Merge branch 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso/ext4
[pandora-kernel.git] / fs / ubifs / debug.c
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 51
17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18  *
19  * Authors: Artem Bityutskiy (Битюцкий Артём)
20  *          Adrian Hunter
21  */
22
23 /*
24  * This file implements most of the debugging stuff which is compiled in only
25  * when it is enabled. But some debugging check functions are implemented in
26  * corresponding subsystem, just because they are closely related and utilize
27  * various local functions of those subsystems.
28  */
29
30 #define UBIFS_DBG_PRESERVE_UBI
31
32 #include "ubifs.h"
33 #include <linux/module.h>
34 #include <linux/moduleparam.h>
35 #include <linux/debugfs.h>
36 #include <linux/math64.h>
37 #include <linux/slab.h>
38
39 #ifdef CONFIG_UBIFS_FS_DEBUG
40
41 DEFINE_SPINLOCK(dbg_lock);
42
43 static char dbg_key_buf0[128];
44 static char dbg_key_buf1[128];
45
46 unsigned int ubifs_msg_flags = UBIFS_MSG_FLAGS_DEFAULT;
47 unsigned int ubifs_chk_flags = UBIFS_CHK_FLAGS_DEFAULT;
48 unsigned int ubifs_tst_flags;
49
50 module_param_named(debug_msgs, ubifs_msg_flags, uint, S_IRUGO | S_IWUSR);
51 module_param_named(debug_chks, ubifs_chk_flags, uint, S_IRUGO | S_IWUSR);
52 module_param_named(debug_tsts, ubifs_tst_flags, uint, S_IRUGO | S_IWUSR);
53
54 MODULE_PARM_DESC(debug_msgs, "Debug message type flags");
55 MODULE_PARM_DESC(debug_chks, "Debug check flags");
56 MODULE_PARM_DESC(debug_tsts, "Debug special test flags");
57
58 static const char *get_key_fmt(int fmt)
59 {
60         switch (fmt) {
61         case UBIFS_SIMPLE_KEY_FMT:
62                 return "simple";
63         default:
64                 return "unknown/invalid format";
65         }
66 }
67
68 static const char *get_key_hash(int hash)
69 {
70         switch (hash) {
71         case UBIFS_KEY_HASH_R5:
72                 return "R5";
73         case UBIFS_KEY_HASH_TEST:
74                 return "test";
75         default:
76                 return "unknown/invalid name hash";
77         }
78 }
79
80 static const char *get_key_type(int type)
81 {
82         switch (type) {
83         case UBIFS_INO_KEY:
84                 return "inode";
85         case UBIFS_DENT_KEY:
86                 return "direntry";
87         case UBIFS_XENT_KEY:
88                 return "xentry";
89         case UBIFS_DATA_KEY:
90                 return "data";
91         case UBIFS_TRUN_KEY:
92                 return "truncate";
93         default:
94                 return "unknown/invalid key";
95         }
96 }
97
98 static void sprintf_key(const struct ubifs_info *c, const union ubifs_key *key,
99                         char *buffer)
100 {
101         char *p = buffer;
102         int type = key_type(c, key);
103
104         if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) {
105                 switch (type) {
106                 case UBIFS_INO_KEY:
107                         sprintf(p, "(%lu, %s)", (unsigned long)key_inum(c, key),
108                                get_key_type(type));
109                         break;
110                 case UBIFS_DENT_KEY:
111                 case UBIFS_XENT_KEY:
112                         sprintf(p, "(%lu, %s, %#08x)",
113                                 (unsigned long)key_inum(c, key),
114                                 get_key_type(type), key_hash(c, key));
115                         break;
116                 case UBIFS_DATA_KEY:
117                         sprintf(p, "(%lu, %s, %u)",
118                                 (unsigned long)key_inum(c, key),
119                                 get_key_type(type), key_block(c, key));
120                         break;
121                 case UBIFS_TRUN_KEY:
122                         sprintf(p, "(%lu, %s)",
123                                 (unsigned long)key_inum(c, key),
124                                 get_key_type(type));
125                         break;
126                 default:
127                         sprintf(p, "(bad key type: %#08x, %#08x)",
128                                 key->u32[0], key->u32[1]);
129                 }
130         } else
131                 sprintf(p, "bad key format %d", c->key_fmt);
132 }
133
134 const char *dbg_key_str0(const struct ubifs_info *c, const union ubifs_key *key)
135 {
136         /* dbg_lock must be held */
137         sprintf_key(c, key, dbg_key_buf0);
138         return dbg_key_buf0;
139 }
140
141 const char *dbg_key_str1(const struct ubifs_info *c, const union ubifs_key *key)
142 {
143         /* dbg_lock must be held */
144         sprintf_key(c, key, dbg_key_buf1);
145         return dbg_key_buf1;
146 }
147
148 const char *dbg_ntype(int type)
149 {
150         switch (type) {
151         case UBIFS_PAD_NODE:
152                 return "padding node";
153         case UBIFS_SB_NODE:
154                 return "superblock node";
155         case UBIFS_MST_NODE:
156                 return "master node";
157         case UBIFS_REF_NODE:
158                 return "reference node";
159         case UBIFS_INO_NODE:
160                 return "inode node";
161         case UBIFS_DENT_NODE:
162                 return "direntry node";
163         case UBIFS_XENT_NODE:
164                 return "xentry node";
165         case UBIFS_DATA_NODE:
166                 return "data node";
167         case UBIFS_TRUN_NODE:
168                 return "truncate node";
169         case UBIFS_IDX_NODE:
170                 return "indexing node";
171         case UBIFS_CS_NODE:
172                 return "commit start node";
173         case UBIFS_ORPH_NODE:
174                 return "orphan node";
175         default:
176                 return "unknown node";
177         }
178 }
179
180 static const char *dbg_gtype(int type)
181 {
182         switch (type) {
183         case UBIFS_NO_NODE_GROUP:
184                 return "no node group";
185         case UBIFS_IN_NODE_GROUP:
186                 return "in node group";
187         case UBIFS_LAST_OF_NODE_GROUP:
188                 return "last of node group";
189         default:
190                 return "unknown";
191         }
192 }
193
194 const char *dbg_cstate(int cmt_state)
195 {
196         switch (cmt_state) {
197         case COMMIT_RESTING:
198                 return "commit resting";
199         case COMMIT_BACKGROUND:
200                 return "background commit requested";
201         case COMMIT_REQUIRED:
202                 return "commit required";
203         case COMMIT_RUNNING_BACKGROUND:
204                 return "BACKGROUND commit running";
205         case COMMIT_RUNNING_REQUIRED:
206                 return "commit running and required";
207         case COMMIT_BROKEN:
208                 return "broken commit";
209         default:
210                 return "unknown commit state";
211         }
212 }
213
214 const char *dbg_jhead(int jhead)
215 {
216         switch (jhead) {
217         case GCHD:
218                 return "0 (GC)";
219         case BASEHD:
220                 return "1 (base)";
221         case DATAHD:
222                 return "2 (data)";
223         default:
224                 return "unknown journal head";
225         }
226 }
227
228 static void dump_ch(const struct ubifs_ch *ch)
229 {
230         printk(KERN_DEBUG "\tmagic          %#x\n", le32_to_cpu(ch->magic));
231         printk(KERN_DEBUG "\tcrc            %#x\n", le32_to_cpu(ch->crc));
232         printk(KERN_DEBUG "\tnode_type      %d (%s)\n", ch->node_type,
233                dbg_ntype(ch->node_type));
234         printk(KERN_DEBUG "\tgroup_type     %d (%s)\n", ch->group_type,
235                dbg_gtype(ch->group_type));
236         printk(KERN_DEBUG "\tsqnum          %llu\n",
237                (unsigned long long)le64_to_cpu(ch->sqnum));
238         printk(KERN_DEBUG "\tlen            %u\n", le32_to_cpu(ch->len));
239 }
240
241 void dbg_dump_inode(const struct ubifs_info *c, const struct inode *inode)
242 {
243         const struct ubifs_inode *ui = ubifs_inode(inode);
244
245         printk(KERN_DEBUG "Dump in-memory inode:");
246         printk(KERN_DEBUG "\tinode          %lu\n", inode->i_ino);
247         printk(KERN_DEBUG "\tsize           %llu\n",
248                (unsigned long long)i_size_read(inode));
249         printk(KERN_DEBUG "\tnlink          %u\n", inode->i_nlink);
250         printk(KERN_DEBUG "\tuid            %u\n", (unsigned int)inode->i_uid);
251         printk(KERN_DEBUG "\tgid            %u\n", (unsigned int)inode->i_gid);
252         printk(KERN_DEBUG "\tatime          %u.%u\n",
253                (unsigned int)inode->i_atime.tv_sec,
254                (unsigned int)inode->i_atime.tv_nsec);
255         printk(KERN_DEBUG "\tmtime          %u.%u\n",
256                (unsigned int)inode->i_mtime.tv_sec,
257                (unsigned int)inode->i_mtime.tv_nsec);
258         printk(KERN_DEBUG "\tctime          %u.%u\n",
259                (unsigned int)inode->i_ctime.tv_sec,
260                (unsigned int)inode->i_ctime.tv_nsec);
261         printk(KERN_DEBUG "\tcreat_sqnum    %llu\n", ui->creat_sqnum);
262         printk(KERN_DEBUG "\txattr_size     %u\n", ui->xattr_size);
263         printk(KERN_DEBUG "\txattr_cnt      %u\n", ui->xattr_cnt);
264         printk(KERN_DEBUG "\txattr_names    %u\n", ui->xattr_names);
265         printk(KERN_DEBUG "\tdirty          %u\n", ui->dirty);
266         printk(KERN_DEBUG "\txattr          %u\n", ui->xattr);
267         printk(KERN_DEBUG "\tbulk_read      %u\n", ui->xattr);
268         printk(KERN_DEBUG "\tsynced_i_size  %llu\n",
269                (unsigned long long)ui->synced_i_size);
270         printk(KERN_DEBUG "\tui_size        %llu\n",
271                (unsigned long long)ui->ui_size);
272         printk(KERN_DEBUG "\tflags          %d\n", ui->flags);
273         printk(KERN_DEBUG "\tcompr_type     %d\n", ui->compr_type);
274         printk(KERN_DEBUG "\tlast_page_read %lu\n", ui->last_page_read);
275         printk(KERN_DEBUG "\tread_in_a_row  %lu\n", ui->read_in_a_row);
276         printk(KERN_DEBUG "\tdata_len       %d\n", ui->data_len);
277 }
278
279 void dbg_dump_node(const struct ubifs_info *c, const void *node)
280 {
281         int i, n;
282         union ubifs_key key;
283         const struct ubifs_ch *ch = node;
284
285         if (dbg_failure_mode)
286                 return;
287
288         /* If the magic is incorrect, just hexdump the first bytes */
289         if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) {
290                 printk(KERN_DEBUG "Not a node, first %zu bytes:", UBIFS_CH_SZ);
291                 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
292                                (void *)node, UBIFS_CH_SZ, 1);
293                 return;
294         }
295
296         spin_lock(&dbg_lock);
297         dump_ch(node);
298
299         switch (ch->node_type) {
300         case UBIFS_PAD_NODE:
301         {
302                 const struct ubifs_pad_node *pad = node;
303
304                 printk(KERN_DEBUG "\tpad_len        %u\n",
305                        le32_to_cpu(pad->pad_len));
306                 break;
307         }
308         case UBIFS_SB_NODE:
309         {
310                 const struct ubifs_sb_node *sup = node;
311                 unsigned int sup_flags = le32_to_cpu(sup->flags);
312
313                 printk(KERN_DEBUG "\tkey_hash       %d (%s)\n",
314                        (int)sup->key_hash, get_key_hash(sup->key_hash));
315                 printk(KERN_DEBUG "\tkey_fmt        %d (%s)\n",
316                        (int)sup->key_fmt, get_key_fmt(sup->key_fmt));
317                 printk(KERN_DEBUG "\tflags          %#x\n", sup_flags);
318                 printk(KERN_DEBUG "\t  big_lpt      %u\n",
319                        !!(sup_flags & UBIFS_FLG_BIGLPT));
320                 printk(KERN_DEBUG "\tmin_io_size    %u\n",
321                        le32_to_cpu(sup->min_io_size));
322                 printk(KERN_DEBUG "\tleb_size       %u\n",
323                        le32_to_cpu(sup->leb_size));
324                 printk(KERN_DEBUG "\tleb_cnt        %u\n",
325                        le32_to_cpu(sup->leb_cnt));
326                 printk(KERN_DEBUG "\tmax_leb_cnt    %u\n",
327                        le32_to_cpu(sup->max_leb_cnt));
328                 printk(KERN_DEBUG "\tmax_bud_bytes  %llu\n",
329                        (unsigned long long)le64_to_cpu(sup->max_bud_bytes));
330                 printk(KERN_DEBUG "\tlog_lebs       %u\n",
331                        le32_to_cpu(sup->log_lebs));
332                 printk(KERN_DEBUG "\tlpt_lebs       %u\n",
333                        le32_to_cpu(sup->lpt_lebs));
334                 printk(KERN_DEBUG "\torph_lebs      %u\n",
335                        le32_to_cpu(sup->orph_lebs));
336                 printk(KERN_DEBUG "\tjhead_cnt      %u\n",
337                        le32_to_cpu(sup->jhead_cnt));
338                 printk(KERN_DEBUG "\tfanout         %u\n",
339                        le32_to_cpu(sup->fanout));
340                 printk(KERN_DEBUG "\tlsave_cnt      %u\n",
341                        le32_to_cpu(sup->lsave_cnt));
342                 printk(KERN_DEBUG "\tdefault_compr  %u\n",
343                        (int)le16_to_cpu(sup->default_compr));
344                 printk(KERN_DEBUG "\trp_size        %llu\n",
345                        (unsigned long long)le64_to_cpu(sup->rp_size));
346                 printk(KERN_DEBUG "\trp_uid         %u\n",
347                        le32_to_cpu(sup->rp_uid));
348                 printk(KERN_DEBUG "\trp_gid         %u\n",
349                        le32_to_cpu(sup->rp_gid));
350                 printk(KERN_DEBUG "\tfmt_version    %u\n",
351                        le32_to_cpu(sup->fmt_version));
352                 printk(KERN_DEBUG "\ttime_gran      %u\n",
353                        le32_to_cpu(sup->time_gran));
354                 printk(KERN_DEBUG "\tUUID           %pUB\n",
355                        sup->uuid);
