Export __splice_from_pipe()
[pandora-kernel.git] / fs / splice.c
1 /*
2  * "splice": joining two ropes together by interweaving their strands.
3  *
4  * This is the "extended pipe" functionality, where a pipe is used as
5  * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6  * buffer that you can use to transfer data from one end to the other.
7  *
8  * The traditional unix read/write is extended with a "splice()" operation
9  * that transfers data buffers to or from a pipe buffer.
10  *
11  * Named by Larry McVoy, original implementation from Linus, extended by
12  * Jens to support splicing to files, network, direct splicing, etc and
13  * fixing lots of bugs.
14  *
15  * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16  * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17  * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
18  *
19  */
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/pagemap.h>
23 #include <linux/pipe_fs_i.h>
24 #include <linux/mm_inline.h>
25 #include <linux/swap.h>
26 #include <linux/writeback.h>
27 #include <linux/buffer_head.h>
28 #include <linux/module.h>
29 #include <linux/syscalls.h>
30 #include <linux/uio.h>
31
32 struct partial_page {
33         unsigned int offset;
34         unsigned int len;
35 };
36
37 /*
38  * Passed to splice_to_pipe
39  */
40 struct splice_pipe_desc {
41         struct page **pages;            /* page map */
42         struct partial_page *partial;   /* pages[] may not be contig */
43         int nr_pages;                   /* number of pages in map */
44         unsigned int flags;             /* splice flags */
45         const struct pipe_buf_operations *ops;/* ops associated with output pipe */
46 };
47
48 /*
49  * Attempt to steal a page from a pipe buffer. This should perhaps go into
50  * a vm helper function, it's already simplified quite a bit by the
51  * addition of remove_mapping(). If success is returned, the caller may
52  * attempt to reuse this page for another destination.
53  */
54 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
55                                      struct pipe_buffer *buf)
56 {
57         struct page *page = buf->page;
58         struct address_space *mapping;
59
60         lock_page(page);
61
62         mapping = page_mapping(page);
63         if (mapping) {
64                 WARN_ON(!PageUptodate(page));
65
66                 /*
67                  * At least for ext2 with nobh option, we need to wait on
68                  * writeback completing on this page, since we'll remove it
69                  * from the pagecache.  Otherwise truncate wont wait on the
70                  * page, allowing the disk blocks to be reused by someone else
71                  * before we actually wrote our data to them. fs corruption
72                  * ensues.
73                  */
74                 wait_on_page_writeback(page);
75
76                 if (PagePrivate(page))
77                         try_to_release_page(page, GFP_KERNEL);
78
79                 /*
80                  * If we succeeded in removing the mapping, set LRU flag
81                  * and return good.
82                  */
83                 if (remove_mapping(mapping, page)) {
84                         buf->flags |= PIPE_BUF_FLAG_LRU;
85                         return 0;
86                 }
87         }
88
89         /*
90          * Raced with truncate or failed to remove page from current
91          * address space, unlock and return failure.
92          */
93         unlock_page(page);
94         return 1;
95 }
96
97 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
98                                         struct pipe_buffer *buf)
99 {
100         page_cache_release(buf->page);
101         buf->flags &= ~PIPE_BUF_FLAG_LRU;
102 }
103
104 static int page_cache_pipe_buf_pin(struct pipe_inode_info *pipe,
105                                    struct pipe_buffer *buf)
106 {
107         struct page *page = buf->page;
108         int err;
109
110         if (!PageUptodate(page)) {
111                 lock_page(page);
112
113                 /*
114                  * Page got truncated/unhashed. This will cause a 0-byte
115                  * splice, if this is the first page.
116                  */
117                 if (!page->mapping) {
118                         err = -ENODATA;
119                         goto error;
120                 }
121
122                 /*
123                  * Uh oh, read-error from disk.
124                  */
125                 if (!PageUptodate(page)) {
126                         err = -EIO;
127                         goto error;
128                 }
129
130                 /*
131                  * Page is ok afterall, we are done.
132                  */
133                 unlock_page(page);
134         }
135
136         return 0;
137 error:
138         unlock_page(page);
139         return err;
140 }
141
142 static const struct pipe_buf_operations page_cache_pipe_buf_ops = {
143         .can_merge = 0,
144         .map = generic_pipe_buf_map,
145         .unmap = generic_pipe_buf_unmap,
146         .pin = page_cache_pipe_buf_pin,
147         .release = page_cache_pipe_buf_release,
148         .steal = page_cache_pipe_buf_steal,
149         .get = generic_pipe_buf_get,
150 };
151
152 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
153                                     struct pipe_buffer *buf)
154 {
155         if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
156                 return 1;
157
158         buf->flags |= PIPE_BUF_FLAG_LRU;
159         return generic_pipe_buf_steal(pipe, buf);
160 }
161
162 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
163         .can_merge = 0,
164         .map = generic_pipe_buf_map,
165         .unmap = generic_pipe_buf_unmap,
166         .pin = generic_pipe_buf_pin,
167         .release = page_cache_pipe_buf_release,
168         .steal = user_page_pipe_buf_steal,
169         .get = generic_pipe_buf_get,
170 };
171
172 /*
173  * Pipe output worker. This sets up our pipe format with the page cache
174  * pipe buffer operations. Otherwise very similar to the regular pipe_writev().
