Merge branch 'linus' into x86/urgent
[pandora-kernel.git] / fs / proc / base.c
1 /*
2  *  linux/fs/proc/base.c
3  *
4  *  Copyright (C) 1991, 1992 Linus Torvalds
5  *
6  *  proc base directory handling functions
7  *
8  *  1999, Al Viro. Rewritten. Now it covers the whole per-process part.
9  *  Instead of using magical inumbers to determine the kind of object
10  *  we allocate and fill in-core inodes upon lookup. They don't even
11  *  go into icache. We cache the reference to task_struct upon lookup too.
12  *  Eventually it should become a filesystem in its own. We don't use the
13  *  rest of procfs anymore.
14  *
15  *
16  *  Changelog:
17  *  17-Jan-2005
18  *  Allan Bezerra
19  *  Bruna Moreira <bruna.moreira@indt.org.br>
20  *  Edjard Mota <edjard.mota@indt.org.br>
21  *  Ilias Biris <ilias.biris@indt.org.br>
22  *  Mauricio Lin <mauricio.lin@indt.org.br>
23  *
24  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
25  *
26  *  A new process specific entry (smaps) included in /proc. It shows the
27  *  size of rss for each memory area. The maps entry lacks information
28  *  about physical memory size (rss) for each mapped file, i.e.,
29  *  rss information for executables and library files.
30  *  This additional information is useful for any tools that need to know
31  *  about physical memory consumption for a process specific library.
32  *
33  *  Changelog:
34  *  21-Feb-2005
35  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
36  *  Pud inclusion in the page table walking.
37  *
38  *  ChangeLog:
39  *  10-Mar-2005
40  *  10LE Instituto Nokia de Tecnologia - INdT:
41  *  A better way to walks through the page table as suggested by Hugh Dickins.
42  *
43  *  Simo Piiroinen <simo.piiroinen@nokia.com>:
44  *  Smaps information related to shared, private, clean and dirty pages.
45  *
46  *  Paul Mundt <paul.mundt@nokia.com>:
47  *  Overall revision about smaps.
48  */
49
50 #include <asm/uaccess.h>
51
52 #include <linux/errno.h>
53 #include <linux/time.h>
54 #include <linux/proc_fs.h>
55 #include <linux/stat.h>
56 #include <linux/task_io_accounting_ops.h>
57 #include <linux/init.h>
58 #include <linux/capability.h>
59 #include <linux/file.h>
60 #include <linux/fdtable.h>
61 #include <linux/string.h>
62 #include <linux/seq_file.h>
63 #include <linux/namei.h>
64 #include <linux/mnt_namespace.h>
65 #include <linux/mm.h>
66 #include <linux/swap.h>
67 #include <linux/rcupdate.h>
68 #include <linux/kallsyms.h>
69 #include <linux/stacktrace.h>
70 #include <linux/resource.h>
71 #include <linux/module.h>
72 #include <linux/mount.h>
73 #include <linux/security.h>
74 #include <linux/ptrace.h>
75 #include <linux/tracehook.h>
76 #include <linux/cgroup.h>
77 #include <linux/cpuset.h>
78 #include <linux/audit.h>
79 #include <linux/poll.h>
80 #include <linux/nsproxy.h>
81 #include <linux/oom.h>
82 #include <linux/elf.h>
83 #include <linux/pid_namespace.h>
84 #include <linux/fs_struct.h>
85 #include <linux/slab.h>
86 #include "internal.h"
87
88 /* NOTE:
89  *      Implementing inode permission operations in /proc is almost
90  *      certainly an error.  Permission checks need to happen during
91  *      each system call not at open time.  The reason is that most of
92  *      what we wish to check for permissions in /proc varies at runtime.
93  *
94  *      The classic example of a problem is opening file descriptors
95  *      in /proc for a task before it execs a suid executable.
96  */
97
98 struct pid_entry {
99         char *name;
100         int len;
101         mode_t mode;
102         const struct inode_operations *iop;
103         const struct file_operations *fop;
104         union proc_op op;
105 };
106
107 #define NOD(NAME, MODE, IOP, FOP, OP) {                 \
108         .name = (NAME),                                 \
109         .len  = sizeof(NAME) - 1,                       \
110         .mode = MODE,                                   \
111         .iop  = IOP,                                    \
112         .fop  = FOP,                                    \
113         .op   = OP,                                     \
114 }
115
116 #define DIR(NAME, MODE, iops, fops)     \
117         NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
118 #define LNK(NAME, get_link)                                     \
119         NOD(NAME, (S_IFLNK|S_IRWXUGO),                          \
120                 &proc_pid_link_inode_operations, NULL,          \
121                 { .proc_get_link = get_link } )
122 #define REG(NAME, MODE, fops)                           \
123         NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
124 #define INF(NAME, MODE, read)                           \
125         NOD(NAME, (S_IFREG|(MODE)),                     \
126                 NULL, &proc_info_file_operations,       \
127                 { .proc_read = read } )
128 #define ONE(NAME, MODE, show)                           \
129         NOD(NAME, (S_IFREG|(MODE)),                     \
130                 NULL, &proc_single_file_operations,     \
131                 { .proc_show = show } )
132
133 /*
134  * Count the number of hardlinks for the pid_entry table, excluding the .
135  * and .. links.
136  */
137 static unsigned int pid_entry_count_dirs(const struct pid_entry *entries,
138         unsigned int n)
139 {
140         unsigned int i;
141         unsigned int count;
142
143         count = 0;
144         for (i = 0; i < n; ++i) {
145                 if (S_ISDIR(entries[i].mode))
146                         ++count;
147         }
148
149         return count;
150 }
151
152 static int get_task_root(struct task_struct *task, struct path *root)
153 {
154         int result = -ENOENT;
155
156         task_lock(task);
157         if (task->fs) {
158                 get_fs_root(task->fs, root);
159                 result = 0;
160         }
161         task_unlock(task);
162         return result;
163 }
164
165 static int proc_cwd_link(struct inode *inode, struct path *path)
166 {
167         struct task_struct *task = get_proc_task(inode);
168         int result = -ENOENT;
169
170         if (task) {
171                 task_lock(task);
172                 if (task->fs) {
173                         get_fs_pwd(task->fs, path);
174                         result = 0;
175                 }
176                 task_unlock(task);
177                 put_task_struct(task);
178         }
179         return result;
180 }
181
182 static int proc_root_link(struct inode *inode, struct path *path)
183 {
184         struct task_struct *task = get_proc_task(inode);
185         int result = -ENOENT;
186
187         if (task) {
188                 result = get_task_root(task, path);
189                 put_task_struct(task);
190         }
191         return result;
192 }
193
194 static struct mm_struct *__check_mem_permission(struct task_struct *task)
195 {
196         struct mm_struct *mm;
197
198         mm = get_task_mm(task);
199         if (!mm)
200                 return ERR_PTR(-EINVAL);
201
202         /*
203          * A task can always look at itself, in case it chooses
204          * to use system calls instead of load instructions.
205          */
206         if (task == current)
207                 return mm;
208
209         /*
210          * If current is actively ptrace'ing, and would also be
211          * permitted to freshly attach with ptrace now, permit it.
212          */
213         if (task_is_stopped_or_traced(task)) {
214                 int match;
215                 rcu_read_lock();
216                 match = (tracehook_tracer_task(task) == current);
217                 rcu_read_unlock();
218                 if (match && ptrace_may_access(task, PTRACE_MODE_ATTACH))
219                         return mm;
220         }
221
222         /*
223          * No one else is allowed.
224          */
225         mmput(mm);
226         return ERR_PTR(-EPERM);
227 }
228
229 /*
230  * If current may access user memory in @task return a reference to the
231  * corresponding mm, otherwise ERR_PTR.
232  */
233 static struct mm_struct *check_mem_permission(struct task_struct *task)
234 {
235         struct mm_struct *mm;
236         int err;
237
238         /*
239          * Avoid racing if task exec's as we might get a new mm but validate
240          * against old credentials.
241          */
242         err = mutex_lock_killable(&task->signal->cred_guard_mutex);
243         if (err)
244                 return ERR_PTR(err);
245
246         mm = __check_mem_permission(task);
247         mutex_unlock(&task->signal->cred_guard_mutex);
248
249         return mm;
250 }
251
252 struct mm_struct *mm_for_maps(struct task_struct *task)
253 {
254         struct mm_struct *mm;
255         int err;
256
257         err =  mutex_lock_killable(&task->signal->cred_guard_mutex);
258         if (err)
259                 return ERR_PTR(err);
260
261         mm = get_task_mm(task);
262         if (mm && mm != current->mm &&
263                         !ptrace_may_access(task, PTRACE_MODE_READ)) {
264                 mmput(mm);
265                 mm = ERR_PTR(-EACCES);
266         }
267         mutex_unlock(&task->signal->cred_guard_mutex);
268
269         return mm;
270 }
271
272 static int proc_pid_cmdline(struct task_struct *task, char * buffer)
273 {
274         int res = 0;
275         unsigned int len;
276         struct mm_struct *mm = get_task_mm(task);
277         if (!mm)
278                 goto out;
279         if (!mm->arg_end)
280                 goto out_mm;    /* Shh! No looking before we're done */
281
282         len = mm->arg_end - mm->arg_start;
283  
284         if (len > PAGE_SIZE)
285                 len = PAGE_SIZE;
286  
287         res = access_process_vm(task, mm->arg_start, buffer, len, 0);
288
289         // If the nul at the end of args has been overwritten, then
290         // assume application is using setproctitle(3).
291         if (res > 0 && buffer[res-1] != '\0' && len < PAGE_SIZE) {
292                 len = strnlen(buffer, res);
293                 if (len < res) {
294                     res = len;
295                 } else {
296                         len = mm->env_end - mm->env_start;
297                         if (len > PAGE_SIZE - res)
298                                 len = PAGE_SIZE - res;
299                         res += access_process_vm(task, mm->env_start, buffer+res, len, 0);
300                         res = strnlen(buffer, res);
301                 }
302         }
303 out_mm:
304         mmput(mm);
305 out:
306         return res;
307 }
308
309 static int proc_pid_auxv(struct task_struct *task, char *buffer)
310 {
311         struct mm_struct *mm = mm_for_maps(task);
312         int res = PTR_ERR(mm);
313         if (mm && !IS_ERR(mm)) {
314                 unsigned int nwords = 0;
315                 do {
316                         nwords += 2;
317                 } while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
318                 res = nwords * sizeof(mm->saved_auxv[0]);
319                 if (res > PAGE_SIZE)
320                         res = PAGE_SIZE;
321                 memcpy(buffer, mm->saved_auxv, res);
322                 mmput(mm);
323         }
324         return res;
325 }
326
327
328 #ifdef CONFIG_KALLSYMS
329 /*
330  * Provides a wchan file via kallsyms in a proper one-value-per-file format.
331  * Returns the resolved symbol.  If that fails, simply return the address.