356                 break;
357         }
358         case UBIFS_MST_NODE:
359         {
360                 const struct ubifs_mst_node *mst = node;
361
362                 printk(KERN_DEBUG "\thighest_inum   %llu\n",
363                        (unsigned long long)le64_to_cpu(mst->highest_inum));
364                 printk(KERN_DEBUG "\tcommit number  %llu\n",
365                        (unsigned long long)le64_to_cpu(mst->cmt_no));
366                 printk(KERN_DEBUG "\tflags          %#x\n",
367                        le32_to_cpu(mst->flags));
368                 printk(KERN_DEBUG "\tlog_lnum       %u\n",
369                        le32_to_cpu(mst->log_lnum));
370                 printk(KERN_DEBUG "\troot_lnum      %u\n",
371                        le32_to_cpu(mst->root_lnum));
372                 printk(KERN_DEBUG "\troot_offs      %u\n",
373                        le32_to_cpu(mst->root_offs));
374                 printk(KERN_DEBUG "\troot_len       %u\n",
375                        le32_to_cpu(mst->root_len));
376                 printk(KERN_DEBUG "\tgc_lnum        %u\n",
377                        le32_to_cpu(mst->gc_lnum));
378                 printk(KERN_DEBUG "\tihead_lnum     %u\n",
379                        le32_to_cpu(mst->ihead_lnum));
380                 printk(KERN_DEBUG "\tihead_offs     %u\n",
381                        le32_to_cpu(mst->ihead_offs));
382                 printk(KERN_DEBUG "\tindex_size     %llu\n",
383                        (unsigned long long)le64_to_cpu(mst->index_size));
384                 printk(KERN_DEBUG "\tlpt_lnum       %u\n",
385                        le32_to_cpu(mst->lpt_lnum));
386                 printk(KERN_DEBUG "\tlpt_offs       %u\n",
387                        le32_to_cpu(mst->lpt_offs));
388                 printk(KERN_DEBUG "\tnhead_lnum     %u\n",
389                        le32_to_cpu(mst->nhead_lnum));
390                 printk(KERN_DEBUG "\tnhead_offs     %u\n",
391                        le32_to_cpu(mst->nhead_offs));
392                 printk(KERN_DEBUG "\tltab_lnum      %u\n",
393                        le32_to_cpu(mst->ltab_lnum));
394                 printk(KERN_DEBUG "\tltab_offs      %u\n",
395                        le32_to_cpu(mst->ltab_offs));
396                 printk(KERN_DEBUG "\tlsave_lnum     %u\n",
397                        le32_to_cpu(mst->lsave_lnum));
398                 printk(KERN_DEBUG "\tlsave_offs     %u\n",
399                        le32_to_cpu(mst->lsave_offs));
400                 printk(KERN_DEBUG "\tlscan_lnum     %u\n",
401                        le32_to_cpu(mst->lscan_lnum));
402                 printk(KERN_DEBUG "\tleb_cnt        %u\n",
403                        le32_to_cpu(mst->leb_cnt));
404                 printk(KERN_DEBUG "\tempty_lebs     %u\n",
405                        le32_to_cpu(mst->empty_lebs));
406                 printk(KERN_DEBUG "\tidx_lebs       %u\n",
407                        le32_to_cpu(mst->idx_lebs));
408                 printk(KERN_DEBUG "\ttotal_free     %llu\n",
409                        (unsigned long long)le64_to_cpu(mst->total_free));
410                 printk(KERN_DEBUG "\ttotal_dirty    %llu\n",
411                        (unsigned long long)le64_to_cpu(mst->total_dirty));
412                 printk(KERN_DEBUG "\ttotal_used     %llu\n",
413                        (unsigned long long)le64_to_cpu(mst->total_used));
414                 printk(KERN_DEBUG "\ttotal_dead     %llu\n",
415                        (unsigned long long)le64_to_cpu(mst->total_dead));
416                 printk(KERN_DEBUG "\ttotal_dark     %llu\n",
417                        (unsigned long long)le64_to_cpu(mst->total_dark));
418                 break;
419         }
420         case UBIFS_REF_NODE:
421         {
422                 const struct ubifs_ref_node *ref = node;
423
424                 printk(KERN_DEBUG "\tlnum           %u\n",
425                        le32_to_cpu(ref->lnum));
426                 printk(KERN_DEBUG "\toffs           %u\n",
427                        le32_to_cpu(ref->offs));
428                 printk(KERN_DEBUG "\tjhead          %u\n",
429                        le32_to_cpu(ref->jhead));
430                 break;
431         }
432         case UBIFS_INO_NODE:
433         {
434                 const struct ubifs_ino_node *ino = node;
435
436                 key_read(c, &ino->key, &key);
437                 printk(KERN_DEBUG "\tkey            %s\n", DBGKEY(&key));
438                 printk(KERN_DEBUG "\tcreat_sqnum    %llu\n",
439                        (unsigned long long)le64_to_cpu(ino->creat_sqnum));
440                 printk(KERN_DEBUG "\tsize           %llu\n",
441                        (unsigned long long)le64_to_cpu(ino->size));
442                 printk(KERN_DEBUG "\tnlink          %u\n",
443                        le32_to_cpu(ino->nlink));
444                 printk(KERN_DEBUG "\tatime          %lld.%u\n",
445                        (long long)le64_to_cpu(ino->atime_sec),
446                        le32_to_cpu(ino->atime_nsec));
447                 printk(KERN_DEBUG "\tmtime          %lld.%u\n",
448                        (long long)le64_to_cpu(ino->mtime_sec),
449                        le32_to_cpu(ino->mtime_nsec));
450                 printk(KERN_DEBUG "\tctime          %lld.%u\n",
451                        (long long)le64_to_cpu(ino->ctime_sec),
452                        le32_to_cpu(ino->ctime_nsec));
453                 printk(KERN_DEBUG "\tuid            %u\n",
454                        le32_to_cpu(ino->uid));
455                 printk(KERN_DEBUG "\tgid            %u\n",
456                        le32_to_cpu(ino->gid));
457                 printk(KERN_DEBUG "\tmode           %u\n",
458                        le32_to_cpu(ino->mode));
459                 printk(KERN_DEBUG "\tflags          %#x\n",
460                        le32_to_cpu(ino->flags));
461                 printk(KERN_DEBUG "\txattr_cnt      %u\n",
462                        le32_to_cpu(ino->xattr_cnt));
463                 printk(KERN_DEBUG "\txattr_size     %u\n",
464                        le32_to_cpu(ino->xattr_size));
465                 printk(KERN_DEBUG "\txattr_names    %u\n",
466                        le32_to_cpu(ino->xattr_names));
467                 printk(KERN_DEBUG "\tcompr_type     %#x\n",
468                        (int)le16_to_cpu(ino->compr_type));
469                 printk(KERN_DEBUG "\tdata len       %u\n",
470                        le32_to_cpu(ino->data_len));
471                 break;
472         }
473         case UBIFS_DENT_NODE:
474         case UBIFS_XENT_NODE:
475         {
476                 const struct ubifs_dent_node *dent = node;
477                 int nlen = le16_to_cpu(dent->nlen);
478
479                 key_read(c, &dent->key, &key);
480                 printk(KERN_DEBUG "\tkey            %s\n", DBGKEY(&key));
481                 printk(KERN_DEBUG "\tinum           %llu\n",
482                        (unsigned long long)le64_to_cpu(dent->inum));
483                 printk(KERN_DEBUG "\ttype           %d\n", (int)dent->type);
484                 printk(KERN_DEBUG "\tnlen           %d\n", nlen);
485                 printk(KERN_DEBUG "\tname           ");
486
487                 if (nlen > UBIFS_MAX_NLEN)
488                         printk(KERN_DEBUG "(bad name length, not printing, "
489                                           "bad or corrupted node)");
490                 else {
491                         for (i = 0; i < nlen && dent->name[i]; i++)
492                                 printk(KERN_CONT "%c", dent->name[i]);
493                 }
494                 printk(KERN_CONT "\n");
495
496                 break;
497         }
498         case UBIFS_DATA_NODE:
499         {
500                 const struct ubifs_data_node *dn = node;
501                 int dlen = le32_to_cpu(ch->len) - UBIFS_DATA_NODE_SZ;
502
503                 key_read(c, &dn->key, &key);
504                 printk(KERN_DEBUG "\tkey            %s\n", DBGKEY(&key));
505                 printk(KERN_DEBUG "\tsize           %u\n",
506                        le32_to_cpu(dn->size));
507                 printk(KERN_DEBUG "\tcompr_typ      %d\n",
508                        (int)le16_to_cpu(dn->compr_type));
509                 printk(KERN_DEBUG "\tdata size      %d\n",
510                        dlen);
511                 printk(KERN_DEBUG "\tdata:\n");
512                 print_hex_dump(KERN_DEBUG, "\t", DUMP_PREFIX_OFFSET, 32, 1,
513                                (void *)&dn->data, dlen, 0);
514                 break;
515         }
516         case UBIFS_TRUN_NODE:
517         {
518                 const struct ubifs_trun_node *trun = node;
519
520                 printk(KERN_DEBUG "\tinum           %u\n",
521                        le32_to_cpu(trun->inum));
522                 printk(KERN_DEBUG "\told_size       %llu\n",
523                        (unsigned long long)le64_to_cpu(trun->old_size));
524                 printk(KERN_DEBUG "\tnew_size       %llu\n",
525                        (unsigned long long)le64_to_cpu(trun->new_size));
526                 break;
527         }
528         case UBIFS_IDX_NODE:
529         {
530                 const struct ubifs_idx_node *idx = node;
531
532                 n = le16_to_cpu(idx->child_cnt);
533                 printk(KERN_DEBUG "\tchild_cnt      %d\n", n);
534                 printk(KERN_DEBUG "\tlevel          %d\n",
535                        (int)le16_to_cpu(idx->level));
536                 printk(KERN_DEBUG "\tBranches:\n");
537
538                 for (i = 0; i < n && i < c->fanout - 1; i++) {
539                         const struct ubifs_branch *br;
540
541                         br = ubifs_idx_branch(c, idx, i);
542                         key_read(c, &br->key, &key);
543                         printk(KERN_DEBUG "\t%d: LEB %d:%d len %d key %s\n",
544                                i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs),
545                                le32_to_cpu(br->len), DBGKEY(&key));
546                 }
547                 break;
548         }
549         case UBIFS_CS_NODE:
550                 break;
551         case UBIFS_ORPH_NODE:
552         {
553                 const struct ubifs_orph_node *orph = node;
554
555                 printk(KERN_DEBUG "\tcommit number  %llu\n",
556                        (unsigned long long)
557                                 le64_to_cpu(orph->cmt_no) & LLONG_MAX);
558                 printk(KERN_DEBUG "\tlast node flag %llu\n",
559                        (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63);
560                 n = (le32_to_cpu(ch->len) - UBIFS_ORPH_NODE_SZ) >> 3;
561                 printk(KERN_DEBUG "\t%d orphan inode numbers:\n", n);
562                 for (i = 0; i < n; i++)
563                         printk(KERN_DEBUG "\t  ino %llu\n",
564                                (unsigned long long)le64_to_cpu(orph->inos[i]));
565                 break;
566         }
567         default:
568                 printk(KERN_DEBUG "node type %d was not recognized\n",
569                        (int)ch->node_type);
570         }
571         spin_unlock(&dbg_lock);
572 }
573
574 void dbg_dump_budget_req(const struct ubifs_budget_req *req)
575 {
576         spin_lock(&dbg_lock);
577         printk(KERN_DEBUG "Budgeting request: new_ino %d, dirtied_ino %d\n",
578                req->new_ino, req->dirtied_ino);
579         printk(KERN_DEBUG "\tnew_ino_d   %d, dirtied_ino_d %d\n",
580                req->new_ino_d, req->dirtied_ino_d);
581         printk(KERN_DEBUG "\tnew_page    %d, dirtied_page %d\n",
582                req->new_page, req->dirtied_page);
583         printk(KERN_DEBUG "\tnew_dent    %d, mod_dent     %d\n",
584                req->new_dent, req->mod_dent);
585         printk(KERN_DEBUG "\tidx_growth  %d\n", req->idx_growth);
586         printk(KERN_DEBUG "\tdata_growth %d dd_growth     %d\n",
587                req->data_growth, req->dd_growth);
588         spin_unlock(&dbg_lock);
589 }
590
591 void dbg_dump_lstats(const struct ubifs_lp_stats *lst)
592 {
593         spin_lock(&dbg_lock);
594         printk(KERN_DEBUG "(pid %d) Lprops statistics: empty_lebs %d, "
595                "idx_lebs  %d\n", current->pid, lst->empty_lebs, lst->idx_lebs);
596         printk(KERN_DEBUG "\ttaken_empty_lebs %d, total_free %lld, "
597                "total_dirty %lld\n", lst->taken_empty_lebs, lst->total_free,
598                lst->total_dirty);
599         printk(KERN_DEBUG "\ttotal_used %lld, total_dark %lld, "
600                "total_dead %lld\n", lst->total_used, lst->total_dark,
601                lst->total_dead);
602         spin_unlock(&dbg_lock);
603 }
604
605 void dbg_dump_budg(struct ubifs_info *c)
606 {
607         int i;
608         struct rb_node *rb;
609         struct ubifs_bud *bud;
610         struct ubifs_gced_idx_leb *idx_gc;
611         long long available, outstanding, free;
612
613         ubifs_assert(spin_is_locked(&c->space_lock));
614         spin_lock(&dbg_lock);
615         printk(KERN_DEBUG "(pid %d) Budgeting info: budg_data_growth %lld, "
616                "budg_dd_growth %lld, budg_idx_growth %lld\n", current->pid,
617                c->budg_data_growth, c->budg_dd_growth, c->budg_idx_growth);
618         printk(KERN_DEBUG "\tdata budget sum %lld, total budget sum %lld, "
619                "freeable_cnt %d\n", c->budg_data_growth + c->budg_dd_growth,
620                c->budg_data_growth + c->budg_dd_growth + c->budg_idx_growth,
621                c->freeable_cnt);
622         printk(KERN_DEBUG "\tmin_idx_lebs %d, old_idx_sz %lld, "
623                "calc_idx_sz %lld, idx_gc_cnt %d\n", c->min_idx_lebs,
624                c->old_idx_sz, c->calc_idx_sz, c->idx_gc_cnt);
625         printk(KERN_DEBUG "\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, "
626                "clean_zn_cnt %ld\n", atomic_long_read(&c->dirty_pg_cnt),
627                atomic_long_read(&c->dirty_zn_cnt),
