NFSv4: Ensure that we check lock exclusive/shared type against open modes
[pandora-kernel.git] / fs / splice.c
1 /*
2  * "splice": joining two ropes together by interweaving their strands.
3  *
4  * This is the "extended pipe" functionality, where a pipe is used as
5  * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6  * buffer that you can use to transfer data from one end to the other.
7  *
8  * The traditional unix read/write is extended with a "splice()" operation
9  * that transfers data buffers to or from a pipe buffer.
10  *
11  * Named by Larry McVoy, original implementation from Linus, extended by
12  * Jens to support splicing to files, network, direct splicing, etc and
13  * fixing lots of bugs.
14  *
15  * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16  * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17  * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
18  *
19  */
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/pagemap.h>
23 #include <linux/splice.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm_inline.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/buffer_head.h>
29 #include <linux/module.h>
30 #include <linux/syscalls.h>
31 #include <linux/uio.h>
32 #include <linux/security.h>
33 #include <linux/gfp.h>
34 #include <linux/socket.h>
35
36 /*
37  * Attempt to steal a page from a pipe buffer. This should perhaps go into
38  * a vm helper function, it's already simplified quite a bit by the
39  * addition of remove_mapping(). If success is returned, the caller may
40  * attempt to reuse this page for another destination.
41  */
42 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
43                                      struct pipe_buffer *buf)
44 {
45         struct page *page = buf->page;
46         struct address_space *mapping;
47
48         lock_page(page);
49
50         mapping = page_mapping(page);
51         if (mapping) {
52                 WARN_ON(!PageUptodate(page));
53
54                 /*
55                  * At least for ext2 with nobh option, we need to wait on
56                  * writeback completing on this page, since we'll remove it
57                  * from the pagecache.  Otherwise truncate wont wait on the
58                  * page, allowing the disk blocks to be reused by someone else
59                  * before we actually wrote our data to them. fs corruption
60                  * ensues.
61                  */
62                 wait_on_page_writeback(page);
63
64                 if (page_has_private(page) &&
65                     !try_to_release_page(page, GFP_KERNEL))
66                         goto out_unlock;
67
68                 /*
69                  * If we succeeded in removing the mapping, set LRU flag
70                  * and return good.
71                  */
72                 if (remove_mapping(mapping, page)) {
73                         buf->flags |= PIPE_BUF_FLAG_LRU;
74                         return 0;
75                 }
76         }
77
78         /*
79          * Raced with truncate or failed to remove page from current
80          * address space, unlock and return failure.
81          */
82 out_unlock:
83         unlock_page(page);
84         return 1;
85 }
86
87 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
88                                         struct pipe_buffer *buf)
89 {
90         page_cache_release(buf->page);
91         buf->flags &= ~PIPE_BUF_FLAG_LRU;
92 }
93
94 /*
95  * Check whether the contents of buf is OK to access. Since the content
96  * is a page cache page, IO may be in flight.
97  */
98 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
99                                        struct pipe_buffer *buf)
100 {
101         struct page *page = buf->page;
102         int err;
103
104         if (!PageUptodate(page)) {
105                 lock_page(page);
106
107                 /*
108                  * Page got truncated/unhashed. This will cause a 0-byte
109                  * splice, if this is the first page.
110                  */
111                 if (!page->mapping) {
112                         err = -ENODATA;
113                         goto error;
114                 }
115
116                 /*
117                  * Uh oh, read-error from disk.
118                  */
119                 if (!PageUptodate(page)) {
120                         err = -EIO;
121                         goto error;
122                 }
123
124                 /*
125                  * Page is ok afterall, we are done.
126                  */
127                 unlock_page(page);
128         }
129
130         return 0;
131 error:
132         unlock_page(page);
133         return err;
134 }
135
136 const struct pipe_buf_operations page_cache_pipe_buf_ops = {
137         .can_merge = 0,
138         .map = generic_pipe_buf_map,
139         .unmap = generic_pipe_buf_unmap,
140         .confirm = page_cache_pipe_buf_confirm,
141         .release = page_cache_pipe_buf_release,
142         .steal = page_cache_pipe_buf_steal,
143         .get = generic_pipe_buf_get,
144 };
145
146 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
147                                     struct pipe_buffer *buf)
148 {
149         if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
150                 return 1;
151
152         buf->flags |= PIPE_BUF_FLAG_LRU;
153         return generic_pipe_buf_steal(pipe, buf);
154 }
155
156 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
157         .can_merge = 0,
158         .map = generic_pipe_buf_map,
159         .unmap = generic_pipe_buf_unmap,
160         .confirm = generic_pipe_buf_confirm,
161         .release = page_cache_pipe_buf_release,
162         .steal = user_page_pipe_buf_steal,
163         .get = generic_pipe_buf_get,
164 };
165
166 static void wakeup_pipe_readers(struct pipe_inode_info *pipe)
167 {
168         smp_mb();
169         if (waitqueue_active(&pipe->wait))
170                 wake_up_interruptible(&pipe->wait);
171         kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
172 }
173
174 /**
175  * splice_to_pipe - fill passed data into a pipe
176  * @pipe:       pipe to fill
177  * @spd:        data to fill
178  *
179  * Description:
180  *    @spd contains a map of pages and len/offset tuples, along with
181  *    the struct pipe_buf_operations associated with these pages. This
182  *    function will link that data to the pipe.
183  *
184  */
185 ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
186                        struct splice_pipe_desc *spd)
187 {
188         unsigned int spd_pages = spd->nr_pages;
189         int ret, do_wakeup, page_nr;
190
191         ret = 0;
192         do_wakeup = 0;
193         page_nr = 0;
194
195         pipe_lock(pipe);
196
197         for (;;) {
198                 if (!pipe->readers) {
199                         send_sig(SIGPIPE, current, 0);
200                         if (!ret)
201                                 ret = -EPIPE;
202                         break;
203                 }
204
205                 if (pipe->nrbufs < pipe->buffers) {
206                         int newbuf = (pipe->curbuf + pipe->nrbufs) & (pipe->buffers - 1);
207                         struct pipe_buffer *buf = pipe->bufs + newbuf;
208
209                         buf->page = spd->pages[page_nr];
210                         buf->offset = spd->partial[page_nr].offset;
211                         buf->len = spd->partial[page_nr].len;
212                         buf->private = spd->partial[page_nr].private;
213                         buf->ops = spd->ops;
214                         if (spd->flags & SPLICE_F_GIFT)
215                                 buf->flags |= PIPE_BUF_FLAG_GIFT;
216
217                         pipe->nrbufs++;
218                         page_nr++;
219                         ret += buf->len;
220
221                         if (pipe->inode)
222                                 do_wakeup = 1;
223
224                         if (!--spd->nr_pages)
225                                 break;
226                         if (pipe->nrbufs < pipe->buffers)
227                                 continue;
228
229                         break;
230                 }
231
232                 if (spd->flags & SPLICE_F_NONBLOCK) {
233                         if (!ret)
234                                 ret = -EAGAIN;
235                         break;
236                 }
237
238                 if (signal_pending(current)) {
239                         if (!ret)
240                                 ret = -ERESTARTSYS;
241                         break;
242                 }
243
244                 if (do_wakeup) {
245                         smp_mb();
246                         if (waitqueue_active(&pipe->wait))
247                                 wake_up_interruptible_sync(&pipe->wait);
248                         kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
249                         do_wakeup = 0;
250                 }
251
252                 pipe->waiting_writers++;
253                 pipe_wait(pipe);
254                 pipe->waiting_writers--;
255         }
256
257         pipe_unlock(pipe);
258
259         if (do_wakeup)
260                 wakeup_pipe_readers(pipe);
261
262         while (page_nr < spd_pages)
263                 spd->spd_release(spd, page_nr++);
264
265         return ret;
266 }
267
268 void spd_release_page(struct splice_pipe_desc *spd, unsigned int i)
269 {
270         page_cache_release(spd->pages[i]);
271 }
272
273 /*
274  * Check if we need to grow the arrays holding pages and partial page
275  * descriptions.
