keys_cmp(c, &zbr1->key, &zbr2->key));
1137         dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1138         if (!dent1)
1139                 return -ENOMEM;
1140         dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1141         if (!dent2) {
1142                 err = -ENOMEM;
1143                 goto out_free;
1144         }
1145
1146         err = ubifs_tnc_read_node(c, zbr1, dent1);
1147         if (err)
1148                 goto out_free;
1149         err = ubifs_validate_entry(c, dent1);
1150         if (err)
1151                 goto out_free;
1152
1153         err = ubifs_tnc_read_node(c, zbr2, dent2);
1154         if (err)
1155                 goto out_free;
1156         err = ubifs_validate_entry(c, dent2);
1157         if (err)
1158                 goto out_free;
1159
1160         /* Make sure node keys are the same as in zbranch */
1161         err = 1;
1162         key_read(c, &dent1->key, &key);
1163         if (keys_cmp(c, &zbr1->key, &key)) {
1164                 dbg_err("1st entry at %d:%d has key %s", zbr1->lnum,
1165                         zbr1->offs, DBGKEY(&key));
1166                 dbg_err("but it should have key %s according to tnc",
1167                         DBGKEY(&zbr1->key));
1168                 dbg_dump_node(c, dent1);
1169                 goto out_free;
1170         }
1171
1172         key_read(c, &dent2->key, &key);
1173         if (keys_cmp(c, &zbr2->key, &key)) {
1174                 dbg_err("2nd entry at %d:%d has key %s", zbr1->lnum,
1175                         zbr1->offs, DBGKEY(&key));
1176                 dbg_err("but it should have key %s according to tnc",
1177                         DBGKEY(&zbr2->key));
1178                 dbg_dump_node(c, dent2);
1179                 goto out_free;
1180         }
1181
1182         nlen1 = le16_to_cpu(dent1->nlen);
1183         nlen2 = le16_to_cpu(dent2->nlen);
1184
1185         cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2));
1186         if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) {
1187                 err = 0;
1188                 goto out_free;
1189         }
1190         if (cmp == 0 && nlen1 == nlen2)
1191                 dbg_err("2 xent/dent nodes with the same name");
1192         else
1193                 dbg_err("bad order of colliding key %s",
1194                         DBGKEY(&key));
1195
1196         ubifs_msg("first node at %d:%d\n", zbr1->lnum, zbr1->offs);
1197         dbg_dump_node(c, dent1);
1198         ubifs_msg("second node at %d:%d\n", zbr2->lnum, zbr2->offs);
1199         dbg_dump_node(c, dent2);
1200
1201 out_free:
1202         kfree(dent2);
1203         kfree(dent1);
1204         return err;
1205 }
1206
1207 /**
1208  * dbg_check_znode - check if znode is all right.
1209  * @c: UBIFS file-system description object
1210  * @zbr: zbranch which points to this znode
1211  *
1212  * This function makes sure that znode referred to by @zbr is all right.
1213  * Returns zero if it is, and %-EINVAL if it is not.
1214  */
1215 static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr)
1216 {
1217         struct ubifs_znode *znode = zbr->znode;
1218         struct ubifs_znode *zp = znode->parent;
1219         int n, err, cmp;
1220
1221         if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
1222                 err = 1;
1223                 goto out;
1224         }
1225         if (znode->level < 0) {
1226                 err = 2;
1227                 goto out;
1228         }
1229         if (znode->iip < 0 || znode->iip >= c->fanout) {
1230                 err = 3;
1231                 goto out;
1232         }
1233
1234         if (zbr->len == 0)
1235                 /* Only dirty zbranch may have no on-flash nodes */
1236                 if (!ubifs_zn_dirty(znode)) {
1237                         err = 4;
1238                         goto out;
1239                 }
1240
1241         if (ubifs_zn_dirty(znode)) {
1242                 /*
1243                  * If znode is dirty, its parent has to be dirty as well. The
1244                  * order of the operation is important, so we have to have
1245                  * memory barriers.
1246                  */
1247                 smp_mb();
1248                 if (zp && !ubifs_zn_dirty(zp)) {
1249                         /*
1250                          * The dirty flag is atomic and is cleared outside the
1251                          * TNC mutex, so znode's dirty flag may now have
1252                          * been cleared. The child is always cleared before the
1253                          * parent, so we just need to check again.
1254                          */
1255                         smp_mb();
1256                         if (ubifs_zn_dirty(znode)) {
1257                                 err = 5;
1258                                 goto out;
1259                         }
1260                 }
1261         }
1262
1263         if (zp) {
1264                 const union ubifs_key *min, *max;
1265
1266                 if (znode->level != zp->level - 1) {
1267                         err = 6;
1268                         goto out;
1269                 }
1270
1271                 /* Make sure the 'parent' pointer in our znode is correct */
1272                 err = ubifs_search_zbranch(c, zp, &zbr->key, &n);
1273                 if (!err) {
1274                         /* This zbranch does not exist in the parent */
1275                         err = 7;
1276                         goto out;
1277                 }
1278
1279                 if (znode->iip >= zp->child_cnt) {
1280                         err = 8;
1281                         goto out;
1282                 }
1283
1284                 if (znode->iip != n) {
1285                         /* This may happen only in case of collisions */
1286                         if (keys_cmp(c, &zp->zbranch[n].key,
1287                                      &zp->zbranch[znode->iip].key)) {
1288                                 err = 9;
1289                                 goto out;
1290                         }
1291                         n = znode->iip;
1292                 }
1293
1294                 /*
1295                  * Make sure that the first key in our znode is greater than or
1296                  * equal to the key in the pointing zbranch.
1297                  */
1298                 min = &zbr->key;
1299                 cmp = keys_cmp(c, min, &znode->zbranch[0].key);
1300                 if (cmp == 1) {
1301                         err = 10;
1302                         goto out;
1303                 }
1304
1305                 if (n + 1 < zp->child_cnt) {
1306                         max = &zp->zbranch[n + 1].key;
1307
1308                         /*
1309                          * Make sure the last key in our znode is less or
1310                          * equivalent than the key in the zbranch which goes
1311                          * after our pointing zbranch.
1312                          */
1313                         cmp = keys_cmp(c, max,
1314                                 &znode->zbranch[znode->child_cnt - 1].key);
1315                         if (cmp == -1) {
1316                                 err = 11;
1317                                 goto out;
1318                         }
1319                 }
1320         } else {
1321                 /* This may only be root znode */
1322                 if (zbr != &c->zroot) {
1323                         err = 12;
1324                         goto out;
1325                 }
1326         }
1327
1328         /*
1329          * Make sure that next key is greater or equivalent then the previous
1330          * one.
1331          */
1332         for (n = 1; n < znode->child_cnt; n++) {
1333                 cmp = keys_cmp(c, &znode->zbranch[n - 1].key,
1334                                &znode->zbranch[n].key);
1335                 if (cmp > 0) {
1336                         err = 13;
1337                         goto out;
1338                 }
1339                 if (cmp == 0) {
1340                         /* This can only be keys with colliding hash */
1341                         if (!is_hash_key(c, &znode->zbranch[n].key)) {
1342                                 err = 14;
1343                                 goto out;
1344                         }
1345
1346                         if (znode->level != 0 || c->replaying)
1347                                 continue;
1348
1349                         /*
1350                          * Colliding keys should follow binary order of
1351                          * corresponding xentry/dentry names.