628                atomic_long_read(&c->clean_zn_cnt));
629         printk(KERN_DEBUG "\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n",
630                c->dark_wm, c->dead_wm, c->max_idx_node_sz);
631         printk(KERN_DEBUG "\tgc_lnum %d, ihead_lnum %d\n",
632                c->gc_lnum, c->ihead_lnum);
633         /* If we are in R/O mode, journal heads do not exist */
634         if (c->jheads)
635                 for (i = 0; i < c->jhead_cnt; i++)
636                         printk(KERN_DEBUG "\tjhead %s\t LEB %d\n",
637                                dbg_jhead(c->jheads[i].wbuf.jhead),
638                                c->jheads[i].wbuf.lnum);
639         for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) {
640                 bud = rb_entry(rb, struct ubifs_bud, rb);
641                 printk(KERN_DEBUG "\tbud LEB %d\n", bud->lnum);
642         }
643         list_for_each_entry(bud, &c->old_buds, list)
644                 printk(KERN_DEBUG "\told bud LEB %d\n", bud->lnum);
645         list_for_each_entry(idx_gc, &c->idx_gc, list)
646                 printk(KERN_DEBUG "\tGC'ed idx LEB %d unmap %d\n",
647                        idx_gc->lnum, idx_gc->unmap);
648         printk(KERN_DEBUG "\tcommit state %d\n", c->cmt_state);
649
650         /* Print budgeting predictions */
651         available = ubifs_calc_available(c, c->min_idx_lebs);
652         outstanding = c->budg_data_growth + c->budg_dd_growth;
653         free = ubifs_get_free_space_nolock(c);
654         printk(KERN_DEBUG "Budgeting predictions:\n");
655         printk(KERN_DEBUG "\tavailable: %lld, outstanding %lld, free %lld\n",
656                available, outstanding, free);
657         spin_unlock(&dbg_lock);
658 }
659
660 void dbg_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp)
661 {
662         int i, spc, dark = 0, dead = 0;
663         struct rb_node *rb;
664         struct ubifs_bud *bud;
665
666         spc = lp->free + lp->dirty;
667         if (spc < c->dead_wm)
668                 dead = spc;
669         else
670                 dark = ubifs_calc_dark(c, spc);
671
672         if (lp->flags & LPROPS_INDEX)
673                 printk(KERN_DEBUG "LEB %-7d free %-8d dirty %-8d used %-8d "
674                        "free + dirty %-8d flags %#x (", lp->lnum, lp->free,
675                        lp->dirty, c->leb_size - spc, spc, lp->flags);
676         else
677                 printk(KERN_DEBUG "LEB %-7d free %-8d dirty %-8d used %-8d "
678                        "free + dirty %-8d dark %-4d dead %-4d nodes fit %-3d "
679                        "flags %#-4x (", lp->lnum, lp->free, lp->dirty,
680                        c->leb_size - spc, spc, dark, dead,
681                        (int)(spc / UBIFS_MAX_NODE_SZ), lp->flags);
682
683         if (lp->flags & LPROPS_TAKEN) {
684                 if (lp->flags & LPROPS_INDEX)
685                         printk(KERN_CONT "index, taken");
686                 else
687                         printk(KERN_CONT "taken");
688         } else {
689                 const char *s;
690
691                 if (lp->flags & LPROPS_INDEX) {
692                         switch (lp->flags & LPROPS_CAT_MASK) {
693                         case LPROPS_DIRTY_IDX:
694                                 s = "dirty index";
695                                 break;
696                         case LPROPS_FRDI_IDX:
697                                 s = "freeable index";
698                                 break;
699                         default:
700                                 s = "index";
701                         }
702                 } else {
703                         switch (lp->flags & LPROPS_CAT_MASK) {
704                         case LPROPS_UNCAT:
705                                 s = "not categorized";
706                                 break;
707                         case LPROPS_DIRTY:
708                                 s = "dirty";
709                                 break;
710                         case LPROPS_FREE:
711                                 s = "free";
712                                 break;
713                         case LPROPS_EMPTY:
714                                 s = "empty";
715                                 break;
716                         case LPROPS_FREEABLE:
717                                 s = "freeable";
718                                 break;
719                         default:
720                                 s = NULL;
721                                 break;
722                         }
723                 }
724                 printk(KERN_CONT "%s", s);
725         }
726
727         for (rb = rb_first((struct rb_root *)&c->buds); rb; rb = rb_next(rb)) {
728                 bud = rb_entry(rb, struct ubifs_bud, rb);
729                 if (bud->lnum == lp->lnum) {
730                         int head = 0;
731                         for (i = 0; i < c->jhead_cnt; i++) {
732                                 if (lp->lnum == c->jheads[i].wbuf.lnum) {
733                                         printk(KERN_CONT ", jhead %s",
734                                                dbg_jhead(i));
735                                         head = 1;
736                                 }
737                         }
738                         if (!head)
739                                 printk(KERN_CONT ", bud of jhead %s",
740                                        dbg_jhead(bud->jhead));
741                 }
742         }
743         if (lp->lnum == c->gc_lnum)
744                 printk(KERN_CONT ", GC LEB");
745         printk(KERN_CONT ")\n");
746 }
747
748 void dbg_dump_lprops(struct ubifs_info *c)
749 {
750         int lnum, err;
751         struct ubifs_lprops lp;
752         struct ubifs_lp_stats lst;
753
754         printk(KERN_DEBUG "(pid %d) start dumping LEB properties\n",
755                current->pid);
756         ubifs_get_lp_stats(c, &lst);
757         dbg_dump_lstats(&lst);
758
759         for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) {
760                 err = ubifs_read_one_lp(c, lnum, &lp);
761                 if (err)
762                         ubifs_err("cannot read lprops for LEB %d", lnum);
763
764                 dbg_dump_lprop(c, &lp);
765         }
766         printk(KERN_DEBUG "(pid %d) finish dumping LEB properties\n",
767                current->pid);
768 }
769
770 void dbg_dump_lpt_info(struct ubifs_info *c)
771 {
772         int i;
773
774         spin_lock(&dbg_lock);
775         printk(KERN_DEBUG "(pid %d) dumping LPT information\n", current->pid);
776         printk(KERN_DEBUG "\tlpt_sz:        %lld\n", c->lpt_sz);
777         printk(KERN_DEBUG "\tpnode_sz:      %d\n", c->pnode_sz);
778         printk(KERN_DEBUG "\tnnode_sz:      %d\n", c->nnode_sz);
779         printk(KERN_DEBUG "\tltab_sz:       %d\n", c->ltab_sz);
780         printk(KERN_DEBUG "\tlsave_sz:      %d\n", c->lsave_sz);
781         printk(KERN_DEBUG "\tbig_lpt:       %d\n", c->big_lpt);
782         printk(KERN_DEBUG "\tlpt_hght:      %d\n", c->lpt_hght);
783         printk(KERN_DEBUG "\tpnode_cnt:     %d\n", c->pnode_cnt);
784         printk(KERN_DEBUG "\tnnode_cnt:     %d\n", c->nnode_cnt);
785         printk(KERN_DEBUG "\tdirty_pn_cnt:  %d\n", c->dirty_pn_cnt);
786         printk(KERN_DEBUG "\tdirty_nn_cnt:  %d\n", c->dirty_nn_cnt);
787         printk(KERN_DEBUG "\tlsave_cnt:     %d\n", c->lsave_cnt);
788         printk(KERN_DEBUG "\tspace_bits:    %d\n", c->space_bits);
789         printk(KERN_DEBUG "\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits);
790         printk(KERN_DEBUG "\tlpt_offs_bits: %d\n", c->lpt_offs_bits);
791         printk(KERN_DEBUG "\tlpt_spc_bits:  %d\n", c->lpt_spc_bits);
792         printk(KERN_DEBUG "\tpcnt_bits:     %d\n", c->pcnt_bits);
793         printk(KERN_DEBUG "\tlnum_bits:     %d\n", c->lnum_bits);
794         printk(KERN_DEBUG "\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs);
795         printk(KERN_DEBUG "\tLPT head is at %d:%d\n",
796                c->nhead_lnum, c->nhead_offs);
797         printk(KERN_DEBUG "\tLPT ltab is at %d:%d\n",
798                c->ltab_lnum, c->ltab_offs);
799         if (c->big_lpt)
800                 printk(KERN_DEBUG "\tLPT lsave is at %d:%d\n",
801                        c->lsave_lnum, c->lsave_offs);
802         for (i = 0; i < c->lpt_lebs; i++)
803                 printk(KERN_DEBUG "\tLPT LEB %d free %d dirty %d tgc %d "
804                        "cmt %d\n", i + c->lpt_first, c->ltab[i].free,
805                        c->ltab[i].dirty, c->ltab[i].tgc, c->ltab[i].cmt);
806         spin_unlock(&dbg_lock);
807 }
808
809 void dbg_dump_leb(const struct ubifs_info *c, int lnum)
810 {
811         struct ubifs_scan_leb *sleb;
812         struct ubifs_scan_node *snod;
813
814         if (dbg_failure_mode)
815                 return;
816
817         printk(KERN_DEBUG "(pid %d) start dumping LEB %d\n",
818                current->pid, lnum);
819         sleb = ubifs_scan(c, lnum, 0, c->dbg->buf, 0);
820         if (IS_ERR(sleb)) {
821                 ubifs_err("scan error %d", (int)PTR_ERR(sleb));
822                 return;
823         }
824
825         printk(KERN_DEBUG "LEB %d has %d nodes ending at %d\n", lnum,
826                sleb->nodes_cnt, sleb->endpt);
827
828         list_for_each_entry(snod, &sleb->nodes, list) {
829                 cond_resched();
830                 printk(KERN_DEBUG "Dumping node at LEB %d:%d len %d\n", lnum,
831                        snod->offs, snod->len);
832                 dbg_dump_node(c, snod->node);
833         }
834
835         printk(KERN_DEBUG "(pid %d) finish dumping LEB %d\n",
836                current->pid, lnum);
837         ubifs_scan_destroy(sleb);
838         return;
839 }
840
841 void dbg_dump_znode(const struct ubifs_info *c,
842                     const struct ubifs_znode *znode)
843 {
844         int n;
845         const struct ubifs_zbranch *zbr;
846
847         spin_lock(&dbg_lock);
848         if (znode->parent)
849                 zbr = &znode->parent->zbranch[znode->iip];
850         else
851                 zbr = &c->zroot;
852
853         printk(KERN_DEBUG "znode %p, LEB %d:%d len %d parent %p iip %d level %d"
854                " child_cnt %d flags %lx\n", znode, zbr->lnum, zbr->offs,
855                zbr->len, znode->parent, znode->iip, znode->level,
856                znode->child_cnt, znode->flags);
857
858         if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
859                 spin_unlock(&dbg_lock);
860                 return;
861         }
862
863         printk(KERN_DEBUG "zbranches:\n");
864         for (n = 0; n < znode->child_cnt; n++) {
865                 zbr = &znode->zbranch[n];
866                 if (znode->level > 0)
867                         printk(KERN_DEBUG "\t%d: znode %p LEB %d:%d len %d key "
868                                           "%s\n", n, zbr->znode, zbr->lnum,
869                                           zbr->offs, zbr->len,
870                                           DBGKEY(&zbr->key));
871                 else
872                         printk(KERN_DEBUG "\t%d: LNC %p LEB %d:%d len %d key "
873                                           "%s\n", n, zbr->znode, zbr->lnum,
874                                           zbr->offs, zbr->len,
875                                           DBGKEY(&zbr->key));
876         }
877         spin_unlock(&dbg_lock);
878 }
879
880 void dbg_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat)
881 {
882         int i;
883
884         printk(KERN_DEBUG "(pid %d) start dumping heap cat %d (%d elements)\n",
885                current->pid, cat, heap->cnt);
886         for (i = 0; i < heap->cnt; i++) {
887                 struct ubifs_lprops *lprops = heap->arr[i];
888
889                 printk(KERN_DEBUG "\t%d. LEB %d hpos %d free %d dirty %d "
890                        "flags %d\n", i, lprops->lnum, lprops->hpos,
891                        lprops->free, lprops->dirty, lprops->flags);
892         }
893         printk(KERN_DEBUG "(pid %d) finish dumping heap\n", current->pid);
894 }
895
896 void dbg_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
897                     struct ubifs_nnode *parent, int iip)
898 {
899         int i;
900
901         printk(KERN_DEBUG "(pid %d) dumping pnode:\n", current->pid);
902         printk(KERN_DEBUG "\taddress %zx parent %zx cnext %zx\n",
903                (size_t)pnode, (size_t)parent, (size_t)pnode->cnext);
904         printk(KERN_DEBUG "\tflags %lu iip %d level %d num %d\n",
905                pnode->flags, iip, pnode->level, pnode->num);
906         for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
907                 struct ubifs_lprops *lp = &pnode->lprops[i];
908
909                 printk(KERN_DEBUG "\t%d: free %d dirty %d flags %d lnum %d\n",
910                        i, lp->free, lp->dirty, lp->flags, lp->lnum);
911         }
912 }
913
914 void dbg_dump_tnc(struct ubifs_info *c)
915 {
916         struct ubifs_znode *znode;
917         int level;
918
919         printk(KERN_DEBUG "\n");
920         printk(KERN_DEBUG "(pid %d) start dumping TNC tree\n", current->pid);
921         znode = ubifs_tnc_levelorder_next(c->zroot.znode, NULL);
922         level = znode->level;
923         printk(KERN_DEBUG "== Level %d ==\n", level);
924         while (znode) {
925                 if (level != znode->level) {
926                         level = znode->level;
927                         printk(KERN_DEBUG "== Level %d ==\n", level);
928                 }
929                 dbg_dump_znode(c, znode);
930                 znode = ubifs_tnc_levelorder_next(c->zroot.znode, znode);
931         }
932         printk(KERN_DEBUG "(pid %d) finish dumping TNC tree\n", current->pid);
933 }
934
935 static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode,
936                       void *priv)
937 {
938         dbg_dump_znode(c, znode);
939         return 0;
940 }
941
942 /**
943  * dbg_dump_index - dump the on-flash index.
