UBIFS: increase dumps loglevel
[pandora-kernel.git] / fs / ubifs / debug.c
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 51
17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18  *
19  * Authors: Artem Bityutskiy (Битюцкий Артём)
20  *          Adrian Hunter
21  */
22
23 /*
24  * This file implements most of the debugging stuff which is compiled in only
25  * when it is enabled. But some debugging check functions are implemented in
26  * corresponding subsystem, just because they are closely related and utilize
27  * various local functions of those subsystems.
28  */
29
30 #include <linux/module.h>
31 #include <linux/debugfs.h>
32 #include <linux/math64.h>
33 #include <linux/uaccess.h>
34 #include <linux/random.h>
35 #include "ubifs.h"
36
37 #ifdef CONFIG_UBIFS_FS_DEBUG
38
39 DEFINE_SPINLOCK(dbg_lock);
40
41 static const char *get_key_fmt(int fmt)
42 {
43         switch (fmt) {
44         case UBIFS_SIMPLE_KEY_FMT:
45                 return "simple";
46         default:
47                 return "unknown/invalid format";
48         }
49 }
50
51 static const char *get_key_hash(int hash)
52 {
53         switch (hash) {
54         case UBIFS_KEY_HASH_R5:
55                 return "R5";
56         case UBIFS_KEY_HASH_TEST:
57                 return "test";
58         default:
59                 return "unknown/invalid name hash";
60         }
61 }
62
63 static const char *get_key_type(int type)
64 {
65         switch (type) {
66         case UBIFS_INO_KEY:
67                 return "inode";
68         case UBIFS_DENT_KEY:
69                 return "direntry";
70         case UBIFS_XENT_KEY:
71                 return "xentry";
72         case UBIFS_DATA_KEY:
73                 return "data";
74         case UBIFS_TRUN_KEY:
75                 return "truncate";
76         default:
77                 return "unknown/invalid key";
78         }
79 }
80
81 static const char *get_dent_type(int type)
82 {
83         switch (type) {
84         case UBIFS_ITYPE_REG:
85                 return "file";
86         case UBIFS_ITYPE_DIR:
87                 return "dir";
88         case UBIFS_ITYPE_LNK:
89                 return "symlink";
90         case UBIFS_ITYPE_BLK:
91                 return "blkdev";
92         case UBIFS_ITYPE_CHR:
93                 return "char dev";
94         case UBIFS_ITYPE_FIFO:
95                 return "fifo";
96         case UBIFS_ITYPE_SOCK:
97                 return "socket";
98         default:
99                 return "unknown/invalid type";
100         }
101 }
102
103 const char *dbg_snprintf_key(const struct ubifs_info *c,
104                              const union ubifs_key *key, char *buffer, int len)
105 {
106         char *p = buffer;
107         int type = key_type(c, key);
108
109         if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) {
110                 switch (type) {
111                 case UBIFS_INO_KEY:
112                         len -= snprintf(p, len, "(%lu, %s)",
113                                         (unsigned long)key_inum(c, key),
114                                         get_key_type(type));
115                         break;
116                 case UBIFS_DENT_KEY:
117                 case UBIFS_XENT_KEY:
118                         len -= snprintf(p, len, "(%lu, %s, %#08x)",
119                                         (unsigned long)key_inum(c, key),
120                                         get_key_type(type), key_hash(c, key));
121                         break;
122                 case UBIFS_DATA_KEY:
123                         len -= snprintf(p, len, "(%lu, %s, %u)",
124                                         (unsigned long)key_inum(c, key),
125                                         get_key_type(type), key_block(c, key));
126                         break;
127                 case UBIFS_TRUN_KEY:
128                         len -= snprintf(p, len, "(%lu, %s)",
129                                         (unsigned long)key_inum(c, key),
130                                         get_key_type(type));
131                         break;
132                 default:
133                         len -= snprintf(p, len, "(bad key type: %#08x, %#08x)",
134                                         key->u32[0], key->u32[1]);
135                 }
136         } else
137                 len -= snprintf(p, len, "bad key format %d", c->key_fmt);
138         ubifs_assert(len > 0);
139         return p;
140 }
141
142 const char *dbg_ntype(int type)
143 {
144         switch (type) {
145         case UBIFS_PAD_NODE:
146                 return "padding node";
147         case UBIFS_SB_NODE:
148                 return "superblock node";
149         case UBIFS_MST_NODE:
150                 return "master node";
151         case UBIFS_REF_NODE:
152                 return "reference node";
153         case UBIFS_INO_NODE:
154                 return "inode node";
155         case UBIFS_DENT_NODE:
156                 return "direntry node";
157         case UBIFS_XENT_NODE:
158                 return "xentry node";
159         case UBIFS_DATA_NODE:
160                 return "data node";
161         case UBIFS_TRUN_NODE:
162                 return "truncate node";
163         case UBIFS_IDX_NODE:
164                 return "indexing node";
165         case UBIFS_CS_NODE:
166                 return "commit start node";
167         case UBIFS_ORPH_NODE:
168                 return "orphan node";
169         default:
170                 return "unknown node";
171         }
172 }
173
174 static const char *dbg_gtype(int type)
175 {
176         switch (type) {
177         case UBIFS_NO_NODE_GROUP:
178                 return "no node group";
179         case UBIFS_IN_NODE_GROUP:
180                 return "in node group";
181         case UBIFS_LAST_OF_NODE_GROUP:
182                 return "last of node group";
183         default:
184                 return "unknown";
185         }
186 }
187
188 const char *dbg_cstate(int cmt_state)
189 {
190         switch (cmt_state) {
191         case COMMIT_RESTING:
192                 return "commit resting";
193         case COMMIT_BACKGROUND:
194                 return "background commit requested";
195         case COMMIT_REQUIRED:
196                 return "commit required";
197         case COMMIT_RUNNING_BACKGROUND:
198                 return "BACKGROUND commit running";
199         case COMMIT_RUNNING_REQUIRED:
200                 return "commit running and required";
201         case COMMIT_BROKEN:
202                 return "broken commit";
203         default:
204                 return "unknown commit state";
205         }
206 }
207
208 const char *dbg_jhead(int jhead)
209 {
210         switch (jhead) {
211         case GCHD:
212                 return "0 (GC)";
213         case BASEHD:
214                 return "1 (base)";
215         case DATAHD:
216                 return "2 (data)";
217         default:
218                 return "unknown journal head";
219         }
220 }
221
222 static void dump_ch(const struct ubifs_ch *ch)
223 {
224         printk(KERN_ERR "\tmagic          %#x\n", le32_to_cpu(ch->magic));
225         printk(KERN_ERR "\tcrc            %#x\n", le32_to_cpu(ch->crc));
226         printk(KERN_ERR "\tnode_type      %d (%s)\n", ch->node_type,
227                dbg_ntype(ch->node_type));
228         printk(KERN_ERR "\tgroup_type     %d (%s)\n", ch->group_type,
229                dbg_gtype(ch->group_type));
230         printk(KERN_ERR "\tsqnum          %llu\n",
231                (unsigned long long)le64_to_cpu(ch->sqnum));
232         printk(KERN_ERR "\tlen            %u\n", le32_to_cpu(ch->len));
233 }
234
235 void dbg_dump_inode(struct ubifs_info *c, const struct inode *inode)
236 {
237         const struct ubifs_inode *ui = ubifs_inode(inode);
238         struct qstr nm = { .name = NULL };
239         union ubifs_key key;
240         struct ubifs_dent_node *dent, *pdent = NULL;
241         int count = 2;
242
243         printk(KERN_ERR "Dump in-memory inode:");
244         printk(KERN_ERR "\tinode          %lu\n", inode->i_ino);
245         printk(KERN_ERR "\tsize           %llu\n",
246                (unsigned long long)i_size_read(inode));
247         printk(KERN_ERR "\tnlink          %u\n", inode->i_nlink);
248         printk(KERN_ERR "\tuid            %u\n", (unsigned int)inode->i_uid);
249         printk(KERN_ERR "\tgid            %u\n", (unsigned int)inode->i_gid);
250         printk(KERN_ERR "\tatime          %u.%u\n",
251                (unsigned int)inode->i_atime.tv_sec,
252                (unsigned int)inode->i_atime.tv_nsec);
253         printk(KERN_ERR "\tmtime          %u.%u\n",
254                (unsigned int)inode->i_mtime.tv_sec,
255                (unsigned int)inode->i_mtime.tv_nsec);
256         printk(KERN_ERR "\tctime          %u.%u\n",
257                (unsigned int)inode->i_ctime.tv_sec,
258                (unsigned int)inode->i_ctime.tv_nsec);
259         printk(KERN_ERR "\tcreat_sqnum    %llu\n", ui->creat_sqnum);
260         printk(KERN_ERR "\txattr_size     %u\n", ui->xattr_size);
261         printk(KERN_ERR "\txattr_cnt      %u\n", ui->xattr_cnt);
262         printk(KERN_ERR "\txattr_names    %u\n", ui->xattr_names);
263         printk(KERN_ERR "\tdirty          %u\n", ui->dirty);
264         printk(KERN_ERR "\txattr          %u\n", ui->xattr);
265         printk(KERN_ERR "\tbulk_read      %u\n", ui->xattr);
266         printk(KERN_ERR "\tsynced_i_size  %llu\n",
267                (unsigned long long)ui->synced_i_size);
268         printk(KERN_ERR "\tui_size        %llu\n",
269                (unsigned long long)ui->ui_size);
270         printk(KERN_ERR "\tflags          %d\n", ui->flags);
271         printk(KERN_ERR "\tcompr_type     %d\n", ui->compr_type);
272         printk(KERN_ERR "\tlast_page_read %lu\n", ui->last_page_read);
273         printk(KERN_ERR "\tread_in_a_row  %lu\n", ui->read_in_a_row);
274         printk(KERN_ERR "\tdata_len       %d\n", ui->data_len);
275
276         if (!S_ISDIR(inode->i_mode))
277                 return;
278
279         printk(KERN_ERR "List of directory entries:\n");
280         ubifs_assert(!mutex_is_locked(&c->tnc_mutex));
281
282         lowest_dent_key(c, &key, inode->i_ino);
283         while (1) {
284                 dent = ubifs_tnc_next_ent(c, &key, &nm);
285                 if (IS_ERR(dent)) {
286                         if (PTR_ERR(dent) != -ENOENT)
287                                 printk(KERN_ERR "error %ld\n", PTR_ERR(dent));
288                         break;
289                 }
290
291                 printk(KERN_ERR "\t%d: %s (%s)\n",
292                        count++, dent->name, get_dent_type(dent->type));
293
294                 nm.name = dent->name;
295                 nm.len = le16_to_cpu(dent->nlen);
296                 kfree(pdent);
297                 pdent = dent;
298                 key_read(c, &dent->key, &key);
299         }
300         kfree(pdent);
301 }
302
303 void dbg_dump_node(const struct ubifs_info *c, const void *node)
304 {
305         int i, n;
306         union ubifs_key key;
307         const struct ubifs_ch *ch = node;
308         char key_buf[DBG_KEY_BUF_LEN];
309
310         if (dbg_is_tst_rcvry(c))
311                 return;
312
313         /* If the magic is incorrect, just hexdump the first bytes */
314         if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) {
315                 printk(KERN_ERR "Not a node, first %zu bytes:", UBIFS_CH_SZ);
316                 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 32, 1,
317                                (void *)node, UBIFS_CH_SZ, 1);
318                 return;
319         }
320
321         spin_lock(&dbg_lock);
322         dump_ch(node);
323
324         switch (ch->node_type) {
325         case UBIFS_PAD_NODE:
326         {
327                 const struct ubifs_pad_node *pad = node;
328
329                 printk(KERN_ERR "\tpad_len        %u\n",
330                        le32_to_cpu(pad->pad_len));
331                 break;
332         }
333         case UBIFS_SB_NODE:
334         {
335                 const struct ubifs_sb_node *sup = node;
336                 unsigned int sup_flags = le32_to_cpu(sup->flags);
337
338                 printk(KERN_ERR "\tkey_hash       %d (%s)\n",
339                        (int)sup->key_hash, get_key_hash(sup->key_hash));
340                 printk(KERN_ERR "\tkey_fmt        %d (%s)\n",
341                        (int)sup->key_fmt, get_key_fmt(sup->key_fmt));
342                 printk(KERN_ERR "\tflags          %#x\n", sup_flags);
343                 printk(KERN_ERR "\t  big_lpt      %u\n",
344                        !!(sup_flags & UBIFS_FLG_BIGLPT));
345                 printk(KERN_ERR "\t  space_fixup  %u\n",
346                        !!(sup_flags & UBIFS_FLG_SPACE_FIXUP));
347                 printk(KERN_ERR "\tmin_io_size    %u\n",
348                        le32_to_cpu(sup->min_io_size));
349                 printk(KERN_ERR "\tleb_size       %u\n",
350                        le32_to_cpu(sup->leb_size));
351                 printk(KERN_ERR "\tleb_cnt        %u\n",
352                        le32_to_cpu(sup->leb_cnt));
353                 printk(KERN_ERR "\tmax_leb_cnt    %u\n",
354                        le32_to_cpu(sup->max_leb_cnt));
355                 printk(KERN_ERR "\tmax_bud_bytes  %llu\n",
356                        (unsigned long long)le64_to_cpu(sup->max_bud_bytes));
357                 printk(KERN_ERR "\tlog_lebs       %u\n",
358                        le32_to_cpu(sup->log_lebs));
359                 printk(KERN_ERR "\tlpt_lebs       %u\n",
360                        le32_to_cpu(sup->lpt_lebs));
361                 printk(KERN_ERR "\torph_lebs      %u\n",
362                        le32_to_cpu(sup->orph_lebs));
363                 printk(KERN_ERR "\tjhead_cnt      %u\n",
364                        le32_to_cpu(sup->jhead_cnt));
365                 printk(KERN_ERR "\tfanout         %u\n",
366                        le32_to_cpu(sup->fanout));
367                 printk(KERN_ERR "\tlsave_cnt      %u\n",
368                        le32_to_cpu(sup->lsave_cnt));
369                 printk(KERN_ERR "\tdefault_compr  %u\n",
370                        (int)le16_to_cpu(sup->default_compr));
371                 printk(KERN_ERR "\trp_size        %llu\n",
372                        (unsigned long long)le64_to_cpu(sup->rp_size));
373                 printk(KERN_ERR "\trp_uid         %u\n",
374                        le32_to_cpu(sup->rp_uid));
375                 printk(KERN_ERR "\trp_gid         %u\n",
376                        le32_to_cpu(sup->rp_gid));
377                 printk(KERN_ERR "\tfmt_version    %u\n",
378                        le32_to_cpu(sup->fmt_version));