332  */
333 static int proc_pid_wchan(struct task_struct *task, char *buffer)
334 {
335         unsigned long wchan;
336         char symname[KSYM_NAME_LEN];
337
338         wchan = get_wchan(task);
339
340         if (lookup_symbol_name(wchan, symname) < 0)
341                 if (!ptrace_may_access(task, PTRACE_MODE_READ))
342                         return 0;
343                 else
344                         return sprintf(buffer, "%lu", wchan);
345         else
346                 return sprintf(buffer, "%s", symname);
347 }
348 #endif /* CONFIG_KALLSYMS */
349
350 static int lock_trace(struct task_struct *task)
351 {
352         int err = mutex_lock_killable(&task->signal->cred_guard_mutex);
353         if (err)
354                 return err;
355         if (!ptrace_may_access(task, PTRACE_MODE_ATTACH)) {
356                 mutex_unlock(&task->signal->cred_guard_mutex);
357                 return -EPERM;
358         }
359         return 0;
360 }
361
362 static void unlock_trace(struct task_struct *task)
363 {
364         mutex_unlock(&task->signal->cred_guard_mutex);
365 }
366
367 #ifdef CONFIG_STACKTRACE
368
369 #define MAX_STACK_TRACE_DEPTH   64
370
371 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
372                           struct pid *pid, struct task_struct *task)
373 {
374         struct stack_trace trace;
375         unsigned long *entries;
376         int err;
377         int i;
378
379         entries = kmalloc(MAX_STACK_TRACE_DEPTH * sizeof(*entries), GFP_KERNEL);
380         if (!entries)
381                 return -ENOMEM;
382
383         trace.nr_entries        = 0;
384         trace.max_entries       = MAX_STACK_TRACE_DEPTH;
385         trace.entries           = entries;
386         trace.skip              = 0;
387
388         err = lock_trace(task);
389         if (!err) {
390                 save_stack_trace_tsk(task, &trace);
391
392                 for (i = 0; i < trace.nr_entries; i++) {
393                         seq_printf(m, "[<%pK>] %pS\n",
394                                    (void *)entries[i], (void *)entries[i]);
395                 }
396                 unlock_trace(task);
397         }
398         kfree(entries);
399
400         return err;
401 }
402 #endif
403
404 #ifdef CONFIG_SCHEDSTATS
405 /*
406  * Provides /proc/PID/schedstat
407  */
408 static int proc_pid_schedstat(struct task_struct *task, char *buffer)
409 {
410         return sprintf(buffer, "%llu %llu %lu\n",
411                         (unsigned long long)task->se.sum_exec_runtime,
412                         (unsigned long long)task->sched_info.run_delay,
413                         task->sched_info.pcount);
414 }
415 #endif
416
417 #ifdef CONFIG_LATENCYTOP
418 static int lstats_show_proc(struct seq_file *m, void *v)
419 {
420         int i;
421         struct inode *inode = m->private;
422         struct task_struct *task = get_proc_task(inode);
423
424         if (!task)
425                 return -ESRCH;
426         seq_puts(m, "Latency Top version : v0.1\n");
427         for (i = 0; i < 32; i++) {
428                 struct latency_record *lr = &task->latency_record[i];
429                 if (lr->backtrace[0]) {
430                         int q;
431                         seq_printf(m, "%i %li %li",
432                                    lr->count, lr->time, lr->max);
433                         for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
434                                 unsigned long bt = lr->backtrace[q];
435                                 if (!bt)
436                                         break;
437                                 if (bt == ULONG_MAX)
438                                         break;
439                                 seq_printf(m, " %ps", (void *)bt);
440                         }
441                         seq_putc(m, '\n');
442                 }
443
444         }
445         put_task_struct(task);
446         return 0;
447 }
448
449 static int lstats_open(struct inode *inode, struct file *file)
450 {
451         return single_open(file, lstats_show_proc, inode);
452 }
453
454 static ssize_t lstats_write(struct file *file, const char __user *buf,
455                             size_t count, loff_t *offs)
456 {
457         struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
458
459         if (!task)
460                 return -ESRCH;
461         clear_all_latency_tracing(task);
462         put_task_struct(task);
463
464         return count;
465 }
466
467 static const struct file_operations proc_lstats_operations = {
468         .open           = lstats_open,
469         .read           = seq_read,
470         .write          = lstats_write,
471         .llseek         = seq_lseek,
472         .release        = single_release,
473 };
474
475 #endif
476
477 static int proc_oom_score(struct task_struct *task, char *buffer)
478 {
479         unsigned long points = 0;
480
481         read_lock(&tasklist_lock);
482         if (pid_alive(task))
483                 points = oom_badness(task, NULL, NULL,
484                                         totalram_pages + total_swap_pages);
485         read_unlock(&tasklist_lock);
486         return sprintf(buffer, "%lu\n", points);
487 }
488
489 struct limit_names {
490         char *name;
491         char *unit;
492 };
493
494 static const struct limit_names lnames[RLIM_NLIMITS] = {
495         [RLIMIT_CPU] = {"Max cpu time", "seconds"},
496         [RLIMIT_FSIZE] = {"Max file size", "bytes"},
497         [RLIMIT_DATA] = {"Max data size", "bytes"},
498         [RLIMIT_STACK] = {"Max stack size", "bytes"},
499         [RLIMIT_CORE] = {"Max core file size", "bytes"},
500         [RLIMIT_RSS] = {"Max resident set", "bytes"},
501         [RLIMIT_NPROC] = {"Max processes", "processes"},
502         [RLIMIT_NOFILE] = {"Max open files", "files"},
503         [RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
504         [RLIMIT_AS] = {"Max address space", "bytes"},
505         [RLIMIT_LOCKS] = {"Max file locks", "locks"},
506         [RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
507         [RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
508         [RLIMIT_NICE] = {"Max nice priority", NULL},
509         [RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
510         [RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
511 };
512
513 /* Display limits for a process */
514 static int proc_pid_limits(struct task_struct *task, char *buffer)
515 {
516         unsigned int i;
517         int count = 0;
518         unsigned long flags;
519         char *bufptr = buffer;
520
521         struct rlimit rlim[RLIM_NLIMITS];
522
523         if (!lock_task_sighand(task, &flags))
524                 return 0;
525         memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
526         unlock_task_sighand(task, &flags);
527
528         /*
529          * print the file header
530          */
531         count += sprintf(&bufptr[count], "%-25s %-20s %-20s %-10s\n",
532                         "Limit", "Soft Limit", "Hard Limit", "Units");
533
534         for (i = 0; i < RLIM_NLIMITS; i++) {
535                 if (rlim[i].rlim_cur == RLIM_INFINITY)
536                         count += sprintf(&bufptr[count], "%-25s %-20s ",
537                                          lnames[i].name, "unlimited");
538                 else
539                         count += sprintf(&bufptr[count], "%-25s %-20lu ",
540                                          lnames[i].name, rlim[i].rlim_cur);
541
542                 if (rlim[i].rlim_max == RLIM_INFINITY)
543                         count += sprintf(&bufptr[count], "%-20s ", "unlimited");
544                 else
545                         count += sprintf(&bufptr[count], "%-20lu ",
546                                          rlim[i].rlim_max);
547
548                 if (lnames[i].unit)
549                         count += sprintf(&bufptr[count], "%-10s\n",
550                                          lnames[i].unit);
551                 else
552                         count += sprintf(&bufptr[count], "\n");
553         }
554
555         return count;
556 }
557
558 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
559 static int proc_pid_syscall(struct task_struct *task, char *buffer)
560 {
561         long nr;
562         unsigned long args[6], sp, pc;
563         int res = lock_trace(task);
564         if (res)
565                 return res;
566
567         if (task_current_syscall(task, &nr, args, 6, &sp, &pc))
568                 res = sprintf(buffer, "running\n");
569         else if (nr < 0)
570                 res = sprintf(buffer, "%ld 0x%lx 0x%lx\n", nr, sp, pc);
571         else
572                 res = sprintf(buffer,
573                        "%ld 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx\n",
574                        nr,
575                        args[0], args[1], args[2], args[3], args[4], args[5],
576                        sp, pc);
577         unlock_trace(task);
578         return res;
579 }
580 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
581
582 /************************************************************************/
583 /*                       Here the fs part begins                        */
584 /************************************************************************/
585
586 /* permission checks */
587 static int proc_fd_access_allowed(struct inode *inode)
588 {
589         struct task_struct *task;
590         int allowed = 0;
591         /* Allow access to a task's file descriptors if it is us or we
592          * may use ptrace attach to the process and find out that
593          * information.
594          */
595         task = get_proc_task(inode);
596         if (task) {
597                 allowed = ptrace_may_access(task, PTRACE_MODE_READ);
598                 put_task_struct(task);
599         }
600         return allowed;
601 }
602
603 int proc_setattr(struct dentry *dentry, struct iattr *attr)
604 {
605         int error;
606         struct inode *inode = dentry->d_inode;
607
608         if (attr->ia_valid & ATTR_MODE)
609                 return -EPERM;
610
611         error = inode_change_ok(inode, attr);
612         if (error)
613                 return error;
614
615         if ((attr->ia_valid & ATTR_SIZE) &&
616             attr->ia_size != i_size_read(inode)) {
617                 error = vmtruncate(inode, attr->ia_size);
618                 if (error)
619                         return error;
620         }
621
622         setattr_copy(inode, attr);
623         mark_inode_dirty(inode);
624         return 0;
625 }
626
627 static const struct inode_operations proc_def_inode_operations = {
628         .setattr        = proc_setattr,
629 };
630
631 static int mounts_open_common(struct inode *inode, struct file *file,
632                               const struct seq_operations *op)
633 {
634         struct task_struct *task = get_proc_task(inode);
635         struct nsproxy *nsp;
636         struct mnt_namespace *ns = NULL;
637         struct path root;
638         struct proc_mounts *p;
639         int ret = -EINVAL;
640
641         if (task) {
642                 rcu_read_lock();
643                 nsp = task_nsproxy(task);
644                 if (nsp) {
645                         ns = nsp->mnt_ns;
646                         if (ns)
647                                 get_mnt_ns(ns);
648                 }
649                 rcu_read_unlock();
650                 if (ns && get_task_root(task, &root) == 0)
651                         ret = 0;
652                 put_task_struct(task);
653         }
654
655         if (!ns)
656                 goto err;
657         if (ret)
658                 goto err_put_ns;
659
660         ret = -ENOMEM;
661         p = kmalloc(sizeof(struct proc_mounts), GFP_KERNEL);
662         if (!p)
663                 goto err_put_path;
664
665         file->private_data = &p->m;
666         ret = seq_open(file, op);
667         if (ret)
668                 goto err_free;
669
670         p->m.private = p;
671         p->ns = ns;
672         p->root = root;
673         p->event = ns->event;
674
675         return 0;
676
677  err_free:
678         kfree(p);
679  err_put_path:
680         path_put(&root);
681  err_put_ns:
682         put_mnt_ns(ns);
683  err:
684         return ret;
685 }
686
687 static int mounts_release(struct inode *inode, struct file *file)
688 {
689         struct proc_mounts *p = file->private_data;
690         path_put(&p->root);
691         put_mnt_ns(p->ns);
692         return seq_release(inode, file);
693 }
694
695 static unsigned mounts_poll(struct file *file, poll_table *wait)
696 {
697         struct proc_mounts *p = file->private_data;
698         unsigned res = POLLIN | POLLRDNORM;
699
700         poll_wait(file, &p->ns->poll, wait);
701         if (mnt_had_events(p))
702                 res |= POLLERR | POLLPRI;
703
704         return res;
705 }
706
707 static int mounts_open(struct inode *inode, struct file *file)
708 {
709         return mounts_open_common(inode, file, &mounts_op);
710 }
711
712 static const struct file_operations proc_mounts_operations = {
713         .open           = mounts_open,
714         .read           = seq_read,
715         .llseek         = seq_lseek,
716         .release        = mounts_release,
717         .poll           = mounts_poll,
718 };
719
720 static int mountinfo_open(struct inode *inode, struct file *file)
721 {
722         return mounts_open_common(inode, file, &mountinfo_op);
723 }
724
725 static const struct file_operations proc_mountinfo_operations = {
726         .open           = mountinfo_open,
727         .read           = seq_read,
728         .llseek         = seq_lseek,
729         .release        = mounts_release,
730         .poll           = mounts_poll,
731 };
732
733 static int mountstats_open(struct inode *inode, struct file *file)
734 {
735         return mounts_open_common(inode, file, &mountstats_op);
736 }
737
738 static const struct file_operations proc_mountstats_operations = {
739         .open           = mountstats_open,
740         .read           = seq_read,
741         .llseek         = seq_lseek,
742         .release        = mounts_release,
743 };
744
745 #define PROC_BLOCK_SIZE (3*1024)                /* 4K page size but our output routines use some slack for overruns */
746
747 static ssize_t proc_info_read(struct file * file, char __user * buf,
748                           size_t count, loff_t *ppos)
749 {
750         struct inode * inode = file->f_path.dentry->d_inode;
751         unsigned long page;
752         ssize_t length;
753         struct task_struct *task = get_proc_task(inode);
754
755         length = -ESRCH;
756         if (!task)
757                 goto out_no_task;
758
759         if (count > PROC_BLOCK_SIZE)
760                 count = PROC_BLOCK_SIZE;
761
762         length = -ENOMEM;
763         if (!(page = __get_free_page(GFP_TEMPORARY)))
764                 goto out;
765
766         length = PROC_I(inode)->op.proc_read(task, (char*)page);
767
768         if (length >= 0)
769                 length = simple_read_from_buffer(buf, count, ppos, (char *)page, length);
770         free_page(page);
771 out:
772         put_task_struct(task);
773 out_no_task:
774         return length;
775 }
776
777 static const struct file_operations proc_info_file_operations = {
778         .read           = proc_info_read,
779         .llseek         = generic_file_llseek,
780 };
781
782 static int proc_single_show(struct seq_file *m, void *v)
783 {
784         struct inode *inode = m->private;
785         struct pid_namespace *ns;
786         struct pid *pid;
787         struct task_struct *task;
788         int ret;
789
790         ns = inode->i_sb->s_fs_info;
791         pid = proc_pid(inode);
792         task = get_pid_task(pid, PIDTYPE_PID);
793         if (!task)
794                 return -ESRCH;
795
796         ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
797
798         put_task_struct(task);
799         return ret;
800 }
801
802 static int proc_single_open(struct inode *inode, struct file *filp)
803 {
804         return single_open(filp, proc_single_show, inode);
805 }
806
807 static const struct file_operations proc_single_file_operations = {
808         .open           = proc_single_open,
809         .read           = seq_read,
810         .llseek         = seq_lseek,
811         .release        = single_release,
812 };
813
814 static int mem_open(struct inode* inode, struct file* file)
815 {
816         file->private_data = (void*)((long)current->self_exec_id);
817         /* OK to pass negative loff_t, we can catch out-of-range */
818         file->f_mode |= FMODE_UNSIGNED_OFFSET;
819         return 0;
820 }
821
822 static ssize_t mem_read(struct file * file, char __user * buf,
823                         size_t count, loff_t *ppos)
824 {
825         struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
826         char *page;
