Merge branch 'smack-for-3.20-rebased' of git://git.gitorious.org/smack-next/kernel...
[pandora-kernel.git] / fs / ocfs2 / file.c
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * file.c
5  *
6  * File open, close, extend, truncate
7  *
8  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public
12  * License as published by the Free Software Foundation; either
13  * version 2 of the License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public
21  * License along with this program; if not, write to the
22  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23  * Boston, MA 021110-1307, USA.
24  */
25
26 #include <linux/capability.h>
27 #include <linux/fs.h>
28 #include <linux/types.h>
29 #include <linux/slab.h>
30 #include <linux/highmem.h>
31 #include <linux/pagemap.h>
32 #include <linux/uio.h>
33 #include <linux/sched.h>
34 #include <linux/splice.h>
35 #include <linux/mount.h>
36 #include <linux/writeback.h>
37 #include <linux/falloc.h>
38 #include <linux/quotaops.h>
39 #include <linux/blkdev.h>
40
41 #include <cluster/masklog.h>
42
43 #include "ocfs2.h"
44
45 #include "alloc.h"
46 #include "aops.h"
47 #include "dir.h"
48 #include "dlmglue.h"
49 #include "extent_map.h"
50 #include "file.h"
51 #include "sysfile.h"
52 #include "inode.h"
53 #include "ioctl.h"
54 #include "journal.h"
55 #include "locks.h"
56 #include "mmap.h"
57 #include "suballoc.h"
58 #include "super.h"
59 #include "xattr.h"
60 #include "acl.h"
61 #include "quota.h"
62 #include "refcounttree.h"
63 #include "ocfs2_trace.h"
64
65 #include "buffer_head_io.h"
66
67 static int ocfs2_init_file_private(struct inode *inode, struct file *file)
68 {
69         struct ocfs2_file_private *fp;
70
71         fp = kzalloc(sizeof(struct ocfs2_file_private), GFP_KERNEL);
72         if (!fp)
73                 return -ENOMEM;
74
75         fp->fp_file = file;
76         mutex_init(&fp->fp_mutex);
77         ocfs2_file_lock_res_init(&fp->fp_flock, fp);
78         file->private_data = fp;
79
80         return 0;
81 }
82
83 static void ocfs2_free_file_private(struct inode *inode, struct file *file)
84 {
85         struct ocfs2_file_private *fp = file->private_data;
86         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
87
88         if (fp) {
89                 ocfs2_simple_drop_lockres(osb, &fp->fp_flock);
90                 ocfs2_lock_res_free(&fp->fp_flock);
91                 kfree(fp);
92                 file->private_data = NULL;
93         }
94 }
95
96 static int ocfs2_file_open(struct inode *inode, struct file *file)
97 {
98         int status;
99         int mode = file->f_flags;
100         struct ocfs2_inode_info *oi = OCFS2_I(inode);
101
102         trace_ocfs2_file_open(inode, file, file->f_path.dentry,
103                               (unsigned long long)OCFS2_I(inode)->ip_blkno,
104                               file->f_path.dentry->d_name.len,
105                               file->f_path.dentry->d_name.name, mode);
106
107         if (file->f_mode & FMODE_WRITE)
108                 dquot_initialize(inode);
109
110         spin_lock(&oi->ip_lock);
111
112         /* Check that the inode hasn't been wiped from disk by another
113          * node. If it hasn't then we're safe as long as we hold the
114          * spin lock until our increment of open count. */
115         if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_DELETED) {
116                 spin_unlock(&oi->ip_lock);
117
118                 status = -ENOENT;
119                 goto leave;
120         }
121
122         if (mode & O_DIRECT)
123                 oi->ip_flags |= OCFS2_INODE_OPEN_DIRECT;
124
125         oi->ip_open_count++;
126         spin_unlock(&oi->ip_lock);
127
128         status = ocfs2_init_file_private(inode, file);
129         if (status) {
130                 /*
131                  * We want to set open count back if we're failing the
132                  * open.
133                  */
134                 spin_lock(&oi->ip_lock);
135                 oi->ip_open_count--;
136                 spin_unlock(&oi->ip_lock);
137         }
138
139 leave:
140         return status;
141 }
142
143 static int ocfs2_file_release(struct inode *inode, struct file *file)
144 {
145         struct ocfs2_inode_info *oi = OCFS2_I(inode);
146
147         spin_lock(&oi->ip_lock);
148         if (!--oi->ip_open_count)
149                 oi->ip_flags &= ~OCFS2_INODE_OPEN_DIRECT;
150
151         trace_ocfs2_file_release(inode, file, file->f_path.dentry,
152                                  oi->ip_blkno,
153                                  file->f_path.dentry->d_name.len,
154                                  file->f_path.dentry->d_name.name,
155                                  oi->ip_open_count);
156         spin_unlock(&oi->ip_lock);
157
158         ocfs2_free_file_private(inode, file);
159
160         return 0;
161 }
162
163 static int ocfs2_dir_open(struct inode *inode, struct file *file)
164 {
165         return ocfs2_init_file_private(inode, file);
166 }
167
168 static int ocfs2_dir_release(struct inode *inode, struct file *file)
169 {
170         ocfs2_free_file_private(inode, file);
171         return 0;
172 }
173
174 static int ocfs2_sync_file(struct file *file, loff_t start, loff_t end,
175                            int datasync)
176 {
177         int err = 0;
178         struct inode *inode = file->f_mapping->host;
179         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
180         struct ocfs2_inode_info *oi = OCFS2_I(inode);
181         journal_t *journal = osb->journal->j_journal;
182         int ret;
183         tid_t commit_tid;
184         bool needs_barrier = false;
185
186         trace_ocfs2_sync_file(inode, file, file->f_path.dentry,
187                               OCFS2_I(inode)->ip_blkno,
188                               file->f_path.dentry->d_name.len,
189                               file->f_path.dentry->d_name.name,
190                               (unsigned long long)datasync);
191
192         if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
193                 return -EROFS;
194
195         err = filemap_write_and_wait_range(inode->i_mapping, start, end);
196         if (err)
197                 return err;
198
199         commit_tid = datasync ? oi->i_datasync_tid : oi->i_sync_tid;
200         if (journal->j_flags & JBD2_BARRIER &&
201             !jbd2_trans_will_send_data_barrier(journal, commit_tid))
202                 needs_barrier = true;
203         err = jbd2_complete_transaction(journal, commit_tid);
204         if (needs_barrier) {
205                 ret = blkdev_issue_flush(inode->i_sb->s_bdev, GFP_KERNEL, NULL);
206                 if (!err)
207                         err = ret;
208         }
209
210         if (err)
211                 mlog_errno(err);
212
213         return (err < 0) ? -EIO : 0;
214 }
215
216 int ocfs2_should_update_atime(struct inode *inode,
217                               struct vfsmount *vfsmnt)
218 {
219         struct timespec now;
220         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
221
222         if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
223                 return 0;
224
225         if ((inode->i_flags & S_NOATIME) ||
226             ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode)))
227                 return 0;
228
229         /*
230          * We can be called with no vfsmnt structure - NFSD will
231          * sometimes do this.
232          *
233          * Note that our action here is different than touch_atime() -
234          * if we can't tell whether this is a noatime mount, then we
235          * don't know whether to trust the value of s_atime_quantum.
236          */
237         if (vfsmnt == NULL)
238                 return 0;
239
240         if ((vfsmnt->mnt_flags & MNT_NOATIME) ||
241             ((vfsmnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode)))
242                 return 0;
243
244         if (vfsmnt->mnt_flags & MNT_RELATIME) {
245                 if ((timespec_compare(&inode->i_atime, &inode->i_mtime) <= 0) ||
246                     (timespec_compare(&inode->i_atime, &inode->i_ctime) <= 0))
247                         return 1;
248
249                 return 0;
250         }
251
252         now = CURRENT_TIME;
253         if ((now.tv_sec - inode->i_atime.tv_sec <= osb->s_atime_quantum))
254                 return 0;
255         else
256                 return 1;
257 }
258
259 int ocfs2_update_inode_atime(struct inode *inode,
260                              struct buffer_head *bh)
261 {
262         int ret;
263         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
264         handle_t *handle;
265         struct ocfs2_dinode *di = (struct ocfs2_dinode *) bh->b_data;
266
267         handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
268         if (IS_ERR(handle)) {
269                 ret = PTR_ERR(handle);
270                 mlog_errno(ret);
271                 goto out;
272         }
273
274         ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
275                                       OCFS2_JOURNAL_ACCESS_WRITE);
276         if (ret) {
277                 mlog_errno(ret);
278                 goto out_commit;
279         }
280
281         /*
282          * Don't use ocfs2_mark_inode_dirty() here as we don't always
283          * have i_mutex to guard against concurrent changes to other
284          * inode fields.
285          */
286         inode->i_atime = CURRENT_TIME;
287         di->i_atime = cpu_to_le64(inode->i_atime.tv_sec);
288         di->i_atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec);
289         ocfs2_update_inode_fsync_trans(handle, inode, 0);
290         ocfs2_journal_dirty(handle, bh);
291
292 out_commit:
293         ocfs2_commit_trans(OCFS2_SB(inode->i_sb), handle);
294 out:
295         return ret;
296 }
297
298 static int ocfs2_set_inode_size(handle_t *handle,
299                                 struct inode *inode,
300                                 struct buffer_head *fe_bh,
301                                 u64 new_i_size)
302 {
303         int status;
304
305         i_size_write(inode, new_i_size);
306         inode->i_blocks = ocfs2_inode_sector_count(inode);
307         inode->i_ctime = inode->i_mtime = CURRENT_TIME;
308
309         status = ocfs2_mark_inode_dirty(handle, inode, fe_bh);
310         if (status < 0) {
311                 mlog_errno(status);
312                 goto bail;
313         }
314
315 bail:
316         return status;
317 }
318
319 int ocfs2_simple_size_update(struct inode *inode,
320                              struct buffer_head *di_bh,
321                              u64 new_i_size)
322 {
323         int ret;
324         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
325         handle_t *handle = NULL;
326
327         handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
328         if (IS_ERR(handle)) {
329                 ret = PTR_ERR(handle);
330                 mlog_errno(ret);
331                 goto out;
332         }
333
334         ret = ocfs2_set_inode_size(handle, inode, di_bh,
335                                    new_i_size);
336         if (ret < 0)
337                 mlog_errno(ret);
338
339         ocfs2_update_inode_fsync_trans(handle, inode, 0);
340         ocfs2_commit_trans(osb, handle);
341 out:
342         return ret;
343 }
344
345 static int ocfs2_cow_file_pos(struct inode *inode,
346                               struct buffer_head *fe_bh,
347                               u64 offset)
348 {
349         int status;
350         u32 phys, cpos = offset >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
351         unsigned int num_clusters = 0;
352         unsigned int ext_flags = 0;
353
354         /*
355          * If the new offset is aligned to the range of the cluster, there is
356          * no space for ocfs2_zero_range_for_truncate to fill, so no need to
357          * CoW either.