175  */
176 static ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
177                               struct splice_pipe_desc *spd)
178 {
179         int ret, do_wakeup, page_nr;
180
181         ret = 0;
182         do_wakeup = 0;
183         page_nr = 0;
184
185         if (pipe->inode)
186                 mutex_lock(&pipe->inode->i_mutex);
187
188         for (;;) {
189                 if (!pipe->readers) {
190                         send_sig(SIGPIPE, current, 0);
191                         if (!ret)
192                                 ret = -EPIPE;
193                         break;
194                 }
195
196                 if (pipe->nrbufs < PIPE_BUFFERS) {
197                         int newbuf = (pipe->curbuf + pipe->nrbufs) & (PIPE_BUFFERS - 1);
198                         struct pipe_buffer *buf = pipe->bufs + newbuf;
199
200                         buf->page = spd->pages[page_nr];
201                         buf->offset = spd->partial[page_nr].offset;
202                         buf->len = spd->partial[page_nr].len;
203                         buf->ops = spd->ops;
204                         if (spd->flags & SPLICE_F_GIFT)
205                                 buf->flags |= PIPE_BUF_FLAG_GIFT;
206
207                         pipe->nrbufs++;
208                         page_nr++;
209                         ret += buf->len;
210
211                         if (pipe->inode)
212                                 do_wakeup = 1;
213
214                         if (!--spd->nr_pages)
215                                 break;
216                         if (pipe->nrbufs < PIPE_BUFFERS)
217                                 continue;
218
219                         break;
220                 }
221
222                 if (spd->flags & SPLICE_F_NONBLOCK) {
223                         if (!ret)
224                                 ret = -EAGAIN;
225                         break;
226                 }
227
228                 if (signal_pending(current)) {
229                         if (!ret)
230                                 ret = -ERESTARTSYS;
231                         break;
232                 }
233
234                 if (do_wakeup) {
235                         smp_mb();
236                         if (waitqueue_active(&pipe->wait))
237                                 wake_up_interruptible_sync(&pipe->wait);
238                         kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
239                         do_wakeup = 0;
240                 }
241
242                 pipe->waiting_writers++;
243                 pipe_wait(pipe);
244                 pipe->waiting_writers--;
245         }
246
247         if (pipe->inode)
248                 mutex_unlock(&pipe->inode->i_mutex);
249
250         if (do_wakeup) {
251                 smp_mb();
252                 if (waitqueue_active(&pipe->wait))
253                         wake_up_interruptible(&pipe->wait);
254                 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
255         }
256
257         while (page_nr < spd->nr_pages)
258                 page_cache_release(spd->pages[page_nr++]);
259
260         return ret;
261 }
262
263 static int
264 __generic_file_splice_read(struct file *in, loff_t *ppos,
265                            struct pipe_inode_info *pipe, size_t len,
266                            unsigned int flags)
267 {
268         struct address_space *mapping = in->f_mapping;
269         unsigned int loff, nr_pages;
270         struct page *pages[PIPE_BUFFERS];
271         struct partial_page partial[PIPE_BUFFERS];
272         struct page *page;
273         pgoff_t index, end_index;
274         loff_t isize;
275         size_t total_len;
276         int error, page_nr;
277         struct splice_pipe_desc spd = {
278                 .pages = pages,
279                 .partial = partial,
280                 .flags = flags,
281                 .ops = &page_cache_pipe_buf_ops,
282         };
283
284         index = *ppos >> PAGE_CACHE_SHIFT;
285         loff = *ppos & ~PAGE_CACHE_MASK;
286         nr_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
287
288         if (nr_pages > PIPE_BUFFERS)
289                 nr_pages = PIPE_BUFFERS;
290
291         /*
292          * Initiate read-ahead on this page range. however, don't call into
293          * read-ahead if this is a non-zero offset (we are likely doing small
294          * chunk splice and the page is already there) for a single page.
295          */
296         if (!loff || nr_pages > 1)
297                 page_cache_readahead(mapping, &in->f_ra, in, index, nr_pages);
298
299         /*
300          * Now fill in the holes:
301          */
302         error = 0;
303         total_len = 0;
304
305         /*
306          * Lookup the (hopefully) full range of pages we need.
307          */
308         spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, pages);
309
310         /*
311          * If find_get_pages_contig() returned fewer pages than we needed,
312          * allocate the rest.
313          */
314         index += spd.nr_pages;
315         while (spd.nr_pages < nr_pages) {
316                 /*
317                  * Page could be there, find_get_pages_contig() breaks on
318                  * the first hole.
319                  */
320                 page = find_get_page(mapping, index);
321                 if (!page) {
322                         /*
323                          * Make sure the read-ahead engine is notified
324                          * about this failure.
325                          */
326                         handle_ra_miss(mapping, &in->f_ra, index);
327
328                         /*
329                          * page didn't exist, allocate one.
330                          */
331                         page = page_cache_alloc_cold(mapping);
332                         if (!page)
333                                 break;
334
335                         error = add_to_page_cache_lru(page, mapping, index,
336                                               GFP_KERNEL);
337                         if (unlikely(error)) {
338                                 page_cache_release(page);
339                                 if (error == -EEXIST)
340                                         continue;
341                                 break;
342                         }
343                         /*
344                          * add_to_page_cache() locks the page, unlock it
345                          * to avoid convoluting the logic below even more.
346                          */
347                         unlock_page(page);
348                 }
349
350                 pages[spd.nr_pages++] = page;
351                 index++;
352         }
353
354         /*
355          * Now loop over the map and see if we need to start IO on any
356          * pages, fill in the partial map, etc.
357          */
358         index = *ppos >> PAGE_CACHE_SHIFT;
359         nr_pages = spd.nr_pages;
360         spd.nr_pages = 0;
361         for (page_nr = 0; page_nr < nr_pages; page_nr++) {
362                 unsigned int this_len;
363
364                 if (!len)
365                         break;
366
367                 /*
368                  * this_len is the max we'll use from this page
369                  */
370                 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
371                 page = pages[page_nr];
372
373                 /*
374                  * If the page isn't uptodate, we may need to start io on it
375                  */
376                 if (!PageUptodate(page)) {
377                         /*
378                          * If in nonblock mode then dont block on waiting
379                          * for an in-flight io page
380                          */
381                         if (flags & SPLICE_F_NONBLOCK)
382                                 break;
383
384                         lock_page(page);
385
386                         /*
387                          * page was truncated, stop here. if this isn't the
388                          * first page, we'll just complete what we already
389                          * added
390                          */
391                         if (!page->mapping) {
392                                 unlock_page(page);
393                                 break;
394                         }
395                         /*
396                          * page was already under io and is now done, great
397                          */
398                         if (PageUptodate(page)) {
399                                 unlock_page(page);
400                                 goto fill_it;
401                         }
402
403                         /*
404                          * need to read in the page
405                          */
406                         error = mapping->a_ops->readpage(in, page);
407                         if (unlikely(error)) {
408                                 /*
409                                  * We really should re-lookup the page here,
410                                  * but it complicates things a lot. Instead
411                                  * lets just do what we already stored, and
412                                  * we'll get it the next time we are called.