827         unsigned long src = *ppos;
828         int ret = -ESRCH;
829         struct mm_struct *mm;
830
831         if (!task)
832                 goto out_no_task;
833
834         ret = -ENOMEM;
835         page = (char *)__get_free_page(GFP_TEMPORARY);
836         if (!page)
837                 goto out;
838
839         mm = check_mem_permission(task);
840         ret = PTR_ERR(mm);
841         if (IS_ERR(mm))
842                 goto out_free;
843
844         ret = -EIO;
845  
846         if (file->private_data != (void*)((long)current->self_exec_id))
847                 goto out_put;
848
849         ret = 0;
850  
851         while (count > 0) {
852                 int this_len, retval;
853
854                 this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
855                 retval = access_remote_vm(mm, src, page, this_len, 0);
856                 if (!retval) {
857                         if (!ret)
858                                 ret = -EIO;
859                         break;
860                 }
861
862                 if (copy_to_user(buf, page, retval)) {
863                         ret = -EFAULT;
864                         break;
865                 }
866  
867                 ret += retval;
868                 src += retval;
869                 buf += retval;
870                 count -= retval;
871         }
872         *ppos = src;
873
874 out_put:
875         mmput(mm);
876 out_free:
877         free_page((unsigned long) page);
878 out:
879         put_task_struct(task);
880 out_no_task:
881         return ret;
882 }
883
884 static ssize_t mem_write(struct file * file, const char __user *buf,
885                          size_t count, loff_t *ppos)
886 {
887         int copied;
888         char *page;
889         struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
890         unsigned long dst = *ppos;
891         struct mm_struct *mm;
892
893         copied = -ESRCH;
894         if (!task)
895                 goto out_no_task;
896
897         mm = check_mem_permission(task);
898         copied = PTR_ERR(mm);
899         if (IS_ERR(mm))
900                 goto out_task;
901
902         copied = -EIO;
903         if (file->private_data != (void *)((long)current->self_exec_id))
904                 goto out_mm;
905
906         copied = -ENOMEM;
907         page = (char *)__get_free_page(GFP_TEMPORARY);
908         if (!page)
909                 goto out_mm;
910
911         copied = 0;
912         while (count > 0) {
913                 int this_len, retval;
914
915                 this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
916                 if (copy_from_user(page, buf, this_len)) {
917                         copied = -EFAULT;
918                         break;
919                 }
920                 retval = access_remote_vm(mm, dst, page, this_len, 1);
921                 if (!retval) {
922                         if (!copied)
923                                 copied = -EIO;
924                         break;
925                 }
926                 copied += retval;
927                 buf += retval;
928                 dst += retval;
929                 count -= retval;                        
930         }
931         *ppos = dst;
932         free_page((unsigned long) page);
933 out_mm:
934         mmput(mm);
935 out_task:
936         put_task_struct(task);
937 out_no_task:
938         return copied;
939 }
940
941 loff_t mem_lseek(struct file *file, loff_t offset, int orig)
942 {
943         switch (orig) {
944         case 0:
945                 file->f_pos = offset;
946                 break;
947         case 1:
948                 file->f_pos += offset;
949                 break;
950         default:
951                 return -EINVAL;
952         }
953         force_successful_syscall_return();
954         return file->f_pos;
955 }
956
957 static const struct file_operations proc_mem_operations = {
958         .llseek         = mem_lseek,
959         .read           = mem_read,
960         .write          = mem_write,
961         .open           = mem_open,
962 };
963
964 static ssize_t environ_read(struct file *file, char __user *buf,
965                         size_t count, loff_t *ppos)
966 {
967         struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
968         char *page;
969         unsigned long src = *ppos;
970         int ret = -ESRCH;
971         struct mm_struct *mm;
972
973         if (!task)
974                 goto out_no_task;
975
976         ret = -ENOMEM;
977         page = (char *)__get_free_page(GFP_TEMPORARY);
978         if (!page)
979                 goto out;
980
981
982         mm = mm_for_maps(task);
983         ret = PTR_ERR(mm);
984         if (!mm || IS_ERR(mm))
985                 goto out_free;
986
987         ret = 0;
988         while (count > 0) {
989                 int this_len, retval, max_len;
990
991                 this_len = mm->env_end - (mm->env_start + src);
992
993                 if (this_len <= 0)
994                         break;
995
996                 max_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
997                 this_len = (this_len > max_len) ? max_len : this_len;
998
999                 retval = access_process_vm(task, (mm->env_start + src),
1000                         page, this_len, 0);
1001
1002                 if (retval <= 0) {
1003                         ret = retval;
1004                         break;
1005                 }
1006
1007                 if (copy_to_user(buf, page, retval)) {
1008                         ret = -EFAULT;
1009                         break;
1010                 }
1011
1012                 ret += retval;
1013                 src += retval;
1014                 buf += retval;
1015                 count -= retval;
1016         }
1017         *ppos = src;
1018
1019         mmput(mm);
1020 out_free:
1021         free_page((unsigned long) page);
1022 out:
1023         put_task_struct(task);
1024 out_no_task:
1025         return ret;
1026 }
1027
1028 static const struct file_operations proc_environ_operations = {
1029         .read           = environ_read,
1030         .llseek         = generic_file_llseek,
1031 };
1032
1033 static ssize_t oom_adjust_read(struct file *file, char __user *buf,
1034                                 size_t count, loff_t *ppos)
1035 {
1036         struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
1037         char buffer[PROC_NUMBUF];
1038         size_t len;
1039         int oom_adjust = OOM_DISABLE;
1040         unsigned long flags;
1041
1042         if (!task)
1043                 return -ESRCH;
1044
1045         if (lock_task_sighand(task, &flags)) {
1046                 oom_adjust = task->signal->oom_adj;
1047                 unlock_task_sighand(task, &flags);
1048         }
1049
1050         put_task_struct(task);
1051
1052         len = snprintf(buffer, sizeof(buffer), "%i\n", oom_adjust);
1053
1054         return simple_read_from_buffer(buf, count, ppos, buffer, len);
1055 }
1056
1057 static ssize_t oom_adjust_write(struct file *file, const char __user *buf,
1058                                 size_t count, loff_t *ppos)
1059 {
1060         struct task_struct *task;
1061         char buffer[PROC_NUMBUF];
1062         long oom_adjust;
1063         unsigned long flags;
1064         int err;
1065
1066         memset(buffer, 0, sizeof(buffer));
1067         if (count > sizeof(buffer) - 1)
1068                 count = sizeof(buffer) - 1;
1069         if (copy_from_user(buffer, buf, count)) {
1070                 err = -EFAULT;
1071                 goto out;
1072         }
1073
1074         err = strict_strtol(strstrip(buffer), 0, &oom_adjust);
1075         if (err)
1076                 goto out;
1077         if ((oom_adjust < OOM_ADJUST_MIN || oom_adjust > OOM_ADJUST_MAX) &&
1078              oom_adjust != OOM_DISABLE) {
1079                 err = -EINVAL;
1080                 goto out;
1081         }
1082
1083         task = get_proc_task(file->f_path.dentry->d_inode);
1084         if (!task) {
1085                 err = -ESRCH;
1086                 goto out;
1087         }
1088
1089         task_lock(task);
1090         if (!task->mm) {
1091                 err = -EINVAL;
1092                 goto err_task_lock;
1093         }
1094
1095         if (!lock_task_sighand(task, &flags)) {
1096                 err = -ESRCH;
1097                 goto err_task_lock;
1098         }
1099
1100         if (oom_adjust < task->signal->oom_adj && !capable(CAP_SYS_RESOURCE)) {
1101                 err = -EACCES;
1102                 goto err_sighand;
1103         }
1104
1105         if (oom_adjust != task->signal->oom_adj) {
1106                 if (oom_adjust == OOM_DISABLE)
1107                         atomic_inc(&task->mm->oom_disable_count);
1108                 if (task->signal->oom_adj == OOM_DISABLE)
1109                         atomic_dec(&task->mm->oom_disable_count);
1110         }
1111
1112         /*
1113          * Warn that /proc/pid/oom_adj is deprecated, see
1114          * Documentation/feature-removal-schedule.txt.
1115          */
1116         printk_once(KERN_WARNING "%s (%d): /proc/%d/oom_adj is deprecated, "
1117                         "please use /proc/%d/oom_score_adj instead.\n",
1118                         current->comm, task_pid_nr(current),
1119                         task_pid_nr(task), task_pid_nr(task));
1120         task->signal->oom_adj = oom_adjust;
1121         /*
1122          * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
1123          * value is always attainable.
1124          */
1125         if (task->signal->oom_adj == OOM_ADJUST_MAX)
1126                 task->signal->oom_score_adj = OOM_SCORE_ADJ_MAX;
1127         else
1128                 task->signal->oom_score_adj = (oom_adjust * OOM_SCORE_ADJ_MAX) /
1129                                                                 -OOM_DISABLE;
1130 err_sighand:
1131         unlock_task_sighand(task, &flags);
1132 err_task_lock:
1133         task_unlock(task);
1134         put_task_struct(task);
1135 out:
1136         return err < 0 ? err : count;
1137 }
1138
1139 static const struct file_operations proc_oom_adjust_operations = {
1140         .read           = oom_adjust_read,
1141         .write          = oom_adjust_write,
1142         .llseek         = generic_file_llseek,
1143 };
1144
1145 static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
1146                                         size_t count, loff_t *ppos)
1147 {
1148         struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
1149         char buffer[PROC_NUMBUF];
1150         int oom_score_adj = OOM_SCORE_ADJ_MIN;
1151         unsigned long flags;
1152         size_t len;
1153
1154         if (!task)
1155                 return -ESRCH;
1156         if (lock_task_sighand(task, &flags)) {
1157                 oom_score_adj = task->signal->oom_score_adj;
1158                 unlock_task_sighand(task, &flags);
1159         }
1160         put_task_struct(task);
1161         len = snprintf(buffer, sizeof(buffer), "%d\n", oom_score_adj);
1162         return simple_read_from_buffer(buf, count, ppos, buffer, len);
1163 }
1164
1165 static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
1166                                         size_t count, loff_t *ppos)
1167 {
1168         struct task_struct *task;
1169         char buffer[PROC_NUMBUF];
1170         unsigned long flags;
1171         long oom_score_adj;
1172         int err;
1173
1174         memset(buffer, 0, sizeof(buffer));
1175         if (count > sizeof(buffer) - 1)
1176                 count = sizeof(buffer) - 1;
1177         if (copy_from_user(buffer, buf, count)) {
1178                 err = -EFAULT;
1179                 goto out;
1180         }
1181
1182         err = strict_strtol(strstrip(buffer), 0, &oom_score_adj);
1183         if (err)
1184                 goto out;
1185         if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1186                         oom_score_adj > OOM_SCORE_ADJ_MAX) {
1187                 err = -EINVAL;
1188                 goto out;
1189         }
1190
1191         task = get_proc_task(file->f_path.dentry->d_inode);
1192         if (!task) {
1193                 err = -ESRCH;
1194                 goto out;
1195         }
1196
1197         task_lock(task);
1198         if (!task->mm) {
1199                 err = -EINVAL;
1200                 goto err_task_lock;
1201         }
1202
1203         if (!lock_task_sighand(task, &flags)) {
1204                 err = -ESRCH;
1205                 goto err_task_lock;
1206         }
1207
1208         if (oom_score_adj < task->signal->oom_score_adj_min &&
1209                         !capable(CAP_SYS_RESOURCE)) {
1210                 err = -EACCES;
1211                 goto err_sighand;
1212         }
1213
1214         if (oom_score_adj != task->signal->oom_score_adj) {
1215                 if (oom_score_adj == OOM_SCORE_ADJ_MIN)
1216                         atomic_inc(&task->mm->oom_disable_count);
1217                 if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MIN)
1218                         atomic_dec(&task->mm->oom_disable_count);
1219         }
1220         task->signal->oom_score_adj = oom_score_adj;
1221         if (has_capability_noaudit(current, CAP_SYS_RESOURCE))
1222                 task->signal->oom_score_adj_min = oom_score_adj;
1223         /*
1224          * Scale /proc/pid/oom_adj appropriately ensuring that OOM_DISABLE is
1225          * always attainable.
1226          */
1227         if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MIN)
1228                 task->signal->oom_adj = OOM_DISABLE;
1229         else
1230                 task->signal->oom_adj = (oom_score_adj * OOM_ADJUST_MAX) /
1231                                                         OOM_SCORE_ADJ_MAX;
1232 err_sighand:
1233         unlock_task_sighand(task, &flags);
1234 err_task_lock:
1235         task_unlock(task);
1236         put_task_struct(task);
1237 out:
1238         return err < 0 ? err : count;
1239 }
1240
1241 static const struct file_operations proc_oom_score_adj_operations = {
1242         .read           = oom_score_adj_read,
1243         .write          = oom_score_adj_write,
1244         .llseek         = default_llseek,
1245 };
1246
1247 #ifdef CONFIG_AUDITSYSCALL
1248 #define TMPBUFLEN 21
1249 static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1250                                   size_t count, loff_t *ppos)
1251 {
1252         struct inode * inode = file->f_path.dentry->d_inode;
1253         struct task_struct *task = get_proc_task(inode);
1254         ssize_t length;
1255         char tmpbuf[TMPBUFLEN];
1256
1257         if (!task)
1258                 return -ESRCH;
1259         length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1260                                 audit_get_loginuid(task));
1261         put_task_struct(task);
1262         return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1263 }
1264
1265 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1266                                    size_t count, loff_t *ppos)
1267 {
1268         struct inode * inode = file->f_path.dentry->d_inode;
1269         char *page, *tmp;
1270         ssize_t length;
1271         uid_t loginuid;
1272
1273         if (!capable(CAP_AUDIT_CONTROL))
1274                 return -EPERM;
1275
1276         rcu_read_lock();
1277         if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1278                 rcu_read_unlock();
1279                 return -EPERM;
1280         }
1281         rcu_read_unlock();
1282
1283         if (count >= PAGE_SIZE)
1284                 count = PAGE_SIZE - 1;
1285
1286         if (*ppos != 0) {
1287                 /* No partial writes. */
1288                 return -EINVAL;
1289         }
1290         page = (char*)__get_free_page(GFP_TEMPORARY);
1291         if (!page)
1292                 return -ENOMEM;
1293         length = -EFAULT;
1294         if (copy_from_user(page, buf, count))
1295                 goto out_free_page;
1296
1297         page[count] = '\0';
1298         loginuid = simple_strtoul(page, &tmp, 10);
1299         if (tmp == page) {
1300                 length = -EINVAL;
1301                 goto out_free_page;
1302
1303         }
1304         length = audit_set_loginuid(current, loginuid);
1305         if (likely(length == 0))
1306                 length = count;
1307
1308 out_free_page:
1309         free_page((unsigned long) page);
1310         return length;
1311 }
1312
1313 static const struct file_operations proc_loginuid_operations = {
1314         .read           = proc_loginuid_read,
1315         .write          = proc_loginuid_write,
1316         .llseek         = generic_file_llseek,
1317 };
1318
1319 static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1320                                   size_t count, loff_t *ppos)
1321 {
1322         struct inode * inode = file->f_path.dentry->d_inode;