1352                          */
1353                         err = dbg_check_key_order(c, &znode->zbranch[n - 1],
1354                                                   &znode->zbranch[n]);
1355                         if (err < 0)
1356                                 return err;
1357                         if (err) {
1358                                 err = 15;
1359                                 goto out;
1360                         }
1361                 }
1362         }
1363
1364         for (n = 0; n < znode->child_cnt; n++) {
1365                 if (!znode->zbranch[n].znode &&
1366                     (znode->zbranch[n].lnum == 0 ||
1367                      znode->zbranch[n].len == 0)) {
1368                         err = 16;
1369                         goto out;
1370                 }
1371
1372                 if (znode->zbranch[n].lnum != 0 &&
1373                     znode->zbranch[n].len == 0) {
1374                         err = 17;
1375                         goto out;
1376                 }
1377
1378                 if (znode->zbranch[n].lnum == 0 &&
1379                     znode->zbranch[n].len != 0) {
1380                         err = 18;
1381                         goto out;
1382                 }
1383
1384                 if (znode->zbranch[n].lnum == 0 &&
1385                     znode->zbranch[n].offs != 0) {
1386                         err = 19;
1387                         goto out;
1388                 }
1389
1390                 if (znode->level != 0 && znode->zbranch[n].znode)
1391                         if (znode->zbranch[n].znode->parent != znode) {
1392                                 err = 20;
1393                                 goto out;
1394                         }
1395         }
1396
1397         return 0;
1398
1399 out:
1400         ubifs_err("failed, error %d", err);
1401         ubifs_msg("dump of the znode");
1402         dbg_dump_znode(c, znode);
1403         if (zp) {
1404                 ubifs_msg("dump of the parent znode");
1405                 dbg_dump_znode(c, zp);
1406         }
1407         dump_stack();
1408         return -EINVAL;
1409 }
1410
1411 /**
1412  * dbg_check_tnc - check TNC tree.
1413  * @c: UBIFS file-system description object
1414  * @extra: do extra checks that are possible at start commit
1415  *
1416  * This function traverses whole TNC tree and checks every znode. Returns zero
1417  * if everything is all right and %-EINVAL if something is wrong with TNC.
1418  */
1419 int dbg_check_tnc(struct ubifs_info *c, int extra)
1420 {
1421         struct ubifs_znode *znode;
1422         long clean_cnt = 0, dirty_cnt = 0;
1423         int err, last;
1424
1425         if (!(ubifs_chk_flags & UBIFS_CHK_TNC))
1426                 return 0;
1427
1428         ubifs_assert(mutex_is_locked(&c->tnc_mutex));
1429         if (!c->zroot.znode)
1430                 return 0;
1431
1432         znode = ubifs_tnc_postorder_first(c->zroot.znode);
1433         while (1) {
1434                 struct ubifs_znode *prev;
1435                 struct ubifs_zbranch *zbr;
1436
1437                 if (!znode->parent)
1438                         zbr = &c->zroot;
1439                 else
1440                         zbr = &znode->parent->zbranch[znode->iip];
1441
1442                 err = dbg_check_znode(c, zbr);
1443                 if (err)
1444                         return err;
1445
1446                 if (extra) {
1447                         if (ubifs_zn_dirty(znode))
1448                                 dirty_cnt += 1;
1449                         else
1450                                 clean_cnt += 1;
1451                 }
1452
1453                 prev = znode;
1454                 znode = ubifs_tnc_postorder_next(znode);
1455                 if (!znode)
1456                         break;
1457
1458                 /*
1459                  * If the last key of this znode is equivalent to the first key
1460                  * of the next znode (collision), then check order of the keys.
1461                  */
1462                 last = prev->child_cnt - 1;
1463                 if (prev->level == 0 && znode->level == 0 && !c->replaying &&
1464                     !keys_cmp(c, &prev->zbranch[last].key,
1465                               &znode->zbranch[0].key)) {
1466                         err = dbg_check_key_order(c, &prev->zbranch[last],
1467                                                   &znode->zbranch[0]);
1468                         if (err < 0)
1469                                 return err;
1470                         if (err) {
1471                                 ubifs_msg("first znode");
1472                                 dbg_dump_znode(c, prev);
1473                                 ubifs_msg("second znode");
1474                                 dbg_dump_znode(c, znode);
1475                                 return -EINVAL;
1476                         }
1477                 }
1478         }
1479
1480         if (extra) {
1481                 if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) {
1482                         ubifs_err("incorrect clean_zn_cnt %ld, calculated %ld",
1483                                   atomic_long_read(&c->clean_zn_cnt),
1484                                   clean_cnt);
1485                         return -EINVAL;
1486                 }
1487                 if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) {
1488                         ubifs_err("incorrect dirty_zn_cnt %ld, calculated %ld",
1489                                   atomic_long_read(&c->dirty_zn_cnt),
1490                                   dirty_cnt);
1491                         return -EINVAL;
1492                 }
1493         }
1494
1495         return 0;
1496 }
1497
1498 /**
1499  * dbg_walk_index - walk the on-flash index.
1500  * @c: UBIFS file-system description object
1501  * @leaf_cb: called for each leaf node
1502  * @znode_cb: called for each indexing node
1503  * @priv: private data which is passed to callbacks
1504  *
1505  * This function walks the UBIFS index and calls the @leaf_cb for each leaf
1506  * node and @znode_cb for each indexing node. Returns zero in case of success
1507  * and a negative error code in case of failure.
1508  *
1509  * It would be better if this function removed every znode it pulled to into
1510  * the TNC, so that the behavior more closely matched the non-debugging
1511  * behavior.
1512  */
1513 int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb,
1514                    dbg_znode_callback znode_cb, void *priv)
1515 {
1516         int err;
1517         struct ubifs_zbranch *zbr;
1518         struct ubifs_znode *znode, *child;
1519
1520         mutex_lock(&c->tnc_mutex);
1521         /* If the root indexing node is not in TNC - pull it */
1522         if (!c->zroot.znode) {
1523                 c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1524                 if (IS_ERR(c->zroot.znode)) {
1525                         err = PTR_ERR(c->zroot.znode);
1526                         c->zroot.znode = NULL;
1527                         goto out_unlock;
1528                 }
1529         }
1530
1531         /*
1532          * We are going to traverse the indexing tree in the postorder manner.
1533          * Go down and find the leftmost indexing node where we are going to
1534          * start from.