276  */
277 int splice_grow_spd(struct pipe_inode_info *pipe, struct splice_pipe_desc *spd)
278 {
279         if (pipe->buffers <= PIPE_DEF_BUFFERS)
280                 return 0;
281
282         spd->pages = kmalloc(pipe->buffers * sizeof(struct page *), GFP_KERNEL);
283         spd->partial = kmalloc(pipe->buffers * sizeof(struct partial_page), GFP_KERNEL);
284
285         if (spd->pages && spd->partial)
286                 return 0;
287
288         kfree(spd->pages);
289         kfree(spd->partial);
290         return -ENOMEM;
291 }
292
293 void splice_shrink_spd(struct pipe_inode_info *pipe,
294                        struct splice_pipe_desc *spd)
295 {
296         if (pipe->buffers <= PIPE_DEF_BUFFERS)
297                 return;
298
299         kfree(spd->pages);
300         kfree(spd->partial);
301 }
302
303 static int
304 __generic_file_splice_read(struct file *in, loff_t *ppos,
305                            struct pipe_inode_info *pipe, size_t len,
306                            unsigned int flags)
307 {
308         struct address_space *mapping = in->f_mapping;
309         unsigned int loff, nr_pages, req_pages;
310         struct page *pages[PIPE_DEF_BUFFERS];
311         struct partial_page partial[PIPE_DEF_BUFFERS];
312         struct page *page;
313         pgoff_t index, end_index;
314         loff_t isize;
315         int error, page_nr;
316         struct splice_pipe_desc spd = {
317                 .pages = pages,
318                 .partial = partial,
319                 .flags = flags,
320                 .ops = &page_cache_pipe_buf_ops,
321                 .spd_release = spd_release_page,
322         };
323
324         if (splice_grow_spd(pipe, &spd))
325                 return -ENOMEM;
326
327         index = *ppos >> PAGE_CACHE_SHIFT;
328         loff = *ppos & ~PAGE_CACHE_MASK;
329         req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
330         nr_pages = min(req_pages, pipe->buffers);
331
332         /*
333          * Lookup the (hopefully) full range of pages we need.
334          */
335         spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, spd.pages);
336         index += spd.nr_pages;
337
338         /*
339          * If find_get_pages_contig() returned fewer pages than we needed,
340          * readahead/allocate the rest and fill in the holes.
341          */
342         if (spd.nr_pages < nr_pages)
343                 page_cache_sync_readahead(mapping, &in->f_ra, in,
344                                 index, req_pages - spd.nr_pages);
345
346         error = 0;
347         while (spd.nr_pages < nr_pages) {
348                 /*
349                  * Page could be there, find_get_pages_contig() breaks on
350                  * the first hole.
351                  */
352                 page = find_get_page(mapping, index);
353                 if (!page) {
354                         /*
355                          * page didn't exist, allocate one.
356                          */
357                         page = page_cache_alloc_cold(mapping);
358                         if (!page)
359                                 break;
360
361                         error = add_to_page_cache_lru(page, mapping, index,
362                                                 GFP_KERNEL);
363                         if (unlikely(error)) {
364                                 page_cache_release(page);
365                                 if (error == -EEXIST)
366                                         continue;
367                                 break;
368                         }
369                         /*
370                          * add_to_page_cache() locks the page, unlock it
371                          * to avoid convoluting the logic below even more.
372                          */
373                         unlock_page(page);
374                 }
375
376                 spd.pages[spd.nr_pages++] = page;
377                 index++;
378         }
379
380         /*
381          * Now loop over the map and see if we need to start IO on any
382          * pages, fill in the partial map, etc.
383          */
384         index = *ppos >> PAGE_CACHE_SHIFT;
385         nr_pages = spd.nr_pages;
386         spd.nr_pages = 0;
387         for (page_nr = 0; page_nr < nr_pages; page_nr++) {
388                 unsigned int this_len;
389
390                 if (!len)
391                         break;
392
393                 /*
394                  * this_len is the max we'll use from this page
395                  */
396                 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
397                 page = spd.pages[page_nr];
398
399                 if (PageReadahead(page))
400                         page_cache_async_readahead(mapping, &in->f_ra, in,
401                                         page, index, req_pages - page_nr);
402
403                 /*
404                  * If the page isn't uptodate, we may need to start io on it
405                  */
406                 if (!PageUptodate(page)) {
407                         lock_page(page);
408
409                         /*
410                          * Page was truncated, or invalidated by the
411                          * filesystem.  Redo the find/create, but this time the
412                          * page is kept locked, so there's no chance of another
413                          * race with truncate/invalidate.
414                          */
415                         if (!page->mapping) {
416                                 unlock_page(page);
417                                 page = find_or_create_page(mapping, index,
418                                                 mapping_gfp_mask(mapping));
419
420                                 if (!page) {
421                                         error = -ENOMEM;
422                                         break;
423                                 }
424                                 page_cache_release(spd.pages[page_nr]);
425                                 spd.pages[page_nr] = page;
426                         }
427                         /*
428                          * page was already under io and is now done, great
429                          */
430                         if (PageUptodate(page)) {
431                                 unlock_page(page);
432                                 goto fill_it;
433                         }
434
435                         /*
436                          * need to read in the page
437                          */
438                         error = mapping->a_ops->readpage(in, page);
439                         if (unlikely(error)) {
440                                 /*
441                                  * We really should re-lookup the page here,
442                                  * but it complicates things a lot. Instead
443                                  * lets just do what we already stored, and
444                                  * we'll get it the next time we are called.
445                                  */
446                                 if (error == AOP_TRUNCATED_PAGE)
447                                         error = 0;
448
449                                 break;
450                         }
451                 }
452 fill_it:
453                 /*
454                  * i_size must be checked after PageUptodate.
455                  */
456                 isize = i_size_read(mapping->host);
457                 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
458                 if (unlikely(!isize || index > end_index))
459                         break;
460
461                 /*
462                  * if this is the last page, see if we need to shrink
463                  * the length and stop
464                  */
465                 if (end_index == index) {
466                         unsigned int plen;
467
468                         /*
469                          * max good bytes in this page
470                          */
471                         plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
472                         if (plen <= loff)
473                                 break;
474
475                         /*
476                          * force quit after adding this page
477                          */
478                         this_len = min(this_len, plen - loff);
479                         len = this_len;
480                 }
481
482                 spd.partial[page_nr].offset = loff;
483                 spd.partial[page_nr].len = this_len;
484                 len -= this_len;
485                 loff = 0;
486                 spd.nr_pages++;
487                 index++;
488         }
489
490         /*
491          * Release any pages at the end, if we quit early. 'page_nr' is how far
492          * we got, 'nr_pages' is how many pages are in the map.
493          */
494         while (page_nr < nr_pages)
495                 page_cache_release(spd.pages[page_nr++]);
496         in->f_ra.prev_pos = (loff_t)index << PAGE_CACHE_SHIFT;
497
498         if (spd.nr_pages)
499                 error = splice_to_pipe(pipe, &spd);
500
501         splice_shrink_spd(pipe, &spd);
502         return error;
503 }
504
505 /**
506  * generic_file_splice_read - splice data from file to a pipe
507  * @in:         file to splice from
508  * @ppos:       position in @in
509  * @pipe:       pipe to splice to
510  * @len:        number of bytes to splice
511  * @flags:      splice modifier flags
512  *
513  * Description:
514  *    Will read pages from given file and fill them into a pipe. Can be
515  *    used as long as the address_space operations for the source implements
516  *    a readpage() hook.
