1/2 splice: dont steal
[pandora-kernel.git] / fs / splice.c
1 /*
2  * "splice": joining two ropes together by interweaving their strands.
3  *
4  * This is the "extended pipe" functionality, where a pipe is used as
5  * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6  * buffer that you can use to transfer data from one end to the other.
7  *
8  * The traditional unix read/write is extended with a "splice()" operation
9  * that transfers data buffers to or from a pipe buffer.
10  *
11  * Named by Larry McVoy, original implementation from Linus, extended by
12  * Jens to support splicing to files, network, direct splicing, etc and
13  * fixing lots of bugs.
14  *
15  * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16  * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17  * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
18  *
19  */
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/pagemap.h>
23 #include <linux/pipe_fs_i.h>
24 #include <linux/mm_inline.h>
25 #include <linux/swap.h>
26 #include <linux/writeback.h>
27 #include <linux/buffer_head.h>
28 #include <linux/module.h>
29 #include <linux/syscalls.h>
30 #include <linux/uio.h>
31
32 struct partial_page {
33         unsigned int offset;
34         unsigned int len;
35 };
36
37 /*
38  * Passed to splice_to_pipe
39  */
40 struct splice_pipe_desc {
41         struct page **pages;            /* page map */
42         struct partial_page *partial;   /* pages[] may not be contig */
43         int nr_pages;                   /* number of pages in map */
44         unsigned int flags;             /* splice flags */
45         const struct pipe_buf_operations *ops;/* ops associated with output pipe */
46 };
47
48 /*
49  * Attempt to steal a page from a pipe buffer. This should perhaps go into
50  * a vm helper function, it's already simplified quite a bit by the
51  * addition of remove_mapping(). If success is returned, the caller may
52  * attempt to reuse this page for another destination.
53  */
54 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
55                                      struct pipe_buffer *buf)
56 {
57         struct page *page = buf->page;
58         struct address_space *mapping;
59
60         lock_page(page);
61
62         mapping = page_mapping(page);
63         if (mapping) {
64                 WARN_ON(!PageUptodate(page));
65
66                 /*
67                  * At least for ext2 with nobh option, we need to wait on
68                  * writeback completing on this page, since we'll remove it
69                  * from the pagecache.  Otherwise truncate wont wait on the
70                  * page, allowing the disk blocks to be reused by someone else
71                  * before we actually wrote our data to them. fs corruption
72                  * ensues.
73                  */
74                 wait_on_page_writeback(page);
75
76                 if (PagePrivate(page))
77                         try_to_release_page(page, GFP_KERNEL);
78
79                 /*
80                  * If we succeeded in removing the mapping, set LRU flag
81                  * and return good.
82                  */
83                 if (remove_mapping(mapping, page)) {
84                         buf->flags |= PIPE_BUF_FLAG_LRU;
85                         return 0;
86                 }
87         }
88
89         /*
90          * Raced with truncate or failed to remove page from current
91          * address space, unlock and return failure.
92          */
93         unlock_page(page);
94         return 1;
95 }
96
97 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
98                                         struct pipe_buffer *buf)
99 {
100         page_cache_release(buf->page);
101         buf->flags &= ~PIPE_BUF_FLAG_LRU;
102 }
103
104 static int page_cache_pipe_buf_pin(struct pipe_inode_info *pipe,
105                                    struct pipe_buffer *buf)
106 {
107         struct page *page = buf->page;
108         int err;
109
110         if (!PageUptodate(page)) {
111                 lock_page(page);
112
113                 /*
114                  * Page got truncated/unhashed. This will cause a 0-byte
115                  * splice, if this is the first page.
116                  */
117                 if (!page->mapping) {
118                         err = -ENODATA;
119                         goto error;
120                 }
121
122                 /*
123                  * Uh oh, read-error from disk.
124                  */
125                 if (!PageUptodate(page)) {
126                         err = -EIO;
127                         goto error;
128                 }
129
130                 /*
131                  * Page is ok afterall, we are done.
132                  */
133                 unlock_page(page);
134         }
135
136         return 0;
137 error:
138         unlock_page(page);
139         return err;
140 }
141
142 static const struct pipe_buf_operations page_cache_pipe_buf_ops = {
143         .can_merge = 0,
144         .map = generic_pipe_buf_map,
145         .unmap = generic_pipe_buf_unmap,
146         .pin = page_cache_pipe_buf_pin,
147         .release = page_cache_pipe_buf_release,
148         .steal = page_cache_pipe_buf_steal,
149         .get = generic_pipe_buf_get,
150 };
151
152 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
153                                     struct pipe_buffer *buf)
154 {
155         if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
156                 return 1;
157
158         buf->flags |= PIPE_BUF_FLAG_LRU;
159         return generic_pipe_buf_steal(pipe, buf);
160 }
161
162 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
163         .can_merge = 0,
164         .map = generic_pipe_buf_map,
165         .unmap = generic_pipe_buf_unmap,
166         .pin = generic_pipe_buf_pin,
167         .release = page_cache_pipe_buf_release,
168         .steal = user_page_pipe_buf_steal,
169         .get = generic_pipe_buf_get,
170 };
171
172 /*
173  * Pipe output worker. This sets up our pipe format with the page cache
174  * pipe buffer operations. Otherwise very similar to the regular pipe_writev().
