Input: I8042 - add Acer Aspire 7738 to the nomux list
[pandora-kernel.git] / fs / splice.c
1 /*
2  * "splice": joining two ropes together by interweaving their strands.
3  *
4  * This is the "extended pipe" functionality, where a pipe is used as
5  * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6  * buffer that you can use to transfer data from one end to the other.
7  *
8  * The traditional unix read/write is extended with a "splice()" operation
9  * that transfers data buffers to or from a pipe buffer.
10  *
11  * Named by Larry McVoy, original implementation from Linus, extended by
12  * Jens to support splicing to files, network, direct splicing, etc and
13  * fixing lots of bugs.
14  *
15  * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16  * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17  * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
18  *
19  */
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/pagemap.h>
23 #include <linux/splice.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm_inline.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/buffer_head.h>
29 #include <linux/module.h>
30 #include <linux/syscalls.h>
31 #include <linux/uio.h>
32 #include <linux/security.h>
33 #include <linux/gfp.h>
34 #include <linux/socket.h>
35
36 /*
37  * Attempt to steal a page from a pipe buffer. This should perhaps go into
38  * a vm helper function, it's already simplified quite a bit by the
39  * addition of remove_mapping(). If success is returned, the caller may
40  * attempt to reuse this page for another destination.
41  */
42 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
43                                      struct pipe_buffer *buf)
44 {
45         struct page *page = buf->page;
46         struct address_space *mapping;
47
48         lock_page(page);
49
50         mapping = page_mapping(page);
51         if (mapping) {
52                 WARN_ON(!PageUptodate(page));
53
54                 /*
55                  * At least for ext2 with nobh option, we need to wait on
56                  * writeback completing on this page, since we'll remove it
57                  * from the pagecache.  Otherwise truncate wont wait on the
58                  * page, allowing the disk blocks to be reused by someone else
59                  * before we actually wrote our data to them. fs corruption
60                  * ensues.
61                  */
62                 wait_on_page_writeback(page);
63
64                 if (page_has_private(page) &&
65                     !try_to_release_page(page, GFP_KERNEL))
66                         goto out_unlock;
67
68                 /*
69                  * If we succeeded in removing the mapping, set LRU flag
70                  * and return good.
71                  */
72                 if (remove_mapping(mapping, page)) {
73                         buf->flags |= PIPE_BUF_FLAG_LRU;
74                         return 0;
75                 }
76         }
77
78         /*
79          * Raced with truncate or failed to remove page from current
80          * address space, unlock and return failure.
81          */
82 out_unlock:
83         unlock_page(page);
84         return 1;
85 }
86
87 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
88                                         struct pipe_buffer *buf)
89 {
90         page_cache_release(buf->page);
91         buf->flags &= ~PIPE_BUF_FLAG_LRU;
92 }
93
94 /*
95  * Check whether the contents of buf is OK to access. Since the content
96  * is a page cache page, IO may be in flight.
97  */
98 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
99                                        struct pipe_buffer *buf)
100 {
101         struct page *page = buf->page;
102         int err;
103
104         if (!PageUptodate(page)) {
105                 lock_page(page);
106
107                 /*
108                  * Page got truncated/unhashed. This will cause a 0-byte
109                  * splice, if this is the first page.
110                  */
111                 if (!page->mapping) {
112                         err = -ENODATA;
113                         goto error;
114                 }
115
116                 /*
117                  * Uh oh, read-error from disk.
118                  */
119                 if (!PageUptodate(page)) {
120                         err = -EIO;
121                         goto error;
122                 }
123
124                 /*
125                  * Page is ok afterall, we are done.
126                  */
127                 unlock_page(page);
128         }
129
130         return 0;
131 error:
132         unlock_page(page);
133         return err;
134 }
135
136 const struct pipe_buf_operations page_cache_pipe_buf_ops = {
137         .can_merge = 0,
138         .map = generic_pipe_buf_map,
139         .unmap = generic_pipe_buf_unmap,
140         .confirm = page_cache_pipe_buf_confirm,
141         .release = page_cache_pipe_buf_release,
142         .steal = page_cache_pipe_buf_steal,
143         .get = generic_pipe_buf_get,
144 };
145
146 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
147                                     struct pipe_buffer *buf)
148 {
149         if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
150                 return 1;
151
152         buf->flags |= PIPE_BUF_FLAG_LRU;
153         return generic_pipe_buf_steal(pipe, buf);
154 }
155
156 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
157         .can_merge = 0,
158         .map = generic_pipe_buf_map,
159         .unmap = generic_pipe_buf_unmap,
160         .confirm = generic_pipe_buf_confirm,
161         .release = page_cache_pipe_buf_release,
162         .steal = user_page_pipe_buf_steal,
163         .get = generic_pipe_buf_get,
164 };
165
166 static void wakeup_pipe_readers(struct pipe_inode_info *pipe)
167 {
168         smp_mb();
169         if (waitqueue_active(&pipe->wait))
170                 wake_up_interruptible(&pipe->wait);
171         kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
172 }
173
174 /**
175  * splice_to_pipe - fill passed data into a pipe
176  * @pipe:       pipe to fill
177  * @spd:        data to fill
178  *
179  * Description:
180  *    @spd contains a map of pages and len/offset tuples, along with
181  *    the struct pipe_buf_operations associated with these pages. This
182  *    function will link that data to the pipe.
183  *
184  */
185 ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
186                        struct splice_pipe_desc *spd)
187 {
188         unsigned int spd_pages = spd->nr_pages;
189         int ret, do_wakeup, page_nr;
190
191         ret = 0;
192         do_wakeup = 0;
193         page_nr = 0;
194
195         pipe_lock(pipe);
196
197         for (;;) {
198                 if (!pipe->readers) {
199                         send_sig(SIGPIPE, current, 0);
200                         if (!ret)
201                                 ret = -EPIPE;
202                         break;
203                 }
204
205                 if (pipe->nrbufs < pipe->buffers) {
206                         int newbuf = (pipe->curbuf + pipe->nrbufs) & (pipe->buffers - 1);
207                         struct pipe_buffer *buf = pipe->bufs + newbuf;
208
209                         buf->page = spd->pages[page_nr];
210                         buf->offset = spd->partial[page_nr].offset;
211                         buf->len = spd->partial[page_nr].len;
212                         buf->private = spd->partial[page_nr].private;
213                         buf->ops = spd->ops;
214                         if (spd->flags & SPLICE_F_GIFT)
215                                 buf->flags |= PIPE_BUF_FLAG_GIFT;
216
217                         pipe->nrbufs++;
218                         page_nr++;
219                         ret += buf->len;
220
221                         if (pipe->inode)
222                                 do_wakeup = 1;
223
224                         if (!--spd->nr_pages)
225                                 break;
226                         if (pipe->nrbufs < pipe->buffers)
227                                 continue;
228
229                         break;
230                 }
231
232                 if (spd->flags & SPLICE_F_NONBLOCK) {
233                         if (!ret)
234                                 ret = -EAGAIN;
235                         break;
236                 }
237
238                 if (signal_pending(current)) {
239                         if (!ret)
240                                 ret = -ERESTARTSYS;
241                         break;
242                 }
243
244                 if (do_wakeup) {
245                         smp_mb();
246                         if (waitqueue_active(&pipe->wait))
247                                 wake_up_interruptible_sync(&pipe->wait);
248                         kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
249                         do_wakeup = 0;
250                 }
251
252                 pipe->waiting_writers++;
253                 pipe_wait(pipe);
254                 pipe->waiting_writers--;
255         }
256
257         pipe_unlock(pipe);
258
259         if (do_wakeup)
260                 wakeup_pipe_readers(pipe);
261
262         while (page_nr < spd_pages)
263                 spd->spd_release(spd, page_nr++);
264
265         return ret;
266 }
267
268 void spd_release_page(struct splice_pipe_desc *spd, unsigned int i)
269 {
270         page_cache_release(spd->pages[i]);
271 }
272
273 /*
274  * Check if we need to grow the arrays holding pages and partial page
275  * descriptions.