1323         struct task_struct *task = get_proc_task(inode);
1324         ssize_t length;
1325         char tmpbuf[TMPBUFLEN];
1326
1327         if (!task)
1328                 return -ESRCH;
1329         length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1330                                 audit_get_sessionid(task));
1331         put_task_struct(task);
1332         return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1333 }
1334
1335 static const struct file_operations proc_sessionid_operations = {
1336         .read           = proc_sessionid_read,
1337         .llseek         = generic_file_llseek,
1338 };
1339 #endif
1340
1341 #ifdef CONFIG_FAULT_INJECTION
1342 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1343                                       size_t count, loff_t *ppos)
1344 {
1345         struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
1346         char buffer[PROC_NUMBUF];
1347         size_t len;
1348         int make_it_fail;
1349
1350         if (!task)
1351                 return -ESRCH;
1352         make_it_fail = task->make_it_fail;
1353         put_task_struct(task);
1354
1355         len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1356
1357         return simple_read_from_buffer(buf, count, ppos, buffer, len);
1358 }
1359
1360 static ssize_t proc_fault_inject_write(struct file * file,
1361                         const char __user * buf, size_t count, loff_t *ppos)
1362 {
1363         struct task_struct *task;
1364         char buffer[PROC_NUMBUF], *end;
1365         int make_it_fail;
1366
1367         if (!capable(CAP_SYS_RESOURCE))
1368                 return -EPERM;
1369         memset(buffer, 0, sizeof(buffer));
1370         if (count > sizeof(buffer) - 1)
1371                 count = sizeof(buffer) - 1;
1372         if (copy_from_user(buffer, buf, count))
1373                 return -EFAULT;
1374         make_it_fail = simple_strtol(strstrip(buffer), &end, 0);
1375         if (*end)
1376                 return -EINVAL;
1377         task = get_proc_task(file->f_dentry->d_inode);
1378         if (!task)
1379                 return -ESRCH;
1380         task->make_it_fail = make_it_fail;
1381         put_task_struct(task);
1382
1383         return count;
1384 }
1385
1386 static const struct file_operations proc_fault_inject_operations = {
1387         .read           = proc_fault_inject_read,
1388         .write          = proc_fault_inject_write,
1389         .llseek         = generic_file_llseek,
1390 };
1391 #endif
1392
1393
1394 #ifdef CONFIG_SCHED_DEBUG
1395 /*
1396  * Print out various scheduling related per-task fields:
1397  */
1398 static int sched_show(struct seq_file *m, void *v)
1399 {
1400         struct inode *inode = m->private;
1401         struct task_struct *p;
1402
1403         p = get_proc_task(inode);
1404         if (!p)
1405                 return -ESRCH;
1406         proc_sched_show_task(p, m);
1407
1408         put_task_struct(p);
1409
1410         return 0;
1411 }
1412
1413 static ssize_t
1414 sched_write(struct file *file, const char __user *buf,
1415             size_t count, loff_t *offset)
1416 {
1417         struct inode *inode = file->f_path.dentry->d_inode;
1418         struct task_struct *p;
1419
1420         p = get_proc_task(inode);
1421         if (!p)
1422                 return -ESRCH;
1423         proc_sched_set_task(p);
1424
1425         put_task_struct(p);
1426
1427         return count;
1428 }
1429
1430 static int sched_open(struct inode *inode, struct file *filp)
1431 {
1432         return single_open(filp, sched_show, inode);
1433 }
1434
1435 static const struct file_operations proc_pid_sched_operations = {
1436         .open           = sched_open,
1437         .read           = seq_read,
1438         .write          = sched_write,
1439         .llseek         = seq_lseek,
1440         .release        = single_release,
1441 };
1442
1443 #endif
1444
1445 #ifdef CONFIG_SCHED_AUTOGROUP
1446 /*
1447  * Print out autogroup related information:
1448  */
1449 static int sched_autogroup_show(struct seq_file *m, void *v)
1450 {
1451         struct inode *inode = m->private;
1452         struct task_struct *p;
1453
1454         p = get_proc_task(inode);
1455         if (!p)
1456                 return -ESRCH;
1457         proc_sched_autogroup_show_task(p, m);
1458
1459         put_task_struct(p);
1460
1461         return 0;
1462 }
1463
1464 static ssize_t
1465 sched_autogroup_write(struct file *file, const char __user *buf,
1466             size_t count, loff_t *offset)
1467 {
1468         struct inode *inode = file->f_path.dentry->d_inode;
1469         struct task_struct *p;
1470         char buffer[PROC_NUMBUF];
1471         long nice;
1472         int err;
1473
1474         memset(buffer, 0, sizeof(buffer));
1475         if (count > sizeof(buffer) - 1)
1476                 count = sizeof(buffer) - 1;
1477         if (copy_from_user(buffer, buf, count))
1478                 return -EFAULT;
1479
1480         err = strict_strtol(strstrip(buffer), 0, &nice);
1481         if (err)
1482                 return -EINVAL;
1483
1484         p = get_proc_task(inode);
1485         if (!p)
1486                 return -ESRCH;
1487
1488         err = nice;
1489         err = proc_sched_autogroup_set_nice(p, &err);
1490         if (err)
1491                 count = err;
1492
1493         put_task_struct(p);
1494
1495         return count;
1496 }
1497
1498 static int sched_autogroup_open(struct inode *inode, struct file *filp)
1499 {
1500         int ret;
1501
1502         ret = single_open(filp, sched_autogroup_show, NULL);
1503         if (!ret) {
1504                 struct seq_file *m = filp->private_data;
1505
1506                 m->private = inode;
1507         }
1508         return ret;
1509 }
1510
1511 static const struct file_operations proc_pid_sched_autogroup_operations = {
1512         .open           = sched_autogroup_open,
1513         .read           = seq_read,
1514         .write          = sched_autogroup_write,
1515         .llseek         = seq_lseek,
1516         .release        = single_release,
1517 };
1518
1519 #endif /* CONFIG_SCHED_AUTOGROUP */
1520
1521 static ssize_t comm_write(struct file *file, const char __user *buf,
1522                                 size_t count, loff_t *offset)
1523 {
1524         struct inode *inode = file->f_path.dentry->d_inode;
1525         struct task_struct *p;
1526         char buffer[TASK_COMM_LEN];
1527
1528         memset(buffer, 0, sizeof(buffer));
1529         if (count > sizeof(buffer) - 1)
1530                 count = sizeof(buffer) - 1;
1531         if (copy_from_user(buffer, buf, count))
1532                 return -EFAULT;
1533
1534         p = get_proc_task(inode);
1535         if (!p)
1536                 return -ESRCH;
1537
1538         if (same_thread_group(current, p))
1539                 set_task_comm(p, buffer);
1540         else
1541                 count = -EINVAL;
1542
1543         put_task_struct(p);
1544
1545         return count;
1546 }
1547
1548 static int comm_show(struct seq_file *m, void *v)
1549 {
1550         struct inode *inode = m->private;
1551         struct task_struct *p;
1552
1553         p = get_proc_task(inode);
1554         if (!p)
1555                 return -ESRCH;
1556
1557         task_lock(p);
1558         seq_printf(m, "%s\n", p->comm);
1559         task_unlock(p);
1560
1561         put_task_struct(p);
1562
1563         return 0;
1564 }
1565
1566 static int comm_open(struct inode *inode, struct file *filp)
1567 {
1568         return single_open(filp, comm_show, inode);
1569 }
1570
1571 static const struct file_operations proc_pid_set_comm_operations = {
1572         .open           = comm_open,
1573         .read           = seq_read,
1574         .write          = comm_write,
1575         .llseek         = seq_lseek,
1576         .release        = single_release,
1577 };
1578
1579 /*
1580  * We added or removed a vma mapping the executable. The vmas are only mapped
1581  * during exec and are not mapped with the mmap system call.
1582  * Callers must hold down_write() on the mm's mmap_sem for these
1583  */
1584 void added_exe_file_vma(struct mm_struct *mm)
1585 {
1586         mm->num_exe_file_vmas++;
1587 }
1588
1589 void removed_exe_file_vma(struct mm_struct *mm)
1590 {
1591         mm->num_exe_file_vmas--;
1592         if ((mm->num_exe_file_vmas == 0) && mm->exe_file){
1593                 fput(mm->exe_file);
1594                 mm->exe_file = NULL;
1595         }
1596
1597 }
1598
1599 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1600 {
1601         if (new_exe_file)
1602                 get_file(new_exe_file);
1603         if (mm->exe_file)
1604                 fput(mm->exe_file);
1605         mm->exe_file = new_exe_file;
1606         mm->num_exe_file_vmas = 0;
1607 }
1608
1609 struct file *get_mm_exe_file(struct mm_struct *mm)
1610 {
1611         struct file *exe_file;
1612
1613         /* We need mmap_sem to protect against races with removal of
1614          * VM_EXECUTABLE vmas */
1615         down_read(&mm->mmap_sem);
1616         exe_file = mm->exe_file;
1617         if (exe_file)
1618                 get_file(exe_file);
1619         up_read(&mm->mmap_sem);
1620         return exe_file;
1621 }
1622
1623 void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
1624 {
1625         /* It's safe to write the exe_file pointer without exe_file_lock because
1626          * this is called during fork when the task is not yet in /proc */
1627         newmm->exe_file = get_mm_exe_file(oldmm);
1628 }
1629
1630 static int proc_exe_link(struct inode *inode, struct path *exe_path)
1631 {
1632         struct task_struct *task;
1633         struct mm_struct *mm;
1634         struct file *exe_file;
1635
1636         task = get_proc_task(inode);
1637         if (!task)
1638                 return -ENOENT;
1639         mm = get_task_mm(task);
1640         put_task_struct(task);
1641         if (!mm)
1642                 return -ENOENT;
1643         exe_file = get_mm_exe_file(mm);
1644         mmput(mm);
1645         if (exe_file) {
1646                 *exe_path = exe_file->f_path;
1647                 path_get(&exe_file->f_path);
1648                 fput(exe_file);
1649                 return 0;
1650         } else
1651                 return -ENOENT;
1652 }
1653
1654 static void *proc_pid_follow_link(struct dentry *dentry, struct nameidata *nd)
1655 {
1656         struct inode *inode = dentry->d_inode;
1657         int error = -EACCES;
1658
1659         /* We don't need a base pointer in the /proc filesystem */
1660         path_put(&nd->path);
1661
1662         /* Are we allowed to snoop on the tasks file descriptors? */
1663         if (!proc_fd_access_allowed(inode))
1664                 goto out;
1665
1666         error = PROC_I(inode)->op.proc_get_link(inode, &nd->path);
1667 out:
1668         return ERR_PTR(error);
1669 }
1670
1671 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1672 {
1673         char *tmp = (char*)__get_free_page(GFP_TEMPORARY);
1674         char *pathname;
1675         int len;
1676
1677         if (!tmp)
1678                 return -ENOMEM;
1679
1680         pathname = d_path(path, tmp, PAGE_SIZE);
1681         len = PTR_ERR(pathname);
1682         if (IS_ERR(pathname))
1683                 goto out;
1684         len = tmp + PAGE_SIZE - 1 - pathname;
1685
1686         if (len > buflen)
1687                 len = buflen;
1688         if (copy_to_user(buffer, pathname, len))
1689                 len = -EFAULT;
1690  out:
1691         free_page((unsigned long)tmp);
1692         return len;
1693 }
1694
1695 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1696 {
1697         int error = -EACCES;
1698         struct inode *inode = dentry->d_inode;
1699         struct path path;
1700
1701         /* Are we allowed to snoop on the tasks file descriptors? */
1702         if (!proc_fd_access_allowed(inode))
1703                 goto out;
1704
1705         error = PROC_I(inode)->op.proc_get_link(inode, &path);
1706         if (error)
1707                 goto out;
1708
1709         error = do_proc_readlink(&path, buffer, buflen);
1710         path_put(&path);
1711 out:
1712         return error;
1713 }
1714
1715 static const struct inode_operations proc_pid_link_inode_operations = {
1716         .readlink       = proc_pid_readlink,
1717         .follow_link    = proc_pid_follow_link,
1718         .setattr        = proc_setattr,
1719 };
1720
1721
1722 /* building an inode */
1723
1724 static int task_dumpable(struct task_struct *task)
1725 {
1726         int dumpable = 0;
1727         struct mm_struct *mm;
1728
1729         task_lock(task);
1730         mm = task->mm;
1731         if (mm)
1732                 dumpable = get_dumpable(mm);
1733         task_unlock(task);
1734         if(dumpable == 1)
1735                 return 1;
1736         return 0;
1737 }
1738
1739 struct inode *proc_pid_make_inode(struct super_block * sb, struct task_struct *task)
1740 {
1741         struct inode * inode;
1742         struct proc_inode *ei;
1743         const struct cred *cred;
1744
1745         /* We need a new inode */
1746
1747         inode = new_inode(sb);
1748         if (!inode)
1749                 goto out;
1750
1751         /* Common stuff */
1752         ei = PROC_I(inode);
1753         inode->i_ino = get_next_ino();
1754         inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
1755         inode->i_op = &proc_def_inode_operations;
1756
1757         /*
1758          * grab the reference to task.
1759          */
1760         ei->pid = get_task_pid(task, PIDTYPE_PID);
1761         if (!ei->pid)
1762                 goto out_unlock;
1763
1764         if (task_dumpable(task)) {
1765                 rcu_read_lock();
1766                 cred = __task_cred(task);
1767                 inode->i_uid = cred->euid;
1768                 inode->i_gid = cred->egid;
1769                 rcu_read_unlock();
1770         }
1771         security_task_to_inode(task, inode);
1772
1773 out:
1774         return inode;
1775
1776 out_unlock:
1777         iput(inode);
1778         return NULL;
1779 }
1780
1781 int pid_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
1782 {
1783         struct inode *inode = dentry->d_inode;
1784         struct task_struct *task;
1785         const struct cred *cred;
1786
1787         generic_fillattr(inode, stat);
1788
1789         rcu_read_lock();
1790         stat->uid = 0;
1791         stat->gid = 0;
1792         task = pid_task(proc_pid(inode), PIDTYPE_PID);
1793         if (task) {
1794                 if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1795                     task_dumpable(task)) {
1796                         cred = __task_cred(task);
1797                         stat->uid = cred->euid;
1798                         stat->gid = cred->egid;
1799                 }
1800         }
1801         rcu_read_unlock();
1802         return 0;
1803 }
1804
1805 /* dentry stuff */
1806
1807 /*
1808  *      Exceptional case: normally we are not allowed to unhash a busy
1809  * directory. In this case, however, we can do it - no aliasing problems
1810  * due to the way we treat inodes.
1811  *
1812  * Rewrite the inode's ownerships here because the owning task may have
1813  * performed a setuid(), etc.
1814  *
1815  * Before the /proc/pid/status file was created the only way to read
1816  * the effective uid of a /process was to stat /proc/pid.  Reading
1817  * /proc/pid/status is slow enough that procps and other packages
1818  * kept stating /proc/pid.  To keep the rules in /proc simple I have
1819  * made this apply to all per process world readable and executable
1820  * directories.
1821  */
1822 int pid_revalidate(struct dentry *dentry, struct nameidata *nd)
1823 {
1824         struct inode *inode;
1825         struct task_struct *task;
1826         const struct cred *cred;
1827
1828         if (nd && nd->flags & LOOKUP_RCU)
1829                 return -ECHILD;
1830
1831         inode = dentry->d_inode;
1832         task = get_proc_task(inode);
1833
1834         if (task) {
1835                 if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1836                     task_dumpable(task)) {
1837                         rcu_read_lock();
1838                         cred = __task_cred(task);
1839                         inode->i_uid = cred->euid;
1840                         inode->i_gid = cred->egid;
1841                         rcu_read_unlock();
1842                 } else {
1843                         inode->i_uid = 0;
1844                         inode->i_gid = 0;
1845                 }
1846                 inode->i_mode &= ~(S_ISUID | S_ISGID);
1847                 security_task_to_inode(task, inode);
1848                 put_task_struct(task);
1849                 return 1;
1850         }
1851         d_drop(dentry);
1852         return 0;
1853 }
1854
1855 static int pid_delete_dentry(const struct dentry * dentry)
1856 {
1857         /* Is the task we represent dead?