358          */
359         if ((offset & (OCFS2_SB(inode->i_sb)->s_clustersize - 1)) == 0)
360                 return 0;
361
362         status = ocfs2_get_clusters(inode, cpos, &phys,
363                                     &num_clusters, &ext_flags);
364         if (status) {
365                 mlog_errno(status);
366                 goto out;
367         }
368
369         if (!(ext_flags & OCFS2_EXT_REFCOUNTED))
370                 goto out;
371
372         return ocfs2_refcount_cow(inode, fe_bh, cpos, 1, cpos+1);
373
374 out:
375         return status;
376 }
377
378 static int ocfs2_orphan_for_truncate(struct ocfs2_super *osb,
379                                      struct inode *inode,
380                                      struct buffer_head *fe_bh,
381                                      u64 new_i_size)
382 {
383         int status;
384         handle_t *handle;
385         struct ocfs2_dinode *di;
386         u64 cluster_bytes;
387
388         /*
389          * We need to CoW the cluster contains the offset if it is reflinked
390          * since we will call ocfs2_zero_range_for_truncate later which will
391          * write "0" from offset to the end of the cluster.
392          */
393         status = ocfs2_cow_file_pos(inode, fe_bh, new_i_size);
394         if (status) {
395                 mlog_errno(status);
396                 return status;
397         }
398
399         /* TODO: This needs to actually orphan the inode in this
400          * transaction. */
401
402         handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
403         if (IS_ERR(handle)) {
404                 status = PTR_ERR(handle);
405                 mlog_errno(status);
406                 goto out;
407         }
408
409         status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), fe_bh,
410                                          OCFS2_JOURNAL_ACCESS_WRITE);
411         if (status < 0) {
412                 mlog_errno(status);
413                 goto out_commit;
414         }
415
416         /*
417          * Do this before setting i_size.
418          */
419         cluster_bytes = ocfs2_align_bytes_to_clusters(inode->i_sb, new_i_size);
420         status = ocfs2_zero_range_for_truncate(inode, handle, new_i_size,
421                                                cluster_bytes);
422         if (status) {
423                 mlog_errno(status);
424                 goto out_commit;
425         }
426
427         i_size_write(inode, new_i_size);
428         inode->i_ctime = inode->i_mtime = CURRENT_TIME;
429
430         di = (struct ocfs2_dinode *) fe_bh->b_data;
431         di->i_size = cpu_to_le64(new_i_size);
432         di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec);
433         di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
434         ocfs2_update_inode_fsync_trans(handle, inode, 0);
435
436         ocfs2_journal_dirty(handle, fe_bh);
437
438 out_commit:
439         ocfs2_commit_trans(osb, handle);
440 out:
441         return status;
442 }
443
444 static int ocfs2_truncate_file(struct inode *inode,
445                                struct buffer_head *di_bh,
446                                u64 new_i_size)
447 {
448         int status = 0;
449         struct ocfs2_dinode *fe = NULL;
450         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
451
452         /* We trust di_bh because it comes from ocfs2_inode_lock(), which
453          * already validated it */
454         fe = (struct ocfs2_dinode *) di_bh->b_data;
455
456         trace_ocfs2_truncate_file((unsigned long long)OCFS2_I(inode)->ip_blkno,
457                                   (unsigned long long)le64_to_cpu(fe->i_size),
458                                   (unsigned long long)new_i_size);
459
460         mlog_bug_on_msg(le64_to_cpu(fe->i_size) != i_size_read(inode),
461                         "Inode %llu, inode i_size = %lld != di "
462                         "i_size = %llu, i_flags = 0x%x\n",
463                         (unsigned long long)OCFS2_I(inode)->ip_blkno,
464                         i_size_read(inode),
465                         (unsigned long long)le64_to_cpu(fe->i_size),
466                         le32_to_cpu(fe->i_flags));
467
468         if (new_i_size > le64_to_cpu(fe->i_size)) {
469                 trace_ocfs2_truncate_file_error(
470                         (unsigned long long)le64_to_cpu(fe->i_size),
471                         (unsigned long long)new_i_size);
472                 status = -EINVAL;
473                 mlog_errno(status);
474                 goto bail;
475         }
476
477         down_write(&OCFS2_I(inode)->ip_alloc_sem);
478
479         ocfs2_resv_discard(&osb->osb_la_resmap,
480                            &OCFS2_I(inode)->ip_la_data_resv);
481
482         /*
483          * The inode lock forced other nodes to sync and drop their
484          * pages, which (correctly) happens even if we have a truncate
485          * without allocation change - ocfs2 cluster sizes can be much
486          * greater than page size, so we have to truncate them
487          * anyway.
488          */
489         unmap_mapping_range(inode->i_mapping, new_i_size + PAGE_SIZE - 1, 0, 1);
490         truncate_inode_pages(inode->i_mapping, new_i_size);
491
492         if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
493                 status = ocfs2_truncate_inline(inode, di_bh, new_i_size,
494                                                i_size_read(inode), 1);
495                 if (status)
496                         mlog_errno(status);
497
498                 goto bail_unlock_sem;
499         }
500
501         /* alright, we're going to need to do a full blown alloc size
502          * change. Orphan the inode so that recovery can complete the
503          * truncate if necessary. This does the task of marking
504          * i_size. */
505         status = ocfs2_orphan_for_truncate(osb, inode, di_bh, new_i_size);
506         if (status < 0) {
507                 mlog_errno(status);
508                 goto bail_unlock_sem;
509         }
510
511         status = ocfs2_commit_truncate(osb, inode, di_bh);
512         if (status < 0) {
513                 mlog_errno(status);
514                 goto bail_unlock_sem;
515         }
516
517         /* TODO: orphan dir cleanup here. */
518 bail_unlock_sem:
519         up_write(&OCFS2_I(inode)->ip_alloc_sem);
520
521 bail:
522         if (!status && OCFS2_I(inode)->ip_clusters == 0)
523                 status = ocfs2_try_remove_refcount_tree(inode, di_bh);
524
525         return status;
526 }
527
528 /*
529  * extend file allocation only here.
530  * we'll update all the disk stuff, and oip->alloc_size
531  *
532  * expect stuff to be locked, a transaction started and enough data /
533  * metadata reservations in the contexts.
534  *
535  * Will return -EAGAIN, and a reason if a restart is needed.
536  * If passed in, *reason will always be set, even in error.
537  */
538 int ocfs2_add_inode_data(struct ocfs2_super *osb,
539                          struct inode *inode,
540                          u32 *logical_offset,
541                          u32 clusters_to_add,
542                          int mark_unwritten,
543                          struct buffer_head *fe_bh,
544                          handle_t *handle,
545                          struct ocfs2_alloc_context *data_ac,
546                          struct ocfs2_alloc_context *meta_ac,
547                          enum ocfs2_alloc_restarted *reason_ret)
548 {
549         int ret;
550         struct ocfs2_extent_tree et;
551
552         ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), fe_bh);
553         ret = ocfs2_add_clusters_in_btree(handle, &et, logical_offset,
554                                           clusters_to_add, mark_unwritten,
555                                           data_ac, meta_ac, reason_ret);
556
557         return ret;
558 }
559
560 static int __ocfs2_extend_allocation(struct inode *inode, u32 logical_start,
561                                      u32 clusters_to_add, int mark_unwritten)
562 {
563         int status = 0;
564         int restart_func = 0;
565         int credits;
566         u32 prev_clusters;
567         struct buffer_head *bh = NULL;
568         struct ocfs2_dinode *fe = NULL;
569         handle_t *handle = NULL;
570         struct ocfs2_alloc_context *data_ac = NULL;
571         struct ocfs2_alloc_context *meta_ac = NULL;
572         enum ocfs2_alloc_restarted why = RESTART_NONE;
573         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
574         struct ocfs2_extent_tree et;
575         int did_quota = 0;
576
577         /*
578          * Unwritten extent only exists for file systems which
579          * support holes.
580          */
581         BUG_ON(mark_unwritten && !ocfs2_sparse_alloc(osb));
582
583         status = ocfs2_read_inode_block(inode, &bh);
584         if (status < 0) {
585                 mlog_errno(status);
586                 goto leave;
587         }
588         fe = (struct ocfs2_dinode *) bh->b_data;
589
590 restart_all:
591         BUG_ON(le32_to_cpu(fe->i_clusters) != OCFS2_I(inode)->ip_clusters);
592
593         ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), bh);
594         status = ocfs2_lock_allocators(inode, &et, clusters_to_add, 0,
595                                        &data_ac, &meta_ac);
596         if (status) {
597                 mlog_errno(status);
598                 goto leave;
599         }
600
601         credits = ocfs2_calc_extend_credits(osb->sb, &fe->id2.i_list);
602         handle = ocfs2_start_trans(osb, credits);
603         if (IS_ERR(handle)) {
604                 status = PTR_ERR(handle);
605                 handle = NULL;
606                 mlog_errno(status);
607                 goto leave;
608         }
609
610 restarted_transaction:
611         trace_ocfs2_extend_allocation(
612                 (unsigned long long)OCFS2_I(inode)->ip_blkno,
613                 (unsigned long long)i_size_read(inode),
614                 le32_to_cpu(fe->i_clusters), clusters_to_add,
615                 why, restart_func);
616
617         status = dquot_alloc_space_nodirty(inode,
618                         ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
619         if (status)
620                 goto leave;
621         did_quota = 1;
622
623         /* reserve a write to the file entry early on - that we if we
624          * run out of credits in the allocation path, we can still
625          * update i_size. */
626         status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
627                                          OCFS2_JOURNAL_ACCESS_WRITE);
628         if (status < 0) {
629                 mlog_errno(status);
630                 goto leave;
631         }
632
633         prev_clusters = OCFS2_I(inode)->ip_clusters;
634
635         status = ocfs2_add_inode_data(osb,
636                                       inode,
637                                       &logical_start,
638                                       clusters_to_add,
639                                       mark_unwritten,
640                                       bh,
641                                       handle,
642                                       data_ac,
643                                       meta_ac,
644                                       &why);
645         if ((status < 0) && (status != -EAGAIN)) {
646                 if (status != -ENOSPC)
647                         mlog_errno(status);
648                 goto leave;
649         }
650         ocfs2_update_inode_fsync_trans(handle, inode, 1);
651         ocfs2_journal_dirty(handle, bh);
652
653         spin_lock(&OCFS2_I(inode)->ip_lock);
654         clusters_to_add -= (OCFS2_I(inode)->ip_clusters - prev_clusters);
655         spin_unlock(&OCFS2_I(inode)->ip_lock);
656         /* Release unused quota reservation */
657         dquot_free_space(inode,
658                         ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
659         did_quota = 0;
660
661         if (why != RESTART_NONE && clusters_to_add) {
662                 if (why == RESTART_META) {
663                         restart_func = 1;
664                         status = 0;
665                 } else {
666                         BUG_ON(why != RESTART_TRANS);
667
668                         status = ocfs2_allocate_extend_trans(handle, 1);
669                         if (status < 0) {
670                                 /* handle still has to be committed at
671                                  * this point. */
672                                 status = -ENOMEM;
673                                 mlog_errno(status);
674                                 goto leave;
675                         }
676                         goto restarted_transaction;
677                 }
678         }
679
680         trace_ocfs2_extend_allocation_end(OCFS2_I(inode)->ip_blkno,
681              le32_to_cpu(fe->i_clusters),
682              (unsigned long long)le64_to_cpu(fe->i_size),
683              OCFS2_I(inode)->ip_clusters,
684              (unsigned long long)i_size_read(inode));
685
686 leave:
687         if (status < 0 && did_quota)
688                 dquot_free_space(inode,
689                         ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
690         if (handle) {
691                 ocfs2_commit_trans(osb, handle);
692                 handle = NULL;
693         }
694         if (data_ac) {
695                 ocfs2_free_alloc_context(data_ac);
696                 data_ac = NULL;
697         }
698         if (meta_ac) {
699                 ocfs2_free_alloc_context(meta_ac);
700                 meta_ac = NULL;
701         }
702         if ((!status) && restart_func) {
703                 restart_func = 0;
704                 goto restart_all;
705         }
706         brelse(bh);
707         bh = NULL;
708
709         return status;
710 }
711
712 /*
713  * While a write will already be ordering the data, a truncate will not.