175  */
176 static ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
177                               struct splice_pipe_desc *spd)
178 {
179         int ret, do_wakeup, page_nr;
180
181         ret = 0;
182         do_wakeup = 0;
183         page_nr = 0;
184
185         if (pipe->inode)
186                 mutex_lock(&pipe->inode->i_mutex);
187
188         for (;;) {
189                 if (!pipe->readers) {
190                         send_sig(SIGPIPE, current, 0);
191                         if (!ret)
192                                 ret = -EPIPE;
193                         break;
194                 }
195
196                 if (pipe->nrbufs < PIPE_BUFFERS) {
197                         int newbuf = (pipe->curbuf + pipe->nrbufs) & (PIPE_BUFFERS - 1);
198                         struct pipe_buffer *buf = pipe->bufs + newbuf;
199
200                         buf->page = spd->pages[page_nr];
201                         buf->offset = spd->partial[page_nr].offset;
202                         buf->len = spd->partial[page_nr].len;
203                         buf->ops = spd->ops;
204                         if (spd->flags & SPLICE_F_GIFT)
205                                 buf->flags |= PIPE_BUF_FLAG_GIFT;
206
207                         pipe->nrbufs++;
208                         page_nr++;
209                         ret += buf->len;
210
211                         if (pipe->inode)
212                                 do_wakeup = 1;
213
214                         if (!--spd->nr_pages)
215                                 break;
216                         if (pipe->nrbufs < PIPE_BUFFERS)
217                                 continue;
218
219                         break;
220                 }
221
222                 if (spd->flags & SPLICE_F_NONBLOCK) {
223                         if (!ret)
224                                 ret = -EAGAIN;
225                         break;
226                 }
227
228                 if (signal_pending(current)) {
229                         if (!ret)
230                                 ret = -ERESTARTSYS;
231                         break;
232                 }
233
234                 if (do_wakeup) {
235                         smp_mb();
236                         if (waitqueue_active(&pipe->wait))
237                                 wake_up_interruptible_sync(&pipe->wait);
238                         kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
239                         do_wakeup = 0;
240                 }
241
242                 pipe->waiting_writers++;
243                 pipe_wait(pipe);
244                 pipe->waiting_writers--;
245         }
246
247         if (pipe->inode)
248                 mutex_unlock(&pipe->inode->i_mutex);
249
250         if (do_wakeup) {
251                 smp_mb();
252                 if (waitqueue_active(&pipe->wait))
253                         wake_up_interruptible(&pipe->wait);
254                 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
255         }
256
257         while (page_nr < spd->nr_pages)
258                 page_cache_release(spd->pages[page_nr++]);
259
260         return ret;
261 }
262
263 static int
264 __generic_file_splice_read(struct file *in, loff_t *ppos,
265                            struct pipe_inode_info *pipe, size_t len,
266                            unsigned int flags)
267 {
268         struct address_space *mapping = in->f_mapping;
269         unsigned int loff, nr_pages;
270         struct page *pages[PIPE_BUFFERS];
271         struct partial_page partial[PIPE_BUFFERS];
272         struct page *page;
273         pgoff_t index, end_index;
274         loff_t isize;
275         size_t total_len;
276         int error, page_nr;
277         struct splice_pipe_desc spd = {
278                 .pages = pages,
279                 .partial = partial,
280                 .flags = flags,
281                 .ops = &page_cache_pipe_buf_ops,
282         };
283
284         index = *ppos >> PAGE_CACHE_SHIFT;
285         loff = *ppos & ~PAGE_CACHE_MASK;
286         nr_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
287
288         if (nr_pages > PIPE_BUFFERS)
289                 nr_pages = PIPE_BUFFERS;
290
291         /*
292          * Initiate read-ahead on this page range. however, don't call into
293          * read-ahead if this is a non-zero offset (we are likely doing small
294          * chunk splice and the page is already there) for a single page.
295          */
296         if (!loff || nr_pages > 1)
297                 page_cache_readahead(mapping, &in->f_ra, in, index, nr_pages);
298
299         /*
300          * Now fill in the holes:
301          */
302         error = 0;
303         total_len = 0;
304
305         /*
306          * Lookup the (hopefully) full range of pages we need.
307          */
308         spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, pages);
309
310         /*
311          * If find_get_pages_contig() returned fewer pages than we needed,
312          * allocate the rest.
313          */
314         index += spd.nr_pages;
315         while (spd.nr_pages < nr_pages) {
316                 /*
317                  * Page could be there, find_get_pages_contig() breaks on
318                  * the first hole.
319                  */
320                 page = find_get_page(mapping, index);
321                 if (!page) {
322                         /*
323                          * Make sure the read-ahead engine is notified
324                          * about this failure.
325                          */
326                         handle_ra_miss(mapping, &in->f_ra, index);
327
328                         /*
329                          * page didn't exist, allocate one.
330                          */
331                         page = page_cache_alloc_cold(mapping);
332                         if (!page)
333                                 break;
334
335                         error = add_to_page_cache_lru(page, mapping, index,
336                                               GFP_KERNEL);
337                         if (unlikely(error)) {
338                                 page_cache_release(page);
339                                 if (error == -EEXIST)
340                                         continue;
341                                 break;
342                         }
343                         /*
344                          * add_to_page_cache() locks the page, unlock it
345                          * to avoid convoluting the logic below even more.
346                          */
347                         unlock_page(page);
348                 }
349
350                 pages[spd.nr_pages++] = page;
351                 index++;
352         }
353
354         /*
355          * Now loop over the map and see if we need to start IO on any
356          * pages, fill in the partial map, etc.
357          */
358         index = *ppos >> PAGE_CACHE_SHIFT;
359         nr_pages = spd.nr_pages;
360         spd.nr_pages = 0;
361         for (page_nr = 0; page_nr < nr_pages; page_nr++) {
362                 unsigned int this_len;
363
364                 if (!len)
365                         break;
366
367                 /*
368                  * this_len is the max we'll use from this page
369                  */
370                 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
371                 page = pages[page_nr];
372
373                 /*
374                  * If the page isn't uptodate, we may need to start io on it
375                  */
376                 if (!PageUptodate(page)) {
377                         /*
378                          * If in nonblock mode then dont block on waiting
379                          * for an in-flight io page
380                          */
381                         if (flags & SPLICE_F_NONBLOCK)
382                                 break;
383
384                         lock_page(page);
385
386                         /*
387                          * page was truncated, stop here. if this isn't the
388                          * first page, we'll just complete what we already
389                          * added
390                          */
391                         if (!page->mapping) {
392                                 unlock_page(page);
393                                 break;
394                         }
395                         /*
396                          * page was already under io and is now done, great
397                          */
398                         if (PageUptodate(page)) {
399                                 unlock_page(page);
400                                 goto fill_it;
401                         }
402
403                         /*
404                          * need to read in the page
405                          */
406                         error = mapping->a_ops->readpage(in, page);
407                         if (unlikely(error)) {
408                                 /*
409                                  * We really should re-lookup the page here,
410                                  * but it complicates things a lot. Instead
411                                  * lets just do what we already stored, and
412                                  * we'll get it the next time we are called.