276  */
277 int splice_grow_spd(const struct pipe_inode_info *pipe, struct splice_pipe_desc *spd)
278 {
279         unsigned int buffers = ACCESS_ONCE(pipe->buffers);
280
281         spd->nr_pages_max = buffers;
282         if (buffers <= PIPE_DEF_BUFFERS)
283                 return 0;
284
285         spd->pages = kmalloc(buffers * sizeof(struct page *), GFP_KERNEL);
286         spd->partial = kmalloc(buffers * sizeof(struct partial_page), GFP_KERNEL);
287
288         if (spd->pages && spd->partial)
289                 return 0;
290
291         kfree(spd->pages);
292         kfree(spd->partial);
293         return -ENOMEM;
294 }
295
296 void splice_shrink_spd(struct splice_pipe_desc *spd)
297 {
298         if (spd->nr_pages_max <= PIPE_DEF_BUFFERS)
299                 return;
300
301         kfree(spd->pages);
302         kfree(spd->partial);
303 }
304
305 static int
306 __generic_file_splice_read(struct file *in, loff_t *ppos,
307                            struct pipe_inode_info *pipe, size_t len,
308                            unsigned int flags)
309 {
310         struct address_space *mapping = in->f_mapping;
311         unsigned int loff, nr_pages, req_pages;
312         struct page *pages[PIPE_DEF_BUFFERS];
313         struct partial_page partial[PIPE_DEF_BUFFERS];
314         struct page *page;
315         pgoff_t index, end_index;
316         loff_t isize;
317         int error, page_nr;
318         struct splice_pipe_desc spd = {
319                 .pages = pages,
320                 .partial = partial,
321                 .nr_pages_max = PIPE_DEF_BUFFERS,
322                 .flags = flags,
323                 .ops = &page_cache_pipe_buf_ops,
324                 .spd_release = spd_release_page,
325         };
326
327         if (splice_grow_spd(pipe, &spd))
328                 return -ENOMEM;
329
330         index = *ppos >> PAGE_CACHE_SHIFT;
331         loff = *ppos & ~PAGE_CACHE_MASK;
332         req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
333         nr_pages = min(req_pages, spd.nr_pages_max);
334
335         /*
336          * Lookup the (hopefully) full range of pages we need.
337          */
338         spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, spd.pages);
339         index += spd.nr_pages;
340
341         /*
342          * If find_get_pages_contig() returned fewer pages than we needed,
343          * readahead/allocate the rest and fill in the holes.
344          */
345         if (spd.nr_pages < nr_pages)
346                 page_cache_sync_readahead(mapping, &in->f_ra, in,
347                                 index, req_pages - spd.nr_pages);
348
349         error = 0;
350         while (spd.nr_pages < nr_pages) {
351                 /*
352                  * Page could be there, find_get_pages_contig() breaks on
353                  * the first hole.
354                  */
355                 page = find_get_page(mapping, index);
356                 if (!page) {
357                         /*
358                          * page didn't exist, allocate one.
359                          */
360                         page = page_cache_alloc_cold(mapping);
361                         if (!page)
362                                 break;
363
364                         error = add_to_page_cache_lru(page, mapping, index,
365                                                 GFP_KERNEL);
366                         if (unlikely(error)) {
367                                 page_cache_release(page);
368                                 if (error == -EEXIST)
369                                         continue;
370                                 break;
371                         }
372                         /*
373                          * add_to_page_cache() locks the page, unlock it
374                          * to avoid convoluting the logic below even more.
375                          */
376                         unlock_page(page);
377                 }
378
379                 spd.pages[spd.nr_pages++] = page;
380                 index++;
381         }
382
383         /*
384          * Now loop over the map and see if we need to start IO on any
385          * pages, fill in the partial map, etc.
386          */
387         index = *ppos >> PAGE_CACHE_SHIFT;
388         nr_pages = spd.nr_pages;
389         spd.nr_pages = 0;
390         for (page_nr = 0; page_nr < nr_pages; page_nr++) {
391                 unsigned int this_len;
392
393                 if (!len)
394                         break;
395
396                 /*
397                  * this_len is the max we'll use from this page
398                  */
399                 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
400                 page = spd.pages[page_nr];
401
402                 if (PageReadahead(page))
403                         page_cache_async_readahead(mapping, &in->f_ra, in,
404                                         page, index, req_pages - page_nr);
405
406                 /*
407                  * If the page isn't uptodate, we may need to start io on it
408                  */
409                 if (!PageUptodate(page)) {
410                         lock_page(page);
411
412                         /*
413                          * Page was truncated, or invalidated by the
414                          * filesystem.  Redo the find/create, but this time the
415                          * page is kept locked, so there's no chance of another
416                          * race with truncate/invalidate.
417                          */
418                         if (!page->mapping) {
419                                 unlock_page(page);
420                                 page = find_or_create_page(mapping, index,
421                                                 mapping_gfp_mask(mapping));
422
423                                 if (!page) {
424                                         error = -ENOMEM;
425                                         break;
426                                 }
427                                 page_cache_release(spd.pages[page_nr]);
428                                 spd.pages[page_nr] = page;
429                         }
430                         /*
431                          * page was already under io and is now done, great
432                          */
433                         if (PageUptodate(page)) {
434                                 unlock_page(page);
435                                 goto fill_it;
436                         }
437
438                         /*
439                          * need to read in the page
440                          */
441                         error = mapping->a_ops->readpage(in, page);
442                         if (unlikely(error)) {
443                                 /*
444                                  * We really should re-lookup the page here,
445                                  * but it complicates things a lot. Instead
446                                  * lets just do what we already stored, and
447                                  * we'll get it the next time we are called.
448                                  */
449                                 if (error == AOP_TRUNCATED_PAGE)
450                                         error = 0;
451
452                                 break;
453                         }
454                 }
455 fill_it:
456                 /*
457                  * i_size must be checked after PageUptodate.
458                  */
459                 isize = i_size_read(mapping->host);
460                 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
461                 if (unlikely(!isize || index > end_index))
462                         break;
463
464                 /*
465                  * if this is the last page, see if we need to shrink
466                  * the length and stop
467                  */
468                 if (end_index == index) {
469                         unsigned int plen;
470
471                         /*
472                          * max good bytes in this page
473                          */
474                         plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
475                         if (plen <= loff)
476                                 break;
477
478                         /*
479                          * force quit after adding this page
480                          */
481                         this_len = min(this_len, plen - loff);
482                         len = this_len;
483                 }
484
485                 spd.partial[page_nr].offset = loff;
486                 spd.partial[page_nr].len = this_len;
487                 len -= this_len;
488                 loff = 0;
489                 spd.nr_pages++;
490                 index++;
491         }
492
493         /*
494          * Release any pages at the end, if we quit early. 'page_nr' is how far
495          * we got, 'nr_pages' is how many pages are in the map.
496          */
497         while (page_nr < nr_pages)
498                 page_cache_release(spd.pages[page_nr++]);
499         in->f_ra.prev_pos = (loff_t)index << PAGE_CACHE_SHIFT;
500
501         if (spd.nr_pages)
502                 error = splice_to_pipe(pipe, &spd);
503
504         splice_shrink_spd(&spd);
505         return error;
506 }
507
508 /**
509  * generic_file_splice_read - splice data from file to a pipe
510  * @in:         file to splice from
511  * @ppos:       position in @in
512  * @pipe:       pipe to splice to
513  * @len:        number of bytes to splice
514  * @flags:      splice modifier flags
515  *
516  * Description:
517  *    Will read pages from given file and fill them into a pipe. Can be
518  *    used as long as the address_space operations for the source implements
519  *    a readpage() hook.