714  * Thus, we need to explicitly order the zeroed pages.
715  */
716 static handle_t *ocfs2_zero_start_ordered_transaction(struct inode *inode,
717                                                 struct buffer_head *di_bh)
718 {
719         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
720         handle_t *handle = NULL;
721         int ret = 0;
722
723         if (!ocfs2_should_order_data(inode))
724                 goto out;
725
726         handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
727         if (IS_ERR(handle)) {
728                 ret = -ENOMEM;
729                 mlog_errno(ret);
730                 goto out;
731         }
732
733         ret = ocfs2_jbd2_file_inode(handle, inode);
734         if (ret < 0) {
735                 mlog_errno(ret);
736                 goto out;
737         }
738
739         ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
740                                       OCFS2_JOURNAL_ACCESS_WRITE);
741         if (ret)
742                 mlog_errno(ret);
743         ocfs2_update_inode_fsync_trans(handle, inode, 1);
744
745 out:
746         if (ret) {
747                 if (!IS_ERR(handle))
748                         ocfs2_commit_trans(osb, handle);
749                 handle = ERR_PTR(ret);
750         }
751         return handle;
752 }
753
754 /* Some parts of this taken from generic_cont_expand, which turned out
755  * to be too fragile to do exactly what we need without us having to
756  * worry about recursive locking in ->write_begin() and ->write_end(). */
757 static int ocfs2_write_zero_page(struct inode *inode, u64 abs_from,
758                                  u64 abs_to, struct buffer_head *di_bh)
759 {
760         struct address_space *mapping = inode->i_mapping;
761         struct page *page;
762         unsigned long index = abs_from >> PAGE_CACHE_SHIFT;
763         handle_t *handle;
764         int ret = 0;
765         unsigned zero_from, zero_to, block_start, block_end;
766         struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
767
768         BUG_ON(abs_from >= abs_to);
769         BUG_ON(abs_to > (((u64)index + 1) << PAGE_CACHE_SHIFT));
770         BUG_ON(abs_from & (inode->i_blkbits - 1));
771
772         handle = ocfs2_zero_start_ordered_transaction(inode, di_bh);
773         if (IS_ERR(handle)) {
774                 ret = PTR_ERR(handle);
775                 goto out;
776         }
777
778         page = find_or_create_page(mapping, index, GFP_NOFS);
779         if (!page) {
780                 ret = -ENOMEM;
781                 mlog_errno(ret);
782                 goto out_commit_trans;
783         }
784
785         /* Get the offsets within the page that we want to zero */
786         zero_from = abs_from & (PAGE_CACHE_SIZE - 1);
787         zero_to = abs_to & (PAGE_CACHE_SIZE - 1);
788         if (!zero_to)
789                 zero_to = PAGE_CACHE_SIZE;
790
791         trace_ocfs2_write_zero_page(
792                         (unsigned long long)OCFS2_I(inode)->ip_blkno,
793                         (unsigned long long)abs_from,
794                         (unsigned long long)abs_to,
795                         index, zero_from, zero_to);
796
797         /* We know that zero_from is block aligned */
798         for (block_start = zero_from; block_start < zero_to;
799              block_start = block_end) {
800                 block_end = block_start + (1 << inode->i_blkbits);
801
802                 /*
803                  * block_start is block-aligned.  Bump it by one to force
804                  * __block_write_begin and block_commit_write to zero the
805                  * whole block.
806                  */
807                 ret = __block_write_begin(page, block_start + 1, 0,
808                                           ocfs2_get_block);
809                 if (ret < 0) {
810                         mlog_errno(ret);
811                         goto out_unlock;
812                 }
813
814
815                 /* must not update i_size! */
816                 ret = block_commit_write(page, block_start + 1,
817                                          block_start + 1);
818                 if (ret < 0)
819                         mlog_errno(ret);
820                 else
821                         ret = 0;
822         }
823
824         /*
825          * fs-writeback will release the dirty pages without page lock
826          * whose offset are over inode size, the release happens at
827          * block_write_full_page().
828          */
829         i_size_write(inode, abs_to);
830         inode->i_blocks = ocfs2_inode_sector_count(inode);
831         di->i_size = cpu_to_le64((u64)i_size_read(inode));
832         inode->i_mtime = inode->i_ctime = CURRENT_TIME;
833         di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
834         di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
835         di->i_mtime_nsec = di->i_ctime_nsec;
836         if (handle) {
837                 ocfs2_journal_dirty(handle, di_bh);
838                 ocfs2_update_inode_fsync_trans(handle, inode, 1);
839         }
840
841 out_unlock:
842         unlock_page(page);
843         page_cache_release(page);
844 out_commit_trans:
845         if (handle)
846                 ocfs2_commit_trans(OCFS2_SB(inode->i_sb), handle);
847 out:
848         return ret;
849 }
850
851 /*
852  * Find the next range to zero.  We do this in terms of bytes because
853  * that's what ocfs2_zero_extend() wants, and it is dealing with the
854  * pagecache.  We may return multiple extents.
855  *
856  * zero_start and zero_end are ocfs2_zero_extend()s current idea of what
857  * needs to be zeroed.  range_start and range_end return the next zeroing
858  * range.  A subsequent call should pass the previous range_end as its
859  * zero_start.  If range_end is 0, there's nothing to do.
860  *
861  * Unwritten extents are skipped over.  Refcounted extents are CoWd.
862  */
863 static int ocfs2_zero_extend_get_range(struct inode *inode,
864                                        struct buffer_head *di_bh,
865                                        u64 zero_start, u64 zero_end,
866                                        u64 *range_start, u64 *range_end)
867 {
868         int rc = 0, needs_cow = 0;
869         u32 p_cpos, zero_clusters = 0;
870         u32 zero_cpos =
871                 zero_start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
872         u32 last_cpos = ocfs2_clusters_for_bytes(inode->i_sb, zero_end);
873         unsigned int num_clusters = 0;
874         unsigned int ext_flags = 0;
875
876         while (zero_cpos < last_cpos) {
877                 rc = ocfs2_get_clusters(inode, zero_cpos, &p_cpos,
878                                         &num_clusters, &ext_flags);
879                 if (rc) {
880                         mlog_errno(rc);
881                         goto out;
882                 }
883
884                 if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) {
885                         zero_clusters = num_clusters;
886                         if (ext_flags & OCFS2_EXT_REFCOUNTED)
887                                 needs_cow = 1;
888                         break;
889                 }
890
891                 zero_cpos += num_clusters;
892         }
893         if (!zero_clusters) {
894                 *range_end = 0;
895                 goto out;
896         }
897
898         while ((zero_cpos + zero_clusters) < last_cpos) {
899                 rc = ocfs2_get_clusters(inode, zero_cpos + zero_clusters,
900                                         &p_cpos, &num_clusters,
901                                         &ext_flags);
902                 if (rc) {
903                         mlog_errno(rc);
904                         goto out;
905                 }
906
907                 if (!p_cpos || (ext_flags & OCFS2_EXT_UNWRITTEN))
908                         break;
909                 if (ext_flags & OCFS2_EXT_REFCOUNTED)
910                         needs_cow = 1;
911                 zero_clusters += num_clusters;
912         }
913         if ((zero_cpos + zero_clusters) > last_cpos)
914                 zero_clusters = last_cpos - zero_cpos;
915
916         if (needs_cow) {
917                 rc = ocfs2_refcount_cow(inode, di_bh, zero_cpos,
918                                         zero_clusters, UINT_MAX);
919                 if (rc) {
920                         mlog_errno(rc);
921                         goto out;
922                 }
923         }
924
925         *range_start = ocfs2_clusters_to_bytes(inode->i_sb, zero_cpos);
926         *range_end = ocfs2_clusters_to_bytes(inode->i_sb,
927                                              zero_cpos + zero_clusters);
928
929 out:
930         return rc;
931 }
932
933 /*
934  * Zero one range returned from ocfs2_zero_extend_get_range().  The caller
935  * has made sure that the entire range needs zeroing.
936  */
937 static int ocfs2_zero_extend_range(struct inode *inode, u64 range_start,
938                                    u64 range_end, struct buffer_head *di_bh)
939 {
940         int rc = 0;
941         u64 next_pos;
942         u64 zero_pos = range_start;
943
944         trace_ocfs2_zero_extend_range(
945                         (unsigned long long)OCFS2_I(inode)->ip_blkno,
946                         (unsigned long long)range_start,
947                         (unsigned long long)range_end);
948         BUG_ON(range_start >= range_end);
949
950         while (zero_pos < range_end) {
951                 next_pos = (zero_pos & PAGE_CACHE_MASK) + PAGE_CACHE_SIZE;
952                 if (next_pos > range_end)
953                         next_pos = range_end;
954                 rc = ocfs2_write_zero_page(inode, zero_pos, next_pos, di_bh);
955                 if (rc < 0) {
956                         mlog_errno(rc);
957                         break;
958                 }
959                 zero_pos = next_pos;
960
961                 /*
962                  * Very large extends have the potential to lock up
963                  * the cpu for extended periods of time.