379                 printk(KERN_ERR "\ttime_gran      %u\n",
380                        le32_to_cpu(sup->time_gran));
381                 printk(KERN_ERR "\tUUID           %pUB\n",
382                        sup->uuid);
383                 break;
384         }
385         case UBIFS_MST_NODE:
386         {
387                 const struct ubifs_mst_node *mst = node;
388
389                 printk(KERN_ERR "\thighest_inum   %llu\n",
390                        (unsigned long long)le64_to_cpu(mst->highest_inum));
391                 printk(KERN_ERR "\tcommit number  %llu\n",
392                        (unsigned long long)le64_to_cpu(mst->cmt_no));
393                 printk(KERN_ERR "\tflags          %#x\n",
394                        le32_to_cpu(mst->flags));
395                 printk(KERN_ERR "\tlog_lnum       %u\n",
396                        le32_to_cpu(mst->log_lnum));
397                 printk(KERN_ERR "\troot_lnum      %u\n",
398                        le32_to_cpu(mst->root_lnum));
399                 printk(KERN_ERR "\troot_offs      %u\n",
400                        le32_to_cpu(mst->root_offs));
401                 printk(KERN_ERR "\troot_len       %u\n",
402                        le32_to_cpu(mst->root_len));
403                 printk(KERN_ERR "\tgc_lnum        %u\n",
404                        le32_to_cpu(mst->gc_lnum));
405                 printk(KERN_ERR "\tihead_lnum     %u\n",
406                        le32_to_cpu(mst->ihead_lnum));
407                 printk(KERN_ERR "\tihead_offs     %u\n",
408                        le32_to_cpu(mst->ihead_offs));
409                 printk(KERN_ERR "\tindex_size     %llu\n",
410                        (unsigned long long)le64_to_cpu(mst->index_size));
411                 printk(KERN_ERR "\tlpt_lnum       %u\n",
412                        le32_to_cpu(mst->lpt_lnum));
413                 printk(KERN_ERR "\tlpt_offs       %u\n",
414                        le32_to_cpu(mst->lpt_offs));
415                 printk(KERN_ERR "\tnhead_lnum     %u\n",
416                        le32_to_cpu(mst->nhead_lnum));
417                 printk(KERN_ERR "\tnhead_offs     %u\n",
418                        le32_to_cpu(mst->nhead_offs));
419                 printk(KERN_ERR "\tltab_lnum      %u\n",
420                        le32_to_cpu(mst->ltab_lnum));
421                 printk(KERN_ERR "\tltab_offs      %u\n",
422                        le32_to_cpu(mst->ltab_offs));
423                 printk(KERN_ERR "\tlsave_lnum     %u\n",
424                        le32_to_cpu(mst->lsave_lnum));
425                 printk(KERN_ERR "\tlsave_offs     %u\n",
426                        le32_to_cpu(mst->lsave_offs));
427                 printk(KERN_ERR "\tlscan_lnum     %u\n",
428                        le32_to_cpu(mst->lscan_lnum));
429                 printk(KERN_ERR "\tleb_cnt        %u\n",
430                        le32_to_cpu(mst->leb_cnt));
431                 printk(KERN_ERR "\tempty_lebs     %u\n",
432                        le32_to_cpu(mst->empty_lebs));
433                 printk(KERN_ERR "\tidx_lebs       %u\n",
434                        le32_to_cpu(mst->idx_lebs));
435                 printk(KERN_ERR "\ttotal_free     %llu\n",
436                        (unsigned long long)le64_to_cpu(mst->total_free));
437                 printk(KERN_ERR "\ttotal_dirty    %llu\n",
438                        (unsigned long long)le64_to_cpu(mst->total_dirty));
439                 printk(KERN_ERR "\ttotal_used     %llu\n",
440                        (unsigned long long)le64_to_cpu(mst->total_used));
441                 printk(KERN_ERR "\ttotal_dead     %llu\n",
442                        (unsigned long long)le64_to_cpu(mst->total_dead));
443                 printk(KERN_ERR "\ttotal_dark     %llu\n",
444                        (unsigned long long)le64_to_cpu(mst->total_dark));
445                 break;
446         }
447         case UBIFS_REF_NODE:
448         {
449                 const struct ubifs_ref_node *ref = node;
450
451                 printk(KERN_ERR "\tlnum           %u\n",
452                        le32_to_cpu(ref->lnum));
453                 printk(KERN_ERR "\toffs           %u\n",
454                        le32_to_cpu(ref->offs));
455                 printk(KERN_ERR "\tjhead          %u\n",
456                        le32_to_cpu(ref->jhead));
457                 break;
458         }
459         case UBIFS_INO_NODE:
460         {
461                 const struct ubifs_ino_node *ino = node;
462
463                 key_read(c, &ino->key, &key);
464                 printk(KERN_ERR "\tkey            %s\n",
465                        dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
466                 printk(KERN_ERR "\tcreat_sqnum    %llu\n",
467                        (unsigned long long)le64_to_cpu(ino->creat_sqnum));
468                 printk(KERN_ERR "\tsize           %llu\n",
469                        (unsigned long long)le64_to_cpu(ino->size));
470                 printk(KERN_ERR "\tnlink          %u\n",
471                        le32_to_cpu(ino->nlink));
472                 printk(KERN_ERR "\tatime          %lld.%u\n",
473                        (long long)le64_to_cpu(ino->atime_sec),
474                        le32_to_cpu(ino->atime_nsec));
475                 printk(KERN_ERR "\tmtime          %lld.%u\n",
476                        (long long)le64_to_cpu(ino->mtime_sec),
477                        le32_to_cpu(ino->mtime_nsec));
478                 printk(KERN_ERR "\tctime          %lld.%u\n",
479                        (long long)le64_to_cpu(ino->ctime_sec),
480                        le32_to_cpu(ino->ctime_nsec));
481                 printk(KERN_ERR "\tuid            %u\n",
482                        le32_to_cpu(ino->uid));
483                 printk(KERN_ERR "\tgid            %u\n",
484                        le32_to_cpu(ino->gid));
485                 printk(KERN_ERR "\tmode           %u\n",
486                        le32_to_cpu(ino->mode));
487                 printk(KERN_ERR "\tflags          %#x\n",
488                        le32_to_cpu(ino->flags));
489                 printk(KERN_ERR "\txattr_cnt      %u\n",
490                        le32_to_cpu(ino->xattr_cnt));
491                 printk(KERN_ERR "\txattr_size     %u\n",
492                        le32_to_cpu(ino->xattr_size));
493                 printk(KERN_ERR "\txattr_names    %u\n",
494                        le32_to_cpu(ino->xattr_names));
495                 printk(KERN_ERR "\tcompr_type     %#x\n",
496                        (int)le16_to_cpu(ino->compr_type));
497                 printk(KERN_ERR "\tdata len       %u\n",
498                        le32_to_cpu(ino->data_len));
499                 break;
500         }
501         case UBIFS_DENT_NODE:
502         case UBIFS_XENT_NODE:
503         {
504                 const struct ubifs_dent_node *dent = node;
505                 int nlen = le16_to_cpu(dent->nlen);
506
507                 key_read(c, &dent->key, &key);
508                 printk(KERN_ERR "\tkey            %s\n",
509                        dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
510                 printk(KERN_ERR "\tinum           %llu\n",
511                        (unsigned long long)le64_to_cpu(dent->inum));
512                 printk(KERN_ERR "\ttype           %d\n", (int)dent->type);
513                 printk(KERN_ERR "\tnlen           %d\n", nlen);
514                 printk(KERN_ERR "\tname           ");
515
516                 if (nlen > UBIFS_MAX_NLEN)
517                         printk(KERN_ERR "(bad name length, not printing, "
518                                           "bad or corrupted node)");
519                 else {
520                         for (i = 0; i < nlen && dent->name[i]; i++)
521                                 printk(KERN_CONT "%c", dent->name[i]);
522                 }
523                 printk(KERN_CONT "\n");
524
525                 break;
526         }
527         case UBIFS_DATA_NODE:
528         {
529                 const struct ubifs_data_node *dn = node;
530                 int dlen = le32_to_cpu(ch->len) - UBIFS_DATA_NODE_SZ;
531
532                 key_read(c, &dn->key, &key);
533                 printk(KERN_ERR "\tkey            %s\n",
534                        dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
535                 printk(KERN_ERR "\tsize           %u\n",
536                        le32_to_cpu(dn->size));
537                 printk(KERN_ERR "\tcompr_typ      %d\n",
538                        (int)le16_to_cpu(dn->compr_type));
539                 printk(KERN_ERR "\tdata size      %d\n",
540                        dlen);
541                 printk(KERN_ERR "\tdata:\n");
542                 print_hex_dump(KERN_ERR, "\t", DUMP_PREFIX_OFFSET, 32, 1,
543                                (void *)&dn->data, dlen, 0);
544                 break;
545         }
546         case UBIFS_TRUN_NODE:
547         {
548                 const struct ubifs_trun_node *trun = node;
549
550                 printk(KERN_ERR "\tinum           %u\n",
551                        le32_to_cpu(trun->inum));
552                 printk(KERN_ERR "\told_size       %llu\n",
553                        (unsigned long long)le64_to_cpu(trun->old_size));
554                 printk(KERN_ERR "\tnew_size       %llu\n",
555                        (unsigned long long)le64_to_cpu(trun->new_size));
556                 break;
557         }
558         case UBIFS_IDX_NODE:
559         {
560                 const struct ubifs_idx_node *idx = node;
561
562                 n = le16_to_cpu(idx->child_cnt);
563                 printk(KERN_ERR "\tchild_cnt      %d\n", n);
564                 printk(KERN_ERR "\tlevel          %d\n",
565                        (int)le16_to_cpu(idx->level));
566                 printk(KERN_ERR "\tBranches:\n");
567
568                 for (i = 0; i < n && i < c->fanout - 1; i++) {
569                         const struct ubifs_branch *br;
570
571                         br = ubifs_idx_branch(c, idx, i);
572                         key_read(c, &br->key, &key);
573                         printk(KERN_ERR "\t%d: LEB %d:%d len %d key %s\n",
574                                i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs),
575                                le32_to_cpu(br->len),
576                                dbg_snprintf_key(c, &key, key_buf,
577                                                 DBG_KEY_BUF_LEN));
578                 }
579                 break;
580         }
581         case UBIFS_CS_NODE:
582                 break;
583         case UBIFS_ORPH_NODE:
584         {
585                 const struct ubifs_orph_node *orph = node;
586
587                 printk(KERN_ERR "\tcommit number  %llu\n",
588                        (unsigned long long)
589                                 le64_to_cpu(orph->cmt_no) & LLONG_MAX);
590                 printk(KERN_ERR "\tlast node flag %llu\n",
591                        (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63);
592                 n = (le32_to_cpu(ch->len) - UBIFS_ORPH_NODE_SZ) >> 3;
593                 printk(KERN_ERR "\t%d orphan inode numbers:\n", n);
594                 for (i = 0; i < n; i++)
595                         printk(KERN_ERR "\t  ino %llu\n",
596                                (unsigned long long)le64_to_cpu(orph->inos[i]));
597                 break;
598         }
599         default:
600                 printk(KERN_ERR "node type %d was not recognized\n",
601                        (int)ch->node_type);
602         }
603         spin_unlock(&dbg_lock);
604 }
605
606 void dbg_dump_budget_req(const struct ubifs_budget_req *req)
607 {
608         spin_lock(&dbg_lock);
609         printk(KERN_ERR "Budgeting request: new_ino %d, dirtied_ino %d\n",
610                req->new_ino, req->dirtied_ino);
611         printk(KERN_ERR "\tnew_ino_d   %d, dirtied_ino_d %d\n",
612                req->new_ino_d, req->dirtied_ino_d);
613         printk(KERN_ERR "\tnew_page    %d, dirtied_page %d\n",
614                req->new_page, req->dirtied_page);
615         printk(KERN_ERR "\tnew_dent    %d, mod_dent     %d\n",
616                req->new_dent, req->mod_dent);
617         printk(KERN_ERR "\tidx_growth  %d\n", req->idx_growth);
618         printk(KERN_ERR "\tdata_growth %d dd_growth     %d\n",
619                req->data_growth, req->dd_growth);
620         spin_unlock(&dbg_lock);
621 }
622
623 void dbg_dump_lstats(const struct ubifs_lp_stats *lst)
624 {
625         spin_lock(&dbg_lock);
626         printk(KERN_ERR "(pid %d) Lprops statistics: empty_lebs %d, "
627                "idx_lebs  %d\n", current->pid, lst->empty_lebs, lst->idx_lebs);
628         printk(KERN_ERR "\ttaken_empty_lebs %d, total_free %lld, "
629                "total_dirty %lld\n", lst->taken_empty_lebs, lst->total_free,
630                lst->total_dirty);
631         printk(KERN_ERR "\ttotal_used %lld, total_dark %lld, "
632                "total_dead %lld\n", lst->total_used, lst->total_dark,
633                lst->total_dead);
634         spin_unlock(&dbg_lock);
635 }
636
637 void dbg_dump_budg(struct ubifs_info *c, const struct ubifs_budg_info *bi)
638 {
639         int i;
640         struct rb_node *rb;
641         struct ubifs_bud *bud;
642         struct ubifs_gced_idx_leb *idx_gc;
643         long long available, outstanding, free;
644
645         spin_lock(&c->space_lock);
646         spin_lock(&dbg_lock);
647         printk(KERN_ERR "(pid %d) Budgeting info: data budget sum %lld, "
648                "total budget sum %lld\n", current->pid,
649                bi->data_growth + bi->dd_growth,
650                bi->data_growth + bi->dd_growth + bi->idx_growth);
651         printk(KERN_ERR "\tbudg_data_growth %lld, budg_dd_growth %lld, "
652                "budg_idx_growth %lld\n", bi->data_growth, bi->dd_growth,
653                bi->idx_growth);
654         printk(KERN_ERR "\tmin_idx_lebs %d, old_idx_sz %llu, "
655                "uncommitted_idx %lld\n", bi->min_idx_lebs, bi->old_idx_sz,
656                bi->uncommitted_idx);
657         printk(KERN_ERR "\tpage_budget %d, inode_budget %d, dent_budget %d\n",
658                bi->page_budget, bi->inode_budget, bi->dent_budget);
659         printk(KERN_ERR "\tnospace %u, nospace_rp %u\n",
660                bi->nospace, bi->nospace_rp);
661         printk(KERN_ERR "\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n",
662                c->dark_wm, c->dead_wm, c->max_idx_node_sz);
663
664         if (bi != &c->bi)
665                 /*
666                  * If we are dumping saved budgeting data, do not print
667                  * additional information which is about the current state, not
668                  * the old one which corresponded to the saved budgeting data.