520  *
521  */
522 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
523                                  struct pipe_inode_info *pipe, size_t len,
524                                  unsigned int flags)
525 {
526         loff_t isize, left;
527         int ret;
528
529         isize = i_size_read(in->f_mapping->host);
530         if (unlikely(*ppos >= isize))
531                 return 0;
532
533         left = isize - *ppos;
534         if (unlikely(left < len))
535                 len = left;
536
537         ret = __generic_file_splice_read(in, ppos, pipe, len, flags);
538         if (ret > 0) {
539                 *ppos += ret;
540                 file_accessed(in);
541         }
542
543         return ret;
544 }
545 EXPORT_SYMBOL(generic_file_splice_read);
546
547 static const struct pipe_buf_operations default_pipe_buf_ops = {
548         .can_merge = 0,
549         .map = generic_pipe_buf_map,
550         .unmap = generic_pipe_buf_unmap,
551         .confirm = generic_pipe_buf_confirm,
552         .release = generic_pipe_buf_release,
553         .steal = generic_pipe_buf_steal,
554         .get = generic_pipe_buf_get,
555 };
556
557 static int generic_pipe_buf_nosteal(struct pipe_inode_info *pipe,
558                                     struct pipe_buffer *buf)
559 {
560         return 1;
561 }
562
563 /* Pipe buffer operations for a socket and similar. */
564 const struct pipe_buf_operations nosteal_pipe_buf_ops = {
565         .can_merge = 0,
566         .map = generic_pipe_buf_map,
567         .unmap = generic_pipe_buf_unmap,
568         .confirm = generic_pipe_buf_confirm,
569         .release = generic_pipe_buf_release,
570         .steal = generic_pipe_buf_nosteal,
571         .get = generic_pipe_buf_get,
572 };
573 EXPORT_SYMBOL(nosteal_pipe_buf_ops);
574
575 static ssize_t kernel_readv(struct file *file, const struct iovec *vec,
576                             unsigned long vlen, loff_t offset)
577 {
578         mm_segment_t old_fs;
579         loff_t pos = offset;
580         ssize_t res;
581
582         old_fs = get_fs();
583         set_fs(get_ds());
584         /* The cast to a user pointer is valid due to the set_fs() */
585         res = vfs_readv(file, (const struct iovec __user *)vec, vlen, &pos);
586         set_fs(old_fs);
587
588         return res;
589 }
590
591 static ssize_t kernel_write(struct file *file, const char *buf, size_t count,
592                             loff_t pos)
593 {
594         mm_segment_t old_fs;
595         ssize_t res;
596
597         old_fs = get_fs();
598         set_fs(get_ds());
599         /* The cast to a user pointer is valid due to the set_fs() */
600         res = vfs_write(file, (const char __user *)buf, count, &pos);
601         set_fs(old_fs);
602
603         return res;
604 }
605
606 ssize_t default_file_splice_read(struct file *in, loff_t *ppos,
607                                  struct pipe_inode_info *pipe, size_t len,
608                                  unsigned int flags)
609 {
610         unsigned int nr_pages;
611         unsigned int nr_freed;
612         size_t offset;
613         struct page *pages[PIPE_DEF_BUFFERS];
614         struct partial_page partial[PIPE_DEF_BUFFERS];
615         struct iovec *vec, __vec[PIPE_DEF_BUFFERS];
616         ssize_t res;
617         size_t this_len;
618         int error;
619         int i;
620         struct splice_pipe_desc spd = {
621                 .pages = pages,
622                 .partial = partial,
623                 .nr_pages_max = PIPE_DEF_BUFFERS,
624                 .flags = flags,
625                 .ops = &default_pipe_buf_ops,
626                 .spd_release = spd_release_page,
627         };
628
629         if (splice_grow_spd(pipe, &spd))
630                 return -ENOMEM;
631
632         res = -ENOMEM;
633         vec = __vec;
634         if (spd.nr_pages_max > PIPE_DEF_BUFFERS) {
635                 vec = kmalloc(spd.nr_pages_max * sizeof(struct iovec), GFP_KERNEL);
636                 if (!vec)
637                         goto shrink_ret;
638         }
639
640         offset = *ppos & ~PAGE_CACHE_MASK;
641         nr_pages = (len + offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
642
643         for (i = 0; i < nr_pages && i < spd.nr_pages_max && len; i++) {
644                 struct page *page;
645
646                 page = alloc_page(GFP_USER);
647                 error = -ENOMEM;
648                 if (!page)
649                         goto err;
650
651                 this_len = min_t(size_t, len, PAGE_CACHE_SIZE - offset);
652                 vec[i].iov_base = (void __user *) page_address(page);
653                 vec[i].iov_len = this_len;
654                 spd.pages[i] = page;
655                 spd.nr_pages++;
656                 len -= this_len;
657                 offset = 0;
658         }
659
660         res = kernel_readv(in, vec, spd.nr_pages, *ppos);
661         if (res < 0) {
662                 error = res;
663                 goto err;
664         }
665
666         error = 0;
667         if (!res)
668                 goto err;
669
670         nr_freed = 0;
671         for (i = 0; i < spd.nr_pages; i++) {
672                 this_len = min_t(size_t, vec[i].iov_len, res);
673                 spd.partial[i].offset = 0;
674                 spd.partial[i].len = this_len;
675                 if (!this_len) {
676                         __free_page(spd.pages[i]);
677                         spd.pages[i] = NULL;
678                         nr_freed++;
679                 }
680                 res -= this_len;
681         }
682         spd.nr_pages -= nr_freed;
683
684         res = splice_to_pipe(pipe, &spd);
685         if (res > 0)
686                 *ppos += res;
687
688 shrink_ret:
689         if (vec != __vec)
690                 kfree(vec);
691         splice_shrink_spd(&spd);
692         return res;
693
694 err:
695         for (i = 0; i < spd.nr_pages; i++)
696                 __free_page(spd.pages[i]);
697
698         res = error;
699         goto shrink_ret;
700 }
701 EXPORT_SYMBOL(default_file_splice_read);
702
703 /*
704  * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
705  * using sendpage(). Return the number of bytes sent.
706  */
707 static int pipe_to_sendpage(struct pipe_inode_info *pipe,
708                             struct pipe_buffer *buf, struct splice_desc *sd)
709 {
710         struct file *file = sd->u.file;
711         loff_t pos = sd->pos;
712         int more;
713
714         if (!likely(file->f_op && file->f_op->sendpage))
715                 return -EINVAL;
716
717         more = (sd->flags & SPLICE_F_MORE) ? MSG_MORE : 0;
718
719         if (sd->len < sd->total_len && pipe->nrbufs > 1)
720                 more |= MSG_SENDPAGE_NOTLAST;
721
722         return file->f_op->sendpage(file, buf->page, buf->offset,
723                                     sd->len, &pos, more);
724 }
725
726 /*
727  * This is a little more tricky than the file -> pipe splicing. There are
728  * basically three cases:
729  *
730  *      - Destination page already exists in the address space and there
731  *        are users of it. For that case we have no other option that
732  *        copying the data. Tough luck.
733  *      - Destination page already exists in the address space, but there
734  *        are no users of it. Make sure it's uptodate, then drop it. Fall
735  *        through to last case.
736  *      - Destination page does not exist, we can add the pipe page to
737  *        the page cache and avoid the copy.
738  *
739  * If asked to move pages to the output file (SPLICE_F_MOVE is set in
740  * sd->flags), we attempt to migrate pages from the pipe to the output
741  * file address space page cache. This is possible if no one else has
742  * the pipe page referenced outside of the pipe and page cache. If
743  * SPLICE_F_MOVE isn't set, or we cannot move the page, we simply create
744  * a new page in the output file page cache and fill/dirty that.
745  */
746 int pipe_to_file(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
747                  struct splice_desc *sd)
748 {
749         struct file *file = sd->u.file;
750         struct address_space *mapping = file->f_mapping;
751         unsigned int offset, this_len;
752         struct page *page;
753         void *fsdata;
754         int ret;
755
756         offset = sd->pos & ~PAGE_CACHE_MASK;
757
758         this_len = sd->len;
759         if (this_len + offset > PAGE_CACHE_SIZE)
760                 this_len = PAGE_CACHE_SIZE - offset;
761
762         ret = pagecache_write_begin(file, mapping, sd->pos, this_len,
763                                 AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
764         if (unlikely(ret))
765                 goto out;
766
767         if (buf->page != page) {
768                 /*
769                  * Careful, ->map() uses KM_USER0!