1858          * If so, then don't put the dentry on the lru list,
1859          * kill it immediately.
1860          */
1861         return !proc_pid(dentry->d_inode)->tasks[PIDTYPE_PID].first;
1862 }
1863
1864 const struct dentry_operations pid_dentry_operations =
1865 {
1866         .d_revalidate   = pid_revalidate,
1867         .d_delete       = pid_delete_dentry,
1868 };
1869
1870 /* Lookups */
1871
1872 /*
1873  * Fill a directory entry.
1874  *
1875  * If possible create the dcache entry and derive our inode number and
1876  * file type from dcache entry.
1877  *
1878  * Since all of the proc inode numbers are dynamically generated, the inode
1879  * numbers do not exist until the inode is cache.  This means creating the
1880  * the dcache entry in readdir is necessary to keep the inode numbers
1881  * reported by readdir in sync with the inode numbers reported
1882  * by stat.
1883  */
1884 int proc_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
1885         const char *name, int len,
1886         instantiate_t instantiate, struct task_struct *task, const void *ptr)
1887 {
1888         struct dentry *child, *dir = filp->f_path.dentry;
1889         struct inode *inode;
1890         struct qstr qname;
1891         ino_t ino = 0;
1892         unsigned type = DT_UNKNOWN;
1893
1894         qname.name = name;
1895         qname.len  = len;
1896         qname.hash = full_name_hash(name, len);
1897
1898         child = d_lookup(dir, &qname);
1899         if (!child) {
1900                 struct dentry *new;
1901                 new = d_alloc(dir, &qname);
1902                 if (new) {
1903                         child = instantiate(dir->d_inode, new, task, ptr);
1904                         if (child)
1905                                 dput(new);
1906                         else
1907                                 child = new;
1908                 }
1909         }
1910         if (!child || IS_ERR(child) || !child->d_inode)
1911                 goto end_instantiate;
1912         inode = child->d_inode;
1913         if (inode) {
1914                 ino = inode->i_ino;
1915                 type = inode->i_mode >> 12;
1916         }
1917         dput(child);
1918 end_instantiate:
1919         if (!ino)
1920                 ino = find_inode_number(dir, &qname);
1921         if (!ino)
1922                 ino = 1;
1923         return filldir(dirent, name, len, filp->f_pos, ino, type);
1924 }
1925
1926 static unsigned name_to_int(struct dentry *dentry)
1927 {
1928         const char *name = dentry->d_name.name;
1929         int len = dentry->d_name.len;
1930         unsigned n = 0;
1931
1932         if (len > 1 && *name == '0')
1933                 goto out;
1934         while (len-- > 0) {
1935                 unsigned c = *name++ - '0';
1936                 if (c > 9)
1937                         goto out;
1938                 if (n >= (~0U-9)/10)
1939                         goto out;
1940                 n *= 10;
1941                 n += c;
1942         }
1943         return n;
1944 out:
1945         return ~0U;
1946 }
1947
1948 #define PROC_FDINFO_MAX 64
1949
1950 static int proc_fd_info(struct inode *inode, struct path *path, char *info)
1951 {
1952         struct task_struct *task = get_proc_task(inode);
1953         struct files_struct *files = NULL;
1954         struct file *file;
1955         int fd = proc_fd(inode);
1956
1957         if (task) {
1958                 files = get_files_struct(task);
1959                 put_task_struct(task);
1960         }
1961         if (files) {
1962                 /*
1963                  * We are not taking a ref to the file structure, so we must
1964                  * hold ->file_lock.
1965                  */
1966                 spin_lock(&files->file_lock);
1967                 file = fcheck_files(files, fd);
1968                 if (file) {
1969                         if (path) {
1970                                 *path = file->f_path;
1971                                 path_get(&file->f_path);
1972                         }
1973                         if (info)
1974                                 snprintf(info, PROC_FDINFO_MAX,
1975                                          "pos:\t%lli\n"
1976                                          "flags:\t0%o\n",
1977                                          (long long) file->f_pos,
1978                                          file->f_flags);
1979                         spin_unlock(&files->file_lock);
1980                         put_files_struct(files);
1981                         return 0;
1982                 }
1983                 spin_unlock(&files->file_lock);
1984                 put_files_struct(files);
1985         }
1986         return -ENOENT;
1987 }
1988
1989 static int proc_fd_link(struct inode *inode, struct path *path)
1990 {
1991         return proc_fd_info(inode, path, NULL);
1992 }
1993
1994 static int tid_fd_revalidate(struct dentry *dentry, struct nameidata *nd)
1995 {
1996         struct inode *inode;
1997         struct task_struct *task;
1998         int fd;
1999         struct files_struct *files;
2000         const struct cred *cred;
2001
2002         if (nd && nd->flags & LOOKUP_RCU)
2003                 return -ECHILD;
2004
2005         inode = dentry->d_inode;
2006         task = get_proc_task(inode);
2007         fd = proc_fd(inode);
2008
2009         if (task) {
2010                 files = get_files_struct(task);
2011                 if (files) {
2012                         rcu_read_lock();
2013                         if (fcheck_files(files, fd)) {
2014                                 rcu_read_unlock();
2015                                 put_files_struct(files);
2016                                 if (task_dumpable(task)) {
2017                                         rcu_read_lock();
2018                                         cred = __task_cred(task);
2019                                         inode->i_uid = cred->euid;
2020                                         inode->i_gid = cred->egid;
2021                                         rcu_read_unlock();
2022                                 } else {
2023                                         inode->i_uid = 0;
2024                                         inode->i_gid = 0;
2025                                 }
2026                                 inode->i_mode &= ~(S_ISUID | S_ISGID);
2027                                 security_task_to_inode(task, inode);
2028                                 put_task_struct(task);
2029                                 return 1;
2030                         }
2031                         rcu_read_unlock();
2032                         put_files_struct(files);
2033                 }
2034                 put_task_struct(task);
2035         }
2036         d_drop(dentry);
2037         return 0;
2038 }
2039
2040 static const struct dentry_operations tid_fd_dentry_operations =
2041 {
2042         .d_revalidate   = tid_fd_revalidate,
2043         .d_delete       = pid_delete_dentry,
2044 };
2045
2046 static struct dentry *proc_fd_instantiate(struct inode *dir,
2047         struct dentry *dentry, struct task_struct *task, const void *ptr)
2048 {
2049         unsigned fd = *(const unsigned *)ptr;
2050         struct file *file;
2051         struct files_struct *files;
2052         struct inode *inode;
2053         struct proc_inode *ei;
2054         struct dentry *error = ERR_PTR(-ENOENT);
2055
2056         inode = proc_pid_make_inode(dir->i_sb, task);
2057         if (!inode)
2058                 goto out;
2059         ei = PROC_I(inode);
2060         ei->fd = fd;
2061         files = get_files_struct(task);
2062         if (!files)
2063                 goto out_iput;
2064         inode->i_mode = S_IFLNK;
2065
2066         /*
2067          * We are not taking a ref to the file structure, so we must
2068          * hold ->file_lock.
2069          */
2070         spin_lock(&files->file_lock);
2071         file = fcheck_files(files, fd);
2072         if (!file)
2073                 goto out_unlock;
2074         if (file->f_mode & FMODE_READ)
2075                 inode->i_mode |= S_IRUSR | S_IXUSR;
2076         if (file->f_mode & FMODE_WRITE)
2077                 inode->i_mode |= S_IWUSR | S_IXUSR;
2078         spin_unlock(&files->file_lock);
2079         put_files_struct(files);
2080
2081         inode->i_op = &proc_pid_link_inode_operations;
2082         inode->i_size = 64;
2083         ei->op.proc_get_link = proc_fd_link;
2084         d_set_d_op(dentry, &tid_fd_dentry_operations);
2085         d_add(dentry, inode);
2086         /* Close the race of the process dying before we return the dentry */
2087         if (tid_fd_revalidate(dentry, NULL))
2088                 error = NULL;
2089
2090  out:
2091         return error;
2092 out_unlock:
2093         spin_unlock(&files->file_lock);
2094         put_files_struct(files);
2095 out_iput:
2096         iput(inode);
2097         goto out;
2098 }
2099
2100 static struct dentry *proc_lookupfd_common(struct inode *dir,
2101                                            struct dentry *dentry,
2102                                            instantiate_t instantiate)
2103 {
2104         struct task_struct *task = get_proc_task(dir);
2105         unsigned fd = name_to_int(dentry);
2106         struct dentry *result = ERR_PTR(-ENOENT);
2107
2108         if (!task)
2109                 goto out_no_task;
2110         if (fd == ~0U)
2111                 goto out;
2112
2113         result = instantiate(dir, dentry, task, &fd);
2114 out:
2115         put_task_struct(task);
2116 out_no_task:
2117         return result;
2118 }
2119
2120 static int proc_readfd_common(struct file * filp, void * dirent,
2121                               filldir_t filldir, instantiate_t instantiate)
2122 {
2123         struct dentry *dentry = filp->f_path.dentry;
2124         struct inode *inode = dentry->d_inode;
2125         struct task_struct *p = get_proc_task(inode);
2126         unsigned int fd, ino;
2127         int retval;
2128         struct files_struct * files;
2129
2130         retval = -ENOENT;
2131         if (!p)
2132                 goto out_no_task;
2133         retval = 0;
2134
2135         fd = filp->f_pos;
2136         switch (fd) {
2137                 case 0:
2138                         if (filldir(dirent, ".", 1, 0, inode->i_ino, DT_DIR) < 0)
2139                                 goto out;
2140                         filp->f_pos++;
2141                 case 1:
2142                         ino = parent_ino(dentry);
2143                         if (filldir(dirent, "..", 2, 1, ino, DT_DIR) < 0)
2144                                 goto out;
2145                         filp->f_pos++;
2146                 default:
2147                         files = get_files_struct(p);
2148                         if (!files)
2149                                 goto out;
2150                         rcu_read_lock();
2151                         for (fd = filp->f_pos-2;
2152                              fd < files_fdtable(files)->max_fds;
2153                              fd++, filp->f_pos++) {
2154                                 char name[PROC_NUMBUF];
2155                                 int len;
2156
2157                                 if (!fcheck_files(files, fd))
2158                                         continue;
2159                                 rcu_read_unlock();
2160
2161                                 len = snprintf(name, sizeof(name), "%d", fd);
2162                                 if (proc_fill_cache(filp, dirent, filldir,
2163                                                     name, len, instantiate,
2164                                                     p, &fd) < 0) {
2165                                         rcu_read_lock();
2166                                         break;
2167                                 }
2168                                 rcu_read_lock();
2169                         }
2170                         rcu_read_unlock();
2171                         put_files_struct(files);
2172         }
2173 out:
2174         put_task_struct(p);
2175 out_no_task:
2176         return retval;
2177 }
2178
2179 static struct dentry *proc_lookupfd(struct inode *dir, struct dentry *dentry,
2180                                     struct nameidata *nd)
2181 {
2182         return proc_lookupfd_common(dir, dentry, proc_fd_instantiate);
2183 }
2184
2185 static int proc_readfd(struct file *filp, void *dirent, filldir_t filldir)
2186 {
2187         return proc_readfd_common(filp, dirent, filldir, proc_fd_instantiate);
2188 }
2189
2190 static ssize_t proc_fdinfo_read(struct file *file, char __user *buf,
2191                                       size_t len, loff_t *ppos)
2192 {
2193         char tmp[PROC_FDINFO_MAX];
2194         int err = proc_fd_info(file->f_path.dentry->d_inode, NULL, tmp);
2195         if (!err)
2196                 err = simple_read_from_buffer(buf, len, ppos, tmp, strlen(tmp));
2197         return err;
2198 }
2199
2200 static const struct file_operations proc_fdinfo_file_operations = {
2201         .open           = nonseekable_open,
2202         .read           = proc_fdinfo_read,
2203         .llseek         = no_llseek,
2204 };
2205
2206 static const struct file_operations proc_fd_operations = {
2207         .read           = generic_read_dir,
2208         .readdir        = proc_readfd,
2209         .llseek         = default_llseek,
2210 };
2211
2212 /*
2213  * /proc/pid/fd needs a special permission handler so that a process can still
2214  * access /proc/self/fd after it has executed a setuid().
2215  */
2216 static int proc_fd_permission(struct inode *inode, int mask, unsigned int flags)
2217 {
2218         int rv;
2219
2220         if (flags & IPERM_FLAG_RCU)
2221                 return -ECHILD;
2222         rv = generic_permission(inode, mask, flags, NULL);
2223         if (rv == 0)
2224                 return 0;
2225         if (task_pid(current) == proc_pid(inode))
2226                 rv = 0;
2227         return rv;
2228 }
2229
2230 /*
2231  * proc directories can do almost nothing..
2232  */
2233 static const struct inode_operations proc_fd_inode_operations = {
2234         .lookup         = proc_lookupfd,
2235         .permission     = proc_fd_permission,
2236         .setattr        = proc_setattr,
2237 };
2238
2239 static struct dentry *proc_fdinfo_instantiate(struct inode *dir,
2240         struct dentry *dentry, struct task_struct *task, const void *ptr)
2241 {
2242         unsigned fd = *(unsigned *)ptr;
2243         struct inode *inode;
2244         struct proc_inode *ei;
2245         struct dentry *error = ERR_PTR(-ENOENT);
2246
2247         inode = proc_pid_make_inode(dir->i_sb, task);
2248         if (!inode)
2249                 goto out;
2250         ei = PROC_I(inode);
2251         ei->fd = fd;
2252         inode->i_mode = S_IFREG | S_IRUSR;
2253         inode->i_fop = &proc_fdinfo_file_operations;
2254         d_set_d_op(dentry, &tid_fd_dentry_operations);
2255         d_add(dentry, inode);
2256         /* Close the race of the process dying before we return the dentry */
2257         if (tid_fd_revalidate(dentry, NULL))
2258                 error = NULL;
2259
2260  out:
2261         return error;
2262 }
2263
2264 static struct dentry *proc_lookupfdinfo(struct inode *dir,
2265                                         struct dentry *dentry,
2266                                         struct nameidata *nd)
2267 {
2268         return proc_lookupfd_common(dir, dentry, proc_fdinfo_instantiate);
2269 }
2270
2271 static int proc_readfdinfo(struct file *filp, void *dirent, filldir_t filldir)
2272 {
2273         return proc_readfd_common(filp, dirent, filldir,
2274                                   proc_fdinfo_instantiate);
2275 }
2276
2277 static const struct file_operations proc_fdinfo_operations = {
2278         .read           = generic_read_dir,
2279         .readdir        = proc_readfdinfo,
2280         .llseek         = default_llseek,
2281 };
2282
2283 /*
2284  * proc directories can do almost nothing..