413                                  */
414                                 if (error == AOP_TRUNCATED_PAGE)
415                                         error = 0;
416
417                                 break;
418                         }
419
420                         /*
421                          * i_size must be checked after ->readpage().
422                          */
423                         isize = i_size_read(mapping->host);
424                         end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
425                         if (unlikely(!isize || index > end_index))
426                                 break;
427
428                         /*
429                          * if this is the last page, see if we need to shrink
430                          * the length and stop
431                          */
432                         if (end_index == index) {
433                                 loff = PAGE_CACHE_SIZE - (isize & ~PAGE_CACHE_MASK);
434                                 if (total_len + loff > isize)
435                                         break;
436                                 /*
437                                  * force quit after adding this page
438                                  */
439                                 len = this_len;
440                                 this_len = min(this_len, loff);
441                                 loff = 0;
442                         }
443                 }
444 fill_it:
445                 partial[page_nr].offset = loff;
446                 partial[page_nr].len = this_len;
447                 len -= this_len;
448                 total_len += this_len;
449                 loff = 0;
450                 spd.nr_pages++;
451                 index++;
452         }
453
454         /*
455          * Release any pages at the end, if we quit early. 'i' is how far
456          * we got, 'nr_pages' is how many pages are in the map.
457          */
458         while (page_nr < nr_pages)
459                 page_cache_release(pages[page_nr++]);
460
461         if (spd.nr_pages)
462                 return splice_to_pipe(pipe, &spd);
463
464         return error;
465 }
466
467 /**
468  * generic_file_splice_read - splice data from file to a pipe
469  * @in:         file to splice from
470  * @pipe:       pipe to splice to
471  * @len:        number of bytes to splice
472  * @flags:      splice modifier flags
473  *
474  * Will read pages from given file and fill them into a pipe.
475  */
476 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
477                                  struct pipe_inode_info *pipe, size_t len,
478                                  unsigned int flags)
479 {
480         ssize_t spliced;
481         int ret;
482
483         ret = 0;
484         spliced = 0;
485
486         while (len) {
487                 ret = __generic_file_splice_read(in, ppos, pipe, len, flags);
488
489                 if (ret < 0)
490                         break;
491                 else if (!ret) {
492                         if (spliced)
493                                 break;
494                         if (flags & SPLICE_F_NONBLOCK) {
495                                 ret = -EAGAIN;
496                                 break;
497                         }
498                 }
499
500                 *ppos += ret;
501                 len -= ret;
502                 spliced += ret;
503         }
504
505         if (spliced)
506                 return spliced;
507
508         return ret;
509 }
510
511 EXPORT_SYMBOL(generic_file_splice_read);
512
513 /*
514  * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
515  * using sendpage(). Return the number of bytes sent.
516  */
517 static int pipe_to_sendpage(struct pipe_inode_info *pipe,
518                             struct pipe_buffer *buf, struct splice_desc *sd)
519 {
520         struct file *file = sd->file;
521         loff_t pos = sd->pos;
522         int ret, more;
523
524         ret = buf->ops->pin(pipe, buf);
525         if (!ret) {
526                 more = (sd->flags & SPLICE_F_MORE) || sd->len < sd->total_len;
527
528                 ret = file->f_op->sendpage(file, buf->page, buf->offset,
529                                            sd->len, &pos, more);
530         }
531
532         return ret;
533 }
534
535 /*
536  * This is a little more tricky than the file -> pipe splicing. There are
537  * basically three cases:
538  *
539  *      - Destination page already exists in the address space and there
540  *        are users of it. For that case we have no other option that
541  *        copying the data. Tough luck.
542  *      - Destination page already exists in the address space, but there
543  *        are no users of it. Make sure it's uptodate, then drop it. Fall
544  *        through to last case.
545  *      - Destination page does not exist, we can add the pipe page to
546  *        the page cache and avoid the copy.
547  *
548  * If asked to move pages to the output file (SPLICE_F_MOVE is set in
549  * sd->flags), we attempt to migrate pages from the pipe to the output
550  * file address space page cache. This is possible if no one else has
551  * the pipe page referenced outside of the pipe and page cache. If
552  * SPLICE_F_MOVE isn't set, or we cannot move the page, we simply create
553  * a new page in the output file page cache and fill/dirty that.
554  */
555 static int pipe_to_file(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
556                         struct splice_desc *sd)
557 {
558         struct file *file = sd->file;
559         struct address_space *mapping = file->f_mapping;
560         unsigned int offset, this_len;
561         struct page *page;
562         pgoff_t index;
563         int ret;
564
565         /*
566          * make sure the data in this buffer is uptodate
567          */
568         ret = buf->ops->pin(pipe, buf);
569         if (unlikely(ret))
570                 return ret;
571
572         index = sd->pos >> PAGE_CACHE_SHIFT;
573         offset = sd->pos & ~PAGE_CACHE_MASK;
574
575         this_len = sd->len;
576         if (this_len + offset > PAGE_CACHE_SIZE)
577                 this_len = PAGE_CACHE_SIZE - offset;
578
579 find_page:
580         page = find_lock_page(mapping, index);
581         if (!page) {
582                 ret = -ENOMEM;
583                 page = page_cache_alloc_cold(mapping);
584                 if (unlikely(!page))
585                         goto out_ret;
586
587                 /*
588                  * This will also lock the page
589                  */
590                 ret = add_to_page_cache_lru(page, mapping, index,
591                                             GFP_KERNEL);
592                 if (unlikely(ret))
593                         goto out;
594         }
595
596         ret = mapping->a_ops->prepare_write(file, page, offset, offset+this_len);
597         if (unlikely(ret)) {
598                 loff_t isize = i_size_read(mapping->host);
599
600                 if (ret != AOP_TRUNCATED_PAGE)
601                         unlock_page(page);
602                 page_cache_release(page);
603                 if (ret == AOP_TRUNCATED_PAGE)
604                         goto find_page;
605
606                 /*
607                  * prepare_write() may have instantiated a few blocks
608                  * outside i_size.  Trim these off again.