1535          */
1536         znode = c->zroot.znode;
1537         while (znode->level > 0) {
1538                 zbr = &znode->zbranch[0];
1539                 child = zbr->znode;
1540                 if (!child) {
1541                         child = ubifs_load_znode(c, zbr, znode, 0);
1542                         if (IS_ERR(child)) {
1543                                 err = PTR_ERR(child);
1544                                 goto out_unlock;
1545                         }
1546                         zbr->znode = child;
1547                 }
1548
1549                 znode = child;
1550         }
1551
1552         /* Iterate over all indexing nodes */
1553         while (1) {
1554                 int idx;
1555
1556                 cond_resched();
1557
1558                 if (znode_cb) {
1559                         err = znode_cb(c, znode, priv);
1560                         if (err) {
1561                                 ubifs_err("znode checking function returned "
1562                                           "error %d", err);
1563                                 dbg_dump_znode(c, znode);
1564                                 goto out_dump;
1565                         }
1566                 }
1567                 if (leaf_cb && znode->level == 0) {
1568                         for (idx = 0; idx < znode->child_cnt; idx++) {
1569                                 zbr = &znode->zbranch[idx];
1570                                 err = leaf_cb(c, zbr, priv);
1571                                 if (err) {
1572                                         ubifs_err("leaf checking function "
1573                                                   "returned error %d, for leaf "
1574                                                   "at LEB %d:%d",
1575                                                   err, zbr->lnum, zbr->offs);
1576                                         goto out_dump;
1577                                 }
1578                         }
1579                 }
1580
1581                 if (!znode->parent)
1582                         break;
1583
1584                 idx = znode->iip + 1;
1585                 znode = znode->parent;
1586                 if (idx < znode->child_cnt) {
1587                         /* Switch to the next index in the parent */
1588                         zbr = &znode->zbranch[idx];
1589                         child = zbr->znode;
1590                         if (!child) {
1591                                 child = ubifs_load_znode(c, zbr, znode, idx);
1592                                 if (IS_ERR(child)) {
1593                                         err = PTR_ERR(child);
1594                                         goto out_unlock;
1595                                 }
1596                                 zbr->znode = child;
1597                         }
1598                         znode = child;
1599                 } else
1600                         /*
1601                          * This is the last child, switch to the parent and
1602                          * continue.
1603                          */
1604                         continue;
1605
1606                 /* Go to the lowest leftmost znode in the new sub-tree */
1607                 while (znode->level > 0) {
1608                         zbr = &znode->zbranch[0];
1609                         child = zbr->znode;
1610                         if (!child) {
1611                                 child = ubifs_load_znode(c, zbr, znode, 0);
1612                                 if (IS_ERR(child)) {
1613                                         err = PTR_ERR(child);
1614                                         goto out_unlock;
1615                                 }
1616                                 zbr->znode = child;
1617                         }
1618                         znode = child;
1619                 }
1620         }
1621
1622         mutex_unlock(&c->tnc_mutex);
1623         return 0;
1624
1625 out_dump:
1626         if (znode->parent)
1627                 zbr = &znode->parent->zbranch[znode->iip];
1628         else
1629                 zbr = &c->zroot;
1630         ubifs_msg("dump of znode at LEB %d:%d", zbr->lnum, zbr->offs);
1631         dbg_dump_znode(c, znode);
1632 out_unlock:
1633         mutex_unlock(&c->tnc_mutex);
1634         return err;
1635 }
1636
1637 /**
1638  * add_size - add znode size to partially calculated index size.
1639  * @c: UBIFS file-system description object
1640  * @znode: znode to add size for
1641  * @priv: partially calculated index size
1642  *
1643  * This is a helper function for 'dbg_check_idx_size()' which is called for
1644  * every indexing node and adds its size to the 'long long' variable pointed to
1645  * by @priv.
1646  */
1647 static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv)
1648 {
1649         long long *idx_size = priv;
1650         int add;
1651
1652         add = ubifs_idx_node_sz(c, znode->child_cnt);
1653         add = ALIGN(add, 8);
1654         *idx_size += add;
1655         return 0;
1656 }
1657
1658 /**
1659  * dbg_check_idx_size - check index size.
1660  * @c: UBIFS file-system description object
1661  * @idx_size: size to check
1662  *
1663  * This function walks the UBIFS index, calculates its size and checks that the
1664  * size is equivalent to @idx_size. Returns zero in case of success and a
1665  * negative error code in case of failure.
1666  */
1667 int dbg_check_idx_size(struct ubifs_info *c, long long idx_size)
1668 {
1669         int err;
1670         long long calc = 0;
1671
1672         if (!(ubifs_chk_flags & UBIFS_CHK_IDX_SZ))
1673                 return 0;
1674
1675         err = dbg_walk_index(c, NULL, add_size, &calc);
1676         if (err) {
1677                 ubifs_err("error %d while walking the index", err);
1678                 return err;
1679         }
1680
1681         if (calc != idx_size) {
1682                 ubifs_err("index size check failed: calculated size is %lld, "
1683                           "should be %lld", calc, idx_size);
1684                 dump_stack();
1685                 return -EINVAL;
1686         }
1687
1688         return 0;
1689 }
1690
1691 /**
1692  * struct fsck_inode - information about an inode used when checking the file-system.
1693  * @rb: link in the RB-tree of inodes
1694  * @inum: inode number
1695  * @mode: inode type, permissions, etc
1696  * @nlink: inode link count
1697  * @xattr_cnt: count of extended attributes
1698  * @references: how many directory/xattr entries refer this inode (calculated
1699  *              while walking the index)
1700  * @calc_cnt: for directory inode count of child directories
1701  * @size: inode size (read from on-flash inode)
1702  * @xattr_sz: summary size of all extended attributes (read from on-flash
1703  *            inode)
1704  * @calc_sz: for directories calculated directory size
1705  * @calc_xcnt: count of extended attributes
1706  * @calc_xsz: calculated summary size of all extended attributes
1707  * @xattr_nms: sum of lengths of all extended attribute names belonging to this
1708  *             inode (read from on-flash inode)
1709  * @calc_xnms: calculated sum of lengths of all extended attribute names
1710  */
1711 struct fsck_inode {
1712         struct rb_node rb;
1713         ino_t inum;
1714         umode_t mode;
1715         unsigned int nlink;
1716         unsigned int xattr_cnt;
1717         int references;
1718         int calc_cnt;
1719         long long size;
1720         unsigned int xattr_sz;
1721         long long calc_sz;
1722         long long calc_xcnt;
1723         long long calc_xsz;
1724         unsigned int xattr_nms;
1725         long long calc_xnms;
1726 };
1727
1728 /**
1729  * struct fsck_data - private FS checking information.
1730  * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects)
1731  */
1732 struct fsck_data {
1733         struct rb_root inodes;
1734 };
1735
1736 /**
1737  * add_inode - add inode information to RB-tree of inodes.
1738  * @c: UBIFS file-system description object
1739  * @fsckd: FS checking information
1740  * @ino: raw UBIFS inode to add
1741  *
1742  * This is a helper function for 'check_leaf()' which adds information about
1743  * inode @ino to the RB-tree of inodes. Returns inode information pointer in
1744  * case of success and a negative error code in case of failure.