669                  */
670                 goto out_unlock;
671
672         printk(KERN_ERR "\tfreeable_cnt %d, calc_idx_sz %lld, idx_gc_cnt %d\n",
673                c->freeable_cnt, c->calc_idx_sz, c->idx_gc_cnt);
674         printk(KERN_ERR "\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, "
675                "clean_zn_cnt %ld\n", atomic_long_read(&c->dirty_pg_cnt),
676                atomic_long_read(&c->dirty_zn_cnt),
677                atomic_long_read(&c->clean_zn_cnt));
678         printk(KERN_ERR "\tgc_lnum %d, ihead_lnum %d\n",
679                c->gc_lnum, c->ihead_lnum);
680
681         /* If we are in R/O mode, journal heads do not exist */
682         if (c->jheads)
683                 for (i = 0; i < c->jhead_cnt; i++)
684                         printk(KERN_ERR "\tjhead %s\t LEB %d\n",
685                                dbg_jhead(c->jheads[i].wbuf.jhead),
686                                c->jheads[i].wbuf.lnum);
687         for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) {
688                 bud = rb_entry(rb, struct ubifs_bud, rb);
689                 printk(KERN_ERR "\tbud LEB %d\n", bud->lnum);
690         }
691         list_for_each_entry(bud, &c->old_buds, list)
692                 printk(KERN_ERR "\told bud LEB %d\n", bud->lnum);
693         list_for_each_entry(idx_gc, &c->idx_gc, list)
694                 printk(KERN_ERR "\tGC'ed idx LEB %d unmap %d\n",
695                        idx_gc->lnum, idx_gc->unmap);
696         printk(KERN_ERR "\tcommit state %d\n", c->cmt_state);
697
698         /* Print budgeting predictions */
699         available = ubifs_calc_available(c, c->bi.min_idx_lebs);
700         outstanding = c->bi.data_growth + c->bi.dd_growth;
701         free = ubifs_get_free_space_nolock(c);
702         printk(KERN_ERR "Budgeting predictions:\n");
703         printk(KERN_ERR "\tavailable: %lld, outstanding %lld, free %lld\n",
704                available, outstanding, free);
705 out_unlock:
706         spin_unlock(&dbg_lock);
707         spin_unlock(&c->space_lock);
708 }
709
710 void dbg_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp)
711 {
712         int i, spc, dark = 0, dead = 0;
713         struct rb_node *rb;
714         struct ubifs_bud *bud;
715
716         spc = lp->free + lp->dirty;
717         if (spc < c->dead_wm)
718                 dead = spc;
719         else
720                 dark = ubifs_calc_dark(c, spc);
721
722         if (lp->flags & LPROPS_INDEX)
723                 printk(KERN_ERR "LEB %-7d free %-8d dirty %-8d used %-8d "
724                        "free + dirty %-8d flags %#x (", lp->lnum, lp->free,
725                        lp->dirty, c->leb_size - spc, spc, lp->flags);
726         else
727                 printk(KERN_ERR "LEB %-7d free %-8d dirty %-8d used %-8d "
728                        "free + dirty %-8d dark %-4d dead %-4d nodes fit %-3d "
729                        "flags %#-4x (", lp->lnum, lp->free, lp->dirty,
730                        c->leb_size - spc, spc, dark, dead,
731                        (int)(spc / UBIFS_MAX_NODE_SZ), lp->flags);
732
733         if (lp->flags & LPROPS_TAKEN) {
734                 if (lp->flags & LPROPS_INDEX)
735                         printk(KERN_CONT "index, taken");
736                 else
737                         printk(KERN_CONT "taken");
738         } else {
739                 const char *s;
740
741                 if (lp->flags & LPROPS_INDEX) {
742                         switch (lp->flags & LPROPS_CAT_MASK) {
743                         case LPROPS_DIRTY_IDX:
744                                 s = "dirty index";
745                                 break;
746                         case LPROPS_FRDI_IDX:
747                                 s = "freeable index";
748                                 break;
749                         default:
750                                 s = "index";
751                         }
752                 } else {
753                         switch (lp->flags & LPROPS_CAT_MASK) {
754                         case LPROPS_UNCAT:
755                                 s = "not categorized";
756                                 break;
757                         case LPROPS_DIRTY:
758                                 s = "dirty";
759                                 break;
760                         case LPROPS_FREE:
761                                 s = "free";
762                                 break;
763                         case LPROPS_EMPTY:
764                                 s = "empty";
765                                 break;
766                         case LPROPS_FREEABLE:
767                                 s = "freeable";
768                                 break;
769                         default:
770                                 s = NULL;
771                                 break;
772                         }
773                 }
774                 printk(KERN_CONT "%s", s);
775         }
776
777         for (rb = rb_first((struct rb_root *)&c->buds); rb; rb = rb_next(rb)) {
778                 bud = rb_entry(rb, struct ubifs_bud, rb);
779                 if (bud->lnum == lp->lnum) {
780                         int head = 0;
781                         for (i = 0; i < c->jhead_cnt; i++) {
782                                 /*
783                                  * Note, if we are in R/O mode or in the middle
784                                  * of mounting/re-mounting, the write-buffers do
785                                  * not exist.
786                                  */
787                                 if (c->jheads &&
788                                     lp->lnum == c->jheads[i].wbuf.lnum) {
789                                         printk(KERN_CONT ", jhead %s",
790                                                dbg_jhead(i));
791                                         head = 1;
792                                 }
793                         }
794                         if (!head)
795                                 printk(KERN_CONT ", bud of jhead %s",
796                                        dbg_jhead(bud->jhead));
797                 }
798         }
799         if (lp->lnum == c->gc_lnum)
800                 printk(KERN_CONT ", GC LEB");
801         printk(KERN_CONT ")\n");
802 }
803
804 void dbg_dump_lprops(struct ubifs_info *c)
805 {
806         int lnum, err;
807         struct ubifs_lprops lp;
808         struct ubifs_lp_stats lst;
809
810         printk(KERN_ERR "(pid %d) start dumping LEB properties\n",
811                current->pid);
812         ubifs_get_lp_stats(c, &lst);
813         dbg_dump_lstats(&lst);
814
815         for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) {
816                 err = ubifs_read_one_lp(c, lnum, &lp);
817                 if (err)
818                         ubifs_err("cannot read lprops for LEB %d", lnum);
819
820                 dbg_dump_lprop(c, &lp);
821         }
822         printk(KERN_ERR "(pid %d) finish dumping LEB properties\n",
823                current->pid);
824 }
825
826 void dbg_dump_lpt_info(struct ubifs_info *c)
827 {
828         int i;
829
830         spin_lock(&dbg_lock);
831         printk(KERN_ERR "(pid %d) dumping LPT information\n", current->pid);
832         printk(KERN_ERR "\tlpt_sz:        %lld\n", c->lpt_sz);
833         printk(KERN_ERR "\tpnode_sz:      %d\n", c->pnode_sz);
834         printk(KERN_ERR "\tnnode_sz:      %d\n", c->nnode_sz);
835         printk(KERN_ERR "\tltab_sz:       %d\n", c->ltab_sz);
836         printk(KERN_ERR "\tlsave_sz:      %d\n", c->lsave_sz);
837         printk(KERN_ERR "\tbig_lpt:       %d\n", c->big_lpt);
838         printk(KERN_ERR "\tlpt_hght:      %d\n", c->lpt_hght);
839         printk(KERN_ERR "\tpnode_cnt:     %d\n", c->pnode_cnt);
840         printk(KERN_ERR "\tnnode_cnt:     %d\n", c->nnode_cnt);
841         printk(KERN_ERR "\tdirty_pn_cnt:  %d\n", c->dirty_pn_cnt);
842         printk(KERN_ERR "\tdirty_nn_cnt:  %d\n", c->dirty_nn_cnt);
843         printk(KERN_ERR "\tlsave_cnt:     %d\n", c->lsave_cnt);
844         printk(KERN_ERR "\tspace_bits:    %d\n", c->space_bits);
845         printk(KERN_ERR "\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits);
846         printk(KERN_ERR "\tlpt_offs_bits: %d\n", c->lpt_offs_bits);
847         printk(KERN_ERR "\tlpt_spc_bits:  %d\n", c->lpt_spc_bits);
848         printk(KERN_ERR "\tpcnt_bits:     %d\n", c->pcnt_bits);
849         printk(KERN_ERR "\tlnum_bits:     %d\n", c->lnum_bits);
850         printk(KERN_ERR "\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs);
851         printk(KERN_ERR "\tLPT head is at %d:%d\n",
852                c->nhead_lnum, c->nhead_offs);
853         printk(KERN_ERR "\tLPT ltab is at %d:%d\n",
854                c->ltab_lnum, c->ltab_offs);
855         if (c->big_lpt)
856                 printk(KERN_ERR "\tLPT lsave is at %d:%d\n",
857                        c->lsave_lnum, c->lsave_offs);
858         for (i = 0; i < c->lpt_lebs; i++)
859                 printk(KERN_ERR "\tLPT LEB %d free %d dirty %d tgc %d "
860                        "cmt %d\n", i + c->lpt_first, c->ltab[i].free,
861                        c->ltab[i].dirty, c->ltab[i].tgc, c->ltab[i].cmt);
862         spin_unlock(&dbg_lock);
863 }
864
865 void dbg_dump_sleb(const struct ubifs_info *c,
866                    const struct ubifs_scan_leb *sleb, int offs)
867 {
868         struct ubifs_scan_node *snod;
869
870         printk(KERN_ERR "(pid %d) start dumping scanned data from LEB %d:%d\n",
871                current->pid, sleb->lnum, offs);
872
873         list_for_each_entry(snod, &sleb->nodes, list) {
874                 cond_resched();
875                 printk(KERN_ERR "Dumping node at LEB %d:%d len %d\n", sleb->lnum,
876                        snod->offs, snod->len);
877                 dbg_dump_node(c, snod->node);
878         }
879 }
880
881 void dbg_dump_leb(const struct ubifs_info *c, int lnum)
882 {
883         struct ubifs_scan_leb *sleb;
884         struct ubifs_scan_node *snod;
885         void *buf;
886
887         if (dbg_is_tst_rcvry(c))
888                 return;
889
890         printk(KERN_ERR "(pid %d) start dumping LEB %d\n",
891                current->pid, lnum);
892
893         buf = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
894         if (!buf) {
895                 ubifs_err("cannot allocate memory for dumping LEB %d", lnum);
896                 return;
897         }
898
899         sleb = ubifs_scan(c, lnum, 0, buf, 0);
900         if (IS_ERR(sleb)) {
901                 ubifs_err("scan error %d", (int)PTR_ERR(sleb));
902                 goto out;
903         }
904
905         printk(KERN_ERR "LEB %d has %d nodes ending at %d\n", lnum,
906                sleb->nodes_cnt, sleb->endpt);
907
908         list_for_each_entry(snod, &sleb->nodes, list) {
909                 cond_resched();
910                 printk(KERN_ERR "Dumping node at LEB %d:%d len %d\n", lnum,
911                        snod->offs, snod->len);
912                 dbg_dump_node(c, snod->node);
913         }
914
915         printk(KERN_ERR "(pid %d) finish dumping LEB %d\n",
916                current->pid, lnum);
917         ubifs_scan_destroy(sleb);
918
919 out:
920         vfree(buf);
921         return;
922 }
923
924 void dbg_dump_znode(const struct ubifs_info *c,
925                     const struct ubifs_znode *znode)
926 {
927         int n;
928         const struct ubifs_zbranch *zbr;
929         char key_buf[DBG_KEY_BUF_LEN];
930
931         spin_lock(&dbg_lock);
932         if (znode->parent)
933                 zbr = &znode->parent->zbranch[znode->iip];
934         else
935                 zbr = &c->zroot;
936
937         printk(KERN_ERR "znode %p, LEB %d:%d len %d parent %p iip %d level %d"
938                " child_cnt %d flags %lx\n", znode, zbr->lnum, zbr->offs,
939                zbr->len, znode->parent, znode->iip, znode->level,
940                znode->child_cnt, znode->flags);
941
942         if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
943                 spin_unlock(&dbg_lock);
944                 return;
945         }
946
947         printk(KERN_ERR "zbranches:\n");
948         for (n = 0; n < znode->child_cnt; n++) {
949                 zbr = &znode->zbranch[n];
950                 if (znode->level > 0)
951                         printk(KERN_ERR "\t%d: znode %p LEB %d:%d len %d key "
952                                           "%s\n", n, zbr->znode, zbr->lnum,
953                                           zbr->offs, zbr->len,
954                                           dbg_snprintf_key(c, &zbr->key,
955                                                            key_buf,
956                                                            DBG_KEY_BUF_LEN));
957                 else
958                         printk(KERN_ERR "\t%d: LNC %p LEB %d:%d len %d key "
959                                           "%s\n", n, zbr->znode, zbr->lnum,
960                                           zbr->offs, zbr->len,
961                                           dbg_snprintf_key(c, &zbr->key,
962                                                            key_buf,
963                                                            DBG_KEY_BUF_LEN));
964         }
965         spin_unlock(&dbg_lock);
966 }
967
968 void dbg_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat)
969 {
970         int i;
971
972         printk(KERN_ERR "(pid %d) start dumping heap cat %d (%d elements)\n",
973                current->pid, cat, heap->cnt);
974         for (i = 0; i < heap->cnt; i++) {
975                 struct ubifs_lprops *lprops = heap->arr[i];
976
977                 printk(KERN_ERR "\t%d. LEB %d hpos %d free %d dirty %d "
978                        "flags %d\n", i, lprops->lnum, lprops->hpos,
979                        lprops->free, lprops->dirty, lprops->flags);
980         }
981         printk(KERN_ERR "(pid %d) finish dumping heap\n", current->pid);
982 }
983
984 void dbg_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
985                     struct ubifs_nnode *parent, int iip)
986 {
987         int i;
988
989         printk(KERN_ERR "(pid %d) dumping pnode:\n", current->pid);
990         printk(KERN_ERR "\taddress %zx parent %zx cnext %zx\n",
991                (size_t)pnode, (size_t)parent, (size_t)pnode->cnext);
992         printk(KERN_ERR "\tflags %lu iip %d level %d num %d\n",
993                pnode->flags, iip, pnode->level, pnode->num);
994         for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
995                 struct ubifs_lprops *lp = &pnode->lprops[i];
996
997                 printk(KERN_ERR "\t%d: free %d dirty %d flags %d lnum %d\n",
998                        i, lp->free, lp->dirty, lp->flags, lp->lnum);
999         }
1000 }
1001
1002 void dbg_dump_tnc(struct ubifs_info *c)
1003 {
1004         struct ubifs_znode *znode;
1005         int level;
1006
1007         printk(KERN_ERR "\n");
1008         printk(KERN_ERR "(pid %d) start dumping TNC tree\n", current->pid);
1009         znode = ubifs_tnc_levelorder_next(c->zroot.znode, NULL);
1010         level = znode->level;
1011         printk(KERN_ERR "== Level %d ==\n", level);
1012         while (znode) {
1013                 if (level != znode->level) {
1014                         level = znode->level;
1015                         printk(KERN_ERR "== Level %d ==\n", level);
1016                 }
1017                 dbg_dump_znode(c, znode);
1018                 znode = ubifs_tnc_levelorder_next(c->zroot.znode, znode);
1019         }
1020         printk(KERN_ERR "(pid %d) finish dumping TNC tree\n", current->pid);
1021 }
1022
1023 static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode,
1024                       void *priv)
1025 {
1026         dbg_dump_znode(c, znode);
1027         return 0;
1028 }
1029
1030 /**
1031  * dbg_dump_index - dump the on-flash index.
1032  * @c: UBIFS file-system description object
1033  *
1034  * This function dumps whole UBIFS indexing B-tree, unlike 'dbg_dump_tnc()'
1035  * which dumps only in-memory znodes and does not read znodes which from flash.
1036  */
1037 void dbg_dump_index(struct ubifs_info *c)
1038 {
1039         dbg_walk_index(c, NULL, dump_znode, NULL);
1040 }
1041
1042 /**
1043  * dbg_save_space_info - save information about flash space.
1044  * @c: UBIFS file-system description object
1045  *
1046  * This function saves information about UBIFS free space, dirty space, etc, in
1047  * order to check it later.
1048  */
1049 void dbg_save_space_info(struct ubifs_info *c)
1050 {
1051         struct ubifs_debug_info *d = c->dbg;
1052         int freeable_cnt;
1053
1054         spin_lock(&c->space_lock);
1055         memcpy(&d->saved_lst, &c->lst, sizeof(struct ubifs_lp_stats));
1056         memcpy(&d->saved_bi, &c->bi, sizeof(struct ubifs_budg_info));
1057         d->saved_idx_gc_cnt = c->idx_gc_cnt;
1058
1059         /*
1060          * We use a dirty hack here and zero out @c->freeable_cnt, because it
1061          * affects the free space calculations, and UBIFS might not know about
1062          * all freeable eraseblocks. Indeed, we know about freeable eraseblocks
1063          * only when we read their lprops, and we do this only lazily, upon the
1064          * need. So at any given point of time @c->freeable_cnt might be not
1065          * exactly accurate.