609                  */
610                 if (sd->pos + this_len > isize)
611                         vmtruncate(mapping->host, isize);
612
613                 goto out_ret;
614         }
615
616         if (buf->page != page) {
617                 /*
618                  * Careful, ->map() uses KM_USER0!
619                  */
620                 char *src = buf->ops->map(pipe, buf, 1);
621                 char *dst = kmap_atomic(page, KM_USER1);
622
623                 memcpy(dst + offset, src + buf->offset, this_len);
624                 flush_dcache_page(page);
625                 kunmap_atomic(dst, KM_USER1);
626                 buf->ops->unmap(pipe, buf, src);
627         }
628
629         ret = mapping->a_ops->commit_write(file, page, offset, offset+this_len);
630         if (!ret) {
631                 /*
632                  * Return the number of bytes written and mark page as
633                  * accessed, we are now done!
634                  */
635                 ret = this_len;
636                 mark_page_accessed(page);
637                 balance_dirty_pages_ratelimited(mapping);
638         } else if (ret == AOP_TRUNCATED_PAGE) {
639                 page_cache_release(page);
640                 goto find_page;
641         }
642 out:
643         page_cache_release(page);
644         unlock_page(page);
645 out_ret:
646         return ret;
647 }
648
649 /*
650  * Pipe input worker. Most of this logic works like a regular pipe, the
651  * key here is the 'actor' worker passed in that actually moves the data
652  * to the wanted destination. See pipe_to_file/pipe_to_sendpage above.
653  */
654 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe,
655                            struct file *out, loff_t *ppos, size_t len,
656                            unsigned int flags, splice_actor *actor)
657 {
658         int ret, do_wakeup, err;
659         struct splice_desc sd;
660
661         ret = 0;
662         do_wakeup = 0;
663
664         sd.total_len = len;
665         sd.flags = flags;
666         sd.file = out;
667         sd.pos = *ppos;
668
669         for (;;) {
670                 if (pipe->nrbufs) {
671                         struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
672                         const struct pipe_buf_operations *ops = buf->ops;
673
674                         sd.len = buf->len;
675                         if (sd.len > sd.total_len)
676                                 sd.len = sd.total_len;
677
678                         err = actor(pipe, buf, &sd);
679                         if (err <= 0) {
680                                 if (!ret && err != -ENODATA)
681                                         ret = err;
682
683                                 break;
684                         }
685
686                         ret += err;
687                         buf->offset += err;
688                         buf->len -= err;
689
690                         sd.len -= err;
691                         sd.pos += err;
692                         sd.total_len -= err;
693                         if (sd.len)
694                                 continue;
695
696                         if (!buf->len) {
697                                 buf->ops = NULL;
698                                 ops->release(pipe, buf);
699                                 pipe->curbuf = (pipe->curbuf + 1) & (PIPE_BUFFERS - 1);
700                                 pipe->nrbufs--;
701                                 if (pipe->inode)
702                                         do_wakeup = 1;
703                         }
704
705                         if (!sd.total_len)
706                                 break;
707                 }
708
709                 if (pipe->nrbufs)
710                         continue;
711                 if (!pipe->writers)
712                         break;
713                 if (!pipe->waiting_writers) {
714                         if (ret)
715                                 break;
716                 }
717
718                 if (flags & SPLICE_F_NONBLOCK) {
719                         if (!ret)
720                                 ret = -EAGAIN;
721                         break;
722                 }
723
724                 if (signal_pending(current)) {
725                         if (!ret)
726                                 ret = -ERESTARTSYS;
727                         break;
728                 }
729
730                 if (do_wakeup) {
731                         smp_mb();
732                         if (waitqueue_active(&pipe->wait))
733                                 wake_up_interruptible_sync(&pipe->wait);
734                         kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
735                         do_wakeup = 0;
736                 }
737
738                 pipe_wait(pipe);
739         }
740
741         if (do_wakeup) {
742                 smp_mb();
743                 if (waitqueue_active(&pipe->wait))
744                         wake_up_interruptible(&pipe->wait);
745                 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
746         }
747
748         return ret;
749 }
750 EXPORT_SYMBOL(__splice_from_pipe);
751
752 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
753                          loff_t *ppos, size_t len, unsigned int flags,
754                          splice_actor *actor)
755 {
756         ssize_t ret;
757         struct inode *inode = out->f_mapping->host;
758
759         /*
760          * The actor worker might be calling ->prepare_write and
761          * ->commit_write. Most of the time, these expect i_mutex to
762          * be held. Since this may result in an ABBA deadlock with
763          * pipe->inode, we have to order lock acquiry here.
764          */
765         inode_double_lock(inode, pipe->inode);
766         ret = __splice_from_pipe(pipe, out, ppos, len, flags, actor);
767         inode_double_unlock(inode, pipe->inode);
768
769         return ret;
770 }
771
772 /**
773  * generic_file_splice_write_nolock - generic_file_splice_write without mutexes
774  * @pipe:       pipe info
775  * @out:        file to write to
776  * @len:        number of bytes to splice
777  * @flags:      splice modifier flags
778  *
779  * Will either move or copy pages (determined by @flags options) from
780  * the given pipe inode to the given file. The caller is responsible
781  * for acquiring i_mutex on both inodes.
782  *
783  */
784 ssize_t
785 generic_file_splice_write_nolock(struct pipe_inode_info *pipe, struct file *out,
786                                  loff_t *ppos, size_t len, unsigned int flags)
787 {
788         struct address_space *mapping = out->f_mapping;
789         struct inode *inode = mapping->host;
790         ssize_t ret;
791         int err;
792
793         err = remove_suid(out->f_path.dentry);
794         if (unlikely(err))
795                 return err;
796
797         ret = __splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_file);
798         if (ret > 0) {
799                 *ppos += ret;
800
801                 /*
802                  * If file or inode is SYNC and we actually wrote some data,
803                  * sync it.
