Merge tag 'for-linus' of git://github.com/rustyrussell/linux
[pandora-kernel.git] / fs / proc / base.c
1 /*
2  *  linux/fs/proc/base.c
3  *
4  *  Copyright (C) 1991, 1992 Linus Torvalds
5  *
6  *  proc base directory handling functions
7  *
8  *  1999, Al Viro. Rewritten. Now it covers the whole per-process part.
9  *  Instead of using magical inumbers to determine the kind of object
10  *  we allocate and fill in-core inodes upon lookup. They don't even
11  *  go into icache. We cache the reference to task_struct upon lookup too.
12  *  Eventually it should become a filesystem in its own. We don't use the
13  *  rest of procfs anymore.
14  *
15  *
16  *  Changelog:
17  *  17-Jan-2005
18  *  Allan Bezerra
19  *  Bruna Moreira <bruna.moreira@indt.org.br>
20  *  Edjard Mota <edjard.mota@indt.org.br>
21  *  Ilias Biris <ilias.biris@indt.org.br>
22  *  Mauricio Lin <mauricio.lin@indt.org.br>
23  *
24  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
25  *
26  *  A new process specific entry (smaps) included in /proc. It shows the
27  *  size of rss for each memory area. The maps entry lacks information
28  *  about physical memory size (rss) for each mapped file, i.e.,
29  *  rss information for executables and library files.
30  *  This additional information is useful for any tools that need to know
31  *  about physical memory consumption for a process specific library.
32  *
33  *  Changelog:
34  *  21-Feb-2005
35  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
36  *  Pud inclusion in the page table walking.
37  *
38  *  ChangeLog:
39  *  10-Mar-2005
40  *  10LE Instituto Nokia de Tecnologia - INdT:
41  *  A better way to walks through the page table as suggested by Hugh Dickins.
42  *
43  *  Simo Piiroinen <simo.piiroinen@nokia.com>:
44  *  Smaps information related to shared, private, clean and dirty pages.
45  *
46  *  Paul Mundt <paul.mundt@nokia.com>:
47  *  Overall revision about smaps.
48  */
49
50 #include <asm/uaccess.h>
51
52 #include <linux/errno.h>
53 #include <linux/time.h>
54 #include <linux/proc_fs.h>
55 #include <linux/stat.h>
56 #include <linux/task_io_accounting_ops.h>
57 #include <linux/init.h>
58 #include <linux/capability.h>
59 #include <linux/file.h>
60 #include <linux/fdtable.h>
61 #include <linux/string.h>
62 #include <linux/seq_file.h>
63 #include <linux/namei.h>
64 #include <linux/mnt_namespace.h>
65 #include <linux/mm.h>
66 #include <linux/swap.h>
67 #include <linux/rcupdate.h>
68 #include <linux/kallsyms.h>
69 #include <linux/stacktrace.h>
70 #include <linux/resource.h>
71 #include <linux/module.h>
72 #include <linux/mount.h>
73 #include <linux/security.h>
74 #include <linux/ptrace.h>
75 #include <linux/tracehook.h>
76 #include <linux/cgroup.h>
77 #include <linux/cpuset.h>
78 #include <linux/audit.h>
79 #include <linux/poll.h>
80 #include <linux/nsproxy.h>
81 #include <linux/oom.h>
82 #include <linux/elf.h>
83 #include <linux/pid_namespace.h>
84 #include <linux/fs_struct.h>
85 #include <linux/slab.h>
86 #include <linux/flex_array.h>
87 #ifdef CONFIG_HARDWALL
88 #include <asm/hardwall.h>
89 #endif
90 #include <trace/events/oom.h>
91 #include "internal.h"
92
93 /* NOTE:
94  *      Implementing inode permission operations in /proc is almost
95  *      certainly an error.  Permission checks need to happen during
96  *      each system call not at open time.  The reason is that most of
97  *      what we wish to check for permissions in /proc varies at runtime.
98  *
99  *      The classic example of a problem is opening file descriptors
100  *      in /proc for a task before it execs a suid executable.
101  */
102
103 struct pid_entry {
104         char *name;
105         int len;
106         umode_t mode;
107         const struct inode_operations *iop;
108         const struct file_operations *fop;
109         union proc_op op;
110 };
111
112 #define NOD(NAME, MODE, IOP, FOP, OP) {                 \
113         .name = (NAME),                                 \
114         .len  = sizeof(NAME) - 1,                       \
115         .mode = MODE,                                   \
116         .iop  = IOP,                                    \
117         .fop  = FOP,                                    \
118         .op   = OP,                                     \
119 }
120
121 #define DIR(NAME, MODE, iops, fops)     \
122         NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
123 #define LNK(NAME, get_link)                                     \
124         NOD(NAME, (S_IFLNK|S_IRWXUGO),                          \
125                 &proc_pid_link_inode_operations, NULL,          \
126                 { .proc_get_link = get_link } )
127 #define REG(NAME, MODE, fops)                           \
128         NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
129 #define INF(NAME, MODE, read)                           \
130         NOD(NAME, (S_IFREG|(MODE)),                     \
131                 NULL, &proc_info_file_operations,       \
132                 { .proc_read = read } )
133 #define ONE(NAME, MODE, show)                           \
134         NOD(NAME, (S_IFREG|(MODE)),                     \
135                 NULL, &proc_single_file_operations,     \
136                 { .proc_show = show } )
137
138 static int proc_fd_permission(struct inode *inode, int mask);
139
140 /*
141  * Count the number of hardlinks for the pid_entry table, excluding the .
142  * and .. links.
143  */
144 static unsigned int pid_entry_count_dirs(const struct pid_entry *entries,
145         unsigned int n)
146 {
147         unsigned int i;
148         unsigned int count;
149
150         count = 0;
151         for (i = 0; i < n; ++i) {
152                 if (S_ISDIR(entries[i].mode))
153                         ++count;
154         }
155
156         return count;
157 }
158
159 static int get_task_root(struct task_struct *task, struct path *root)
160 {
161         int result = -ENOENT;
162
163         task_lock(task);
164         if (task->fs) {
165                 get_fs_root(task->fs, root);
166                 result = 0;
167         }
168         task_unlock(task);
169         return result;
170 }
171
172 static int proc_cwd_link(struct dentry *dentry, struct path *path)
173 {
174         struct task_struct *task = get_proc_task(dentry->d_inode);
175         int result = -ENOENT;
176
177         if (task) {
178                 task_lock(task);
179                 if (task->fs) {
180                         get_fs_pwd(task->fs, path);
181                         result = 0;
182                 }
183                 task_unlock(task);
184                 put_task_struct(task);
185         }
186         return result;
187 }
188
189 static int proc_root_link(struct dentry *dentry, struct path *path)
190 {
191         struct task_struct *task = get_proc_task(dentry->d_inode);
192         int result = -ENOENT;
193
194         if (task) {
195                 result = get_task_root(task, path);
196                 put_task_struct(task);
197         }
198         return result;
199 }
200
201 static struct mm_struct *__check_mem_permission(struct task_struct *task)
202 {
203         struct mm_struct *mm;
204
205         mm = get_task_mm(task);
206         if (!mm)
207                 return ERR_PTR(-EINVAL);
208
209         /*
210          * A task can always look at itself, in case it chooses
211          * to use system calls instead of load instructions.
212          */
213         if (task == current)
214                 return mm;
215
216         /*
217          * If current is actively ptrace'ing, and would also be
218          * permitted to freshly attach with ptrace now, permit it.
219          */
220         if (task_is_stopped_or_traced(task)) {
221                 int match;
222                 rcu_read_lock();
223                 match = (ptrace_parent(task) == current);
224                 rcu_read_unlock();
225                 if (match && ptrace_may_access(task, PTRACE_MODE_ATTACH))
226                         return mm;
227         }
228
229         /*
230          * No one else is allowed.
231          */
232         mmput(mm);
233         return ERR_PTR(-EPERM);
234 }
235
236 /*
237  * If current may access user memory in @task return a reference to the
238  * corresponding mm, otherwise ERR_PTR.
239  */
240 static struct mm_struct *check_mem_permission(struct task_struct *task)
241 {
242         struct mm_struct *mm;
243         int err;
244
245         /*
246          * Avoid racing if task exec's as we might get a new mm but validate
247          * against old credentials.
248          */
249         err = mutex_lock_killable(&task->signal->cred_guard_mutex);
250         if (err)
251                 return ERR_PTR(err);
252
253         mm = __check_mem_permission(task);
254         mutex_unlock(&task->signal->cred_guard_mutex);
255
256         return mm;
257 }
258
259 struct mm_struct *mm_for_maps(struct task_struct *task)
260 {
261         struct mm_struct *mm;
262         int err;
263
264         err =  mutex_lock_killable(&task->signal->cred_guard_mutex);
265         if (err)
266                 return ERR_PTR(err);
267
268         mm = get_task_mm(task);
269         if (mm && mm != current->mm &&
270                         !ptrace_may_access(task, PTRACE_MODE_READ)) {
271                 mmput(mm);
272                 mm = ERR_PTR(-EACCES);
273         }
274         mutex_unlock(&task->signal->cred_guard_mutex);
275
276         return mm;
277 }
278
279 static int proc_pid_cmdline(struct task_struct *task, char * buffer)
280 {
281         int res = 0;
282         unsigned int len;
283         struct mm_struct *mm = get_task_mm(task);
284         if (!mm)
285                 goto out;
286         if (!mm->arg_end)
287                 goto out_mm;    /* Shh! No looking before we're done */
288
289         len = mm->arg_end - mm->arg_start;
290  
291         if (len > PAGE_SIZE)
292                 len = PAGE_SIZE;
293  
294         res = access_process_vm(task, mm->arg_start, buffer, len, 0);
295
296         // If the nul at the end of args has been overwritten, then
297         // assume application is using setproctitle(3).
298         if (res > 0 && buffer[res-1] != '\0' && len < PAGE_SIZE) {
299                 len = strnlen(buffer, res);
300                 if (len < res) {
301                     res = len;
302                 } else {
303                         len = mm->env_end - mm->env_start;
304                         if (len > PAGE_SIZE - res)
305                                 len = PAGE_SIZE - res;
306                         res += access_process_vm(task, mm->env_start, buffer+res, len, 0);
307                         res = strnlen(buffer, res);
308                 }
309         }
310 out_mm:
311         mmput(mm);
312 out:
313         return res;
314 }
315
316 static int proc_pid_auxv(struct task_struct *task, char *buffer)
317 {
318         struct mm_struct *mm = mm_for_maps(task);
319         int res = PTR_ERR(mm);
320         if (mm && !IS_ERR(mm)) {
321                 unsigned int nwords = 0;
322                 do {
323                         nwords += 2;
324                 } while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
325                 res = nwords * sizeof(mm->saved_auxv[0]);
326                 if (res > PAGE_SIZE)
327                         res = PAGE_SIZE;
328                 memcpy(buffer, mm->saved_auxv, res);
329                 mmput(mm);
330         }
331         return res;
332 }
333
334
335 #ifdef CONFIG_KALLSYMS
336 /*
337  * Provides a wchan file via kallsyms in a proper one-value-per-file format.
338  * Returns the resolved symbol.  If that fails, simply return the address.
339  */
340 static int proc_pid_wchan(struct task_struct *task, char *buffer)
341 {
342         unsigned long wchan;
343         char symname[KSYM_NAME_LEN];
344
345         wchan = get_wchan(task);
346
347         if (lookup_symbol_name(wchan, symname) < 0)
348                 if (!ptrace_may_access(task, PTRACE_MODE_READ))
349                         return 0;
350                 else
351                         return sprintf(buffer, "%lu", wchan);
352         else
353                 return sprintf(buffer, "%s", symname);
354 }
355 #endif /* CONFIG_KALLSYMS */
356
357 static int lock_trace(struct task_struct *task)
358 {
359         int err = mutex_lock_killable(&task->signal->cred_guard_mutex);
360         if (err)
361                 return err;
362         if (!ptrace_may_access(task, PTRACE_MODE_ATTACH)) {
363                 mutex_unlock(&task->signal->cred_guard_mutex);
364                 return -EPERM;
365         }
366         return 0;
367 }
368
369 static void unlock_trace(struct task_struct *task)
370 {
371         mutex_unlock(&task->signal->cred_guard_mutex);
372 }
373
374 #ifdef CONFIG_STACKTRACE
375
376 #define MAX_STACK_TRACE_DEPTH   64
377
378 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
379                           struct pid *pid, struct task_struct *task)
380 {
381         struct stack_trace trace;
382         unsigned long *entries;
383         int err;
384         int i;
385
386         entries = kmalloc(MAX_STACK_TRACE_DEPTH * sizeof(*entries), GFP_KERNEL);
387         if (!entries)
388                 return -ENOMEM;
389
390         trace.nr_entries        = 0;
391         trace.max_entries       = MAX_STACK_TRACE_DEPTH;
392         trace.entries           = entries;
393         trace.skip              = 0;
394
395         err = lock_trace(task);
396         if (!err) {
397                 save_stack_trace_tsk(task, &trace);
398
399                 for (i = 0; i < trace.nr_entries; i++) {
400                         seq_printf(m, "[<%pK>] %pS\n",
401                                    (void *)entries[i], (void *)entries[i]);
402                 }
403                 unlock_trace(task);
404         }
405         kfree(entries);
406
407         return err;
408 }
409 #endif
410
411 #ifdef CONFIG_SCHEDSTATS
412 /*
413  * Provides /proc/PID/schedstat
414  */
415 static int proc_pid_schedstat(struct task_struct *task, char *buffer)
416 {
417         return sprintf(buffer, "%llu %llu %lu\n",
418                         (unsigned long long)task->se.sum_exec_runtime,
419                         (unsigned long long)task->sched_info.run_delay,
420                         task->sched_info.pcount);
421 }
422 #endif
423
424 #ifdef CONFIG_LATENCYTOP
425 static int lstats_show_proc(struct seq_file *m, void *v)
426 {
427         int i;
428         struct inode *inode = m->private;
429         struct task_struct *task = get_proc_task(inode);
430
431         if (!task)
432                 return -ESRCH;
433         seq_puts(m, "Latency Top version : v0.1\n");
434         for (i = 0; i < 32; i++) {
435                 struct latency_record *lr = &task->latency_record[i];
436                 if (lr->backtrace[0]) {
437                         int q;
438                         seq_printf(m, "%i %li %li",
439                                    lr->count, lr->time, lr->max);
440                         for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
441                                 unsigned long bt = lr->backtrace[q];
442                                 if (!bt)
443                                         break;
444                                 if (bt == ULONG_MAX)
445                                         break;
446                                 seq_printf(m, " %ps", (void *)bt);
447                         }
448                         seq_putc(m, '\n');
449                 }
450
451         }
452         put_task_struct(task);
453         return 0;
454 }
455
456 static int lstats_open(struct inode *inode, struct file *file)
457 {
458         return single_open(file, lstats_show_proc, inode);
459 }
460
461 static ssize_t lstats_write(struct file *file, const char __user *buf,
462                             size_t count, loff_t *offs)
463 {
464         struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
465
466         if (!task)
467                 return -ESRCH;
468         clear_all_latency_tracing(task);
469         put_task_struct(task);
470
471         return count;
472 }
473
474 static const struct file_operations proc_lstats_operations = {
475         .open           = lstats_open,
476         .read           = seq_read,
477         .write          = lstats_write,
478         .llseek         = seq_lseek,
479         .release        = single_release,
480 };
481
482 #endif
483
484 static int proc_oom_score(struct task_struct *task, char *buffer)
485 {
486         unsigned long points = 0;
487
488         read_lock(&tasklist_lock);
489         if (pid_alive(task))
490                 points = oom_badness(task, NULL, NULL,
491                                         totalram_pages + total_swap_pages);
492         read_unlock(&tasklist_lock);
493         return sprintf(buffer, "%lu\n", points);
494 }
495
496 struct limit_names {
497         char *name;
498         char *unit;
499 };
500
501 static const struct limit_names lnames[RLIM_NLIMITS] = {
502         [RLIMIT_CPU] = {"Max cpu time", "seconds"},
503         [RLIMIT_FSIZE] = {"Max file size", "bytes"},
504         [RLIMIT_DATA] = {"Max data size", "bytes"},
505         [RLIMIT_STACK] = {"Max stack size", "bytes"},
506         [RLIMIT_CORE] = {"Max core file size", "bytes"},
507         [RLIMIT_RSS] = {"Max resident set", "bytes"},
508         [RLIMIT_NPROC] = {"Max processes", "processes"},
509         [RLIMIT_NOFILE] = {"Max open files", "files"},
510         [RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
511         [RLIMIT_AS] = {"Max address space", "bytes"},
512         [RLIMIT_LOCKS] = {"Max file locks", "locks"},
513         [RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
514         [RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
515         [RLIMIT_NICE] = {"Max nice priority", NULL},
516         [RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
517         [RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
518 };
519
520 /* Display limits for a process */
521 static int proc_pid_limits(struct task_struct *task, char *buffer)
522 {
523         unsigned int i;
524         int count = 0;
525         unsigned long flags;
526         char *bufptr = buffer;
527
528         struct rlimit rlim[RLIM_NLIMITS];
529
530         if (!lock_task_sighand(task, &flags))
531                 return 0;
532         memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
533         unlock_task_sighand(task, &flags);
534
535         /*
536          * print the file header
537          */
538         count += sprintf(&bufptr[count], "%-25s %-20s %-20s %-10s\n",
539                         "Limit", "Soft Limit", "Hard Limit", "Units");
540
541         for (i = 0; i < RLIM_NLIMITS; i++) {
542                 if (rlim[i].rlim_cur == RLIM_INFINITY)
543                         count += sprintf(&bufptr[count], "%-25s %-20s ",
544                                          lnames[i].name, "unlimited");
545                 else
546                         count += sprintf(&bufptr[count], "%-25s %-20lu ",
547                                          lnames[i].name, rlim[i].rlim_cur);
548
549                 if (rlim[i].rlim_max == RLIM_INFINITY)
550                         count += sprintf(&bufptr[count], "%-20s ", "unlimited");
551                 else
552                         count += sprintf(&bufptr[count], "%-20lu ",
553                                          rlim[i].rlim_max);
554
555                 if (lnames[i].unit)
556                         count += sprintf(&bufptr[count], "%-10s\n",
557                                          lnames[i].unit);
558                 else
559                         count += sprintf(&bufptr[count], "\n");
560         }
561
562         return count;
563 }
564
565 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
566 static int proc_pid_syscall(struct task_struct *task, char *buffer)
567 {
568         long nr;
569         unsigned long args[6], sp, pc;
570         int res = lock_trace(task);
571         if (res)
572                 return res;
573
574         if (task_current_syscall(task, &nr, args, 6, &sp, &pc))
575                 res = sprintf(buffer, "running\n");
576         else if (nr < 0)
577                 res = sprintf(buffer, "%ld 0x%lx 0x%lx\n", nr, sp, pc);
578         else
579                 res = sprintf(buffer,
580                        "%ld 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx\n",
581                        nr,
582                        args[0], args[1], args[2], args[3], args[4], args[5],
583                        sp, pc);
584         unlock_trace(task);
585         return res;
586 }
587 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
588
589 /************************************************************************/
590 /*                       Here the fs part begins                        */
591 /************************************************************************/
592
593 /* permission checks */
594 static int proc_fd_access_allowed(struct inode *inode)
595 {
596         struct task_struct *task;
597         int allowed = 0;
598         /* Allow access to a task's file descriptors if it is us or we
599          * may use ptrace attach to the process and find out that
600          * information.