944  * @c: UBIFS file-system description object
945  *
946  * This function dumps whole UBIFS indexing B-tree, unlike 'dbg_dump_tnc()'
947  * which dumps only in-memory znodes and does not read znodes which from flash.
948  */
949 void dbg_dump_index(struct ubifs_info *c)
950 {
951         dbg_walk_index(c, NULL, dump_znode, NULL);
952 }
953
954 /**
955  * dbg_save_space_info - save information about flash space.
956  * @c: UBIFS file-system description object
957  *
958  * This function saves information about UBIFS free space, dirty space, etc, in
959  * order to check it later.
960  */
961 void dbg_save_space_info(struct ubifs_info *c)
962 {
963         struct ubifs_debug_info *d = c->dbg;
964
965         ubifs_get_lp_stats(c, &d->saved_lst);
966
967         spin_lock(&c->space_lock);
968         d->saved_free = ubifs_get_free_space_nolock(c);
969         spin_unlock(&c->space_lock);
970 }
971
972 /**
973  * dbg_check_space_info - check flash space information.
974  * @c: UBIFS file-system description object
975  *
976  * This function compares current flash space information with the information
977  * which was saved when the 'dbg_save_space_info()' function was called.
978  * Returns zero if the information has not changed, and %-EINVAL it it has
979  * changed.
980  */
981 int dbg_check_space_info(struct ubifs_info *c)
982 {
983         struct ubifs_debug_info *d = c->dbg;
984         struct ubifs_lp_stats lst;
985         long long avail, free;
986
987         spin_lock(&c->space_lock);
988         avail = ubifs_calc_available(c, c->min_idx_lebs);
989         spin_unlock(&c->space_lock);
990         free = ubifs_get_free_space(c);
991
992         if (free != d->saved_free) {
993                 ubifs_err("free space changed from %lld to %lld",
994                           d->saved_free, free);
995                 goto out;
996         }
997
998         return 0;
999
1000 out:
1001         ubifs_msg("saved lprops statistics dump");
1002         dbg_dump_lstats(&d->saved_lst);
1003         ubifs_get_lp_stats(c, &lst);
1004
1005         ubifs_msg("current lprops statistics dump");
1006         dbg_dump_lstats(&lst);
1007
1008         spin_lock(&c->space_lock);
1009         dbg_dump_budg(c);
1010         spin_unlock(&c->space_lock);
1011         dump_stack();
1012         return -EINVAL;
1013 }
1014
1015 /**
1016  * dbg_check_synced_i_size - check synchronized inode size.
1017  * @inode: inode to check
1018  *
1019  * If inode is clean, synchronized inode size has to be equivalent to current
1020  * inode size. This function has to be called only for locked inodes (@i_mutex
1021  * has to be locked). Returns %0 if synchronized inode size if correct, and
1022  * %-EINVAL if not.
1023  */
1024 int dbg_check_synced_i_size(struct inode *inode)
1025 {
1026         int err = 0;
1027         struct ubifs_inode *ui = ubifs_inode(inode);
1028
1029         if (!(ubifs_chk_flags & UBIFS_CHK_GEN))
1030                 return 0;
1031         if (!S_ISREG(inode->i_mode))
1032                 return 0;
1033
1034         mutex_lock(&ui->ui_mutex);
1035         spin_lock(&ui->ui_lock);
1036         if (ui->ui_size != ui->synced_i_size && !ui->dirty) {
1037                 ubifs_err("ui_size is %lld, synced_i_size is %lld, but inode "
1038                           "is clean", ui->ui_size, ui->synced_i_size);
1039                 ubifs_err("i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino,
1040                           inode->i_mode, i_size_read(inode));
1041                 dbg_dump_stack();
1042                 err = -EINVAL;
1043         }
1044         spin_unlock(&ui->ui_lock);
1045         mutex_unlock(&ui->ui_mutex);
1046         return err;
1047 }
1048
1049 /*
1050  * dbg_check_dir - check directory inode size and link count.
1051  * @c: UBIFS file-system description object
1052  * @dir: the directory to calculate size for
1053  * @size: the result is returned here
1054  *
1055  * This function makes sure that directory size and link count are correct.
1056  * Returns zero in case of success and a negative error code in case of
1057  * failure.
1058  *
1059  * Note, it is good idea to make sure the @dir->i_mutex is locked before
1060  * calling this function.
1061  */
1062 int dbg_check_dir_size(struct ubifs_info *c, const struct inode *dir)
1063 {
1064         unsigned int nlink = 2;
1065         union ubifs_key key;
1066         struct ubifs_dent_node *dent, *pdent = NULL;
1067         struct qstr nm = { .name = NULL };
1068         loff_t size = UBIFS_INO_NODE_SZ;
1069
1070         if (!(ubifs_chk_flags & UBIFS_CHK_GEN))
1071                 return 0;
1072
1073         if (!S_ISDIR(dir->i_mode))
1074                 return 0;
1075
1076         lowest_dent_key(c, &key, dir->i_ino);
1077         while (1) {
1078                 int err;
1079
1080                 dent = ubifs_tnc_next_ent(c, &key, &nm);
1081                 if (IS_ERR(dent)) {
1082                         err = PTR_ERR(dent);
1083                         if (err == -ENOENT)
1084                                 break;
1085                         return err;
1086                 }
1087
1088                 nm.name = dent->name;
1089                 nm.len = le16_to_cpu(dent->nlen);
1090                 size += CALC_DENT_SIZE(nm.len);
1091                 if (dent->type == UBIFS_ITYPE_DIR)
1092                         nlink += 1;
1093                 kfree(pdent);
1094                 pdent = dent;
1095                 key_read(c, &dent->key, &key);
1096         }
1097         kfree(pdent);
1098
1099         if (i_size_read(dir) != size) {
1100                 ubifs_err("directory inode %lu has size %llu, "
1101                           "but calculated size is %llu", dir->i_ino,
1102                           (unsigned long long)i_size_read(dir),
1103                           (unsigned long long)size);
1104                 dump_stack();
1105                 return -EINVAL;
1106         }
1107         if (dir->i_nlink != nlink) {
1108                 ubifs_err("directory inode %lu has nlink %u, but calculated "
1109                           "nlink is %u", dir->i_ino, dir->i_nlink, nlink);
1110                 dump_stack();
1111                 return -EINVAL;
1112         }
1113
1114         return 0;
1115 }
1116
1117 /**
1118  * dbg_check_key_order - make sure that colliding keys are properly ordered.
1119  * @c: UBIFS file-system description object
1120  * @zbr1: first zbranch
1121  * @zbr2: following zbranch
1122  *
1123  * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of
1124  * names of the direntries/xentries which are referred by the keys. This
1125  * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes
1126  * sure the name of direntry/xentry referred by @zbr1 is less than
1127  * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not,
1128  * and a negative error code in case of failure.
1129  */
1130 static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1,
1131                                struct ubifs_zbranch *zbr2)
1132 {
1133         int err, nlen1, nlen2, cmp;
1134         struct ubifs_dent_node *dent1, *dent2;
1135         union ubifs_key key;
1136
1137         ubifs_assert(!keys_cmp(c, &zbr1->key, &zbr2->key));
1138         dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1139         if (!dent1)
1140                 return -ENOMEM;
1141         dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1142         if (!dent2) {
1143                 err = -ENOMEM;
1144                 goto out_free;
1145         }
1146
1147         err = ubifs_tnc_read_node(c, zbr1, dent1);
1148         if (err)
1149                 goto out_free;
1150         err = ubifs_validate_entry(c, dent1);
1151         if (err)
1152                 goto out_free;
1153
1154         err = ubifs_tnc_read_node(c, zbr2, dent2);
1155         if (err)
1156                 goto out_free;
1157         err = ubifs_validate_entry(c, dent2);
1158         if (err)
1159                 goto out_free;
1160
1161         /* Make sure node keys are the same as in zbranch */
1162         err = 1;
1163         key_read(c, &dent1->key, &key);
1164         if (keys_cmp(c, &zbr1->key, &key)) {
1165                 dbg_err("1st entry at %d:%d has key %s", zbr1->lnum,
1166                         zbr1->offs, DBGKEY(&key));
1167                 dbg_err("but it should have key %s according to tnc",
1168                         DBGKEY(&zbr1->key));
1169                 dbg_dump_node(c, dent1);
1170                 goto out_free;
1171         }
1172
1173         key_read(c, &dent2->key, &key);
1174         if (keys_cmp(c, &zbr2->key, &key)) {
1175                 dbg_err("2nd entry at %d:%d has key %s", zbr1->lnum,
1176                         zbr1->offs, DBGKEY(&key));
1177                 dbg_err("but it should have key %s according to tnc",
1178                         DBGKEY(&zbr2->key));
1179                 dbg_dump_node(c, dent2);
1180                 goto out_free;
1181         }
1182
1183         nlen1 = le16_to_cpu(dent1->nlen);
1184         nlen2 = le16_to_cpu(dent2->nlen);
1185
1186         cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2));
1187         if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) {
1188                 err = 0;
1189                 goto out_free;
1190         }
1191         if (cmp == 0 && nlen1 == nlen2)
1192                 dbg_err("2 xent/dent nodes with the same name");
1193         else
1194                 dbg_err("bad order of colliding key %s",
1195                         DBGKEY(&key));
1196
1197         ubifs_msg("first node at %d:%d\n", zbr1->lnum, zbr1->offs);
1198         dbg_dump_node(c, dent1);
1199         ubifs_msg("second node at %d:%d\n", zbr2->lnum, zbr2->offs);
1200         dbg_dump_node(c, dent2);
1201
1202 out_free:
1203         kfree(dent2);
1204         kfree(dent1);
1205         return err;
1206 }
1207
1208 /**
1209  * dbg_check_znode - check if znode is all right.
1210  * @c: UBIFS file-system description object
1211  * @zbr: zbranch which points to this znode
1212  *
1213  * This function makes sure that znode referred to by @zbr is all right.
1214  * Returns zero if it is, and %-EINVAL if it is not.
1215  */
1216 static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr)
1217 {
1218         struct ubifs_znode *znode = zbr->znode;
1219         struct ubifs_znode *zp = znode->parent;
1220         int n, err, cmp;
1221
1222         if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
1223                 err = 1;
1224                 goto out;
1225         }
1226         if (znode->level < 0) {
1227                 err = 2;
1228                 goto out;
1229         }
1230         if (znode->iip < 0 || znode->iip >= c->fanout) {
1231                 err = 3;
1232                 goto out;
1233         }
1234
1235         if (zbr->len == 0)
1236                 /* Only dirty zbranch may have no on-flash nodes */
1237                 if (!ubifs_zn_dirty(znode)) {
1238                         err = 4;
1239                         goto out;
1240                 }
1241
1242         if (ubifs_zn_dirty(znode)) {
1243                 /*
1244                  * If znode is dirty, its parent has to be dirty as well. The
1245                  * order of the operation is important, so we have to have
1246                  * memory barriers.
1247                  */
1248                 smp_mb();
1249                 if (zp && !ubifs_zn_dirty(zp)) {
1250                         /*
1251                          * The dirty flag is atomic and is cleared outside the
1252                          * TNC mutex, so znode's dirty flag may now have
1253                          * been cleared. The child is always cleared before the
1254                          * parent, so we just need to check again.
1255                          */
1256                         smp_mb();
1257                         if (ubifs_zn_dirty(znode)) {
1258                                 err = 5;
1259                                 goto out;
1260                         }
1261                 }
1262         }
1263
1264         if (zp) {
1265                 const union ubifs_key *min, *max;
1266
1267                 if (znode->level != zp->level - 1) {
1268                         err = 6;
1269                         goto out;
1270                 }
1271
1272                 /* Make sure the 'parent' pointer in our znode is correct */
1273                 err = ubifs_search_zbranch(c, zp, &zbr->key, &n);
1274                 if (!err) {
1275                         /* This zbranch does not exist in the parent */
1276                         err = 7;
1277                         goto out;
1278                 }
1279
1280                 if (znode->iip >= zp->child_cnt) {
1281                         err = 8;
1282                         goto out;
1283                 }
1284
1285                 if (znode->iip != n) {
1286                         /* This may happen only in case of collisions */
1287                         if (keys_cmp(c, &zp->zbranch[n].key,
1288                                      &zp->zbranch[znode->iip].key)) {
1289                                 err = 9;
1290                                 goto out;
1291                         }
1292                         n = znode->iip;
1293                 }
1294
1295                 /*
1296                  * Make sure that the first key in our znode is greater than or
1297                  * equal to the key in the pointing zbranch.