2285  */
2286 static const struct inode_operations proc_fdinfo_inode_operations = {
2287         .lookup         = proc_lookupfdinfo,
2288         .setattr        = proc_setattr,
2289 };
2290
2291
2292 static struct dentry *proc_pident_instantiate(struct inode *dir,
2293         struct dentry *dentry, struct task_struct *task, const void *ptr)
2294 {
2295         const struct pid_entry *p = ptr;
2296         struct inode *inode;
2297         struct proc_inode *ei;
2298         struct dentry *error = ERR_PTR(-ENOENT);
2299
2300         inode = proc_pid_make_inode(dir->i_sb, task);
2301         if (!inode)
2302                 goto out;
2303
2304         ei = PROC_I(inode);
2305         inode->i_mode = p->mode;
2306         if (S_ISDIR(inode->i_mode))
2307                 inode->i_nlink = 2;     /* Use getattr to fix if necessary */
2308         if (p->iop)
2309                 inode->i_op = p->iop;
2310         if (p->fop)
2311                 inode->i_fop = p->fop;
2312         ei->op = p->op;
2313         d_set_d_op(dentry, &pid_dentry_operations);
2314         d_add(dentry, inode);
2315         /* Close the race of the process dying before we return the dentry */
2316         if (pid_revalidate(dentry, NULL))
2317                 error = NULL;
2318 out:
2319         return error;
2320 }
2321
2322 static struct dentry *proc_pident_lookup(struct inode *dir, 
2323                                          struct dentry *dentry,
2324                                          const struct pid_entry *ents,
2325                                          unsigned int nents)
2326 {
2327         struct dentry *error;
2328         struct task_struct *task = get_proc_task(dir);
2329         const struct pid_entry *p, *last;
2330
2331         error = ERR_PTR(-ENOENT);
2332
2333         if (!task)
2334                 goto out_no_task;
2335
2336         /*
2337          * Yes, it does not scale. And it should not. Don't add
2338          * new entries into /proc/<tgid>/ without very good reasons.
2339          */
2340         last = &ents[nents - 1];
2341         for (p = ents; p <= last; p++) {
2342                 if (p->len != dentry->d_name.len)
2343                         continue;
2344                 if (!memcmp(dentry->d_name.name, p->name, p->len))
2345                         break;
2346         }
2347         if (p > last)
2348                 goto out;
2349
2350         error = proc_pident_instantiate(dir, dentry, task, p);
2351 out:
2352         put_task_struct(task);
2353 out_no_task:
2354         return error;
2355 }
2356
2357 static int proc_pident_fill_cache(struct file *filp, void *dirent,
2358         filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
2359 {
2360         return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
2361                                 proc_pident_instantiate, task, p);
2362 }
2363
2364 static int proc_pident_readdir(struct file *filp,
2365                 void *dirent, filldir_t filldir,
2366                 const struct pid_entry *ents, unsigned int nents)
2367 {
2368         int i;
2369         struct dentry *dentry = filp->f_path.dentry;
2370         struct inode *inode = dentry->d_inode;
2371         struct task_struct *task = get_proc_task(inode);
2372         const struct pid_entry *p, *last;
2373         ino_t ino;
2374         int ret;
2375
2376         ret = -ENOENT;
2377         if (!task)
2378                 goto out_no_task;
2379
2380         ret = 0;
2381         i = filp->f_pos;
2382         switch (i) {
2383         case 0:
2384                 ino = inode->i_ino;
2385                 if (filldir(dirent, ".", 1, i, ino, DT_DIR) < 0)
2386                         goto out;
2387                 i++;
2388                 filp->f_pos++;
2389                 /* fall through */
2390         case 1:
2391                 ino = parent_ino(dentry);
2392                 if (filldir(dirent, "..", 2, i, ino, DT_DIR) < 0)
2393                         goto out;
2394                 i++;
2395                 filp->f_pos++;
2396                 /* fall through */
2397         default:
2398                 i -= 2;
2399                 if (i >= nents) {
2400                         ret = 1;
2401                         goto out;
2402                 }
2403                 p = ents + i;
2404                 last = &ents[nents - 1];
2405                 while (p <= last) {
2406                         if (proc_pident_fill_cache(filp, dirent, filldir, task, p) < 0)
2407                                 goto out;
2408                         filp->f_pos++;
2409                         p++;
2410                 }
2411         }
2412
2413         ret = 1;
2414 out:
2415         put_task_struct(task);
2416 out_no_task:
2417         return ret;
2418 }
2419
2420 #ifdef CONFIG_SECURITY
2421 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2422                                   size_t count, loff_t *ppos)
2423 {
2424         struct inode * inode = file->f_path.dentry->d_inode;
2425         char *p = NULL;
2426         ssize_t length;
2427         struct task_struct *task = get_proc_task(inode);
2428
2429         if (!task)
2430                 return -ESRCH;
2431
2432         length = security_getprocattr(task,
2433                                       (char*)file->f_path.dentry->d_name.name,
2434                                       &p);
2435         put_task_struct(task);
2436         if (length > 0)
2437                 length = simple_read_from_buffer(buf, count, ppos, p, length);
2438         kfree(p);
2439         return length;
2440 }
2441
2442 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2443                                    size_t count, loff_t *ppos)
2444 {
2445         struct inode * inode = file->f_path.dentry->d_inode;
2446         char *page;
2447         ssize_t length;
2448         struct task_struct *task = get_proc_task(inode);
2449
2450         length = -ESRCH;
2451         if (!task)
2452                 goto out_no_task;
2453         if (count > PAGE_SIZE)
2454                 count = PAGE_SIZE;
2455
2456         /* No partial writes. */
2457         length = -EINVAL;
2458         if (*ppos != 0)
2459                 goto out;
2460
2461         length = -ENOMEM;
2462         page = (char*)__get_free_page(GFP_TEMPORARY);
2463         if (!page)
2464                 goto out;
2465
2466         length = -EFAULT;
2467         if (copy_from_user(page, buf, count))
2468                 goto out_free;
2469
2470         /* Guard against adverse ptrace interaction */
2471         length = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
2472         if (length < 0)
2473                 goto out_free;
2474
2475         length = security_setprocattr(task,
2476                                       (char*)file->f_path.dentry->d_name.name,
2477                                       (void*)page, count);
2478         mutex_unlock(&task->signal->cred_guard_mutex);
2479 out_free:
2480         free_page((unsigned long) page);
2481 out:
2482         put_task_struct(task);
2483 out_no_task:
2484         return length;
2485 }
2486
2487 static const struct file_operations proc_pid_attr_operations = {
2488         .read           = proc_pid_attr_read,
2489         .write          = proc_pid_attr_write,
2490         .llseek         = generic_file_llseek,
2491 };
2492
2493 static const struct pid_entry attr_dir_stuff[] = {
2494         REG("current",    S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2495         REG("prev",       S_IRUGO,         proc_pid_attr_operations),
2496         REG("exec",       S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2497         REG("fscreate",   S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2498         REG("keycreate",  S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2499         REG("sockcreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2500 };
2501
2502 static int proc_attr_dir_readdir(struct file * filp,
2503                              void * dirent, filldir_t filldir)
2504 {
2505         return proc_pident_readdir(filp,dirent,filldir,
2506                                    attr_dir_stuff,ARRAY_SIZE(attr_dir_stuff));
2507 }
2508
2509 static const struct file_operations proc_attr_dir_operations = {
2510         .read           = generic_read_dir,
2511         .readdir        = proc_attr_dir_readdir,
2512         .llseek         = default_llseek,
2513 };
2514
2515 static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2516                                 struct dentry *dentry, struct nameidata *nd)
2517 {
2518         return proc_pident_lookup(dir, dentry,
2519                                   attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2520 }
2521
2522 static const struct inode_operations proc_attr_dir_inode_operations = {
2523         .lookup         = proc_attr_dir_lookup,
2524         .getattr        = pid_getattr,
2525         .setattr        = proc_setattr,
2526 };
2527
2528 #endif
2529
2530 #ifdef CONFIG_ELF_CORE
2531 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2532                                          size_t count, loff_t *ppos)
2533 {
2534         struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
2535         struct mm_struct *mm;
2536         char buffer[PROC_NUMBUF];
2537         size_t len;
2538         int ret;
2539
2540         if (!task)
2541                 return -ESRCH;
2542
2543         ret = 0;
2544         mm = get_task_mm(task);
2545         if (mm) {
2546                 len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2547                                ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2548                                 MMF_DUMP_FILTER_SHIFT));
2549                 mmput(mm);
2550                 ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2551         }
2552
2553         put_task_struct(task);
2554
2555         return ret;
2556 }
2557
2558 static ssize_t proc_coredump_filter_write(struct file *file,
2559                                           const char __user *buf,
2560                                           size_t count,
2561                                           loff_t *ppos)
2562 {
2563         struct task_struct *task;
2564         struct mm_struct *mm;
2565         char buffer[PROC_NUMBUF], *end;
2566         unsigned int val;
2567         int ret;
2568         int i;
2569         unsigned long mask;
2570
2571         ret = -EFAULT;
2572         memset(buffer, 0, sizeof(buffer));
2573         if (count > sizeof(buffer) - 1)
2574                 count = sizeof(buffer) - 1;
2575         if (copy_from_user(buffer, buf, count))
2576                 goto out_no_task;
2577
2578         ret = -EINVAL;
2579         val = (unsigned int)simple_strtoul(buffer, &end, 0);
2580         if (*end == '\n')
2581                 end++;
2582         if (end - buffer == 0)
2583                 goto out_no_task;
2584
2585         ret = -ESRCH;
2586         task = get_proc_task(file->f_dentry->d_inode);
2587         if (!task)
2588                 goto out_no_task;
2589
2590         ret = end - buffer;
2591         mm = get_task_mm(task);
2592         if (!mm)
2593                 goto out_no_mm;
2594
2595         for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2596                 if (val & mask)
2597                         set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2598                 else
2599                         clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2600         }
2601
2602         mmput(mm);
2603  out_no_mm:
2604         put_task_struct(task);
2605  out_no_task:
2606         return ret;
2607 }
2608
2609 static const struct file_operations proc_coredump_filter_operations = {
2610         .read           = proc_coredump_filter_read,
2611         .write          = proc_coredump_filter_write,
2612         .llseek         = generic_file_llseek,
2613 };
2614 #endif
2615
2616 /*
2617  * /proc/self:
2618  */
2619 static int proc_self_readlink(struct dentry *dentry, char __user *buffer,
2620                               int buflen)
2621 {
2622         struct pid_namespace *ns = dentry->d_sb->s_fs_info;
2623         pid_t tgid = task_tgid_nr_ns(current, ns);
2624         char tmp[PROC_NUMBUF];
2625         if (!tgid)
2626                 return -ENOENT;
2627         sprintf(tmp, "%d", tgid);
2628         return vfs_readlink(dentry,buffer,buflen,tmp);
2629 }
2630
2631 static void *proc_self_follow_link(struct dentry *dentry, struct nameidata *nd)
2632 {
2633         struct pid_namespace *ns = dentry->d_sb->s_fs_info;
2634         pid_t tgid = task_tgid_nr_ns(current, ns);
2635         char *name = ERR_PTR(-ENOENT);
2636         if (tgid) {
2637                 name = __getname();
2638                 if (!name)
2639                         name = ERR_PTR(-ENOMEM);
2640                 else
2641                         sprintf(name, "%d", tgid);
2642         }
2643         nd_set_link(nd, name);
2644         return NULL;
2645 }
2646
2647 static void proc_self_put_link(struct dentry *dentry, struct nameidata *nd,
2648                                 void *cookie)
2649 {
2650         char *s = nd_get_link(nd);
2651         if (!IS_ERR(s))
2652                 __putname(s);
2653 }
2654
2655 static const struct inode_operations proc_self_inode_operations = {
2656         .readlink       = proc_self_readlink,
2657         .follow_link    = proc_self_follow_link,
2658         .put_link       = proc_self_put_link,
2659 };
2660
2661 /*
2662  * proc base
2663  *
2664  * These are the directory entries in the root directory of /proc
2665  * that properly belong to the /proc filesystem, as they describe
2666  * describe something that is process related.
2667  */
2668 static const struct pid_entry proc_base_stuff[] = {
2669         NOD("self", S_IFLNK|S_IRWXUGO,
2670                 &proc_self_inode_operations, NULL, {}),
2671 };
2672
2673 static struct dentry *proc_base_instantiate(struct inode *dir,
2674         struct dentry *dentry, struct task_struct *task, const void *ptr)
2675 {
2676         const struct pid_entry *p = ptr;
2677         struct inode *inode;
2678         struct proc_inode *ei;
2679         struct dentry *error;
2680
2681         /* Allocate the inode */
2682         error = ERR_PTR(-ENOMEM);
2683         inode = new_inode(dir->i_sb);
2684         if (!inode)
2685                 goto out;
2686
2687         /* Initialize the inode */
2688         ei = PROC_I(inode);
2689         inode->i_ino = get_next_ino();
2690         inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
2691
2692         /*
2693          * grab the reference to the task.