601          */
602         task = get_proc_task(inode);
603         if (task) {
604                 allowed = ptrace_may_access(task, PTRACE_MODE_READ);
605                 put_task_struct(task);
606         }
607         return allowed;
608 }
609
610 int proc_setattr(struct dentry *dentry, struct iattr *attr)
611 {
612         int error;
613         struct inode *inode = dentry->d_inode;
614
615         if (attr->ia_valid & ATTR_MODE)
616                 return -EPERM;
617
618         error = inode_change_ok(inode, attr);
619         if (error)
620                 return error;
621
622         if ((attr->ia_valid & ATTR_SIZE) &&
623             attr->ia_size != i_size_read(inode)) {
624                 error = vmtruncate(inode, attr->ia_size);
625                 if (error)
626                         return error;
627         }
628
629         setattr_copy(inode, attr);
630         mark_inode_dirty(inode);
631         return 0;
632 }
633
634 /*
635  * May current process learn task's sched/cmdline info (for hide_pid_min=1)
636  * or euid/egid (for hide_pid_min=2)?
637  */
638 static bool has_pid_permissions(struct pid_namespace *pid,
639                                  struct task_struct *task,
640                                  int hide_pid_min)
641 {
642         if (pid->hide_pid < hide_pid_min)
643                 return true;
644         if (in_group_p(pid->pid_gid))
645                 return true;
646         return ptrace_may_access(task, PTRACE_MODE_READ);
647 }
648
649
650 static int proc_pid_permission(struct inode *inode, int mask)
651 {
652         struct pid_namespace *pid = inode->i_sb->s_fs_info;
653         struct task_struct *task;
654         bool has_perms;
655
656         task = get_proc_task(inode);
657         if (!task)
658                 return -ESRCH;
659         has_perms = has_pid_permissions(pid, task, 1);
660         put_task_struct(task);
661
662         if (!has_perms) {
663                 if (pid->hide_pid == 2) {
664                         /*
665                          * Let's make getdents(), stat(), and open()
666                          * consistent with each other.  If a process
667                          * may not stat() a file, it shouldn't be seen
668                          * in procfs at all.
669                          */
670                         return -ENOENT;
671                 }
672
673                 return -EPERM;
674         }
675         return generic_permission(inode, mask);
676 }
677
678
679
680 static const struct inode_operations proc_def_inode_operations = {
681         .setattr        = proc_setattr,
682 };
683
684 #define PROC_BLOCK_SIZE (3*1024)                /* 4K page size but our output routines use some slack for overruns */
685
686 static ssize_t proc_info_read(struct file * file, char __user * buf,
687                           size_t count, loff_t *ppos)
688 {
689         struct inode * inode = file->f_path.dentry->d_inode;
690         unsigned long page;
691         ssize_t length;
692         struct task_struct *task = get_proc_task(inode);
693
694         length = -ESRCH;
695         if (!task)
696                 goto out_no_task;
697
698         if (count > PROC_BLOCK_SIZE)
699                 count = PROC_BLOCK_SIZE;
700
701         length = -ENOMEM;
702         if (!(page = __get_free_page(GFP_TEMPORARY)))
703                 goto out;
704
705         length = PROC_I(inode)->op.proc_read(task, (char*)page);
706
707         if (length >= 0)
708                 length = simple_read_from_buffer(buf, count, ppos, (char *)page, length);
709         free_page(page);
710 out:
711         put_task_struct(task);
712 out_no_task:
713         return length;
714 }
715
716 static const struct file_operations proc_info_file_operations = {
717         .read           = proc_info_read,
718         .llseek         = generic_file_llseek,
719 };
720
721 static int proc_single_show(struct seq_file *m, void *v)
722 {
723         struct inode *inode = m->private;
724         struct pid_namespace *ns;
725         struct pid *pid;
726         struct task_struct *task;
727         int ret;
728
729         ns = inode->i_sb->s_fs_info;
730         pid = proc_pid(inode);
731         task = get_pid_task(pid, PIDTYPE_PID);
732         if (!task)
733                 return -ESRCH;
734
735         ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
736
737         put_task_struct(task);
738         return ret;
739 }
740
741 static int proc_single_open(struct inode *inode, struct file *filp)
742 {
743         return single_open(filp, proc_single_show, inode);
744 }
745
746 static const struct file_operations proc_single_file_operations = {
747         .open           = proc_single_open,
748         .read           = seq_read,
749         .llseek         = seq_lseek,
750         .release        = single_release,
751 };
752
753 static int mem_open(struct inode* inode, struct file* file)
754 {
755         file->private_data = (void*)((long)current->self_exec_id);
756         /* OK to pass negative loff_t, we can catch out-of-range */
757         file->f_mode |= FMODE_UNSIGNED_OFFSET;
758         return 0;
759 }
760
761 static ssize_t mem_read(struct file * file, char __user * buf,
762                         size_t count, loff_t *ppos)
763 {
764         struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
765         char *page;
766         unsigned long src = *ppos;
767         int ret = -ESRCH;
768         struct mm_struct *mm;
769
770         if (!task)
771                 goto out_no_task;
772
773         ret = -ENOMEM;
774         page = (char *)__get_free_page(GFP_TEMPORARY);
775         if (!page)
776                 goto out;
777
778         mm = check_mem_permission(task);
779         ret = PTR_ERR(mm);
780         if (IS_ERR(mm))
781                 goto out_free;
782
783         ret = -EIO;
784  
785         if (file->private_data != (void*)((long)current->self_exec_id))
786                 goto out_put;
787
788         ret = 0;
789  
790         while (count > 0) {
791                 int this_len, retval;
792
793                 this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
794                 retval = access_remote_vm(mm, src, page, this_len, 0);
795                 if (!retval) {
796                         if (!ret)
797                                 ret = -EIO;
798                         break;
799                 }
800
801                 if (copy_to_user(buf, page, retval)) {
802                         ret = -EFAULT;
803                         break;
804                 }
805  
806                 ret += retval;
807                 src += retval;
808                 buf += retval;
809                 count -= retval;
810         }
811         *ppos = src;
812
813 out_put:
814         mmput(mm);
815 out_free:
816         free_page((unsigned long) page);
817 out:
818         put_task_struct(task);
819 out_no_task:
820         return ret;
821 }
822
823 static ssize_t mem_write(struct file * file, const char __user *buf,
824                          size_t count, loff_t *ppos)
825 {
826         int copied;
827         char *page;
828         struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
829         unsigned long dst = *ppos;
830         struct mm_struct *mm;
831
832         copied = -ESRCH;
833         if (!task)
834                 goto out_no_task;
835
836         copied = -ENOMEM;
837         page = (char *)__get_free_page(GFP_TEMPORARY);
838         if (!page)
839                 goto out_task;
840
841         mm = check_mem_permission(task);
842         copied = PTR_ERR(mm);
843         if (IS_ERR(mm))
844                 goto out_free;
845
846         copied = -EIO;
847         if (file->private_data != (void *)((long)current->self_exec_id))
848                 goto out_mm;
849
850         copied = 0;
851         while (count > 0) {
852                 int this_len, retval;
853
854                 this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
855                 if (copy_from_user(page, buf, this_len)) {
856                         copied = -EFAULT;
857                         break;
858                 }
859                 retval = access_remote_vm(mm, dst, page, this_len, 1);
860                 if (!retval) {
861                         if (!copied)
862                                 copied = -EIO;
863                         break;
864                 }
865                 copied += retval;
866                 buf += retval;
867                 dst += retval;
868                 count -= retval;                        
869         }
870         *ppos = dst;
871
872 out_mm:
873         mmput(mm);
874 out_free:
875         free_page((unsigned long) page);
876 out_task:
877         put_task_struct(task);
878 out_no_task:
879         return copied;
880 }
881
882 loff_t mem_lseek(struct file *file, loff_t offset, int orig)
883 {
884         switch (orig) {
885         case 0:
886                 file->f_pos = offset;
887                 break;
888         case 1:
889                 file->f_pos += offset;
890                 break;
891         default:
892                 return -EINVAL;
893         }
894         force_successful_syscall_return();
895         return file->f_pos;
896 }
897
898 static const struct file_operations proc_mem_operations = {
899         .llseek         = mem_lseek,
900         .read           = mem_read,
901         .write          = mem_write,
902         .open           = mem_open,
903 };
904
905 static ssize_t environ_read(struct file *file, char __user *buf,
906                         size_t count, loff_t *ppos)
907 {
908         struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
909         char *page;
910         unsigned long src = *ppos;
911         int ret = -ESRCH;
912         struct mm_struct *mm;
913
914         if (!task)
915                 goto out_no_task;
916
917         ret = -ENOMEM;
918         page = (char *)__get_free_page(GFP_TEMPORARY);
919         if (!page)
920                 goto out;
921
922
923         mm = mm_for_maps(task);
924         ret = PTR_ERR(mm);
925         if (!mm || IS_ERR(mm))
926                 goto out_free;
927
928         ret = 0;
929         while (count > 0) {
930                 int this_len, retval, max_len;
931
932                 this_len = mm->env_end - (mm->env_start + src);
933
934                 if (this_len <= 0)
935                         break;
936
937                 max_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
938                 this_len = (this_len > max_len) ? max_len : this_len;
939
940                 retval = access_process_vm(task, (mm->env_start + src),
941                         page, this_len, 0);
942
943                 if (retval <= 0) {
944                         ret = retval;
945                         break;
946                 }
947
948                 if (copy_to_user(buf, page, retval)) {
949                         ret = -EFAULT;
950                         break;
951                 }
952
953                 ret += retval;
954                 src += retval;
955                 buf += retval;
956                 count -= retval;
957         }
958         *ppos = src;
959
960         mmput(mm);
961 out_free:
962         free_page((unsigned long) page);
963 out:
964         put_task_struct(task);
965 out_no_task:
966         return ret;
967 }
968
969 static const struct file_operations proc_environ_operations = {
970         .read           = environ_read,
971         .llseek         = generic_file_llseek,
972 };
973
974 static ssize_t oom_adjust_read(struct file *file, char __user *buf,
975                                 size_t count, loff_t *ppos)
976 {
977         struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
978         char buffer[PROC_NUMBUF];
979         size_t len;
980         int oom_adjust = OOM_DISABLE;
981         unsigned long flags;
982
983         if (!task)
984                 return -ESRCH;
985
986         if (lock_task_sighand(task, &flags)) {
987                 oom_adjust = task->signal->oom_adj;
988                 unlock_task_sighand(task, &flags);
989         }
990
991         put_task_struct(task);
992
993         len = snprintf(buffer, sizeof(buffer), "%i\n", oom_adjust);
994
995         return simple_read_from_buffer(buf, count, ppos, buffer, len);
996 }
997
998 static ssize_t oom_adjust_write(struct file *file, const char __user *buf,
999                                 size_t count, loff_t *ppos)
1000 {
1001         struct task_struct *task;
1002         char buffer[PROC_NUMBUF];
1003         int oom_adjust;
1004         unsigned long flags;
1005         int err;
1006
1007         memset(buffer, 0, sizeof(buffer));
1008         if (count > sizeof(buffer) - 1)
1009                 count = sizeof(buffer) - 1;
1010         if (copy_from_user(buffer, buf, count)) {
1011                 err = -EFAULT;
1012                 goto out;
1013         }
1014
1015         err = kstrtoint(strstrip(buffer), 0, &oom_adjust);
1016         if (err)
1017                 goto out;
1018         if ((oom_adjust < OOM_ADJUST_MIN || oom_adjust > OOM_ADJUST_MAX) &&
1019              oom_adjust != OOM_DISABLE) {
1020                 err = -EINVAL;
1021                 goto out;
1022         }
1023
1024         task = get_proc_task(file->f_path.dentry->d_inode);
1025         if (!task) {
1026                 err = -ESRCH;
1027                 goto out;
1028         }
1029
1030         task_lock(task);
1031         if (!task->mm) {
1032                 err = -EINVAL;
1033                 goto err_task_lock;
1034         }
1035
1036         if (!lock_task_sighand(task, &flags)) {
1037                 err = -ESRCH;
1038                 goto err_task_lock;
1039         }
1040
1041         if (oom_adjust < task->signal->oom_adj && !capable(CAP_SYS_RESOURCE)) {
1042                 err = -EACCES;
1043                 goto err_sighand;
1044         }
1045
1046         /*
1047          * Warn that /proc/pid/oom_adj is deprecated, see
1048          * Documentation/feature-removal-schedule.txt.