964                  */
965                 cond_resched();
966         }
967
968         return rc;
969 }
970
971 int ocfs2_zero_extend(struct inode *inode, struct buffer_head *di_bh,
972                       loff_t zero_to_size)
973 {
974         int ret = 0;
975         u64 zero_start, range_start = 0, range_end = 0;
976         struct super_block *sb = inode->i_sb;
977
978         zero_start = ocfs2_align_bytes_to_blocks(sb, i_size_read(inode));
979         trace_ocfs2_zero_extend((unsigned long long)OCFS2_I(inode)->ip_blkno,
980                                 (unsigned long long)zero_start,
981                                 (unsigned long long)i_size_read(inode));
982         while (zero_start < zero_to_size) {
983                 ret = ocfs2_zero_extend_get_range(inode, di_bh, zero_start,
984                                                   zero_to_size,
985                                                   &range_start,
986                                                   &range_end);
987                 if (ret) {
988                         mlog_errno(ret);
989                         break;
990                 }
991                 if (!range_end)
992                         break;
993                 /* Trim the ends */
994                 if (range_start < zero_start)
995                         range_start = zero_start;
996                 if (range_end > zero_to_size)
997                         range_end = zero_to_size;
998
999                 ret = ocfs2_zero_extend_range(inode, range_start,
1000                                               range_end, di_bh);
1001                 if (ret) {
1002                         mlog_errno(ret);
1003                         break;
1004                 }
1005                 zero_start = range_end;
1006         }
1007
1008         return ret;
1009 }
1010
1011 int ocfs2_extend_no_holes(struct inode *inode, struct buffer_head *di_bh,
1012                           u64 new_i_size, u64 zero_to)
1013 {
1014         int ret;
1015         u32 clusters_to_add;
1016         struct ocfs2_inode_info *oi = OCFS2_I(inode);
1017
1018         /*
1019          * Only quota files call this without a bh, and they can't be
1020          * refcounted.
1021          */
1022         BUG_ON(!di_bh && (oi->ip_dyn_features & OCFS2_HAS_REFCOUNT_FL));
1023         BUG_ON(!di_bh && !(oi->ip_flags & OCFS2_INODE_SYSTEM_FILE));
1024
1025         clusters_to_add = ocfs2_clusters_for_bytes(inode->i_sb, new_i_size);
1026         if (clusters_to_add < oi->ip_clusters)
1027                 clusters_to_add = 0;
1028         else
1029                 clusters_to_add -= oi->ip_clusters;
1030
1031         if (clusters_to_add) {
1032                 ret = __ocfs2_extend_allocation(inode, oi->ip_clusters,
1033                                                 clusters_to_add, 0);
1034                 if (ret) {
1035                         mlog_errno(ret);
1036                         goto out;
1037                 }
1038         }
1039
1040         /*
1041          * Call this even if we don't add any clusters to the tree. We
1042          * still need to zero the area between the old i_size and the
1043          * new i_size.
1044          */
1045         ret = ocfs2_zero_extend(inode, di_bh, zero_to);
1046         if (ret < 0)
1047                 mlog_errno(ret);
1048
1049 out:
1050         return ret;
1051 }
1052
1053 static int ocfs2_extend_file(struct inode *inode,
1054                              struct buffer_head *di_bh,
1055                              u64 new_i_size)
1056 {
1057         int ret = 0;
1058         struct ocfs2_inode_info *oi = OCFS2_I(inode);
1059
1060         BUG_ON(!di_bh);
1061
1062         /* setattr sometimes calls us like this. */
1063         if (new_i_size == 0)
1064                 goto out;
1065
1066         if (i_size_read(inode) == new_i_size)
1067                 goto out;
1068         BUG_ON(new_i_size < i_size_read(inode));
1069
1070         /*
1071          * The alloc sem blocks people in read/write from reading our
1072          * allocation until we're done changing it. We depend on
1073          * i_mutex to block other extend/truncate calls while we're
1074          * here.  We even have to hold it for sparse files because there
1075          * might be some tail zeroing.
1076          */
1077         down_write(&oi->ip_alloc_sem);
1078
1079         if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1080                 /*
1081                  * We can optimize small extends by keeping the inodes
1082                  * inline data.
1083                  */
1084                 if (ocfs2_size_fits_inline_data(di_bh, new_i_size)) {
1085                         up_write(&oi->ip_alloc_sem);
1086                         goto out_update_size;
1087                 }
1088
1089                 ret = ocfs2_convert_inline_data_to_extents(inode, di_bh);
1090                 if (ret) {
1091                         up_write(&oi->ip_alloc_sem);
1092                         mlog_errno(ret);
1093                         goto out;
1094                 }
1095         }
1096
1097         if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
1098                 ret = ocfs2_zero_extend(inode, di_bh, new_i_size);
1099         else
1100                 ret = ocfs2_extend_no_holes(inode, di_bh, new_i_size,
1101                                             new_i_size);
1102
1103         up_write(&oi->ip_alloc_sem);
1104
1105         if (ret < 0) {
1106                 mlog_errno(ret);
1107                 goto out;
1108         }
1109
1110 out_update_size:
1111         ret = ocfs2_simple_size_update(inode, di_bh, new_i_size);
1112         if (ret < 0)
1113                 mlog_errno(ret);
1114
1115 out:
1116         return ret;
1117 }
1118
1119 int ocfs2_setattr(struct dentry *dentry, struct iattr *attr)
1120 {
1121         int status = 0, size_change;
1122         struct inode *inode = dentry->d_inode;
1123         struct super_block *sb = inode->i_sb;
1124         struct ocfs2_super *osb = OCFS2_SB(sb);
1125         struct buffer_head *bh = NULL;
1126         handle_t *handle = NULL;
1127         struct dquot *transfer_to[MAXQUOTAS] = { };
1128         int qtype;
1129
1130         trace_ocfs2_setattr(inode, dentry,
1131                             (unsigned long long)OCFS2_I(inode)->ip_blkno,
1132                             dentry->d_name.len, dentry->d_name.name,
1133                             attr->ia_valid, attr->ia_mode,
1134                             from_kuid(&init_user_ns, attr->ia_uid),
1135                             from_kgid(&init_user_ns, attr->ia_gid));
1136
1137         /* ensuring we don't even attempt to truncate a symlink */
1138         if (S_ISLNK(inode->i_mode))
1139                 attr->ia_valid &= ~ATTR_SIZE;
1140
1141 #define OCFS2_VALID_ATTRS (ATTR_ATIME | ATTR_MTIME | ATTR_CTIME | ATTR_SIZE \
1142                            | ATTR_GID | ATTR_UID | ATTR_MODE)
1143         if (!(attr->ia_valid & OCFS2_VALID_ATTRS))
1144                 return 0;
1145
1146         status = inode_change_ok(inode, attr);
1147         if (status)
1148                 return status;
1149
1150         if (is_quota_modification(inode, attr))
1151                 dquot_initialize(inode);
1152         size_change = S_ISREG(inode->i_mode) && attr->ia_valid & ATTR_SIZE;
1153         if (size_change) {
1154                 status = ocfs2_rw_lock(inode, 1);
1155                 if (status < 0) {
1156                         mlog_errno(status);
1157                         goto bail;
1158                 }
1159         }
1160
1161         status = ocfs2_inode_lock(inode, &bh, 1);
1162         if (status < 0) {
1163                 if (status != -ENOENT)
1164                         mlog_errno(status);
1165                 goto bail_unlock_rw;
1166         }
1167
1168         if (size_change) {
1169                 status = inode_newsize_ok(inode, attr->ia_size);
1170                 if (status)
1171                         goto bail_unlock;
1172
1173                 inode_dio_wait(inode);
1174
1175                 if (i_size_read(inode) >= attr->ia_size) {
1176                         if (ocfs2_should_order_data(inode)) {
1177                                 status = ocfs2_begin_ordered_truncate(inode,
1178                                                                       attr->ia_size);
1179                                 if (status)
1180                                         goto bail_unlock;
1181                         }
1182                         status = ocfs2_truncate_file(inode, bh, attr->ia_size);
1183                 } else
1184                         status = ocfs2_extend_file(inode, bh, attr->ia_size);
1185                 if (status < 0) {
1186                         if (status != -ENOSPC)
1187                                 mlog_errno(status);
1188                         status = -ENOSPC;
1189                         goto bail_unlock;
1190                 }
1191         }
1192
1193         if ((attr->ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
1194             (attr->ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
1195                 /*
1196                  * Gather pointers to quota structures so that allocation /
1197                  * freeing of quota structures happens here and not inside
1198                  * dquot_transfer() where we have problems with lock ordering
1199                  */
1200                 if (attr->ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)
1201                     && OCFS2_HAS_RO_COMPAT_FEATURE(sb,
1202                     OCFS2_FEATURE_RO_COMPAT_USRQUOTA)) {
1203                         transfer_to[USRQUOTA] = dqget(sb, make_kqid_uid(attr->ia_uid));
1204                         if (!transfer_to[USRQUOTA]) {
1205                                 status = -ESRCH;
1206                                 goto bail_unlock;
1207                         }
1208                 }
1209                 if (attr->ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid)
1210                     && OCFS2_HAS_RO_COMPAT_FEATURE(sb,
1211                     OCFS2_FEATURE_RO_COMPAT_GRPQUOTA)) {
1212                         transfer_to[GRPQUOTA] = dqget(sb, make_kqid_gid(attr->ia_gid));
1213                         if (!transfer_to[GRPQUOTA]) {
1214                                 status = -ESRCH;
1215                                 goto bail_unlock;
1216                         }
1217                 }
1218                 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS +
1219                                            2 * ocfs2_quota_trans_credits(sb));
1220                 if (IS_ERR(handle)) {
1221                         status = PTR_ERR(handle);
1222                         mlog_errno(status);
1223                         goto bail_unlock;
1224                 }
1225                 status = __dquot_transfer(inode, transfer_to);
1226                 if (status < 0)
1227                         goto bail_commit;
1228         } else {
1229                 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1230                 if (IS_ERR(handle)) {
1231                         status = PTR_ERR(handle);
1232                         mlog_errno(status);
1233                         goto bail_unlock;
1234                 }
1235         }
1236
1237         setattr_copy(inode, attr);
1238         mark_inode_dirty(inode);
1239
1240         status = ocfs2_mark_inode_dirty(handle, inode, bh);
1241         if (status < 0)
1242                 mlog_errno(status);
1243
1244 bail_commit:
1245         ocfs2_commit_trans(osb, handle);
1246 bail_unlock:
1247         ocfs2_inode_unlock(inode, 1);
1248 bail_unlock_rw:
1249         if (size_change)
1250                 ocfs2_rw_unlock(inode, 1);
1251 bail:
1252         brelse(bh);
1253
1254         /* Release quota pointers in case we acquired them */
1255         for (qtype = 0; qtype < OCFS2_MAXQUOTAS; qtype++)
1256                 dqput(transfer_to[qtype]);
1257
1258         if (!status && attr->ia_valid & ATTR_MODE) {
1259                 status = posix_acl_chmod(inode, inode->i_mode);
1260                 if (status < 0)
1261                         mlog_errno(status);
1262         }
1263
1264         return status;
1265 }
1266
1267 int ocfs2_getattr(struct vfsmount *mnt,
1268                   struct dentry *dentry,
1269                   struct kstat *stat)
1270 {
1271         struct inode *inode = dentry->d_inode;
1272         struct super_block *sb = dentry->d_inode->i_sb;
1273         struct ocfs2_super *osb = sb->s_fs_info;
1274         int err;
1275
1276         err = ocfs2_inode_revalidate(dentry);
1277         if (err) {
1278                 if (err != -ENOENT)
1279                         mlog_errno(err);
1280                 goto bail;
1281         }
1282
1283         generic_fillattr(inode, stat);
1284
1285         /* We set the blksize from the cluster size for performance */
1286         stat->blksize = osb->s_clustersize;
1287
1288 bail:
1289         return err;
1290 }
1291
1292 int ocfs2_permission(struct inode *inode, int mask)
1293 {
1294         int ret;
1295
1296         if (mask & MAY_NOT_BLOCK)
1297                 return -ECHILD;
1298
1299         ret = ocfs2_inode_lock(inode, NULL, 0);
1300         if (ret) {
1301                 if (ret != -ENOENT)
1302                         mlog_errno(ret);
1303                 goto out;
1304         }
1305
1306         ret = generic_permission(inode, mask);
1307
1308         ocfs2_inode_unlock(inode, 0);
1309 out:
1310         return ret;
1311 }
1312
1313 static int __ocfs2_write_remove_suid(struct inode *inode,
1314                                      struct buffer_head *bh)
1315 {
1316         int ret;
1317         handle_t *handle;
1318         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1319         struct ocfs2_dinode *di;
1320
1321         trace_ocfs2_write_remove_suid(
1322                         (unsigned long long)OCFS2_I(inode)->ip_blkno,
1323                         inode->i_mode);
1324
1325         handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1326         if (IS_ERR(handle)) {
1327                 ret = PTR_ERR(handle);
1328                 mlog_errno(ret);
1329                 goto out;
1330         }
1331
1332         ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
1333                                       OCFS2_JOURNAL_ACCESS_WRITE);
1334         if (ret < 0) {
1335                 mlog_errno(ret);
1336                 goto out_trans;
1337         }
1338
1339         inode->i_mode &= ~S_ISUID;
1340         if ((inode->i_mode & S_ISGID) && (inode->i_mode & S_IXGRP))
1341                 inode->i_mode &= ~S_ISGID;
1342
1343         di = (struct ocfs2_dinode *) bh->b_data;
1344         di->i_mode = cpu_to_le16(inode->i_mode);
1345         ocfs2_update_inode_fsync_trans(handle, inode, 0);
1346
1347         ocfs2_journal_dirty(handle, bh);
1348
1349 out_trans:
1350         ocfs2_commit_trans(osb, handle);
1351 out:
1352         return ret;
1353 }
1354
1355 /*
1356  * Will look for holes and unwritten extents in the range starting at
1357  * pos for count bytes (inclusive).