517  *
518  */
519 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
520                                  struct pipe_inode_info *pipe, size_t len,
521                                  unsigned int flags)
522 {
523         loff_t isize, left;
524         int ret;
525
526         isize = i_size_read(in->f_mapping->host);
527         if (unlikely(*ppos >= isize))
528                 return 0;
529
530         left = isize - *ppos;
531         if (unlikely(left < len))
532                 len = left;
533
534         ret = __generic_file_splice_read(in, ppos, pipe, len, flags);
535         if (ret > 0) {
536                 *ppos += ret;
537                 file_accessed(in);
538         }
539
540         return ret;
541 }
542 EXPORT_SYMBOL(generic_file_splice_read);
543
544 static const struct pipe_buf_operations default_pipe_buf_ops = {
545         .can_merge = 0,
546         .map = generic_pipe_buf_map,
547         .unmap = generic_pipe_buf_unmap,
548         .confirm = generic_pipe_buf_confirm,
549         .release = generic_pipe_buf_release,
550         .steal = generic_pipe_buf_steal,
551         .get = generic_pipe_buf_get,
552 };
553
554 static ssize_t kernel_readv(struct file *file, const struct iovec *vec,
555                             unsigned long vlen, loff_t offset)
556 {
557         mm_segment_t old_fs;
558         loff_t pos = offset;
559         ssize_t res;
560
561         old_fs = get_fs();
562         set_fs(get_ds());
563         /* The cast to a user pointer is valid due to the set_fs() */
564         res = vfs_readv(file, (const struct iovec __user *)vec, vlen, &pos);
565         set_fs(old_fs);
566
567         return res;
568 }
569
570 static ssize_t kernel_write(struct file *file, const char *buf, size_t count,
571                             loff_t pos)
572 {
573         mm_segment_t old_fs;
574         ssize_t res;
575
576         old_fs = get_fs();
577         set_fs(get_ds());
578         /* The cast to a user pointer is valid due to the set_fs() */
579         res = vfs_write(file, (const char __user *)buf, count, &pos);
580         set_fs(old_fs);
581
582         return res;
583 }
584
585 ssize_t default_file_splice_read(struct file *in, loff_t *ppos,
586                                  struct pipe_inode_info *pipe, size_t len,
587                                  unsigned int flags)
588 {
589         unsigned int nr_pages;
590         unsigned int nr_freed;
591         size_t offset;
592         struct page *pages[PIPE_DEF_BUFFERS];
593         struct partial_page partial[PIPE_DEF_BUFFERS];
594         struct iovec *vec, __vec[PIPE_DEF_BUFFERS];
595         ssize_t res;
596         size_t this_len;
597         int error;
598         int i;
599         struct splice_pipe_desc spd = {
600                 .pages = pages,
601                 .partial = partial,
602                 .flags = flags,
603                 .ops = &default_pipe_buf_ops,
604                 .spd_release = spd_release_page,
605         };
606
607         if (splice_grow_spd(pipe, &spd))
608                 return -ENOMEM;
609
610         res = -ENOMEM;
611         vec = __vec;
612         if (pipe->buffers > PIPE_DEF_BUFFERS) {
613                 vec = kmalloc(pipe->buffers * sizeof(struct iovec), GFP_KERNEL);
614                 if (!vec)
615                         goto shrink_ret;
616         }
617
618         offset = *ppos & ~PAGE_CACHE_MASK;
619         nr_pages = (len + offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
620
621         for (i = 0; i < nr_pages && i < pipe->buffers && len; i++) {
622                 struct page *page;
623
624                 page = alloc_page(GFP_USER);
625                 error = -ENOMEM;
626                 if (!page)
627                         goto err;
628
629                 this_len = min_t(size_t, len, PAGE_CACHE_SIZE - offset);
630                 vec[i].iov_base = (void __user *) page_address(page);
631                 vec[i].iov_len = this_len;
632                 spd.pages[i] = page;
633                 spd.nr_pages++;
634                 len -= this_len;
635                 offset = 0;
636         }
637
638         res = kernel_readv(in, vec, spd.nr_pages, *ppos);
639         if (res < 0) {
640                 error = res;
641                 goto err;
642         }
643
644         error = 0;
645         if (!res)
646                 goto err;
647
648         nr_freed = 0;
649         for (i = 0; i < spd.nr_pages; i++) {
650                 this_len = min_t(size_t, vec[i].iov_len, res);
651                 spd.partial[i].offset = 0;
652                 spd.partial[i].len = this_len;
653                 if (!this_len) {
654                         __free_page(spd.pages[i]);
655                         spd.pages[i] = NULL;
656                         nr_freed++;
657                 }
658                 res -= this_len;
659         }
660         spd.nr_pages -= nr_freed;
661
662         res = splice_to_pipe(pipe, &spd);
663         if (res > 0)
664                 *ppos += res;
665
666 shrink_ret:
667         if (vec != __vec)
668                 kfree(vec);
669         splice_shrink_spd(pipe, &spd);
670         return res;
671
672 err:
673         for (i = 0; i < spd.nr_pages; i++)
674                 __free_page(spd.pages[i]);
675
676         res = error;
677         goto shrink_ret;
678 }
679 EXPORT_SYMBOL(default_file_splice_read);
680
681 /*
682  * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
683  * using sendpage(). Return the number of bytes sent.
684  */
685 static int pipe_to_sendpage(struct pipe_inode_info *pipe,
686                             struct pipe_buffer *buf, struct splice_desc *sd)
687 {
688         struct file *file = sd->u.file;
689         loff_t pos = sd->pos;
690         int more;
691
692         if (!likely(file->f_op && file->f_op->sendpage))
693                 return -EINVAL;
694
695         more = (sd->flags & SPLICE_F_MORE) ? MSG_MORE : 0;
696         if (sd->len < sd->total_len)
697                 more |= MSG_SENDPAGE_NOTLAST;
698         return file->f_op->sendpage(file, buf->page, buf->offset,
699                                     sd->len, &pos, more);
700 }
701
702 /*
703  * This is a little more tricky than the file -> pipe splicing. There are
704  * basically three cases:
705  *
706  *      - Destination page already exists in the address space and there
707  *        are users of it. For that case we have no other option that
708  *        copying the data. Tough luck.
709  *      - Destination page already exists in the address space, but there
710  *        are no users of it. Make sure it's uptodate, then drop it. Fall
711  *        through to last case.
712  *      - Destination page does not exist, we can add the pipe page to
713  *        the page cache and avoid the copy.
714  *
715  * If asked to move pages to the output file (SPLICE_F_MOVE is set in
716  * sd->flags), we attempt to migrate pages from the pipe to the output
717  * file address space page cache. This is possible if no one else has
718  * the pipe page referenced outside of the pipe and page cache. If
719  * SPLICE_F_MOVE isn't set, or we cannot move the page, we simply create
720  * a new page in the output file page cache and fill/dirty that.
721  */
722 int pipe_to_file(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
723                  struct splice_desc *sd)
724 {
725         struct file *file = sd->u.file;
726         struct address_space *mapping = file->f_mapping;
727         unsigned int offset, this_len;
728         struct page *page;
729         void *fsdata;
730         int ret;
731
732         offset = sd->pos & ~PAGE_CACHE_MASK;
733
734         this_len = sd->len;
735         if (this_len + offset > PAGE_CACHE_SIZE)
736                 this_len = PAGE_CACHE_SIZE - offset;
737
738         ret = pagecache_write_begin(file, mapping, sd->pos, this_len,
739                                 AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
740         if (unlikely(ret))
741                 goto out;
742
743         if (buf->page != page) {
744                 /*
745                  * Careful, ->map() uses KM_USER0!
746                  */
747                 char *src = buf->ops->map(pipe, buf, 1);
748                 char *dst = kmap_atomic(page, KM_USER1);
749
750                 memcpy(dst + offset, src + buf->offset, this_len);
751                 flush_dcache_page(page);
752                 kunmap_atomic(dst, KM_USER1);
753                 buf->ops->unmap(pipe, buf, src);
754         }
755         ret = pagecache_write_end(file, mapping, sd->pos, this_len, this_len,
756                                 page, fsdata);
757 out:
758         return ret;
759 }
760 EXPORT_SYMBOL(pipe_to_file);
761
762 static void wakeup_pipe_writers(struct pipe_inode_info *pipe)
763 {
764         smp_mb();
765         if (waitqueue_active(&pipe->wait))
766                 wake_up_interruptible(&pipe->wait);
767         kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
768 }
769
770 /**
771  * splice_from_pipe_feed - feed available data from a pipe to a file
772  * @pipe:       pipe to splice from
773  * @sd:         information to @actor
774  * @actor:      handler that splices the data
775  *
776  * Description:
777  *    This function loops over the pipe and calls @actor to do the
778  *    actual moving of a single struct pipe_buffer to the desired
779  *    destination.  It returns when there's no more buffers left in
780  *    the pipe or if the requested number of bytes (@sd->total_len)
781  *    have been copied.  It returns a positive number (one) if the
782  *    pipe needs to be filled with more data, zero if the required
783  *    number of bytes have been copied and -errno on error.