1049          */
1050         printk_once(KERN_WARNING "%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n",
1051                   current->comm, task_pid_nr(current), task_pid_nr(task),
1052                   task_pid_nr(task));
1053         task->signal->oom_adj = oom_adjust;
1054         /*
1055          * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
1056          * value is always attainable.
1057          */
1058         if (task->signal->oom_adj == OOM_ADJUST_MAX)
1059                 task->signal->oom_score_adj = OOM_SCORE_ADJ_MAX;
1060         else
1061                 task->signal->oom_score_adj = (oom_adjust * OOM_SCORE_ADJ_MAX) /
1062                                                                 -OOM_DISABLE;
1063         trace_oom_score_adj_update(task);
1064 err_sighand:
1065         unlock_task_sighand(task, &flags);
1066 err_task_lock:
1067         task_unlock(task);
1068         put_task_struct(task);
1069 out:
1070         return err < 0 ? err : count;
1071 }
1072
1073 static const struct file_operations proc_oom_adjust_operations = {
1074         .read           = oom_adjust_read,
1075         .write          = oom_adjust_write,
1076         .llseek         = generic_file_llseek,
1077 };
1078
1079 static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
1080                                         size_t count, loff_t *ppos)
1081 {
1082         struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
1083         char buffer[PROC_NUMBUF];
1084         int oom_score_adj = OOM_SCORE_ADJ_MIN;
1085         unsigned long flags;
1086         size_t len;
1087
1088         if (!task)
1089                 return -ESRCH;
1090         if (lock_task_sighand(task, &flags)) {
1091                 oom_score_adj = task->signal->oom_score_adj;
1092                 unlock_task_sighand(task, &flags);
1093         }
1094         put_task_struct(task);
1095         len = snprintf(buffer, sizeof(buffer), "%d\n", oom_score_adj);
1096         return simple_read_from_buffer(buf, count, ppos, buffer, len);
1097 }
1098
1099 static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
1100                                         size_t count, loff_t *ppos)
1101 {
1102         struct task_struct *task;
1103         char buffer[PROC_NUMBUF];
1104         unsigned long flags;
1105         int oom_score_adj;
1106         int err;
1107
1108         memset(buffer, 0, sizeof(buffer));
1109         if (count > sizeof(buffer) - 1)
1110                 count = sizeof(buffer) - 1;
1111         if (copy_from_user(buffer, buf, count)) {
1112                 err = -EFAULT;
1113                 goto out;
1114         }
1115
1116         err = kstrtoint(strstrip(buffer), 0, &oom_score_adj);
1117         if (err)
1118                 goto out;
1119         if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1120                         oom_score_adj > OOM_SCORE_ADJ_MAX) {
1121                 err = -EINVAL;
1122                 goto out;
1123         }
1124
1125         task = get_proc_task(file->f_path.dentry->d_inode);
1126         if (!task) {
1127                 err = -ESRCH;
1128                 goto out;
1129         }
1130
1131         task_lock(task);
1132         if (!task->mm) {
1133                 err = -EINVAL;
1134                 goto err_task_lock;
1135         }
1136
1137         if (!lock_task_sighand(task, &flags)) {
1138                 err = -ESRCH;
1139                 goto err_task_lock;
1140         }
1141
1142         if (oom_score_adj < task->signal->oom_score_adj_min &&
1143                         !capable(CAP_SYS_RESOURCE)) {
1144                 err = -EACCES;
1145                 goto err_sighand;
1146         }
1147
1148         task->signal->oom_score_adj = oom_score_adj;
1149         if (has_capability_noaudit(current, CAP_SYS_RESOURCE))
1150                 task->signal->oom_score_adj_min = oom_score_adj;
1151         trace_oom_score_adj_update(task);
1152         /*
1153          * Scale /proc/pid/oom_adj appropriately ensuring that OOM_DISABLE is
1154          * always attainable.
1155          */
1156         if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MIN)
1157                 task->signal->oom_adj = OOM_DISABLE;
1158         else
1159                 task->signal->oom_adj = (oom_score_adj * OOM_ADJUST_MAX) /
1160                                                         OOM_SCORE_ADJ_MAX;
1161 err_sighand:
1162         unlock_task_sighand(task, &flags);
1163 err_task_lock:
1164         task_unlock(task);
1165         put_task_struct(task);
1166 out:
1167         return err < 0 ? err : count;
1168 }
1169
1170 static const struct file_operations proc_oom_score_adj_operations = {
1171         .read           = oom_score_adj_read,
1172         .write          = oom_score_adj_write,
1173         .llseek         = default_llseek,
1174 };
1175
1176 #ifdef CONFIG_AUDITSYSCALL
1177 #define TMPBUFLEN 21
1178 static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1179                                   size_t count, loff_t *ppos)
1180 {
1181         struct inode * inode = file->f_path.dentry->d_inode;
1182         struct task_struct *task = get_proc_task(inode);
1183         ssize_t length;
1184         char tmpbuf[TMPBUFLEN];
1185
1186         if (!task)
1187                 return -ESRCH;
1188         length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1189                                 audit_get_loginuid(task));
1190         put_task_struct(task);
1191         return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1192 }
1193
1194 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1195                                    size_t count, loff_t *ppos)
1196 {
1197         struct inode * inode = file->f_path.dentry->d_inode;
1198         char *page, *tmp;
1199         ssize_t length;
1200         uid_t loginuid;
1201
1202         if (!capable(CAP_AUDIT_CONTROL))
1203                 return -EPERM;
1204
1205         rcu_read_lock();
1206         if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1207                 rcu_read_unlock();
1208                 return -EPERM;
1209         }
1210         rcu_read_unlock();
1211
1212         if (count >= PAGE_SIZE)
1213                 count = PAGE_SIZE - 1;
1214
1215         if (*ppos != 0) {
1216                 /* No partial writes. */
1217                 return -EINVAL;
1218         }
1219         page = (char*)__get_free_page(GFP_TEMPORARY);
1220         if (!page)
1221                 return -ENOMEM;
1222         length = -EFAULT;
1223         if (copy_from_user(page, buf, count))
1224                 goto out_free_page;
1225
1226         page[count] = '\0';
1227         loginuid = simple_strtoul(page, &tmp, 10);
1228         if (tmp == page) {
1229                 length = -EINVAL;
1230                 goto out_free_page;
1231
1232         }
1233         length = audit_set_loginuid(current, loginuid);
1234         if (likely(length == 0))
1235                 length = count;
1236
1237 out_free_page:
1238         free_page((unsigned long) page);
1239         return length;
1240 }
1241
1242 static const struct file_operations proc_loginuid_operations = {
1243         .read           = proc_loginuid_read,
1244         .write          = proc_loginuid_write,
1245         .llseek         = generic_file_llseek,
1246 };
1247
1248 static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1249                                   size_t count, loff_t *ppos)
1250 {
1251         struct inode * inode = file->f_path.dentry->d_inode;
1252         struct task_struct *task = get_proc_task(inode);
1253         ssize_t length;
1254         char tmpbuf[TMPBUFLEN];
1255
1256         if (!task)
1257                 return -ESRCH;
1258         length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1259                                 audit_get_sessionid(task));
1260         put_task_struct(task);
1261         return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1262 }
1263
1264 static const struct file_operations proc_sessionid_operations = {
1265         .read           = proc_sessionid_read,
1266         .llseek         = generic_file_llseek,
1267 };
1268 #endif
1269
1270 #ifdef CONFIG_FAULT_INJECTION
1271 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1272                                       size_t count, loff_t *ppos)
1273 {
1274         struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
1275         char buffer[PROC_NUMBUF];
1276         size_t len;
1277         int make_it_fail;
1278
1279         if (!task)
1280                 return -ESRCH;
1281         make_it_fail = task->make_it_fail;
1282         put_task_struct(task);
1283
1284         len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1285
1286         return simple_read_from_buffer(buf, count, ppos, buffer, len);
1287 }
1288
1289 static ssize_t proc_fault_inject_write(struct file * file,
1290                         const char __user * buf, size_t count, loff_t *ppos)
1291 {
1292         struct task_struct *task;
1293         char buffer[PROC_NUMBUF], *end;
1294         int make_it_fail;
1295
1296         if (!capable(CAP_SYS_RESOURCE))
1297                 return -EPERM;
1298         memset(buffer, 0, sizeof(buffer));
1299         if (count > sizeof(buffer) - 1)
1300                 count = sizeof(buffer) - 1;
1301         if (copy_from_user(buffer, buf, count))
1302                 return -EFAULT;
1303         make_it_fail = simple_strtol(strstrip(buffer), &end, 0);
1304         if (*end)
1305                 return -EINVAL;
1306         task = get_proc_task(file->f_dentry->d_inode);
1307         if (!task)
1308                 return -ESRCH;
1309         task->make_it_fail = make_it_fail;
1310         put_task_struct(task);
1311
1312         return count;
1313 }
1314
1315 static const struct file_operations proc_fault_inject_operations = {
1316         .read           = proc_fault_inject_read,
1317         .write          = proc_fault_inject_write,
1318         .llseek         = generic_file_llseek,
1319 };
1320 #endif
1321
1322
1323 #ifdef CONFIG_SCHED_DEBUG
1324 /*
1325  * Print out various scheduling related per-task fields:
1326  */
1327 static int sched_show(struct seq_file *m, void *v)
1328 {
1329         struct inode *inode = m->private;
1330         struct task_struct *p;
1331
1332         p = get_proc_task(inode);
1333         if (!p)
1334                 return -ESRCH;
1335         proc_sched_show_task(p, m);
1336
1337         put_task_struct(p);
1338
1339         return 0;
1340 }
1341
1342 static ssize_t
1343 sched_write(struct file *file, const char __user *buf,
1344             size_t count, loff_t *offset)
1345 {
1346         struct inode *inode = file->f_path.dentry->d_inode;
1347         struct task_struct *p;
1348
1349         p = get_proc_task(inode);
1350         if (!p)
1351                 return -ESRCH;
1352         proc_sched_set_task(p);
1353
1354         put_task_struct(p);
1355
1356         return count;
1357 }
1358
1359 static int sched_open(struct inode *inode, struct file *filp)
1360 {
1361         return single_open(filp, sched_show, inode);
1362 }
1363
1364 static const struct file_operations proc_pid_sched_operations = {
1365         .open           = sched_open,
1366         .read           = seq_read,
1367         .write          = sched_write,
1368         .llseek         = seq_lseek,
1369         .release        = single_release,
1370 };
1371
1372 #endif
1373
1374 #ifdef CONFIG_SCHED_AUTOGROUP
1375 /*
1376  * Print out autogroup related information:
1377  */
1378 static int sched_autogroup_show(struct seq_file *m, void *v)
1379 {
1380         struct inode *inode = m->private;
1381         struct task_struct *p;
1382
1383         p = get_proc_task(inode);
1384         if (!p)
1385                 return -ESRCH;
1386         proc_sched_autogroup_show_task(p, m);
1387
1388         put_task_struct(p);
1389
1390         return 0;
1391 }
1392
1393 static ssize_t
1394 sched_autogroup_write(struct file *file, const char __user *buf,
1395             size_t count, loff_t *offset)
1396 {
1397         struct inode *inode = file->f_path.dentry->d_inode;
1398         struct task_struct *p;
1399         char buffer[PROC_NUMBUF];
1400         int nice;
1401         int err;
1402
1403         memset(buffer, 0, sizeof(buffer));
1404         if (count > sizeof(buffer) - 1)
1405                 count = sizeof(buffer) - 1;
1406         if (copy_from_user(buffer, buf, count))
1407                 return -EFAULT;
1408
1409         err = kstrtoint(strstrip(buffer), 0, &nice);
1410         if (err < 0)
1411                 return err;
1412
1413         p = get_proc_task(inode);
1414         if (!p)
1415                 return -ESRCH;
1416
1417         err = nice;
1418         err = proc_sched_autogroup_set_nice(p, &err);
1419         if (err)
1420                 count = err;
1421
1422         put_task_struct(p);
1423
1424         return count;
1425 }
1426
1427 static int sched_autogroup_open(struct inode *inode, struct file *filp)
1428 {
1429         int ret;
1430
1431         ret = single_open(filp, sched_autogroup_show, NULL);
1432         if (!ret) {
1433                 struct seq_file *m = filp->private_data;
1434
1435                 m->private = inode;
1436         }
1437         return ret;
1438 }
1439
1440 static const struct file_operations proc_pid_sched_autogroup_operations = {
1441         .open           = sched_autogroup_open,
1442         .read           = seq_read,
1443         .write          = sched_autogroup_write,
1444         .llseek         = seq_lseek,
1445         .release        = single_release,
1446 };
1447
1448 #endif /* CONFIG_SCHED_AUTOGROUP */
1449
1450 static ssize_t comm_write(struct file *file, const char __user *buf,
1451                                 size_t count, loff_t *offset)
1452 {
1453         struct inode *inode = file->f_path.dentry->d_inode;
1454         struct task_struct *p;
1455         char buffer[TASK_COMM_LEN];
1456
1457         memset(buffer, 0, sizeof(buffer));
1458         if (count > sizeof(buffer) - 1)
1459                 count = sizeof(buffer) - 1;
1460         if (copy_from_user(buffer, buf, count))
1461                 return -EFAULT;
1462
1463         p = get_proc_task(inode);
1464         if (!p)
1465                 return -ESRCH;
1466
1467         if (same_thread_group(current, p))
1468                 set_task_comm(p, buffer);
1469         else
1470                 count = -EINVAL;
1471
1472         put_task_struct(p);
1473
1474         return count;
1475 }
1476
1477 static int comm_show(struct seq_file *m, void *v)
1478 {
1479         struct inode *inode = m->private;
1480         struct task_struct *p;
1481
1482         p = get_proc_task(inode);
1483         if (!p)
1484                 return -ESRCH;
1485
1486         task_lock(p);
1487         seq_printf(m, "%s\n", p->comm);
1488         task_unlock(p);
1489
1490         put_task_struct(p);
1491
1492         return 0;
1493 }
1494
1495 static int comm_open(struct inode *inode, struct file *filp)
1496 {
1497         return single_open(filp, comm_show, inode);
1498 }
1499
1500 static const struct file_operations proc_pid_set_comm_operations = {
1501         .open           = comm_open,
1502         .read           = seq_read,
1503         .write          = comm_write,
1504         .llseek         = seq_lseek,
1505         .release        = single_release,
1506 };
1507
1508 static int proc_exe_link(struct dentry *dentry, struct path *exe_path)
1509 {
1510         struct task_struct *task;
1511         struct mm_struct *mm;
1512         struct file *exe_file;
1513
1514         task = get_proc_task(dentry->d_inode);
1515         if (!task)
1516                 return -ENOENT;
1517         mm = get_task_mm(task);
1518         put_task_struct(task);
1519         if (!mm)
1520                 return -ENOENT;
1521         exe_file = get_mm_exe_file(mm);
1522         mmput(mm);
1523         if (exe_file) {
1524                 *exe_path = exe_file->f_path;
1525                 path_get(&exe_file->f_path);
1526                 fput(exe_file);
1527                 return 0;
1528         } else
1529                 return -ENOENT;
1530 }
1531
1532 static void *proc_pid_follow_link(struct dentry *dentry, struct nameidata *nd)
1533 {
1534         struct inode *inode = dentry->d_inode;
1535         int error = -EACCES;
1536
1537         /* We don't need a base pointer in the /proc filesystem */
1538         path_put(&nd->path);
1539
1540         /* Are we allowed to snoop on the tasks file descriptors? */
1541         if (!proc_fd_access_allowed(inode))
1542                 goto out;
1543
1544         error = PROC_I(inode)->op.proc_get_link(dentry, &nd->path);
1545 out:
1546         return ERR_PTR(error);
1547 }
1548
1549 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1550 {
1551         char *tmp = (char*)__get_free_page(GFP_TEMPORARY);
1552         char *pathname;
1553         int len;
1554
1555         if (!tmp)
1556                 return -ENOMEM;
1557
1558         pathname = d_path(path, tmp, PAGE_SIZE);
1559         len = PTR_ERR(pathname);
1560         if (IS_ERR(pathname))
1561                 goto out;
1562         len = tmp + PAGE_SIZE - 1 - pathname;
1563
1564         if (len > buflen)
1565                 len = buflen;
1566         if (copy_to_user(buffer, pathname, len))
1567                 len = -EFAULT;
1568  out:
1569         free_page((unsigned long)tmp);
1570         return len;
1571 }
1572
1573 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1574 {
1575         int error = -EACCES;
1576         struct inode *inode = dentry->d_inode;
1577         struct path path;
1578
1579         /* Are we allowed to snoop on the tasks file descriptors? */
1580         if (!proc_fd_access_allowed(inode))
1581                 goto out;
1582
1583         error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1584         if (error)
1585                 goto out;
1586
1587         error = do_proc_readlink(&path, buffer, buflen);
1588         path_put(&path);
1589 out:
1590         return error;
1591 }
1592
1593 static const struct inode_operations proc_pid_link_inode_operations = {
1594         .readlink       = proc_pid_readlink,
1595         .follow_link    = proc_pid_follow_link,
1596         .setattr        = proc_setattr,
1597 };
1598
1599
1600 /* building an inode */
1601
1602 static int task_dumpable(struct task_struct *task)
1603 {
1604         int dumpable = 0;
1605         struct mm_struct *mm;
1606
1607         task_lock(task);
1608         mm = task->mm;
1609         if (mm)
1610                 dumpable = get_dumpable(mm);
1611         task_unlock(task);
1612         if(dumpable == 1)
1613                 return 1;
1614         return 0;
1615 }
1616
1617 struct inode *proc_pid_make_inode(struct super_block * sb, struct task_struct *task)
1618 {
1619         struct inode * inode;
1620         struct proc_inode *ei;
1621         const struct cred *cred;
1622
1623         /* We need a new inode */
1624
1625         inode = new_inode(sb);
1626         if (!inode)
1627                 goto out;
1628
1629         /* Common stuff */
1630         ei = PROC_I(inode);
1631         inode->i_ino = get_next_ino();
1632         inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
1633         inode->i_op = &proc_def_inode_operations;
1634
1635         /*
1636          * grab the reference to task.