804                  */
805                 if (unlikely((out->f_flags & O_SYNC) || IS_SYNC(inode))) {
806                         err = generic_osync_inode(inode, mapping,
807                                                   OSYNC_METADATA|OSYNC_DATA);
808
809                         if (err)
810                                 ret = err;
811                 }
812         }
813
814         return ret;
815 }
816
817 EXPORT_SYMBOL(generic_file_splice_write_nolock);
818
819 /**
820  * generic_file_splice_write - splice data from a pipe to a file
821  * @pipe:       pipe info
822  * @out:        file to write to
823  * @len:        number of bytes to splice
824  * @flags:      splice modifier flags
825  *
826  * Will either move or copy pages (determined by @flags options) from
827  * the given pipe inode to the given file.
828  *
829  */
830 ssize_t
831 generic_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
832                           loff_t *ppos, size_t len, unsigned int flags)
833 {
834         struct address_space *mapping = out->f_mapping;
835         struct inode *inode = mapping->host;
836         ssize_t ret;
837         int err;
838
839         err = should_remove_suid(out->f_path.dentry);
840         if (unlikely(err)) {
841                 mutex_lock(&inode->i_mutex);
842                 err = __remove_suid(out->f_path.dentry, err);
843                 mutex_unlock(&inode->i_mutex);
844                 if (err)
845                         return err;
846         }
847
848         ret = splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_file);
849         if (ret > 0) {
850                 *ppos += ret;
851
852                 /*
853                  * If file or inode is SYNC and we actually wrote some data,
854                  * sync it.
855                  */
856                 if (unlikely((out->f_flags & O_SYNC) || IS_SYNC(inode))) {
857                         mutex_lock(&inode->i_mutex);
858                         err = generic_osync_inode(inode, mapping,
859                                                   OSYNC_METADATA|OSYNC_DATA);
860                         mutex_unlock(&inode->i_mutex);
861
862                         if (err)
863                                 ret = err;
864                 }
865         }
866
867         return ret;
868 }
869
870 EXPORT_SYMBOL(generic_file_splice_write);
871
872 /**
873  * generic_splice_sendpage - splice data from a pipe to a socket
874  * @inode:      pipe inode
875  * @out:        socket to write to
876  * @len:        number of bytes to splice
877  * @flags:      splice modifier flags
878  *
879  * Will send @len bytes from the pipe to a network socket. No data copying
880  * is involved.
881  *
882  */
883 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
884                                 loff_t *ppos, size_t len, unsigned int flags)
885 {
886         return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
887 }
888
889 EXPORT_SYMBOL(generic_splice_sendpage);
890
891 /*
892  * Attempt to initiate a splice from pipe to file.
893  */
894 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
895                            loff_t *ppos, size_t len, unsigned int flags)
896 {
897         int ret;
898
899         if (unlikely(!out->f_op || !out->f_op->splice_write))
900                 return -EINVAL;
901
902         if (unlikely(!(out->f_mode & FMODE_WRITE)))
903                 return -EBADF;
904
905         ret = rw_verify_area(WRITE, out, ppos, len);
906         if (unlikely(ret < 0))
907                 return ret;
908
909         return out->f_op->splice_write(pipe, out, ppos, len, flags);
910 }
911
912 /*
913  * Attempt to initiate a splice from a file to a pipe.
914  */
915 static long do_splice_to(struct file *in, loff_t *ppos,
916                          struct pipe_inode_info *pipe, size_t len,
917                          unsigned int flags)
918 {
919         loff_t isize, left;
920         int ret;
921
922         if (unlikely(!in->f_op || !in->f_op->splice_read))
923                 return -EINVAL;
924
925         if (unlikely(!(in->f_mode & FMODE_READ)))
926                 return -EBADF;
927
928         ret = rw_verify_area(READ, in, ppos, len);
929         if (unlikely(ret < 0))
930                 return ret;
931
932         isize = i_size_read(in->f_mapping->host);
933         if (unlikely(*ppos >= isize))
934                 return 0;
935         
936         left = isize - *ppos;
937         if (unlikely(left < len))
938                 len = left;
939
940         return in->f_op->splice_read(in, ppos, pipe, len, flags);
941 }
942
943 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
944                       size_t len, unsigned int flags)
945 {
946         struct pipe_inode_info *pipe;
947         long ret, bytes;
948         loff_t out_off;
949         umode_t i_mode;
950         int i;
951
952         /*
953          * We require the input being a regular file, as we don't want to
954          * randomly drop data for eg socket -> socket splicing. Use the
955          * piped splicing for that!
956          */
957         i_mode = in->f_path.dentry->d_inode->i_mode;
958         if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
959                 return -EINVAL;
960
961         /*
962          * neither in nor out is a pipe, setup an internal pipe attached to
963          * 'out' and transfer the wanted data from 'in' to 'out' through that
964          */
965         pipe = current->splice_pipe;
966         if (unlikely(!pipe)) {
967                 pipe = alloc_pipe_info(NULL);
968                 if (!pipe)
969                         return -ENOMEM;
970
971                 /*
972                  * We don't have an immediate reader, but we'll read the stuff
973                  * out of the pipe right after the splice_to_pipe(). So set
974                  * PIPE_READERS appropriately.
975                  */
976                 pipe->readers = 1;
977
978                 current->splice_pipe = pipe;
979         }
980
981         /*
982          * Do the splice.