1358  */
1359 static int ocfs2_check_range_for_holes(struct inode *inode, loff_t pos,
1360                                        size_t count)
1361 {
1362         int ret = 0;
1363         unsigned int extent_flags;
1364         u32 cpos, clusters, extent_len, phys_cpos;
1365         struct super_block *sb = inode->i_sb;
1366
1367         cpos = pos >> OCFS2_SB(sb)->s_clustersize_bits;
1368         clusters = ocfs2_clusters_for_bytes(sb, pos + count) - cpos;
1369
1370         while (clusters) {
1371                 ret = ocfs2_get_clusters(inode, cpos, &phys_cpos, &extent_len,
1372                                          &extent_flags);
1373                 if (ret < 0) {
1374                         mlog_errno(ret);
1375                         goto out;
1376                 }
1377
1378                 if (phys_cpos == 0 || (extent_flags & OCFS2_EXT_UNWRITTEN)) {
1379                         ret = 1;
1380                         break;
1381                 }
1382
1383                 if (extent_len > clusters)
1384                         extent_len = clusters;
1385
1386                 clusters -= extent_len;
1387                 cpos += extent_len;
1388         }
1389 out:
1390         return ret;
1391 }
1392
1393 static int ocfs2_write_remove_suid(struct inode *inode)
1394 {
1395         int ret;
1396         struct buffer_head *bh = NULL;
1397
1398         ret = ocfs2_read_inode_block(inode, &bh);
1399         if (ret < 0) {
1400                 mlog_errno(ret);
1401                 goto out;
1402         }
1403
1404         ret =  __ocfs2_write_remove_suid(inode, bh);
1405 out:
1406         brelse(bh);
1407         return ret;
1408 }
1409
1410 /*
1411  * Allocate enough extents to cover the region starting at byte offset
1412  * start for len bytes. Existing extents are skipped, any extents
1413  * added are marked as "unwritten".
1414  */
1415 static int ocfs2_allocate_unwritten_extents(struct inode *inode,
1416                                             u64 start, u64 len)
1417 {
1418         int ret;
1419         u32 cpos, phys_cpos, clusters, alloc_size;
1420         u64 end = start + len;
1421         struct buffer_head *di_bh = NULL;
1422
1423         if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1424                 ret = ocfs2_read_inode_block(inode, &di_bh);
1425                 if (ret) {
1426                         mlog_errno(ret);
1427                         goto out;
1428                 }
1429
1430                 /*
1431                  * Nothing to do if the requested reservation range
1432                  * fits within the inode.
1433                  */
1434                 if (ocfs2_size_fits_inline_data(di_bh, end))
1435                         goto out;
1436
1437                 ret = ocfs2_convert_inline_data_to_extents(inode, di_bh);
1438                 if (ret) {
1439                         mlog_errno(ret);
1440                         goto out;
1441                 }
1442         }
1443
1444         /*
1445          * We consider both start and len to be inclusive.
1446          */
1447         cpos = start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
1448         clusters = ocfs2_clusters_for_bytes(inode->i_sb, start + len);
1449         clusters -= cpos;
1450
1451         while (clusters) {
1452                 ret = ocfs2_get_clusters(inode, cpos, &phys_cpos,
1453                                          &alloc_size, NULL);
1454                 if (ret) {
1455                         mlog_errno(ret);
1456                         goto out;
1457                 }
1458
1459                 /*
1460                  * Hole or existing extent len can be arbitrary, so
1461                  * cap it to our own allocation request.
1462                  */
1463                 if (alloc_size > clusters)
1464                         alloc_size = clusters;
1465
1466                 if (phys_cpos) {
1467                         /*
1468                          * We already have an allocation at this
1469                          * region so we can safely skip it.
1470                          */
1471                         goto next;
1472                 }
1473
1474                 ret = __ocfs2_extend_allocation(inode, cpos, alloc_size, 1);
1475                 if (ret) {
1476                         if (ret != -ENOSPC)
1477                                 mlog_errno(ret);
1478                         goto out;
1479                 }
1480
1481 next:
1482                 cpos += alloc_size;
1483                 clusters -= alloc_size;
1484         }
1485
1486         ret = 0;
1487 out:
1488
1489         brelse(di_bh);
1490         return ret;
1491 }
1492
1493 /*
1494  * Truncate a byte range, avoiding pages within partial clusters. This
1495  * preserves those pages for the zeroing code to write to.
1496  */
1497 static void ocfs2_truncate_cluster_pages(struct inode *inode, u64 byte_start,
1498                                          u64 byte_len)
1499 {
1500         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1501         loff_t start, end;
1502         struct address_space *mapping = inode->i_mapping;
1503
1504         start = (loff_t)ocfs2_align_bytes_to_clusters(inode->i_sb, byte_start);
1505         end = byte_start + byte_len;
1506         end = end & ~(osb->s_clustersize - 1);
1507
1508         if (start < end) {
1509                 unmap_mapping_range(mapping, start, end - start, 0);
1510                 truncate_inode_pages_range(mapping, start, end - 1);
1511         }
1512 }
1513
1514 static int ocfs2_zero_partial_clusters(struct inode *inode,
1515                                        u64 start, u64 len)
1516 {
1517         int ret = 0;
1518         u64 tmpend, end = start + len;
1519         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1520         unsigned int csize = osb->s_clustersize;
1521         handle_t *handle;
1522
1523         /*
1524          * The "start" and "end" values are NOT necessarily part of
1525          * the range whose allocation is being deleted. Rather, this
1526          * is what the user passed in with the request. We must zero
1527          * partial clusters here. There's no need to worry about
1528          * physical allocation - the zeroing code knows to skip holes.
1529          */
1530         trace_ocfs2_zero_partial_clusters(
1531                 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1532                 (unsigned long long)start, (unsigned long long)end);
1533
1534         /*
1535          * If both edges are on a cluster boundary then there's no
1536          * zeroing required as the region is part of the allocation to
1537          * be truncated.
1538          */
1539         if ((start & (csize - 1)) == 0 && (end & (csize - 1)) == 0)
1540                 goto out;
1541
1542         handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1543         if (IS_ERR(handle)) {
1544                 ret = PTR_ERR(handle);
1545                 mlog_errno(ret);
1546                 goto out;
1547         }
1548
1549         /*
1550          * We want to get the byte offset of the end of the 1st cluster.
1551          */
1552         tmpend = (u64)osb->s_clustersize + (start & ~(osb->s_clustersize - 1));
1553         if (tmpend > end)
1554                 tmpend = end;
1555
1556         trace_ocfs2_zero_partial_clusters_range1((unsigned long long)start,
1557                                                  (unsigned long long)tmpend);
1558
1559         ret = ocfs2_zero_range_for_truncate(inode, handle, start, tmpend);
1560         if (ret)
1561                 mlog_errno(ret);
1562
1563         if (tmpend < end) {
1564                 /*
1565                  * This may make start and end equal, but the zeroing
1566                  * code will skip any work in that case so there's no
1567                  * need to catch it up here.
1568                  */
1569                 start = end & ~(osb->s_clustersize - 1);
1570
1571                 trace_ocfs2_zero_partial_clusters_range2(
1572                         (unsigned long long)start, (unsigned long long)end);
1573
1574                 ret = ocfs2_zero_range_for_truncate(inode, handle, start, end);
1575                 if (ret)
1576                         mlog_errno(ret);
1577         }
1578         ocfs2_update_inode_fsync_trans(handle, inode, 1);
1579
1580         ocfs2_commit_trans(osb, handle);
1581 out:
1582         return ret;
1583 }
1584
1585 static int ocfs2_find_rec(struct ocfs2_extent_list *el, u32 pos)
1586 {
1587         int i;
1588         struct ocfs2_extent_rec *rec = NULL;
1589
1590         for (i = le16_to_cpu(el->l_next_free_rec) - 1; i >= 0; i--) {
1591
1592                 rec = &el->l_recs[i];
1593
1594                 if (le32_to_cpu(rec->e_cpos) < pos)
1595                         break;
1596         }
1597
1598         return i;
1599 }
1600
1601 /*
1602  * Helper to calculate the punching pos and length in one run, we handle the
1603  * following three cases in order:
1604  *
1605  * - remove the entire record
1606  * - remove a partial record
1607  * - no record needs to be removed (hole-punching completed)
1608 */
1609 static void ocfs2_calc_trunc_pos(struct inode *inode,
1610                                  struct ocfs2_extent_list *el,
1611                                  struct ocfs2_extent_rec *rec,
1612                                  u32 trunc_start, u32 *trunc_cpos,
1613                                  u32 *trunc_len, u32 *trunc_end,
1614                                  u64 *blkno, int *done)
1615 {
1616         int ret = 0;
1617         u32 coff, range;
1618
1619         range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
1620
1621         if (le32_to_cpu(rec->e_cpos) >= trunc_start) {
1622                 /*
1623                  * remove an entire extent record.