770                  */
771                 char *src = buf->ops->map(pipe, buf, 1);
772                 char *dst = kmap_atomic(page, KM_USER1);
773
774                 memcpy(dst + offset, src + buf->offset, this_len);
775                 flush_dcache_page(page);
776                 kunmap_atomic(dst, KM_USER1);
777                 buf->ops->unmap(pipe, buf, src);
778         }
779         ret = pagecache_write_end(file, mapping, sd->pos, this_len, this_len,
780                                 page, fsdata);
781 out:
782         return ret;
783 }
784 EXPORT_SYMBOL(pipe_to_file);
785
786 static void wakeup_pipe_writers(struct pipe_inode_info *pipe)
787 {
788         smp_mb();
789         if (waitqueue_active(&pipe->wait))
790                 wake_up_interruptible(&pipe->wait);
791         kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
792 }
793
794 /**
795  * splice_from_pipe_feed - feed available data from a pipe to a file
796  * @pipe:       pipe to splice from
797  * @sd:         information to @actor
798  * @actor:      handler that splices the data
799  *
800  * Description:
801  *    This function loops over the pipe and calls @actor to do the
802  *    actual moving of a single struct pipe_buffer to the desired
803  *    destination.  It returns when there's no more buffers left in
804  *    the pipe or if the requested number of bytes (@sd->total_len)
805  *    have been copied.  It returns a positive number (one) if the
806  *    pipe needs to be filled with more data, zero if the required
807  *    number of bytes have been copied and -errno on error.
808  *
809  *    This, together with splice_from_pipe_{begin,end,next}, may be
810  *    used to implement the functionality of __splice_from_pipe() when
811  *    locking is required around copying the pipe buffers to the
812  *    destination.
813  */
814 int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd,
815                           splice_actor *actor)
816 {
817         int ret;
818
819         while (pipe->nrbufs) {
820                 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
821                 const struct pipe_buf_operations *ops = buf->ops;
822
823                 sd->len = buf->len;
824                 if (sd->len > sd->total_len)
825                         sd->len = sd->total_len;
826
827                 ret = buf->ops->confirm(pipe, buf);
828                 if (unlikely(ret)) {
829                         if (ret == -ENODATA)
830                                 ret = 0;
831                         return ret;
832                 }
833
834                 ret = actor(pipe, buf, sd);
835                 if (ret <= 0)
836                         return ret;
837
838                 buf->offset += ret;
839                 buf->len -= ret;
840
841                 sd->num_spliced += ret;
842                 sd->len -= ret;
843                 sd->pos += ret;
844                 sd->total_len -= ret;
845
846                 if (!buf->len) {
847                         buf->ops = NULL;
848                         ops->release(pipe, buf);
849                         pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1);
850                         pipe->nrbufs--;
851                         if (pipe->inode)
852                                 sd->need_wakeup = true;
853                 }
854
855                 if (!sd->total_len)
856                         return 0;
857         }
858
859         return 1;
860 }
861 EXPORT_SYMBOL(splice_from_pipe_feed);
862
863 /**
864  * splice_from_pipe_next - wait for some data to splice from
865  * @pipe:       pipe to splice from
866  * @sd:         information about the splice operation
867  *
868  * Description:
869  *    This function will wait for some data and return a positive
870  *    value (one) if pipe buffers are available.  It will return zero
871  *    or -errno if no more data needs to be spliced.
872  */
873 int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd)
874 {
875         while (!pipe->nrbufs) {
876                 if (!pipe->writers)
877                         return 0;
878
879                 if (!pipe->waiting_writers && sd->num_spliced)
880                         return 0;
881
882                 if (sd->flags & SPLICE_F_NONBLOCK)
883                         return -EAGAIN;
884
885                 if (signal_pending(current))
886                         return -ERESTARTSYS;
887
888                 if (sd->need_wakeup) {
889                         wakeup_pipe_writers(pipe);
890                         sd->need_wakeup = false;
891                 }
892
893                 pipe_wait(pipe);
894         }
895
896         return 1;
897 }
898 EXPORT_SYMBOL(splice_from_pipe_next);
899
900 /**
901  * splice_from_pipe_begin - start splicing from pipe
902  * @sd:         information about the splice operation
903  *
904  * Description:
905  *    This function should be called before a loop containing
906  *    splice_from_pipe_next() and splice_from_pipe_feed() to
907  *    initialize the necessary fields of @sd.
908  */
909 void splice_from_pipe_begin(struct splice_desc *sd)
910 {
911         sd->num_spliced = 0;
912         sd->need_wakeup = false;
913 }
914 EXPORT_SYMBOL(splice_from_pipe_begin);
915
916 /**
917  * splice_from_pipe_end - finish splicing from pipe
918  * @pipe:       pipe to splice from
919  * @sd:         information about the splice operation
920  *
921  * Description:
922  *    This function will wake up pipe writers if necessary.  It should
923  *    be called after a loop containing splice_from_pipe_next() and
924  *    splice_from_pipe_feed().
925  */
926 void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd)
927 {
928         if (sd->need_wakeup)
929                 wakeup_pipe_writers(pipe);
930 }
931 EXPORT_SYMBOL(splice_from_pipe_end);
932
933 /**
934  * __splice_from_pipe - splice data from a pipe to given actor
935  * @pipe:       pipe to splice from
936  * @sd:         information to @actor
937  * @actor:      handler that splices the data
938  *
939  * Description:
940  *    This function does little more than loop over the pipe and call
941  *    @actor to do the actual moving of a single struct pipe_buffer to
942  *    the desired destination. See pipe_to_file, pipe_to_sendpage, or
943  *    pipe_to_user.
944  *
945  */
946 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
947                            splice_actor *actor)
948 {
949         int ret;
950
951         splice_from_pipe_begin(sd);
952         do {
953                 ret = splice_from_pipe_next(pipe, sd);
954                 if (ret > 0)
955                         ret = splice_from_pipe_feed(pipe, sd, actor);
956         } while (ret > 0);
957         splice_from_pipe_end(pipe, sd);
958
959         return sd->num_spliced ? sd->num_spliced : ret;
960 }
961 EXPORT_SYMBOL(__splice_from_pipe);
962
963 /**
964  * splice_from_pipe - splice data from a pipe to a file
965  * @pipe:       pipe to splice from
966  * @out:        file to splice to
967  * @ppos:       position in @out
968  * @len:        how many bytes to splice
969  * @flags:      splice modifier flags
970  * @actor:      handler that splices the data
971  *
972  * Description:
973  *    See __splice_from_pipe. This function locks the pipe inode,
974  *    otherwise it's identical to __splice_from_pipe().
975  *
976  */
977 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
978                          loff_t *ppos, size_t len, unsigned int flags,
979                          splice_actor *actor)
980 {
981         ssize_t ret;
982         struct splice_desc sd = {
983                 .total_len = len,
984                 .flags = flags,
985                 .pos = *ppos,
986                 .u.file = out,
987         };
988
989         pipe_lock(pipe);
990         ret = __splice_from_pipe(pipe, &sd, actor);
991         pipe_unlock(pipe);
992
993         return ret;
994 }
995
996 /**
997  * generic_file_splice_write - splice data from a pipe to a file
998  * @pipe:       pipe info
999  * @out:        file to write to
1000  * @ppos:       position in @out
1001  * @len:        number of bytes to splice
1002  * @flags:      splice modifier flags
1003  *
1004  * Description:
1005  *    Will either move or copy pages (determined by @flags options) from
1006  *    the given pipe inode to the given file.