1637          */
1638         ei->pid = get_task_pid(task, PIDTYPE_PID);
1639         if (!ei->pid)
1640                 goto out_unlock;
1641
1642         if (task_dumpable(task)) {
1643                 rcu_read_lock();
1644                 cred = __task_cred(task);
1645                 inode->i_uid = cred->euid;
1646                 inode->i_gid = cred->egid;
1647                 rcu_read_unlock();
1648         }
1649         security_task_to_inode(task, inode);
1650
1651 out:
1652         return inode;
1653
1654 out_unlock:
1655         iput(inode);
1656         return NULL;
1657 }
1658
1659 int pid_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
1660 {
1661         struct inode *inode = dentry->d_inode;
1662         struct task_struct *task;
1663         const struct cred *cred;
1664         struct pid_namespace *pid = dentry->d_sb->s_fs_info;
1665
1666         generic_fillattr(inode, stat);
1667
1668         rcu_read_lock();
1669         stat->uid = 0;
1670         stat->gid = 0;
1671         task = pid_task(proc_pid(inode), PIDTYPE_PID);
1672         if (task) {
1673                 if (!has_pid_permissions(pid, task, 2)) {
1674                         rcu_read_unlock();
1675                         /*
1676                          * This doesn't prevent learning whether PID exists,
1677                          * it only makes getattr() consistent with readdir().
1678                          */
1679                         return -ENOENT;
1680                 }
1681                 if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1682                     task_dumpable(task)) {
1683                         cred = __task_cred(task);
1684                         stat->uid = cred->euid;
1685                         stat->gid = cred->egid;
1686                 }
1687         }
1688         rcu_read_unlock();
1689         return 0;
1690 }
1691
1692 /* dentry stuff */
1693
1694 /*
1695  *      Exceptional case: normally we are not allowed to unhash a busy
1696  * directory. In this case, however, we can do it - no aliasing problems
1697  * due to the way we treat inodes.
1698  *
1699  * Rewrite the inode's ownerships here because the owning task may have
1700  * performed a setuid(), etc.
1701  *
1702  * Before the /proc/pid/status file was created the only way to read
1703  * the effective uid of a /process was to stat /proc/pid.  Reading
1704  * /proc/pid/status is slow enough that procps and other packages
1705  * kept stating /proc/pid.  To keep the rules in /proc simple I have
1706  * made this apply to all per process world readable and executable
1707  * directories.
1708  */
1709 int pid_revalidate(struct dentry *dentry, struct nameidata *nd)
1710 {
1711         struct inode *inode;
1712         struct task_struct *task;
1713         const struct cred *cred;
1714
1715         if (nd && nd->flags & LOOKUP_RCU)
1716                 return -ECHILD;
1717
1718         inode = dentry->d_inode;
1719         task = get_proc_task(inode);
1720
1721         if (task) {
1722                 if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1723                     task_dumpable(task)) {
1724                         rcu_read_lock();
1725                         cred = __task_cred(task);
1726                         inode->i_uid = cred->euid;
1727                         inode->i_gid = cred->egid;
1728                         rcu_read_unlock();
1729                 } else {
1730                         inode->i_uid = 0;
1731                         inode->i_gid = 0;
1732                 }
1733                 inode->i_mode &= ~(S_ISUID | S_ISGID);
1734                 security_task_to_inode(task, inode);
1735                 put_task_struct(task);
1736                 return 1;
1737         }
1738         d_drop(dentry);
1739         return 0;
1740 }
1741
1742 static int pid_delete_dentry(const struct dentry * dentry)
1743 {
1744         /* Is the task we represent dead?
1745          * If so, then don't put the dentry on the lru list,
1746          * kill it immediately.
1747          */
1748         return !proc_pid(dentry->d_inode)->tasks[PIDTYPE_PID].first;
1749 }
1750
1751 const struct dentry_operations pid_dentry_operations =
1752 {
1753         .d_revalidate   = pid_revalidate,
1754         .d_delete       = pid_delete_dentry,
1755 };
1756
1757 /* Lookups */
1758
1759 /*
1760  * Fill a directory entry.
1761  *
1762  * If possible create the dcache entry and derive our inode number and
1763  * file type from dcache entry.
1764  *
1765  * Since all of the proc inode numbers are dynamically generated, the inode
1766  * numbers do not exist until the inode is cache.  This means creating the
1767  * the dcache entry in readdir is necessary to keep the inode numbers
1768  * reported by readdir in sync with the inode numbers reported
1769  * by stat.
1770  */
1771 int proc_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
1772         const char *name, int len,
1773         instantiate_t instantiate, struct task_struct *task, const void *ptr)
1774 {
1775         struct dentry *child, *dir = filp->f_path.dentry;
1776         struct inode *inode;
1777         struct qstr qname;
1778         ino_t ino = 0;
1779         unsigned type = DT_UNKNOWN;
1780
1781         qname.name = name;
1782         qname.len  = len;
1783         qname.hash = full_name_hash(name, len);
1784
1785         child = d_lookup(dir, &qname);
1786         if (!child) {
1787                 struct dentry *new;
1788                 new = d_alloc(dir, &qname);
1789                 if (new) {
1790                         child = instantiate(dir->d_inode, new, task, ptr);
1791                         if (child)
1792                                 dput(new);
1793                         else
1794                                 child = new;
1795                 }
1796         }
1797         if (!child || IS_ERR(child) || !child->d_inode)
1798                 goto end_instantiate;
1799         inode = child->d_inode;
1800         if (inode) {
1801                 ino = inode->i_ino;
1802                 type = inode->i_mode >> 12;
1803         }
1804         dput(child);
1805 end_instantiate:
1806         if (!ino)
1807                 ino = find_inode_number(dir, &qname);
1808         if (!ino)
1809                 ino = 1;
1810         return filldir(dirent, name, len, filp->f_pos, ino, type);
1811 }
1812
1813 static unsigned name_to_int(struct dentry *dentry)
1814 {
1815         const char *name = dentry->d_name.name;
1816         int len = dentry->d_name.len;
1817         unsigned n = 0;
1818
1819         if (len > 1 && *name == '0')
1820                 goto out;
1821         while (len-- > 0) {
1822                 unsigned c = *name++ - '0';
1823                 if (c > 9)
1824                         goto out;
1825                 if (n >= (~0U-9)/10)
1826                         goto out;
1827                 n *= 10;
1828                 n += c;
1829         }
1830         return n;
1831 out:
1832         return ~0U;
1833 }
1834
1835 #define PROC_FDINFO_MAX 64
1836
1837 static int proc_fd_info(struct inode *inode, struct path *path, char *info)
1838 {
1839         struct task_struct *task = get_proc_task(inode);
1840         struct files_struct *files = NULL;
1841         struct file *file;
1842         int fd = proc_fd(inode);
1843
1844         if (task) {
1845                 files = get_files_struct(task);
1846                 put_task_struct(task);
1847         }
1848         if (files) {
1849                 /*
1850                  * We are not taking a ref to the file structure, so we must
1851                  * hold ->file_lock.
1852                  */
1853                 spin_lock(&files->file_lock);
1854                 file = fcheck_files(files, fd);
1855                 if (file) {
1856                         unsigned int f_flags;
1857                         struct fdtable *fdt;
1858
1859                         fdt = files_fdtable(files);
1860                         f_flags = file->f_flags & ~O_CLOEXEC;
1861                         if (FD_ISSET(fd, fdt->close_on_exec))
1862                                 f_flags |= O_CLOEXEC;
1863
1864                         if (path) {
1865                                 *path = file->f_path;
1866                                 path_get(&file->f_path);
1867                         }
1868                         if (info)
1869                                 snprintf(info, PROC_FDINFO_MAX,
1870                                          "pos:\t%lli\n"
1871                                          "flags:\t0%o\n",
1872                                          (long long) file->f_pos,
1873                                          f_flags);
1874                         spin_unlock(&files->file_lock);
1875                         put_files_struct(files);
1876                         return 0;
1877                 }
1878                 spin_unlock(&files->file_lock);
1879                 put_files_struct(files);
1880         }
1881         return -ENOENT;
1882 }
1883
1884 static int proc_fd_link(struct dentry *dentry, struct path *path)
1885 {
1886         return proc_fd_info(dentry->d_inode, path, NULL);
1887 }
1888
1889 static int tid_fd_revalidate(struct dentry *dentry, struct nameidata *nd)
1890 {
1891         struct inode *inode;
1892         struct task_struct *task;
1893         int fd;
1894         struct files_struct *files;
1895         const struct cred *cred;
1896
1897         if (nd && nd->flags & LOOKUP_RCU)
1898                 return -ECHILD;
1899
1900         inode = dentry->d_inode;
1901         task = get_proc_task(inode);
1902         fd = proc_fd(inode);
1903
1904         if (task) {
1905                 files = get_files_struct(task);
1906                 if (files) {
1907                         rcu_read_lock();
1908                         if (fcheck_files(files, fd)) {
1909                                 rcu_read_unlock();
1910                                 put_files_struct(files);
1911                                 if (task_dumpable(task)) {
1912                                         rcu_read_lock();
1913                                         cred = __task_cred(task);
1914                                         inode->i_uid = cred->euid;
1915                                         inode->i_gid = cred->egid;
1916                                         rcu_read_unlock();
1917                                 } else {
1918                                         inode->i_uid = 0;
1919                                         inode->i_gid = 0;
1920                                 }
1921                                 inode->i_mode &= ~(S_ISUID | S_ISGID);
1922                                 security_task_to_inode(task, inode);
1923                                 put_task_struct(task);
1924                                 return 1;
1925                         }
1926                         rcu_read_unlock();
1927                         put_files_struct(files);
1928                 }
1929                 put_task_struct(task);
1930         }
1931         d_drop(dentry);
1932         return 0;
1933 }
1934
1935 static const struct dentry_operations tid_fd_dentry_operations =
1936 {
1937         .d_revalidate   = tid_fd_revalidate,
1938         .d_delete       = pid_delete_dentry,
1939 };
1940
1941 static struct dentry *proc_fd_instantiate(struct inode *dir,
1942         struct dentry *dentry, struct task_struct *task, const void *ptr)
1943 {
1944         unsigned fd = *(const unsigned *)ptr;
1945         struct file *file;
1946         struct files_struct *files;
1947         struct inode *inode;
1948         struct proc_inode *ei;
1949         struct dentry *error = ERR_PTR(-ENOENT);
1950
1951         inode = proc_pid_make_inode(dir->i_sb, task);
1952         if (!inode)
1953                 goto out;
1954         ei = PROC_I(inode);
1955         ei->fd = fd;
1956         files = get_files_struct(task);
1957         if (!files)
1958                 goto out_iput;
1959         inode->i_mode = S_IFLNK;
1960
1961         /*
1962          * We are not taking a ref to the file structure, so we must
1963          * hold ->file_lock.