1745  */
1746 static struct fsck_inode *add_inode(struct ubifs_info *c,
1747                                     struct fsck_data *fsckd,
1748                                     struct ubifs_ino_node *ino)
1749 {
1750         struct rb_node **p, *parent = NULL;
1751         struct fsck_inode *fscki;
1752         ino_t inum = key_inum_flash(c, &ino->key);
1753
1754         p = &fsckd->inodes.rb_node;
1755         while (*p) {
1756                 parent = *p;
1757                 fscki = rb_entry(parent, struct fsck_inode, rb);
1758                 if (inum < fscki->inum)
1759                         p = &(*p)->rb_left;
1760                 else if (inum > fscki->inum)
1761                         p = &(*p)->rb_right;
1762                 else
1763                         return fscki;
1764         }
1765
1766         if (inum > c->highest_inum) {
1767                 ubifs_err("too high inode number, max. is %lu",
1768                           (unsigned long)c->highest_inum);
1769                 return ERR_PTR(-EINVAL);
1770         }
1771
1772         fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS);
1773         if (!fscki)
1774                 return ERR_PTR(-ENOMEM);
1775
1776         fscki->inum = inum;
1777         fscki->nlink = le32_to_cpu(ino->nlink);
1778         fscki->size = le64_to_cpu(ino->size);
1779         fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
1780         fscki->xattr_sz = le32_to_cpu(ino->xattr_size);
1781         fscki->xattr_nms = le32_to_cpu(ino->xattr_names);
1782         fscki->mode = le32_to_cpu(ino->mode);
1783         if (S_ISDIR(fscki->mode)) {
1784                 fscki->calc_sz = UBIFS_INO_NODE_SZ;
1785                 fscki->calc_cnt = 2;
1786         }
1787         rb_link_node(&fscki->rb, parent, p);
1788         rb_insert_color(&fscki->rb, &fsckd->inodes);
1789         return fscki;
1790 }
1791
1792 /**
1793  * search_inode - search inode in the RB-tree of inodes.
1794  * @fsckd: FS checking information
1795  * @inum: inode number to search
1796  *
1797  * This is a helper function for 'check_leaf()' which searches inode @inum in
1798  * the RB-tree of inodes and returns an inode information pointer or %NULL if
1799  * the inode was not found.
1800  */
1801 static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum)
1802 {
1803         struct rb_node *p;
1804         struct fsck_inode *fscki;
1805
1806         p = fsckd->inodes.rb_node;
1807         while (p) {
1808                 fscki = rb_entry(p, struct fsck_inode, rb);
1809                 if (inum < fscki->inum)
1810                         p = p->rb_left;
1811                 else if (inum > fscki->inum)
1812                         p = p->rb_right;
1813                 else
1814                         return fscki;
1815         }
1816         return NULL;
1817 }
1818
1819 /**
1820  * read_add_inode - read inode node and add it to RB-tree of inodes.
1821  * @c: UBIFS file-system description object
1822  * @fsckd: FS checking information
1823  * @inum: inode number to read
1824  *
1825  * This is a helper function for 'check_leaf()' which finds inode node @inum in
1826  * the index, reads it, and adds it to the RB-tree of inodes. Returns inode
1827  * information pointer in case of success and a negative error code in case of
1828  * failure.
1829  */
1830 static struct fsck_inode *read_add_inode(struct ubifs_info *c,
1831                                          struct fsck_data *fsckd, ino_t inum)
1832 {
1833         int n, err;
1834         union ubifs_key key;
1835         struct ubifs_znode *znode;
1836         struct ubifs_zbranch *zbr;
1837         struct ubifs_ino_node *ino;
1838         struct fsck_inode *fscki;
1839
1840         fscki = search_inode(fsckd, inum);
1841         if (fscki)
1842                 return fscki;
1843
1844         ino_key_init(c, &key, inum);
1845         err = ubifs_lookup_level0(c, &key, &znode, &n);
1846         if (!err) {
1847                 ubifs_err("inode %lu not found in index", (unsigned long)inum);
1848                 return ERR_PTR(-ENOENT);
1849         } else if (err < 0) {
1850                 ubifs_err("error %d while looking up inode %lu",
1851                           err, (unsigned long)inum);
1852                 return ERR_PTR(err);
1853         }
1854
1855         zbr = &znode->zbranch[n];
1856         if (zbr->len < UBIFS_INO_NODE_SZ) {
1857                 ubifs_err("bad node %lu node length %d",
1858                           (unsigned long)inum, zbr->len);
1859                 return ERR_PTR(-EINVAL);
1860         }
1861
1862         ino = kmalloc(zbr->len, GFP_NOFS);
1863         if (!ino)
1864                 return ERR_PTR(-ENOMEM);
1865
1866         err = ubifs_tnc_read_node(c, zbr, ino);
1867         if (err) {
1868                 ubifs_err("cannot read inode node at LEB %d:%d, error %d",
1869                           zbr->lnum, zbr->offs, err);
1870                 kfree(ino);
1871                 return ERR_PTR(err);
1872         }
1873
1874         fscki = add_inode(c, fsckd, ino);
1875         kfree(ino);
1876         if (IS_ERR(fscki)) {
1877                 ubifs_err("error %ld while adding inode %lu node",
1878                           PTR_ERR(fscki), (unsigned long)inum);
1879                 return fscki;
1880         }
1881
1882         return fscki;
1883 }
1884
1885 /**
1886  * check_leaf - check leaf node.
1887  * @c: UBIFS file-system description object
1888  * @zbr: zbranch of the leaf node to check
1889  * @priv: FS checking information
1890  *
1891  * This is a helper function for 'dbg_check_filesystem()' which is called for
1892  * every single leaf node while walking the indexing tree. It checks that the
1893  * leaf node referred from the indexing tree exists, has correct CRC, and does
1894  * some other basic validation. This function is also responsible for building
1895  * an RB-tree of inodes - it adds all inodes into the RB-tree. It also
1896  * calculates reference count, size, etc for each inode in order to later
1897  * compare them to the information stored inside the inodes and detect possible
1898  * inconsistencies. Returns zero in case of success and a negative error code
1899  * in case of failure.
1900  */
1901 static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr,
1902                       void *priv)
1903 {
1904         ino_t inum;
1905         void *node;
1906         struct ubifs_ch *ch;
1907         int err, type = key_type(c, &zbr->key);
1908         struct fsck_inode *fscki;
1909
1910         if (zbr->len < UBIFS_CH_SZ) {
1911                 ubifs_err("bad leaf length %d (LEB %d:%d)",
1912                           zbr->len, zbr->lnum, zbr->offs);
1913                 return -EINVAL;
1914         }
1915
1916         node = kmalloc(zbr->len, GFP_NOFS);
1917         if (!node)
1918                 return -ENOMEM;
1919
1920         err = ubifs_tnc_read_node(c, zbr, node);
1921         if (err) {
1922                 ubifs_err("cannot read leaf node at LEB %d:%d, error %d",
1923                           zbr->lnum, zbr->offs, err);
1924                 goto out_free;
1925         }
1926
1927         /* If this is an inode node, add it to RB-tree of inodes */
1928         if (type == UBIFS_INO_KEY) {
1929                 fscki = add_inode(c, priv, node);
1930                 if (IS_ERR(fscki)) {
1931                         err = PTR_ERR(fscki);
1932                         ubifs_err("error %d while adding inode node", err);
1933                         goto out_dump;
1934                 }
1935                 goto out;
1936         }
1937
1938         if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY &&
1939             type != UBIFS_DATA_KEY) {
1940                 ubifs_err("unexpected node type %d at LEB %d:%d",
1941                           type, zbr->lnum, zbr->offs);
1942                 err = -EINVAL;
1943                 goto out_free;
1944         }
1945
1946         ch = node;
1947         if (le64_to_cpu(ch->sqnum) > c->max_sqnum) {
1948                 ubifs_err("too high sequence number, max. is %llu",
1949                           c->max_sqnum);
1950                 err = -EINVAL;
1951                 goto out_dump;
1952         }
1953
1954         if (type == UBIFS_DATA_KEY) {
1955                 long long blk_offs;
1956                 struct ubifs_data_node *dn = node;
1957
1958                 /*
1959                  * Search the inode node this data node belongs to and insert
1960                  * it to the RB-tree of inodes.