2694          */
2695         ei->pid = get_task_pid(task, PIDTYPE_PID);
2696         if (!ei->pid)
2697                 goto out_iput;
2698
2699         inode->i_mode = p->mode;
2700         if (S_ISDIR(inode->i_mode))
2701                 inode->i_nlink = 2;
2702         if (S_ISLNK(inode->i_mode))
2703                 inode->i_size = 64;
2704         if (p->iop)
2705                 inode->i_op = p->iop;
2706         if (p->fop)
2707                 inode->i_fop = p->fop;
2708         ei->op = p->op;
2709         d_add(dentry, inode);
2710         error = NULL;
2711 out:
2712         return error;
2713 out_iput:
2714         iput(inode);
2715         goto out;
2716 }
2717
2718 static struct dentry *proc_base_lookup(struct inode *dir, struct dentry *dentry)
2719 {
2720         struct dentry *error;
2721         struct task_struct *task = get_proc_task(dir);
2722         const struct pid_entry *p, *last;
2723
2724         error = ERR_PTR(-ENOENT);
2725
2726         if (!task)
2727                 goto out_no_task;
2728
2729         /* Lookup the directory entry */
2730         last = &proc_base_stuff[ARRAY_SIZE(proc_base_stuff) - 1];
2731         for (p = proc_base_stuff; p <= last; p++) {
2732                 if (p->len != dentry->d_name.len)
2733                         continue;
2734                 if (!memcmp(dentry->d_name.name, p->name, p->len))
2735                         break;
2736         }
2737         if (p > last)
2738                 goto out;
2739
2740         error = proc_base_instantiate(dir, dentry, task, p);
2741
2742 out:
2743         put_task_struct(task);
2744 out_no_task:
2745         return error;
2746 }
2747
2748 static int proc_base_fill_cache(struct file *filp, void *dirent,
2749         filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
2750 {
2751         return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
2752                                 proc_base_instantiate, task, p);
2753 }
2754
2755 #ifdef CONFIG_TASK_IO_ACCOUNTING
2756 static int do_io_accounting(struct task_struct *task, char *buffer, int whole)
2757 {
2758         struct task_io_accounting acct = task->ioac;
2759         unsigned long flags;
2760
2761         if (whole && lock_task_sighand(task, &flags)) {
2762                 struct task_struct *t = task;
2763
2764                 task_io_accounting_add(&acct, &task->signal->ioac);
2765                 while_each_thread(task, t)
2766                         task_io_accounting_add(&acct, &t->ioac);
2767
2768                 unlock_task_sighand(task, &flags);
2769         }
2770         return sprintf(buffer,
2771                         "rchar: %llu\n"
2772                         "wchar: %llu\n"
2773                         "syscr: %llu\n"
2774                         "syscw: %llu\n"
2775                         "read_bytes: %llu\n"
2776                         "write_bytes: %llu\n"
2777                         "cancelled_write_bytes: %llu\n",
2778                         (unsigned long long)acct.rchar,
2779                         (unsigned long long)acct.wchar,
2780                         (unsigned long long)acct.syscr,
2781                         (unsigned long long)acct.syscw,
2782                         (unsigned long long)acct.read_bytes,
2783                         (unsigned long long)acct.write_bytes,
2784                         (unsigned long long)acct.cancelled_write_bytes);
2785 }
2786
2787 static int proc_tid_io_accounting(struct task_struct *task, char *buffer)
2788 {
2789         return do_io_accounting(task, buffer, 0);
2790 }
2791
2792 static int proc_tgid_io_accounting(struct task_struct *task, char *buffer)
2793 {
2794         return do_io_accounting(task, buffer, 1);
2795 }
2796 #endif /* CONFIG_TASK_IO_ACCOUNTING */
2797
2798 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
2799                                 struct pid *pid, struct task_struct *task)
2800 {
2801         int err = lock_trace(task);
2802         if (!err) {
2803                 seq_printf(m, "%08x\n", task->personality);
2804                 unlock_trace(task);
2805         }
2806         return err;
2807 }
2808
2809 /*
2810  * Thread groups
2811  */
2812 static const struct file_operations proc_task_operations;
2813 static const struct inode_operations proc_task_inode_operations;
2814
2815 static const struct pid_entry tgid_base_stuff[] = {
2816         DIR("task",       S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
2817         DIR("fd",         S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2818         DIR("fdinfo",     S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
2819         DIR("ns",         S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
2820 #ifdef CONFIG_NET
2821         DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
2822 #endif
2823         REG("environ",    S_IRUSR, proc_environ_operations),
2824         INF("auxv",       S_IRUSR, proc_pid_auxv),
2825         ONE("status",     S_IRUGO, proc_pid_status),
2826         ONE("personality", S_IRUGO, proc_pid_personality),
2827         INF("limits",     S_IRUGO, proc_pid_limits),
2828 #ifdef CONFIG_SCHED_DEBUG
2829         REG("sched",      S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2830 #endif
2831 #ifdef CONFIG_SCHED_AUTOGROUP
2832         REG("autogroup",  S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
2833 #endif
2834         REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
2835 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2836         INF("syscall",    S_IRUGO, proc_pid_syscall),
2837 #endif
2838         INF("cmdline",    S_IRUGO, proc_pid_cmdline),
2839         ONE("stat",       S_IRUGO, proc_tgid_stat),
2840         ONE("statm",      S_IRUGO, proc_pid_statm),
2841         REG("maps",       S_IRUGO, proc_maps_operations),
2842 #ifdef CONFIG_NUMA
2843         REG("numa_maps",  S_IRUGO, proc_numa_maps_operations),
2844 #endif
2845         REG("mem",        S_IRUSR|S_IWUSR, proc_mem_operations),
2846         LNK("cwd",        proc_cwd_link),
2847         LNK("root",       proc_root_link),
2848         LNK("exe",        proc_exe_link),
2849         REG("mounts",     S_IRUGO, proc_mounts_operations),
2850         REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
2851         REG("mountstats", S_IRUSR, proc_mountstats_operations),
2852 #ifdef CONFIG_PROC_PAGE_MONITOR
2853         REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
2854         REG("smaps",      S_IRUGO, proc_smaps_operations),
2855         REG("pagemap",    S_IRUGO, proc_pagemap_operations),
2856 #endif
2857 #ifdef CONFIG_SECURITY
2858         DIR("attr",       S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
2859 #endif
2860 #ifdef CONFIG_KALLSYMS
2861         INF("wchan",      S_IRUGO, proc_pid_wchan),
2862 #endif
2863 #ifdef CONFIG_STACKTRACE
2864         ONE("stack",      S_IRUGO, proc_pid_stack),
2865 #endif
2866 #ifdef CONFIG_SCHEDSTATS
2867         INF("schedstat",  S_IRUGO, proc_pid_schedstat),
2868 #endif
2869 #ifdef CONFIG_LATENCYTOP
2870         REG("latency",  S_IRUGO, proc_lstats_operations),
2871 #endif
2872 #ifdef CONFIG_PROC_PID_CPUSET
2873         REG("cpuset",     S_IRUGO, proc_cpuset_operations),
2874 #endif
2875 #ifdef CONFIG_CGROUPS
2876         REG("cgroup",  S_IRUGO, proc_cgroup_operations),
2877 #endif
2878         INF("oom_score",  S_IRUGO, proc_oom_score),
2879         REG("oom_adj",    S_IRUGO|S_IWUSR, proc_oom_adjust_operations),
2880         REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
2881 #ifdef CONFIG_AUDITSYSCALL
2882         REG("loginuid",   S_IWUSR|S_IRUGO, proc_loginuid_operations),
2883         REG("sessionid",  S_IRUGO, proc_sessionid_operations),
2884 #endif
2885 #ifdef CONFIG_FAULT_INJECTION
2886         REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
2887 #endif
2888 #ifdef CONFIG_ELF_CORE
2889         REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
2890 #endif
2891 #ifdef CONFIG_TASK_IO_ACCOUNTING
2892         INF("io",       S_IRUGO, proc_tgid_io_accounting),
2893 #endif
2894 };
2895
2896 static int proc_tgid_base_readdir(struct file * filp,
2897                              void * dirent, filldir_t filldir)
2898 {
2899         return proc_pident_readdir(filp,dirent,filldir,
2900                                    tgid_base_stuff,ARRAY_SIZE(tgid_base_stuff));
2901 }
2902
2903 static const struct file_operations proc_tgid_base_operations = {
2904         .read           = generic_read_dir,
2905         .readdir        = proc_tgid_base_readdir,
2906         .llseek         = default_llseek,
2907 };
2908
2909 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){
2910         return proc_pident_lookup(dir, dentry,
2911                                   tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
2912 }
2913
2914 static const struct inode_operations proc_tgid_base_inode_operations = {
2915         .lookup         = proc_tgid_base_lookup,
2916         .getattr        = pid_getattr,
2917         .setattr        = proc_setattr,
2918 };
2919
2920 static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid)
2921 {
2922         struct dentry *dentry, *leader, *dir;
2923         char buf[PROC_NUMBUF];
2924         struct qstr name;
2925
2926         name.name = buf;
2927         name.len = snprintf(buf, sizeof(buf), "%d", pid);
2928         dentry = d_hash_and_lookup(mnt->mnt_root, &name);
2929         if (dentry) {
2930                 shrink_dcache_parent(dentry);
2931                 d_drop(dentry);
2932                 dput(dentry);
2933         }
2934
2935         name.name = buf;
2936         name.len = snprintf(buf, sizeof(buf), "%d", tgid);
2937         leader = d_hash_and_lookup(mnt->mnt_root, &name);
2938         if (!leader)
2939                 goto out;
2940
2941         name.name = "task";
2942         name.len = strlen(name.name);
2943         dir = d_hash_and_lookup(leader, &name);
2944         if (!dir)
2945                 goto out_put_leader;
2946
2947         name.name = buf;
2948         name.len = snprintf(buf, sizeof(buf), "%d", pid);
2949         dentry = d_hash_and_lookup(dir, &name);
2950         if (dentry) {
2951                 shrink_dcache_parent(dentry);
2952                 d_drop(dentry);
2953                 dput(dentry);
2954         }
2955
2956         dput(dir);
2957 out_put_leader:
2958         dput(leader);
2959 out:
2960         return;
2961 }
2962
2963 /**
2964  * proc_flush_task -  Remove dcache entries for @task from the /proc dcache.
2965  * @task: task that should be flushed.
2966  *
2967  * When flushing dentries from proc, one needs to flush them from global
2968  * proc (proc_mnt) and from all the namespaces' procs this task was seen
2969  * in. This call is supposed to do all of this job.
2970  *
2971  * Looks in the dcache for
2972  * /proc/@pid
2973  * /proc/@tgid/task/@pid
2974  * if either directory is present flushes it and all of it'ts children
2975  * from the dcache.
2976  *
2977  * It is safe and reasonable to cache /proc entries for a task until
2978  * that task exits.  After that they just clog up the dcache with
2979  * useless entries, possibly causing useful dcache entries to be
2980  * flushed instead.  This routine is proved to flush those useless
2981  * dcache entries at process exit time.
2982  *
2983  * NOTE: This routine is just an optimization so it does not guarantee
2984  *       that no dcache entries will exist at process exit time it
2985  *       just makes it very unlikely that any will persist.
2986  */
2987
2988 void proc_flush_task(struct task_struct *task)
2989 {
2990         int i;
2991         struct pid *pid, *tgid;
2992         struct upid *upid;
2993
2994         pid = task_pid(task);
2995         tgid = task_tgid(task);
2996
2997         for (i = 0; i <= pid->level; i++) {
2998                 upid = &pid->numbers[i];
2999                 proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr,
3000                                         tgid->numbers[i].nr);
3001         }
3002
3003         upid = &pid->numbers[pid->level];
3004         if (upid->nr == 1)
3005                 pid_ns_release_proc(upid->ns);
3006 }
3007
3008 static struct dentry *proc_pid_instantiate(struct inode *dir,
3009                                            struct dentry * dentry,
3010                                            struct task_struct *task, const void *ptr)
3011 {
3012         struct dentry *error = ERR_PTR(-ENOENT);
3013         struct inode *inode;
3014
3015         inode = proc_pid_make_inode(dir->i_sb, task);
3016         if (!inode)
3017                 goto out;
3018
3019         inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
3020         inode->i_op = &proc_tgid_base_inode_operations;
3021         inode->i_fop = &proc_tgid_base_operations;
3022         inode->i_flags|=S_IMMUTABLE;
3023
3024         inode->i_nlink = 2 + pid_entry_count_dirs(tgid_base_stuff,
3025                 ARRAY_SIZE(tgid_base_stuff));
3026
3027         d_set_d_op(dentry, &pid_dentry_operations);
3028
3029         d_add(dentry, inode);
3030         /* Close the race of the process dying before we return the dentry */
3031         if (pid_revalidate(dentry, NULL))
3032                 error = NULL;
3033 out:
3034         return error;
3035 }
3036
3037 struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
3038 {
3039         struct dentry *result;
3040         struct task_struct *task;
3041         unsigned tgid;
3042         struct pid_namespace *ns;
3043
3044         result = proc_base_lookup(dir, dentry);
3045         if (!IS_ERR(result) || PTR_ERR(result) != -ENOENT)
3046                 goto out;
3047
3048         tgid = name_to_int(dentry);
3049         if (tgid == ~0U)
3050                 goto out;
3051
3052         ns = dentry->d_sb->s_fs_info;
3053         rcu_read_lock();
3054         task = find_task_by_pid_ns(tgid, ns);
3055         if (task)
3056                 get_task_struct(task);
3057         rcu_read_unlock();
3058         if (!task)
3059                 goto out;
3060
3061         result = proc_pid_instantiate(dir, dentry, task, NULL);
3062         put_task_struct(task);
3063 out:
3064         return result;
3065 }
3066
3067 /*
3068  * Find the first task with tgid >= tgid
3069  *
3070  */
3071 struct tgid_iter {
3072         unsigned int tgid;
3073         struct task_struct *task;
3074 };
3075 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
3076 {
3077         struct pid *pid;
3078
3079         if (iter.task)
3080                 put_task_struct(iter.task);
3081         rcu_read_lock();
3082 retry:
3083         iter.task = NULL;
3084         pid = find_ge_pid(iter.tgid, ns);
3085         if (pid) {
3086                 iter.tgid = pid_nr_ns(pid, ns);
3087                 iter.task = pid_task(pid, PIDTYPE_PID);
3088                 /* What we to know is if the pid we have find is the
3089                  * pid of a thread_group_leader.  Testing for task
3090                  * being a thread_group_leader is the obvious thing
3091                  * todo but there is a window when it fails, due to
3092                  * the pid transfer logic in de_thread.
3093                  *
3094                  * So we perform the straight forward test of seeing
3095                  * if the pid we have found is the pid of a thread
3096                  * group leader, and don't worry if the task we have
3097                  * found doesn't happen to be a thread group leader.
3098                  * As we don't care in the case of readdir.