1007  *
1008  */
1009 ssize_t
1010 generic_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
1011                           loff_t *ppos, size_t len, unsigned int flags)
1012 {
1013         struct address_space *mapping = out->f_mapping;
1014         struct inode *inode = mapping->host;
1015         struct splice_desc sd = {
1016                 .total_len = len,
1017                 .flags = flags,
1018                 .pos = *ppos,
1019                 .u.file = out,
1020         };
1021         ssize_t ret;
1022
1023         pipe_lock(pipe);
1024
1025         splice_from_pipe_begin(&sd);
1026         do {
1027                 ret = splice_from_pipe_next(pipe, &sd);
1028                 if (ret <= 0)
1029                         break;
1030
1031                 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
1032                 ret = file_remove_suid(out);
1033                 if (!ret) {
1034                         file_update_time(out);
1035                         ret = splice_from_pipe_feed(pipe, &sd, pipe_to_file);
1036                 }
1037                 mutex_unlock(&inode->i_mutex);
1038         } while (ret > 0);
1039         splice_from_pipe_end(pipe, &sd);
1040
1041         pipe_unlock(pipe);
1042
1043         if (sd.num_spliced)
1044                 ret = sd.num_spliced;
1045
1046         if (ret > 0) {
1047                 unsigned long nr_pages;
1048                 int err;
1049
1050                 nr_pages = (ret + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1051
1052                 err = generic_write_sync(out, *ppos, ret);
1053                 if (err)
1054                         ret = err;
1055                 else
1056                         *ppos += ret;
1057                 balance_dirty_pages_ratelimited_nr(mapping, nr_pages);
1058         }
1059
1060         return ret;
1061 }
1062
1063 EXPORT_SYMBOL(generic_file_splice_write);
1064
1065 static int write_pipe_buf(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1066                           struct splice_desc *sd)
1067 {
1068         int ret;
1069         void *data;
1070
1071         data = buf->ops->map(pipe, buf, 0);
1072         ret = kernel_write(sd->u.file, data + buf->offset, sd->len, sd->pos);
1073         buf->ops->unmap(pipe, buf, data);
1074
1075         return ret;
1076 }
1077
1078 static ssize_t default_file_splice_write(struct pipe_inode_info *pipe,
1079                                          struct file *out, loff_t *ppos,
1080                                          size_t len, unsigned int flags)
1081 {
1082         ssize_t ret;
1083
1084         ret = splice_from_pipe(pipe, out, ppos, len, flags, write_pipe_buf);
1085         if (ret > 0)
1086                 *ppos += ret;
1087
1088         return ret;
1089 }
1090
1091 /**
1092  * generic_splice_sendpage - splice data from a pipe to a socket
1093  * @pipe:       pipe to splice from
1094  * @out:        socket to write to
1095  * @ppos:       position in @out
1096  * @len:        number of bytes to splice
1097  * @flags:      splice modifier flags
1098  *
1099  * Description:
1100  *    Will send @len bytes from the pipe to a network socket. No data copying
1101  *    is involved.
1102  *
1103  */
1104 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
1105                                 loff_t *ppos, size_t len, unsigned int flags)
1106 {
1107         return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
1108 }
1109
1110 EXPORT_SYMBOL(generic_splice_sendpage);
1111
1112 /*
1113  * Attempt to initiate a splice from pipe to file.
1114  */
1115 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
1116                            loff_t *ppos, size_t len, unsigned int flags)
1117 {
1118         ssize_t (*splice_write)(struct pipe_inode_info *, struct file *,
1119                                 loff_t *, size_t, unsigned int);
1120         int ret;
1121
1122         if (unlikely(!(out->f_mode & FMODE_WRITE)))
1123                 return -EBADF;
1124
1125         if (unlikely(out->f_flags & O_APPEND))
1126                 return -EINVAL;
1127
1128         ret = rw_verify_area(WRITE, out, ppos, len);
1129         if (unlikely(ret < 0))
1130                 return ret;
1131
1132         if (out->f_op && out->f_op->splice_write)
1133                 splice_write = out->f_op->splice_write;
1134         else
1135                 splice_write = default_file_splice_write;
1136
1137         return splice_write(pipe, out, ppos, len, flags);
1138 }
1139
1140 /*
1141  * Attempt to initiate a splice from a file to a pipe.
1142  */
1143 static long do_splice_to(struct file *in, loff_t *ppos,
1144                          struct pipe_inode_info *pipe, size_t len,
1145                          unsigned int flags)
1146 {
1147         ssize_t (*splice_read)(struct file *, loff_t *,
1148                                struct pipe_inode_info *, size_t, unsigned int);
1149         int ret;
1150
1151         if (unlikely(!(in->f_mode & FMODE_READ)))
1152                 return -EBADF;
1153
1154         ret = rw_verify_area(READ, in, ppos, len);
1155         if (unlikely(ret < 0))
1156                 return ret;
1157
1158         if (in->f_op && in->f_op->splice_read)
1159                 splice_read = in->f_op->splice_read;
1160         else
1161                 splice_read = default_file_splice_read;
1162
1163         return splice_read(in, ppos, pipe, len, flags);
1164 }
1165
1166 /**
1167  * splice_direct_to_actor - splices data directly between two non-pipes
1168  * @in:         file to splice from
1169  * @sd:         actor information on where to splice to
1170  * @actor:      handles the data splicing
1171  *
1172  * Description:
1173  *    This is a special case helper to splice directly between two
1174  *    points, without requiring an explicit pipe. Internally an allocated
1175  *    pipe is cached in the process, and reused during the lifetime of
1176  *    that process.
1177  *
1178  */
1179 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
1180                                splice_direct_actor *actor)
1181 {
1182         struct pipe_inode_info *pipe;
1183         long ret, bytes;
1184         umode_t i_mode;
1185         size_t len;
1186         int i, flags;
1187
1188         /*
1189          * We require the input being a regular file, as we don't want to
1190          * randomly drop data for eg socket -> socket splicing. Use the
1191          * piped splicing for that!
1192          */
1193         i_mode = in->f_path.dentry->d_inode->i_mode;
1194         if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
1195                 return -EINVAL;
1196
1197         /*
1198          * neither in nor out is a pipe, setup an internal pipe attached to
1199          * 'out' and transfer the wanted data from 'in' to 'out' through that
1200          */
1201         pipe = current->splice_pipe;
1202         if (unlikely(!pipe)) {
1203                 pipe = alloc_pipe_info(NULL);
1204                 if (!pipe)
1205                         return -ENOMEM;
1206
1207                 /*
1208                  * We don't have an immediate reader, but we'll read the stuff
1209                  * out of the pipe right after the splice_to_pipe(). So set
1210                  * PIPE_READERS appropriately.
1211                  */
1212                 pipe->readers = 1;
1213
1214                 current->splice_pipe = pipe;
1215         }
1216
1217         /*
1218          * Do the splice.
1219          */
1220         ret = 0;
1221         bytes = 0;
1222         len = sd->total_len;
1223         flags = sd->flags;
1224
1225         /*
1226          * Don't block on output, we have to drain the direct pipe.
1227          */
1228         sd->flags &= ~SPLICE_F_NONBLOCK;
1229
1230         while (len) {
1231                 size_t read_len;
1232                 loff_t pos = sd->pos, prev_pos = pos;
1233
1234                 ret = do_splice_to(in, &pos, pipe, len, flags);
1235                 if (unlikely(ret <= 0))
1236                         goto out_release;
1237
1238                 read_len = ret;
1239                 sd->total_len = read_len;
1240
1241                 /*
1242                  * NOTE: nonblocking mode only applies to the input. We
1243                  * must not do the output in nonblocking mode as then we
1244                  * could get stuck data in the internal pipe:
1245                  */
1246                 ret = actor(pipe, sd);
1247                 if (unlikely(ret <= 0)) {
1248                         sd->pos = prev_pos;
1249                         goto out_release;
1250                 }
1251
1252                 bytes += ret;
1253                 len -= ret;
1254                 sd->pos = pos;
1255
1256                 if (ret < read_len) {
1257                         sd->pos = prev_pos + ret;
1258                         goto out_release;
1259                 }
1260         }
1261
1262 done:
1263         pipe->nrbufs = pipe->curbuf = 0;
1264         file_accessed(in);
1265         return bytes;
1266
1267 out_release:
1268         /*
1269          * If we did an incomplete transfer we must release
1270          * the pipe buffers in question:
1271          */
1272         for (i = 0; i < pipe->buffers; i++) {
1273                 struct pipe_buffer *buf = pipe->bufs + i;
1274
1275                 if (buf->ops) {
1276                         buf->ops->release(pipe, buf);
1277                         buf->ops = NULL;
1278                 }
1279         }
1280
1281         if (!bytes)
1282                 bytes = ret;
1283
1284         goto done;
1285 }
1286 EXPORT_SYMBOL(splice_direct_to_actor);
1287
1288 static int direct_splice_actor(struct pipe_inode_info *pipe,
1289                                struct splice_desc *sd)
1290 {
1291         struct file *file = sd->u.file;
1292
1293         return do_splice_from(pipe, file, &file->f_pos, sd->total_len,
1294                               sd->flags);
1295 }
1296
1297 /**
1298  * do_splice_direct - splices data directly between two files
1299  * @in:         file to splice from
1300  * @ppos:       input file offset
1301  * @out:        file to splice to
1302  * @len:        number of bytes to splice
1303  * @flags:      splice modifier flags
1304  *
1305  * Description:
1306  *    For use by do_sendfile(). splice can easily emulate sendfile, but
1307  *    doing it in the application would incur an extra system call
1308  *    (splice in + splice out, as compared to just sendfile()). So this helper
1309  *    can splice directly through a process-private pipe.