1961                  */
1962                 inum = key_inum_flash(c, &dn->key);
1963                 fscki = read_add_inode(c, priv, inum);
1964                 if (IS_ERR(fscki)) {
1965                         err = PTR_ERR(fscki);
1966                         ubifs_err("error %d while processing data node and "
1967                                   "trying to find inode node %lu",
1968                                   err, (unsigned long)inum);
1969                         goto out_dump;
1970                 }
1971
1972                 /* Make sure the data node is within inode size */
1973                 blk_offs = key_block_flash(c, &dn->key);
1974                 blk_offs <<= UBIFS_BLOCK_SHIFT;
1975                 blk_offs += le32_to_cpu(dn->size);
1976                 if (blk_offs > fscki->size) {
1977                         ubifs_err("data node at LEB %d:%d is not within inode "
1978                                   "size %lld", zbr->lnum, zbr->offs,
1979                                   fscki->size);
1980                         err = -EINVAL;
1981                         goto out_dump;
1982                 }
1983         } else {
1984                 int nlen;
1985                 struct ubifs_dent_node *dent = node;
1986                 struct fsck_inode *fscki1;
1987
1988                 err = ubifs_validate_entry(c, dent);
1989                 if (err)
1990                         goto out_dump;
1991
1992                 /*
1993                  * Search the inode node this entry refers to and the parent
1994                  * inode node and insert them to the RB-tree of inodes.
1995                  */
1996                 inum = le64_to_cpu(dent->inum);
1997                 fscki = read_add_inode(c, priv, inum);
1998                 if (IS_ERR(fscki)) {
1999                         err = PTR_ERR(fscki);
2000                         ubifs_err("error %d while processing entry node and "
2001                                   "trying to find inode node %lu",
2002                                   err, (unsigned long)inum);
2003                         goto out_dump;
2004                 }
2005
2006                 /* Count how many direntries or xentries refers this inode */
2007                 fscki->references += 1;
2008
2009                 inum = key_inum_flash(c, &dent->key);
2010                 fscki1 = read_add_inode(c, priv, inum);
2011                 if (IS_ERR(fscki1)) {
2012                         err = PTR_ERR(fscki1);
2013                         ubifs_err("error %d while processing entry node and "
2014                                   "trying to find parent inode node %lu",
2015                                   err, (unsigned long)inum);
2016                         goto out_dump;
2017                 }
2018
2019                 nlen = le16_to_cpu(dent->nlen);
2020                 if (type == UBIFS_XENT_KEY) {
2021                         fscki1->calc_xcnt += 1;
2022                         fscki1->calc_xsz += CALC_DENT_SIZE(nlen);
2023                         fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size);
2024                         fscki1->calc_xnms += nlen;
2025                 } else {
2026                         fscki1->calc_sz += CALC_DENT_SIZE(nlen);
2027                         if (dent->type == UBIFS_ITYPE_DIR)
2028                                 fscki1->calc_cnt += 1;
2029                 }
2030         }
2031
2032 out:
2033         kfree(node);
2034         return 0;
2035
2036 out_dump:
2037         ubifs_msg("dump of node at LEB %d:%d", zbr->lnum, zbr->offs);
2038         dbg_dump_node(c, node);
2039 out_free:
2040         kfree(node);
2041         return err;
2042 }
2043
2044 /**
2045  * free_inodes - free RB-tree of inodes.
2046  * @fsckd: FS checking information
2047  */
2048 static void free_inodes(struct fsck_data *fsckd)
2049 {
2050         struct rb_node *this = fsckd->inodes.rb_node;
2051         struct fsck_inode *fscki;
2052
2053         while (this) {
2054                 if (this->rb_left)
2055                         this = this->rb_left;
2056                 else if (this->rb_right)
2057                         this = this->rb_right;
2058                 else {
2059                         fscki = rb_entry(this, struct fsck_inode, rb);
2060                         this = rb_parent(this);
2061                         if (this) {
2062                                 if (this->rb_left == &fscki->rb)
2063                                         this->rb_left = NULL;
2064                                 else
2065                                         this->rb_right = NULL;
2066                         }
2067                         kfree(fscki);
2068                 }
2069         }
2070 }
2071
2072 /**
2073  * check_inodes - checks all inodes.
2074  * @c: UBIFS file-system description object
2075  * @fsckd: FS checking information
2076  *
2077  * This is a helper function for 'dbg_check_filesystem()' which walks the
2078  * RB-tree of inodes after the index scan has been finished, and checks that
2079  * inode nlink, size, etc are correct. Returns zero if inodes are fine,
2080  * %-EINVAL if not, and a negative error code in case of failure.
2081  */
2082 static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd)
2083 {
2084         int n, err;
2085         union ubifs_key key;
2086         struct ubifs_znode *znode;
2087         struct ubifs_zbranch *zbr;
2088         struct ubifs_ino_node *ino;
2089         struct fsck_inode *fscki;
2090         struct rb_node *this = rb_first(&fsckd->inodes);
2091
2092         while (this) {
2093                 fscki = rb_entry(this, struct fsck_inode, rb);
2094                 this = rb_next(this);
2095
2096                 if (S_ISDIR(fscki->mode)) {
2097                         /*
2098                          * Directories have to have exactly one reference (they
2099                          * cannot have hardlinks), although root inode is an
2100                          * exception.