784  *
785  *    This, together with splice_from_pipe_{begin,end,next}, may be
786  *    used to implement the functionality of __splice_from_pipe() when
787  *    locking is required around copying the pipe buffers to the
788  *    destination.
789  */
790 int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd,
791                           splice_actor *actor)
792 {
793         int ret;
794
795         while (pipe->nrbufs) {
796                 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
797                 const struct pipe_buf_operations *ops = buf->ops;
798
799                 sd->len = buf->len;
800                 if (sd->len > sd->total_len)
801                         sd->len = sd->total_len;
802
803                 ret = buf->ops->confirm(pipe, buf);
804                 if (unlikely(ret)) {
805                         if (ret == -ENODATA)
806                                 ret = 0;
807                         return ret;
808                 }
809
810                 ret = actor(pipe, buf, sd);
811                 if (ret <= 0)
812                         return ret;
813
814                 buf->offset += ret;
815                 buf->len -= ret;
816
817                 sd->num_spliced += ret;
818                 sd->len -= ret;
819                 sd->pos += ret;
820                 sd->total_len -= ret;
821
822                 if (!buf->len) {
823                         buf->ops = NULL;
824                         ops->release(pipe, buf);
825                         pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1);
826                         pipe->nrbufs--;
827                         if (pipe->inode)
828                                 sd->need_wakeup = true;
829                 }
830
831                 if (!sd->total_len)
832                         return 0;
833         }
834
835         return 1;
836 }
837 EXPORT_SYMBOL(splice_from_pipe_feed);
838
839 /**
840  * splice_from_pipe_next - wait for some data to splice from
841  * @pipe:       pipe to splice from
842  * @sd:         information about the splice operation
843  *
844  * Description:
845  *    This function will wait for some data and return a positive
846  *    value (one) if pipe buffers are available.  It will return zero
847  *    or -errno if no more data needs to be spliced.
848  */
849 int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd)
850 {
851         while (!pipe->nrbufs) {
852                 if (!pipe->writers)
853                         return 0;
854
855                 if (!pipe->waiting_writers && sd->num_spliced)
856                         return 0;
857
858                 if (sd->flags & SPLICE_F_NONBLOCK)
859                         return -EAGAIN;
860
861                 if (signal_pending(current))
862                         return -ERESTARTSYS;
863
864                 if (sd->need_wakeup) {
865                         wakeup_pipe_writers(pipe);
866                         sd->need_wakeup = false;
867                 }
868
869                 pipe_wait(pipe);
870         }
871
872         return 1;
873 }
874 EXPORT_SYMBOL(splice_from_pipe_next);
875
876 /**
877  * splice_from_pipe_begin - start splicing from pipe
878  * @sd:         information about the splice operation
879  *
880  * Description:
881  *    This function should be called before a loop containing
882  *    splice_from_pipe_next() and splice_from_pipe_feed() to
883  *    initialize the necessary fields of @sd.
884  */
885 void splice_from_pipe_begin(struct splice_desc *sd)
886 {
887         sd->num_spliced = 0;
888         sd->need_wakeup = false;
889 }
890 EXPORT_SYMBOL(splice_from_pipe_begin);
891
892 /**
893  * splice_from_pipe_end - finish splicing from pipe
894  * @pipe:       pipe to splice from
895  * @sd:         information about the splice operation
896  *
897  * Description:
898  *    This function will wake up pipe writers if necessary.  It should
899  *    be called after a loop containing splice_from_pipe_next() and
900  *    splice_from_pipe_feed().
901  */
902 void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd)
903 {
904         if (sd->need_wakeup)
905                 wakeup_pipe_writers(pipe);
906 }
907 EXPORT_SYMBOL(splice_from_pipe_end);
908
909 /**
910  * __splice_from_pipe - splice data from a pipe to given actor
911  * @pipe:       pipe to splice from
912  * @sd:         information to @actor
913  * @actor:      handler that splices the data
914  *
915  * Description:
916  *    This function does little more than loop over the pipe and call
917  *    @actor to do the actual moving of a single struct pipe_buffer to
918  *    the desired destination. See pipe_to_file, pipe_to_sendpage, or
919  *    pipe_to_user.
920  *
921  */
922 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
923                            splice_actor *actor)
924 {
925         int ret;
926
927         splice_from_pipe_begin(sd);
928         do {
929                 ret = splice_from_pipe_next(pipe, sd);
930                 if (ret > 0)
931                         ret = splice_from_pipe_feed(pipe, sd, actor);
932         } while (ret > 0);
933         splice_from_pipe_end(pipe, sd);
934
935         return sd->num_spliced ? sd->num_spliced : ret;
936 }
937 EXPORT_SYMBOL(__splice_from_pipe);
938
939 /**
940  * splice_from_pipe - splice data from a pipe to a file
941  * @pipe:       pipe to splice from
942  * @out:        file to splice to
943  * @ppos:       position in @out
944  * @len:        how many bytes to splice
945  * @flags:      splice modifier flags
946  * @actor:      handler that splices the data
947  *
948  * Description:
949  *    See __splice_from_pipe. This function locks the pipe inode,
950  *    otherwise it's identical to __splice_from_pipe().
951  *
952  */
953 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
954                          loff_t *ppos, size_t len, unsigned int flags,
955                          splice_actor *actor)
956 {
957         ssize_t ret;
958         struct splice_desc sd = {
959                 .total_len = len,
960                 .flags = flags,
961                 .pos = *ppos,
962                 .u.file = out,
963         };
964
965         pipe_lock(pipe);
966         ret = __splice_from_pipe(pipe, &sd, actor);
967         pipe_unlock(pipe);
968
969         return ret;
970 }
971
972 /**
973  * generic_file_splice_write - splice data from a pipe to a file
974  * @pipe:       pipe info
975  * @out:        file to write to
976  * @ppos:       position in @out
977  * @len:        number of bytes to splice
978  * @flags:      splice modifier flags
979  *
980  * Description:
981  *    Will either move or copy pages (determined by @flags options) from
982  *    the given pipe inode to the given file.