1298                  */
1299                 min = &zbr->key;
1300                 cmp = keys_cmp(c, min, &znode->zbranch[0].key);
1301                 if (cmp == 1) {
1302                         err = 10;
1303                         goto out;
1304                 }
1305
1306                 if (n + 1 < zp->child_cnt) {
1307                         max = &zp->zbranch[n + 1].key;
1308
1309                         /*
1310                          * Make sure the last key in our znode is less or
1311                          * equivalent than the key in the zbranch which goes
1312                          * after our pointing zbranch.
1313                          */
1314                         cmp = keys_cmp(c, max,
1315                                 &znode->zbranch[znode->child_cnt - 1].key);
1316                         if (cmp == -1) {
1317                                 err = 11;
1318                                 goto out;
1319                         }
1320                 }
1321         } else {
1322                 /* This may only be root znode */
1323                 if (zbr != &c->zroot) {
1324                         err = 12;
1325                         goto out;
1326                 }
1327         }
1328
1329         /*
1330          * Make sure that next key is greater or equivalent then the previous
1331          * one.
1332          */
1333         for (n = 1; n < znode->child_cnt; n++) {
1334                 cmp = keys_cmp(c, &znode->zbranch[n - 1].key,
1335                                &znode->zbranch[n].key);
1336                 if (cmp > 0) {
1337                         err = 13;
1338                         goto out;
1339                 }
1340                 if (cmp == 0) {
1341                         /* This can only be keys with colliding hash */
1342                         if (!is_hash_key(c, &znode->zbranch[n].key)) {
1343                                 err = 14;
1344                                 goto out;
1345                         }
1346
1347                         if (znode->level != 0 || c->replaying)
1348                                 continue;
1349
1350                         /*
1351                          * Colliding keys should follow binary order of
1352                          * corresponding xentry/dentry names.
1353                          */
1354                         err = dbg_check_key_order(c, &znode->zbranch[n - 1],
1355                                                   &znode->zbranch[n]);
1356                         if (err < 0)
1357                                 return err;
1358                         if (err) {
1359                                 err = 15;
1360                                 goto out;
1361                         }
1362                 }
1363         }
1364
1365         for (n = 0; n < znode->child_cnt; n++) {
1366                 if (!znode->zbranch[n].znode &&
1367                     (znode->zbranch[n].lnum == 0 ||
1368                      znode->zbranch[n].len == 0)) {
1369                         err = 16;
1370                         goto out;
1371                 }
1372
1373                 if (znode->zbranch[n].lnum != 0 &&
1374                     znode->zbranch[n].len == 0) {
1375                         err = 17;
1376                         goto out;
1377                 }
1378
1379                 if (znode->zbranch[n].lnum == 0 &&
1380                     znode->zbranch[n].len != 0) {
1381                         err = 18;
1382                         goto out;
1383                 }
1384
1385                 if (znode->zbranch[n].lnum == 0 &&
1386                     znode->zbranch[n].offs != 0) {
1387                         err = 19;
1388                         goto out;
1389                 }
1390
1391                 if (znode->level != 0 && znode->zbranch[n].znode)
1392                         if (znode->zbranch[n].znode->parent != znode) {
1393                                 err = 20;
1394                                 goto out;
1395                         }
1396         }
1397
1398         return 0;
1399
1400 out:
1401         ubifs_err("failed, error %d", err);
1402         ubifs_msg("dump of the znode");
1403         dbg_dump_znode(c, znode);
1404         if (zp) {
1405                 ubifs_msg("dump of the parent znode");
1406                 dbg_dump_znode(c, zp);
1407         }
1408         dump_stack();
1409         return -EINVAL;
1410 }
1411
1412 /**
1413  * dbg_check_tnc - check TNC tree.
1414  * @c: UBIFS file-system description object
1415  * @extra: do extra checks that are possible at start commit
1416  *
1417  * This function traverses whole TNC tree and checks every znode. Returns zero
1418  * if everything is all right and %-EINVAL if something is wrong with TNC.
1419  */
1420 int dbg_check_tnc(struct ubifs_info *c, int extra)
1421 {
1422         struct ubifs_znode *znode;
1423         long clean_cnt = 0, dirty_cnt = 0;
1424         int err, last;
1425
1426         if (!(ubifs_chk_flags & UBIFS_CHK_TNC))
1427                 return 0;
1428
1429         ubifs_assert(mutex_is_locked(&c->tnc_mutex));
1430         if (!c->zroot.znode)
1431                 return 0;
1432
1433         znode = ubifs_tnc_postorder_first(c->zroot.znode);
1434         while (1) {
1435                 struct ubifs_znode *prev;
1436                 struct ubifs_zbranch *zbr;
1437
1438                 if (!znode->parent)
1439                         zbr = &c->zroot;
1440                 else
1441                         zbr = &znode->parent->zbranch[znode->iip];
1442
1443                 err = dbg_check_znode(c, zbr);
1444                 if (err)
1445                         return err;
1446
1447                 if (extra) {
1448                         if (ubifs_zn_dirty(znode))
1449                                 dirty_cnt += 1;
1450                         else
1451                                 clean_cnt += 1;
1452                 }
1453
1454                 prev = znode;
1455                 znode = ubifs_tnc_postorder_next(znode);
1456                 if (!znode)
1457                         break;
1458
1459                 /*
1460                  * If the last key of this znode is equivalent to the first key
1461                  * of the next znode (collision), then check order of the keys.
1462                  */
1463                 last = prev->child_cnt - 1;
1464                 if (prev->level == 0 && znode->level == 0 && !c->replaying &&
1465                     !keys_cmp(c, &prev->zbranch[last].key,
1466                               &znode->zbranch[0].key)) {
1467                         err = dbg_check_key_order(c, &prev->zbranch[last],
1468                                                   &znode->zbranch[0]);
1469                         if (err < 0)
1470                                 return err;
1471                         if (err) {
1472                                 ubifs_msg("first znode");
1473                                 dbg_dump_znode(c, prev);
1474                                 ubifs_msg("second znode");
1475                                 dbg_dump_znode(c, znode);
1476                                 return -EINVAL;
1477                         }
1478                 }
1479         }
1480
1481         if (extra) {
1482                 if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) {
1483                         ubifs_err("incorrect clean_zn_cnt %ld, calculated %ld",
1484                                   atomic_long_read(&c->clean_zn_cnt),
1485                                   clean_cnt);
1486                         return -EINVAL;
1487                 }
1488                 if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) {
1489                         ubifs_err("incorrect dirty_zn_cnt %ld, calculated %ld",
1490                                   atomic_long_read(&c->dirty_zn_cnt),
1491                                   dirty_cnt);
1492                         return -EINVAL;
1493                 }
1494         }
1495
1496         return 0;
1497 }
1498
1499 /**
1500  * dbg_walk_index - walk the on-flash index.
1501  * @c: UBIFS file-system description object
1502  * @leaf_cb: called for each leaf node
1503  * @znode_cb: called for each indexing node
1504  * @priv: private data which is passed to callbacks
1505  *
1506  * This function walks the UBIFS index and calls the @leaf_cb for each leaf
1507  * node and @znode_cb for each indexing node. Returns zero in case of success
1508  * and a negative error code in case of failure.
1509  *
1510  * It would be better if this function removed every znode it pulled to into
1511  * the TNC, so that the behavior more closely matched the non-debugging
1512  * behavior.
1513  */
1514 int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb,
1515                    dbg_znode_callback znode_cb, void *priv)
1516 {
1517         int err;
1518         struct ubifs_zbranch *zbr;
1519         struct ubifs_znode *znode, *child;
1520
1521         mutex_lock(&c->tnc_mutex);
1522         /* If the root indexing node is not in TNC - pull it */
1523         if (!c->zroot.znode) {
1524                 c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1525                 if (IS_ERR(c->zroot.znode)) {
1526                         err = PTR_ERR(c->zroot.znode);
1527                         c->zroot.znode = NULL;
1528                         goto out_unlock;
1529                 }
1530         }
1531
1532         /*
1533          * We are going to traverse the indexing tree in the postorder manner.
1534          * Go down and find the leftmost indexing node where we are going to
1535          * start from.
1536          */
1537         znode = c->zroot.znode;
1538         while (znode->level > 0) {
1539                 zbr = &znode->zbranch[0];
1540                 child = zbr->znode;
1541                 if (!child) {
1542                         child = ubifs_load_znode(c, zbr, znode, 0);
1543                         if (IS_ERR(child)) {
1544                                 err = PTR_ERR(child);
1545                                 goto out_unlock;
1546                         }
1547                         zbr->znode = child;
1548                 }
1549
1550                 znode = child;
1551         }
1552
1553         /* Iterate over all indexing nodes */
1554         while (1) {
1555                 int idx;
1556
1557                 cond_resched();
1558
1559                 if (znode_cb) {
1560                         err = znode_cb(c, znode, priv);
1561                         if (err) {
1562                                 ubifs_err("znode checking function returned "
1563                                           "error %d", err);
1564                                 dbg_dump_znode(c, znode);
1565                                 goto out_dump;
1566                         }
1567                 }
1568                 if (leaf_cb && znode->level == 0) {
1569                         for (idx = 0; idx < znode->child_cnt; idx++) {
1570                                 zbr = &znode->zbranch[idx];
1571                                 err = leaf_cb(c, zbr, priv);
1572                                 if (err) {
1573                                         ubifs_err("leaf checking function "
1574                                                   "returned error %d, for leaf "
1575                                                   "at LEB %d:%d",
1576                                                   err, zbr->lnum, zbr->offs);
1577                                         goto out_dump;
1578                                 }
1579                         }
1580                 }
1581
1582                 if (!znode->parent)
1583                         break;
1584
1585                 idx = znode->iip + 1;
1586                 znode = znode->parent;
1587                 if (idx < znode->child_cnt) {
1588                         /* Switch to the next index in the parent */
1589                         zbr = &znode->zbranch[idx];
1590                         child = zbr->znode;
1591                         if (!child) {
1592                                 child = ubifs_load_znode(c, zbr, znode, idx);
1593                                 if (IS_ERR(child)) {
1594                                         err = PTR_ERR(child);
1595                                         goto out_unlock;
1596                                 }
1597                                 zbr->znode = child;
1598                         }
1599                         znode = child;
1600                 } else
1601                         /*
1602                          * This is the last child, switch to the parent and
1603                          * continue.
1604                          */
1605                         continue;
1606
1607                 /* Go to the lowest leftmost znode in the new sub-tree */
1608                 while (znode->level > 0) {
1609                         zbr = &znode->zbranch[0];
1610                         child = zbr->znode;
1611                         if (!child) {
1612                                 child = ubifs_load_znode(c, zbr, znode, 0);
1613                                 if (IS_ERR(child)) {
1614                                         err = PTR_ERR(child);
1615                                         goto out_unlock;
1616                                 }
1617                                 zbr->znode = child;
1618                         }
1619                         znode = child;
1620                 }
1621         }
1622
1623         mutex_unlock(&c->tnc_mutex);
1624         return 0;
1625
1626 out_dump:
1627         if (znode->parent)
1628                 zbr = &znode->parent->zbranch[znode->iip];
1629         else
1630                 zbr = &c->zroot;
1631         ubifs_msg("dump of znode at LEB %d:%d", zbr->lnum, zbr->offs);
1632         dbg_dump_znode(c, znode);
1633 out_unlock:
1634         mutex_unlock(&c->tnc_mutex);
1635         return err;
1636 }
1637
1638 /**
1639  * add_size - add znode size to partially calculated index size.
1640  * @c: UBIFS file-system description object
1641  * @znode: znode to add size for
1642  * @priv: partially calculated index size
1643  *
1644  * This is a helper function for 'dbg_check_idx_size()' which is called for
1645  * every indexing node and adds its size to the 'long long' variable pointed to
1646  * by @priv.
1647  */
1648 static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv)
1649 {
1650         long long *idx_size = priv;
1651         int add;
1652
1653         add = ubifs_idx_node_sz(c, znode->child_cnt);
1654         add = ALIGN(add, 8);
1655         *idx_size += add;
1656         return 0;
1657 }
1658
1659 /**
1660  * dbg_check_idx_size - check index size.
1661  * @c: UBIFS file-system description object
1662  * @idx_size: size to check
1663  *
1664  * This function walks the UBIFS index, calculates its size and checks that the
1665  * size is equivalent to @idx_size. Returns zero in case of success and a
1666  * negative error code in case of failure.
1667  */
1668 int dbg_check_idx_size(struct ubifs_info *c, long long idx_size)
1669 {
1670         int err;
1671         long long calc = 0;
1672
1673         if (!(ubifs_chk_flags & UBIFS_CHK_IDX_SZ))
1674                 return 0;
1675
1676         err = dbg_walk_index(c, NULL, add_size, &calc);
1677         if (err) {
1678                 ubifs_err("error %d while walking the index", err);
1679                 return err;
1680         }
1681
1682         if (calc != idx_size) {
1683                 ubifs_err("index size check failed: calculated size is %lld, "
1684                           "should be %lld", calc, idx_size);
1685                 dump_stack();
1686                 return -EINVAL;
1687         }
1688
1689         return 0;
1690 }
1691
1692 /**
1693  * struct fsck_inode - information about an inode used when checking the file-system.
1694  * @rb: link in the RB-tree of inodes
1695  * @inum: inode number
1696  * @mode: inode type, permissions, etc
1697  * @nlink: inode link count
1698  * @xattr_cnt: count of extended attributes
1699  * @references: how many directory/xattr entries refer this inode (calculated
1700  *              while walking the index)
1701  * @calc_cnt: for directory inode count of child directories
1702  * @size: inode size (read from on-flash inode)
1703  * @xattr_sz: summary size of all extended attributes (read from on-flash
1704  *            inode)
1705  * @calc_sz: for directories calculated directory size
1706  * @calc_xcnt: count of extended attributes
1707  * @calc_xsz: calculated summary size of all extended attributes
1708  * @xattr_nms: sum of lengths of all extended attribute names belonging to this
1709  *             inode (read from on-flash inode)
1710  * @calc_xnms: calculated sum of lengths of all extended attribute names
1711  */
1712 struct fsck_inode {
1713         struct rb_node rb;
1714         ino_t inum;
1715         umode_t mode;
1716         unsigned int nlink;
1717         unsigned int xattr_cnt;
1718         int references;
1719         int calc_cnt;
1720         long long size;
1721         unsigned int xattr_sz;
1722         long long calc_sz;
1723         long long calc_xcnt;
1724         long long calc_xsz;
1725         unsigned int xattr_nms;
1726         long long calc_xnms;
1727 };
1728
1729 /**
1730  * struct fsck_data - private FS checking information.