983          */
984         ret = 0;
985         bytes = 0;
986         out_off = 0;
987
988         while (len) {
989                 size_t read_len, max_read_len;
990
991                 /*
992                  * Do at most PIPE_BUFFERS pages worth of transfer:
993                  */
994                 max_read_len = min(len, (size_t)(PIPE_BUFFERS*PAGE_SIZE));
995
996                 ret = do_splice_to(in, ppos, pipe, max_read_len, flags);
997                 if (unlikely(ret < 0))
998                         goto out_release;
999
1000                 read_len = ret;
1001
1002                 /*
1003                  * NOTE: nonblocking mode only applies to the input. We
1004                  * must not do the output in nonblocking mode as then we
1005                  * could get stuck data in the internal pipe:
1006                  */
1007                 ret = do_splice_from(pipe, out, &out_off, read_len,
1008                                      flags & ~SPLICE_F_NONBLOCK);
1009                 if (unlikely(ret < 0))
1010                         goto out_release;
1011
1012                 bytes += ret;
1013                 len -= ret;
1014
1015                 /*
1016                  * In nonblocking mode, if we got back a short read then
1017                  * that was due to either an IO error or due to the
1018                  * pagecache entry not being there. In the IO error case
1019                  * the _next_ splice attempt will produce a clean IO error
1020                  * return value (not a short read), so in both cases it's
1021                  * correct to break out of the loop here:
1022                  */
1023                 if ((flags & SPLICE_F_NONBLOCK) && (read_len < max_read_len))
1024                         break;
1025         }
1026
1027         pipe->nrbufs = pipe->curbuf = 0;
1028
1029         return bytes;
1030
1031 out_release:
1032         /*
1033          * If we did an incomplete transfer we must release
1034          * the pipe buffers in question:
1035          */
1036         for (i = 0; i < PIPE_BUFFERS; i++) {
1037                 struct pipe_buffer *buf = pipe->bufs + i;
1038
1039                 if (buf->ops) {
1040                         buf->ops->release(pipe, buf);
1041                         buf->ops = NULL;
1042                 }
1043         }
1044         pipe->nrbufs = pipe->curbuf = 0;
1045
1046         /*
1047          * If we transferred some data, return the number of bytes:
1048          */
1049         if (bytes > 0)
1050                 return bytes;
1051
1052         return ret;
1053 }
1054
1055 EXPORT_SYMBOL(do_splice_direct);
1056
1057 /*
1058  * After the inode slimming patch, i_pipe/i_bdev/i_cdev share the same
1059  * location, so checking ->i_pipe is not enough to verify that this is a
1060  * pipe.
1061  */
1062 static inline struct pipe_inode_info *pipe_info(struct inode *inode)
1063 {
1064         if (S_ISFIFO(inode->i_mode))
1065                 return inode->i_pipe;
1066
1067         return NULL;
1068 }
1069
1070 /*
1071  * Determine where to splice to/from.
1072  */
1073 static long do_splice(struct file *in, loff_t __user *off_in,
1074                       struct file *out, loff_t __user *off_out,
1075                       size_t len, unsigned int flags)
1076 {
1077         struct pipe_inode_info *pipe;
1078         loff_t offset, *off;
1079         long ret;
1080
1081         pipe = pipe_info(in->f_path.dentry->d_inode);
1082         if (pipe) {
1083                 if (off_in)
1084                         return -ESPIPE;
1085                 if (off_out) {
1086                         if (out->f_op->llseek == no_llseek)
1087                                 return -EINVAL;
1088                         if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1089                                 return -EFAULT;
1090                         off = &offset;
1091                 } else
1092                         off = &out->f_pos;
1093
1094                 ret = do_splice_from(pipe, out, off, len, flags);
1095
1096                 if (off_out && copy_to_user(off_out, off, sizeof(loff_t)))
1097                         ret = -EFAULT;
1098
1099                 return ret;
1100         }
1101
1102         pipe = pipe_info(out->f_path.dentry->d_inode);
1103         if (pipe) {
1104                 if (off_out)
1105                         return -ESPIPE;
1106                 if (off_in) {
1107                         if (in->f_op->llseek == no_llseek)
1108                                 return -EINVAL;
1109                         if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1110                                 return -EFAULT;
1111                         off = &offset;
1112                 } else
1113                         off = &in->f_pos;
1114
1115                 ret = do_splice_to(in, off, pipe, len, flags);
1116
1117                 if (off_in && copy_to_user(off_in, off, sizeof(loff_t)))
1118                         ret = -EFAULT;
1119
1120                 return ret;
1121         }
1122
1123         return -EINVAL;
1124 }
1125
1126 /*
1127  * Map an iov into an array of pages and offset/length tupples. With the
1128  * partial_page structure, we can map several non-contiguous ranges into
1129  * our ones pages[] map instead of splitting that operation into pieces.
1130  * Could easily be exported as a generic helper for other users, in which
1131  * case one would probably want to add a 'max_nr_pages' parameter as well.
1132  */
1133 static int get_iovec_page_array(const struct iovec __user *iov,
1134                                 unsigned int nr_vecs, struct page **pages,
1135                                 struct partial_page *partial, int aligned)
1136 {
1137         int buffers = 0, error = 0;
1138
1139         /*
1140          * It's ok to take the mmap_sem for reading, even
1141          * across a "get_user()".
1142          */
1143         down_read(&current->mm->mmap_sem);
1144
1145         while (nr_vecs) {
1146                 unsigned long off, npages;
1147                 void __user *base;
1148                 size_t len;
1149                 int i;
1150
1151                 /*
1152                  * Get user address base and length for this iovec.
1153                  */
1154                 error = get_user(base, &iov->iov_base);
1155                 if (unlikely(error))
1156                         break;
1157                 error = get_user(len, &iov->iov_len);
1158                 if (unlikely(error))
1159                         break;
1160
1161                 /*
1162                  * Sanity check this iovec. 0 read succeeds.
1163                  */
1164                 if (unlikely(!len))
1165                         break;
1166                 error = -EFAULT;
1167                 if (unlikely(!base))
1168                         break;
1169
1170                 /*
1171                  * Get this base offset and number of pages, then map
1172                  * in the user pages.
1173                  */
1174                 off = (unsigned long) base & ~PAGE_MASK;
1175
1176                 /*
1177                  * If asked for alignment, the offset must be zero and the
1178                  * length a multiple of the PAGE_SIZE.
1179                  */
1180                 error = -EINVAL;
1181                 if (aligned && (off || len & ~PAGE_MASK))
1182                         break;
1183
1184                 npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1185                 if (npages > PIPE_BUFFERS - buffers)
1186                         npages = PIPE_BUFFERS - buffers;
1187
1188                 error = get_user_pages(current, current->mm,
1189                                        (unsigned long) base, npages, 0, 0,
1190                                        &pages[buffers], NULL);
1191
1192                 if (unlikely(error <= 0))
1193                         break;
1194
1195                 /*
1196                  * Fill this contiguous range into the partial page map.