983  *
984  */
985 ssize_t
986 generic_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
987                           loff_t *ppos, size_t len, unsigned int flags)
988 {
989         struct address_space *mapping = out->f_mapping;
990         struct inode *inode = mapping->host;
991         struct splice_desc sd = {
992                 .total_len = len,
993                 .flags = flags,
994                 .pos = *ppos,
995                 .u.file = out,
996         };
997         ssize_t ret;
998
999         pipe_lock(pipe);
1000
1001         splice_from_pipe_begin(&sd);
1002         do {
1003                 ret = splice_from_pipe_next(pipe, &sd);
1004                 if (ret <= 0)
1005                         break;
1006
1007                 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
1008                 ret = file_remove_suid(out);
1009                 if (!ret) {
1010                         file_update_time(out);
1011                         ret = splice_from_pipe_feed(pipe, &sd, pipe_to_file);
1012                 }
1013                 mutex_unlock(&inode->i_mutex);
1014         } while (ret > 0);
1015         splice_from_pipe_end(pipe, &sd);
1016
1017         pipe_unlock(pipe);
1018
1019         if (sd.num_spliced)
1020                 ret = sd.num_spliced;
1021
1022         if (ret > 0) {
1023                 unsigned long nr_pages;
1024                 int err;
1025
1026                 nr_pages = (ret + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1027
1028                 err = generic_write_sync(out, *ppos, ret);
1029                 if (err)
1030                         ret = err;
1031                 else
1032                         *ppos += ret;
1033                 balance_dirty_pages_ratelimited_nr(mapping, nr_pages);
1034         }
1035
1036         return ret;
1037 }
1038
1039 EXPORT_SYMBOL(generic_file_splice_write);
1040
1041 static int write_pipe_buf(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1042                           struct splice_desc *sd)
1043 {
1044         int ret;
1045         void *data;
1046
1047         data = buf->ops->map(pipe, buf, 0);
1048         ret = kernel_write(sd->u.file, data + buf->offset, sd->len, sd->pos);
1049         buf->ops->unmap(pipe, buf, data);
1050
1051         return ret;
1052 }
1053
1054 static ssize_t default_file_splice_write(struct pipe_inode_info *pipe,
1055                                          struct file *out, loff_t *ppos,
1056                                          size_t len, unsigned int flags)
1057 {
1058         ssize_t ret;
1059
1060         ret = splice_from_pipe(pipe, out, ppos, len, flags, write_pipe_buf);
1061         if (ret > 0)
1062                 *ppos += ret;
1063
1064         return ret;
1065 }
1066
1067 /**
1068  * generic_splice_sendpage - splice data from a pipe to a socket
1069  * @pipe:       pipe to splice from
1070  * @out:        socket to write to
1071  * @ppos:       position in @out
1072  * @len:        number of bytes to splice
1073  * @flags:      splice modifier flags
1074  *
1075  * Description:
1076  *    Will send @len bytes from the pipe to a network socket. No data copying
1077  *    is involved.
1078  *
1079  */
1080 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
1081                                 loff_t *ppos, size_t len, unsigned int flags)
1082 {
1083         return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
1084 }
1085
1086 EXPORT_SYMBOL(generic_splice_sendpage);
1087
1088 /*
1089  * Attempt to initiate a splice from pipe to file.
1090  */
1091 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
1092                            loff_t *ppos, size_t len, unsigned int flags)
1093 {
1094         ssize_t (*splice_write)(struct pipe_inode_info *, struct file *,
1095                                 loff_t *, size_t, unsigned int);
1096         int ret;
1097
1098         if (unlikely(!(out->f_mode & FMODE_WRITE)))
1099                 return -EBADF;
1100
1101         if (unlikely(out->f_flags & O_APPEND))
1102                 return -EINVAL;
1103
1104         ret = rw_verify_area(WRITE, out, ppos, len);
1105         if (unlikely(ret < 0))
1106                 return ret;
1107
1108         if (out->f_op && out->f_op->splice_write)
1109                 splice_write = out->f_op->splice_write;
1110         else
1111                 splice_write = default_file_splice_write;
1112
1113         return splice_write(pipe, out, ppos, len, flags);
1114 }
1115
1116 /*
1117  * Attempt to initiate a splice from a file to a pipe.
1118  */
1119 static long do_splice_to(struct file *in, loff_t *ppos,
1120                          struct pipe_inode_info *pipe, size_t len,
1121                          unsigned int flags)
1122 {
1123         ssize_t (*splice_read)(struct file *, loff_t *,
1124                                struct pipe_inode_info *, size_t, unsigned int);
1125         int ret;
1126
1127         if (unlikely(!(in->f_mode & FMODE_READ)))
1128                 return -EBADF;
1129
1130         ret = rw_verify_area(READ, in, ppos, len);
1131         if (unlikely(ret < 0))
1132                 return ret;
1133
1134         if (in->f_op && in->f_op->splice_read)
1135                 splice_read = in->f_op->splice_read;
1136         else
1137                 splice_read = default_file_splice_read;
1138
1139         return splice_read(in, ppos, pipe, len, flags);
1140 }
1141
1142 /**
1143  * splice_direct_to_actor - splices data directly between two non-pipes
1144  * @in:         file to splice from
1145  * @sd:         actor information on where to splice to
1146  * @actor:      handles the data splicing
1147  *
1148  * Description:
1149  *    This is a special case helper to splice directly between two
1150  *    points, without requiring an explicit pipe. Internally an allocated
1151  *    pipe is cached in the process, and reused during the lifetime of
1152  *    that process.
1153  *
1154  */
1155 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
1156                                splice_direct_actor *actor)
1157 {
1158         struct pipe_inode_info *pipe;
1159         long ret, bytes;
1160         umode_t i_mode;
1161         size_t len;
1162         int i, flags;
1163
1164         /*
1165          * We require the input being a regular file, as we don't want to
1166          * randomly drop data for eg socket -> socket splicing. Use the
1167          * piped splicing for that!
1168          */
1169         i_mode = in->f_path.dentry->d_inode->i_mode;
1170         if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
1171                 return -EINVAL;
1172
1173         /*
1174          * neither in nor out is a pipe, setup an internal pipe attached to
1175          * 'out' and transfer the wanted data from 'in' to 'out' through that
1176          */
1177         pipe = current->splice_pipe;
1178         if (unlikely(!pipe)) {
1179                 pipe = alloc_pipe_info(NULL);
1180                 if (!pipe)
1181                         return -ENOMEM;
1182
1183                 /*
1184                  * We don't have an immediate reader, but we'll read the stuff
1185                  * out of the pipe right after the splice_to_pipe(). So set
1186                  * PIPE_READERS appropriately.
1187                  */
1188                 pipe->readers = 1;
1189
1190                 current->splice_pipe = pipe;
1191         }
1192
1193         /*
1194          * Do the splice.
1195          */
1196         ret = 0;
1197         bytes = 0;
1198         len = sd->total_len;
1199         flags = sd->flags;
1200
1201         /*
1202          * Don't block on output, we have to drain the direct pipe.
1203          */
1204         sd->flags &= ~SPLICE_F_NONBLOCK;
1205
1206         while (len) {
1207                 size_t read_len;
1208                 loff_t pos = sd->pos, prev_pos = pos;
1209
1210                 ret = do_splice_to(in, &pos, pipe, len, flags);
1211                 if (unlikely(ret <= 0))
1212                         goto out_release;
1213
1214                 read_len = ret;
1215                 sd->total_len = read_len;
1216
1217                 /*
1218                  * NOTE: nonblocking mode only applies to the input. We
1219                  * must not do the output in nonblocking mode as then we
1220                  * could get stuck data in the internal pipe:
1221                  */
1222                 ret = actor(pipe, sd);
1223                 if (unlikely(ret <= 0)) {
1224                         sd->pos = prev_pos;
1225                         goto out_release;
1226                 }
1227
1228                 bytes += ret;
1229                 len -= ret;
1230                 sd->pos = pos;
1231
1232                 if (ret < read_len) {
1233                         sd->pos = prev_pos + ret;
1234                         goto out_release;
1235                 }
1236         }
1237
1238 done:
1239         pipe->nrbufs = pipe->curbuf = 0;
1240         file_accessed(in);
1241         return bytes;
1242
1243 out_release:
1244         /*
1245          * If we did an incomplete transfer we must release
1246          * the pipe buffers in question:
1247          */
1248         for (i = 0; i < pipe->buffers; i++) {
1249                 struct pipe_buffer *buf = pipe->bufs + i;
1250
1251                 if (buf->ops) {
1252                         buf->ops->release(pipe, buf);
1253                         buf->ops = NULL;
1254                 }
1255         }
1256
1257         if (!bytes)
1258                 bytes = ret;
1259
1260         goto done;
1261 }
1262 EXPORT_SYMBOL(splice_direct_to_actor);
1263
1264 static int direct_splice_actor(struct pipe_inode_info *pipe,
1265                                struct splice_desc *sd)
1266 {
1267         struct file *file = sd->u.file;
1268
1269         return do_splice_from(pipe, file, &file->f_pos, sd->total_len,
1270                               sd->flags);
1271 }
1272
1273 /**
1274  * do_splice_direct - splices data directly between two files
1275  * @in:         file to splice from
1276  * @ppos:       input file offset
1277  * @out:        file to splice to
1278  * @len:        number of bytes to splice
1279  * @flags:      splice modifier flags
1280  *
1281  * Description:
1282  *    For use by do_sendfile(). splice can easily emulate sendfile, but
1283  *    doing it in the application would incur an extra system call
1284  *    (splice in + splice out, as compared to just sendfile()). So this helper
1285  *    can splice directly through a process-private pipe.