1624                  */
1625                 *trunc_cpos = le32_to_cpu(rec->e_cpos);
1626                 /*
1627                  * Skip holes if any.
1628                  */
1629                 if (range < *trunc_end)
1630                         *trunc_end = range;
1631                 *trunc_len = *trunc_end - le32_to_cpu(rec->e_cpos);
1632                 *blkno = le64_to_cpu(rec->e_blkno);
1633                 *trunc_end = le32_to_cpu(rec->e_cpos);
1634         } else if (range > trunc_start) {
1635                 /*
1636                  * remove a partial extent record, which means we're
1637                  * removing the last extent record.
1638                  */
1639                 *trunc_cpos = trunc_start;
1640                 /*
1641                  * skip hole if any.
1642                  */
1643                 if (range < *trunc_end)
1644                         *trunc_end = range;
1645                 *trunc_len = *trunc_end - trunc_start;
1646                 coff = trunc_start - le32_to_cpu(rec->e_cpos);
1647                 *blkno = le64_to_cpu(rec->e_blkno) +
1648                                 ocfs2_clusters_to_blocks(inode->i_sb, coff);
1649                 *trunc_end = trunc_start;
1650         } else {
1651                 /*
1652                  * It may have two following possibilities:
1653                  *
1654                  * - last record has been removed
1655                  * - trunc_start was within a hole
1656                  *
1657                  * both two cases mean the completion of hole punching.
1658                  */
1659                 ret = 1;
1660         }
1661
1662         *done = ret;
1663 }
1664
1665 static int ocfs2_remove_inode_range(struct inode *inode,
1666                                     struct buffer_head *di_bh, u64 byte_start,
1667                                     u64 byte_len)
1668 {
1669         int ret = 0, flags = 0, done = 0, i;
1670         u32 trunc_start, trunc_len, trunc_end, trunc_cpos, phys_cpos;
1671         u32 cluster_in_el;
1672         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1673         struct ocfs2_cached_dealloc_ctxt dealloc;
1674         struct address_space *mapping = inode->i_mapping;
1675         struct ocfs2_extent_tree et;
1676         struct ocfs2_path *path = NULL;
1677         struct ocfs2_extent_list *el = NULL;
1678         struct ocfs2_extent_rec *rec = NULL;
1679         struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1680         u64 blkno, refcount_loc = le64_to_cpu(di->i_refcount_loc);
1681
1682         ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
1683         ocfs2_init_dealloc_ctxt(&dealloc);
1684
1685         trace_ocfs2_remove_inode_range(
1686                         (unsigned long long)OCFS2_I(inode)->ip_blkno,
1687                         (unsigned long long)byte_start,
1688                         (unsigned long long)byte_len);
1689
1690         if (byte_len == 0)
1691                 return 0;
1692
1693         if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1694                 ret = ocfs2_truncate_inline(inode, di_bh, byte_start,
1695                                             byte_start + byte_len, 0);
1696                 if (ret) {
1697                         mlog_errno(ret);
1698                         goto out;
1699                 }
1700                 /*
1701                  * There's no need to get fancy with the page cache
1702                  * truncate of an inline-data inode. We're talking
1703                  * about less than a page here, which will be cached
1704                  * in the dinode buffer anyway.
1705                  */
1706                 unmap_mapping_range(mapping, 0, 0, 0);
1707                 truncate_inode_pages(mapping, 0);
1708                 goto out;
1709         }
1710
1711         /*
1712          * For reflinks, we may need to CoW 2 clusters which might be
1713          * partially zero'd later, if hole's start and end offset were
1714          * within one cluster(means is not exactly aligned to clustersize).
1715          */
1716
1717         if (OCFS2_I(inode)->ip_dyn_features & OCFS2_HAS_REFCOUNT_FL) {
1718
1719                 ret = ocfs2_cow_file_pos(inode, di_bh, byte_start);
1720                 if (ret) {
1721                         mlog_errno(ret);
1722                         goto out;
1723                 }
1724
1725                 ret = ocfs2_cow_file_pos(inode, di_bh, byte_start + byte_len);
1726                 if (ret) {
1727                         mlog_errno(ret);
1728                         goto out;
1729                 }
1730         }
1731
1732         trunc_start = ocfs2_clusters_for_bytes(osb->sb, byte_start);
1733         trunc_end = (byte_start + byte_len) >> osb->s_clustersize_bits;
1734         cluster_in_el = trunc_end;
1735
1736         ret = ocfs2_zero_partial_clusters(inode, byte_start, byte_len);
1737         if (ret) {
1738                 mlog_errno(ret);
1739                 goto out;
1740         }
1741
1742         path = ocfs2_new_path_from_et(&et);
1743         if (!path) {
1744                 ret = -ENOMEM;
1745                 mlog_errno(ret);
1746                 goto out;
1747         }
1748
1749         while (trunc_end > trunc_start) {
1750
1751                 ret = ocfs2_find_path(INODE_CACHE(inode), path,
1752                                       cluster_in_el);
1753                 if (ret) {
1754                         mlog_errno(ret);
1755                         goto out;
1756                 }
1757
1758                 el = path_leaf_el(path);
1759
1760                 i = ocfs2_find_rec(el, trunc_end);
1761                 /*
1762                  * Need to go to previous extent block.
1763                  */
1764                 if (i < 0) {
1765                         if (path->p_tree_depth == 0)
1766                                 break;
1767
1768                         ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb,
1769                                                             path,
1770                                                             &cluster_in_el);
1771                         if (ret) {
1772                                 mlog_errno(ret);
1773                                 goto out;
1774                         }
1775
1776                         /*
1777                          * We've reached the leftmost extent block,
1778                          * it's safe to leave.
1779                          */
1780                         if (cluster_in_el == 0)
1781                                 break;
1782
1783                         /*
1784                          * The 'pos' searched for previous extent block is
1785                          * always one cluster less than actual trunc_end.
1786                          */
1787                         trunc_end = cluster_in_el + 1;
1788
1789                         ocfs2_reinit_path(path, 1);
1790
1791                         continue;
1792
1793                 } else
1794                         rec = &el->l_recs[i];
1795
1796                 ocfs2_calc_trunc_pos(inode, el, rec, trunc_start, &trunc_cpos,
1797                                      &trunc_len, &trunc_end, &blkno, &done);
1798                 if (done)
1799                         break;
1800
1801                 flags = rec->e_flags;
1802                 phys_cpos = ocfs2_blocks_to_clusters(inode->i_sb, blkno);
1803
1804                 ret = ocfs2_remove_btree_range(inode, &et, trunc_cpos,
1805                                                phys_cpos, trunc_len, flags,
1806                                                &dealloc, refcount_loc, false);
1807                 if (ret < 0) {
1808                         mlog_errno(ret);
1809                         goto out;
1810                 }
1811
1812                 cluster_in_el = trunc_end;
1813
1814                 ocfs2_reinit_path(path, 1);
1815         }
1816
1817         ocfs2_truncate_cluster_pages(inode, byte_start, byte_len);
1818
1819 out:
1820         ocfs2_free_path(path);
1821         ocfs2_schedule_truncate_log_flush(osb, 1);
1822         ocfs2_run_deallocs(osb, &dealloc);
1823
1824         return ret;
1825 }
1826
1827 /*
1828  * Parts of this function taken from xfs_change_file_space()
1829  */
1830 static int __ocfs2_change_file_space(struct file *file, struct inode *inode,
1831                                      loff_t f_pos, unsigned int cmd,
1832                                      struct ocfs2_space_resv *sr,
1833                                      int change_size)
1834 {
1835         int ret;
1836         s64 llen;
1837         loff_t size;
1838         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1839         struct buffer_head *di_bh = NULL;
1840         handle_t *handle;
1841         unsigned long long max_off = inode->i_sb->s_maxbytes;
1842
1843         if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
1844                 return -EROFS;
1845
1846         mutex_lock(&inode->i_mutex);
1847
1848         /*
1849          * This prevents concurrent writes on other nodes
1850          */
1851         ret = ocfs2_rw_lock(inode, 1);
1852         if (ret) {
1853                 mlog_errno(ret);
1854                 goto out;
1855         }
1856
1857         ret = ocfs2_inode_lock(inode, &di_bh, 1);
1858         if (ret) {
1859                 mlog_errno(ret);
1860                 goto out_rw_unlock;
1861         }
1862
1863         if (inode->i_flags & (S_IMMUTABLE|S_APPEND)) {
1864                 ret = -EPERM;
1865                 goto out_inode_unlock;
1866         }
1867
1868         switch (sr->l_whence) {
1869         case 0: /*SEEK_SET*/
1870                 break;
1871         case 1: /*SEEK_CUR*/
1872                 sr->l_start += f_pos;
1873                 break;
1874         case 2: /*SEEK_END*/
1875                 sr->l_start += i_size_read(inode);
1876                 break;
1877         default:
1878                 ret = -EINVAL;
1879                 goto out_inode_unlock;
1880         }
1881         sr->l_whence = 0;
1882
1883         llen = sr->l_len > 0 ? sr->l_len - 1 : sr->l_len;
1884
1885         if (sr->l_start < 0
1886             || sr->l_start > max_off
1887             || (sr->l_start + llen) < 0
1888             || (sr->l_start + llen) > max_off) {
1889                 ret = -EINVAL;
1890                 goto out_inode_unlock;
1891         }
1892         size = sr->l_start + sr->l_len;
1893
1894         if (cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64 ||
1895             cmd == OCFS2_IOC_UNRESVSP || cmd == OCFS2_IOC_UNRESVSP64) {
1896                 if (sr->l_len <= 0) {
1897                         ret = -EINVAL;
1898                         goto out_inode_unlock;
1899                 }
1900         }
1901
1902         if (file && should_remove_suid(file->f_path.dentry)) {
1903                 ret = __ocfs2_write_remove_suid(inode, di_bh);
1904                 if (ret) {
1905                         mlog_errno(ret);
1906                         goto out_inode_unlock;
1907                 }
1908         }
1909
1910         down_write(&OCFS2_I(inode)->ip_alloc_sem);
1911         switch (cmd) {
1912         case OCFS2_IOC_RESVSP:
1913         case OCFS2_IOC_RESVSP64:
1914                 /*
1915                  * This takes unsigned offsets, but the signed ones we
1916                  * pass have been checked against overflow above.