413                                  */
414                                 if (error == AOP_TRUNCATED_PAGE)
415                                         error = 0;
416
417                                 break;
418                         }
419
420                         /*
421                          * i_size must be checked after ->readpage().
422                          */
423                         isize = i_size_read(mapping->host);
424                         end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
425                         if (unlikely(!isize || index > end_index))
426                                 break;
427
428                         /*
429                          * if this is the last page, see if we need to shrink
430                          * the length and stop
431                          */
432                         if (end_index == index) {
433                                 loff = PAGE_CACHE_SIZE - (isize & ~PAGE_CACHE_MASK);
434                                 if (total_len + loff > isize)
435                                         break;
436                                 /*
437                                  * force quit after adding this page
438                                  */
439                                 len = this_len;
440                                 this_len = min(this_len, loff);
441                                 loff = 0;
442                         }
443                 }
444 fill_it:
445                 partial[page_nr].offset = loff;
446                 partial[page_nr].len = this_len;
447                 len -= this_len;
448                 total_len += this_len;
449                 loff = 0;
450                 spd.nr_pages++;
451                 index++;
452         }
453
454         /*
455          * Release any pages at the end, if we quit early. 'i' is how far
456          * we got, 'nr_pages' is how many pages are in the map.
457          */
458         while (page_nr < nr_pages)
459                 page_cache_release(pages[page_nr++]);
460
461         if (spd.nr_pages)
462                 return splice_to_pipe(pipe, &spd);
463
464         return error;
465 }
466
467 /**
468  * generic_file_splice_read - splice data from file to a pipe
469  * @in:         file to splice from
470  * @pipe:       pipe to splice to
471  * @len:        number of bytes to splice
472  * @flags:      splice modifier flags
473  *
474  * Will read pages from given file and fill them into a pipe.
475  */
476 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
477                                  struct pipe_inode_info *pipe, size_t len,
478                                  unsigned int flags)
479 {
480         ssize_t spliced;
481         int ret;
482
483         ret = 0;
484         spliced = 0;
485
486         while (len) {
487                 ret = __generic_file_splice_read(in, ppos, pipe, len, flags);
488
489                 if (ret < 0)
490                         break;
491                 else if (!ret) {
492                         if (spliced)
493                                 break;
494                         if (flags & SPLICE_F_NONBLOCK) {
495                                 ret = -EAGAIN;
496                                 break;
497                         }
498                 }
499
500                 *ppos += ret;
501                 len -= ret;
502                 spliced += ret;
503         }
504
505         if (spliced)
506                 return spliced;
507
508         return ret;
509 }
510
511 EXPORT_SYMBOL(generic_file_splice_read);
512
513 /*
514  * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
515  * using sendpage(). Return the number of bytes sent.
516  */
517 static int pipe_to_sendpage(struct pipe_inode_info *pipe,
518                             struct pipe_buffer *buf, struct splice_desc *sd)
519 {
520         struct file *file = sd->file;
521         loff_t pos = sd->pos;
522         int ret, more;
523
524         ret = buf->ops->pin(pipe, buf);
525         if (!ret) {
526                 more = (sd->flags & SPLICE_F_MORE) || sd->len < sd->total_len;
527
528                 ret = file->f_op->sendpage(file, buf->page, buf->offset,
529                                            sd->len, &pos, more);
530         }
531
532         return ret;
533 }
534
535 /*
536  * This is a little more tricky than the file -> pipe splicing. There are
537  * basically three cases:
538  *
539  *      - Destination page already exists in the address space and there
540  *        are users of it. For that case we have no other option that
541  *        copying the data. Tough luck.
542  *      - Destination page already exists in the address space, but there
543  *        are no users of it. Make sure it's uptodate, then drop it. Fall
544  *        through to last case.
545  *      - Destination page does not exist, we can add the pipe page to
546  *        the page cache and avoid the copy.
547  *
548  * If asked to move pages to the output file (SPLICE_F_MOVE is set in
549  * sd->flags), we attempt to migrate pages from the pipe to the output
550  * file address space page cache. This is possible if no one else has
551  * the pipe page referenced outside of the pipe and page cache. If
552  * SPLICE_F_MOVE isn't set, or we cannot move the page, we simply create
553  * a new page in the output file page cache and fill/dirty that.
554  */
555 static int pipe_to_file(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
556                         struct splice_desc *sd)
557 {
558         struct file *file = sd->file;
559         struct address_space *mapping = file->f_mapping;
560         unsigned int offset, this_len;
561         struct page *page;
562         pgoff_t index;
563         int ret;
564
565         /*
566          * make sure the data in this buffer is uptodate
567          */
568         ret = buf->ops->pin(pipe, buf);
569         if (unlikely(ret))
570                 return ret;
571
572         index = sd->pos >> PAGE_CACHE_SHIFT;
573         offset = sd->pos & ~PAGE_CACHE_MASK;
574
575         this_len = sd->len;
576         if (this_len + offset > PAGE_CACHE_SIZE)
577                 this_len = PAGE_CACHE_SIZE - offset;
578
579 find_page:
580         page = find_lock_page(mapping, index);
581         if (!page) {
582                 ret = -ENOMEM;
583                 page = page_cache_alloc_cold(mapping);
584                 if (unlikely(!page))
585                         goto out_ret;
586
587                 /*
588                  * This will also lock the page
589                  */
590                 ret = add_to_page_cache_lru(page, mapping, index,
591                                             GFP_KERNEL);
592                 if (unlikely(ret))
593                         goto out;
594         }
595
596         /*
597          * We get here with the page locked. If the page is also
598          * uptodate, we don't need to do more. If it isn't, we
599          * may need to bring it in if we are not going to overwrite
600          * the full page.
601          */
602         if (!PageUptodate(page)) {
603                 if (this_len < PAGE_CACHE_SIZE) {
604                         ret = mapping->a_ops->readpage(file, page);
605                         if (unlikely(ret))
606                                 goto out;
607
608                         lock_page(page);
609
610                         if (!PageUptodate(page)) {
611                                 /*
612                                  * Page got invalidated, repeat.