1286  *
1287  */
1288 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1289                       size_t len, unsigned int flags)
1290 {
1291         struct splice_desc sd = {
1292                 .len            = len,
1293                 .total_len      = len,
1294                 .flags          = flags,
1295                 .pos            = *ppos,
1296                 .u.file         = out,
1297         };
1298         long ret;
1299
1300         ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
1301         if (ret > 0)
1302                 *ppos = sd.pos;
1303
1304         return ret;
1305 }
1306
1307 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1308                                struct pipe_inode_info *opipe,
1309                                size_t len, unsigned int flags);
1310
1311 /*
1312  * Determine where to splice to/from.
1313  */
1314 static long do_splice(struct file *in, loff_t __user *off_in,
1315                       struct file *out, loff_t __user *off_out,
1316                       size_t len, unsigned int flags)
1317 {
1318         struct pipe_inode_info *ipipe;
1319         struct pipe_inode_info *opipe;
1320         loff_t offset, *off;
1321         long ret;
1322
1323         ipipe = get_pipe_info(in);
1324         opipe = get_pipe_info(out);
1325
1326         if (ipipe && opipe) {
1327                 if (off_in || off_out)
1328                         return -ESPIPE;
1329
1330                 if (!(in->f_mode & FMODE_READ))
1331                         return -EBADF;
1332
1333                 if (!(out->f_mode & FMODE_WRITE))
1334                         return -EBADF;
1335
1336                 /* Splicing to self would be fun, but... */
1337                 if (ipipe == opipe)
1338                         return -EINVAL;
1339
1340                 return splice_pipe_to_pipe(ipipe, opipe, len, flags);
1341         }
1342
1343         if (ipipe) {
1344                 if (off_in)
1345                         return -ESPIPE;
1346                 if (off_out) {
1347                         if (!(out->f_mode & FMODE_PWRITE))
1348                                 return -EINVAL;
1349                         if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1350                                 return -EFAULT;
1351                         off = &offset;
1352                 } else
1353                         off = &out->f_pos;
1354
1355                 ret = do_splice_from(ipipe, out, off, len, flags);
1356
1357                 if (off_out && copy_to_user(off_out, off, sizeof(loff_t)))
1358                         ret = -EFAULT;
1359
1360                 return ret;
1361         }
1362
1363         if (opipe) {
1364                 if (off_out)
1365                         return -ESPIPE;
1366                 if (off_in) {
1367                         if (!(in->f_mode & FMODE_PREAD))
1368                                 return -EINVAL;
1369                         if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1370                                 return -EFAULT;
1371                         off = &offset;
1372                 } else
1373                         off = &in->f_pos;
1374
1375                 ret = do_splice_to(in, off, opipe, len, flags);
1376
1377                 if (off_in && copy_to_user(off_in, off, sizeof(loff_t)))
1378                         ret = -EFAULT;
1379
1380                 return ret;
1381         }
1382
1383         return -EINVAL;
1384 }
1385
1386 /*
1387  * Map an iov into an array of pages and offset/length tupples. With the
1388  * partial_page structure, we can map several non-contiguous ranges into
1389  * our ones pages[] map instead of splitting that operation into pieces.
1390  * Could easily be exported as a generic helper for other users, in which
1391  * case one would probably want to add a 'max_nr_pages' parameter as well.
1392  */
1393 static int get_iovec_page_array(const struct iovec __user *iov,
1394                                 unsigned int nr_vecs, struct page **pages,
1395                                 struct partial_page *partial, int aligned,
1396                                 unsigned int pipe_buffers)
1397 {
1398         int buffers = 0, error = 0;
1399
1400         while (nr_vecs) {
1401                 unsigned long off, npages;
1402                 struct iovec entry;
1403                 void __user *base;
1404                 size_t len;
1405                 int i;
1406
1407                 error = -EFAULT;
1408                 if (copy_from_user(&entry, iov, sizeof(entry)))
1409                         break;
1410
1411                 base = entry.iov_base;
1412                 len = entry.iov_len;
1413
1414                 /*
1415                  * Sanity check this iovec. 0 read succeeds.
1416                  */
1417                 error = 0;
1418                 if (unlikely(!len))
1419                         break;
1420                 error = -EFAULT;
1421                 if (!access_ok(VERIFY_READ, base, len))
1422                         break;
1423
1424                 /*
1425                  * Get this base offset and number of pages, then map
1426                  * in the user pages.
1427                  */
1428                 off = (unsigned long) base & ~PAGE_MASK;
1429
1430                 /*
1431                  * If asked for alignment, the offset must be zero and the
1432                  * length a multiple of the PAGE_SIZE.
1433                  */
1434                 error = -EINVAL;
1435                 if (aligned && (off || len & ~PAGE_MASK))
1436                         break;
1437
1438                 npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1439                 if (npages > pipe_buffers - buffers)
1440                         npages = pipe_buffers - buffers;
1441
1442                 error = get_user_pages_fast((unsigned long)base, npages,
1443                                         0, &pages[buffers]);
1444
1445                 if (unlikely(error <= 0))
1446                         break;
1447
1448                 /*
1449                  * Fill this contiguous range into the partial page map.
1450                  */
1451                 for (i = 0; i < error; i++) {
1452                         const int plen = min_t(size_t, len, PAGE_SIZE - off);
1453
1454                         partial[buffers].offset = off;
1455                         partial[buffers].len = plen;
1456
1457                         off = 0;
1458                         len -= plen;
1459                         buffers++;
1460                 }
1461
1462                 /*
1463                  * We didn't complete this iov, stop here since it probably
1464                  * means we have to move some of this into a pipe to
1465                  * be able to continue.
1466                  */
1467                 if (len)
1468                         break;
1469
1470                 /*
1471                  * Don't continue if we mapped fewer pages than we asked for,
1472                  * or if we mapped the max number of pages that we have
1473                  * room for.
1474                  */
1475                 if (error < npages || buffers == pipe_buffers)
1476                         break;
1477
1478                 nr_vecs--;
1479                 iov++;
1480         }
1481
1482         if (buffers)
1483                 return buffers;
1484
1485         return error;
1486 }
1487
1488 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1489                         struct splice_desc *sd)
1490 {
1491         char *src;
1492         int ret;
1493
1494         /*
1495          * See if we can use the atomic maps, by prefaulting in the
1496          * pages and doing an atomic copy
1497          */
1498         if (!fault_in_pages_writeable(sd->u.userptr, sd->len)) {
1499                 src = buf->ops->map(pipe, buf, 1);
1500                 ret = __copy_to_user_inatomic(sd->u.userptr, src + buf->offset,
1501                                                         sd->len);
1502                 buf->ops->unmap(pipe, buf, src);
1503                 if (!ret) {
1504                         ret = sd->len;
1505                         goto out;
1506                 }
1507         }
1508
1509         /*
1510          * No dice, use slow non-atomic map and copy
1511          */
1512         src = buf->ops->map(pipe, buf, 0);
1513
1514         ret = sd->len;
1515         if (copy_to_user(sd->u.userptr, src + buf->offset, sd->len))
1516                 ret = -EFAULT;
1517
1518         buf->ops->unmap(pipe, buf, src);
1519 out:
1520         if (ret > 0)
1521                 sd->u.userptr += ret;
1522         return ret;
1523 }
1524
1525 /*
1526  * For lack of a better implementation, implement vmsplice() to userspace
1527  * as a simple copy of the pipes pages to the user iov.