1917                  */
1918                 ret = ocfs2_allocate_unwritten_extents(inode, sr->l_start,
1919                                                        sr->l_len);
1920                 break;
1921         case OCFS2_IOC_UNRESVSP:
1922         case OCFS2_IOC_UNRESVSP64:
1923                 ret = ocfs2_remove_inode_range(inode, di_bh, sr->l_start,
1924                                                sr->l_len);
1925                 break;
1926         default:
1927                 ret = -EINVAL;
1928         }
1929         up_write(&OCFS2_I(inode)->ip_alloc_sem);
1930         if (ret) {
1931                 mlog_errno(ret);
1932                 goto out_inode_unlock;
1933         }
1934
1935         /*
1936          * We update c/mtime for these changes
1937          */
1938         handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1939         if (IS_ERR(handle)) {
1940                 ret = PTR_ERR(handle);
1941                 mlog_errno(ret);
1942                 goto out_inode_unlock;
1943         }
1944
1945         if (change_size && i_size_read(inode) < size)
1946                 i_size_write(inode, size);
1947
1948         inode->i_ctime = inode->i_mtime = CURRENT_TIME;
1949         ret = ocfs2_mark_inode_dirty(handle, inode, di_bh);
1950         if (ret < 0)
1951                 mlog_errno(ret);
1952
1953         if (file && (file->f_flags & O_SYNC))
1954                 handle->h_sync = 1;
1955
1956         ocfs2_commit_trans(osb, handle);
1957
1958 out_inode_unlock:
1959         brelse(di_bh);
1960         ocfs2_inode_unlock(inode, 1);
1961 out_rw_unlock:
1962         ocfs2_rw_unlock(inode, 1);
1963
1964 out:
1965         mutex_unlock(&inode->i_mutex);
1966         return ret;
1967 }
1968
1969 int ocfs2_change_file_space(struct file *file, unsigned int cmd,
1970                             struct ocfs2_space_resv *sr)
1971 {
1972         struct inode *inode = file_inode(file);
1973         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1974         int ret;
1975
1976         if ((cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64) &&
1977             !ocfs2_writes_unwritten_extents(osb))
1978                 return -ENOTTY;
1979         else if ((cmd == OCFS2_IOC_UNRESVSP || cmd == OCFS2_IOC_UNRESVSP64) &&
1980                  !ocfs2_sparse_alloc(osb))
1981                 return -ENOTTY;
1982
1983         if (!S_ISREG(inode->i_mode))
1984                 return -EINVAL;
1985
1986         if (!(file->f_mode & FMODE_WRITE))
1987                 return -EBADF;
1988
1989         ret = mnt_want_write_file(file);
1990         if (ret)
1991                 return ret;
1992         ret = __ocfs2_change_file_space(file, inode, file->f_pos, cmd, sr, 0);
1993         mnt_drop_write_file(file);
1994         return ret;
1995 }
1996
1997 static long ocfs2_fallocate(struct file *file, int mode, loff_t offset,
1998                             loff_t len)
1999 {
2000         struct inode *inode = file_inode(file);
2001         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2002         struct ocfs2_space_resv sr;
2003         int change_size = 1;
2004         int cmd = OCFS2_IOC_RESVSP64;
2005
2006         if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2007                 return -EOPNOTSUPP;
2008         if (!ocfs2_writes_unwritten_extents(osb))
2009                 return -EOPNOTSUPP;
2010
2011         if (mode & FALLOC_FL_KEEP_SIZE)
2012                 change_size = 0;
2013
2014         if (mode & FALLOC_FL_PUNCH_HOLE)
2015                 cmd = OCFS2_IOC_UNRESVSP64;
2016
2017         sr.l_whence = 0;
2018         sr.l_start = (s64)offset;
2019         sr.l_len = (s64)len;
2020
2021         return __ocfs2_change_file_space(NULL, inode, offset, cmd, &sr,
2022                                          change_size);
2023 }
2024
2025 int ocfs2_check_range_for_refcount(struct inode *inode, loff_t pos,
2026                                    size_t count)
2027 {
2028         int ret = 0;
2029         unsigned int extent_flags;
2030         u32 cpos, clusters, extent_len, phys_cpos;
2031         struct super_block *sb = inode->i_sb;
2032
2033         if (!ocfs2_refcount_tree(OCFS2_SB(inode->i_sb)) ||
2034             !(OCFS2_I(inode)->ip_dyn_features & OCFS2_HAS_REFCOUNT_FL) ||
2035             OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
2036                 return 0;
2037
2038         cpos = pos >> OCFS2_SB(sb)->s_clustersize_bits;
2039         clusters = ocfs2_clusters_for_bytes(sb, pos + count) - cpos;
2040
2041         while (clusters) {
2042                 ret = ocfs2_get_clusters(inode, cpos, &phys_cpos, &extent_len,
2043                                          &extent_flags);
2044                 if (ret < 0) {
2045                         mlog_errno(ret);
2046                         goto out;
2047                 }
2048
2049                 if (phys_cpos && (extent_flags & OCFS2_EXT_REFCOUNTED)) {
2050                         ret = 1;
2051                         break;
2052                 }
2053
2054                 if (extent_len > clusters)
2055                         extent_len = clusters;
2056
2057                 clusters -= extent_len;
2058                 cpos += extent_len;
2059         }
2060 out:
2061         return ret;
2062 }
2063
2064 static int ocfs2_is_io_unaligned(struct inode *inode, size_t count, loff_t pos)
2065 {
2066         int blockmask = inode->i_sb->s_blocksize - 1;
2067         loff_t final_size = pos + count;
2068
2069         if ((pos & blockmask) || (final_size & blockmask))
2070                 return 1;
2071         return 0;
2072 }
2073
2074 static int ocfs2_prepare_inode_for_refcount(struct inode *inode,
2075                                             struct file *file,
2076                                             loff_t pos, size_t count,
2077                                             int *meta_level)
2078 {
2079         int ret;
2080         struct buffer_head *di_bh = NULL;
2081         u32 cpos = pos >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
2082         u32 clusters =
2083                 ocfs2_clusters_for_bytes(inode->i_sb, pos + count) - cpos;
2084
2085         ret = ocfs2_inode_lock(inode, &di_bh, 1);
2086         if (ret) {
2087                 mlog_errno(ret);
2088                 goto out;
2089         }
2090
2091         *meta_level = 1;
2092
2093         ret = ocfs2_refcount_cow(inode, di_bh, cpos, clusters, UINT_MAX);
2094         if (ret)
2095                 mlog_errno(ret);
2096 out:
2097         brelse(di_bh);
2098         return ret;
2099 }
2100
2101 static int ocfs2_prepare_inode_for_write(struct file *file,
2102                                          loff_t *ppos,
2103                                          size_t count,
2104                                          int appending,
2105                                          int *direct_io,
2106                                          int *has_refcount)
2107 {
2108         int ret = 0, meta_level = 0;
2109         struct dentry *dentry = file->f_path.dentry;
2110         struct inode *inode = dentry->d_inode;
2111         loff_t saved_pos = 0, end;
2112
2113         /*
2114          * We start with a read level meta lock and only jump to an ex
2115          * if we need to make modifications here.
2116          */
2117         for(;;) {
2118                 ret = ocfs2_inode_lock(inode, NULL, meta_level);
2119                 if (ret < 0) {
2120                         meta_level = -1;
2121                         mlog_errno(ret);
2122                         goto out;
2123                 }
2124
2125                 /* Clear suid / sgid if necessary. We do this here
2126                  * instead of later in the write path because
2127                  * remove_suid() calls ->setattr without any hint that
2128                  * we may have already done our cluster locking. Since
2129                  * ocfs2_setattr() *must* take cluster locks to
2130                  * proceed, this will lead us to recursively lock the
2131                  * inode. There's also the dinode i_size state which
2132                  * can be lost via setattr during extending writes (we
2133                  * set inode->i_size at the end of a write. */
2134                 if (should_remove_suid(dentry)) {
2135                         if (meta_level == 0) {
2136                                 ocfs2_inode_unlock(inode, meta_level);
2137                                 meta_level = 1;
2138                                 continue;
2139                         }
2140
2141                         ret = ocfs2_write_remove_suid(inode);
2142                         if (ret < 0) {
2143                                 mlog_errno(ret);
2144                                 goto out_unlock;
2145                         }
2146                 }
2147
2148                 /* work on a copy of ppos until we're sure that we won't have
2149                  * to recalculate it due to relocking. */
2150                 if (appending)
2151                         saved_pos = i_size_read(inode);
2152                 else
2153                         saved_pos = *ppos;
2154
2155                 end = saved_pos + count;
2156
2157                 ret = ocfs2_check_range_for_refcount(inode, saved_pos, count);
2158                 if (ret == 1) {
2159                         ocfs2_inode_unlock(inode, meta_level);
2160                         meta_level = -1;
2161
2162                         ret = ocfs2_prepare_inode_for_refcount(inode,
2163                                                                file,
2164                                                                saved_pos,
2165                                                                count,
2166                                                                &meta_level);
2167                         if (has_refcount)
2168                                 *has_refcount = 1;
2169                         if (direct_io)
2170                                 *direct_io = 0;
2171                 }
2172
2173                 if (ret < 0) {
2174                         mlog_errno(ret);
2175                         goto out_unlock;
2176                 }
2177
2178                 /*
2179                  * Skip the O_DIRECT checks if we don't need
2180                  * them.
2181                  */
2182                 if (!direct_io || !(*direct_io))
2183                         break;
2184
2185                 /*
2186                  * There's no sane way to do direct writes to an inode
2187                  * with inline data.
2188                  */
2189                 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
2190                         *direct_io = 0;
2191                         break;
2192                 }
2193
2194                 /*
2195                  * Allowing concurrent direct writes means
2196                  * i_size changes wouldn't be synchronized, so
2197                  * one node could wind up truncating another
2198                  * nodes writes.
2199                  */
2200                 if (end > i_size_read(inode)) {
2201                         *direct_io = 0;
2202                         break;
2203                 }
2204
2205                 /*
2206                  * We don't fill holes during direct io, so
2207                  * check for them here. If any are found, the
2208                  * caller will have to retake some cluster
2209                  * locks and initiate the io as buffered.