613                                  */
614                                 if (!page->mapping) {
615                                         unlock_page(page);
616                                         page_cache_release(page);
617                                         goto find_page;
618                                 }
619                                 ret = -EIO;
620                                 goto out;
621                         }
622                 } else
623                         SetPageUptodate(page);
624         }
625
626         ret = mapping->a_ops->prepare_write(file, page, offset, offset+this_len);
627         if (unlikely(ret)) {
628                 loff_t isize = i_size_read(mapping->host);
629
630                 if (ret != AOP_TRUNCATED_PAGE)
631                         unlock_page(page);
632                 page_cache_release(page);
633                 if (ret == AOP_TRUNCATED_PAGE)
634                         goto find_page;
635
636                 /*
637                  * prepare_write() may have instantiated a few blocks
638                  * outside i_size.  Trim these off again.
639                  */
640                 if (sd->pos + this_len > isize)
641                         vmtruncate(mapping->host, isize);
642
643                 goto out_ret;
644         }
645
646         if (buf->page != page) {
647                 /*
648                  * Careful, ->map() uses KM_USER0!
649                  */
650                 char *src = buf->ops->map(pipe, buf, 1);
651                 char *dst = kmap_atomic(page, KM_USER1);
652
653                 memcpy(dst + offset, src + buf->offset, this_len);
654                 flush_dcache_page(page);
655                 kunmap_atomic(dst, KM_USER1);
656                 buf->ops->unmap(pipe, buf, src);
657         }
658
659         ret = mapping->a_ops->commit_write(file, page, offset, offset+this_len);
660         if (!ret) {
661                 /*
662                  * Return the number of bytes written and mark page as
663                  * accessed, we are now done!
664                  */
665                 ret = this_len;
666                 mark_page_accessed(page);
667                 balance_dirty_pages_ratelimited(mapping);
668         } else if (ret == AOP_TRUNCATED_PAGE) {
669                 page_cache_release(page);
670                 goto find_page;
671         }
672 out:
673         page_cache_release(page);
674         unlock_page(page);
675 out_ret:
676         return ret;
677 }
678
679 /*
680  * Pipe input worker. Most of this logic works like a regular pipe, the
681  * key here is the 'actor' worker passed in that actually moves the data
682  * to the wanted destination. See pipe_to_file/pipe_to_sendpage above.
683  */
684 static ssize_t __splice_from_pipe(struct pipe_inode_info *pipe,
685                                   struct file *out, loff_t *ppos, size_t len,
686                                   unsigned int flags, splice_actor *actor)
687 {
688         int ret, do_wakeup, err;
689         struct splice_desc sd;
690
691         ret = 0;
692         do_wakeup = 0;
693
694         sd.total_len = len;
695         sd.flags = flags;
696         sd.file = out;
697         sd.pos = *ppos;
698
699         for (;;) {
700                 if (pipe->nrbufs) {
701                         struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
702                         const struct pipe_buf_operations *ops = buf->ops;
703
704                         sd.len = buf->len;
705                         if (sd.len > sd.total_len)
706                                 sd.len = sd.total_len;
707
708                         err = actor(pipe, buf, &sd);
709                         if (err <= 0) {
710                                 if (!ret && err != -ENODATA)
711                                         ret = err;
712
713                                 break;
714                         }
715
716                         ret += err;
717                         buf->offset += err;
718                         buf->len -= err;
719
720                         sd.len -= err;
721                         sd.pos += err;
722                         sd.total_len -= err;
723                         if (sd.len)
724                                 continue;
725
726                         if (!buf->len) {
727                                 buf->ops = NULL;
728                                 ops->release(pipe, buf);
729                                 pipe->curbuf = (pipe->curbuf + 1) & (PIPE_BUFFERS - 1);
730                                 pipe->nrbufs--;
731                                 if (pipe->inode)
732                                         do_wakeup = 1;
733                         }
734
735                         if (!sd.total_len)
736                                 break;
737                 }
738
739                 if (pipe->nrbufs)
740                         continue;
741                 if (!pipe->writers)
742                         break;
743                 if (!pipe->waiting_writers) {
744                         if (ret)
745                                 break;
746                 }
747
748                 if (flags & SPLICE_F_NONBLOCK) {
749                         if (!ret)
750                                 ret = -EAGAIN;
751                         break;
752                 }
753
754                 if (signal_pending(current)) {
755                         if (!ret)
756                                 ret = -ERESTARTSYS;
757                         break;
758                 }
759
760                 if (do_wakeup) {
761                         smp_mb();
762                         if (waitqueue_active(&pipe->wait))
763                                 wake_up_interruptible_sync(&pipe->wait);
764                         kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
765                         do_wakeup = 0;
766                 }
767
768                 pipe_wait(pipe);
769         }
770
771         if (do_wakeup) {
772                 smp_mb();
773                 if (waitqueue_active(&pipe->wait))
774                         wake_up_interruptible(&pipe->wait);
775                 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
776         }
777
778         return ret;
779 }
780
781 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
782                          loff_t *ppos, size_t len, unsigned int flags,
783                          splice_actor *actor)
784 {
785         ssize_t ret;
786         struct inode *inode = out->f_mapping->host;
787
788         /*
789          * The actor worker might be calling ->prepare_write and
790          * ->commit_write. Most of the time, these expect i_mutex to
791          * be held. Since this may result in an ABBA deadlock with
792          * pipe->inode, we have to order lock acquiry here.
793          */
794         inode_double_lock(inode, pipe->inode);
795         ret = __splice_from_pipe(pipe, out, ppos, len, flags, actor);
796         inode_double_unlock(inode, pipe->inode);
797
798         return ret;
799 }
800
801 /**
802  * generic_file_splice_write_nolock - generic_file_splice_write without mutexes
803  * @pipe:       pipe info
804  * @out:        file to write to
805  * @len:        number of bytes to splice
806  * @flags:      splice modifier flags
807  *
808  * Will either move or copy pages (determined by @flags options) from
809  * the given pipe inode to the given file. The caller is responsible
810  * for acquiring i_mutex on both inodes.