1731  * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects)
1732  */
1733 struct fsck_data {
1734         struct rb_root inodes;
1735 };
1736
1737 /**
1738  * add_inode - add inode information to RB-tree of inodes.
1739  * @c: UBIFS file-system description object
1740  * @fsckd: FS checking information
1741  * @ino: raw UBIFS inode to add
1742  *
1743  * This is a helper function for 'check_leaf()' which adds information about
1744  * inode @ino to the RB-tree of inodes. Returns inode information pointer in
1745  * case of success and a negative error code in case of failure.
1746  */
1747 static struct fsck_inode *add_inode(struct ubifs_info *c,
1748                                     struct fsck_data *fsckd,
1749                                     struct ubifs_ino_node *ino)
1750 {
1751         struct rb_node **p, *parent = NULL;
1752         struct fsck_inode *fscki;
1753         ino_t inum = key_inum_flash(c, &ino->key);
1754
1755         p = &fsckd->inodes.rb_node;
1756         while (*p) {
1757                 parent = *p;
1758                 fscki = rb_entry(parent, struct fsck_inode, rb);
1759                 if (inum < fscki->inum)
1760                         p = &(*p)->rb_left;
1761                 else if (inum > fscki->inum)
1762                         p = &(*p)->rb_right;
1763                 else
1764                         return fscki;
1765         }
1766
1767         if (inum > c->highest_inum) {
1768                 ubifs_err("too high inode number, max. is %lu",
1769                           (unsigned long)c->highest_inum);
1770                 return ERR_PTR(-EINVAL);
1771         }
1772
1773         fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS);
1774         if (!fscki)
1775                 return ERR_PTR(-ENOMEM);
1776
1777         fscki->inum = inum;
1778         fscki->nlink = le32_to_cpu(ino->nlink);
1779         fscki->size = le64_to_cpu(ino->size);
1780         fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
1781         fscki->xattr_sz = le32_to_cpu(ino->xattr_size);
1782         fscki->xattr_nms = le32_to_cpu(ino->xattr_names);
1783         fscki->mode = le32_to_cpu(ino->mode);
1784         if (S_ISDIR(fscki->mode)) {
1785                 fscki->calc_sz = UBIFS_INO_NODE_SZ;
1786                 fscki->calc_cnt = 2;
1787         }
1788         rb_link_node(&fscki->rb, parent, p);
1789         rb_insert_color(&fscki->rb, &fsckd->inodes);
1790         return fscki;
1791 }
1792
1793 /**
1794  * search_inode - search inode in the RB-tree of inodes.
1795  * @fsckd: FS checking information
1796  * @inum: inode number to search
1797  *
1798  * This is a helper function for 'check_leaf()' which searches inode @inum in
1799  * the RB-tree of inodes and returns an inode information pointer or %NULL if
1800  * the inode was not found.
1801  */
1802 static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum)
1803 {
1804         struct rb_node *p;
1805         struct fsck_inode *fscki;
1806
1807         p = fsckd->inodes.rb_node;
1808         while (p) {
1809                 fscki = rb_entry(p, struct fsck_inode, rb);
1810                 if (inum < fscki->inum)
1811                         p = p->rb_left;
1812                 else if (inum > fscki->inum)
1813                         p = p->rb_right;
1814                 else
1815                         return fscki;
1816         }
1817         return NULL;
1818 }
1819
1820 /**
1821  * read_add_inode - read inode node and add it to RB-tree of inodes.
1822  * @c: UBIFS file-system description object
1823  * @fsckd: FS checking information
1824  * @inum: inode number to read
1825  *
1826  * This is a helper function for 'check_leaf()' which finds inode node @inum in
1827  * the index, reads it, and adds it to the RB-tree of inodes. Returns inode
1828  * information pointer in case of success and a negative error code in case of
1829  * failure.
1830  */
1831 static struct fsck_inode *read_add_inode(struct ubifs_info *c,
1832                                          struct fsck_data *fsckd, ino_t inum)
1833 {
1834         int n, err;
1835         union ubifs_key key;
1836         struct ubifs_znode *znode;
1837         struct ubifs_zbranch *zbr;
1838         struct ubifs_ino_node *ino;
1839         struct fsck_inode *fscki;
1840
1841         fscki = search_inode(fsckd, inum);
1842         if (fscki)
1843                 return fscki;
1844
1845         ino_key_init(c, &key, inum);
1846         err = ubifs_lookup_level0(c, &key, &znode, &n);
1847         if (!err) {
1848                 ubifs_err("inode %lu not found in index", (unsigned long)inum);
1849                 return ERR_PTR(-ENOENT);
1850         } else if (err < 0) {
1851                 ubifs_err("error %d while looking up inode %lu",
1852                           err, (unsigned long)inum);
1853                 return ERR_PTR(err);
1854         }
1855
1856         zbr = &znode->zbranch[n];
1857         if (zbr->len < UBIFS_INO_NODE_SZ) {
1858                 ubifs_err("bad node %lu node length %d",
1859                           (unsigned long)inum, zbr->len);
1860                 return ERR_PTR(-EINVAL);
1861         }
1862
1863         ino = kmalloc(zbr->len, GFP_NOFS);
1864         if (!ino)
1865                 return ERR_PTR(-ENOMEM);
1866
1867         err = ubifs_tnc_read_node(c, zbr, ino);
1868         if (err) {
1869                 ubifs_err("cannot read inode node at LEB %d:%d, error %d",
1870                           zbr->lnum, zbr->offs, err);
1871                 kfree(ino);
1872                 return ERR_PTR(err);
1873         }
1874
1875         fscki = add_inode(c, fsckd, ino);
1876         kfree(ino);
1877         if (IS_ERR(fscki)) {
1878                 ubifs_err("error %ld while adding inode %lu node",
1879                           PTR_ERR(fscki), (unsigned long)inum);
1880                 return fscki;
1881         }
1882
1883         return fscki;
1884 }
1885
1886 /**
1887  * check_leaf - check leaf node.
1888  * @c: UBIFS file-system description object
1889  * @zbr: zbranch of the leaf node to check
1890  * @priv: FS checking information
1891  *
1892  * This is a helper function for 'dbg_check_filesystem()' which is called for
1893  * every single leaf node while walking the indexing tree. It checks that the
1894  * leaf node referred from the indexing tree exists, has correct CRC, and does
1895  * some other basic validation. This function is also responsible for building
1896  * an RB-tree of inodes - it adds all inodes into the RB-tree. It also
1897  * calculates reference count, size, etc for each inode in order to later
1898  * compare them to the information stored inside the inodes and detect possible
1899  * inconsistencies. Returns zero in case of success and a negative error code
1900  * in case of failure.
1901  */
1902 static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr,
1903                       void *priv)
1904 {
1905         ino_t inum;
1906         void *node;
1907         struct ubifs_ch *ch;
1908         int err, type = key_type(c, &zbr->key);
1909         struct fsck_inode *fscki;
1910
1911         if (zbr->len < UBIFS_CH_SZ) {
1912                 ubifs_err("bad leaf length %d (LEB %d:%d)",
1913                           zbr->len, zbr->lnum, zbr->offs);
1914                 return -EINVAL;
1915         }
1916
1917         node = kmalloc(zbr->len, GFP_NOFS);
1918         if (!node)
1919                 return -ENOMEM;
1920
1921         err = ubifs_tnc_read_node(c, zbr, node);
1922         if (err) {
1923                 ubifs_err("cannot read leaf node at LEB %d:%d, error %d",
1924                           zbr->lnum, zbr->offs, err);
1925                 goto out_free;
1926         }
1927
1928         /* If this is an inode node, add it to RB-tree of inodes */
1929         if (type == UBIFS_INO_KEY) {
1930                 fscki = add_inode(c, priv, node);
1931                 if (IS_ERR(fscki)) {
1932                         err = PTR_ERR(fscki);
1933                         ubifs_err("error %d while adding inode node", err);
1934                         goto out_dump;
1935                 }
1936                 goto out;
1937         }
1938
1939         if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY &&
1940             type != UBIFS_DATA_KEY) {
1941                 ubifs_err("unexpected node type %d at LEB %d:%d",
1942                           type, zbr->lnum, zbr->offs);
1943                 err = -EINVAL;
1944                 goto out_free;
1945         }
1946
1947         ch = node;
1948         if (le64_to_cpu(ch->sqnum) > c->max_sqnum) {
1949                 ubifs_err("too high sequence number, max. is %llu",
1950                           c->max_sqnum);
1951                 err = -EINVAL;
1952                 goto out_dump;
1953         }
1954
1955         if (type == UBIFS_DATA_KEY) {
1956                 long long blk_offs;
1957                 struct ubifs_data_node *dn = node;
1958
1959                 /*
1960                  * Search the inode node this data node belongs to and insert
1961                  * it to the RB-tree of inodes.
1962                  */
1963                 inum = key_inum_flash(c, &dn->key);
1964                 fscki = read_add_inode(c, priv, inum);
1965                 if (IS_ERR(fscki)) {
1966                         err = PTR_ERR(fscki);
1967                         ubifs_err("error %d while processing data node and "
1968                                   "trying to find inode node %lu",
1969                                   err, (unsigned long)inum);
1970                         goto out_dump;
1971                 }
1972
1973                 /* Make sure the data node is within inode size */
1974                 blk_offs = key_block_flash(c, &dn->key);
1975                 blk_offs <<= UBIFS_BLOCK_SHIFT;
1976                 blk_offs += le32_to_cpu(dn->size);
1977                 if (blk_offs > fscki->size) {
1978                         ubifs_err("data node at LEB %d:%d is not within inode "
1979                                   "size %lld", zbr->lnum, zbr->offs,
1980                                   fscki->size);
1981                         err = -EINVAL;
1982                         goto out_dump;
1983                 }
1984         } else {
1985                 int nlen;
1986                 struct ubifs_dent_node *dent = node;
1987                 struct fsck_inode *fscki1;
1988
1989                 err = ubifs_validate_entry(c, dent);
1990                 if (err)
1991                         goto out_dump;
1992
1993                 /*
1994                  * Search the inode node this entry refers to and the parent
1995                  * inode node and insert them to the RB-tree of inodes.
1996                  */
1997                 inum = le64_to_cpu(dent->inum);
1998                 fscki = read_add_inode(c, priv, inum);
1999                 if (IS_ERR(fscki)) {
2000                         err = PTR_ERR(fscki);
2001                         ubifs_err("error %d while processing entry node and "
2002                                   "trying to find inode node %lu",
2003                                   err, (unsigned long)inum);
2004                         goto out_dump;
2005                 }
2006
2007                 /* Count how many direntries or xentries refers this inode */
2008                 fscki->references += 1;
2009
2010                 inum = key_inum_flash(c, &dent->key);
2011                 fscki1 = read_add_inode(c, priv, inum);
2012                 if (IS_ERR(fscki1)) {
2013                         err = PTR_ERR(fscki1);
2014                         ubifs_err("error %d while processing entry node and "
2015                                   "trying to find parent inode node %lu",
2016                                   err, (unsigned long)inum);
2017                         goto out_dump;
2018                 }
2019
2020                 nlen = le16_to_cpu(dent->nlen);
2021                 if (type == UBIFS_XENT_KEY) {
2022                         fscki1->calc_xcnt += 1;
2023                         fscki1->calc_xsz += CALC_DENT_SIZE(nlen);
2024                         fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size);
2025                         fscki1->calc_xnms += nlen;
2026                 } else {
2027                         fscki1->calc_sz += CALC_DENT_SIZE(nlen);
2028                         if (dent->type == UBIFS_ITYPE_DIR)
2029                                 fscki1->calc_cnt += 1;
2030                 }
2031         }
2032
2033 out:
2034         kfree(node);
2035         return 0;
2036
2037 out_dump:
2038         ubifs_msg("dump of node at LEB %d:%d", zbr->lnum, zbr->offs);
2039         dbg_dump_node(c, node);
2040 out_free:
2041         kfree(node);
2042         return err;
2043 }
2044
2045 /**
2046  * free_inodes - free RB-tree of inodes.
2047  * @fsckd: FS checking information
2048  */
2049 static void free_inodes(struct fsck_data *fsckd)
2050 {
2051         struct rb_node *this = fsckd->inodes.rb_node;
2052         struct fsck_inode *fscki;
2053
2054         while (this) {
2055                 if (this->rb_left)
2056                         this = this->rb_left;
2057                 else if (this->rb_right)
2058                         this = this->rb_right;
2059                 else {
2060                         fscki = rb_entry(this, struct fsck_inode, rb);
2061                         this = rb_parent(this);
2062                         if (this) {
2063                                 if (this->rb_left == &fscki->rb)
2064                                         this->rb_left = NULL;
2065                                 else
2066                                         this->rb_right = NULL;
2067                         }
2068                         kfree(fscki);
2069                 }
2070         }
2071 }
2072
2073 /**
2074  * check_inodes - checks all inodes.
2075  * @c: UBIFS file-system description object
2076  * @fsckd: FS checking information
2077  *
2078  * This is a helper function for 'dbg_check_filesystem()' which walks the
2079  * RB-tree of inodes after the index scan has been finished, and checks that
2080  * inode nlink, size, etc are correct. Returns zero if inodes are fine,
2081  * %-EINVAL if not, and a negative error code in case of failure.