1310  *
1311  */
1312 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1313                       size_t len, unsigned int flags)
1314 {
1315         struct splice_desc sd = {
1316                 .len            = len,
1317                 .total_len      = len,
1318                 .flags          = flags,
1319                 .pos            = *ppos,
1320                 .u.file         = out,
1321         };
1322         long ret;
1323
1324         ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
1325         if (ret > 0)
1326                 *ppos = sd.pos;
1327
1328         return ret;
1329 }
1330
1331 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1332                                struct pipe_inode_info *opipe,
1333                                size_t len, unsigned int flags);
1334
1335 /*
1336  * Determine where to splice to/from.
1337  */
1338 static long do_splice(struct file *in, loff_t __user *off_in,
1339                       struct file *out, loff_t __user *off_out,
1340                       size_t len, unsigned int flags)
1341 {
1342         struct pipe_inode_info *ipipe;
1343         struct pipe_inode_info *opipe;
1344         loff_t offset, *off;
1345         long ret;
1346
1347         ipipe = get_pipe_info(in);
1348         opipe = get_pipe_info(out);
1349
1350         if (ipipe && opipe) {
1351                 if (off_in || off_out)
1352                         return -ESPIPE;
1353
1354                 if (!(in->f_mode & FMODE_READ))
1355                         return -EBADF;
1356
1357                 if (!(out->f_mode & FMODE_WRITE))
1358                         return -EBADF;
1359
1360                 /* Splicing to self would be fun, but... */
1361                 if (ipipe == opipe)
1362                         return -EINVAL;
1363
1364                 return splice_pipe_to_pipe(ipipe, opipe, len, flags);
1365         }
1366
1367         if (ipipe) {
1368                 if (off_in)
1369                         return -ESPIPE;
1370                 if (off_out) {
1371                         if (!(out->f_mode & FMODE_PWRITE))
1372                                 return -EINVAL;
1373                         if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1374                                 return -EFAULT;
1375                         off = &offset;
1376                 } else
1377                         off = &out->f_pos;
1378
1379                 ret = do_splice_from(ipipe, out, off, len, flags);
1380
1381                 if (off_out && copy_to_user(off_out, off, sizeof(loff_t)))
1382                         ret = -EFAULT;
1383
1384                 return ret;
1385         }
1386
1387         if (opipe) {
1388                 if (off_out)
1389                         return -ESPIPE;
1390                 if (off_in) {
1391                         if (!(in->f_mode & FMODE_PREAD))
1392                                 return -EINVAL;
1393                         if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1394                                 return -EFAULT;
1395                         off = &offset;
1396                 } else
1397                         off = &in->f_pos;
1398
1399                 ret = do_splice_to(in, off, opipe, len, flags);
1400
1401                 if (off_in && copy_to_user(off_in, off, sizeof(loff_t)))
1402                         ret = -EFAULT;
1403
1404                 return ret;
1405         }
1406
1407         return -EINVAL;
1408 }
1409
1410 /*
1411  * Map an iov into an array of pages and offset/length tupples. With the
1412  * partial_page structure, we can map several non-contiguous ranges into
1413  * our ones pages[] map instead of splitting that operation into pieces.
1414  * Could easily be exported as a generic helper for other users, in which
1415  * case one would probably want to add a 'max_nr_pages' parameter as well.
1416  */
1417 static int get_iovec_page_array(const struct iovec __user *iov,
1418                                 unsigned int nr_vecs, struct page **pages,
1419                                 struct partial_page *partial, int aligned,
1420                                 unsigned int pipe_buffers)
1421 {
1422         int buffers = 0, error = 0;
1423
1424         while (nr_vecs) {
1425                 unsigned long off, npages;
1426                 struct iovec entry;
1427                 void __user *base;
1428                 size_t len;
1429                 int i;
1430
1431                 error = -EFAULT;
1432                 if (copy_from_user(&entry, iov, sizeof(entry)))
1433                         break;
1434
1435                 base = entry.iov_base;
1436                 len = entry.iov_len;
1437
1438                 /*
1439                  * Sanity check this iovec. 0 read succeeds.
1440                  */
1441                 error = 0;
1442                 if (unlikely(!len))
1443                         break;
1444                 error = -EFAULT;
1445                 if (!access_ok(VERIFY_READ, base, len))
1446                         break;
1447
1448                 /*
1449                  * Get this base offset and number of pages, then map
1450                  * in the user pages.
1451                  */
1452                 off = (unsigned long) base & ~PAGE_MASK;
1453
1454                 /*
1455                  * If asked for alignment, the offset must be zero and the
1456                  * length a multiple of the PAGE_SIZE.
1457                  */
1458                 error = -EINVAL;
1459                 if (aligned && (off || len & ~PAGE_MASK))
1460                         break;
1461
1462                 npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1463                 if (npages > pipe_buffers - buffers)
1464                         npages = pipe_buffers - buffers;
1465
1466                 error = get_user_pages_fast((unsigned long)base, npages,
1467                                         0, &pages[buffers]);
1468
1469                 if (unlikely(error <= 0))
1470                         break;
1471
1472                 /*
1473                  * Fill this contiguous range into the partial page map.
1474                  */
1475                 for (i = 0; i < error; i++) {
1476                         const int plen = min_t(size_t, len, PAGE_SIZE - off);
1477
1478                         partial[buffers].offset = off;
1479                         partial[buffers].len = plen;
1480
1481                         off = 0;
1482                         len -= plen;
1483                         buffers++;
1484                 }
1485
1486                 /*
1487                  * We didn't complete this iov, stop here since it probably
1488                  * means we have to move some of this into a pipe to
1489                  * be able to continue.
1490                  */
1491                 if (len)
1492                         break;
1493
1494                 /*
1495                  * Don't continue if we mapped fewer pages than we asked for,
1496                  * or if we mapped the max number of pages that we have
1497                  * room for.
1498                  */
1499                 if (error < npages || buffers == pipe_buffers)
1500                         break;
1501
1502                 nr_vecs--;
1503                 iov++;
1504         }
1505
1506         if (buffers)
1507                 return buffers;
1508
1509         return error;
1510 }
1511
1512 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1513                         struct splice_desc *sd)
1514 {
1515         char *src;
1516         int ret;
1517
1518         /*
1519          * See if we can use the atomic maps, by prefaulting in the
1520          * pages and doing an atomic copy
1521          */
1522         if (!fault_in_pages_writeable(sd->u.userptr, sd->len)) {
1523                 src = buf->ops->map(pipe, buf, 1);
1524                 ret = __copy_to_user_inatomic(sd->u.userptr, src + buf->offset,
1525                                                         sd->len);
1526                 buf->ops->unmap(pipe, buf, src);
1527                 if (!ret) {
1528                         ret = sd->len;
1529                         goto out;
1530                 }
1531         }
1532
1533         /*
1534          * No dice, use slow non-atomic map and copy
1535          */
1536         src = buf->ops->map(pipe, buf, 0);
1537
1538         ret = sd->len;
1539         if (copy_to_user(sd->u.userptr, src + buf->offset, sd->len))
1540                 ret = -EFAULT;
1541
1542         buf->ops->unmap(pipe, buf, src);
1543 out:
1544         if (ret > 0)
1545                 sd->u.userptr += ret;
1546         return ret;
1547 }
1548
1549 /*
1550  * For lack of a better implementation, implement vmsplice() to userspace
1551  * as a simple copy of the pipes pages to the user iov.