1528  */
1529 static long vmsplice_to_user(struct file *file, const struct iovec __user *iov,
1530                              unsigned long nr_segs, unsigned int flags)
1531 {
1532         struct pipe_inode_info *pipe;
1533         struct splice_desc sd;
1534         ssize_t size;
1535         int error;
1536         long ret;
1537
1538         pipe = get_pipe_info(file);
1539         if (!pipe)
1540                 return -EBADF;
1541
1542         pipe_lock(pipe);
1543
1544         error = ret = 0;
1545         while (nr_segs) {
1546                 void __user *base;
1547                 size_t len;
1548
1549                 /*
1550                  * Get user address base and length for this iovec.
1551                  */
1552                 error = get_user(base, &iov->iov_base);
1553                 if (unlikely(error))
1554                         break;
1555                 error = get_user(len, &iov->iov_len);
1556                 if (unlikely(error))
1557                         break;
1558
1559                 /*
1560                  * Sanity check this iovec. 0 read succeeds.
1561                  */
1562                 if (unlikely(!len))
1563                         break;
1564                 if (unlikely(!base)) {
1565                         error = -EFAULT;
1566                         break;
1567                 }
1568
1569                 if (unlikely(!access_ok(VERIFY_WRITE, base, len))) {
1570                         error = -EFAULT;
1571                         break;
1572                 }
1573
1574                 sd.len = 0;
1575                 sd.total_len = len;
1576                 sd.flags = flags;
1577                 sd.u.userptr = base;
1578                 sd.pos = 0;
1579
1580                 size = __splice_from_pipe(pipe, &sd, pipe_to_user);
1581                 if (size < 0) {
1582                         if (!ret)
1583                                 ret = size;
1584
1585                         break;
1586                 }
1587
1588                 ret += size;
1589
1590                 if (size < len)
1591                         break;
1592
1593                 nr_segs--;
1594                 iov++;
1595         }
1596
1597         pipe_unlock(pipe);
1598
1599         if (!ret)
1600                 ret = error;
1601
1602         return ret;
1603 }
1604
1605 /*
1606  * vmsplice splices a user address range into a pipe. It can be thought of
1607  * as splice-from-memory, where the regular splice is splice-from-file (or
1608  * to file). In both cases the output is a pipe, naturally.
1609  */
1610 static long vmsplice_to_pipe(struct file *file, const struct iovec __user *iov,
1611                              unsigned long nr_segs, unsigned int flags)
1612 {
1613         struct pipe_inode_info *pipe;
1614         struct page *pages[PIPE_DEF_BUFFERS];
1615         struct partial_page partial[PIPE_DEF_BUFFERS];
1616         struct splice_pipe_desc spd = {
1617                 .pages = pages,
1618                 .partial = partial,
1619                 .flags = flags,
1620                 .ops = &user_page_pipe_buf_ops,
1621                 .spd_release = spd_release_page,
1622         };
1623         long ret;
1624
1625         pipe = get_pipe_info(file);
1626         if (!pipe)
1627                 return -EBADF;
1628
1629         if (splice_grow_spd(pipe, &spd))
1630                 return -ENOMEM;
1631
1632         spd.nr_pages = get_iovec_page_array(iov, nr_segs, spd.pages,
1633                                             spd.partial, flags & SPLICE_F_GIFT,
1634                                             pipe->buffers);
1635         if (spd.nr_pages <= 0)
1636                 ret = spd.nr_pages;
1637         else
1638                 ret = splice_to_pipe(pipe, &spd);
1639
1640         splice_shrink_spd(pipe, &spd);
1641         return ret;
1642 }
1643
1644 /*
1645  * Note that vmsplice only really supports true splicing _from_ user memory
1646  * to a pipe, not the other way around. Splicing from user memory is a simple
1647  * operation that can be supported without any funky alignment restrictions
1648  * or nasty vm tricks. We simply map in the user memory and fill them into
1649  * a pipe. The reverse isn't quite as easy, though. There are two possible
1650  * solutions for that:
1651  *
1652  *      - memcpy() the data internally, at which point we might as well just
1653  *        do a regular read() on the buffer anyway.
1654  *      - Lots of nasty vm tricks, that are neither fast nor flexible (it
1655  *        has restriction limitations on both ends of the pipe).
1656  *
1657  * Currently we punt and implement it as a normal copy, see pipe_to_user().
1658  *
1659  */
1660 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, iov,
1661                 unsigned long, nr_segs, unsigned int, flags)
1662 {
1663         struct file *file;
1664         long error;
1665         int fput;
1666
1667         if (unlikely(nr_segs > UIO_MAXIOV))
1668                 return -EINVAL;
1669         else if (unlikely(!nr_segs))
1670                 return 0;
1671
1672         error = -EBADF;
1673         file = fget_light(fd, &fput);
1674         if (file) {
1675                 if (file->f_mode & FMODE_WRITE)
1676                         error = vmsplice_to_pipe(file, iov, nr_segs, flags);
1677                 else if (file->f_mode & FMODE_READ)
1678                         error = vmsplice_to_user(file, iov, nr_segs, flags);
1679
1680                 fput_light(file, fput);
1681         }
1682
1683         return error;
1684 }
1685
1686 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in,
1687                 int, fd_out, loff_t __user *, off_out,
1688                 size_t, len, unsigned int, flags)
1689 {
1690         long error;
1691         struct file *in, *out;
1692         int fput_in, fput_out;
1693
1694         if (unlikely(!len))
1695                 return 0;
1696
1697         error = -EBADF;
1698         in = fget_light(fd_in, &fput_in);
1699         if (in) {
1700                 if (in->f_mode & FMODE_READ) {
1701                         out = fget_light(fd_out, &fput_out);
1702                         if (out) {
1703                                 if (out->f_mode & FMODE_WRITE)
1704                                         error = do_splice(in, off_in,
1705                                                           out, off_out,
1706                                                           len, flags);
1707                                 fput_light(out, fput_out);
1708                         }
1709                 }
1710
1711                 fput_light(in, fput_in);
1712         }
1713
1714         return error;
1715 }
1716
1717 /*
1718  * Make sure there's data to read. Wait for input if we can, otherwise
1719  * return an appropriate error.
1720  */
1721 static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1722 {
1723         int ret;
1724
1725         /*
1726          * Check ->nrbufs without the inode lock first. This function
1727          * is speculative anyways, so missing one is ok.
1728          */
1729         if (pipe->nrbufs)
1730                 return 0;
1731
1732         ret = 0;
1733         pipe_lock(pipe);
1734
1735         while (!pipe->nrbufs) {
1736                 if (signal_pending(current)) {
1737                         ret = -ERESTARTSYS;
1738                         break;
1739                 }
1740                 if (!pipe->writers)
1741                         break;
1742                 if (!pipe->waiting_writers) {
1743                         if (flags & SPLICE_F_NONBLOCK) {
1744                                 ret = -EAGAIN;
1745                                 break;
1746                         }
1747                 }
1748                 pipe_wait(pipe);
1749         }
1750
1751         pipe_unlock(pipe);
1752         return ret;
1753 }
1754
1755 /*
1756  * Make sure there's writeable room. Wait for room if we can, otherwise
1757  * return an appropriate error.
1758  */
1759 static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1760 {
1761         int ret;
1762
1763         /*
1764          * Check ->nrbufs without the inode lock first. This function
1765          * is speculative anyways, so missing one is ok.
1766          */
1767         if (pipe->nrbufs < pipe->buffers)
1768                 return 0;
1769
1770         ret = 0;
1771         pipe_lock(pipe);
1772
1773         while (pipe->nrbufs >= pipe->buffers) {
1774                 if (!pipe->readers) {
1775                         send_sig(SIGPIPE, current, 0);
1776                         ret = -EPIPE;
1777                         break;
1778                 }
1779                 if (flags & SPLICE_F_NONBLOCK) {
1780                         ret = -EAGAIN;
1781                         break;
1782                 }
1783                 if (signal_pending(current)) {
1784                         ret = -ERESTARTSYS;
1785                         break;
1786                 }
1787                 pipe->waiting_writers++;
1788                 pipe_wait(pipe);
1789                 pipe->waiting_writers--;
1790         }
1791
1792         pipe_unlock(pipe);
1793         return ret;
1794 }
1795
1796 /*
1797  * Splice contents of ipipe to opipe.