2101                          */
2102                         if (fscki->inum != UBIFS_ROOT_INO &&
2103                             fscki->references != 1) {
2104                                 ubifs_err("directory inode %lu has %d "
2105                                           "direntries which refer it, but "
2106                                           "should be 1",
2107                                           (unsigned long)fscki->inum,
2108                                           fscki->references);
2109                                 goto out_dump;
2110                         }
2111                         if (fscki->inum == UBIFS_ROOT_INO &&
2112                             fscki->references != 0) {
2113                                 ubifs_err("root inode %lu has non-zero (%d) "
2114                                           "direntries which refer it",
2115                                           (unsigned long)fscki->inum,
2116                                           fscki->references);
2117                                 goto out_dump;
2118                         }
2119                         if (fscki->calc_sz != fscki->size) {
2120                                 ubifs_err("directory inode %lu size is %lld, "
2121                                           "but calculated size is %lld",
2122                                           (unsigned long)fscki->inum,
2123                                           fscki->size, fscki->calc_sz);
2124                                 goto out_dump;
2125                         }
2126                         if (fscki->calc_cnt != fscki->nlink) {
2127                                 ubifs_err("directory inode %lu nlink is %d, "
2128                                           "but calculated nlink is %d",
2129                                           (unsigned long)fscki->inum,
2130                                           fscki->nlink, fscki->calc_cnt);
2131                                 goto out_dump;
2132                         }
2133                 } else {
2134                         if (fscki->references != fscki->nlink) {
2135                                 ubifs_err("inode %lu nlink is %d, but "
2136                                           "calculated nlink is %d",
2137                                           (unsigned long)fscki->inum,
2138                                           fscki->nlink, fscki->references);
2139                                 goto out_dump;
2140                         }
2141                 }
2142                 if (fscki->xattr_sz != fscki->calc_xsz) {
2143                         ubifs_err("inode %lu has xattr size %u, but "
2144                                   "calculated size is %lld",
2145                                   (unsigned long)fscki->inum, fscki->xattr_sz,
2146                                   fscki->calc_xsz);
2147                         goto out_dump;
2148                 }
2149                 if (fscki->xattr_cnt != fscki->calc_xcnt) {
2150                         ubifs_err("inode %lu has %u xattrs, but "
2151                                   "calculated count is %lld",
2152                                   (unsigned long)fscki->inum,
2153                                   fscki->xattr_cnt, fscki->calc_xcnt);
2154                         goto out_dump;
2155                 }
2156                 if (fscki->xattr_nms != fscki->calc_xnms) {
2157                         ubifs_err("inode %lu has xattr names' size %u, but "
2158                                   "calculated names' size is %lld",
2159                                   (unsigned long)fscki->inum, fscki->xattr_nms,
2160                                   fscki->calc_xnms);
2161                         goto out_dump;
2162                 }
2163         }
2164
2165         return 0;
2166
2167 out_dump:
2168         /* Read the bad inode and dump it */
2169         ino_key_init(c, &key, fscki->inum);
2170         err = ubifs_lookup_level0(c, &key, &znode, &n);
2171         if (!err) {
2172                 ubifs_err("inode %lu not found in index",
2173                           (unsigned long)fscki->inum);
2174                 return -ENOENT;
2175         } else if (err < 0) {
2176                 ubifs_err("error %d while looking up inode %lu",
2177                           err, (unsigned long)fscki->inum);
2178                 return err;
2179         }
2180
2181         zbr = &znode->zbranch[n];
2182         ino = kmalloc(zbr->len, GFP_NOFS);
2183         if (!ino)
2184                 return -ENOMEM;
2185
2186         err = ubifs_tnc_read_node(c, zbr, ino);
2187         if (err) {
2188                 ubifs_err("cannot read inode node at LEB %d:%d, error %d",
2189                           zbr->lnum, zbr->offs, err);
2190                 kfree(ino);
2191                 return err;
2192         }
2193
2194         ubifs_msg("dump of the inode %lu sitting in LEB %d:%d",
2195                   (unsigned long)fscki->inum, zbr->lnum, zbr->offs);
2196         dbg_dump_node(c, ino);
2197         kfree(ino);
2198         return -EINVAL;
2199 }
2200
2201 /**
2202  * dbg_check_filesystem - check the file-system.
2203  * @c: UBIFS file-system description object
2204  *
2205  * This function checks the file system, namely:
2206  * o makes sure that all leaf nodes exist and their CRCs are correct;
2207  * o makes sure inode nlink, size, xattr size/count are correct (for all
2208  *   inodes).
2209  *
2210  * The function reads whole indexing tree and all nodes, so it is pretty
2211  * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if
2212  * not, and a negative error code in case of failure.
2213  */
2214 int dbg_check_filesystem(struct ubifs_info *c)
2215 {
2216         int err;
2217         struct fsck_data fsckd;
2218
2219         if (!(ubifs_chk_flags & UBIFS_CHK_FS))
2220                 return 0;
2221
2222         fsckd.inodes = RB_ROOT;
2223         err = dbg_walk_index(c, check_leaf, NULL, &fsckd);
2224         if (err)
2225                 goto out_free;
2226
2227         err = check_inodes(c, &fsckd);
2228         if (err)
2229                 goto out_free;
2230
2231         free_inodes(&fsckd);
2232         return 0;
2233
2234 out_free:
2235         ubifs_err("file-system check failed with error %d", err);
2236         dump_stack();
2237         free_inodes(&fsckd);
2238         return err;
2239 }
2240
2241 static int invocation_cnt;
2242
2243 int dbg_force_in_the_gaps(void)
2244 {
2245         if (!dbg_force_in_the_gaps_enabled)
2246                 return 0;
2247         /* Force in-the-gaps every 8th commit */
2248         return !((invocation_cnt++) & 0x7);
2249 }
2250
2251 /* Failure mode for recovery testing */
2252
2253 #define chance(n, d) (simple_rand() <= (n) * 32768LL / (d))
2254
2255 struct failure_mode_info {
2256         struct list_head list;
2257         struct ubifs_info *c;
2258 };
2259
2260 static LIST_HEAD(fmi_list);
2261 static DEFINE_SPINLOCK(fmi_lock);
2262
2263 static unsigned int next;
2264
2265 static int simple_rand(void)
2266 {
2267         if (next == 0)
2268                 next = current->pid;
2269         next = next * 1103515245 + 12345;
2270         return (next >> 16) & 32767;
2271 }
2272
2273 static void failure_mode_init(struct ubifs_info *c)
2274 {
2275         struct failure_mode_info *fmi;
2276
2277         fmi = kmalloc(sizeof(struct failure_mode_info), GFP_NOFS);
2278         if (!fmi) {
2279                 ubifs_err("Failed to register failure mode - no memory");
2280                 return;
2281         }
2282         fmi->c = c;
2283         spin_lock(&fmi_lock);
2284         list_add_tail(&fmi->list, &fmi_list);
2285         spin_unlock(&fmi_lock);
2286 }
2287
2288 static void failure_mode_exit(struct ubifs_info *c)
2289 {
2290         struct failure_mode_info *fmi, *tmp;
2291
2292         spin_lock(&fmi_lock);
2293         list_for_each_entry_safe(fmi, tmp, &fmi_list, list)
2294                 if (fmi->c == c) {
2295                         list_del(&fmi->list);
2296                         kfree(fmi);
2297                 }
2298         spin_unlock(&fmi_lock);
2299 }
2300
2301 static struct ubifs_info *dbg_find_info(struct ubi_volume_desc *desc)
2302 {
2303         struct failure_mode_info *fmi;