1552  */
1553 static long vmsplice_to_user(struct file *file, const struct iovec __user *iov,
1554                              unsigned long nr_segs, unsigned int flags)
1555 {
1556         struct pipe_inode_info *pipe;
1557         struct splice_desc sd;
1558         ssize_t size;
1559         int error;
1560         long ret;
1561
1562         pipe = get_pipe_info(file);
1563         if (!pipe)
1564                 return -EBADF;
1565
1566         pipe_lock(pipe);
1567
1568         error = ret = 0;
1569         while (nr_segs) {
1570                 void __user *base;
1571                 size_t len;
1572
1573                 /*
1574                  * Get user address base and length for this iovec.
1575                  */
1576                 error = get_user(base, &iov->iov_base);
1577                 if (unlikely(error))
1578                         break;
1579                 error = get_user(len, &iov->iov_len);
1580                 if (unlikely(error))
1581                         break;
1582
1583                 /*
1584                  * Sanity check this iovec. 0 read succeeds.
1585                  */
1586                 if (unlikely(!len))
1587                         break;
1588                 if (unlikely(!base)) {
1589                         error = -EFAULT;
1590                         break;
1591                 }
1592
1593                 if (unlikely(!access_ok(VERIFY_WRITE, base, len))) {
1594                         error = -EFAULT;
1595                         break;
1596                 }
1597
1598                 sd.len = 0;
1599                 sd.total_len = len;
1600                 sd.flags = flags;
1601                 sd.u.userptr = base;
1602                 sd.pos = 0;
1603
1604                 size = __splice_from_pipe(pipe, &sd, pipe_to_user);
1605                 if (size < 0) {
1606                         if (!ret)
1607                                 ret = size;
1608
1609                         break;
1610                 }
1611
1612                 ret += size;
1613
1614                 if (size < len)
1615                         break;
1616
1617                 nr_segs--;
1618                 iov++;
1619         }
1620
1621         pipe_unlock(pipe);
1622
1623         if (!ret)
1624                 ret = error;
1625
1626         return ret;
1627 }
1628
1629 /*
1630  * vmsplice splices a user address range into a pipe. It can be thought of
1631  * as splice-from-memory, where the regular splice is splice-from-file (or
1632  * to file). In both cases the output is a pipe, naturally.
1633  */
1634 static long vmsplice_to_pipe(struct file *file, const struct iovec __user *iov,
1635                              unsigned long nr_segs, unsigned int flags)
1636 {
1637         struct pipe_inode_info *pipe;
1638         struct page *pages[PIPE_DEF_BUFFERS];
1639         struct partial_page partial[PIPE_DEF_BUFFERS];
1640         struct splice_pipe_desc spd = {
1641                 .pages = pages,
1642                 .partial = partial,
1643                 .nr_pages_max = PIPE_DEF_BUFFERS,
1644                 .flags = flags,
1645                 .ops = &user_page_pipe_buf_ops,
1646                 .spd_release = spd_release_page,
1647         };
1648         long ret;
1649
1650         pipe = get_pipe_info(file);
1651         if (!pipe)
1652                 return -EBADF;
1653
1654         if (splice_grow_spd(pipe, &spd))
1655                 return -ENOMEM;
1656
1657         spd.nr_pages = get_iovec_page_array(iov, nr_segs, spd.pages,
1658                                             spd.partial, flags & SPLICE_F_GIFT,
1659                                             spd.nr_pages_max);
1660         if (spd.nr_pages <= 0)
1661                 ret = spd.nr_pages;
1662         else
1663                 ret = splice_to_pipe(pipe, &spd);
1664
1665         splice_shrink_spd(&spd);
1666         return ret;
1667 }
1668
1669 /*
1670  * Note that vmsplice only really supports true splicing _from_ user memory
1671  * to a pipe, not the other way around. Splicing from user memory is a simple
1672  * operation that can be supported without any funky alignment restrictions
1673  * or nasty vm tricks. We simply map in the user memory and fill them into
1674  * a pipe. The reverse isn't quite as easy, though. There are two possible
1675  * solutions for that:
1676  *
1677  *      - memcpy() the data internally, at which point we might as well just
1678  *        do a regular read() on the buffer anyway.
1679  *      - Lots of nasty vm tricks, that are neither fast nor flexible (it
1680  *        has restriction limitations on both ends of the pipe).
1681  *
1682  * Currently we punt and implement it as a normal copy, see pipe_to_user().
1683  *
1684  */
1685 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, iov,
1686                 unsigned long, nr_segs, unsigned int, flags)
1687 {
1688         struct file *file;
1689         long error;
1690         int fput;
1691
1692         if (unlikely(nr_segs > UIO_MAXIOV))
1693                 return -EINVAL;
1694         else if (unlikely(!nr_segs))
1695                 return 0;
1696
1697         error = -EBADF;
1698         file = fget_light(fd, &fput);
1699         if (file) {
1700                 if (file->f_mode & FMODE_WRITE)
1701                         error = vmsplice_to_pipe(file, iov, nr_segs, flags);
1702                 else if (file->f_mode & FMODE_READ)
1703                         error = vmsplice_to_user(file, iov, nr_segs, flags);
1704
1705                 fput_light(file, fput);
1706         }
1707
1708         return error;
1709 }
1710
1711 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in,
1712                 int, fd_out, loff_t __user *, off_out,
1713                 size_t, len, unsigned int, flags)
1714 {
1715         long error;
1716         struct file *in, *out;
1717         int fput_in, fput_out;
1718
1719         if (unlikely(!len))
1720                 return 0;
1721
1722         error = -EBADF;
1723         in = fget_light(fd_in, &fput_in);
1724         if (in) {
1725                 if (in->f_mode & FMODE_READ) {
1726                         out = fget_light(fd_out, &fput_out);
1727                         if (out) {
1728                                 if (out->f_mode & FMODE_WRITE)
1729                                         error = do_splice(in, off_in,
1730                                                           out, off_out,
1731                                                           len, flags);
1732                                 fput_light(out, fput_out);
1733                         }
1734                 }
1735
1736                 fput_light(in, fput_in);
1737         }
1738
1739         return error;
1740 }
1741
1742 /*
1743  * Make sure there's data to read. Wait for input if we can, otherwise
1744  * return an appropriate error.
1745  */
1746 static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1747 {
1748         int ret;
1749
1750         /*
1751          * Check ->nrbufs without the inode lock first. This function
1752          * is speculative anyways, so missing one is ok.
1753          */
1754         if (pipe->nrbufs)
1755                 return 0;
1756
1757         ret = 0;
1758         pipe_lock(pipe);
1759
1760         while (!pipe->nrbufs) {
1761                 if (signal_pending(current)) {
1762                         ret = -ERESTARTSYS;
1763                         break;
1764                 }
1765                 if (!pipe->writers)
1766                         break;
1767                 if (!pipe->waiting_writers) {
1768                         if (flags & SPLICE_F_NONBLOCK) {
1769                                 ret = -EAGAIN;
1770                                 break;
1771                         }
1772                 }
1773                 pipe_wait(pipe);
1774         }
1775
1776         pipe_unlock(pipe);
1777         return ret;
1778 }
1779
1780 /*
1781  * Make sure there's writeable room. Wait for room if we can, otherwise
1782  * return an appropriate error.
1783  */
1784 static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1785 {
1786         int ret;
1787
1788         /*
1789          * Check ->nrbufs without the inode lock first. This function
1790          * is speculative anyways, so missing one is ok.
1791          */
1792         if (pipe->nrbufs < pipe->buffers)
1793                 return 0;
1794
1795         ret = 0;
1796         pipe_lock(pipe);
1797
1798         while (pipe->nrbufs >= pipe->buffers) {
1799                 if (!pipe->readers) {
1800                         send_sig(SIGPIPE, current, 0);
1801                         ret = -EPIPE;
1802                         break;
1803                 }
1804                 if (flags & SPLICE_F_NONBLOCK) {
1805                         ret = -EAGAIN;
1806                         break;
1807                 }
1808                 if (signal_pending(current)) {
1809                         ret = -ERESTARTSYS;
1810                         break;
1811                 }
1812                 pipe->waiting_writers++;
1813                 pipe_wait(pipe);
1814                 pipe->waiting_writers--;
1815         }
1816
1817         pipe_unlock(pipe);
1818         return ret;
1819 }
1820
1821 /*
1822  * Splice contents of ipipe to opipe.