811  *
812  */
813 ssize_t
814 generic_file_splice_write_nolock(struct pipe_inode_info *pipe, struct file *out,
815                                  loff_t *ppos, size_t len, unsigned int flags)
816 {
817         struct address_space *mapping = out->f_mapping;
818         struct inode *inode = mapping->host;
819         ssize_t ret;
820         int err;
821
822         err = remove_suid(out->f_path.dentry);
823         if (unlikely(err))
824                 return err;
825
826         ret = __splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_file);
827         if (ret > 0) {
828                 *ppos += ret;
829
830                 /*
831                  * If file or inode is SYNC and we actually wrote some data,
832                  * sync it.
833                  */
834                 if (unlikely((out->f_flags & O_SYNC) || IS_SYNC(inode))) {
835                         err = generic_osync_inode(inode, mapping,
836                                                   OSYNC_METADATA|OSYNC_DATA);
837
838                         if (err)
839                                 ret = err;
840                 }
841         }
842
843         return ret;
844 }
845
846 EXPORT_SYMBOL(generic_file_splice_write_nolock);
847
848 /**
849  * generic_file_splice_write - splice data from a pipe to a file
850  * @pipe:       pipe info
851  * @out:        file to write to
852  * @len:        number of bytes to splice
853  * @flags:      splice modifier flags
854  *
855  * Will either move or copy pages (determined by @flags options) from
856  * the given pipe inode to the given file.
857  *
858  */
859 ssize_t
860 generic_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
861                           loff_t *ppos, size_t len, unsigned int flags)
862 {
863         struct address_space *mapping = out->f_mapping;
864         struct inode *inode = mapping->host;
865         ssize_t ret;
866         int err;
867
868         err = should_remove_suid(out->f_path.dentry);
869         if (unlikely(err)) {
870                 mutex_lock(&inode->i_mutex);
871                 err = __remove_suid(out->f_path.dentry, err);
872                 mutex_unlock(&inode->i_mutex);
873                 if (err)
874                         return err;
875         }
876
877         ret = splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_file);
878         if (ret > 0) {
879                 *ppos += ret;
880
881                 /*
882                  * If file or inode is SYNC and we actually wrote some data,
883                  * sync it.
884                  */
885                 if (unlikely((out->f_flags & O_SYNC) || IS_SYNC(inode))) {
886                         mutex_lock(&inode->i_mutex);
887                         err = generic_osync_inode(inode, mapping,
888                                                   OSYNC_METADATA|OSYNC_DATA);
889                         mutex_unlock(&inode->i_mutex);
890
891                         if (err)
892                                 ret = err;
893                 }
894         }
895
896         return ret;
897 }
898
899 EXPORT_SYMBOL(generic_file_splice_write);
900
901 /**
902  * generic_splice_sendpage - splice data from a pipe to a socket
903  * @inode:      pipe inode
904  * @out:        socket to write to
905  * @len:        number of bytes to splice
906  * @flags:      splice modifier flags
907  *
908  * Will send @len bytes from the pipe to a network socket. No data copying
909  * is involved.
910  *
911  */
912 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
913                                 loff_t *ppos, size_t len, unsigned int flags)
914 {
915         return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
916 }
917
918 EXPORT_SYMBOL(generic_splice_sendpage);
919
920 /*
921  * Attempt to initiate a splice from pipe to file.
922  */
923 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
924                            loff_t *ppos, size_t len, unsigned int flags)
925 {
926         int ret;
927
928         if (unlikely(!out->f_op || !out->f_op->splice_write))
929                 return -EINVAL;
930
931         if (unlikely(!(out->f_mode & FMODE_WRITE)))
932                 return -EBADF;
933
934         ret = rw_verify_area(WRITE, out, ppos, len);
935         if (unlikely(ret < 0))
936                 return ret;
937
938         return out->f_op->splice_write(pipe, out, ppos, len, flags);
939 }
940
941 /*
942  * Attempt to initiate a splice from a file to a pipe.
943  */
944 static long do_splice_to(struct file *in, loff_t *ppos,
945                          struct pipe_inode_info *pipe, size_t len,
946                          unsigned int flags)
947 {
948         loff_t isize, left;
949         int ret;
950
951         if (unlikely(!in->f_op || !in->f_op->splice_read))
952                 return -EINVAL;
953
954         if (unlikely(!(in->f_mode & FMODE_READ)))
955                 return -EBADF;
956
957         ret = rw_verify_area(READ, in, ppos, len);
958         if (unlikely(ret < 0))
959                 return ret;
960
961         isize = i_size_read(in->f_mapping->host);
962         if (unlikely(*ppos >= isize))
963                 return 0;
964         
965         left = isize - *ppos;
966         if (unlikely(left < len))
967                 len = left;
968
969         return in->f_op->splice_read(in, ppos, pipe, len, flags);
970 }
971
972 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
973                       size_t len, unsigned int flags)
974 {
975         struct pipe_inode_info *pipe;
976         long ret, bytes;
977         loff_t out_off;
978         umode_t i_mode;
979         int i;
980
981         /*
982          * We require the input being a regular file, as we don't want to
983          * randomly drop data for eg socket -> socket splicing. Use the
984          * piped splicing for that!
985          */
986         i_mode = in->f_path.dentry->d_inode->i_mode;
987         if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
988                 return -EINVAL;
989
990         /*
991          * neither in nor out is a pipe, setup an internal pipe attached to
992          * 'out' and transfer the wanted data from 'in' to 'out' through that
993          */
994         pipe = current->splice_pipe;
995         if (unlikely(!pipe)) {
996                 pipe = alloc_pipe_info(NULL);
997                 if (!pipe)
998                         return -ENOMEM;
999
1000                 /*
1001                  * We don't have an immediate reader, but we'll read the stuff
1002                  * out of the pipe right after the splice_to_pipe(). So set
1003                  * PIPE_READERS appropriately.
1004                  */
1005                 pipe->readers = 1;
1006
1007                 current->splice_pipe = pipe;
1008         }
1009
1010         /*
1011          * Do the splice.