2082  */
2083 static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd)
2084 {
2085         int n, err;
2086         union ubifs_key key;
2087         struct ubifs_znode *znode;
2088         struct ubifs_zbranch *zbr;
2089         struct ubifs_ino_node *ino;
2090         struct fsck_inode *fscki;
2091         struct rb_node *this = rb_first(&fsckd->inodes);
2092
2093         while (this) {
2094                 fscki = rb_entry(this, struct fsck_inode, rb);
2095                 this = rb_next(this);
2096
2097                 if (S_ISDIR(fscki->mode)) {
2098                         /*
2099                          * Directories have to have exactly one reference (they
2100                          * cannot have hardlinks), although root inode is an
2101                          * exception.
2102                          */
2103                         if (fscki->inum != UBIFS_ROOT_INO &&
2104                             fscki->references != 1) {
2105                                 ubifs_err("directory inode %lu has %d "
2106                                           "direntries which refer it, but "
2107                                           "should be 1",
2108                                           (unsigned long)fscki->inum,
2109                                           fscki->references);
2110                                 goto out_dump;
2111                         }
2112                         if (fscki->inum == UBIFS_ROOT_INO &&
2113                             fscki->references != 0) {
2114                                 ubifs_err("root inode %lu has non-zero (%d) "
2115                                           "direntries which refer it",
2116                                           (unsigned long)fscki->inum,
2117                                           fscki->references);
2118                                 goto out_dump;
2119                         }
2120                         if (fscki->calc_sz != fscki->size) {
2121                                 ubifs_err("directory inode %lu size is %lld, "
2122                                           "but calculated size is %lld",
2123                                           (unsigned long)fscki->inum,
2124                                           fscki->size, fscki->calc_sz);
2125                                 goto out_dump;
2126                         }
2127                         if (fscki->calc_cnt != fscki->nlink) {
2128                                 ubifs_err("directory inode %lu nlink is %d, "
2129                                           "but calculated nlink is %d",
2130                                           (unsigned long)fscki->inum,
2131                                           fscki->nlink, fscki->calc_cnt);
2132                                 goto out_dump;
2133                         }
2134                 } else {
2135                         if (fscki->references != fscki->nlink) {
2136                                 ubifs_err("inode %lu nlink is %d, but "
2137                                           "calculated nlink is %d",
2138                                           (unsigned long)fscki->inum,
2139                                           fscki->nlink, fscki->references);
2140                                 goto out_dump;
2141                         }
2142                 }
2143                 if (fscki->xattr_sz != fscki->calc_xsz) {
2144                         ubifs_err("inode %lu has xattr size %u, but "
2145                                   "calculated size is %lld",
2146                                   (unsigned long)fscki->inum, fscki->xattr_sz,
2147                                   fscki->calc_xsz);
2148                         goto out_dump;
2149                 }
2150                 if (fscki->xattr_cnt != fscki->calc_xcnt) {
2151                         ubifs_err("inode %lu has %u xattrs, but "
2152                                   "calculated count is %lld",
2153                                   (unsigned long)fscki->inum,
2154                                   fscki->xattr_cnt, fscki->calc_xcnt);
2155                         goto out_dump;
2156                 }
2157                 if (fscki->xattr_nms != fscki->calc_xnms) {
2158                         ubifs_err("inode %lu has xattr names' size %u, but "
2159                                   "calculated names' size is %lld",
2160                                   (unsigned long)fscki->inum, fscki->xattr_nms,
2161                                   fscki->calc_xnms);
2162                         goto out_dump;
2163                 }
2164         }
2165
2166         return 0;
2167
2168 out_dump:
2169         /* Read the bad inode and dump it */
2170         ino_key_init(c, &key, fscki->inum);
2171         err = ubifs_lookup_level0(c, &key, &znode, &n);
2172         if (!err) {
2173                 ubifs_err("inode %lu not found in index",
2174                           (unsigned long)fscki->inum);
2175                 return -ENOENT;
2176         } else if (err < 0) {
2177                 ubifs_err("error %d while looking up inode %lu",
2178                           err, (unsigned long)fscki->inum);
2179                 return err;
2180         }
2181
2182         zbr = &znode->zbranch[n];
2183         ino = kmalloc(zbr->len, GFP_NOFS);
2184         if (!ino)
2185                 return -ENOMEM;
2186
2187         err = ubifs_tnc_read_node(c, zbr, ino);
2188         if (err) {
2189                 ubifs_err("cannot read inode node at LEB %d:%d, error %d",
2190                           zbr->lnum, zbr->offs, err);
2191                 kfree(ino);
2192                 return err;
2193         }
2194
2195         ubifs_msg("dump of the inode %lu sitting in LEB %d:%d",
2196                   (unsigned long)fscki->inum, zbr->lnum, zbr->offs);
2197         dbg_dump_node(c, ino);
2198         kfree(ino);
2199         return -EINVAL;
2200 }
2201
2202 /**
2203  * dbg_check_filesystem - check the file-system.
2204  * @c: UBIFS file-system description object
2205  *
2206  * This function checks the file system, namely:
2207  * o makes sure that all leaf nodes exist and their CRCs are correct;
2208  * o makes sure inode nlink, size, xattr size/count are correct (for all
2209  *   inodes).
2210  *
2211  * The function reads whole indexing tree and all nodes, so it is pretty
2212  * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if
2213  * not, and a negative error code in case of failure.
2214  */
2215 int dbg_check_filesystem(struct ubifs_info *c)
2216 {
2217         int err;
2218         struct fsck_data fsckd;
2219
2220         if (!(ubifs_chk_flags & UBIFS_CHK_FS))
2221                 return 0;
2222
2223         fsckd.inodes = RB_ROOT;
2224         err = dbg_walk_index(c, check_leaf, NULL, &fsckd);
2225         if (err)
2226                 goto out_free;
2227
2228         err = check_inodes(c, &fsckd);
2229         if (err)
2230                 goto out_free;
2231
2232         free_inodes(&fsckd);
2233         return 0;
2234
2235 out_free:
2236         ubifs_err("file-system check failed with error %d", err);
2237         dump_stack();
2238         free_inodes(&fsckd);
2239         return err;
2240 }
2241
2242 /**
2243  * dbg_check_data_nodes_order - check that list of data nodes is sorted.
2244  * @c: UBIFS file-system description object
2245  * @head: the list of nodes ('struct ubifs_scan_node' objects)
2246  *
2247  * This function returns zero if the list of data nodes is sorted correctly,
2248  * and %-EINVAL if not.
2249  */
2250 int dbg_check_data_nodes_order(struct ubifs_info *c, struct list_head *head)
2251 {
2252         struct list_head *cur;
2253         struct ubifs_scan_node *sa, *sb;
2254
2255         if (!(ubifs_chk_flags & UBIFS_CHK_GEN))
2256                 return 0;
2257
2258         for (cur = head->next; cur->next != head; cur = cur->next) {
2259                 ino_t inuma, inumb;
2260                 uint32_t blka, blkb;
2261
2262                 cond_resched();
2263                 sa = container_of(cur, struct ubifs_scan_node, list);
2264                 sb = container_of(cur->next, struct ubifs_scan_node, list);
2265
2266                 if (sa->type != UBIFS_DATA_NODE) {
2267                         ubifs_err("bad node type %d", sa->type);
2268                         dbg_dump_node(c, sa->node);
2269                         return -EINVAL;
2270                 }
2271                 if (sb->type != UBIFS_DATA_NODE) {
2272                         ubifs_err("bad node type %d", sb->type);
2273                         dbg_dump_node(c, sb->node);
2274                         return -EINVAL;
2275                 }
2276
2277                 inuma = key_inum(c, &sa->key);
2278                 inumb = key_inum(c, &sb->key);
2279
2280                 if (inuma < inumb)
2281                         continue;
2282                 if (inuma > inumb) {
2283                         ubifs_err("larger inum %lu goes before inum %lu",
2284                                   (unsigned long)inuma, (unsigned long)inumb);
2285                         goto error_dump;
2286                 }
2287
2288                 blka = key_block(c, &sa->key);
2289                 blkb = key_block(c, &sb->key);
2290
2291                 if (blka > blkb) {
2292                         ubifs_err("larger block %u goes before %u", blka, blkb);
2293                         goto error_dump;
2294                 }
2295                 if (blka == blkb) {
2296                         ubifs_err("two data nodes for the same block");
2297                         goto error_dump;
2298                 }
2299         }
2300
2301         return 0;
2302
2303 error_dump:
2304         dbg_dump_node(c, sa->node);
2305         dbg_dump_node(c, sb->node);
2306         return -EINVAL;
2307 }
2308
2309 /**
2310  * dbg_check_nondata_nodes_order - check that list of data nodes is sorted.
2311  * @c: UBIFS file-system description object
2312  * @head: the list of nodes ('struct ubifs_scan_node' objects)
2313  *
2314  * This function returns zero if the list of non-data nodes is sorted correctly,
2315  * and %-EINVAL if not.
2316  */
2317 int dbg_check_nondata_nodes_order(struct ubifs_info *c, struct list_head *head)
2318 {
2319         struct list_head *cur;
2320         struct ubifs_scan_node *sa, *sb;
2321
2322         if (!(ubifs_chk_flags & UBIFS_CHK_GEN))
2323                 return 0;
2324
2325         for (cur = head->next; cur->next != head; cur = cur->next) {
2326                 ino_t inuma, inumb;
2327                 uint32_t hasha, hashb;
2328
2329                 cond_resched();
2330                 sa = container_of(cur, struct ubifs_scan_node, list);
2331                 sb = container_of(cur->next, struct ubifs_scan_node, list);
2332
2333                 if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2334                     sa->type != UBIFS_XENT_NODE) {
2335                         ubifs_err("bad node type %d", sa->type);
2336                         dbg_dump_node(c, sa->node);
2337                         return -EINVAL;
2338                 }
2339                 if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2340                     sa->type != UBIFS_XENT_NODE) {
2341                         ubifs_err("bad node type %d", sb->type);
2342                         dbg_dump_node(c, sb->node);
2343                         return -EINVAL;
2344                 }
2345
2346                 if (sa->type != UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2347                         ubifs_err("non-inode node goes before inode node");
2348                         goto error_dump;
2349                 }
2350
2351                 if (sa->type == UBIFS_INO_NODE && sb->type != UBIFS_INO_NODE)
2352                         continue;
2353
2354                 if (sa->type == UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2355                         /* Inode nodes are sorted in descending size order */
2356                         if (sa->len < sb->len) {
2357                                 ubifs_err("smaller inode node goes first");
2358                                 goto error_dump;
2359                         }
2360                         continue;
2361                 }
2362
2363                 /*
2364                  * This is either a dentry or xentry, which should be sorted in
2365                  * ascending (parent ino, hash) order.