1066          *
1067          * Just one example about the issue we hit when we did not zero
1068          * @c->freeable_cnt.
1069          * 1. The file-system is mounted R/O, c->freeable_cnt is %0. We save the
1070          *    amount of free space in @d->saved_free
1071          * 2. We re-mount R/W, which makes UBIFS to read the "lsave"
1072          *    information from flash, where we cache LEBs from various
1073          *    categories ('ubifs_remount_fs()' -> 'ubifs_lpt_init()'
1074          *    -> 'lpt_init_wr()' -> 'read_lsave()' -> 'ubifs_lpt_lookup()'
1075          *    -> 'ubifs_get_pnode()' -> 'update_cats()'
1076          *    -> 'ubifs_add_to_cat()').
1077          * 3. Lsave contains a freeable eraseblock, and @c->freeable_cnt
1078          *    becomes %1.
1079          * 4. We calculate the amount of free space when the re-mount is
1080          *    finished in 'dbg_check_space_info()' and it does not match
1081          *    @d->saved_free.
1082          */
1083         freeable_cnt = c->freeable_cnt;
1084         c->freeable_cnt = 0;
1085         d->saved_free = ubifs_get_free_space_nolock(c);
1086         c->freeable_cnt = freeable_cnt;
1087         spin_unlock(&c->space_lock);
1088 }
1089
1090 /**
1091  * dbg_check_space_info - check flash space information.
1092  * @c: UBIFS file-system description object
1093  *
1094  * This function compares current flash space information with the information
1095  * which was saved when the 'dbg_save_space_info()' function was called.
1096  * Returns zero if the information has not changed, and %-EINVAL it it has
1097  * changed.
1098  */
1099 int dbg_check_space_info(struct ubifs_info *c)
1100 {
1101         struct ubifs_debug_info *d = c->dbg;
1102         struct ubifs_lp_stats lst;
1103         long long free;
1104         int freeable_cnt;
1105
1106         spin_lock(&c->space_lock);
1107         freeable_cnt = c->freeable_cnt;
1108         c->freeable_cnt = 0;
1109         free = ubifs_get_free_space_nolock(c);
1110         c->freeable_cnt = freeable_cnt;
1111         spin_unlock(&c->space_lock);
1112
1113         if (free != d->saved_free) {
1114                 ubifs_err("free space changed from %lld to %lld",
1115                           d->saved_free, free);
1116                 goto out;
1117         }
1118
1119         return 0;
1120
1121 out:
1122         ubifs_msg("saved lprops statistics dump");
1123         dbg_dump_lstats(&d->saved_lst);
1124         ubifs_msg("saved budgeting info dump");
1125         dbg_dump_budg(c, &d->saved_bi);
1126         ubifs_msg("saved idx_gc_cnt %d", d->saved_idx_gc_cnt);
1127         ubifs_msg("current lprops statistics dump");
1128         ubifs_get_lp_stats(c, &lst);
1129         dbg_dump_lstats(&lst);
1130         ubifs_msg("current budgeting info dump");
1131         dbg_dump_budg(c, &c->bi);
1132         dump_stack();
1133         return -EINVAL;
1134 }
1135
1136 /**
1137  * dbg_check_synced_i_size - check synchronized inode size.
1138  * @c: UBIFS file-system description object
1139  * @inode: inode to check
1140  *
1141  * If inode is clean, synchronized inode size has to be equivalent to current
1142  * inode size. This function has to be called only for locked inodes (@i_mutex
1143  * has to be locked). Returns %0 if synchronized inode size if correct, and
1144  * %-EINVAL if not.
1145  */
1146 int dbg_check_synced_i_size(const struct ubifs_info *c, struct inode *inode)
1147 {
1148         int err = 0;
1149         struct ubifs_inode *ui = ubifs_inode(inode);
1150
1151         if (!dbg_is_chk_gen(c))
1152                 return 0;
1153         if (!S_ISREG(inode->i_mode))
1154                 return 0;
1155
1156         mutex_lock(&ui->ui_mutex);
1157         spin_lock(&ui->ui_lock);
1158         if (ui->ui_size != ui->synced_i_size && !ui->dirty) {
1159                 ubifs_err("ui_size is %lld, synced_i_size is %lld, but inode "
1160                           "is clean", ui->ui_size, ui->synced_i_size);
1161                 ubifs_err("i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino,
1162                           inode->i_mode, i_size_read(inode));
1163                 dbg_dump_stack();
1164                 err = -EINVAL;
1165         }
1166         spin_unlock(&ui->ui_lock);
1167         mutex_unlock(&ui->ui_mutex);
1168         return err;
1169 }
1170
1171 /*
1172  * dbg_check_dir - check directory inode size and link count.
1173  * @c: UBIFS file-system description object
1174  * @dir: the directory to calculate size for
1175  * @size: the result is returned here
1176  *
1177  * This function makes sure that directory size and link count are correct.
1178  * Returns zero in case of success and a negative error code in case of
1179  * failure.
1180  *
1181  * Note, it is good idea to make sure the @dir->i_mutex is locked before
1182  * calling this function.
1183  */
1184 int dbg_check_dir(struct ubifs_info *c, const struct inode *dir)
1185 {
1186         unsigned int nlink = 2;
1187         union ubifs_key key;
1188         struct ubifs_dent_node *dent, *pdent = NULL;
1189         struct qstr nm = { .name = NULL };
1190         loff_t size = UBIFS_INO_NODE_SZ;
1191
1192         if (!dbg_is_chk_gen(c))
1193                 return 0;
1194
1195         if (!S_ISDIR(dir->i_mode))
1196                 return 0;
1197
1198         lowest_dent_key(c, &key, dir->i_ino);
1199         while (1) {
1200                 int err;
1201
1202                 dent = ubifs_tnc_next_ent(c, &key, &nm);
1203                 if (IS_ERR(dent)) {
1204                         err = PTR_ERR(dent);
1205                         if (err == -ENOENT)
1206                                 break;
1207                         return err;
1208                 }
1209
1210                 nm.name = dent->name;
1211                 nm.len = le16_to_cpu(dent->nlen);
1212                 size += CALC_DENT_SIZE(nm.len);
1213                 if (dent->type == UBIFS_ITYPE_DIR)
1214                         nlink += 1;
1215                 kfree(pdent);
1216                 pdent = dent;
1217                 key_read(c, &dent->key, &key);
1218         }
1219         kfree(pdent);
1220
1221         if (i_size_read(dir) != size) {
1222                 ubifs_err("directory inode %lu has size %llu, "
1223                           "but calculated size is %llu", dir->i_ino,
1224                           (unsigned long long)i_size_read(dir),
1225                           (unsigned long long)size);
1226                 dbg_dump_inode(c, dir);
1227                 dump_stack();
1228                 return -EINVAL;
1229         }
1230         if (dir->i_nlink != nlink) {
1231                 ubifs_err("directory inode %lu has nlink %u, but calculated "
1232                           "nlink is %u", dir->i_ino, dir->i_nlink, nlink);
1233                 dbg_dump_inode(c, dir);
1234                 dump_stack();
1235                 return -EINVAL;
1236         }
1237
1238         return 0;
1239 }
1240
1241 /**
1242  * dbg_check_key_order - make sure that colliding keys are properly ordered.
1243  * @c: UBIFS file-system description object
1244  * @zbr1: first zbranch
1245  * @zbr2: following zbranch
1246  *
1247  * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of
1248  * names of the direntries/xentries which are referred by the keys. This
1249  * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes
1250  * sure the name of direntry/xentry referred by @zbr1 is less than
1251  * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not,
1252  * and a negative error code in case of failure.
1253  */
1254 static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1,
1255                                struct ubifs_zbranch *zbr2)
1256 {
1257         int err, nlen1, nlen2, cmp;
1258         struct ubifs_dent_node *dent1, *dent2;
1259         union ubifs_key key;
1260         char key_buf[DBG_KEY_BUF_LEN];
1261
1262         ubifs_assert(!keys_cmp(c, &zbr1->key, &zbr2->key));
1263         dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1264         if (!dent1)
1265                 return -ENOMEM;
1266         dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1267         if (!dent2) {
1268                 err = -ENOMEM;
1269                 goto out_free;
1270         }
1271
1272         err = ubifs_tnc_read_node(c, zbr1, dent1);
1273         if (err)
1274                 goto out_free;
1275         err = ubifs_validate_entry(c, dent1);
1276         if (err)
1277                 goto out_free;
1278
1279         err = ubifs_tnc_read_node(c, zbr2, dent2);
1280         if (err)
1281                 goto out_free;
1282         err = ubifs_validate_entry(c, dent2);
1283         if (err)
1284                 goto out_free;
1285
1286         /* Make sure node keys are the same as in zbranch */
1287         err = 1;
1288         key_read(c, &dent1->key, &key);
1289         if (keys_cmp(c, &zbr1->key, &key)) {
1290                 dbg_err("1st entry at %d:%d has key %s", zbr1->lnum,
1291                         zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
1292                                                      DBG_KEY_BUF_LEN));
1293                 dbg_err("but it should have key %s according to tnc",
1294                         dbg_snprintf_key(c, &zbr1->key, key_buf,
1295                                          DBG_KEY_BUF_LEN));
1296                 dbg_dump_node(c, dent1);
1297                 goto out_free;
1298         }
1299
1300         key_read(c, &dent2->key, &key);
1301         if (keys_cmp(c, &zbr2->key, &key)) {
1302                 dbg_err("2nd entry at %d:%d has key %s", zbr1->lnum,
1303                         zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
1304                                                      DBG_KEY_BUF_LEN));
1305                 dbg_err("but it should have key %s according to tnc",
1306                         dbg_snprintf_key(c, &zbr2->key, key_buf,
1307                                          DBG_KEY_BUF_LEN));
1308                 dbg_dump_node(c, dent2);
1309                 goto out_free;
1310         }
1311
1312         nlen1 = le16_to_cpu(dent1->nlen);
1313         nlen2 = le16_to_cpu(dent2->nlen);
1314
1315         cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2));
1316         if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) {
1317                 err = 0;
1318                 goto out_free;
1319         }
1320         if (cmp == 0 && nlen1 == nlen2)
1321                 dbg_err("2 xent/dent nodes with the same name");
1322         else
1323                 dbg_err("bad order of colliding key %s",
1324                         dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
1325
1326         ubifs_msg("first node at %d:%d\n", zbr1->lnum, zbr1->offs);
1327         dbg_dump_node(c, dent1);
1328         ubifs_msg("second node at %d:%d\n", zbr2->lnum, zbr2->offs);
1329         dbg_dump_node(c, dent2);
1330
1331 out_free:
1332         kfree(dent2);
1333         kfree(dent1);
1334         return err;
1335 }
1336
1337 /**
1338  * dbg_check_znode - check if znode is all right.
1339  * @c: UBIFS file-system description object
1340  * @zbr: zbranch which points to this znode
1341  *
1342  * This function makes sure that znode referred to by @zbr is all right.
1343  * Returns zero if it is, and %-EINVAL if it is not.
1344  */
1345 static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr)
1346 {
1347         struct ubifs_znode *znode = zbr->znode;
1348         struct ubifs_znode *zp = znode->parent;
1349         int n, err, cmp;
1350
1351         if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
1352                 err = 1;
1353                 goto out;
1354         }
1355         if (znode->level < 0) {
1356                 err = 2;
1357                 goto out;
1358         }
1359         if (znode->iip < 0 || znode->iip >= c->fanout) {
1360                 err = 3;
1361                 goto out;
1362         }
1363
1364         if (zbr->len == 0)
1365                 /* Only dirty zbranch may have no on-flash nodes */
1366                 if (!ubifs_zn_dirty(znode)) {
1367                         err = 4;
1368                         goto out;
1369                 }
1370
1371         if (ubifs_zn_dirty(znode)) {
1372                 /*
1373                  * If znode is dirty, its parent has to be dirty as well. The
1374                  * order of the operation is important, so we have to have
1375                  * memory barriers.
1376                  */
1377                 smp_mb();
1378                 if (zp && !ubifs_zn_dirty(zp)) {
1379                         /*
1380                          * The dirty flag is atomic and is cleared outside the
1381                          * TNC mutex, so znode's dirty flag may now have
1382                          * been cleared. The child is always cleared before the
1383                          * parent, so we just need to check again.
1384                          */
1385                         smp_mb();
1386                         if (ubifs_zn_dirty(znode)) {
1387                                 err = 5;
1388                                 goto out;
1389                         }
1390                 }
1391         }
1392
1393         if (zp) {
1394                 const union ubifs_key *min, *max;
1395
1396                 if (znode->level != zp->level - 1) {
1397                         err = 6;
1398                         goto out;
1399                 }
1400
1401                 /* Make sure the 'parent' pointer in our znode is correct */
1402                 err = ubifs_search_zbranch(c, zp, &zbr->key, &n);
1403                 if (!err) {
1404                         /* This zbranch does not exist in the parent */
1405                         err = 7;
1406                         goto out;
1407                 }
1408
1409                 if (znode->iip >= zp->child_cnt) {
1410                         err = 8;
1411                         goto out;
1412                 }
1413
1414                 if (znode->iip != n) {
1415                         /* This may happen only in case of collisions */
1416                         if (keys_cmp(c, &zp->zbranch[n].key,
1417                                      &zp->zbranch[znode->iip].key)) {
1418                                 err = 9;
1419                                 goto out;
1420                         }
1421                         n = znode->iip;
1422                 }
1423
1424                 /*
1425                  * Make sure that the first key in our znode is greater than or
1426                  * equal to the key in the pointing zbranch.
1427                  */
1428                 min = &zbr->key;
1429                 cmp = keys_cmp(c, min, &znode->zbranch[0].key);
1430                 if (cmp == 1) {
1431                         err = 10;
1432                         goto out;
1433                 }
1434
1435                 if (n + 1 < zp->child_cnt) {
1436                         max = &zp->zbranch[n + 1].key;
1437
1438                         /*
1439                          * Make sure the last key in our znode is less or
1440                          * equivalent than the key in the zbranch which goes
1441                          * after our pointing zbranch.
1442                          */
1443                         cmp = keys_cmp(c, max,
1444                                 &znode->zbranch[znode->child_cnt - 1].key);
1445                         if (cmp == -1) {
1446                                 err = 11;
1447                                 goto out;
1448                         }
1449                 }
1450         } else {
1451                 /* This may only be root znode */
1452                 if (zbr != &c->zroot) {
1453                         err = 12;
1454                         goto out;
1455                 }
1456         }
1457
1458         /*
1459          * Make sure that next key is greater or equivalent then the previous
1460          * one.
1461          */
1462         for (n = 1; n < znode->child_cnt; n++) {
1463                 cmp = keys_cmp(c, &znode->zbranch[n - 1].key,
1464                                &znode->zbranch[n].key);
1465                 if (cmp > 0) {
1466                         err = 13;
1467                         goto out;
1468                 }
1469                 if (cmp == 0) {
1470                         /* This can only be keys with colliding hash */
1471                         if (!is_hash_key(c, &znode->zbranch[n].key)) {
1472                                 err = 14;
1473                                 goto out;
1474                         }
1475
1476                         if (znode->level != 0 || c->replaying)
1477                                 continue;
1478
1479                         /*
1480                          * Colliding keys should follow binary order of
1481                          * corresponding xentry/dentry names.