1964          */
1965         spin_lock(&files->file_lock);
1966         file = fcheck_files(files, fd);
1967         if (!file)
1968                 goto out_unlock;
1969         if (file->f_mode & FMODE_READ)
1970                 inode->i_mode |= S_IRUSR | S_IXUSR;
1971         if (file->f_mode & FMODE_WRITE)
1972                 inode->i_mode |= S_IWUSR | S_IXUSR;
1973         spin_unlock(&files->file_lock);
1974         put_files_struct(files);
1975
1976         inode->i_op = &proc_pid_link_inode_operations;
1977         inode->i_size = 64;
1978         ei->op.proc_get_link = proc_fd_link;
1979         d_set_d_op(dentry, &tid_fd_dentry_operations);
1980         d_add(dentry, inode);
1981         /* Close the race of the process dying before we return the dentry */
1982         if (tid_fd_revalidate(dentry, NULL))
1983                 error = NULL;
1984
1985  out:
1986         return error;
1987 out_unlock:
1988         spin_unlock(&files->file_lock);
1989         put_files_struct(files);
1990 out_iput:
1991         iput(inode);
1992         goto out;
1993 }
1994
1995 static struct dentry *proc_lookupfd_common(struct inode *dir,
1996                                            struct dentry *dentry,
1997                                            instantiate_t instantiate)
1998 {
1999         struct task_struct *task = get_proc_task(dir);
2000         unsigned fd = name_to_int(dentry);
2001         struct dentry *result = ERR_PTR(-ENOENT);
2002
2003         if (!task)
2004                 goto out_no_task;
2005         if (fd == ~0U)
2006                 goto out;
2007
2008         result = instantiate(dir, dentry, task, &fd);
2009 out:
2010         put_task_struct(task);
2011 out_no_task:
2012         return result;
2013 }
2014
2015 static int proc_readfd_common(struct file * filp, void * dirent,
2016                               filldir_t filldir, instantiate_t instantiate)
2017 {
2018         struct dentry *dentry = filp->f_path.dentry;
2019         struct inode *inode = dentry->d_inode;
2020         struct task_struct *p = get_proc_task(inode);
2021         unsigned int fd, ino;
2022         int retval;
2023         struct files_struct * files;
2024
2025         retval = -ENOENT;
2026         if (!p)
2027                 goto out_no_task;
2028         retval = 0;
2029
2030         fd = filp->f_pos;
2031         switch (fd) {
2032                 case 0:
2033                         if (filldir(dirent, ".", 1, 0, inode->i_ino, DT_DIR) < 0)
2034                                 goto out;
2035                         filp->f_pos++;
2036                 case 1:
2037                         ino = parent_ino(dentry);
2038                         if (filldir(dirent, "..", 2, 1, ino, DT_DIR) < 0)
2039                                 goto out;
2040                         filp->f_pos++;
2041                 default:
2042                         files = get_files_struct(p);
2043                         if (!files)
2044                                 goto out;
2045                         rcu_read_lock();
2046                         for (fd = filp->f_pos-2;
2047                              fd < files_fdtable(files)->max_fds;
2048                              fd++, filp->f_pos++) {
2049                                 char name[PROC_NUMBUF];
2050                                 int len;
2051
2052                                 if (!fcheck_files(files, fd))
2053                                         continue;
2054                                 rcu_read_unlock();
2055
2056                                 len = snprintf(name, sizeof(name), "%d", fd);
2057                                 if (proc_fill_cache(filp, dirent, filldir,
2058                                                     name, len, instantiate,
2059                                                     p, &fd) < 0) {
2060                                         rcu_read_lock();
2061                                         break;
2062                                 }
2063                                 rcu_read_lock();
2064                         }
2065                         rcu_read_unlock();
2066                         put_files_struct(files);
2067         }
2068 out:
2069         put_task_struct(p);
2070 out_no_task:
2071         return retval;
2072 }
2073
2074 static struct dentry *proc_lookupfd(struct inode *dir, struct dentry *dentry,
2075                                     struct nameidata *nd)
2076 {
2077         return proc_lookupfd_common(dir, dentry, proc_fd_instantiate);
2078 }
2079
2080 static int proc_readfd(struct file *filp, void *dirent, filldir_t filldir)
2081 {
2082         return proc_readfd_common(filp, dirent, filldir, proc_fd_instantiate);
2083 }
2084
2085 static ssize_t proc_fdinfo_read(struct file *file, char __user *buf,
2086                                       size_t len, loff_t *ppos)
2087 {
2088         char tmp[PROC_FDINFO_MAX];
2089         int err = proc_fd_info(file->f_path.dentry->d_inode, NULL, tmp);
2090         if (!err)
2091                 err = simple_read_from_buffer(buf, len, ppos, tmp, strlen(tmp));
2092         return err;
2093 }
2094
2095 static const struct file_operations proc_fdinfo_file_operations = {
2096         .open           = nonseekable_open,
2097         .read           = proc_fdinfo_read,
2098         .llseek         = no_llseek,
2099 };
2100
2101 static const struct file_operations proc_fd_operations = {
2102         .read           = generic_read_dir,
2103         .readdir        = proc_readfd,
2104         .llseek         = default_llseek,
2105 };
2106
2107 #ifdef CONFIG_CHECKPOINT_RESTORE
2108
2109 /*
2110  * dname_to_vma_addr - maps a dentry name into two unsigned longs
2111  * which represent vma start and end addresses.
2112  */
2113 static int dname_to_vma_addr(struct dentry *dentry,
2114                              unsigned long *start, unsigned long *end)
2115 {
2116         if (sscanf(dentry->d_name.name, "%lx-%lx", start, end) != 2)
2117                 return -EINVAL;
2118
2119         return 0;
2120 }
2121
2122 static int map_files_d_revalidate(struct dentry *dentry, struct nameidata *nd)
2123 {
2124         unsigned long vm_start, vm_end;
2125         bool exact_vma_exists = false;
2126         struct mm_struct *mm = NULL;
2127         struct task_struct *task;
2128         const struct cred *cred;
2129         struct inode *inode;
2130         int status = 0;
2131
2132         if (nd && nd->flags & LOOKUP_RCU)
2133                 return -ECHILD;
2134
2135         if (!capable(CAP_SYS_ADMIN)) {
2136                 status = -EACCES;
2137                 goto out_notask;
2138         }
2139
2140         inode = dentry->d_inode;
2141         task = get_proc_task(inode);
2142         if (!task)
2143                 goto out_notask;
2144
2145         if (!ptrace_may_access(task, PTRACE_MODE_READ))
2146                 goto out;
2147
2148         mm = get_task_mm(task);
2149         if (!mm)
2150                 goto out;
2151
2152         if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) {
2153                 down_read(&mm->mmap_sem);
2154                 exact_vma_exists = !!find_exact_vma(mm, vm_start, vm_end);
2155                 up_read(&mm->mmap_sem);
2156         }
2157
2158         mmput(mm);
2159
2160         if (exact_vma_exists) {
2161                 if (task_dumpable(task)) {
2162                         rcu_read_lock();
2163                         cred = __task_cred(task);
2164                         inode->i_uid = cred->euid;
2165                         inode->i_gid = cred->egid;
2166                         rcu_read_unlock();
2167                 } else {
2168                         inode->i_uid = 0;
2169                         inode->i_gid = 0;
2170                 }
2171                 security_task_to_inode(task, inode);
2172                 status = 1;
2173         }
2174
2175 out:
2176         put_task_struct(task);
2177
2178 out_notask:
2179         if (status <= 0)
2180                 d_drop(dentry);
2181
2182         return status;
2183 }
2184
2185 static const struct dentry_operations tid_map_files_dentry_operations = {
2186         .d_revalidate   = map_files_d_revalidate,
2187         .d_delete       = pid_delete_dentry,
2188 };
2189
2190 static int proc_map_files_get_link(struct dentry *dentry, struct path *path)
2191 {
2192         unsigned long vm_start, vm_end;
2193         struct vm_area_struct *vma;
2194         struct task_struct *task;
2195         struct mm_struct *mm;
2196         int rc;
2197
2198         rc = -ENOENT;
2199         task = get_proc_task(dentry->d_inode);
2200         if (!task)
2201                 goto out;
2202
2203         mm = get_task_mm(task);
2204         put_task_struct(task);
2205         if (!mm)
2206                 goto out;
2207
2208         rc = dname_to_vma_addr(dentry, &vm_start, &vm_end);
2209         if (rc)
2210                 goto out_mmput;
2211
2212         down_read(&mm->mmap_sem);
2213         vma = find_exact_vma(mm, vm_start, vm_end);
2214         if (vma && vma->vm_file) {
2215                 *path = vma->vm_file->f_path;
2216                 path_get(path);
2217                 rc = 0;
2218         }
2219         up_read(&mm->mmap_sem);
2220
2221 out_mmput:
2222         mmput(mm);
2223 out:
2224         return rc;
2225 }
2226
2227 struct map_files_info {
2228         struct file     *file;
2229         unsigned long   len;
2230         unsigned char   name[4*sizeof(long)+2]; /* max: %lx-%lx\0 */
2231 };
2232
2233 static struct dentry *
2234 proc_map_files_instantiate(struct inode *dir, struct dentry *dentry,
2235                            struct task_struct *task, const void *ptr)
2236 {
2237         const struct file *file = ptr;
2238         struct proc_inode *ei;
2239         struct inode *inode;
2240
2241         if (!file)
2242                 return ERR_PTR(-ENOENT);
2243
2244         inode = proc_pid_make_inode(dir->i_sb, task);
2245         if (!inode)
2246                 return ERR_PTR(-ENOENT);
2247
2248         ei = PROC_I(inode);
2249         ei->op.proc_get_link = proc_map_files_get_link;
2250
2251         inode->i_op = &proc_pid_link_inode_operations;
2252         inode->i_size = 64;
2253         inode->i_mode = S_IFLNK;
2254
2255         if (file->f_mode & FMODE_READ)
2256                 inode->i_mode |= S_IRUSR;
2257         if (file->f_mode & FMODE_WRITE)
2258                 inode->i_mode |= S_IWUSR;
2259
2260         d_set_d_op(dentry, &tid_map_files_dentry_operations);
2261         d_add(dentry, inode);
2262
2263         return NULL;
2264 }
2265
2266 static struct dentry *proc_map_files_lookup(struct inode *dir,
2267                 struct dentry *dentry, struct nameidata *nd)
2268 {
2269         unsigned long vm_start, vm_end;
2270         struct vm_area_struct *vma;
2271         struct task_struct *task;
2272         struct dentry *result;
2273         struct mm_struct *mm;
2274
2275         result = ERR_PTR(-EACCES);
2276         if (!capable(CAP_SYS_ADMIN))
2277                 goto out;
2278
2279         result = ERR_PTR(-ENOENT);
2280         task = get_proc_task(dir);
2281         if (!task)
2282                 goto out;
2283
2284         result = ERR_PTR(-EACCES);
2285         if (lock_trace(task))
2286                 goto out_put_task;
2287
2288         result = ERR_PTR(-ENOENT);
2289         if (dname_to_vma_addr(dentry, &vm_start, &vm_end))
2290                 goto out_unlock;
2291
2292         mm = get_task_mm(task);
2293         if (!mm)
2294                 goto out_unlock;
2295
2296         down_read(&mm->mmap_sem);
2297         vma = find_exact_vma(mm, vm_start, vm_end);
2298         if (!vma)
2299                 goto out_no_vma;
2300
2301         result = proc_map_files_instantiate(dir, dentry, task, vma->vm_file);
2302
2303 out_no_vma:
2304         up_read(&mm->mmap_sem);
2305         mmput(mm);
2306 out_unlock:
2307         unlock_trace(task);
2308 out_put_task:
2309         put_task_struct(task);
2310 out:
2311         return result;
2312 }
2313
2314 static const struct inode_operations proc_map_files_inode_operations = {
2315         .lookup         = proc_map_files_lookup,
2316         .permission     = proc_fd_permission,
2317         .setattr        = proc_setattr,
2318 };
2319
2320 static int
2321 proc_map_files_readdir(struct file *filp, void *dirent, filldir_t filldir)
2322 {
2323         struct dentry *dentry = filp->f_path.dentry;
2324         struct inode *inode = dentry->d_inode;
2325         struct vm_area_struct *vma;
2326         struct task_struct *task;
2327         struct mm_struct *mm;
2328         ino_t ino;
2329         int ret;
2330
2331         ret = -EACCES;
2332         if (!capable(CAP_SYS_ADMIN))
2333                 goto out;
2334
2335         ret = -ENOENT;
2336         task = get_proc_task(inode);
2337         if (!task)
2338                 goto out;
2339
2340         ret = -EACCES;
2341         if (lock_trace(task))
2342                 goto out_put_task;
2343
2344         ret = 0;
2345         switch (filp->f_pos) {
2346         case 0:
2347                 ino = inode->i_ino;
2348                 if (filldir(dirent, ".", 1, 0, ino, DT_DIR) < 0)
2349                         goto out_unlock;
2350                 filp->f_pos++;
2351         case 1:
2352                 ino = parent_ino(dentry);
2353                 if (filldir(dirent, "..", 2, 1, ino, DT_DIR) < 0)
2354                         goto out_unlock;
2355                 filp->f_pos++;
2356         default:
2357         {
2358                 unsigned long nr_files, pos, i;
2359                 struct flex_array *fa = NULL;
2360                 struct map_files_info info;
2361                 struct map_files_info *p;
2362
2363                 mm = get_task_mm(task);
2364                 if (!mm)
2365                         goto out_unlock;
2366                 down_read(&mm->mmap_sem);
2367
2368                 nr_files = 0;
2369
2370                 /*
2371                  * We need two passes here:
2372                  *
2373                  *  1) Collect vmas of mapped files with mmap_sem taken
2374                  *  2) Release mmap_sem and instantiate entries
2375                  *
2376                  * otherwise we get lockdep complained, since filldir()
2377                  * routine might require mmap_sem taken in might_fault().
2378                  */
2379
2380                 for (vma = mm->mmap, pos = 2; vma; vma = vma->vm_next) {
2381                         if (vma->vm_file && ++pos > filp->f_pos)
2382                                 nr_files++;
2383                 }
2384
2385                 if (nr_files) {
2386                         fa = flex_array_alloc(sizeof(info), nr_files,
2387                                                 GFP_KERNEL);
2388                         if (!fa || flex_array_prealloc(fa, 0, nr_files,
2389                                                         GFP_KERNEL)) {
2390                                 ret = -ENOMEM;
2391                                 if (fa)
2392                                         flex_array_free(fa);
2393                                 up_read(&mm->mmap_sem);
2394                                 mmput(mm);
2395                                 goto out_unlock;
2396                         }
2397                         for (i = 0, vma = mm->mmap, pos = 2; vma;
2398                                         vma = vma->vm_next) {
2399                                 if (!vma->vm_file)
2400                                         continue;
2401                                 if (++pos <= filp->f_pos)
2402                                         continue;
2403
2404                                 get_file(vma->vm_file);
2405                                 info.file = vma->vm_file;
2406                                 info.len = snprintf(info.name,
2407                                                 sizeof(info.name), "%lx-%lx",
2408                                                 vma->vm_start, vma->vm_end);
2409                                 if (flex_array_put(fa, i++, &info, GFP_KERNEL))
2410                                         BUG();
2411                         }
2412                 }
2413                 up_read(&mm->mmap_sem);
2414
2415                 for (i = 0; i < nr_files; i++) {
2416                         p = flex_array_get(fa, i);
2417                         ret = proc_fill_cache(filp, dirent, filldir,
2418                                               p->name, p->len,
2419                                               proc_map_files_instantiate,
2420                                               task, p->file);
2421                         if (ret)
2422                                 break;
2423                         filp->f_pos++;
2424                         fput(p->file);
2425                 }
2426                 for (; i < nr_files; i++) {
2427                         /*
2428                          * In case of error don't forget
2429                          * to put rest of file refs.
2430                          */
2431                         p = flex_array_get(fa, i);
2432                         fput(p->file);
2433                 }
2434                 if (fa)
2435                         flex_array_free(fa);
2436                 mmput(mm);
2437         }
2438         }
2439
2440 out_unlock:
2441         unlock_trace(task);
2442 out_put_task:
2443         put_task_struct(task);
2444 out:
2445         return ret;
2446 }
2447
2448 static const struct file_operations proc_map_files_operations = {
2449         .read           = generic_read_dir,
2450         .readdir        = proc_map_files_readdir,
2451         .llseek         = default_llseek,
2452 };
2453
2454 #endif /* CONFIG_CHECKPOINT_RESTORE */
2455
2456 /*
2457  * /proc/pid/fd needs a special permission handler so that a process can still
2458  * access /proc/self/fd after it has executed a setuid().