1197                  */
1198                 for (i = 0; i < error; i++) {
1199                         const int plen = min_t(size_t, len, PAGE_SIZE - off);
1200
1201                         partial[buffers].offset = off;
1202                         partial[buffers].len = plen;
1203
1204                         off = 0;
1205                         len -= plen;
1206                         buffers++;
1207                 }
1208
1209                 /*
1210                  * We didn't complete this iov, stop here since it probably
1211                  * means we have to move some of this into a pipe to
1212                  * be able to continue.
1213                  */
1214                 if (len)
1215                         break;
1216
1217                 /*
1218                  * Don't continue if we mapped fewer pages than we asked for,
1219                  * or if we mapped the max number of pages that we have
1220                  * room for.
1221                  */
1222                 if (error < npages || buffers == PIPE_BUFFERS)
1223                         break;
1224
1225                 nr_vecs--;
1226                 iov++;
1227         }
1228
1229         up_read(&current->mm->mmap_sem);
1230
1231         if (buffers)
1232                 return buffers;
1233
1234         return error;
1235 }
1236
1237 /*
1238  * vmsplice splices a user address range into a pipe. It can be thought of
1239  * as splice-from-memory, where the regular splice is splice-from-file (or
1240  * to file). In both cases the output is a pipe, naturally.
1241  *
1242  * Note that vmsplice only supports splicing _from_ user memory to a pipe,
1243  * not the other way around. Splicing from user memory is a simple operation
1244  * that can be supported without any funky alignment restrictions or nasty
1245  * vm tricks. We simply map in the user memory and fill them into a pipe.
1246  * The reverse isn't quite as easy, though. There are two possible solutions
1247  * for that:
1248  *
1249  *      - memcpy() the data internally, at which point we might as well just
1250  *        do a regular read() on the buffer anyway.
1251  *      - Lots of nasty vm tricks, that are neither fast nor flexible (it
1252  *        has restriction limitations on both ends of the pipe).
1253  *
1254  * Alas, it isn't here.
1255  *
1256  */
1257 static long do_vmsplice(struct file *file, const struct iovec __user *iov,
1258                         unsigned long nr_segs, unsigned int flags)
1259 {
1260         struct pipe_inode_info *pipe;
1261         struct page *pages[PIPE_BUFFERS];
1262         struct partial_page partial[PIPE_BUFFERS];
1263         struct splice_pipe_desc spd = {
1264                 .pages = pages,
1265                 .partial = partial,
1266                 .flags = flags,
1267                 .ops = &user_page_pipe_buf_ops,
1268         };
1269
1270         pipe = pipe_info(file->f_path.dentry->d_inode);
1271         if (!pipe)
1272                 return -EBADF;
1273         if (unlikely(nr_segs > UIO_MAXIOV))
1274                 return -EINVAL;
1275         else if (unlikely(!nr_segs))
1276                 return 0;
1277
1278         spd.nr_pages = get_iovec_page_array(iov, nr_segs, pages, partial,
1279                                             flags & SPLICE_F_GIFT);
1280         if (spd.nr_pages <= 0)
1281                 return spd.nr_pages;
1282
1283         return splice_to_pipe(pipe, &spd);
1284 }
1285
1286 asmlinkage long sys_vmsplice(int fd, const struct iovec __user *iov,
1287                              unsigned long nr_segs, unsigned int flags)
1288 {
1289         struct file *file;
1290         long error;
1291         int fput;
1292
1293         error = -EBADF;
1294         file = fget_light(fd, &fput);
1295         if (file) {
1296                 if (file->f_mode & FMODE_WRITE)
1297                         error = do_vmsplice(file, iov, nr_segs, flags);
1298
1299                 fput_light(file, fput);
1300         }
1301
1302         return error;
1303 }
1304
1305 asmlinkage long sys_splice(int fd_in, loff_t __user *off_in,
1306                            int fd_out, loff_t __user *off_out,
1307                            size_t len, unsigned int flags)
1308 {
1309         long error;
1310         struct file *in, *out;
1311         int fput_in, fput_out;
1312
1313         if (unlikely(!len))
1314                 return 0;
1315
1316         error = -EBADF;
1317         in = fget_light(fd_in, &fput_in);
1318         if (in) {
1319                 if (in->f_mode & FMODE_READ) {
1320                         out = fget_light(fd_out, &fput_out);
1321                         if (out) {
1322                                 if (out->f_mode & FMODE_WRITE)
1323                                         error = do_splice(in, off_in,
1324                                                           out, off_out,
1325                                                           len, flags);
1326                                 fput_light(out, fput_out);
1327                         }
1328                 }
1329
1330                 fput_light(in, fput_in);
1331         }
1332
1333         return error;
1334 }
1335
1336 /*
1337  * Make sure there's data to read. Wait for input if we can, otherwise
1338  * return an appropriate error.
1339  */
1340 static int link_ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1341 {
1342         int ret;
1343
1344         /*
1345          * Check ->nrbufs without the inode lock first. This function
1346          * is speculative anyways, so missing one is ok.
1347          */
1348         if (pipe->nrbufs)
1349                 return 0;
1350
1351         ret = 0;
1352         mutex_lock(&pipe->inode->i_mutex);
1353
1354         while (!pipe->nrbufs) {
1355                 if (signal_pending(current)) {
1356                         ret = -ERESTARTSYS;
1357                         break;
1358                 }
1359                 if (!pipe->writers)
1360                         break;
1361                 if (!pipe->waiting_writers) {
1362                         if (flags & SPLICE_F_NONBLOCK) {
1363                                 ret = -EAGAIN;
1364                                 break;
1365                         }
1366                 }
1367                 pipe_wait(pipe);
1368         }
1369
1370         mutex_unlock(&pipe->inode->i_mutex);
1371         return ret;
1372 }
1373
1374 /*
1375  * Make sure there's writeable room. Wait for room if we can, otherwise
1376  * return an appropriate error.