1012          */
1013         ret = 0;
1014         bytes = 0;
1015         out_off = 0;
1016
1017         while (len) {
1018                 size_t read_len, max_read_len;
1019
1020                 /*
1021                  * Do at most PIPE_BUFFERS pages worth of transfer:
1022                  */
1023                 max_read_len = min(len, (size_t)(PIPE_BUFFERS*PAGE_SIZE));
1024
1025                 ret = do_splice_to(in, ppos, pipe, max_read_len, flags);
1026                 if (unlikely(ret < 0))
1027                         goto out_release;
1028
1029                 read_len = ret;
1030
1031                 /*
1032                  * NOTE: nonblocking mode only applies to the input. We
1033                  * must not do the output in nonblocking mode as then we
1034                  * could get stuck data in the internal pipe:
1035                  */
1036                 ret = do_splice_from(pipe, out, &out_off, read_len,
1037                                      flags & ~SPLICE_F_NONBLOCK);
1038                 if (unlikely(ret < 0))
1039                         goto out_release;
1040
1041                 bytes += ret;
1042                 len -= ret;
1043
1044                 /*
1045                  * In nonblocking mode, if we got back a short read then
1046                  * that was due to either an IO error or due to the
1047                  * pagecache entry not being there. In the IO error case
1048                  * the _next_ splice attempt will produce a clean IO error
1049                  * return value (not a short read), so in both cases it's
1050                  * correct to break out of the loop here:
1051                  */
1052                 if ((flags & SPLICE_F_NONBLOCK) && (read_len < max_read_len))
1053                         break;
1054         }
1055
1056         pipe->nrbufs = pipe->curbuf = 0;
1057
1058         return bytes;
1059
1060 out_release:
1061         /*
1062          * If we did an incomplete transfer we must release
1063          * the pipe buffers in question:
1064          */
1065         for (i = 0; i < PIPE_BUFFERS; i++) {
1066                 struct pipe_buffer *buf = pipe->bufs + i;
1067
1068                 if (buf->ops) {
1069                         buf->ops->release(pipe, buf);
1070                         buf->ops = NULL;
1071                 }
1072         }
1073         pipe->nrbufs = pipe->curbuf = 0;
1074
1075         /*
1076          * If we transferred some data, return the number of bytes:
1077          */
1078         if (bytes > 0)
1079                 return bytes;
1080
1081         return ret;
1082 }
1083
1084 EXPORT_SYMBOL(do_splice_direct);
1085
1086 /*
1087  * After the inode slimming patch, i_pipe/i_bdev/i_cdev share the same
1088  * location, so checking ->i_pipe is not enough to verify that this is a
1089  * pipe.
1090  */
1091 static inline struct pipe_inode_info *pipe_info(struct inode *inode)
1092 {
1093         if (S_ISFIFO(inode->i_mode))
1094                 return inode->i_pipe;
1095
1096         return NULL;
1097 }
1098
1099 /*
1100  * Determine where to splice to/from.
1101  */
1102 static long do_splice(struct file *in, loff_t __user *off_in,
1103                       struct file *out, loff_t __user *off_out,
1104                       size_t len, unsigned int flags)
1105 {
1106         struct pipe_inode_info *pipe;
1107         loff_t offset, *off;
1108         long ret;
1109
1110         pipe = pipe_info(in->f_path.dentry->d_inode);
1111         if (pipe) {
1112                 if (off_in)
1113                         return -ESPIPE;
1114                 if (off_out) {
1115                         if (out->f_op->llseek == no_llseek)
1116                                 return -EINVAL;
1117                         if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1118                                 return -EFAULT;
1119                         off = &offset;
1120                 } else
1121                         off = &out->f_pos;
1122
1123                 ret = do_splice_from(pipe, out, off, len, flags);
1124
1125                 if (off_out && copy_to_user(off_out, off, sizeof(loff_t)))
1126                         ret = -EFAULT;
1127
1128                 return ret;
1129         }
1130
1131         pipe = pipe_info(out->f_path.dentry->d_inode);
1132         if (pipe) {
1133                 if (off_out)
1134                         return -ESPIPE;
1135                 if (off_in) {
1136                         if (in->f_op->llseek == no_llseek)
1137                                 return -EINVAL;
1138                         if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1139                                 return -EFAULT;
1140                         off = &offset;
1141                 } else
1142                         off = &in->f_pos;
1143
1144                 ret = do_splice_to(in, off, pipe, len, flags);
1145
1146                 if (off_in && copy_to_user(off_in, off, sizeof(loff_t)))
1147                         ret = -EFAULT;
1148
1149                 return ret;
1150         }
1151
1152         return -EINVAL;
1153 }
1154
1155 /*
1156  * Map an iov into an array of pages and offset/length tupples. With the
1157  * partial_page structure, we can map several non-contiguous ranges into
1158  * our ones pages[] map instead of splitting that operation into pieces.
1159  * Could easily be exported as a generic helper for other users, in which
1160  * case one would probably want to add a 'max_nr_pages' parameter as well.
1161  */
1162 static int get_iovec_page_array(const struct iovec __user *iov,
1163                                 unsigned int nr_vecs, struct page **pages,
1164                                 struct partial_page *partial, int aligned)
1165 {
1166         int buffers = 0, error = 0;
1167
1168         /*
1169          * It's ok to take the mmap_sem for reading, even
1170          * across a "get_user()".
1171          */
1172         down_read(&current->mm->mmap_sem);
1173
1174         while (nr_vecs) {
1175                 unsigned long off, npages;
1176                 void __user *base;
1177                 size_t len;
1178                 int i;
1179
1180                 /*
1181                  * Get user address base and length for this iovec.
1182                  */
1183                 error = get_user(base, &iov->iov_base);
1184                 if (unlikely(error))
1185                         break;
1186                 error = get_user(len, &iov->iov_len);
1187                 if (unlikely(error))
1188                         break;
1189
1190                 /*
1191                  * Sanity check this iovec. 0 read succeeds.
1192                  */
1193                 if (unlikely(!len))
1194                         break;
1195                 error = -EFAULT;
1196                 if (unlikely(!base))
1197                         break;
1198
1199                 /*
1200                  * Get this base offset and number of pages, then map
1201                  * in the user pages.
1202                  */
1203                 off = (unsigned long) base & ~PAGE_MASK;
1204
1205                 /*
1206                  * If asked for alignment, the offset must be zero and the
1207                  * length a multiple of the PAGE_SIZE.