1482                          */
1483                         err = dbg_check_key_order(c, &znode->zbranch[n - 1],
1484                                                   &znode->zbranch[n]);
1485                         if (err < 0)
1486                                 return err;
1487                         if (err) {
1488                                 err = 15;
1489                                 goto out;
1490                         }
1491                 }
1492         }
1493
1494         for (n = 0; n < znode->child_cnt; n++) {
1495                 if (!znode->zbranch[n].znode &&
1496                     (znode->zbranch[n].lnum == 0 ||
1497                      znode->zbranch[n].len == 0)) {
1498                         err = 16;
1499                         goto out;
1500                 }
1501
1502                 if (znode->zbranch[n].lnum != 0 &&
1503                     znode->zbranch[n].len == 0) {
1504                         err = 17;
1505                         goto out;
1506                 }
1507
1508                 if (znode->zbranch[n].lnum == 0 &&
1509                     znode->zbranch[n].len != 0) {
1510                         err = 18;
1511                         goto out;
1512                 }
1513
1514                 if (znode->zbranch[n].lnum == 0 &&
1515                     znode->zbranch[n].offs != 0) {
1516                         err = 19;
1517                         goto out;
1518                 }
1519
1520                 if (znode->level != 0 && znode->zbranch[n].znode)
1521                         if (znode->zbranch[n].znode->parent != znode) {
1522                                 err = 20;
1523                                 goto out;
1524                         }
1525         }
1526
1527         return 0;
1528
1529 out:
1530         ubifs_err("failed, error %d", err);
1531         ubifs_msg("dump of the znode");
1532         dbg_dump_znode(c, znode);
1533         if (zp) {
1534                 ubifs_msg("dump of the parent znode");
1535                 dbg_dump_znode(c, zp);
1536         }
1537         dump_stack();
1538         return -EINVAL;
1539 }
1540
1541 /**
1542  * dbg_check_tnc - check TNC tree.
1543  * @c: UBIFS file-system description object
1544  * @extra: do extra checks that are possible at start commit
1545  *
1546  * This function traverses whole TNC tree and checks every znode. Returns zero
1547  * if everything is all right and %-EINVAL if something is wrong with TNC.
1548  */
1549 int dbg_check_tnc(struct ubifs_info *c, int extra)
1550 {
1551         struct ubifs_znode *znode;
1552         long clean_cnt = 0, dirty_cnt = 0;
1553         int err, last;
1554
1555         if (!dbg_is_chk_index(c))
1556                 return 0;
1557
1558         ubifs_assert(mutex_is_locked(&c->tnc_mutex));
1559         if (!c->zroot.znode)
1560                 return 0;
1561
1562         znode = ubifs_tnc_postorder_first(c->zroot.znode);
1563         while (1) {
1564                 struct ubifs_znode *prev;
1565                 struct ubifs_zbranch *zbr;
1566
1567                 if (!znode->parent)
1568                         zbr = &c->zroot;
1569                 else
1570                         zbr = &znode->parent->zbranch[znode->iip];
1571
1572                 err = dbg_check_znode(c, zbr);
1573                 if (err)
1574                         return err;
1575
1576                 if (extra) {
1577                         if (ubifs_zn_dirty(znode))
1578                                 dirty_cnt += 1;
1579                         else
1580                                 clean_cnt += 1;
1581                 }
1582
1583                 prev = znode;
1584                 znode = ubifs_tnc_postorder_next(znode);
1585                 if (!znode)
1586                         break;
1587
1588                 /*
1589                  * If the last key of this znode is equivalent to the first key
1590                  * of the next znode (collision), then check order of the keys.
1591                  */
1592                 last = prev->child_cnt - 1;
1593                 if (prev->level == 0 && znode->level == 0 && !c->replaying &&
1594                     !keys_cmp(c, &prev->zbranch[last].key,
1595                               &znode->zbranch[0].key)) {
1596                         err = dbg_check_key_order(c, &prev->zbranch[last],
1597                                                   &znode->zbranch[0]);
1598                         if (err < 0)
1599                                 return err;
1600                         if (err) {
1601                                 ubifs_msg("first znode");
1602                                 dbg_dump_znode(c, prev);
1603                                 ubifs_msg("second znode");
1604                                 dbg_dump_znode(c, znode);
1605                                 return -EINVAL;
1606                         }
1607                 }
1608         }
1609
1610         if (extra) {
1611                 if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) {
1612                         ubifs_err("incorrect clean_zn_cnt %ld, calculated %ld",
1613                                   atomic_long_read(&c->clean_zn_cnt),
1614                                   clean_cnt);
1615                         return -EINVAL;
1616                 }
1617                 if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) {
1618                         ubifs_err("incorrect dirty_zn_cnt %ld, calculated %ld",
1619                                   atomic_long_read(&c->dirty_zn_cnt),
1620                                   dirty_cnt);
1621                         return -EINVAL;
1622                 }
1623         }
1624
1625         return 0;
1626 }
1627
1628 /**
1629  * dbg_walk_index - walk the on-flash index.
1630  * @c: UBIFS file-system description object
1631  * @leaf_cb: called for each leaf node
1632  * @znode_cb: called for each indexing node
1633  * @priv: private data which is passed to callbacks
1634  *
1635  * This function walks the UBIFS index and calls the @leaf_cb for each leaf
1636  * node and @znode_cb for each indexing node. Returns zero in case of success
1637  * and a negative error code in case of failure.
1638  *
1639  * It would be better if this function removed every znode it pulled to into
1640  * the TNC, so that the behavior more closely matched the non-debugging
1641  * behavior.
1642  */
1643 int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb,
1644                    dbg_znode_callback znode_cb, void *priv)
1645 {
1646         int err;
1647         struct ubifs_zbranch *zbr;
1648         struct ubifs_znode *znode, *child;
1649
1650         mutex_lock(&c->tnc_mutex);
1651         /* If the root indexing node is not in TNC - pull it */
1652         if (!c->zroot.znode) {
1653                 c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1654                 if (IS_ERR(c->zroot.znode)) {
1655                         err = PTR_ERR(c->zroot.znode);
1656                         c->zroot.znode = NULL;
1657                         goto out_unlock;
1658                 }
1659         }
1660
1661         /*
1662          * We are going to traverse the indexing tree in the postorder manner.
1663          * Go down and find the leftmost indexing node where we are going to
1664          * start from.
1665          */
1666         znode = c->zroot.znode;
1667         while (znode->level > 0) {
1668                 zbr = &znode->zbranch[0];
1669                 child = zbr->znode;
1670                 if (!child) {
1671                         child = ubifs_load_znode(c, zbr, znode, 0);
1672                         if (IS_ERR(child)) {
1673                                 err = PTR_ERR(child);
1674                                 goto out_unlock;
1675                         }
1676                         zbr->znode = child;
1677                 }
1678
1679                 znode = child;
1680         }
1681
1682         /* Iterate over all indexing nodes */
1683         while (1) {
1684                 int idx;
1685
1686                 cond_resched();
1687
1688                 if (znode_cb) {
1689                         err = znode_cb(c, znode, priv);
1690                         if (err) {
1691                                 ubifs_err("znode checking function returned "
1692                                           "error %d", err);
1693                                 dbg_dump_znode(c, znode);
1694                                 goto out_dump;
1695                         }
1696                 }
1697                 if (leaf_cb && znode->level == 0) {
1698                         for (idx = 0; idx < znode->child_cnt; idx++) {
1699                                 zbr = &znode->zbranch[idx];
1700                                 err = leaf_cb(c, zbr, priv);
1701                                 if (err) {
1702                                         ubifs_err("leaf checking function "
1703                                                   "returned error %d, for leaf "
1704                                                   "at LEB %d:%d",
1705                                                   err, zbr->lnum, zbr->offs);
1706                                         goto out_dump;
1707                                 }
1708                         }
1709                 }
1710
1711                 if (!znode->parent)
1712                         break;
1713
1714                 idx = znode->iip + 1;
1715                 znode = znode->parent;
1716                 if (idx < znode->child_cnt) {
1717                         /* Switch to the next index in the parent */
1718                         zbr = &znode->zbranch[idx];
1719                         child = zbr->znode;
1720                         if (!child) {
1721                                 child = ubifs_load_znode(c, zbr, znode, idx);
1722                                 if (IS_ERR(child)) {
1723                                         err = PTR_ERR(child);
1724                                         goto out_unlock;
1725                                 }
1726                                 zbr->znode = child;
1727                         }
1728                         znode = child;
1729                 } else
1730                         /*
1731                          * This is the last child, switch to the parent and
1732                          * continue.
1733                          */
1734                         continue;
1735
1736                 /* Go to the lowest leftmost znode in the new sub-tree */
1737                 while (znode->level > 0) {
1738                         zbr = &znode->zbranch[0];
1739                         child = zbr->znode;
1740                         if (!child) {
1741                                 child = ubifs_load_znode(c, zbr, znode, 0);
1742                                 if (IS_ERR(child)) {
1743                                         err = PTR_ERR(child);
1744                                         goto out_unlock;
1745                                 }
1746                                 zbr->znode = child;
1747                         }
1748                         znode = child;
1749                 }
1750         }
1751
1752         mutex_unlock(&c->tnc_mutex);
1753         return 0;
1754
1755 out_dump:
1756         if (znode->parent)
1757                 zbr = &znode->parent->zbranch[znode->iip];
1758         else
1759                 zbr = &c->zroot;
1760         ubifs_msg("dump of znode at LEB %d:%d", zbr->lnum, zbr->offs);
1761         dbg_dump_znode(c, znode);
1762 out_unlock:
1763         mutex_unlock(&c->tnc_mutex);
1764         return err;
1765 }
1766
1767 /**
1768  * add_size - add znode size to partially calculated index size.
1769  * @c: UBIFS file-system description object
1770  * @znode: znode to add size for
1771  * @priv: partially calculated index size
1772  *
1773  * This is a helper function for 'dbg_check_idx_size()' which is called for
1774  * every indexing node and adds its size to the 'long long' variable pointed to
1775  * by @priv.
1776  */
1777 static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv)
1778 {
1779         long long *idx_size = priv;
1780         int add;
1781
1782         add = ubifs_idx_node_sz(c, znode->child_cnt);
1783         add = ALIGN(add, 8);
1784         *idx_size += add;
1785         return 0;
1786 }
1787
1788 /**
1789  * dbg_check_idx_size - check index size.
1790  * @c: UBIFS file-system description object
1791  * @idx_size: size to check
1792  *
1793  * This function walks the UBIFS index, calculates its size and checks that the
1794  * size is equivalent to @idx_size. Returns zero in case of success and a
1795  * negative error code in case of failure.
1796  */
1797 int dbg_check_idx_size(struct ubifs_info *c, long long idx_size)
1798 {
1799         int err;
1800         long long calc = 0;
1801
1802         if (!dbg_is_chk_index(c))
1803                 return 0;
1804
1805         err = dbg_walk_index(c, NULL, add_size, &calc);
1806         if (err) {
1807                 ubifs_err("error %d while walking the index", err);
1808                 return err;
1809         }
1810
1811         if (calc != idx_size) {
1812                 ubifs_err("index size check failed: calculated size is %lld, "
1813                           "should be %lld", calc, idx_size);
1814                 dump_stack();
1815                 return -EINVAL;
1816         }
1817
1818         return 0;
1819 }
1820
1821 /**
1822  * struct fsck_inode - information about an inode used when checking the file-system.
1823  * @rb: link in the RB-tree of inodes
1824  * @inum: inode number
1825  * @mode: inode type, permissions, etc
1826  * @nlink: inode link count
1827  * @xattr_cnt: count of extended attributes
1828  * @references: how many directory/xattr entries refer this inode (calculated
1829  *              while walking the index)
1830  * @calc_cnt: for directory inode count of child directories
1831  * @size: inode size (read from on-flash inode)
1832  * @xattr_sz: summary size of all extended attributes (read from on-flash
1833  *            inode)
1834  * @calc_sz: for directories calculated directory size
1835  * @calc_xcnt: count of extended attributes
1836  * @calc_xsz: calculated summary size of all extended attributes
1837  * @xattr_nms: sum of lengths of all extended attribute names belonging to this
1838  *             inode (read from on-flash inode)
1839  * @calc_xnms: calculated sum of lengths of all extended attribute names
1840  */
1841 struct fsck_inode {
1842         struct rb_node rb;
1843         ino_t inum;
1844         umode_t mode;
1845         unsigned int nlink;
1846         unsigned int xattr_cnt;
1847         int references;
1848         int calc_cnt;
1849         long long size;
1850         unsigned int xattr_sz;
1851         long long calc_sz;
1852         long long calc_xcnt;
1853         long long calc_xsz;
1854         unsigned int xattr_nms;
1855         long long calc_xnms;
1856 };
1857
1858 /**
1859  * struct fsck_data - private FS checking information.
1860  * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects)
1861  */
1862 struct fsck_data {
1863         struct rb_root inodes;
1864 };
1865
1866 /**
1867  * add_inode - add inode information to RB-tree of inodes.
1868  * @c: UBIFS file-system description object
1869  * @fsckd: FS checking information
1870  * @ino: raw UBIFS inode to add
1871  *
1872  * This is a helper function for 'check_leaf()' which adds information about
1873  * inode @ino to the RB-tree of inodes. Returns inode information pointer in
1874  * case of success and a negative error code in case of failure.
1875  */
1876 static struct fsck_inode *add_inode(struct ubifs_info *c,
1877                                     struct fsck_data *fsckd,
1878                                     struct ubifs_ino_node *ino)
1879 {
1880         struct rb_node **p, *parent = NULL;
1881         struct fsck_inode *fscki;
1882         ino_t inum = key_inum_flash(c, &ino->key);
1883         struct inode *inode;
1884         struct ubifs_inode *ui;
1885
1886         p = &fsckd->inodes.rb_node;
1887         while (*p) {
1888                 parent = *p;
1889                 fscki = rb_entry(parent, struct fsck_inode, rb);
1890                 if (inum < fscki->inum)
1891                         p = &(*p)->rb_left;
1892                 else if (inum > fscki->inum)
1893                         p = &(*p)->rb_right;
1894                 else
1895                         return fscki;
1896         }
1897
1898         if (inum > c->highest_inum) {
1899                 ubifs_err("too high inode number, max. is %lu",
1900                           (unsigned long)c->highest_inum);
1901                 return ERR_PTR(-EINVAL);
1902         }
1903
1904         fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS);
1905         if (!fscki)
1906                 return ERR_PTR(-ENOMEM);
1907
1908         inode = ilookup(c->vfs_sb, inum);
1909
1910         fscki->inum = inum;
1911         /*
1912          * If the inode is present in the VFS inode cache, use it instead of
1913          * the on-flash inode which might be out-of-date. E.g., the size might
1914          * be out-of-date. If we do not do this, the following may happen, for
1915          * example:
1916          *   1. A power cut happens
1917          *   2. We mount the file-system R/O, the replay process fixes up the
1918          *      inode size in the VFS cache, but on on-flash.
1919          *   3. 'check_leaf()' fails because it hits a data node beyond inode
1920          *      size.