1377  */
1378 static int link_opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1379 {
1380         int ret;
1381
1382         /*
1383          * Check ->nrbufs without the inode lock first. This function
1384          * is speculative anyways, so missing one is ok.
1385          */
1386         if (pipe->nrbufs < PIPE_BUFFERS)
1387                 return 0;
1388
1389         ret = 0;
1390         mutex_lock(&pipe->inode->i_mutex);
1391
1392         while (pipe->nrbufs >= PIPE_BUFFERS) {
1393                 if (!pipe->readers) {
1394                         send_sig(SIGPIPE, current, 0);
1395                         ret = -EPIPE;
1396                         break;
1397                 }
1398                 if (flags & SPLICE_F_NONBLOCK) {
1399                         ret = -EAGAIN;
1400                         break;
1401                 }
1402                 if (signal_pending(current)) {
1403                         ret = -ERESTARTSYS;
1404                         break;
1405                 }
1406                 pipe->waiting_writers++;
1407                 pipe_wait(pipe);
1408                 pipe->waiting_writers--;
1409         }
1410
1411         mutex_unlock(&pipe->inode->i_mutex);
1412         return ret;
1413 }
1414
1415 /*
1416  * Link contents of ipipe to opipe.
1417  */
1418 static int link_pipe(struct pipe_inode_info *ipipe,
1419                      struct pipe_inode_info *opipe,
1420                      size_t len, unsigned int flags)
1421 {
1422         struct pipe_buffer *ibuf, *obuf;
1423         int ret = 0, i = 0, nbuf;
1424
1425         /*
1426          * Potential ABBA deadlock, work around it by ordering lock
1427          * grabbing by inode address. Otherwise two different processes
1428          * could deadlock (one doing tee from A -> B, the other from B -> A).
1429          */
1430         inode_double_lock(ipipe->inode, opipe->inode);
1431
1432         do {
1433                 if (!opipe->readers) {
1434                         send_sig(SIGPIPE, current, 0);
1435                         if (!ret)
1436                                 ret = -EPIPE;
1437                         break;
1438                 }
1439
1440                 /*
1441                  * If we have iterated all input buffers or ran out of
1442                  * output room, break.
1443                  */
1444                 if (i >= ipipe->nrbufs || opipe->nrbufs >= PIPE_BUFFERS)
1445                         break;
1446
1447                 ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (PIPE_BUFFERS - 1));
1448                 nbuf = (opipe->curbuf + opipe->nrbufs) & (PIPE_BUFFERS - 1);
1449
1450                 /*
1451                  * Get a reference to this pipe buffer,
1452                  * so we can copy the contents over.
1453                  */
1454                 ibuf->ops->get(ipipe, ibuf);
1455
1456                 obuf = opipe->bufs + nbuf;
1457                 *obuf = *ibuf;
1458
1459                 /*
1460                  * Don't inherit the gift flag, we need to
1461                  * prevent multiple steals of this page.
1462                  */
1463                 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1464
1465                 if (obuf->len > len)
1466                         obuf->len = len;
1467
1468                 opipe->nrbufs++;
1469                 ret += obuf->len;
1470                 len -= obuf->len;
1471                 i++;
1472         } while (len);
1473
1474         inode_double_unlock(ipipe->inode, opipe->inode);
1475
1476         /*
1477          * If we put data in the output pipe, wakeup any potential readers.
1478          */
1479         if (ret > 0) {
1480                 smp_mb();
1481                 if (waitqueue_active(&opipe->wait))
1482                         wake_up_interruptible(&opipe->wait);
1483                 kill_fasync(&opipe->fasync_readers, SIGIO, POLL_IN);
1484         }
1485
1486         return ret;
1487 }
1488
1489 /*
1490  * This is a tee(1) implementation that works on pipes. It doesn't copy
1491  * any data, it simply references the 'in' pages on the 'out' pipe.
1492  * The 'flags' used are the SPLICE_F_* variants, currently the only
1493  * applicable one is SPLICE_F_NONBLOCK.
1494  */
1495 static long do_tee(struct file *in, struct file *out, size_t len,
1496                    unsigned int flags)
1497 {
1498         struct pipe_inode_info *ipipe = pipe_info(in->f_path.dentry->d_inode);
1499         struct pipe_inode_info *opipe = pipe_info(out->f_path.dentry->d_inode);
1500         int ret = -EINVAL;
1501
1502         /*
1503          * Duplicate the contents of ipipe to opipe without actually
1504          * copying the data.
1505          */
1506         if (ipipe && opipe && ipipe != opipe) {
1507                 /*
1508                  * Keep going, unless we encounter an error. The ipipe/opipe
1509                  * ordering doesn't really matter.
1510                  */
1511                 ret = link_ipipe_prep(ipipe, flags);
1512                 if (!ret) {
1513                         ret = link_opipe_prep(opipe, flags);
1514                         if (!ret) {
1515                                 ret = link_pipe(ipipe, opipe, len, flags);
1516                                 if (!ret && (flags & SPLICE_F_NONBLOCK))
1517                                         ret = -EAGAIN;
1518                         }
1519                 }
1520         }
1521
1522         return ret;
1523 }
1524
1525 asmlinkage long sys_tee(int fdin, int fdout, size_t len, unsigned int flags)
1526 {
1527         struct file *in;
1528         int error, fput_in;
1529
1530         if (unlikely(!len))
1531                 return 0;
1532
1533         error = -EBADF;
1534         in = fget_light(fdin, &fput_in);
1535         if (in) {
1536                 if (in->f_mode & FMODE_READ) {
1537                         int fput_out;
1538                         struct file *out = fget_light(fdout, &fput_out);
1539
1540                         if (out) {
1541                                 if (out->f_mode & FMODE_WRITE)
1542                                         error = do_tee(in, out, len, flags);
1543                                 fput_light(out, fput_out);
1544                         }
1545                 }
1546                 fput_light(in, fput_in);
1547         }
1548
1549         return error;
1550 }