2366                  */
2367                 inuma = key_inum(c, &sa->key);
2368                 inumb = key_inum(c, &sb->key);
2369
2370                 if (inuma < inumb)
2371                         continue;
2372                 if (inuma > inumb) {
2373                         ubifs_err("larger inum %lu goes before inum %lu",
2374                                   (unsigned long)inuma, (unsigned long)inumb);
2375                         goto error_dump;
2376                 }
2377
2378                 hasha = key_block(c, &sa->key);
2379                 hashb = key_block(c, &sb->key);
2380
2381                 if (hasha > hashb) {
2382                         ubifs_err("larger hash %u goes before %u", hasha, hashb);
2383                         goto error_dump;
2384                 }
2385         }
2386
2387         return 0;
2388
2389 error_dump:
2390         ubifs_msg("dumping first node");
2391         dbg_dump_node(c, sa->node);
2392         ubifs_msg("dumping second node");
2393         dbg_dump_node(c, sb->node);
2394         return -EINVAL;
2395         return 0;
2396 }
2397
2398 static int invocation_cnt;
2399
2400 int dbg_force_in_the_gaps(void)
2401 {
2402         if (!dbg_force_in_the_gaps_enabled)
2403                 return 0;
2404         /* Force in-the-gaps every 8th commit */
2405         return !((invocation_cnt++) & 0x7);
2406 }
2407
2408 /* Failure mode for recovery testing */
2409
2410 #define chance(n, d) (simple_rand() <= (n) * 32768LL / (d))
2411
2412 struct failure_mode_info {
2413         struct list_head list;
2414         struct ubifs_info *c;
2415 };
2416
2417 static LIST_HEAD(fmi_list);
2418 static DEFINE_SPINLOCK(fmi_lock);
2419
2420 static unsigned int next;
2421
2422 static int simple_rand(void)
2423 {
2424         if (next == 0)
2425                 next = current->pid;
2426         next = next * 1103515245 + 12345;
2427         return (next >> 16) & 32767;
2428 }
2429
2430 static void failure_mode_init(struct ubifs_info *c)
2431 {
2432         struct failure_mode_info *fmi;
2433
2434         fmi = kmalloc(sizeof(struct failure_mode_info), GFP_NOFS);
2435         if (!fmi) {
2436                 ubifs_err("Failed to register failure mode - no memory");
2437                 return;
2438         }
2439         fmi->c = c;
2440         spin_lock(&fmi_lock);
2441         list_add_tail(&fmi->list, &fmi_list);
2442         spin_unlock(&fmi_lock);
2443 }
2444
2445 static void failure_mode_exit(struct ubifs_info *c)
2446 {
2447         struct failure_mode_info *fmi, *tmp;
2448
2449         spin_lock(&fmi_lock);
2450         list_for_each_entry_safe(fmi, tmp, &fmi_list, list)
2451                 if (fmi->c == c) {
2452                         list_del(&fmi->list);
2453                         kfree(fmi);
2454                 }
2455         spin_unlock(&fmi_lock);
2456 }
2457
2458 static struct ubifs_info *dbg_find_info(struct ubi_volume_desc *desc)
2459 {
2460         struct failure_mode_info *fmi;
2461
2462         spin_lock(&fmi_lock);
2463         list_for_each_entry(fmi, &fmi_list, list)
2464                 if (fmi->c->ubi == desc) {
2465                         struct ubifs_info *c = fmi->c;
2466
2467                         spin_unlock(&fmi_lock);
2468                         return c;
2469                 }
2470         spin_unlock(&fmi_lock);
2471         return NULL;
2472 }
2473
2474 static int in_failure_mode(struct ubi_volume_desc *desc)
2475 {
2476         struct ubifs_info *c = dbg_find_info(desc);
2477
2478         if (c && dbg_failure_mode)
2479                 return c->dbg->failure_mode;
2480         return 0;
2481 }
2482
2483 static int do_fail(struct ubi_volume_desc *desc, int lnum, int write)
2484 {
2485         struct ubifs_info *c = dbg_find_info(desc);
2486         struct ubifs_debug_info *d;
2487
2488         if (!c || !dbg_failure_mode)
2489                 return 0;
2490         d = c->dbg;
2491         if (d->failure_mode)
2492                 return 1;
2493         if (!d->fail_cnt) {
2494                 /* First call - decide delay to failure */
2495                 if (chance(1, 2)) {
2496                         unsigned int delay = 1 << (simple_rand() >> 11);
2497
2498                         if (chance(1, 2)) {
2499                                 d->fail_delay = 1;
2500                                 d->fail_timeout = jiffies +
2501                                                   msecs_to_jiffies(delay);
2502                                 dbg_rcvry("failing after %ums", delay);
2503                         } else {
2504                                 d->fail_delay = 2;
2505                                 d->fail_cnt_max = delay;
2506                                 dbg_rcvry("failing after %u calls", delay);
2507                         }
2508                 }
2509                 d->fail_cnt += 1;
2510         }
2511         /* Determine if failure delay has expired */
2512         if (d->fail_delay == 1) {
2513                 if (time_before(jiffies, d->fail_timeout))
2514                         return 0;
2515         } else if (d->fail_delay == 2)
2516                 if (d->fail_cnt++ < d->fail_cnt_max)
2517                         return 0;
2518         if (lnum == UBIFS_SB_LNUM) {
2519                 if (write) {
2520                         if (chance(1, 2))
2521                                 return 0;
2522                 } else if (chance(19, 20))
2523                         return 0;
2524                 dbg_rcvry("failing in super block LEB %d", lnum);
2525         } else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) {
2526                 if (chance(19, 20))
2527                         return 0;
2528                 dbg_rcvry("failing in master LEB %d", lnum);
2529         } else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) {
2530                 if (write) {
2531                         if (chance(99, 100))
2532                                 return 0;
2533                 } else if (chance(399, 400))
2534                         return 0;
2535                 dbg_rcvry("failing in log LEB %d", lnum);
2536         } else if (lnum >= c->lpt_first && lnum <= c->lpt_last) {
2537                 if (write) {
2538                         if (chance(7, 8))
2539                                 return 0;
2540                 } else if (chance(19, 20))
2541                         return 0;
2542                 dbg_rcvry("failing in LPT LEB %d", lnum);
2543         } else if (lnum >= c->orph_first && lnum <= c->orph_last) {
2544                 if (write) {
2545                         if (chance(1, 2))
2546                                 return 0;
2547                 } else if (chance(9, 10))
2548                         return 0;
2549                 dbg_rcvry("failing in orphan LEB %d", lnum);
2550         } else if (lnum == c->ihead_lnum) {
2551                 if (chance(99, 100))
2552                         return 0;
2553                 dbg_rcvry("failing in index head LEB %d", lnum);
2554         } else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) {
2555                 if (chance(9, 10))
2556                         return 0;
2557                 dbg_rcvry("failing in GC head LEB %d", lnum);
2558         } else if (write && !RB_EMPTY_ROOT(&c->buds) &&
2559                    !ubifs_search_bud(c, lnum)) {
2560                 if (chance(19, 20))
2561                         return 0;
2562                 dbg_rcvry("failing in non-bud LEB %d", lnum);
2563         } else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND ||
2564                    c->cmt_state == COMMIT_RUNNING_REQUIRED) {
2565                 if (chance(999, 1000))
2566                         return 0;
2567                 dbg_rcvry("failing in bud LEB %d commit running", lnum);
2568         } else {
2569                 if (chance(9999, 10000))
2570                         return 0;
2571                 dbg_rcvry("failing in bud LEB %d commit not running", lnum);
2572         }
2573         ubifs_err("*** SETTING FAILURE MODE ON (LEB %d) ***", lnum);
2574         d->failure_mode = 1;
2575         dump_stack();
2576         return 1;
2577 }
2578
2579 static void cut_data(const void *buf, int len)
2580 {
2581         int flen, i;
2582         unsigned char *p = (void *)buf;
2583
2584         flen = (len * (long long)simple_rand()) >> 15;
2585         for (i = flen; i < len; i++)
2586                 p[i] = 0xff;
2587 }
2588
2589 int dbg_leb_read(struct ubi_volume_desc *desc, int lnum, char *buf, int offset,
2590                  int len, int check)
2591 {
2592         if (in_failure_mode(desc))
2593                 return -EIO;
2594         return ubi_leb_read(desc, lnum, buf, offset, len, check);
2595 }
2596
2597 int dbg_leb_write(struct ubi_volume_desc *desc, int lnum, const void *buf,
2598                   int offset, int len, int dtype)
2599 {
2600         int err, failing;
2601
2602         if (in_failure_mode(desc))
2603                 return -EIO;
2604         failing = do_fail(desc, lnum, 1);
2605         if (failing)
2606                 cut_data(buf, len);
2607         err = ubi_leb_write(desc, lnum, buf, offset, len, dtype);
2608         if (err)
2609                 return err;
2610         if (failing)
2611                 return -EIO;
2612         return 0;
2613 }
2614
2615 int dbg_leb_change(struct ubi_volume_desc *desc, int lnum, const void *buf,
2616                    int len, int dtype)
2617 {
2618         int err;
2619
2620         if (do_fail(desc, lnum, 1))
2621                 return -EIO;
2622         err = ubi_leb_change(desc, lnum, buf, len, dtype);
2623         if (err)
2624                 return err;
2625         if (do_fail(desc, lnum, 1))
2626                 return -EIO;
2627         return 0;
2628 }
2629
2630 int dbg_leb_erase(struct ubi_volume_desc *desc, int lnum)
2631 {
2632         int err;
2633
2634         if (do_fail(desc, lnum, 0))
2635                 return -EIO;
2636         err = ubi_leb_erase(desc, lnum);
2637         if (err)
2638                 return err;
2639         if (do_fail(desc, lnum, 0))
2640                 return -EIO;
2641         return 0;
2642 }
2643
2644 int dbg_leb_unmap(struct ubi_volume_desc *desc, int lnum)
2645 {
2646         int err;
2647
2648         if (do_fail(desc, lnum, 0))
2649                 return -EIO;
2650         err = ubi_leb_unmap(desc, lnum);
2651         if (err)
2652                 return err;
2653         if (do_fail(desc, lnum, 0))
2654                 return -EIO;
2655         return 0;
2656 }
2657
2658 int dbg_is_mapped(struct ubi_volume_desc *desc, int lnum)
2659 {
2660         if (in_failure_mode(desc))
2661                 return -EIO;
2662         return ubi_is_mapped(desc, lnum);
2663 }
2664
2665 int dbg_leb_map(struct ubi_volume_desc *desc, int lnum, int dtype)
2666 {
2667         int err;
2668
2669         if (do_fail(desc, lnum, 0))
2670                 return -EIO;
2671         err = ubi_leb_map(desc, lnum, dtype);
2672         if (err)
2673                 return err;
2674         if (do_fail(desc, lnum, 0))
2675                 return -EIO;
2676         return 0;
2677 }
2678
2679 /**
2680  * ubifs_debugging_init - initialize UBIFS debugging.
2681  * @c: UBIFS file-system description object
2682  *
2683  * This function initializes debugging-related data for the file system.
2684  * Returns zero in case of success and a negative error code in case of
2685  * failure.
2686  */
2687 int ubifs_debugging_init(struct ubifs_info *c)
2688 {
2689         c->dbg = kzalloc(sizeof(struct ubifs_debug_info), GFP_KERNEL);
2690         if (!c->dbg)
2691                 return -ENOMEM;
2692
2693         c->dbg->buf = vmalloc(c->leb_size);
2694         if (!c->dbg->buf)
2695                 goto out;
2696
2697         failure_mode_init(c);
2698         return 0;
2699
2700 out:
2701         kfree(c->dbg);
2702         return -ENOMEM;
2703 }
2704
2705 /**
2706  * ubifs_debugging_exit - free debugging data.
2707  * @c: UBIFS file-system description object
2708  */
2709 void ubifs_debugging_exit(struct ubifs_info *c)
2710 {
2711         failure_mode_exit(c);
2712         vfree(c->dbg->buf);
2713         kfree(c->dbg);
2714 }
2715
2716 /*
2717  * Root directory for UBIFS stuff in debugfs. Contains sub-directories which
2718  * contain the stuff specific to particular file-system mounts.
2719  */
2720 static struct dentry *dfs_rootdir;
2721
2722 /**
2723  * dbg_debugfs_init - initialize debugfs file-system.
2724  *
2725  * UBIFS uses debugfs file-system to expose various debugging knobs to
2726  * user-space. This function creates "ubifs" directory in the debugfs
2727  * file-system. Returns zero in case of success and a negative error code in
2728  * case of failure.
2729  */
2730 int dbg_debugfs_init(void)
2731 {
2732         dfs_rootdir = debugfs_create_dir("ubifs", NULL);
2733         if (IS_ERR(dfs_rootdir)) {
2734                 int err = PTR_ERR(dfs_rootdir);
2735                 ubifs_err("cannot create \"ubifs\" debugfs directory, "
2736                           "error %d\n", err);
2737                 return err;
2738         }
2739
2740         return 0;
2741 }
2742
2743 /**
2744  * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system.
2745  */
2746 void dbg_debugfs_exit(void)
2747 {
2748         debugfs_remove(dfs_rootdir);
2749 }
2750
2751 static int open_debugfs_file(struct inode *inode, struct file *file)
2752 {
2753         file->private_data = inode->i_private;
2754         return 0;
2755 }
2756
2757 static ssize_t write_debugfs_file(struct file *file, const char __user *buf,
2758                                   size_t count, loff_t *ppos)
2759 {
2760         struct ubifs_info *c = file->private_data;
2761         struct ubifs_debug_info *d = c->dbg;
2762
2763         if (file->f_path.dentry == d->dfs_dump_lprops)
2764                 dbg_dump_lprops(c);
2765         else if (file->f_path.dentry == d->dfs_dump_budg) {
2766                 spin_lock(&c->space_lock);
2767                 dbg_dump_budg(c);
2768                 spin_unlock(&c->space_lock);
2769         } else if (file->f_path.dentry == d->dfs_dump_tnc) {
2770                 mutex_lock(&c->tnc_mutex);
2771                 dbg_dump_tnc(c);
2772                 mutex_unlock(&c->tnc_mutex);
2773         } else
2774                 return -EINVAL;
2775
2776         *ppos += count;
2777         return count;
2778 }
2779
2780 static const struct file_operations dfs_fops = {
2781         .open = open_debugfs_file,
2782         .write = write_debugfs_file,
2783         .owner = THIS_MODULE,
2784         .llseek = default_llseek,
2785 };
2786
2787 /**
2788  * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance.
2789  * @c: UBIFS file-system description object
2790  *
2791  * This function creates all debugfs files for this instance of UBIFS. Returns
2792  * zero in case of success and a negative error code in case of failure.
2793  *
2794  * Note, the only reason we have not merged this function with the
2795  * 'ubifs_debugging_init()' function is because it is better to initialize
2796  * debugfs interfaces at the very end of the mount process, and remove them at
2797  * the very beginning of the mount process.
2798  */
2799 int dbg_debugfs_init_fs(struct ubifs_info *c)
2800 {
2801         int err;
2802         const char *fname;
2803         struct dentry *dent;
2804         struct ubifs_debug_info *d = c->dbg;
2805
2806         sprintf(d->dfs_dir_name, "ubi%d_%d", c->vi.ubi_num, c->vi.vol_id);
2807         d->dfs_dir = debugfs_create_dir(d->dfs_dir_name, dfs_rootdir);
2808         if (IS_ERR(d->dfs_dir)) {
2809                 err = PTR_ERR(d->dfs_dir);
2810                 ubifs_err("cannot create \"%s\" debugfs directory, error %d\n",
2811                           d->dfs_dir_name, err);
2812                 goto out;
2813         }
2814
2815         fname = "dump_lprops";
2816         dent = debugfs_create_file(fname, S_IWUGO, d->dfs_dir, c, &dfs_fops);
2817         if (IS_ERR(dent))
2818                 goto out_remove;
2819         d->dfs_dump_lprops = dent;
2820
2821         fname = "dump_budg";
2822         dent = debugfs_create_file(fname, S_IWUGO, d->dfs_dir, c, &dfs_fops);
2823         if (IS_ERR(dent))
2824                 goto out_remove;
2825         d->dfs_dump_budg = dent;
2826
2827         fname = "dump_tnc";
2828         dent = debugfs_create_file(fname, S_IWUGO, d->dfs_dir, c, &dfs_fops);
2829         if (IS_ERR(dent))
2830                 goto out_remove;
2831         d->dfs_dump_tnc = dent;
2832
2833         return 0;
2834
2835 out_remove:
2836         err = PTR_ERR(dent);
2837         ubifs_err("cannot create \"%s\" debugfs directory, error %d\n",
2838                   fname, err);
2839         debugfs_remove_recursive(d->dfs_dir);
2840 out:
2841         return err;
2842 }
2843
2844 /**
2845  * dbg_debugfs_exit_fs - remove all debugfs files.
2846  * @c: UBIFS file-system description object
2847  */
2848 void dbg_debugfs_exit_fs(struct ubifs_info *c)
2849 {
2850         debugfs_remove_recursive(c->dbg->dfs_dir);
2851 }
2852
2853 #endif /* CONFIG_UBIFS_FS_DEBUG */