1921          */
1922         if (!inode) {
1923                 fscki->nlink = le32_to_cpu(ino->nlink);
1924                 fscki->size = le64_to_cpu(ino->size);
1925                 fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
1926                 fscki->xattr_sz = le32_to_cpu(ino->xattr_size);
1927                 fscki->xattr_nms = le32_to_cpu(ino->xattr_names);
1928                 fscki->mode = le32_to_cpu(ino->mode);
1929         } else {
1930                 ui = ubifs_inode(inode);
1931                 fscki->nlink = inode->i_nlink;
1932                 fscki->size = inode->i_size;
1933                 fscki->xattr_cnt = ui->xattr_cnt;
1934                 fscki->xattr_sz = ui->xattr_size;
1935                 fscki->xattr_nms = ui->xattr_names;
1936                 fscki->mode = inode->i_mode;
1937                 iput(inode);
1938         }
1939
1940         if (S_ISDIR(fscki->mode)) {
1941                 fscki->calc_sz = UBIFS_INO_NODE_SZ;
1942                 fscki->calc_cnt = 2;
1943         }
1944
1945         rb_link_node(&fscki->rb, parent, p);
1946         rb_insert_color(&fscki->rb, &fsckd->inodes);
1947
1948         return fscki;
1949 }
1950
1951 /**
1952  * search_inode - search inode in the RB-tree of inodes.
1953  * @fsckd: FS checking information
1954  * @inum: inode number to search
1955  *
1956  * This is a helper function for 'check_leaf()' which searches inode @inum in
1957  * the RB-tree of inodes and returns an inode information pointer or %NULL if
1958  * the inode was not found.
1959  */
1960 static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum)
1961 {
1962         struct rb_node *p;
1963         struct fsck_inode *fscki;
1964
1965         p = fsckd->inodes.rb_node;
1966         while (p) {
1967                 fscki = rb_entry(p, struct fsck_inode, rb);
1968                 if (inum < fscki->inum)
1969                         p = p->rb_left;
1970                 else if (inum > fscki->inum)
1971                         p = p->rb_right;
1972                 else
1973                         return fscki;
1974         }
1975         return NULL;
1976 }
1977
1978 /**
1979  * read_add_inode - read inode node and add it to RB-tree of inodes.
1980  * @c: UBIFS file-system description object
1981  * @fsckd: FS checking information
1982  * @inum: inode number to read
1983  *
1984  * This is a helper function for 'check_leaf()' which finds inode node @inum in
1985  * the index, reads it, and adds it to the RB-tree of inodes. Returns inode
1986  * information pointer in case of success and a negative error code in case of
1987  * failure.
1988  */
1989 static struct fsck_inode *read_add_inode(struct ubifs_info *c,
1990                                          struct fsck_data *fsckd, ino_t inum)
1991 {
1992         int n, err;
1993         union ubifs_key key;
1994         struct ubifs_znode *znode;
1995         struct ubifs_zbranch *zbr;
1996         struct ubifs_ino_node *ino;
1997         struct fsck_inode *fscki;
1998
1999         fscki = search_inode(fsckd, inum);
2000         if (fscki)
2001                 return fscki;
2002
2003         ino_key_init(c, &key, inum);
2004         err = ubifs_lookup_level0(c, &key, &znode, &n);
2005         if (!err) {
2006                 ubifs_err("inode %lu not found in index", (unsigned long)inum);
2007                 return ERR_PTR(-ENOENT);
2008         } else if (err < 0) {
2009                 ubifs_err("error %d while looking up inode %lu",
2010                           err, (unsigned long)inum);
2011                 return ERR_PTR(err);
2012         }
2013
2014         zbr = &znode->zbranch[n];
2015         if (zbr->len < UBIFS_INO_NODE_SZ) {
2016                 ubifs_err("bad node %lu node length %d",
2017                           (unsigned long)inum, zbr->len);
2018                 return ERR_PTR(-EINVAL);
2019         }
2020
2021         ino = kmalloc(zbr->len, GFP_NOFS);
2022         if (!ino)
2023                 return ERR_PTR(-ENOMEM);
2024
2025         err = ubifs_tnc_read_node(c, zbr, ino);
2026         if (err) {
2027                 ubifs_err("cannot read inode node at LEB %d:%d, error %d",
2028                           zbr->lnum, zbr->offs, err);
2029                 kfree(ino);
2030                 return ERR_PTR(err);
2031         }
2032
2033         fscki = add_inode(c, fsckd, ino);
2034         kfree(ino);
2035         if (IS_ERR(fscki)) {
2036                 ubifs_err("error %ld while adding inode %lu node",
2037                           PTR_ERR(fscki), (unsigned long)inum);
2038                 return fscki;
2039         }
2040
2041         return fscki;
2042 }
2043
2044 /**
2045  * check_leaf - check leaf node.
2046  * @c: UBIFS file-system description object
2047  * @zbr: zbranch of the leaf node to check
2048  * @priv: FS checking information
2049  *
2050  * This is a helper function for 'dbg_check_filesystem()' which is called for
2051  * every single leaf node while walking the indexing tree. It checks that the
2052  * leaf node referred from the indexing tree exists, has correct CRC, and does
2053  * some other basic validation. This function is also responsible for building
2054  * an RB-tree of inodes - it adds all inodes into the RB-tree. It also
2055  * calculates reference count, size, etc for each inode in order to later
2056  * compare them to the information stored inside the inodes and detect possible
2057  * inconsistencies. Returns zero in case of success and a negative error code
2058  * in case of failure.
2059  */
2060 static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr,
2061                       void *priv)
2062 {
2063         ino_t inum;
2064         void *node;
2065         struct ubifs_ch *ch;
2066         int err, type = key_type(c, &zbr->key);
2067         struct fsck_inode *fscki;
2068
2069         if (zbr->len < UBIFS_CH_SZ) {
2070                 ubifs_err("bad leaf length %d (LEB %d:%d)",
2071                           zbr->len, zbr->lnum, zbr->offs);
2072                 return -EINVAL;
2073         }
2074
2075         node = kmalloc(zbr->len, GFP_NOFS);
2076         if (!node)
2077                 return -ENOMEM;
2078
2079         err = ubifs_tnc_read_node(c, zbr, node);
2080         if (err) {
2081                 ubifs_err("cannot read leaf node at LEB %d:%d, error %d",
2082                           zbr->lnum, zbr->offs, err);
2083                 goto out_free;
2084         }
2085
2086         /* If this is an inode node, add it to RB-tree of inodes */
2087         if (type == UBIFS_INO_KEY) {
2088                 fscki = add_inode(c, priv, node);
2089                 if (IS_ERR(fscki)) {
2090                         err = PTR_ERR(fscki);
2091                         ubifs_err("error %d while adding inode node", err);
2092                         goto out_dump;
2093                 }
2094                 goto out;
2095         }
2096
2097         if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY &&
2098             type != UBIFS_DATA_KEY) {
2099                 ubifs_err("unexpected node type %d at LEB %d:%d",
2100                           type, zbr->lnum, zbr->offs);
2101                 err = -EINVAL;
2102                 goto out_free;
2103         }
2104
2105         ch = node;
2106         if (le64_to_cpu(ch->sqnum) > c->max_sqnum) {
2107                 ubifs_err("too high sequence number, max. is %llu",
2108                           c->max_sqnum);
2109                 err = -EINVAL;
2110                 goto out_dump;
2111         }
2112
2113         if (type == UBIFS_DATA_KEY) {
2114                 long long blk_offs;
2115                 struct ubifs_data_node *dn = node;
2116
2117                 /*
2118                  * Search the inode node this data node belongs to and insert
2119                  * it to the RB-tree of inodes.
2120                  */
2121                 inum = key_inum_flash(c, &dn->key);
2122                 fscki = read_add_inode(c, priv, inum);
2123                 if (IS_ERR(fscki)) {
2124                         err = PTR_ERR(fscki);
2125                         ubifs_err("error %d while processing data node and "
2126                                   "trying to find inode node %lu",
2127                                   err, (unsigned long)inum);
2128                         goto out_dump;
2129                 }
2130
2131                 /* Make sure the data node is within inode size */
2132                 blk_offs = key_block_flash(c, &dn->key);
2133                 blk_offs <<= UBIFS_BLOCK_SHIFT;
2134                 blk_offs += le32_to_cpu(dn->size);
2135                 if (blk_offs > fscki->size) {
2136                         ubifs_err("data node at LEB %d:%d is not within inode "
2137                                   "size %lld", zbr->lnum, zbr->offs,
2138                                   fscki->size);
2139                         err = -EINVAL;
2140                         goto out_dump;
2141                 }
2142         } else {
2143                 int nlen;
2144                 struct ubifs_dent_node *dent = node;
2145                 struct fsck_inode *fscki1;
2146
2147                 err = ubifs_validate_entry(c, dent);
2148                 if (err)
2149                         goto out_dump;
2150
2151                 /*
2152                  * Search the inode node this entry refers to and the parent
2153                  * inode node and insert them to the RB-tree of inodes.
2154                  */
2155                 inum = le64_to_cpu(dent->inum);
2156                 fscki = read_add_inode(c, priv, inum);
2157                 if (IS_ERR(fscki)) {
2158                         err = PTR_ERR(fscki);
2159                         ubifs_err("error %d while processing entry node and "
2160                                   "trying to find inode node %lu",
2161                                   err, (unsigned long)inum);
2162                         goto out_dump;
2163                 }
2164
2165                 /* Count how many direntries or xentries refers this inode */
2166                 fscki->references += 1;
2167
2168                 inum = key_inum_flash(c, &dent->key);
2169                 fscki1 = read_add_inode(c, priv, inum);
2170                 if (IS_ERR(fscki1)) {
2171                         err = PTR_ERR(fscki1);
2172                         ubifs_err("error %d while processing entry node and "
2173                                   "trying to find parent inode node %lu",
2174                                   err, (unsigned long)inum);
2175                         goto out_dump;
2176                 }
2177
2178                 nlen = le16_to_cpu(dent->nlen);
2179                 if (type == UBIFS_XENT_KEY) {
2180                         fscki1->calc_xcnt += 1;
2181                         fscki1->calc_xsz += CALC_DENT_SIZE(nlen);
2182                         fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size);
2183                         fscki1->calc_xnms += nlen;
2184                 } else {
2185                         fscki1->calc_sz += CALC_DENT_SIZE(nlen);
2186                         if (dent->type == UBIFS_ITYPE_DIR)
2187                                 fscki1->calc_cnt += 1;
2188                 }
2189         }
2190
2191 out:
2192         kfree(node);
2193         return 0;
2194
2195 out_dump:
2196         ubifs_msg("dump of node at LEB %d:%d", zbr->lnum, zbr->offs);
2197         dbg_dump_node(c, node);
2198 out_free:
2199         kfree(node);
2200         return err;
2201 }
2202
2203 /**
2204  * free_inodes - free RB-tree of inodes.
2205  * @fsckd: FS checking information
2206  */
2207 static void free_inodes(struct fsck_data *fsckd)
2208 {
2209         struct rb_node *this = fsckd->inodes.rb_node;
2210         struct fsck_inode *fscki;
2211
2212         while (this) {
2213                 if (this->rb_left)
2214                         this = this->rb_left;
2215                 else if (this->rb_right)
2216                         this = this->rb_right;
2217                 else {
2218                         fscki = rb_entry(this, struct fsck_inode, rb);
2219                         this = rb_parent(this);
2220                         if (this) {
2221                                 if (this->rb_left == &fscki->rb)
2222                                         this->rb_left = NULL;
2223                                 else
2224                                         this->rb_right = NULL;
2225                         }
2226                         kfree(fscki);
2227                 }
2228         }
2229 }
2230
2231 /**
2232  * check_inodes - checks all inodes.
2233  * @c: UBIFS file-system description object
2234  * @fsckd: FS checking information
2235  *
2236  * This is a helper function for 'dbg_check_filesystem()' which walks the
2237  * RB-tree of inodes after the index scan has been finished, and checks that
2238  * inode nlink, size, etc are correct. Returns zero if inodes are fine,
2239  * %-EINVAL if not, and a negative error code in case of failure.
2240  */
2241 static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd)
2242 {
2243         int n, err;
2244         union ubifs_key key;
2245         struct ubifs_znode *znode;
2246         struct ubifs_zbranch *zbr;
2247         struct ubifs_ino_node *ino;
2248         struct fsck_inode *fscki;
2249         struct rb_node *this = rb_first(&fsckd->inodes);
2250
2251         while (this) {
2252                 fscki = rb_entry(this, struct fsck_inode, rb);
2253                 this = rb_next(this);
2254
2255                 if (S_ISDIR(fscki->mode)) {
2256                         /*
2257                          * Directories have to have exactly one reference (they
2258                          * cannot have hardlinks), although root inode is an
2259                          * exception.
2260                          */
2261                         if (fscki->inum != UBIFS_ROOT_INO &&
2262                             fscki->references != 1) {
2263                                 ubifs_err("directory inode %lu has %d "
2264                                           "direntries which refer it, but "
2265                                           "should be 1",
2266                                           (unsigned long)fscki->inum,
2267                                           fscki->references);
2268                                 goto out_dump;
2269                         }
2270                         if (fscki->inum == UBIFS_ROOT_INO &&
2271                             fscki->references != 0) {
2272                                 ubifs_err("root inode %lu has non-zero (%d) "
2273                                           "direntries which refer it",
2274                                           (unsigned long)fscki->inum,
2275                                           fscki->references);
2276                                 goto out_dump;
2277                         }
2278                         if (fscki->calc_sz != fscki->size) {
2279                                 ubifs_err("directory inode %lu size is %lld, "
2280                                           "but calculated size is %lld",
2281                                           (unsigned long)fscki->inum,
2282                                           fscki->size, fscki->calc_sz);
2283                                 goto out_dump;
2284                         }
2285                         if (fscki->calc_cnt != fscki->nlink) {
2286                                 ubifs_err("directory inode %lu nlink is %d, "
2287                                           "but calculated nlink is %d",
2288                                           (unsigned long)fscki->inum,
2289                                           fscki->nlink, fscki->calc_cnt);
2290                                 goto out_dump;
2291                         }
2292                 } else {
2293                         if (fscki->references != fscki->nlink) {
2294                                 ubifs_err("inode %lu nlink is %d, but "
2295                                           "calculated nlink is %d",
2296                                           (unsigned long)fscki->inum,
2297                                           fscki->nlink, fscki->references);
2298                                 goto out_dump;
2299                         }
2300                 }
2301                 if (fscki->xattr_sz != fscki->calc_xsz) {
2302                         ubifs_err("inode %lu has xattr size %u, but "
2303                                   "calculated size is %lld",
2304                                   (unsigned long)fscki->inum, fscki->xattr_sz,
2305                                   fscki->calc_xsz);
2306                         goto out_dump;
2307                 }
2308                 if (fscki->xattr_cnt != fscki->calc_xcnt) {
2309                         ubifs_err("inode %lu has %u xattrs, but "
2310                                   "calculated count is %lld",
2311                                   (unsigned long)fscki->inum,
2312                                   fscki->xattr_cnt, fscki->calc_xcnt);
2313                         goto out_dump;
2314                 }
2315                 if (fscki->xattr_nms != fscki->calc_xnms) {
2316                         ubifs_err("inode %lu has xattr names' size %u, but "
2317                                   "calculated names' size is %lld",
2318                                   (unsigned long)fscki->inum, fscki->xattr_nms,
2319                                   fscki->calc_xnms);
2320                         goto out_dump;
2321                 }
2322         }
2323
2324         return 0;
2325
2326 out_dump:
2327         /* Read the bad inode and dump it */
2328         ino_key_init(c, &key, fscki->inum);
2329         err = ubifs_lookup_level0(c, &key, &znode, &n);
2330         if (!err) {
2331                 ubifs_err("inode %lu not found in index",
2332                           (unsigned long)fscki->inum);
2333                 return -ENOENT;
2334         } else if (err < 0) {
2335                 ubifs_err("error %d while looking up inode %lu",
2336                           err, (unsigned long)fscki->inum);
2337                 return err;
2338         }
2339
2340         zbr = &znode->zbranch[n];
2341         ino = kmalloc(zbr->len, GFP_NOFS);
2342         if (!ino)
2343                 return -ENOMEM;
2344
2345         err = ubifs_tnc_read_node(c, zbr, ino);
2346         if (err) {
2347                 ubifs_err("cannot read inode node at LEB %d:%d, error %d",
2348                           zbr->lnum, zbr->offs, err);
2349                 kfree(ino);
2350                 return err;
2351         }
2352
2353         ubifs_msg("dump of the inode %lu sitting in LEB %d:%d",
2354                   (unsigned long)fscki->inum, zbr->lnum, zbr->offs);
2355         dbg_dump_node(c, ino);
2356         kfree(ino);
2357         return -EINVAL;
2358 }
2359
2360 /**
2361  * dbg_check_filesystem - check the file-system.