1208                  */
1209                 error = -EINVAL;
1210                 if (aligned && (off || len & ~PAGE_MASK))
1211                         break;
1212
1213                 npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1214                 if (npages > PIPE_BUFFERS - buffers)
1215                         npages = PIPE_BUFFERS - buffers;
1216
1217                 error = get_user_pages(current, current->mm,
1218                                        (unsigned long) base, npages, 0, 0,
1219                                        &pages[buffers], NULL);
1220
1221                 if (unlikely(error <= 0))
1222                         break;
1223
1224                 /*
1225                  * Fill this contiguous range into the partial page map.
1226                  */
1227                 for (i = 0; i < error; i++) {
1228                         const int plen = min_t(size_t, len, PAGE_SIZE - off);
1229
1230                         partial[buffers].offset = off;
1231                         partial[buffers].len = plen;
1232
1233                         off = 0;
1234                         len -= plen;
1235                         buffers++;
1236                 }
1237
1238                 /*
1239                  * We didn't complete this iov, stop here since it probably
1240                  * means we have to move some of this into a pipe to
1241                  * be able to continue.
1242                  */
1243                 if (len)
1244                         break;
1245
1246                 /*
1247                  * Don't continue if we mapped fewer pages than we asked for,
1248                  * or if we mapped the max number of pages that we have
1249                  * room for.
1250                  */
1251                 if (error < npages || buffers == PIPE_BUFFERS)
1252                         break;
1253
1254                 nr_vecs--;
1255                 iov++;
1256         }
1257
1258         up_read(&current->mm->mmap_sem);
1259
1260         if (buffers)
1261                 return buffers;
1262
1263         return error;
1264 }
1265
1266 /*
1267  * vmsplice splices a user address range into a pipe. It can be thought of
1268  * as splice-from-memory, where the regular splice is splice-from-file (or
1269  * to file). In both cases the output is a pipe, naturally.
1270  *
1271  * Note that vmsplice only supports splicing _from_ user memory to a pipe,
1272  * not the other way around. Splicing from user memory is a simple operation
1273  * that can be supported without any funky alignment restrictions or nasty
1274  * vm tricks. We simply map in the user memory and fill them into a pipe.
1275  * The reverse isn't quite as easy, though. There are two possible solutions
1276  * for that:
1277  *
1278  *      - memcpy() the data internally, at which point we might as well just
1279  *        do a regular read() on the buffer anyway.
1280  *      - Lots of nasty vm tricks, that are neither fast nor flexible (it
1281  *        has restriction limitations on both ends of the pipe).
1282  *
1283  * Alas, it isn't here.
1284  *
1285  */
1286 static long do_vmsplice(struct file *file, const struct iovec __user *iov,
1287                         unsigned long nr_segs, unsigned int flags)
1288 {
1289         struct pipe_inode_info *pipe;
1290         struct page *pages[PIPE_BUFFERS];
1291         struct partial_page partial[PIPE_BUFFERS];
1292         struct splice_pipe_desc spd = {
1293                 .pages = pages,
1294                 .partial = partial,
1295                 .flags = flags,
1296                 .ops = &user_page_pipe_buf_ops,
1297         };
1298
1299         pipe = pipe_info(file->f_path.dentry->d_inode);
1300         if (!pipe)
1301                 return -EBADF;
1302         if (unlikely(nr_segs > UIO_MAXIOV))
1303                 return -EINVAL;
1304         else if (unlikely(!nr_segs))
1305                 return 0;
1306
1307         spd.nr_pages = get_iovec_page_array(iov, nr_segs, pages, partial,
1308                                             flags & SPLICE_F_GIFT);
1309         if (spd.nr_pages <= 0)
1310                 return spd.nr_pages;
1311
1312         return splice_to_pipe(pipe, &spd);
1313 }
1314
1315 asmlinkage long sys_vmsplice(int fd, const struct iovec __user *iov,
1316                              unsigned long nr_segs, unsigned int flags)
1317 {
1318         struct file *file;
1319         long error;
1320         int fput;
1321
1322         error = -EBADF;
1323         file = fget_light(fd, &fput);
1324         if (file) {
1325                 if (file->f_mode & FMODE_WRITE)
1326                         error = do_vmsplice(file, iov, nr_segs, flags);
1327
1328                 fput_light(file, fput);
1329         }
1330
1331         return error;
1332 }
1333
1334 asmlinkage long sys_splice(int fd_in, loff_t __user *off_in,
1335                            int fd_out, loff_t __user *off_out,
1336                            size_t len, unsigned int flags)
1337 {
1338         long error;
1339         struct file *in, *out;
1340         int fput_in, fput_out;
1341
1342         if (unlikely(!len))
1343                 return 0;
1344
1345         error = -EBADF;
1346         in = fget_light(fd_in, &fput_in);
1347         if (in) {
1348                 if (in->f_mode & FMODE_READ) {
1349                         out = fget_light(fd_out, &fput_out);
1350                         if (out) {
1351                                 if (out->f_mode & FMODE_WRITE)
1352                                         error = do_splice(in, off_in,
1353                                                           out, off_out,
1354                                                           len, flags);
1355                                 fput_light(out, fput_out);
1356                         }
1357                 }
1358
1359                 fput_light(in, fput_in);
1360         }
1361
1362         return error;
1363 }
1364
1365 /*
1366  * Make sure there's data to read. Wait for input if we can, otherwise
1367  * return an appropriate error.
1368  */
1369 static int link_ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1370 {
1371         int ret;
1372
1373         /*
1374          * Check ->nrbufs without the inode lock first. This function
1375          * is speculative anyways, so missing one is ok.
1376          */
1377         if (pipe->nrbufs)
1378                 return 0;
1379
1380         ret = 0;
1381         mutex_lock(&pipe->inode->i_mutex);
1382
1383         while (!pipe->nrbufs) {
1384                 if (signal_pending(current)) {
1385                         ret = -ERESTARTSYS;
1386                         break;
1387                 }
1388                 if (!pipe->writers)
1389                         break;
1390                 if (!pipe->waiting_writers) {
1391                         if (flags & SPLICE_F_NONBLOCK) {
1392                                 ret = -EAGAIN;
1393                                 break;
1394                         }
1395                 }
1396                 pipe_wait(pipe);
1397         }
1398
1399         mutex_unlock(&pipe->inode->i_mutex);
1400         return ret;
1401 }
1402
1403 /*
1404  * Make sure there's writeable room. Wait for room if we can, otherwise
1405  * return an appropriate error.