3099                  */
3100                 if (!iter.task || !has_group_leader_pid(iter.task)) {
3101                         iter.tgid += 1;
3102                         goto retry;
3103                 }
3104                 get_task_struct(iter.task);
3105         }
3106         rcu_read_unlock();
3107         return iter;
3108 }
3109
3110 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + ARRAY_SIZE(proc_base_stuff))
3111
3112 static int proc_pid_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
3113         struct tgid_iter iter)
3114 {
3115         char name[PROC_NUMBUF];
3116         int len = snprintf(name, sizeof(name), "%d", iter.tgid);
3117         return proc_fill_cache(filp, dirent, filldir, name, len,
3118                                 proc_pid_instantiate, iter.task, NULL);
3119 }
3120
3121 /* for the /proc/ directory itself, after non-process stuff has been done */
3122 int proc_pid_readdir(struct file * filp, void * dirent, filldir_t filldir)
3123 {
3124         unsigned int nr;
3125         struct task_struct *reaper;
3126         struct tgid_iter iter;
3127         struct pid_namespace *ns;
3128
3129         if (filp->f_pos >= PID_MAX_LIMIT + TGID_OFFSET)
3130                 goto out_no_task;
3131         nr = filp->f_pos - FIRST_PROCESS_ENTRY;
3132
3133         reaper = get_proc_task(filp->f_path.dentry->d_inode);
3134         if (!reaper)
3135                 goto out_no_task;
3136
3137         for (; nr < ARRAY_SIZE(proc_base_stuff); filp->f_pos++, nr++) {
3138                 const struct pid_entry *p = &proc_base_stuff[nr];
3139                 if (proc_base_fill_cache(filp, dirent, filldir, reaper, p) < 0)
3140                         goto out;
3141         }
3142
3143         ns = filp->f_dentry->d_sb->s_fs_info;
3144         iter.task = NULL;
3145         iter.tgid = filp->f_pos - TGID_OFFSET;
3146         for (iter = next_tgid(ns, iter);
3147              iter.task;
3148              iter.tgid += 1, iter = next_tgid(ns, iter)) {
3149                 filp->f_pos = iter.tgid + TGID_OFFSET;
3150                 if (proc_pid_fill_cache(filp, dirent, filldir, iter) < 0) {
3151                         put_task_struct(iter.task);
3152                         goto out;
3153                 }
3154         }
3155         filp->f_pos = PID_MAX_LIMIT + TGID_OFFSET;
3156 out:
3157         put_task_struct(reaper);
3158 out_no_task:
3159         return 0;
3160 }
3161
3162 /*
3163  * Tasks
3164  */
3165 static const struct pid_entry tid_base_stuff[] = {
3166         DIR("fd",        S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3167         DIR("fdinfo",    S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3168         DIR("ns",        S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3169         REG("environ",   S_IRUSR, proc_environ_operations),
3170         INF("auxv",      S_IRUSR, proc_pid_auxv),
3171         ONE("status",    S_IRUGO, proc_pid_status),
3172         ONE("personality", S_IRUGO, proc_pid_personality),
3173         INF("limits",    S_IRUGO, proc_pid_limits),
3174 #ifdef CONFIG_SCHED_DEBUG
3175         REG("sched",     S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3176 #endif
3177         REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
3178 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3179         INF("syscall",   S_IRUGO, proc_pid_syscall),
3180 #endif
3181         INF("cmdline",   S_IRUGO, proc_pid_cmdline),
3182         ONE("stat",      S_IRUGO, proc_tid_stat),
3183         ONE("statm",     S_IRUGO, proc_pid_statm),
3184         REG("maps",      S_IRUGO, proc_maps_operations),
3185 #ifdef CONFIG_NUMA
3186         REG("numa_maps", S_IRUGO, proc_numa_maps_operations),
3187 #endif
3188         REG("mem",       S_IRUSR|S_IWUSR, proc_mem_operations),
3189         LNK("cwd",       proc_cwd_link),
3190         LNK("root",      proc_root_link),
3191         LNK("exe",       proc_exe_link),
3192         REG("mounts",    S_IRUGO, proc_mounts_operations),
3193         REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
3194 #ifdef CONFIG_PROC_PAGE_MONITOR
3195         REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3196         REG("smaps",     S_IRUGO, proc_smaps_operations),
3197         REG("pagemap",    S_IRUGO, proc_pagemap_operations),
3198 #endif
3199 #ifdef CONFIG_SECURITY
3200         DIR("attr",      S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3201 #endif
3202 #ifdef CONFIG_KALLSYMS
3203         INF("wchan",     S_IRUGO, proc_pid_wchan),
3204 #endif
3205 #ifdef CONFIG_STACKTRACE
3206         ONE("stack",      S_IRUGO, proc_pid_stack),
3207 #endif
3208 #ifdef CONFIG_SCHEDSTATS
3209         INF("schedstat", S_IRUGO, proc_pid_schedstat),
3210 #endif
3211 #ifdef CONFIG_LATENCYTOP
3212         REG("latency",  S_IRUGO, proc_lstats_operations),
3213 #endif
3214 #ifdef CONFIG_PROC_PID_CPUSET
3215         REG("cpuset",    S_IRUGO, proc_cpuset_operations),
3216 #endif
3217 #ifdef CONFIG_CGROUPS
3218         REG("cgroup",  S_IRUGO, proc_cgroup_operations),
3219 #endif
3220         INF("oom_score", S_IRUGO, proc_oom_score),
3221         REG("oom_adj",   S_IRUGO|S_IWUSR, proc_oom_adjust_operations),
3222         REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3223 #ifdef CONFIG_AUDITSYSCALL
3224         REG("loginuid",  S_IWUSR|S_IRUGO, proc_loginuid_operations),
3225         REG("sessionid",  S_IRUGO, proc_sessionid_operations),
3226 #endif
3227 #ifdef CONFIG_FAULT_INJECTION
3228         REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3229 #endif
3230 #ifdef CONFIG_TASK_IO_ACCOUNTING
3231         INF("io",       S_IRUGO, proc_tid_io_accounting),
3232 #endif
3233 };
3234
3235 static int proc_tid_base_readdir(struct file * filp,
3236                              void * dirent, filldir_t filldir)
3237 {
3238         return proc_pident_readdir(filp,dirent,filldir,
3239                                    tid_base_stuff,ARRAY_SIZE(tid_base_stuff));
3240 }
3241
3242 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){
3243         return proc_pident_lookup(dir, dentry,
3244                                   tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3245 }
3246
3247 static const struct file_operations proc_tid_base_operations = {
3248         .read           = generic_read_dir,
3249         .readdir        = proc_tid_base_readdir,
3250         .llseek         = default_llseek,
3251 };
3252
3253 static const struct inode_operations proc_tid_base_inode_operations = {
3254         .lookup         = proc_tid_base_lookup,
3255         .getattr        = pid_getattr,
3256         .setattr        = proc_setattr,
3257 };
3258
3259 static struct dentry *proc_task_instantiate(struct inode *dir,
3260         struct dentry *dentry, struct task_struct *task, const void *ptr)
3261 {
3262         struct dentry *error = ERR_PTR(-ENOENT);
3263         struct inode *inode;
3264         inode = proc_pid_make_inode(dir->i_sb, task);
3265
3266         if (!inode)
3267                 goto out;
3268         inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
3269         inode->i_op = &proc_tid_base_inode_operations;
3270         inode->i_fop = &proc_tid_base_operations;
3271         inode->i_flags|=S_IMMUTABLE;
3272
3273         inode->i_nlink = 2 + pid_entry_count_dirs(tid_base_stuff,
3274                 ARRAY_SIZE(tid_base_stuff));
3275
3276         d_set_d_op(dentry, &pid_dentry_operations);
3277
3278         d_add(dentry, inode);
3279         /* Close the race of the process dying before we return the dentry */
3280         if (pid_revalidate(dentry, NULL))
3281                 error = NULL;
3282 out:
3283         return error;
3284 }
3285
3286 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
3287 {
3288         struct dentry *result = ERR_PTR(-ENOENT);
3289         struct task_struct *task;
3290         struct task_struct *leader = get_proc_task(dir);
3291         unsigned tid;
3292         struct pid_namespace *ns;
3293
3294         if (!leader)
3295                 goto out_no_task;
3296
3297         tid = name_to_int(dentry);
3298         if (tid == ~0U)
3299                 goto out;
3300
3301         ns = dentry->d_sb->s_fs_info;
3302         rcu_read_lock();
3303         task = find_task_by_pid_ns(tid, ns);
3304         if (task)
3305                 get_task_struct(task);
3306         rcu_read_unlock();
3307         if (!task)
3308                 goto out;
3309         if (!same_thread_group(leader, task))
3310                 goto out_drop_task;
3311
3312         result = proc_task_instantiate(dir, dentry, task, NULL);
3313 out_drop_task:
3314         put_task_struct(task);
3315 out:
3316         put_task_struct(leader);
3317 out_no_task:
3318         return result;
3319 }
3320
3321 /*
3322  * Find the first tid of a thread group to return to user space.
3323  *
3324  * Usually this is just the thread group leader, but if the users
3325  * buffer was too small or there was a seek into the middle of the
3326  * directory we have more work todo.
3327  *
3328  * In the case of a short read we start with find_task_by_pid.
3329  *
3330  * In the case of a seek we start with the leader and walk nr
3331  * threads past it.
3332  */
3333 static struct task_struct *first_tid(struct task_struct *leader,
3334                 int tid, int nr, struct pid_namespace *ns)
3335 {
3336         struct task_struct *pos;
3337
3338         rcu_read_lock();
3339         /* Attempt to start with the pid of a thread */
3340         if (tid && (nr > 0)) {
3341                 pos = find_task_by_pid_ns(tid, ns);
3342                 if (pos && (pos->group_leader == leader))
3343                         goto found;
3344         }
3345
3346         /* If nr exceeds the number of threads there is nothing todo */
3347         pos = NULL;
3348         if (nr && nr >= get_nr_threads(leader))
3349                 goto out;
3350
3351         /* If we haven't found our starting place yet start
3352          * with the leader and walk nr threads forward.
3353          */
3354         for (pos = leader; nr > 0; --nr) {
3355                 pos = next_thread(pos);
3356                 if (pos == leader) {
3357                         pos = NULL;
3358                         goto out;
3359                 }
3360         }
3361 found:
3362         get_task_struct(pos);
3363 out:
3364         rcu_read_unlock();
3365         return pos;
3366 }
3367
3368 /*
3369  * Find the next thread in the thread list.
3370  * Return NULL if there is an error or no next thread.
3371  *
3372  * The reference to the input task_struct is released.
3373  */
3374 static struct task_struct *next_tid(struct task_struct *start)
3375 {
3376         struct task_struct *pos = NULL;
3377         rcu_read_lock();
3378         if (pid_alive(start)) {
3379                 pos = next_thread(start);
3380                 if (thread_group_leader(pos))
3381                         pos = NULL;
3382                 else
3383                         get_task_struct(pos);
3384         }
3385         rcu_read_unlock();
3386         put_task_struct(start);
3387         return pos;
3388 }
3389
3390 static int proc_task_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
3391         struct task_struct *task, int tid)
3392 {
3393         char name[PROC_NUMBUF];
3394         int len = snprintf(name, sizeof(name), "%d", tid);
3395         return proc_fill_cache(filp, dirent, filldir, name, len,
3396                                 proc_task_instantiate, task, NULL);
3397 }
3398
3399 /* for the /proc/TGID/task/ directories */
3400 static int proc_task_readdir(struct file * filp, void * dirent, filldir_t filldir)
3401 {
3402         struct dentry *dentry = filp->f_path.dentry;
3403         struct inode *inode = dentry->d_inode;
3404         struct task_struct *leader = NULL;
3405         struct task_struct *task;
3406         int retval = -ENOENT;
3407         ino_t ino;
3408         int tid;
3409         struct pid_namespace *ns;
3410
3411         task = get_proc_task(inode);
3412         if (!task)
3413                 goto out_no_task;
3414         rcu_read_lock();
3415         if (pid_alive(task)) {
3416                 leader = task->group_leader;
3417                 get_task_struct(leader);
3418         }
3419         rcu_read_unlock();
3420         put_task_struct(task);
3421         if (!leader)
3422                 goto out_no_task;
3423         retval = 0;
3424
3425         switch ((unsigned long)filp->f_pos) {
3426         case 0:
3427                 ino = inode->i_ino;
3428                 if (filldir(dirent, ".", 1, filp->f_pos, ino, DT_DIR) < 0)
3429                         goto out;
3430                 filp->f_pos++;
3431                 /* fall through */
3432         case 1:
3433                 ino = parent_ino(dentry);
3434                 if (filldir(dirent, "..", 2, filp->f_pos, ino, DT_DIR) < 0)
3435                         goto out;
3436                 filp->f_pos++;
3437                 /* fall through */
3438         }
3439
3440         /* f_version caches the tgid value that the last readdir call couldn't
3441          * return. lseek aka telldir automagically resets f_version to 0.
3442          */
3443         ns = filp->f_dentry->d_sb->s_fs_info;
3444         tid = (int)filp->f_version;
3445         filp->f_version = 0;
3446         for (task = first_tid(leader, tid, filp->f_pos - 2, ns);
3447              task;
3448              task = next_tid(task), filp->f_pos++) {
3449                 tid = task_pid_nr_ns(task, ns);
3450                 if (proc_task_fill_cache(filp, dirent, filldir, task, tid) < 0) {
3451                         /* returning this tgid failed, save it as the first
3452                          * pid for the next readir call */
3453                         filp->f_version = (u64)tid;
3454                         put_task_struct(task);
3455                         break;
3456                 }
3457         }
3458 out:
3459         put_task_struct(leader);
3460 out_no_task:
3461         return retval;
3462 }
3463
3464 static int proc_task_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
3465 {
3466         struct inode *inode = dentry->d_inode;
3467         struct task_struct *p = get_proc_task(inode);
3468         generic_fillattr(inode, stat);
3469
3470         if (p) {
3471                 stat->nlink += get_nr_threads(p);
3472                 put_task_struct(p);
3473         }
3474
3475         return 0;
3476 }
3477
3478 static const struct inode_operations proc_task_inode_operations = {
3479         .lookup         = proc_task_lookup,
3480         .getattr        = proc_task_getattr,
3481         .setattr        = proc_setattr,
3482 };
3483
3484 static const struct file_operations proc_task_operations = {
3485         .read           = generic_read_dir,
3486         .readdir        = proc_task_readdir,
3487         .llseek         = default_llseek,
3488 };