2362  * @c: UBIFS file-system description object
2363  *
2364  * This function checks the file system, namely:
2365  * o makes sure that all leaf nodes exist and their CRCs are correct;
2366  * o makes sure inode nlink, size, xattr size/count are correct (for all
2367  *   inodes).
2368  *
2369  * The function reads whole indexing tree and all nodes, so it is pretty
2370  * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if
2371  * not, and a negative error code in case of failure.
2372  */
2373 int dbg_check_filesystem(struct ubifs_info *c)
2374 {
2375         int err;
2376         struct fsck_data fsckd;
2377
2378         if (!dbg_is_chk_fs(c))
2379                 return 0;
2380
2381         fsckd.inodes = RB_ROOT;
2382         err = dbg_walk_index(c, check_leaf, NULL, &fsckd);
2383         if (err)
2384                 goto out_free;
2385
2386         err = check_inodes(c, &fsckd);
2387         if (err)
2388                 goto out_free;
2389
2390         free_inodes(&fsckd);
2391         return 0;
2392
2393 out_free:
2394         ubifs_err("file-system check failed with error %d", err);
2395         dump_stack();
2396         free_inodes(&fsckd);
2397         return err;
2398 }
2399
2400 /**
2401  * dbg_check_data_nodes_order - check that list of data nodes is sorted.
2402  * @c: UBIFS file-system description object
2403  * @head: the list of nodes ('struct ubifs_scan_node' objects)
2404  *
2405  * This function returns zero if the list of data nodes is sorted correctly,
2406  * and %-EINVAL if not.
2407  */
2408 int dbg_check_data_nodes_order(struct ubifs_info *c, struct list_head *head)
2409 {
2410         struct list_head *cur;
2411         struct ubifs_scan_node *sa, *sb;
2412
2413         if (!dbg_is_chk_gen(c))
2414                 return 0;
2415
2416         for (cur = head->next; cur->next != head; cur = cur->next) {
2417                 ino_t inuma, inumb;
2418                 uint32_t blka, blkb;
2419
2420                 cond_resched();
2421                 sa = container_of(cur, struct ubifs_scan_node, list);
2422                 sb = container_of(cur->next, struct ubifs_scan_node, list);
2423
2424                 if (sa->type != UBIFS_DATA_NODE) {
2425                         ubifs_err("bad node type %d", sa->type);
2426                         dbg_dump_node(c, sa->node);
2427                         return -EINVAL;
2428                 }
2429                 if (sb->type != UBIFS_DATA_NODE) {
2430                         ubifs_err("bad node type %d", sb->type);
2431                         dbg_dump_node(c, sb->node);
2432                         return -EINVAL;
2433                 }
2434
2435                 inuma = key_inum(c, &sa->key);
2436                 inumb = key_inum(c, &sb->key);
2437
2438                 if (inuma < inumb)
2439                         continue;
2440                 if (inuma > inumb) {
2441                         ubifs_err("larger inum %lu goes before inum %lu",
2442                                   (unsigned long)inuma, (unsigned long)inumb);
2443                         goto error_dump;
2444                 }
2445
2446                 blka = key_block(c, &sa->key);
2447                 blkb = key_block(c, &sb->key);
2448
2449                 if (blka > blkb) {
2450                         ubifs_err("larger block %u goes before %u", blka, blkb);
2451                         goto error_dump;
2452                 }
2453                 if (blka == blkb) {
2454                         ubifs_err("two data nodes for the same block");
2455                         goto error_dump;
2456                 }
2457         }
2458
2459         return 0;
2460
2461 error_dump:
2462         dbg_dump_node(c, sa->node);
2463         dbg_dump_node(c, sb->node);
2464         return -EINVAL;
2465 }
2466
2467 /**
2468  * dbg_check_nondata_nodes_order - check that list of data nodes is sorted.
2469  * @c: UBIFS file-system description object
2470  * @head: the list of nodes ('struct ubifs_scan_node' objects)
2471  *
2472  * This function returns zero if the list of non-data nodes is sorted correctly,
2473  * and %-EINVAL if not.
2474  */
2475 int dbg_check_nondata_nodes_order(struct ubifs_info *c, struct list_head *head)
2476 {
2477         struct list_head *cur;
2478         struct ubifs_scan_node *sa, *sb;
2479
2480         if (!dbg_is_chk_gen(c))
2481                 return 0;
2482
2483         for (cur = head->next; cur->next != head; cur = cur->next) {
2484                 ino_t inuma, inumb;
2485                 uint32_t hasha, hashb;
2486
2487                 cond_resched();
2488                 sa = container_of(cur, struct ubifs_scan_node, list);
2489                 sb = container_of(cur->next, struct ubifs_scan_node, list);
2490
2491                 if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2492                     sa->type != UBIFS_XENT_NODE) {
2493                         ubifs_err("bad node type %d", sa->type);
2494                         dbg_dump_node(c, sa->node);
2495                         return -EINVAL;
2496                 }
2497                 if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2498                     sa->type != UBIFS_XENT_NODE) {
2499                         ubifs_err("bad node type %d", sb->type);
2500                         dbg_dump_node(c, sb->node);
2501                         return -EINVAL;
2502                 }
2503
2504                 if (sa->type != UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2505                         ubifs_err("non-inode node goes before inode node");
2506                         goto error_dump;
2507                 }
2508
2509                 if (sa->type == UBIFS_INO_NODE && sb->type != UBIFS_INO_NODE)
2510                         continue;
2511
2512                 if (sa->type == UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2513                         /* Inode nodes are sorted in descending size order */
2514                         if (sa->len < sb->len) {
2515                                 ubifs_err("smaller inode node goes first");
2516                                 goto error_dump;
2517                         }
2518                         continue;
2519                 }
2520
2521                 /*
2522                  * This is either a dentry or xentry, which should be sorted in
2523                  * ascending (parent ino, hash) order.
2524                  */
2525                 inuma = key_inum(c, &sa->key);
2526                 inumb = key_inum(c, &sb->key);
2527
2528                 if (inuma < inumb)
2529                         continue;
2530                 if (inuma > inumb) {
2531                         ubifs_err("larger inum %lu goes before inum %lu",
2532                                   (unsigned long)inuma, (unsigned long)inumb);
2533                         goto error_dump;
2534                 }
2535
2536                 hasha = key_block(c, &sa->key);
2537                 hashb = key_block(c, &sb->key);
2538
2539                 if (hasha > hashb) {
2540                         ubifs_err("larger hash %u goes before %u",
2541                                   hasha, hashb);
2542                         goto error_dump;
2543                 }
2544         }
2545
2546         return 0;
2547
2548 error_dump:
2549         ubifs_msg("dumping first node");
2550         dbg_dump_node(c, sa->node);
2551         ubifs_msg("dumping second node");
2552         dbg_dump_node(c, sb->node);
2553         return -EINVAL;
2554         return 0;
2555 }
2556
2557 static inline int chance(unsigned int n, unsigned int out_of)
2558 {
2559         return !!((random32() % out_of) + 1 <= n);
2560
2561 }
2562
2563 static int power_cut_emulated(struct ubifs_info *c, int lnum, int write)
2564 {
2565         struct ubifs_debug_info *d = c->dbg;
2566
2567         ubifs_assert(dbg_is_tst_rcvry(c));
2568
2569         if (!d->pc_cnt) {
2570                 /* First call - decide delay to the power cut */
2571                 if (chance(1, 2)) {
2572                         unsigned long delay;
2573
2574                         if (chance(1, 2)) {
2575                                 d->pc_delay = 1;
2576                                 /* Fail withing 1 minute */
2577                                 delay = random32() % 60000;
2578                                 d->pc_timeout = jiffies;
2579                                 d->pc_timeout += msecs_to_jiffies(delay);
2580                                 ubifs_warn("failing after %lums", delay);
2581                         } else {
2582                                 d->pc_delay = 2;
2583                                 delay = random32() % 10000;
2584                                 /* Fail within 10000 operations */
2585                                 d->pc_cnt_max = delay;
2586                                 ubifs_warn("failing after %lu calls", delay);
2587                         }
2588                 }
2589
2590                 d->pc_cnt += 1;
2591         }
2592
2593         /* Determine if failure delay has expired */
2594         if (d->pc_delay == 1 && time_before(jiffies, d->pc_timeout))
2595                         return 0;
2596         if (d->pc_delay == 2 && d->pc_cnt++ < d->pc_cnt_max)
2597                         return 0;
2598
2599         if (lnum == UBIFS_SB_LNUM) {
2600                 if (write && chance(1, 2))
2601                         return 0;
2602                 if (chance(19, 20))
2603                         return 0;
2604                 ubifs_warn("failing in super block LEB %d", lnum);
2605         } else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) {
2606                 if (chance(19, 20))
2607                         return 0;
2608                 ubifs_warn("failing in master LEB %d", lnum);
2609         } else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) {
2610                 if (write && chance(99, 100))
2611                         return 0;
2612                 if (chance(399, 400))
2613                         return 0;
2614                 ubifs_warn("failing in log LEB %d", lnum);
2615         } else if (lnum >= c->lpt_first && lnum <= c->lpt_last) {
2616                 if (write && chance(7, 8))
2617                         return 0;
2618                 if (chance(19, 20))
2619                         return 0;
2620                 ubifs_warn("failing in LPT LEB %d", lnum);
2621         } else if (lnum >= c->orph_first && lnum <= c->orph_last) {
2622                 if (write && chance(1, 2))
2623                         return 0;
2624                 if (chance(9, 10))
2625                         return 0;
2626                 ubifs_warn("failing in orphan LEB %d", lnum);
2627         } else if (lnum == c->ihead_lnum) {
2628                 if (chance(99, 100))
2629                         return 0;
2630                 ubifs_warn("failing in index head LEB %d", lnum);
2631         } else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) {
2632                 if (chance(9, 10))
2633                         return 0;
2634                 ubifs_warn("failing in GC head LEB %d", lnum);
2635         } else if (write && !RB_EMPTY_ROOT(&c->buds) &&
2636                    !ubifs_search_bud(c, lnum)) {
2637                 if (chance(19, 20))
2638                         return 0;
2639                 ubifs_warn("failing in non-bud LEB %d", lnum);
2640         } else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND ||
2641                    c->cmt_state == COMMIT_RUNNING_REQUIRED) {
2642                 if (chance(999, 1000))
2643                         return 0;
2644                 ubifs_warn("failing in bud LEB %d commit running", lnum);
2645         } else {
2646                 if (chance(9999, 10000))
2647                         return 0;
2648                 ubifs_warn("failing in bud LEB %d commit not running", lnum);
2649         }
2650
2651         d->pc_happened = 1;
2652         ubifs_warn("========== Power cut emulated ==========");
2653         dump_stack();
2654         return 1;
2655 }
2656
2657 static void cut_data(const void *buf, unsigned int len)
2658 {
2659         unsigned int from, to, i, ffs = chance(1, 2);
2660         unsigned char *p = (void *)buf;
2661
2662         from = random32() % (len + 1);
2663         if (chance(1, 2))
2664                 to = random32() % (len - from + 1);
2665         else
2666                 to = len;
2667
2668         if (from < to)
2669                 ubifs_warn("filled bytes %u-%u with %s", from, to - 1,
2670                            ffs ? "0xFFs" : "random data");
2671
2672         if (ffs)
2673                 for (i = from; i < to; i++)
2674                         p[i] = 0xFF;
2675         else
2676                 for (i = from; i < to; i++)
2677                         p[i] = random32() % 0x100;
2678 }
2679
2680 int dbg_leb_write(struct ubifs_info *c, int lnum, const void *buf,
2681                   int offs, int len, int dtype)
2682 {
2683         int err, failing;
2684
2685         if (c->dbg->pc_happened)
2686                 return -EROFS;
2687
2688         failing = power_cut_emulated(c, lnum, 1);
2689         if (failing)
2690                 cut_data(buf, len);
2691         err = ubi_leb_write(c->ubi, lnum, buf, offs, len, dtype);
2692         if (err)
2693                 return err;
2694         if (failing)
2695                 return -EROFS;
2696         return 0;
2697 }
2698
2699 int dbg_leb_change(struct ubifs_info *c, int lnum, const void *buf,
2700                    int len, int dtype)
2701 {
2702         int err;
2703
2704         if (c->dbg->pc_happened)
2705                 return -EROFS;
2706         if (power_cut_emulated(c, lnum, 1))
2707                 return -EROFS;
2708         err = ubi_leb_change(c->ubi, lnum, buf, len, dtype);
2709         if (err)
2710                 return err;
2711         if (power_cut_emulated(c, lnum, 1))
2712                 return -EROFS;
2713         return 0;
2714 }
2715
2716 int dbg_leb_unmap(struct ubifs_info *c, int lnum)
2717 {
2718         int err;
2719
2720         if (c->dbg->pc_happened)
2721                 return -EROFS;
2722         if (power_cut_emulated(c, lnum, 0))
2723                 return -EROFS;
2724         err = ubi_leb_unmap(c->ubi, lnum);
2725         if (err)
2726                 return err;
2727         if (power_cut_emulated(c, lnum, 0))
2728                 return -EROFS;
2729         return 0;
2730 }
2731
2732 int dbg_leb_map(struct ubifs_info *c, int lnum, int dtype)
2733 {
2734         int err;
2735
2736         if (c->dbg->pc_happened)
2737                 return -EROFS;
2738         if (power_cut_emulated(c, lnum, 0))
2739                 return -EROFS;
2740         err = ubi_leb_map(c->ubi, lnum, dtype);
2741         if (err)
2742                 return err;
2743         if (power_cut_emulated(c, lnum, 0))
2744                 return -EROFS;
2745         return 0;
2746 }
2747
2748 /*
2749  * Root directory for UBIFS stuff in debugfs. Contains sub-directories which
2750  * contain the stuff specific to particular file-system mounts.