2304
2305         spin_lock(&fmi_lock);
2306         list_for_each_entry(fmi, &fmi_list, list)
2307                 if (fmi->c->ubi == desc) {
2308                         struct ubifs_info *c = fmi->c;
2309
2310                         spin_unlock(&fmi_lock);
2311                         return c;
2312                 }
2313         spin_unlock(&fmi_lock);
2314         return NULL;
2315 }
2316
2317 static int in_failure_mode(struct ubi_volume_desc *desc)
2318 {
2319         struct ubifs_info *c = dbg_find_info(desc);
2320
2321         if (c && dbg_failure_mode)
2322                 return c->dbg->failure_mode;
2323         return 0;
2324 }
2325
2326 static int do_fail(struct ubi_volume_desc *desc, int lnum, int write)
2327 {
2328         struct ubifs_info *c = dbg_find_info(desc);
2329         struct ubifs_debug_info *d;
2330
2331         if (!c || !dbg_failure_mode)
2332                 return 0;
2333         d = c->dbg;
2334         if (d->failure_mode)
2335                 return 1;
2336         if (!d->fail_cnt) {
2337                 /* First call - decide delay to failure */
2338                 if (chance(1, 2)) {
2339                         unsigned int delay = 1 << (simple_rand() >> 11);
2340
2341                         if (chance(1, 2)) {
2342                                 d->fail_delay = 1;
2343                                 d->fail_timeout = jiffies +
2344                                                   msecs_to_jiffies(delay);
2345                                 dbg_rcvry("failing after %ums", delay);
2346                         } else {
2347                                 d->fail_delay = 2;
2348                                 d->fail_cnt_max = delay;
2349                                 dbg_rcvry("failing after %u calls", delay);
2350                         }
2351                 }
2352                 d->fail_cnt += 1;
2353         }
2354         /* Determine if failure delay has expired */
2355         if (d->fail_delay == 1) {
2356                 if (time_before(jiffies, d->fail_timeout))
2357                         return 0;
2358         } else if (d->fail_delay == 2)
2359                 if (d->fail_cnt++ < d->fail_cnt_max)
2360                         return 0;
2361         if (lnum == UBIFS_SB_LNUM) {
2362                 if (write) {
2363                         if (chance(1, 2))
2364                                 return 0;
2365                 } else if (chance(19, 20))
2366                         return 0;
2367                 dbg_rcvry("failing in super block LEB %d", lnum);
2368         } else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) {
2369                 if (chance(19, 20))
2370                         return 0;
2371                 dbg_rcvry("failing in master LEB %d", lnum);
2372         } else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) {
2373                 if (write) {
2374                         if (chance(99, 100))
2375                                 return 0;
2376                 } else if (chance(399, 400))
2377                         return 0;
2378                 dbg_rcvry("failing in log LEB %d", lnum);
2379         } else if (lnum >= c->lpt_first && lnum <= c->lpt_last) {
2380                 if (write) {
2381                         if (chance(7, 8))
2382                                 return 0;
2383                 } else if (chance(19, 20))
2384                         return 0;
2385                 dbg_rcvry("failing in LPT LEB %d", lnum);
2386         } else if (lnum >= c->orph_first && lnum <= c->orph_last) {
2387                 if (write) {
2388                         if (chance(1, 2))
2389                                 return 0;
2390                 } else if (chance(9, 10))
2391                         return 0;
2392                 dbg_rcvry("failing in orphan LEB %d", lnum);
2393         } else if (lnum == c->ihead_lnum) {
2394                 if (chance(99, 100))
2395                         return 0;
2396                 dbg_rcvry("failing in index head LEB %d", lnum);
2397         } else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) {
2398                 if (chance(9, 10))
2399                         return 0;
2400                 dbg_rcvry("failing in GC head LEB %d", lnum);
2401         } else if (write && !RB_EMPTY_ROOT(&c->buds) &&
2402                    !ubifs_search_bud(c, lnum)) {
2403                 if (chance(19, 20))
2404                         return 0;
2405                 dbg_rcvry("failing in non-bud LEB %d", lnum);
2406         } else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND ||
2407                    c->cmt_state == COMMIT_RUNNING_REQUIRED) {
2408                 if (chance(999, 1000))
2409                         return 0;
2410                 dbg_rcvry("failing in bud LEB %d commit running", lnum);
2411         } else {
2412                 if (chance(9999, 10000))
2413                         return 0;
2414                 dbg_rcvry("failing in bud LEB %d commit not running", lnum);
2415         }
2416         ubifs_err("*** SETTING FAILURE MODE ON (LEB %d) ***", lnum);
2417         d->failure_mode = 1;
2418         dump_stack();
2419         return 1;
2420 }
2421
2422 static void cut_data(const void *buf, int len)
2423 {
2424         int flen, i;
2425         unsigned char *p = (void *)buf;
2426
2427         flen = (len * (long long)simple_rand()) >> 15;
2428         for (i = flen; i < len; i++)
2429                 p[i] = 0xff;
2430 }
2431
2432 int dbg_leb_read(struct ubi_volume_desc *desc, int lnum, char *buf, int offset,
2433                  int len, int check)
2434 {
2435         if (in_failure_mode(desc))
2436                 return -EIO;
2437         return ubi_leb_read(desc, lnum, buf, offset, len, check);
2438 }
2439
2440 int dbg_leb_write(struct ubi_volume_desc *desc, int lnum, const void *buf,
2441                   int offset, int len, int dtype)
2442 {
2443         int err, failing;
2444
2445         if (in_failure_mode(desc))
2446                 return -EIO;
2447         failing = do_fail(desc, lnum, 1);
2448         if (failing)
2449                 cut_data(buf, len);
2450         err = ubi_leb_write(desc, lnum, buf, offset, len, dtype);
2451         if (err)
2452                 return err;
2453         if (failing)
2454                 return -EIO;
2455         return 0;
2456 }
2457
2458 int dbg_leb_change(struct ubi_volume_desc *desc, int lnum, const void *buf,
2459                    int len, int dtype)
2460 {
2461         int err;
2462
2463         if (do_fail(desc, lnum, 1))
2464                 return -EIO;
2465         err = ubi_leb_change(desc, lnum, buf, len, dtype);
2466         if (err)
2467                 return err;
2468         if (do_fail(desc, lnum, 1))
2469                 return -EIO;
2470         return 0;
2471 }
2472
2473 int dbg_leb_erase(struct ubi_volume_desc *desc, int lnum)
2474 {
2475         int err;
2476
2477         if (do_fail(desc, lnum, 0))
2478                 return -EIO;
2479         err = ubi_leb_erase(desc, lnum);
2480         if (err)
2481                 return err;
2482         if (do_fail(desc, lnum, 0))
2483                 return -EIO;
2484         return 0;
2485 }
2486
2487 int dbg_leb_unmap(struct ubi_volume_desc *desc, int lnum)
2488 {
2489         int err;
2490
2491         if (do_fail(desc, lnum, 0))
2492                 return -EIO;
2493         err = ubi_leb_unmap(desc, lnum);
2494         if (err)
2495                 return err;
2496         if (do_fail(desc, lnum, 0))
2497                 return -EIO;
2498         return 0;
2499 }
2500
2501 int dbg_is_mapped(struct ubi_volume_desc *desc, int lnum)
2502 {
2503         if (in_failure_mode(desc))
2504                 return -EIO;
2505         return ubi_is_mapped(desc, lnum);
2506 }
2507
2508 int dbg_leb_map(struct ubi_volume_desc *desc, int lnum, int dtype)
2509 {
2510         int err;
2511
2512         if (do_fail(desc, lnum, 0))
2513                 return -EIO;
2514         err = ubi_leb_map(desc, lnum, dtype);
2515         if (err)
2516                 return err;
2517         if (do_fail(desc, lnum, 0))
2518                 return -EIO;
2519         return 0;
2520 }
2521
2522 /**
2523  * ubifs_debugging_init - initialize UBIFS debugging.