1406  */
1407 static int link_opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1408 {
1409         int ret;
1410
1411         /*
1412          * Check ->nrbufs without the inode lock first. This function
1413          * is speculative anyways, so missing one is ok.
1414          */
1415         if (pipe->nrbufs < PIPE_BUFFERS)
1416                 return 0;
1417
1418         ret = 0;
1419         mutex_lock(&pipe->inode->i_mutex);
1420
1421         while (pipe->nrbufs >= PIPE_BUFFERS) {
1422                 if (!pipe->readers) {
1423                         send_sig(SIGPIPE, current, 0);
1424                         ret = -EPIPE;
1425                         break;
1426                 }
1427                 if (flags & SPLICE_F_NONBLOCK) {
1428                         ret = -EAGAIN;
1429                         break;
1430                 }
1431                 if (signal_pending(current)) {
1432                         ret = -ERESTARTSYS;
1433                         break;
1434                 }
1435                 pipe->waiting_writers++;
1436                 pipe_wait(pipe);
1437                 pipe->waiting_writers--;
1438         }
1439
1440         mutex_unlock(&pipe->inode->i_mutex);
1441         return ret;
1442 }
1443
1444 /*
1445  * Link contents of ipipe to opipe.
1446  */
1447 static int link_pipe(struct pipe_inode_info *ipipe,
1448                      struct pipe_inode_info *opipe,
1449                      size_t len, unsigned int flags)
1450 {
1451         struct pipe_buffer *ibuf, *obuf;
1452         int ret = 0, i = 0, nbuf;
1453
1454         /*
1455          * Potential ABBA deadlock, work around it by ordering lock
1456          * grabbing by inode address. Otherwise two different processes
1457          * could deadlock (one doing tee from A -> B, the other from B -> A).
1458          */
1459         inode_double_lock(ipipe->inode, opipe->inode);
1460
1461         do {
1462                 if (!opipe->readers) {
1463                         send_sig(SIGPIPE, current, 0);
1464                         if (!ret)
1465                                 ret = -EPIPE;
1466                         break;
1467                 }
1468
1469                 /*
1470                  * If we have iterated all input buffers or ran out of
1471                  * output room, break.
1472                  */
1473                 if (i >= ipipe->nrbufs || opipe->nrbufs >= PIPE_BUFFERS)
1474                         break;
1475
1476                 ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (PIPE_BUFFERS - 1));
1477                 nbuf = (opipe->curbuf + opipe->nrbufs) & (PIPE_BUFFERS - 1);
1478
1479                 /*
1480                  * Get a reference to this pipe buffer,
1481                  * so we can copy the contents over.
1482                  */
1483                 ibuf->ops->get(ipipe, ibuf);
1484
1485                 obuf = opipe->bufs + nbuf;
1486                 *obuf = *ibuf;
1487
1488                 /*
1489                  * Don't inherit the gift flag, we need to
1490                  * prevent multiple steals of this page.
1491                  */
1492                 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1493
1494                 if (obuf->len > len)
1495                         obuf->len = len;
1496
1497                 opipe->nrbufs++;
1498                 ret += obuf->len;
1499                 len -= obuf->len;
1500                 i++;
1501         } while (len);
1502
1503         inode_double_unlock(ipipe->inode, opipe->inode);
1504
1505         /*
1506          * If we put data in the output pipe, wakeup any potential readers.
1507          */
1508         if (ret > 0) {
1509                 smp_mb();
1510                 if (waitqueue_active(&opipe->wait))
1511                         wake_up_interruptible(&opipe->wait);
1512                 kill_fasync(&opipe->fasync_readers, SIGIO, POLL_IN);
1513         }
1514
1515         return ret;
1516 }
1517
1518 /*
1519  * This is a tee(1) implementation that works on pipes. It doesn't copy
1520  * any data, it simply references the 'in' pages on the 'out' pipe.
1521  * The 'flags' used are the SPLICE_F_* variants, currently the only
1522  * applicable one is SPLICE_F_NONBLOCK.
1523  */
1524 static long do_tee(struct file *in, struct file *out, size_t len,
1525                    unsigned int flags)
1526 {
1527         struct pipe_inode_info *ipipe = pipe_info(in->f_path.dentry->d_inode);
1528         struct pipe_inode_info *opipe = pipe_info(out->f_path.dentry->d_inode);
1529         int ret = -EINVAL;
1530
1531         /*
1532          * Duplicate the contents of ipipe to opipe without actually
1533          * copying the data.
1534          */
1535         if (ipipe && opipe && ipipe != opipe) {
1536                 /*
1537                  * Keep going, unless we encounter an error. The ipipe/opipe
1538                  * ordering doesn't really matter.
1539                  */
1540                 ret = link_ipipe_prep(ipipe, flags);
1541                 if (!ret) {
1542                         ret = link_opipe_prep(opipe, flags);
1543                         if (!ret) {
1544                                 ret = link_pipe(ipipe, opipe, len, flags);
1545                                 if (!ret && (flags & SPLICE_F_NONBLOCK))
1546                                         ret = -EAGAIN;
1547                         }
1548                 }
1549         }
1550
1551         return ret;
1552 }
1553
1554 asmlinkage long sys_tee(int fdin, int fdout, size_t len, unsigned int flags)
1555 {
1556         struct file *in;
1557         int error, fput_in;
1558
1559         if (unlikely(!len))
1560                 return 0;
1561
1562         error = -EBADF;
1563         in = fget_light(fdin, &fput_in);
1564         if (in) {
1565                 if (in->f_mode & FMODE_READ) {
1566                         int fput_out;
1567                         struct file *out = fget_light(fdout, &fput_out);
1568
1569                         if (out) {
1570                                 if (out->f_mode & FMODE_WRITE)
1571                                         error = do_tee(in, out, len, flags);
1572                                 fput_light(out, fput_out);
1573                         }
1574                 }
1575                 fput_light(in, fput_in);
1576         }
1577
1578         return error;
1579 }