2751  */
2752 static struct dentry *dfs_rootdir;
2753
2754 static int dfs_file_open(struct inode *inode, struct file *file)
2755 {
2756         file->private_data = inode->i_private;
2757         return nonseekable_open(inode, file);
2758 }
2759
2760 /**
2761  * provide_user_output - provide output to the user reading a debugfs file.
2762  * @val: boolean value for the answer
2763  * @u: the buffer to store the answer at
2764  * @count: size of the buffer
2765  * @ppos: position in the @u output buffer
2766  *
2767  * This is a simple helper function which stores @val boolean value in the user
2768  * buffer when the user reads one of UBIFS debugfs files. Returns amount of
2769  * bytes written to @u in case of success and a negative error code in case of
2770  * failure.
2771  */
2772 static int provide_user_output(int val, char __user *u, size_t count,
2773                                loff_t *ppos)
2774 {
2775         char buf[3];
2776
2777         if (val)
2778                 buf[0] = '1';
2779         else
2780                 buf[0] = '0';
2781         buf[1] = '\n';
2782         buf[2] = 0x00;
2783
2784         return simple_read_from_buffer(u, count, ppos, buf, 2);
2785 }
2786
2787 static ssize_t dfs_file_read(struct file *file, char __user *u, size_t count,
2788                              loff_t *ppos)
2789 {
2790         struct dentry *dent = file->f_path.dentry;
2791         struct ubifs_info *c = file->private_data;
2792         struct ubifs_debug_info *d = c->dbg;
2793         int val;
2794
2795         if (dent == d->dfs_chk_gen)
2796                 val = d->chk_gen;
2797         else if (dent == d->dfs_chk_index)
2798                 val = d->chk_index;
2799         else if (dent == d->dfs_chk_orph)
2800                 val = d->chk_orph;
2801         else if (dent == d->dfs_chk_lprops)
2802                 val = d->chk_lprops;
2803         else if (dent == d->dfs_chk_fs)
2804                 val = d->chk_fs;
2805         else if (dent == d->dfs_tst_rcvry)
2806                 val = d->tst_rcvry;
2807         else
2808                 return -EINVAL;
2809
2810         return provide_user_output(val, u, count, ppos);
2811 }
2812
2813 /**
2814  * interpret_user_input - interpret user debugfs file input.
2815  * @u: user-provided buffer with the input
2816  * @count: buffer size
2817  *
2818  * This is a helper function which interpret user input to a boolean UBIFS
2819  * debugfs file. Returns %0 or %1 in case of success and a negative error code
2820  * in case of failure.
2821  */
2822 static int interpret_user_input(const char __user *u, size_t count)
2823 {
2824         size_t buf_size;
2825         char buf[8];
2826
2827         buf_size = min_t(size_t, count, (sizeof(buf) - 1));
2828         if (copy_from_user(buf, u, buf_size))
2829                 return -EFAULT;
2830
2831         if (buf[0] == '1')
2832                 return 1;
2833         else if (buf[0] == '0')
2834                 return 0;
2835
2836         return -EINVAL;
2837 }
2838
2839 static ssize_t dfs_file_write(struct file *file, const char __user *u,
2840                               size_t count, loff_t *ppos)
2841 {
2842         struct ubifs_info *c = file->private_data;
2843         struct ubifs_debug_info *d = c->dbg;
2844         struct dentry *dent = file->f_path.dentry;
2845         int val;
2846
2847         /*
2848          * TODO: this is racy - the file-system might have already been
2849          * unmounted and we'd oops in this case. The plan is to fix it with
2850          * help of 'iterate_supers_type()' which we should have in v3.0: when
2851          * a debugfs opened, we rember FS's UUID in file->private_data. Then
2852          * whenever we access the FS via a debugfs file, we iterate all UBIFS
2853          * superblocks and fine the one with the same UUID, and take the
2854          * locking right.
2855          *
2856          * The other way to go suggested by Al Viro is to create a separate
2857          * 'ubifs-debug' file-system instead.
2858          */
2859         if (file->f_path.dentry == d->dfs_dump_lprops) {
2860                 dbg_dump_lprops(c);
2861                 return count;
2862         }
2863         if (file->f_path.dentry == d->dfs_dump_budg) {
2864                 dbg_dump_budg(c, &c->bi);
2865                 return count;
2866         }
2867         if (file->f_path.dentry == d->dfs_dump_tnc) {
2868                 mutex_lock(&c->tnc_mutex);
2869                 dbg_dump_tnc(c);
2870                 mutex_unlock(&c->tnc_mutex);
2871                 return count;
2872         }
2873
2874         val = interpret_user_input(u, count);
2875         if (val < 0)
2876                 return val;
2877
2878         if (dent == d->dfs_chk_gen)
2879                 d->chk_gen = val;
2880         else if (dent == d->dfs_chk_index)
2881                 d->chk_index = val;
2882         else if (dent == d->dfs_chk_orph)
2883                 d->chk_orph = val;
2884         else if (dent == d->dfs_chk_lprops)
2885                 d->chk_lprops = val;
2886         else if (dent == d->dfs_chk_fs)
2887                 d->chk_fs = val;
2888         else if (dent == d->dfs_tst_rcvry)
2889                 d->tst_rcvry = val;
2890         else
2891                 return -EINVAL;
2892
2893         return count;
2894 }
2895
2896 static const struct file_operations dfs_fops = {
2897         .open = dfs_file_open,
2898         .read = dfs_file_read,
2899         .write = dfs_file_write,
2900         .owner = THIS_MODULE,
2901         .llseek = no_llseek,
2902 };
2903
2904 /**
2905  * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance.
2906  * @c: UBIFS file-system description object
2907  *
2908  * This function creates all debugfs files for this instance of UBIFS. Returns
2909  * zero in case of success and a negative error code in case of failure.
2910  *
2911  * Note, the only reason we have not merged this function with the
2912  * 'ubifs_debugging_init()' function is because it is better to initialize
2913  * debugfs interfaces at the very end of the mount process, and remove them at
2914  * the very beginning of the mount process.
2915  */
2916 int dbg_debugfs_init_fs(struct ubifs_info *c)
2917 {
2918         int err, n;
2919         const char *fname;
2920         struct dentry *dent;
2921         struct ubifs_debug_info *d = c->dbg;
2922
2923         n = snprintf(d->dfs_dir_name, UBIFS_DFS_DIR_LEN + 1, UBIFS_DFS_DIR_NAME,
2924                      c->vi.ubi_num, c->vi.vol_id);
2925         if (n == UBIFS_DFS_DIR_LEN) {
2926                 /* The array size is too small */
2927                 fname = UBIFS_DFS_DIR_NAME;
2928                 dent = ERR_PTR(-EINVAL);
2929                 goto out;
2930         }
2931
2932         fname = d->dfs_dir_name;
2933         dent = debugfs_create_dir(fname, dfs_rootdir);
2934         if (IS_ERR_OR_NULL(dent))
2935                 goto out;
2936         d->dfs_dir = dent;
2937
2938         fname = "dump_lprops";
2939         dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2940         if (IS_ERR_OR_NULL(dent))
2941                 goto out_remove;
2942         d->dfs_dump_lprops = dent;
2943
2944         fname = "dump_budg";
2945         dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2946         if (IS_ERR_OR_NULL(dent))
2947                 goto out_remove;
2948         d->dfs_dump_budg = dent;
2949
2950         fname = "dump_tnc";
2951         dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2952         if (IS_ERR_OR_NULL(dent))
2953                 goto out_remove;
2954         d->dfs_dump_tnc = dent;
2955
2956         fname = "chk_general";
2957         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2958                                    &dfs_fops);
2959         if (IS_ERR_OR_NULL(dent))
2960                 goto out_remove;
2961         d->dfs_chk_gen = dent;
2962
2963         fname = "chk_index";
2964         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2965                                    &dfs_fops);
2966         if (IS_ERR_OR_NULL(dent))
2967                 goto out_remove;
2968         d->dfs_chk_index = dent;
2969
2970         fname = "chk_orphans";
2971         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2972                                    &dfs_fops);
2973         if (IS_ERR_OR_NULL(dent))
2974                 goto out_remove;
2975         d->dfs_chk_orph = dent;
2976
2977         fname = "chk_lprops";
2978         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2979                                    &dfs_fops);
2980         if (IS_ERR_OR_NULL(dent))
2981                 goto out_remove;
2982         d->dfs_chk_lprops = dent;
2983
2984         fname = "chk_fs";
2985         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2986                                    &dfs_fops);
2987         if (IS_ERR_OR_NULL(dent))
2988                 goto out_remove;
2989         d->dfs_chk_fs = dent;
2990
2991         fname = "tst_recovery";
2992         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2993                                    &dfs_fops);
2994         if (IS_ERR_OR_NULL(dent))
2995                 goto out_remove;
2996         d->dfs_tst_rcvry = dent;
2997
2998         return 0;
2999
3000 out_remove:
3001         debugfs_remove_recursive(d->dfs_dir);
3002 out:
3003         err = dent ? PTR_ERR(dent) : -ENODEV;
3004         ubifs_err("cannot create \"%s\" debugfs file or directory, error %d\n",
3005                   fname, err);
3006         return err;
3007 }
3008
3009 /**
3010  * dbg_debugfs_exit_fs - remove all debugfs files.
3011  * @c: UBIFS file-system description object
3012  */
3013 void dbg_debugfs_exit_fs(struct ubifs_info *c)
3014 {
3015         debugfs_remove_recursive(c->dbg->dfs_dir);
3016 }
3017
3018 struct ubifs_global_debug_info ubifs_dbg;
3019
3020 static struct dentry *dfs_chk_gen;
3021 static struct dentry *dfs_chk_index;
3022 static struct dentry *dfs_chk_orph;
3023 static struct dentry *dfs_chk_lprops;
3024 static struct dentry *dfs_chk_fs;
3025 static struct dentry *dfs_tst_rcvry;
3026
3027 static ssize_t dfs_global_file_read(struct file *file, char __user *u,
3028                                     size_t count, loff_t *ppos)
3029 {
3030         struct dentry *dent = file->f_path.dentry;
3031         int val;
3032
3033         if (dent == dfs_chk_gen)
3034                 val = ubifs_dbg.chk_gen;
3035         else if (dent == dfs_chk_index)
3036                 val = ubifs_dbg.chk_index;
3037         else if (dent == dfs_chk_orph)
3038                 val = ubifs_dbg.chk_orph;
3039         else if (dent == dfs_chk_lprops)
3040                 val = ubifs_dbg.chk_lprops;
3041         else if (dent == dfs_chk_fs)
3042                 val = ubifs_dbg.chk_fs;
3043         else if (dent == dfs_tst_rcvry)
3044                 val = ubifs_dbg.tst_rcvry;
3045         else
3046                 return -EINVAL;
3047
3048         return provide_user_output(val, u, count, ppos);
3049 }
3050
3051 static ssize_t dfs_global_file_write(struct file *file, const char __user *u,
3052                                      size_t count, loff_t *ppos)
3053 {
3054         struct dentry *dent = file->f_path.dentry;
3055         int val;
3056
3057         val = interpret_user_input(u, count);
3058         if (val < 0)
3059                 return val;
3060
3061         if (dent == dfs_chk_gen)
3062                 ubifs_dbg.chk_gen = val;
3063         else if (dent == dfs_chk_index)
3064                 ubifs_dbg.chk_index = val;
3065         else if (dent == dfs_chk_orph)
3066                 ubifs_dbg.chk_orph = val;
3067         else if (dent == dfs_chk_lprops)
3068                 ubifs_dbg.chk_lprops = val;
3069         else if (dent == dfs_chk_fs)
3070                 ubifs_dbg.chk_fs = val;
3071         else if (dent == dfs_tst_rcvry)
3072                 ubifs_dbg.tst_rcvry = val;
3073         else
3074                 return -EINVAL;
3075
3076         return count;
3077 }
3078
3079 static const struct file_operations dfs_global_fops = {
3080         .read = dfs_global_file_read,
3081         .write = dfs_global_file_write,
3082         .owner = THIS_MODULE,
3083         .llseek = no_llseek,
3084 };
3085
3086 /**
3087  * dbg_debugfs_init - initialize debugfs file-system.
3088  *
3089  * UBIFS uses debugfs file-system to expose various debugging knobs to
3090  * user-space. This function creates "ubifs" directory in the debugfs
3091  * file-system. Returns zero in case of success and a negative error code in
3092  * case of failure.
3093  */
3094 int dbg_debugfs_init(void)
3095 {
3096         int err;
3097         const char *fname;
3098         struct dentry *dent;
3099
3100         fname = "ubifs";
3101         dent = debugfs_create_dir(fname, NULL);
3102         if (IS_ERR_OR_NULL(dent))
3103                 goto out;
3104         dfs_rootdir = dent;
3105
3106         fname = "chk_general";
3107         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3108                                    &dfs_global_fops);
3109         if (IS_ERR_OR_NULL(dent))
3110                 goto out_remove;
3111         dfs_chk_gen = dent;
3112
3113         fname = "chk_index";
3114         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3115                                    &dfs_global_fops);
3116         if (IS_ERR_OR_NULL(dent))
3117                 goto out_remove;
3118         dfs_chk_index = dent;
3119
3120         fname = "chk_orphans";
3121         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3122                                    &dfs_global_fops);
3123         if (IS_ERR_OR_NULL(dent))
3124                 goto out_remove;
3125         dfs_chk_orph = dent;
3126
3127         fname = "chk_lprops";
3128         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3129                                    &dfs_global_fops);
3130         if (IS_ERR_OR_NULL(dent))
3131                 goto out_remove;
3132         dfs_chk_lprops = dent;
3133
3134         fname = "chk_fs";
3135         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3136                                    &dfs_global_fops);
3137         if (IS_ERR_OR_NULL(dent))
3138                 goto out_remove;
3139         dfs_chk_fs = dent;
3140
3141         fname = "tst_recovery";
3142         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3143                                    &dfs_global_fops);
3144         if (IS_ERR_OR_NULL(dent))
3145                 goto out_remove;
3146         dfs_tst_rcvry = dent;
3147
3148         return 0;
3149
3150 out_remove:
3151         debugfs_remove_recursive(dfs_rootdir);
3152 out:
3153         err = dent ? PTR_ERR(dent) : -ENODEV;
3154         ubifs_err("cannot create \"%s\" debugfs file or directory, error %d\n",
3155                   fname, err);
3156         return err;
3157 }
3158
3159 /**
3160  * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system.
3161  */
3162 void dbg_debugfs_exit(void)
3163 {
3164         debugfs_remove_recursive(dfs_rootdir);
3165 }
3166
3167 /**
3168  * ubifs_debugging_init - initialize UBIFS debugging.
3169  * @c: UBIFS file-system description object
3170  *
3171  * This function initializes debugging-related data for the file system.
3172  * Returns zero in case of success and a negative error code in case of
3173  * failure.
3174  */
3175 int ubifs_debugging_init(struct ubifs_info *c)
3176 {
3177         c->dbg = kzalloc(sizeof(struct ubifs_debug_info), GFP_KERNEL);
3178         if (!c->dbg)
3179                 return -ENOMEM;
3180
3181         return 0;
3182 }
3183
3184 /**
3185  * ubifs_debugging_exit - free debugging data.
3186  * @c: UBIFS file-system description object
3187  */
3188 void ubifs_debugging_exit(struct ubifs_info *c)
3189 {
3190         kfree(c->dbg);
3191 }
3192
3193 #endif /* CONFIG_UBIFS_FS_DEBUG */