1798  */
1799 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1800                                struct pipe_inode_info *opipe,
1801                                size_t len, unsigned int flags)
1802 {
1803         struct pipe_buffer *ibuf, *obuf;
1804         int ret = 0, nbuf;
1805         bool input_wakeup = false;
1806
1807
1808 retry:
1809         ret = ipipe_prep(ipipe, flags);
1810         if (ret)
1811                 return ret;
1812
1813         ret = opipe_prep(opipe, flags);
1814         if (ret)
1815                 return ret;
1816
1817         /*
1818          * Potential ABBA deadlock, work around it by ordering lock
1819          * grabbing by pipe info address. Otherwise two different processes
1820          * could deadlock (one doing tee from A -> B, the other from B -> A).
1821          */
1822         pipe_double_lock(ipipe, opipe);
1823
1824         do {
1825                 if (!opipe->readers) {
1826                         send_sig(SIGPIPE, current, 0);
1827                         if (!ret)
1828                                 ret = -EPIPE;
1829                         break;
1830                 }
1831
1832                 if (!ipipe->nrbufs && !ipipe->writers)
1833                         break;
1834
1835                 /*
1836                  * Cannot make any progress, because either the input
1837                  * pipe is empty or the output pipe is full.
1838                  */
1839                 if (!ipipe->nrbufs || opipe->nrbufs >= opipe->buffers) {
1840                         /* Already processed some buffers, break */
1841                         if (ret)
1842                                 break;
1843
1844                         if (flags & SPLICE_F_NONBLOCK) {
1845                                 ret = -EAGAIN;
1846                                 break;
1847                         }
1848
1849                         /*
1850                          * We raced with another reader/writer and haven't
1851                          * managed to process any buffers.  A zero return
1852                          * value means EOF, so retry instead.
1853                          */
1854                         pipe_unlock(ipipe);
1855                         pipe_unlock(opipe);
1856                         goto retry;
1857                 }
1858
1859                 ibuf = ipipe->bufs + ipipe->curbuf;
1860                 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1861                 obuf = opipe->bufs + nbuf;
1862
1863                 if (len >= ibuf->len) {
1864                         /*
1865                          * Simply move the whole buffer from ipipe to opipe
1866                          */
1867                         *obuf = *ibuf;
1868                         ibuf->ops = NULL;
1869                         opipe->nrbufs++;
1870                         ipipe->curbuf = (ipipe->curbuf + 1) & (ipipe->buffers - 1);
1871                         ipipe->nrbufs--;
1872                         input_wakeup = true;
1873                 } else {
1874                         /*
1875                          * Get a reference to this pipe buffer,
1876                          * so we can copy the contents over.
1877                          */
1878                         ibuf->ops->get(ipipe, ibuf);
1879                         *obuf = *ibuf;
1880
1881                         /*
1882                          * Don't inherit the gift flag, we need to
1883                          * prevent multiple steals of this page.
1884                          */
1885                         obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1886
1887                         obuf->len = len;
1888                         opipe->nrbufs++;
1889                         ibuf->offset += obuf->len;
1890                         ibuf->len -= obuf->len;
1891                 }
1892                 ret += obuf->len;
1893                 len -= obuf->len;
1894         } while (len);
1895
1896         pipe_unlock(ipipe);
1897         pipe_unlock(opipe);
1898
1899         /*
1900          * If we put data in the output pipe, wakeup any potential readers.
1901          */
1902         if (ret > 0)
1903                 wakeup_pipe_readers(opipe);
1904
1905         if (input_wakeup)
1906                 wakeup_pipe_writers(ipipe);
1907
1908         return ret;
1909 }
1910
1911 /*
1912  * Link contents of ipipe to opipe.
1913  */
1914 static int link_pipe(struct pipe_inode_info *ipipe,
1915                      struct pipe_inode_info *opipe,
1916                      size_t len, unsigned int flags)
1917 {
1918         struct pipe_buffer *ibuf, *obuf;
1919         int ret = 0, i = 0, nbuf;
1920
1921         /*
1922          * Potential ABBA deadlock, work around it by ordering lock
1923          * grabbing by pipe info address. Otherwise two different processes
1924          * could deadlock (one doing tee from A -> B, the other from B -> A).
1925          */
1926         pipe_double_lock(ipipe, opipe);
1927
1928         do {
1929                 if (!opipe->readers) {
1930                         send_sig(SIGPIPE, current, 0);
1931                         if (!ret)
1932                                 ret = -EPIPE;
1933                         break;
1934                 }
1935
1936                 /*
1937                  * If we have iterated all input buffers or ran out of
1938                  * output room, break.
1939                  */
1940                 if (i >= ipipe->nrbufs || opipe->nrbufs >= opipe->buffers)
1941                         break;
1942
1943                 ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (ipipe->buffers-1));
1944                 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1945
1946                 /*
1947                  * Get a reference to this pipe buffer,
1948                  * so we can copy the contents over.
1949                  */
1950                 ibuf->ops->get(ipipe, ibuf);
1951
1952                 obuf = opipe->bufs + nbuf;
1953                 *obuf = *ibuf;
1954
1955                 /*
1956                  * Don't inherit the gift flag, we need to
1957                  * prevent multiple steals of this page.
1958                  */
1959                 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1960
1961                 if (obuf->len > len)
1962                         obuf->len = len;
1963
1964                 opipe->nrbufs++;
1965                 ret += obuf->len;
1966                 len -= obuf->len;
1967                 i++;
1968         } while (len);
1969
1970         /*
1971          * return EAGAIN if we have the potential of some data in the
1972          * future, otherwise just return 0
1973          */
1974         if (!ret && ipipe->waiting_writers && (flags & SPLICE_F_NONBLOCK))
1975                 ret = -EAGAIN;
1976
1977         pipe_unlock(ipipe);
1978         pipe_unlock(opipe);
1979
1980         /*
1981          * If we put data in the output pipe, wakeup any potential readers.
1982          */
1983         if (ret > 0)
1984                 wakeup_pipe_readers(opipe);
1985
1986         return ret;
1987 }
1988
1989 /*
1990  * This is a tee(1) implementation that works on pipes. It doesn't copy
1991  * any data, it simply references the 'in' pages on the 'out' pipe.
1992  * The 'flags' used are the SPLICE_F_* variants, currently the only
1993  * applicable one is SPLICE_F_NONBLOCK.
1994  */
1995 static long do_tee(struct file *in, struct file *out, size_t len,
1996                    unsigned int flags)
1997 {
1998         struct pipe_inode_info *ipipe = get_pipe_info(in);
1999         struct pipe_inode_info *opipe = get_pipe_info(out);
2000         int ret = -EINVAL;
2001
2002         /*
2003          * Duplicate the contents of ipipe to opipe without actually
2004          * copying the data.
2005          */
2006         if (ipipe && opipe && ipipe != opipe) {
2007                 /*
2008                  * Keep going, unless we encounter an error. The ipipe/opipe
2009                  * ordering doesn't really matter.
2010                  */
2011                 ret = ipipe_prep(ipipe, flags);
2012                 if (!ret) {
2013                         ret = opipe_prep(opipe, flags);
2014                         if (!ret)
2015                                 ret = link_pipe(ipipe, opipe, len, flags);
2016                 }
2017         }
2018
2019         return ret;
2020 }
2021
2022 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags)
2023 {
2024         struct file *in;
2025         int error, fput_in;
2026
2027         if (unlikely(!len))
2028                 return 0;
2029
2030         error = -EBADF;
2031         in = fget_light(fdin, &fput_in);
2032         if (in) {
2033                 if (in->f_mode & FMODE_READ) {
2034                         int fput_out;
2035                         struct file *out = fget_light(fdout, &fput_out);
2036
2037                         if (out) {
2038                                 if (out->f_mode & FMODE_WRITE)
2039                                         error = do_tee(in, out, len, flags);
2040                                 fput_light(out, fput_out);
2041                         }
2042                 }
2043                 fput_light(in, fput_in);
2044         }
2045
2046         return error;
2047 }