1823  */
1824 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1825                                struct pipe_inode_info *opipe,
1826                                size_t len, unsigned int flags)
1827 {
1828         struct pipe_buffer *ibuf, *obuf;
1829         int ret = 0, nbuf;
1830         bool input_wakeup = false;
1831
1832
1833 retry:
1834         ret = ipipe_prep(ipipe, flags);
1835         if (ret)
1836                 return ret;
1837
1838         ret = opipe_prep(opipe, flags);
1839         if (ret)
1840                 return ret;
1841
1842         /*
1843          * Potential ABBA deadlock, work around it by ordering lock
1844          * grabbing by pipe info address. Otherwise two different processes
1845          * could deadlock (one doing tee from A -> B, the other from B -> A).
1846          */
1847         pipe_double_lock(ipipe, opipe);
1848
1849         do {
1850                 if (!opipe->readers) {
1851                         send_sig(SIGPIPE, current, 0);
1852                         if (!ret)
1853                                 ret = -EPIPE;
1854                         break;
1855                 }
1856
1857                 if (!ipipe->nrbufs && !ipipe->writers)
1858                         break;
1859
1860                 /*
1861                  * Cannot make any progress, because either the input
1862                  * pipe is empty or the output pipe is full.
1863                  */
1864                 if (!ipipe->nrbufs || opipe->nrbufs >= opipe->buffers) {
1865                         /* Already processed some buffers, break */
1866                         if (ret)
1867                                 break;
1868
1869                         if (flags & SPLICE_F_NONBLOCK) {
1870                                 ret = -EAGAIN;
1871                                 break;
1872                         }
1873
1874                         /*
1875                          * We raced with another reader/writer and haven't
1876                          * managed to process any buffers.  A zero return
1877                          * value means EOF, so retry instead.
1878                          */
1879                         pipe_unlock(ipipe);
1880                         pipe_unlock(opipe);
1881                         goto retry;
1882                 }
1883
1884                 ibuf = ipipe->bufs + ipipe->curbuf;
1885                 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1886                 obuf = opipe->bufs + nbuf;
1887
1888                 if (len >= ibuf->len) {
1889                         /*
1890                          * Simply move the whole buffer from ipipe to opipe
1891                          */
1892                         *obuf = *ibuf;
1893                         ibuf->ops = NULL;
1894                         opipe->nrbufs++;
1895                         ipipe->curbuf = (ipipe->curbuf + 1) & (ipipe->buffers - 1);
1896                         ipipe->nrbufs--;
1897                         input_wakeup = true;
1898                 } else {
1899                         /*
1900                          * Get a reference to this pipe buffer,
1901                          * so we can copy the contents over.
1902                          */
1903                         ibuf->ops->get(ipipe, ibuf);
1904                         *obuf = *ibuf;
1905
1906                         /*
1907                          * Don't inherit the gift flag, we need to
1908                          * prevent multiple steals of this page.
1909                          */
1910                         obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1911
1912                         obuf->len = len;
1913                         opipe->nrbufs++;
1914                         ibuf->offset += obuf->len;
1915                         ibuf->len -= obuf->len;
1916                 }
1917                 ret += obuf->len;
1918                 len -= obuf->len;
1919         } while (len);
1920
1921         pipe_unlock(ipipe);
1922         pipe_unlock(opipe);
1923
1924         /*
1925          * If we put data in the output pipe, wakeup any potential readers.
1926          */
1927         if (ret > 0)
1928                 wakeup_pipe_readers(opipe);
1929
1930         if (input_wakeup)
1931                 wakeup_pipe_writers(ipipe);
1932
1933         return ret;
1934 }
1935
1936 /*
1937  * Link contents of ipipe to opipe.
1938  */
1939 static int link_pipe(struct pipe_inode_info *ipipe,
1940                      struct pipe_inode_info *opipe,
1941                      size_t len, unsigned int flags)
1942 {
1943         struct pipe_buffer *ibuf, *obuf;
1944         int ret = 0, i = 0, nbuf;
1945
1946         /*
1947          * Potential ABBA deadlock, work around it by ordering lock
1948          * grabbing by pipe info address. Otherwise two different processes
1949          * could deadlock (one doing tee from A -> B, the other from B -> A).
1950          */
1951         pipe_double_lock(ipipe, opipe);
1952
1953         do {
1954                 if (!opipe->readers) {
1955                         send_sig(SIGPIPE, current, 0);
1956                         if (!ret)
1957                                 ret = -EPIPE;
1958                         break;
1959                 }
1960
1961                 /*
1962                  * If we have iterated all input buffers or ran out of
1963                  * output room, break.
1964                  */
1965                 if (i >= ipipe->nrbufs || opipe->nrbufs >= opipe->buffers)
1966                         break;
1967
1968                 ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (ipipe->buffers-1));
1969                 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1970
1971                 /*
1972                  * Get a reference to this pipe buffer,
1973                  * so we can copy the contents over.
1974                  */
1975                 ibuf->ops->get(ipipe, ibuf);
1976
1977                 obuf = opipe->bufs + nbuf;
1978                 *obuf = *ibuf;
1979
1980                 /*
1981                  * Don't inherit the gift flag, we need to
1982                  * prevent multiple steals of this page.
1983                  */
1984                 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1985
1986                 if (obuf->len > len)
1987                         obuf->len = len;
1988
1989                 opipe->nrbufs++;
1990                 ret += obuf->len;
1991                 len -= obuf->len;
1992                 i++;
1993         } while (len);
1994
1995         /*
1996          * return EAGAIN if we have the potential of some data in the
1997          * future, otherwise just return 0
1998          */
1999         if (!ret && ipipe->waiting_writers && (flags & SPLICE_F_NONBLOCK))
2000                 ret = -EAGAIN;
2001
2002         pipe_unlock(ipipe);
2003         pipe_unlock(opipe);
2004
2005         /*
2006          * If we put data in the output pipe, wakeup any potential readers.
2007          */
2008         if (ret > 0)
2009                 wakeup_pipe_readers(opipe);
2010
2011         return ret;
2012 }
2013
2014 /*
2015  * This is a tee(1) implementation that works on pipes. It doesn't copy
2016  * any data, it simply references the 'in' pages on the 'out' pipe.
2017  * The 'flags' used are the SPLICE_F_* variants, currently the only
2018  * applicable one is SPLICE_F_NONBLOCK.
2019  */
2020 static long do_tee(struct file *in, struct file *out, size_t len,
2021                    unsigned int flags)
2022 {
2023         struct pipe_inode_info *ipipe = get_pipe_info(in);
2024         struct pipe_inode_info *opipe = get_pipe_info(out);
2025         int ret = -EINVAL;
2026
2027         /*
2028          * Duplicate the contents of ipipe to opipe without actually
2029          * copying the data.
2030          */
2031         if (ipipe && opipe && ipipe != opipe) {
2032                 /*
2033                  * Keep going, unless we encounter an error. The ipipe/opipe
2034                  * ordering doesn't really matter.
2035                  */
2036                 ret = ipipe_prep(ipipe, flags);
2037                 if (!ret) {
2038                         ret = opipe_prep(opipe, flags);
2039                         if (!ret)
2040                                 ret = link_pipe(ipipe, opipe, len, flags);
2041                 }
2042         }
2043
2044         return ret;
2045 }
2046
2047 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags)
2048 {
2049         struct file *in;
2050         int error, fput_in;
2051
2052         if (unlikely(!len))
2053                 return 0;
2054
2055         error = -EBADF;
2056         in = fget_light(fdin, &fput_in);
2057         if (in) {
2058                 if (in->f_mode & FMODE_READ) {
2059                         int fput_out;
2060                         struct file *out = fget_light(fdout, &fput_out);
2061
2062                         if (out) {
2063                                 if (out->f_mode & FMODE_WRITE)
2064                                         error = do_tee(in, out, len, flags);
2065                                 fput_light(out, fput_out);
2066                         }
2067                 }
2068                 fput_light(in, fput_in);
2069         }
2070
2071         return error;
2072 }