2524  * @c: UBIFS file-system description object
2525  *
2526  * This function initializes debugging-related data for the file system.
2527  * Returns zero in case of success and a negative error code in case of
2528  * failure.
2529  */
2530 int ubifs_debugging_init(struct ubifs_info *c)
2531 {
2532         c->dbg = kzalloc(sizeof(struct ubifs_debug_info), GFP_KERNEL);
2533         if (!c->dbg)
2534                 return -ENOMEM;
2535
2536         c->dbg->buf = vmalloc(c->leb_size);
2537         if (!c->dbg->buf)
2538                 goto out;
2539
2540         failure_mode_init(c);
2541         return 0;
2542
2543 out:
2544         kfree(c->dbg);
2545         return -ENOMEM;
2546 }
2547
2548 /**
2549  * ubifs_debugging_exit - free debugging data.
2550  * @c: UBIFS file-system description object
2551  */
2552 void ubifs_debugging_exit(struct ubifs_info *c)
2553 {
2554         failure_mode_exit(c);
2555         vfree(c->dbg->buf);
2556         kfree(c->dbg);
2557 }
2558
2559 /*
2560  * Root directory for UBIFS stuff in debugfs. Contains sub-directories which
2561  * contain the stuff specific to particular file-system mounts.
2562  */
2563 static struct dentry *dfs_rootdir;
2564
2565 /**
2566  * dbg_debugfs_init - initialize debugfs file-system.
2567  *
2568  * UBIFS uses debugfs file-system to expose various debugging knobs to
2569  * user-space. This function creates "ubifs" directory in the debugfs
2570  * file-system. Returns zero in case of success and a negative error code in
2571  * case of failure.
2572  */
2573 int dbg_debugfs_init(void)
2574 {
2575         dfs_rootdir = debugfs_create_dir("ubifs", NULL);
2576         if (IS_ERR(dfs_rootdir)) {
2577                 int err = PTR_ERR(dfs_rootdir);
2578                 ubifs_err("cannot create \"ubifs\" debugfs directory, "
2579                           "error %d\n", err);
2580                 return err;
2581         }
2582
2583         return 0;
2584 }
2585
2586 /**
2587  * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system.
2588  */
2589 void dbg_debugfs_exit(void)
2590 {
2591         debugfs_remove(dfs_rootdir);
2592 }
2593
2594 static int open_debugfs_file(struct inode *inode, struct file *file)
2595 {
2596         file->private_data = inode->i_private;
2597         return 0;
2598 }
2599
2600 static ssize_t write_debugfs_file(struct file *file, const char __user *buf,
2601                                   size_t count, loff_t *ppos)
2602 {
2603         struct ubifs_info *c = file->private_data;
2604         struct ubifs_debug_info *d = c->dbg;
2605
2606         if (file->f_path.dentry == d->dfs_dump_lprops)
2607                 dbg_dump_lprops(c);
2608         else if (file->f_path.dentry == d->dfs_dump_budg) {
2609                 spin_lock(&c->space_lock);
2610                 dbg_dump_budg(c);
2611                 spin_unlock(&c->space_lock);
2612         } else if (file->f_path.dentry == d->dfs_dump_tnc) {
2613                 mutex_lock(&c->tnc_mutex);
2614                 dbg_dump_tnc(c);
2615                 mutex_unlock(&c->tnc_mutex);
2616         } else
2617                 return -EINVAL;
2618
2619         *ppos += count;
2620         return count;
2621 }
2622
2623 static const struct file_operations dfs_fops = {
2624         .open = open_debugfs_file,
2625         .write = write_debugfs_file,
2626         .owner = THIS_MODULE,
2627 };
2628
2629 /**
2630  * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance.
2631  * @c: UBIFS file-system description object
2632  *
2633  * This function creates all debugfs files for this instance of UBIFS. Returns
2634  * zero in case of success and a negative error code in case of failure.
2635  *
2636  * Note, the only reason we have not merged this function with the
2637  * 'ubifs_debugging_init()' function is because it is better to initialize
2638  * debugfs interfaces at the very end of the mount process, and remove them at
2639  * the very beginning of the mount process.
2640  */
2641 int dbg_debugfs_init_fs(struct ubifs_info *c)
2642 {
2643         int err;
2644         const char *fname;
2645         struct dentry *dent;
2646         struct ubifs_debug_info *d = c->dbg;
2647
2648         sprintf(d->dfs_dir_name, "ubi%d_%d", c->vi.ubi_num, c->vi.vol_id);
2649         d->dfs_dir = debugfs_create_dir(d->dfs_dir_name, dfs_rootdir);
2650         if (IS_ERR(d->dfs_dir)) {
2651                 err = PTR_ERR(d->dfs_dir);
2652                 ubifs_err("cannot create \"%s\" debugfs directory, error %d\n",
2653                           d->dfs_dir_name, err);
2654                 goto out;
2655         }
2656
2657         fname = "dump_lprops";
2658         dent = debugfs_create_file(fname, S_IWUGO, d->dfs_dir, c, &dfs_fops);
2659         if (IS_ERR(dent))
2660                 goto out_remove;
2661         d->dfs_dump_lprops = dent;
2662
2663         fname = "dump_budg";
2664         dent = debugfs_create_file(fname, S_IWUGO, d->dfs_dir, c, &dfs_fops);
2665         if (IS_ERR(dent))
2666                 goto out_remove;
2667         d->dfs_dump_budg = dent;
2668
2669         fname = "dump_tnc";
2670         dent = debugfs_create_file(fname, S_IWUGO, d->dfs_dir, c, &dfs_fops);
2671         if (IS_ERR(dent))
2672                 goto out_remove;
2673         d->dfs_dump_tnc = dent;
2674
2675         return 0;
2676
2677 out_remove:
2678         err = PTR_ERR(dent);
2679         ubifs_err("cannot create \"%s\" debugfs directory, error %d\n",
2680                   fname, err);
2681         debugfs_remove_recursive(d->dfs_dir);
2682 out:
2683         return err;
2684 }
2685
2686 /**
2687  * dbg_debugfs_exit_fs - remove all debugfs files.
2688  * @c: UBIFS file-system description object
2689  */
2690 void dbg_debugfs_exit_fs(struct ubifs_info *c)
2691 {
2692         debugfs_remove_recursive(c->dbg->dfs_dir);
2693 }
2694
2695 #endif /* CONFIG_UBIFS_FS_DEBUG */