2459  */
2460 static int proc_fd_permission(struct inode *inode, int mask)
2461 {
2462         int rv = generic_permission(inode, mask);
2463         if (rv == 0)
2464                 return 0;
2465         if (task_pid(current) == proc_pid(inode))
2466                 rv = 0;
2467         return rv;
2468 }
2469
2470 /*
2471  * proc directories can do almost nothing..
2472  */
2473 static const struct inode_operations proc_fd_inode_operations = {
2474         .lookup         = proc_lookupfd,
2475         .permission     = proc_fd_permission,
2476         .setattr        = proc_setattr,
2477 };
2478
2479 static struct dentry *proc_fdinfo_instantiate(struct inode *dir,
2480         struct dentry *dentry, struct task_struct *task, const void *ptr)
2481 {
2482         unsigned fd = *(unsigned *)ptr;
2483         struct inode *inode;
2484         struct proc_inode *ei;
2485         struct dentry *error = ERR_PTR(-ENOENT);
2486
2487         inode = proc_pid_make_inode(dir->i_sb, task);
2488         if (!inode)
2489                 goto out;
2490         ei = PROC_I(inode);
2491         ei->fd = fd;
2492         inode->i_mode = S_IFREG | S_IRUSR;
2493         inode->i_fop = &proc_fdinfo_file_operations;
2494         d_set_d_op(dentry, &tid_fd_dentry_operations);
2495         d_add(dentry, inode);
2496         /* Close the race of the process dying before we return the dentry */
2497         if (tid_fd_revalidate(dentry, NULL))
2498                 error = NULL;
2499
2500  out:
2501         return error;
2502 }
2503
2504 static struct dentry *proc_lookupfdinfo(struct inode *dir,
2505                                         struct dentry *dentry,
2506                                         struct nameidata *nd)
2507 {
2508         return proc_lookupfd_common(dir, dentry, proc_fdinfo_instantiate);
2509 }
2510
2511 static int proc_readfdinfo(struct file *filp, void *dirent, filldir_t filldir)
2512 {
2513         return proc_readfd_common(filp, dirent, filldir,
2514                                   proc_fdinfo_instantiate);
2515 }
2516
2517 static const struct file_operations proc_fdinfo_operations = {
2518         .read           = generic_read_dir,
2519         .readdir        = proc_readfdinfo,
2520         .llseek         = default_llseek,
2521 };
2522
2523 /*
2524  * proc directories can do almost nothing..
2525  */
2526 static const struct inode_operations proc_fdinfo_inode_operations = {
2527         .lookup         = proc_lookupfdinfo,
2528         .setattr        = proc_setattr,
2529 };
2530
2531
2532 static struct dentry *proc_pident_instantiate(struct inode *dir,
2533         struct dentry *dentry, struct task_struct *task, const void *ptr)
2534 {
2535         const struct pid_entry *p = ptr;
2536         struct inode *inode;
2537         struct proc_inode *ei;
2538         struct dentry *error = ERR_PTR(-ENOENT);
2539
2540         inode = proc_pid_make_inode(dir->i_sb, task);
2541         if (!inode)
2542                 goto out;
2543
2544         ei = PROC_I(inode);
2545         inode->i_mode = p->mode;
2546         if (S_ISDIR(inode->i_mode))
2547                 set_nlink(inode, 2);    /* Use getattr to fix if necessary */
2548         if (p->iop)
2549                 inode->i_op = p->iop;
2550         if (p->fop)
2551                 inode->i_fop = p->fop;
2552         ei->op = p->op;
2553         d_set_d_op(dentry, &pid_dentry_operations);
2554         d_add(dentry, inode);
2555         /* Close the race of the process dying before we return the dentry */
2556         if (pid_revalidate(dentry, NULL))
2557                 error = NULL;
2558 out:
2559         return error;
2560 }
2561
2562 static struct dentry *proc_pident_lookup(struct inode *dir, 
2563                                          struct dentry *dentry,
2564                                          const struct pid_entry *ents,
2565                                          unsigned int nents)
2566 {
2567         struct dentry *error;
2568         struct task_struct *task = get_proc_task(dir);
2569         const struct pid_entry *p, *last;
2570
2571         error = ERR_PTR(-ENOENT);
2572
2573         if (!task)
2574                 goto out_no_task;
2575
2576         /*
2577          * Yes, it does not scale. And it should not. Don't add
2578          * new entries into /proc/<tgid>/ without very good reasons.
2579          */
2580         last = &ents[nents - 1];
2581         for (p = ents; p <= last; p++) {
2582                 if (p->len != dentry->d_name.len)
2583                         continue;
2584                 if (!memcmp(dentry->d_name.name, p->name, p->len))
2585                         break;
2586         }
2587         if (p > last)
2588                 goto out;
2589
2590         error = proc_pident_instantiate(dir, dentry, task, p);
2591 out:
2592         put_task_struct(task);
2593 out_no_task:
2594         return error;
2595 }
2596
2597 static int proc_pident_fill_cache(struct file *filp, void *dirent,
2598         filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
2599 {
2600         return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
2601                                 proc_pident_instantiate, task, p);
2602 }
2603
2604 static int proc_pident_readdir(struct file *filp,
2605                 void *dirent, filldir_t filldir,
2606                 const struct pid_entry *ents, unsigned int nents)
2607 {
2608         int i;
2609         struct dentry *dentry = filp->f_path.dentry;
2610         struct inode *inode = dentry->d_inode;
2611         struct task_struct *task = get_proc_task(inode);
2612         const struct pid_entry *p, *last;
2613         ino_t ino;
2614         int ret;
2615
2616         ret = -ENOENT;
2617         if (!task)
2618                 goto out_no_task;
2619
2620         ret = 0;
2621         i = filp->f_pos;
2622         switch (i) {
2623         case 0:
2624                 ino = inode->i_ino;
2625                 if (filldir(dirent, ".", 1, i, ino, DT_DIR) < 0)
2626                         goto out;
2627                 i++;
2628                 filp->f_pos++;
2629                 /* fall through */
2630         case 1:
2631                 ino = parent_ino(dentry);
2632                 if (filldir(dirent, "..", 2, i, ino, DT_DIR) < 0)
2633                         goto out;
2634                 i++;
2635                 filp->f_pos++;
2636                 /* fall through */
2637         default:
2638                 i -= 2;
2639                 if (i >= nents) {
2640                         ret = 1;
2641                         goto out;
2642                 }
2643                 p = ents + i;
2644                 last = &ents[nents - 1];
2645                 while (p <= last) {
2646                         if (proc_pident_fill_cache(filp, dirent, filldir, task, p) < 0)
2647                                 goto out;
2648                         filp->f_pos++;
2649                         p++;
2650                 }
2651         }
2652
2653         ret = 1;
2654 out:
2655         put_task_struct(task);
2656 out_no_task:
2657         return ret;
2658 }
2659
2660 #ifdef CONFIG_SECURITY
2661 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2662                                   size_t count, loff_t *ppos)
2663 {
2664         struct inode * inode = file->f_path.dentry->d_inode;
2665         char *p = NULL;
2666         ssize_t length;
2667         struct task_struct *task = get_proc_task(inode);
2668
2669         if (!task)
2670                 return -ESRCH;
2671
2672         length = security_getprocattr(task,
2673                                       (char*)file->f_path.dentry->d_name.name,
2674                                       &p);
2675         put_task_struct(task);
2676         if (length > 0)
2677                 length = simple_read_from_buffer(buf, count, ppos, p, length);
2678         kfree(p);
2679         return length;
2680 }
2681
2682 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2683                                    size_t count, loff_t *ppos)
2684 {
2685         struct inode * inode = file->f_path.dentry->d_inode;
2686         char *page;
2687         ssize_t length;
2688         struct task_struct *task = get_proc_task(inode);
2689
2690         length = -ESRCH;
2691         if (!task)
2692                 goto out_no_task;
2693         if (count > PAGE_SIZE)
2694                 count = PAGE_SIZE;
2695
2696         /* No partial writes. */
2697         length = -EINVAL;
2698         if (*ppos != 0)
2699                 goto out;
2700
2701         length = -ENOMEM;
2702         page = (char*)__get_free_page(GFP_TEMPORARY);
2703         if (!page)
2704                 goto out;
2705
2706         length = -EFAULT;
2707         if (copy_from_user(page, buf, count))
2708                 goto out_free;
2709
2710         /* Guard against adverse ptrace interaction */
2711         length = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
2712         if (length < 0)
2713                 goto out_free;
2714
2715         length = security_setprocattr(task,
2716                                       (char*)file->f_path.dentry->d_name.name,
2717                                       (void*)page, count);
2718         mutex_unlock(&task->signal->cred_guard_mutex);
2719 out_free:
2720         free_page((unsigned long) page);
2721 out:
2722         put_task_struct(task);
2723 out_no_task:
2724         return length;
2725 }
2726
2727 static const struct file_operations proc_pid_attr_operations = {
2728         .read           = proc_pid_attr_read,
2729         .write          = proc_pid_attr_write,
2730         .llseek         = generic_file_llseek,
2731 };
2732
2733 static const struct pid_entry attr_dir_stuff[] = {
2734         REG("current",    S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2735         REG("prev",       S_IRUGO,         proc_pid_attr_operations),
2736         REG("exec",       S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2737         REG("fscreate",   S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2738         REG("keycreate",  S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2739         REG("sockcreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2740 };
2741
2742 static int proc_attr_dir_readdir(struct file * filp,
2743                              void * dirent, filldir_t filldir)
2744 {
2745         return proc_pident_readdir(filp,dirent,filldir,
2746                                    attr_dir_stuff,ARRAY_SIZE(attr_dir_stuff));
2747 }
2748
2749 static const struct file_operations proc_attr_dir_operations = {
2750         .read           = generic_read_dir,
2751         .readdir        = proc_attr_dir_readdir,
2752         .llseek         = default_llseek,
2753 };
2754
2755 static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2756                                 struct dentry *dentry, struct nameidata *nd)
2757 {
2758         return proc_pident_lookup(dir, dentry,
2759                                   attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2760 }
2761
2762 static const struct inode_operations proc_attr_dir_inode_operations = {
2763         .lookup         = proc_attr_dir_lookup,
2764         .getattr        = pid_getattr,
2765         .setattr        = proc_setattr,
2766 };
2767
2768 #endif
2769
2770 #ifdef CONFIG_ELF_CORE
2771 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2772                                          size_t count, loff_t *ppos)
2773 {
2774         struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
2775         struct mm_struct *mm;
2776         char buffer[PROC_NUMBUF];
2777         size_t len;
2778         int ret;
2779
2780         if (!task)
2781                 return -ESRCH;
2782
2783         ret = 0;
2784         mm = get_task_mm(task);
2785         if (mm) {
2786                 len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2787                                ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2788                                 MMF_DUMP_FILTER_SHIFT));
2789                 mmput(mm);
2790                 ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2791         }
2792
2793         put_task_struct(task);
2794
2795         return ret;
2796 }
2797
2798 static ssize_t proc_coredump_filter_write(struct file *file,
2799                                           const char __user *buf,
2800                                           size_t count,
2801                                           loff_t *ppos)
2802 {
2803         struct task_struct *task;
2804         struct mm_struct *mm;
2805         char buffer[PROC_NUMBUF], *end;
2806         unsigned int val;
2807         int ret;
2808         int i;
2809         unsigned long mask;
2810
2811         ret = -EFAULT;
2812         memset(buffer, 0, sizeof(buffer));
2813         if (count > sizeof(buffer) - 1)
2814                 count = sizeof(buffer) - 1;
2815         if (copy_from_user(buffer, buf, count))
2816                 goto out_no_task;
2817
2818         ret = -EINVAL;
2819         val = (unsigned int)simple_strtoul(buffer, &end, 0);
2820         if (*end == '\n')
2821                 end++;
2822         if (end - buffer == 0)
2823                 goto out_no_task;
2824
2825         ret = -ESRCH;
2826         task = get_proc_task(file->f_dentry->d_inode);
2827         if (!task)
2828                 goto out_no_task;
2829
2830         ret = end - buffer;
2831         mm = get_task_mm(task);
2832         if (!mm)
2833                 goto out_no_mm;
2834
2835         for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2836                 if (val & mask)
2837                         set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2838                 else
2839                         clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2840         }
2841
2842         mmput(mm);
2843  out_no_mm:
2844         put_task_struct(task);
2845  out_no_task:
2846         return ret;
2847 }
2848
2849 static const struct file_operations proc_coredump_filter_operations = {
2850         .read           = proc_coredump_filter_read,
2851         .write          = proc_coredump_filter_write,
2852         .llseek         = generic_file_llseek,
2853 };
2854 #endif
2855
2856 /*
2857  * /proc/self:
2858  */
2859 static int proc_self_readlink(struct dentry *dentry, char __user *buffer,
2860                               int buflen)
2861 {
2862         struct pid_namespace *ns = dentry->d_sb->s_fs_info;
2863         pid_t tgid = task_tgid_nr_ns(current, ns);
2864         char tmp[PROC_NUMBUF];
2865         if (!tgid)
2866                 return -ENOENT;
2867         sprintf(tmp, "%d", tgid);
2868         return vfs_readlink(dentry,buffer,buflen,tmp);
2869 }
2870
2871 static void *proc_self_follow_link(struct dentry *dentry, struct nameidata *nd)
2872 {
2873         struct pid_namespace *ns = dentry->d_sb->s_fs_info;
2874         pid_t tgid = task_tgid_nr_ns(current, ns);
2875         char *name = ERR_PTR(-ENOENT);
2876         if (tgid) {
2877                 name = __getname();
2878                 if (!name)
2879                         name = ERR_PTR(-ENOMEM);
2880                 else
2881                         sprintf(name, "%d", tgid);
2882         }
2883         nd_set_link(nd, name);
2884         return NULL;
2885 }
2886
2887 static void proc_self_put_link(struct dentry *dentry, struct nameidata *nd,
2888                                 void *cookie)
2889 {
2890         char *s = nd_get_link(nd);
2891         if (!IS_ERR(s))
2892                 __putname(s);
2893 }
2894
2895 static const struct inode_operations proc_self_inode_operations = {
2896         .readlink       = proc_self_readlink,
2897         .follow_link    = proc_self_follow_link,
2898         .put_link       = proc_self_put_link,
2899 };
2900
2901 /*
2902  * proc base
2903  *
2904  * These are the directory entries in the root directory of /proc
2905  * that properly belong to the /proc filesystem, as they describe
2906  * describe something that is process related.
2907  */
2908 static const struct pid_entry proc_base_stuff[] = {
2909         NOD("self", S_IFLNK|S_IRWXUGO,
2910                 &proc_self_inode_operations, NULL, {}),
2911 };
2912
2913 static struct dentry *proc_base_instantiate(struct inode *dir,
2914         struct dentry *dentry, struct task_struct *task, const void *ptr)
2915 {
2916         const struct pid_entry *p = ptr;
2917         struct inode *inode;
2918         struct proc_inode *ei;
2919         struct dentry *error;
2920
2921         /* Allocate the inode */
2922         error = ERR_PTR(-ENOMEM);
2923         inode = new_inode(dir->i_sb);
2924         if (!inode)
2925                 goto out;
2926
2927         /* Initialize the inode */
2928         ei = PROC_I(inode);
2929         inode->i_ino = get_next_ino();
2930         inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
2931
2932         /*
2933          * grab the reference to the task.
2934          */
2935         ei->pid = get_task_pid(task, PIDTYPE_PID);
2936         if (!ei->pid)
2937                 goto out_iput;
2938
2939         inode->i_mode = p->mode;
2940         if (S_ISDIR(inode->i_mode))
2941                 set_nlink(inode, 2);
2942         if (S_ISLNK(inode->i_mode))
2943                 inode->i_size = 64;
2944         if (p->iop)
2945                 inode->i_op = p->iop;
2946         if (p->fop)
2947                 inode->i_fop = p->fop;
2948         ei->op = p->op;
2949         d_add(dentry, inode);
2950         error = NULL;
2951 out:
2952         return error;
2953 out_iput:
2954         iput(inode);
2955         goto out;
2956 }
2957
2958 static struct dentry *proc_base_lookup(struct inode *dir, struct dentry *dentry)
2959 {
2960         struct dentry *error;
2961         struct task_struct *task = get_proc_task(dir);
2962         const struct pid_entry *p, *last;
2963
2964         error = ERR_PTR(-ENOENT);
2965
2966         if (!task)
2967                 goto out_no_task;
2968
2969         /* Lookup the directory entry */
2970         last = &proc_base_stuff[ARRAY_SIZE(proc_base_stuff) - 1];
2971         for (p = proc_base_stuff; p <= last; p++) {
2972                 if (p->len != dentry->d_name.len)
2973                         continue;
2974                 if (!memcmp(dentry->d_name.name, p->name, p->len))
2975                         break;
2976         }
2977         if (p > last)
2978                 goto out;
2979
2980         error = proc_base_instantiate(dir, dentry, task, p);
2981
2982 out:
2983         put_task_struct(task);
2984 out_no_task:
2985         return error;
2986 }
2987
2988 static int proc_base_fill_cache(struct file *filp, void *dirent,
2989         filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
2990 {
2991         return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
2992                                 proc_base_instantiate, task, p);
2993 }
2994
2995 #ifdef CONFIG_TASK_IO_ACCOUNTING
2996 static int do_io_accounting(struct task_struct *task, char *buffer, int whole)
2997 {
2998         struct task_io_accounting acct = task->ioac;
2999         unsigned long flags;
3000         int result;
3001
3002         result = mutex_lock_killable(&task->signal->cred_guard_mutex);
3003         if (result)
3004                 return result;
3005
3006         if (!ptrace_may_access(task, PTRACE_MODE_READ)) {
3007                 result = -EACCES;
3008                 goto out_unlock;
3009         }
3010
3011         if (whole && lock_task_sighand(task, &flags)) {
3012                 struct task_struct *t = task;
3013
3014                 task_io_accounting_add(&acct, &task->signal->ioac);
3015                 while_each_thread(task, t)
3016                         task_io_accounting_add(&acct, &t->ioac);
3017
3018                 unlock_task_sighand(task, &flags);
3019         }
3020         result = sprintf(buffer,
3021                         "rchar: %llu\n"
3022                         "wchar: %llu\n"
3023                         "syscr: %llu\n"
3024                         "syscw: %llu\n"
3025                         "read_bytes: %llu\n"
3026                         "write_bytes: %llu\n"
3027                         "cancelled_write_bytes: %llu\n",
3028                         (unsigned long long)acct.rchar,
3029                         (unsigned long long)acct.wchar,
3030                         (unsigned long long)acct.syscr,
3031                         (unsigned long long)acct.syscw,
3032                         (unsigned long long)acct.read_bytes,
3033                         (unsigned long long)acct.write_bytes,
3034                         (unsigned long long)acct.cancelled_write_bytes);
3035 out_unlock:
3036         mutex_unlock(&task->signal->cred_guard_mutex);
3037         return result;
3038 }
3039
3040 static int proc_tid_io_accounting(struct task_struct *task, char *buffer)
3041 {
3042         return do_io_accounting(task, buffer, 0);
3043 }
3044
3045 static int proc_tgid_io_accounting(struct task_struct *task, char *buffer)
3046 {
3047         return do_io_accounting(task, buffer, 1);
3048 }
3049 #endif /* CONFIG_TASK_IO_ACCOUNTING */
3050
3051 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
3052                                 struct pid *pid, struct task_struct *task)
3053 {
3054         int err = lock_trace(task);
3055         if (!err) {
3056                 seq_printf(m, "%08x\n", task->personality);
3057                 unlock_trace(task);
3058         }
3059         return err;
3060 }
3061
3062 /*
3063  * Thread groups
3064  */
3065 static const struct file_operations proc_task_operations;
3066 static const struct inode_operations proc_task_inode_operations;
3067
3068 static const struct pid_entry tgid_base_stuff[] = {
3069         DIR("task",       S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
3070         DIR("fd",         S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3071 #ifdef CONFIG_CHECKPOINT_RESTORE
3072         DIR("map_files",  S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations),
3073 #endif
3074         DIR("fdinfo",     S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3075         DIR("ns",         S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3076 #ifdef CONFIG_NET
3077         DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3078 #endif
3079         REG("environ",    S_IRUSR, proc_environ_operations),
3080         INF("auxv",       S_IRUSR, proc_pid_auxv),
3081         ONE("status",     S_IRUGO, proc_pid_status),
3082         ONE("personality", S_IRUGO, proc_pid_personality),
3083         INF("limits",     S_IRUGO, proc_pid_limits),
3084 #ifdef CONFIG_SCHED_DEBUG
3085         REG("sched",      S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3086 #endif
3087 #ifdef CONFIG_SCHED_AUTOGROUP
3088         REG("autogroup",  S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
3089 #endif
3090         REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
3091 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3092         INF("syscall",    S_IRUGO, proc_pid_syscall),
3093 #endif
3094         INF("cmdline",    S_IRUGO, proc_pid_cmdline),
3095         ONE("stat",       S_IRUGO, proc_tgid_stat),
3096         ONE("statm",      S_IRUGO, proc_pid_statm),
3097         REG("maps",       S_IRUGO, proc_maps_operations),
3098 #ifdef CONFIG_NUMA
3099         REG("numa_maps",  S_IRUGO, proc_numa_maps_operations),
3100 #endif
3101         REG("mem",        S_IRUSR|S_IWUSR, proc_mem_operations),
3102         LNK("cwd",        proc_cwd_link),
3103         LNK("root",       proc_root_link),
3104         LNK("exe",        proc_exe_link),
3105         REG("mounts",     S_IRUGO, proc_mounts_operations),
3106         REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
3107         REG("mountstats", S_IRUSR, proc_mountstats_operations),
3108 #ifdef CONFIG_PROC_PAGE_MONITOR
3109         REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3110         REG("smaps",      S_IRUGO, proc_smaps_operations),
3111         REG("pagemap",    S_IRUGO, proc_pagemap_operations),
3112 #endif
3113 #ifdef CONFIG_SECURITY
3114         DIR("attr",       S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3115 #endif
3116 #ifdef CONFIG_KALLSYMS
3117         INF("wchan",      S_IRUGO, proc_pid_wchan),
3118 #endif
3119 #ifdef CONFIG_STACKTRACE
3120         ONE("stack",      S_IRUGO, proc_pid_stack),
3121 #endif
3122 #ifdef CONFIG_SCHEDSTATS
3123         INF("schedstat",  S_IRUGO, proc_pid_schedstat),
3124 #endif
3125 #ifdef CONFIG_LATENCYTOP
3126         REG("latency",  S_IRUGO, proc_lstats_operations),
3127 #endif
3128 #ifdef CONFIG_PROC_PID_CPUSET
3129         REG("cpuset",     S_IRUGO, proc_cpuset_operations),
3130 #endif
3131 #ifdef CONFIG_CGROUPS
3132         REG("cgroup",  S_IRUGO, proc_cgroup_operations),
3133 #endif
3134         INF("oom_score",  S_IRUGO, proc_oom_score),
3135         REG("oom_adj",    S_IRUGO|S_IWUSR, proc_oom_adjust_operations),
3136         REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3137 #ifdef CONFIG_AUDITSYSCALL
3138         REG("loginuid",   S_IWUSR|S_IRUGO, proc_loginuid_operations),
3139         REG("sessionid",  S_IRUGO, proc_sessionid_operations),
3140 #endif
3141 #ifdef CONFIG_FAULT_INJECTION
3142         REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3143 #endif
3144 #ifdef CONFIG_ELF_CORE
3145         REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
3146 #endif
3147 #ifdef CONFIG_TASK_IO_ACCOUNTING
3148         INF("io",       S_IRUSR, proc_tgid_io_accounting),
3149 #endif
3150 #ifdef CONFIG_HARDWALL
3151         INF("hardwall",   S_IRUGO, proc_pid_hardwall),
3152 #endif
3153 };
3154
3155 static int proc_tgid_base_readdir(struct file * filp,
3156                              void * dirent, filldir_t filldir)
3157 {
3158         return proc_pident_readdir(filp,dirent,filldir,
3159                                    tgid_base_stuff,ARRAY_SIZE(tgid_base_stuff));
3160 }
3161
3162 static const struct file_operations proc_tgid_base_operations = {
3163         .read           = generic_read_dir,
3164         .readdir        = proc_tgid_base_readdir,
3165         .llseek         = default_llseek,
3166 };
3167
3168 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){
3169         return proc_pident_lookup(dir, dentry,
3170                                   tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3171 }
3172
3173 static const struct inode_operations proc_tgid_base_inode_operations = {
3174         .lookup         = proc_tgid_base_lookup,
3175         .getattr        = pid_getattr,
3176         .setattr        = proc_setattr,
3177         .permission     = proc_pid_permission,
3178 };
3179
3180 static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid)
3181 {
3182         struct dentry *dentry, *leader, *dir;
3183         char buf[PROC_NUMBUF];
3184         struct qstr name;
3185
3186         name.name = buf;
3187         name.len = snprintf(buf, sizeof(buf), "%d", pid);
3188         dentry = d_hash_and_lookup(mnt->mnt_root, &name);
3189         if (dentry) {
3190                 shrink_dcache_parent(dentry);
3191                 d_drop(dentry);
3192                 dput(dentry);
3193         }
3194
3195         name.name = buf;
3196         name.len = snprintf(buf, sizeof(buf), "%d", tgid);
3197         leader = d_hash_and_lookup(mnt->mnt_root, &name);
3198         if (!leader)
3199                 goto out;
3200
3201         name.name = "task";
3202         name.len = strlen(name.name);
3203         dir = d_hash_and_lookup(leader, &name);
3204         if (!dir)
3205                 goto out_put_leader;
3206
3207         name.name = buf;
3208         name.len = snprintf(buf, sizeof(buf), "%d", pid);
3209         dentry = d_hash_and_lookup(dir, &name);
3210         if (dentry) {
3211                 shrink_dcache_parent(dentry);
3212                 d_drop(dentry);
3213                 dput(dentry);
3214         }
3215
3216         dput(dir);
3217 out_put_leader:
3218         dput(leader);
3219 out:
3220         return;
3221 }
3222
3223 /**
3224  * proc_flush_task -  Remove dcache entries for @task from the /proc dcache.
3225  * @task: task that should be flushed.
3226  *
3227  * When flushing dentries from proc, one needs to flush them from global
3228  * proc (proc_mnt) and from all the namespaces' procs this task was seen
3229  * in. This call is supposed to do all of this job.
3230  *
3231  * Looks in the dcache for
3232  * /proc/@pid
3233  * /proc/@tgid/task/@pid
3234  * if either directory is present flushes it and all of it'ts children
3235  * from the dcache.
3236  *
3237  * It is safe and reasonable to cache /proc entries for a task until
3238  * that task exits.  After that they just clog up the dcache with
3239  * useless entries, possibly causing useful dcache entries to be
3240  * flushed instead.  This routine is proved to flush those useless
3241  * dcache entries at process exit time.
3242  *
3243  * NOTE: This routine is just an optimization so it does not guarantee
3244  *       that no dcache entries will exist at process exit time it
3245  *       just makes it very unlikely that any will persist.
3246  */
3247
3248 void proc_flush_task(struct task_struct *task)
3249 {
3250         int i;
3251         struct pid *pid, *tgid;
3252         struct upid *upid;
3253
3254         pid = task_pid(task);
3255         tgid = task_tgid(task);
3256
3257         for (i = 0; i <= pid->level; i++) {
3258                 upid = &pid->numbers[i];
3259                 proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr,
3260                                         tgid->numbers[i].nr);
3261         }
3262
3263         upid = &pid->numbers[pid->level];
3264         if (upid->nr == 1)
3265                 pid_ns_release_proc(upid->ns);
3266 }
3267
3268 static struct dentry *proc_pid_instantiate(struct inode *dir,
3269                                            struct dentry * dentry,
3270                                            struct task_struct *task, const void *ptr)
3271 {
3272         struct dentry *error = ERR_PTR(-ENOENT);
3273         struct inode *inode;
3274
3275         inode = proc_pid_make_inode(dir->i_sb, task);
3276         if (!inode)
3277                 goto out;
3278
3279         inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
3280         inode->i_op = &proc_tgid_base_inode_operations;
3281         inode->i_fop = &proc_tgid_base_operations;
3282         inode->i_flags|=S_IMMUTABLE;
3283
3284         set_nlink(inode, 2 + pid_entry_count_dirs(tgid_base_stuff,
3285                                                   ARRAY_SIZE(tgid_base_stuff)));
3286
3287         d_set_d_op(dentry, &pid_dentry_operations);
3288
3289         d_add(dentry, inode);
3290         /* Close the race of the process dying before we return the dentry */
3291         if (pid_revalidate(dentry, NULL))
3292                 error = NULL;
3293 out:
3294         return error;
3295 }
3296
3297 struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
3298 {
3299         struct dentry *result;
3300         struct task_struct *task;
3301         unsigned tgid;
3302         struct pid_namespace *ns;
3303
3304         result = proc_base_lookup(dir, dentry);
3305         if (!IS_ERR(result) || PTR_ERR(result) != -ENOENT)
3306                 goto out;
3307
3308         tgid = name_to_int(dentry);
3309         if (tgid == ~0U)
3310                 goto out;
3311
3312         ns = dentry->d_sb->s_fs_info;
3313         rcu_read_lock();
3314         task = find_task_by_pid_ns(tgid, ns);
3315         if (task)
3316                 get_task_struct(task);
3317         rcu_read_unlock();
3318         if (!task)
3319                 goto out;
3320
3321         result = proc_pid_instantiate(dir, dentry, task, NULL);
3322         put_task_struct(task);
3323 out:
3324         return result;
3325 }
3326
3327 /*
3328  * Find the first task with tgid >= tgid
3329  *
3330  */
3331 struct tgid_iter {
3332         unsigned int tgid;
3333         struct task_struct *task;
3334 };
3335 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
3336 {
3337         struct pid *pid;
3338
3339         if (iter.task)
3340                 put_task_struct(iter.task);
3341         rcu_read_lock();
3342 retry:
3343         iter.task = NULL;
3344         pid = find_ge_pid(iter.tgid, ns);
3345         if (pid) {
3346                 iter.tgid = pid_nr_ns(pid, ns);
3347                 iter.task = pid_task(pid, PIDTYPE_PID);
3348                 /* What we to know is if the pid we have find is the
3349                  * pid of a thread_group_leader.  Testing for task
3350                  * being a thread_group_leader is the obvious thing
3351                  * todo but there is a window when it fails, due to
3352                  * the pid transfer logic in de_thread.
3353                  *
3354                  * So we perform the straight forward test of seeing
3355                  * if the pid we have found is the pid of a thread
3356                  * group leader, and don't worry if the task we have
3357                  * found doesn't happen to be a thread group leader.
3358                  * As we don't care in the case of readdir.
3359                  */
3360                 if (!iter.task || !has_group_leader_pid(iter.task)) {
3361                         iter.tgid += 1;
3362                         goto retry;
3363                 }
3364                 get_task_struct(iter.task);
3365         }
3366         rcu_read_unlock();
3367         return iter;
3368 }
3369
3370 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + ARRAY_SIZE(proc_base_stuff))
3371
3372 static int proc_pid_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
3373         struct tgid_iter iter)
3374 {
3375         char name[PROC_NUMBUF];
3376         int len = snprintf(name, sizeof(name), "%d", iter.tgid);
3377         return proc_fill_cache(filp, dirent, filldir, name, len,
3378                                 proc_pid_instantiate, iter.task, NULL);
3379 }
3380
3381 static int fake_filldir(void *buf, const char *name, int namelen,
3382                         loff_t offset, u64 ino, unsigned d_type)
3383 {
3384         return 0;
3385 }
3386
3387 /* for the /proc/ directory itself, after non-process stuff has been done */
3388 int proc_pid_readdir(struct file * filp, void * dirent, filldir_t filldir)
3389 {
3390         unsigned int nr;
3391         struct task_struct *reaper;
3392         struct tgid_iter iter;
3393         struct pid_namespace *ns;
3394         filldir_t __filldir;
3395
3396         if (filp->f_pos >= PID_MAX_LIMIT + TGID_OFFSET)
3397                 goto out_no_task;
3398         nr = filp->f_pos - FIRST_PROCESS_ENTRY;
3399
3400         reaper = get_proc_task(filp->f_path.dentry->d_inode);
3401         if (!reaper)
3402                 goto out_no_task;
3403
3404         for (; nr < ARRAY_SIZE(proc_base_stuff); filp->f_pos++, nr++) {
3405                 const struct pid_entry *p = &proc_base_stuff[nr];
3406                 if (proc_base_fill_cache(filp, dirent, filldir, reaper, p) < 0)
3407                         goto out;
3408         }
3409
3410         ns = filp->f_dentry->d_sb->s_fs_info;
3411         iter.task = NULL;
3412         iter.tgid = filp->f_pos - TGID_OFFSET;
3413         for (iter = next_tgid(ns, iter);
3414              iter.task;
3415              iter.tgid += 1, iter = next_tgid(ns, iter)) {
3416                 if (has_pid_permissions(ns, iter.task, 2))
3417                         __filldir = filldir;
3418                 else
3419                         __filldir = fake_filldir;
3420
3421                 filp->f_pos = iter.tgid + TGID_OFFSET;
3422                 if (proc_pid_fill_cache(filp, dirent, __filldir, iter) < 0) {
3423                         put_task_struct(iter.task);
3424                         goto out;
3425                 }
3426         }
3427         filp->f_pos = PID_MAX_LIMIT + TGID_OFFSET;
3428 out:
3429         put_task_struct(reaper);
3430 out_no_task:
3431         return 0;
3432 }
3433
3434 /*
3435  * Tasks
3436  */
3437 static const struct pid_entry tid_base_stuff[] = {
3438         DIR("fd",        S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3439         DIR("fdinfo",    S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3440         DIR("ns",        S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3441         REG("environ",   S_IRUSR, proc_environ_operations),
3442         INF("auxv",      S_IRUSR, proc_pid_auxv),
3443         ONE("status",    S_IRUGO, proc_pid_status),
3444         ONE("personality", S_IRUGO, proc_pid_personality),
3445         INF("limits",    S_IRUGO, proc_pid_limits),
3446 #ifdef CONFIG_SCHED_DEBUG
3447         REG("sched",     S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3448 #endif
3449         REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
3450 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3451         INF("syscall",   S_IRUGO, proc_pid_syscall),
3452 #endif
3453         INF("cmdline",   S_IRUGO, proc_pid_cmdline),
3454         ONE("stat",      S_IRUGO, proc_tid_stat),
3455         ONE("statm",     S_IRUGO, proc_pid_statm),
3456         REG("maps",      S_IRUGO, proc_maps_operations),
3457 #ifdef CONFIG_NUMA
3458         REG("numa_maps", S_IRUGO, proc_numa_maps_operations),
3459 #endif
3460         REG("mem",       S_IRUSR|S_IWUSR, proc_mem_operations),
3461         LNK("cwd",       proc_cwd_link),
3462         LNK("root",      proc_root_link),
3463         LNK("exe",       proc_exe_link),
3464         REG("mounts",    S_IRUGO, proc_mounts_operations),
3465         REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
3466 #ifdef CONFIG_PROC_PAGE_MONITOR
3467         REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3468         REG("smaps",     S_IRUGO, proc_smaps_operations),
3469         REG("pagemap",    S_IRUGO, proc_pagemap_operations),
3470 #endif
3471 #ifdef CONFIG_SECURITY
3472         DIR("attr",      S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3473 #endif
3474 #ifdef CONFIG_KALLSYMS
3475         INF("wchan",     S_IRUGO, proc_pid_wchan),
3476 #endif
3477 #ifdef CONFIG_STACKTRACE
3478         ONE("stack",      S_IRUGO, proc_pid_stack),
3479 #endif
3480 #ifdef CONFIG_SCHEDSTATS
3481         INF("schedstat", S_IRUGO, proc_pid_schedstat),
3482 #endif
3483 #ifdef CONFIG_LATENCYTOP
3484         REG("latency",  S_IRUGO, proc_lstats_operations),
3485 #endif
3486 #ifdef CONFIG_PROC_PID_CPUSET
3487         REG("cpuset",    S_IRUGO, proc_cpuset_operations),
3488 #endif
3489 #ifdef CONFIG_CGROUPS
3490         REG("cgroup",  S_IRUGO, proc_cgroup_operations),
3491 #endif
3492         INF("oom_score", S_IRUGO, proc_oom_score),
3493         REG("oom_adj",   S_IRUGO|S_IWUSR, proc_oom_adjust_operations),
3494         REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3495 #ifdef CONFIG_AUDITSYSCALL
3496         REG("loginuid",  S_IWUSR|S_IRUGO, proc_loginuid_operations),
3497         REG("sessionid",  S_IRUGO, proc_sessionid_operations),
3498 #endif
3499 #ifdef CONFIG_FAULT_INJECTION
3500         REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3501 #endif
3502 #ifdef CONFIG_TASK_IO_ACCOUNTING
3503         INF("io",       S_IRUSR, proc_tid_io_accounting),
3504 #endif
3505 #ifdef CONFIG_HARDWALL
3506         INF("hardwall",   S_IRUGO, proc_pid_hardwall),
3507 #endif
3508 };
3509
3510 static int proc_tid_base_readdir(struct file * filp,
3511                              void * dirent, filldir_t filldir)
3512 {
3513         return proc_pident_readdir(filp,dirent,filldir,
3514                                    tid_base_stuff,ARRAY_SIZE(tid_base_stuff));
3515 }
3516
3517 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){
3518         return proc_pident_lookup(dir, dentry,
3519                                   tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3520 }
3521
3522 static const struct file_operations proc_tid_base_operations = {
3523         .read           = generic_read_dir,
3524         .readdir        = proc_tid_base_readdir,
3525         .llseek         = default_llseek,
3526 };
3527
3528 static const struct inode_operations proc_tid_base_inode_operations = {
3529         .lookup         = proc_tid_base_lookup,
3530         .getattr        = pid_getattr,
3531         .setattr        = proc_setattr,
3532 };
3533
3534 static struct dentry *proc_task_instantiate(struct inode *dir,
3535         struct dentry *dentry, struct task_struct *task, const void *ptr)
3536 {
3537         struct dentry *error = ERR_PTR(-ENOENT);
3538         struct inode *inode;
3539         inode = proc_pid_make_inode(dir->i_sb, task);
3540
3541         if (!inode)
3542                 goto out;
3543         inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
3544         inode->i_op = &proc_tid_base_inode_operations;
3545         inode->i_fop = &proc_tid_base_operations;
3546         inode->i_flags|=S_IMMUTABLE;
3547
3548         set_nlink(inode, 2 + pid_entry_count_dirs(tid_base_stuff,
3549                                                   ARRAY_SIZE(tid_base_stuff)));
3550
3551         d_set_d_op(dentry, &pid_dentry_operations);
3552
3553         d_add(dentry, inode);
3554         /* Close the race of the process dying before we return the dentry */
3555         if (pid_revalidate(dentry, NULL))
3556                 error = NULL;
3557 out:
3558         return error;
3559 }
3560
3561 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
3562 {
3563         struct dentry *result = ERR_PTR(-ENOENT);
3564         struct task_struct *task;
3565         struct task_struct *leader = get_proc_task(dir);
3566         unsigned tid;
3567         struct pid_namespace *ns;
3568
3569         if (!leader)
3570                 goto out_no_task;
3571
3572         tid = name_to_int(dentry);
3573         if (tid == ~0U)
3574                 goto out;
3575
3576         ns = dentry->d_sb->s_fs_info;
3577         rcu_read_lock();
3578         task = find_task_by_pid_ns(tid, ns);
3579         if (task)
3580                 get_task_struct(task);
3581         rcu_read_unlock();
3582         if (!task)
3583                 goto out;
3584         if (!same_thread_group(leader, task))
3585                 goto out_drop_task;
3586
3587         result = proc_task_instantiate(dir, dentry, task, NULL);
3588 out_drop_task:
3589         put_task_struct(task);
3590 out:
3591         put_task_struct(leader);
3592 out_no_task:
3593         return result;
3594 }
3595
3596 /*
3597  * Find the first tid of a thread group to return to user space.
3598  *
3599  * Usually this is just the thread group leader, but if the users
3600  * buffer was too small or there was a seek into the middle of the
3601  * directory we have more work todo.
3602  *
3603  * In the case of a short read we start with find_task_by_pid.
3604  *
3605  * In the case of a seek we start with the leader and walk nr
3606  * threads past it.
3607  */
3608 static struct task_struct *first_tid(struct task_struct *leader,
3609                 int tid, int nr, struct pid_namespace *ns)
3610 {
3611         struct task_struct *pos;
3612
3613         rcu_read_lock();
3614         /* Attempt to start with the pid of a thread */
3615         if (tid && (nr > 0)) {
3616                 pos = find_task_by_pid_ns(tid, ns);
3617                 if (pos && (pos->group_leader == leader))
3618                         goto found;
3619         }
3620
3621         /* If nr exceeds the number of threads there is nothing todo */
3622         pos = NULL;
3623         if (nr && nr >= get_nr_threads(leader))
3624                 goto out;
3625
3626         /* If we haven't found our starting place yet start
3627          * with the leader and walk nr threads forward.
3628          */
3629         for (pos = leader; nr > 0; --nr) {
3630                 pos = next_thread(pos);
3631                 if (pos == leader) {
3632                         pos = NULL;
3633                         goto out;
3634                 }
3635         }
3636 found:
3637         get_task_struct(pos);
3638 out:
3639         rcu_read_unlock();
3640         return pos;
3641 }
3642
3643 /*
3644  * Find the next thread in the thread list.
3645  * Return NULL if there is an error or no next thread.
3646  *
3647  * The reference to the input task_struct is released.
3648  */
3649 static struct task_struct *next_tid(struct task_struct *start)
3650 {
3651         struct task_struct *pos = NULL;
3652         rcu_read_lock();
3653         if (pid_alive(start)) {
3654                 pos = next_thread(start);
3655                 if (thread_group_leader(pos))
3656                         pos = NULL;
3657                 else
3658                         get_task_struct(pos);
3659         }
3660         rcu_read_unlock();
3661         put_task_struct(start);
3662         return pos;
3663 }
3664
3665 static int proc_task_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
3666         struct task_struct *task, int tid)
3667 {
3668         char name[PROC_NUMBUF];
3669         int len = snprintf(name, sizeof(name), "%d", tid);
3670         return proc_fill_cache(filp, dirent, filldir, name, len,
3671                                 proc_task_instantiate, task, NULL);
3672 }
3673
3674 /* for the /proc/TGID/task/ directories */
3675 static int proc_task_readdir(struct file * filp, void * dirent, filldir_t filldir)
3676 {
3677         struct dentry *dentry = filp->f_path.dentry;
3678         struct inode *inode = dentry->d_inode;
3679         struct task_struct *leader = NULL;
3680         struct task_struct *task;
3681         int retval = -ENOENT;
3682         ino_t ino;
3683         int tid;
3684         struct pid_namespace *ns;
3685
3686         task = get_proc_task(inode);
3687         if (!task)
3688                 goto out_no_task;
3689         rcu_read_lock();
3690         if (pid_alive(task)) {
3691                 leader = task->group_leader;
3692                 get_task_struct(leader);
3693         }
3694         rcu_read_unlock();
3695         put_task_struct(task);
3696         if (!leader)
3697                 goto out_no_task;
3698         retval = 0;
3699
3700         switch ((unsigned long)filp->f_pos) {
3701         case 0:
3702                 ino = inode->i_ino;
3703                 if (filldir(dirent, ".", 1, filp->f_pos, ino, DT_DIR) < 0)
3704                         goto out;
3705                 filp->f_pos++;
3706                 /* fall through */
3707         case 1:
3708                 ino = parent_ino(dentry);
3709                 if (filldir(dirent, "..", 2, filp->f_pos, ino, DT_DIR) < 0)
3710                         goto out;
3711                 filp->f_pos++;
3712                 /* fall through */
3713         }
3714
3715         /* f_version caches the tgid value that the last readdir call couldn't
3716          * return. lseek aka telldir automagically resets f_version to 0.
3717          */
3718         ns = filp->f_dentry->d_sb->s_fs_info;
3719         tid = (int)filp->f_version;
3720         filp->f_version = 0;
3721         for (task = first_tid(leader, tid, filp->f_pos - 2, ns);
3722              task;
3723              task = next_tid(task), filp->f_pos++) {
3724                 tid = task_pid_nr_ns(task, ns);
3725                 if (proc_task_fill_cache(filp, dirent, filldir, task, tid) < 0) {
3726                         /* returning this tgid failed, save it as the first
3727                          * pid for the next readir call */
3728                         filp->f_version = (u64)tid;
3729                         put_task_struct(task);
3730                         break;
3731                 }
3732         }
3733 out:
3734         put_task_struct(leader);
3735 out_no_task:
3736         return retval;
3737 }
3738
3739 static int proc_task_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
3740 {
3741         struct inode *inode = dentry->d_inode;
3742         struct task_struct *p = get_proc_task(inode);
3743         generic_fillattr(inode, stat);
3744
3745         if (p) {
3746                 stat->nlink += get_nr_threads(p);
3747                 put_task_struct(p);
3748         }
3749
3750         return 0;
3751 }
3752
3753 static const struct inode_operations proc_task_inode_operations = {
3754         .lookup         = proc_task_lookup,
3755         .getattr        = proc_task_getattr,
3756         .setattr        = proc_setattr,
3757         .permission     = proc_pid_permission,
3758 };
3759
3760 static const struct file_operations proc_task_operations = {
3761         .read           = generic_read_dir,
3762         .readdir        = proc_task_readdir,
3763         .llseek         = default_llseek,
3764 };