2210                  */
2211                 ret = ocfs2_check_range_for_holes(inode, saved_pos, count);
2212                 if (ret == 1) {
2213                         *direct_io = 0;
2214                         ret = 0;
2215                 } else if (ret < 0)
2216                         mlog_errno(ret);
2217                 break;
2218         }
2219
2220         if (appending)
2221                 *ppos = saved_pos;
2222
2223 out_unlock:
2224         trace_ocfs2_prepare_inode_for_write(OCFS2_I(inode)->ip_blkno,
2225                                             saved_pos, appending, count,
2226                                             direct_io, has_refcount);
2227
2228         if (meta_level >= 0)
2229                 ocfs2_inode_unlock(inode, meta_level);
2230
2231 out:
2232         return ret;
2233 }
2234
2235 static ssize_t ocfs2_file_write_iter(struct kiocb *iocb,
2236                                     struct iov_iter *from)
2237 {
2238         int ret, direct_io, appending, rw_level, have_alloc_sem  = 0;
2239         int can_do_direct, has_refcount = 0;
2240         ssize_t written = 0;
2241         size_t count = iov_iter_count(from);
2242         loff_t old_size, *ppos = &iocb->ki_pos;
2243         u32 old_clusters;
2244         struct file *file = iocb->ki_filp;
2245         struct inode *inode = file_inode(file);
2246         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2247         int full_coherency = !(osb->s_mount_opt &
2248                                OCFS2_MOUNT_COHERENCY_BUFFERED);
2249         int unaligned_dio = 0;
2250
2251         trace_ocfs2_file_aio_write(inode, file, file->f_path.dentry,
2252                 (unsigned long long)OCFS2_I(inode)->ip_blkno,
2253                 file->f_path.dentry->d_name.len,
2254                 file->f_path.dentry->d_name.name,
2255                 (unsigned int)from->nr_segs);   /* GRRRRR */
2256
2257         if (iocb->ki_nbytes == 0)
2258                 return 0;
2259
2260         appending = file->f_flags & O_APPEND ? 1 : 0;
2261         direct_io = file->f_flags & O_DIRECT ? 1 : 0;
2262
2263         mutex_lock(&inode->i_mutex);
2264
2265         ocfs2_iocb_clear_sem_locked(iocb);
2266
2267 relock:
2268         /* to match setattr's i_mutex -> rw_lock ordering */
2269         if (direct_io) {
2270                 have_alloc_sem = 1;
2271                 /* communicate with ocfs2_dio_end_io */
2272                 ocfs2_iocb_set_sem_locked(iocb);
2273         }
2274
2275         /*
2276          * Concurrent O_DIRECT writes are allowed with
2277          * mount_option "coherency=buffered".
2278          */
2279         rw_level = (!direct_io || full_coherency);
2280
2281         ret = ocfs2_rw_lock(inode, rw_level);
2282         if (ret < 0) {
2283                 mlog_errno(ret);
2284                 goto out_sems;
2285         }
2286
2287         /*
2288          * O_DIRECT writes with "coherency=full" need to take EX cluster
2289          * inode_lock to guarantee coherency.
2290          */
2291         if (direct_io && full_coherency) {
2292                 /*
2293                  * We need to take and drop the inode lock to force
2294                  * other nodes to drop their caches.  Buffered I/O
2295                  * already does this in write_begin().
2296                  */
2297                 ret = ocfs2_inode_lock(inode, NULL, 1);
2298                 if (ret < 0) {
2299                         mlog_errno(ret);
2300                         goto out;
2301                 }
2302
2303                 ocfs2_inode_unlock(inode, 1);
2304         }
2305
2306         can_do_direct = direct_io;
2307         ret = ocfs2_prepare_inode_for_write(file, ppos,
2308                                             iocb->ki_nbytes, appending,
2309                                             &can_do_direct, &has_refcount);
2310         if (ret < 0) {
2311                 mlog_errno(ret);
2312                 goto out;
2313         }
2314
2315         if (direct_io && !is_sync_kiocb(iocb))
2316                 unaligned_dio = ocfs2_is_io_unaligned(inode, iocb->ki_nbytes,
2317                                                       *ppos);
2318
2319         /*
2320          * We can't complete the direct I/O as requested, fall back to
2321          * buffered I/O.
2322          */
2323         if (direct_io && !can_do_direct) {
2324                 ocfs2_rw_unlock(inode, rw_level);
2325
2326                 have_alloc_sem = 0;
2327                 rw_level = -1;
2328
2329                 direct_io = 0;
2330                 goto relock;
2331         }
2332
2333         if (unaligned_dio) {
2334                 /*
2335                  * Wait on previous unaligned aio to complete before
2336                  * proceeding.
2337                  */
2338                 mutex_lock(&OCFS2_I(inode)->ip_unaligned_aio);
2339                 /* Mark the iocb as needing an unlock in ocfs2_dio_end_io */
2340                 ocfs2_iocb_set_unaligned_aio(iocb);
2341         }
2342
2343         /*
2344          * To later detect whether a journal commit for sync writes is
2345          * necessary, we sample i_size, and cluster count here.
2346          */
2347         old_size = i_size_read(inode);
2348         old_clusters = OCFS2_I(inode)->ip_clusters;
2349
2350         /* communicate with ocfs2_dio_end_io */
2351         ocfs2_iocb_set_rw_locked(iocb, rw_level);
2352
2353         ret = generic_write_checks(file, ppos, &count,
2354                                    S_ISBLK(inode->i_mode));
2355         if (ret)
2356                 goto out_dio;
2357
2358         iov_iter_truncate(from, count);
2359         if (direct_io) {
2360                 written = generic_file_direct_write(iocb, from, *ppos);
2361                 if (written < 0) {
2362                         ret = written;
2363                         goto out_dio;
2364                 }
2365         } else {
2366                 current->backing_dev_info = inode_to_bdi(inode);
2367                 written = generic_perform_write(file, from, *ppos);
2368                 if (likely(written >= 0))
2369                         iocb->ki_pos = *ppos + written;
2370                 current->backing_dev_info = NULL;
2371         }
2372
2373 out_dio:
2374         /* buffered aio wouldn't have proper lock coverage today */
2375         BUG_ON(ret == -EIOCBQUEUED && !(file->f_flags & O_DIRECT));
2376
2377         if (((file->f_flags & O_DSYNC) && !direct_io) || IS_SYNC(inode) ||
2378             ((file->f_flags & O_DIRECT) && !direct_io)) {
2379                 ret = filemap_fdatawrite_range(file->f_mapping, *ppos,
2380                                                *ppos + count - 1);
2381                 if (ret < 0)
2382                         written = ret;
2383
2384                 if (!ret) {
2385                         ret = jbd2_journal_force_commit(osb->journal->j_journal);
2386                         if (ret < 0)
2387                                 written = ret;
2388                 }
2389
2390                 if (!ret)
2391                         ret = filemap_fdatawait_range(file->f_mapping, *ppos,
2392                                                       *ppos + count - 1);
2393         }
2394
2395         /*
2396          * deep in g_f_a_w_n()->ocfs2_direct_IO we pass in a ocfs2_dio_end_io
2397          * function pointer which is called when o_direct io completes so that
2398          * it can unlock our rw lock.
2399          * Unfortunately there are error cases which call end_io and others
2400          * that don't.  so we don't have to unlock the rw_lock if either an
2401          * async dio is going to do it in the future or an end_io after an
2402          * error has already done it.
2403          */
2404         if ((ret == -EIOCBQUEUED) || (!ocfs2_iocb_is_rw_locked(iocb))) {
2405                 rw_level = -1;
2406                 have_alloc_sem = 0;
2407                 unaligned_dio = 0;
2408         }
2409
2410         if (unaligned_dio) {
2411                 ocfs2_iocb_clear_unaligned_aio(iocb);
2412                 mutex_unlock(&OCFS2_I(inode)->ip_unaligned_aio);
2413         }
2414
2415 out:
2416         if (rw_level != -1)
2417                 ocfs2_rw_unlock(inode, rw_level);
2418
2419 out_sems:
2420         if (have_alloc_sem)
2421                 ocfs2_iocb_clear_sem_locked(iocb);
2422
2423         mutex_unlock(&inode->i_mutex);
2424
2425         if (written)
2426                 ret = written;
2427         return ret;
2428 }
2429
2430 static ssize_t ocfs2_file_splice_read(struct file *in,
2431                                       loff_t *ppos,
2432                                       struct pipe_inode_info *pipe,
2433                                       size_t len,
2434                                       unsigned int flags)
2435 {
2436         int ret = 0, lock_level = 0;
2437         struct inode *inode = file_inode(in);
2438
2439         trace_ocfs2_file_splice_read(inode, in, in->f_path.dentry,
2440                         (unsigned long long)OCFS2_I(inode)->ip_blkno,
2441                         in->f_path.dentry->d_name.len,
2442                         in->f_path.dentry->d_name.name, len);
2443
2444         /*
2445          * See the comment in ocfs2_file_read_iter()
2446          */
2447         ret = ocfs2_inode_lock_atime(inode, in->f_path.mnt, &lock_level);
2448         if (ret < 0) {
2449                 mlog_errno(ret);
2450                 goto bail;
2451         }
2452         ocfs2_inode_unlock(inode, lock_level);
2453
2454         ret = generic_file_splice_read(in, ppos, pipe, len, flags);
2455
2456 bail:
2457         return ret;
2458 }
2459
2460 static ssize_t ocfs2_file_read_iter(struct kiocb *iocb,
2461                                    struct iov_iter *to)
2462 {
2463         int ret = 0, rw_level = -1, have_alloc_sem = 0, lock_level = 0;
2464         struct file *filp = iocb->ki_filp;
2465         struct inode *inode = file_inode(filp);
2466
2467         trace_ocfs2_file_aio_read(inode, filp, filp->f_path.dentry,
2468                         (unsigned long long)OCFS2_I(inode)->ip_blkno,
2469                         filp->f_path.dentry->d_name.len,
2470                         filp->f_path.dentry->d_name.name,
2471                         to->nr_segs);   /* GRRRRR */
2472
2473
2474         if (!inode) {
2475                 ret = -EINVAL;
2476                 mlog_errno(ret);
2477                 goto bail;
2478         }
2479
2480         ocfs2_iocb_clear_sem_locked(iocb);
2481
2482         /*
2483          * buffered reads protect themselves in ->readpage().  O_DIRECT reads
2484          * need locks to protect pending reads from racing with truncate.
2485          */
2486         if (filp->f_flags & O_DIRECT) {
2487                 have_alloc_sem = 1;
2488                 ocfs2_iocb_set_sem_locked(iocb);
2489
2490                 ret = ocfs2_rw_lock(inode, 0);
2491                 if (ret < 0) {
2492                         mlog_errno(ret);
2493                         goto bail;
2494                 }
2495                 rw_level = 0;
2496                 /* communicate with ocfs2_dio_end_io */
2497                 ocfs2_iocb_set_rw_locked(iocb, rw_level);
2498         }
2499
2500         /*
2501          * We're fine letting folks race truncates and extending
2502          * writes with read across the cluster, just like they can
2503          * locally. Hence no rw_lock during read.
2504          *
2505          * Take and drop the meta data lock to update inode fields
2506          * like i_size. This allows the checks down below
2507          * generic_file_aio_read() a chance of actually working.
2508          */
2509         ret = ocfs2_inode_lock_atime(inode, filp->f_path.mnt, &lock_level);
2510         if (ret < 0) {
2511                 mlog_errno(ret);
2512                 goto bail;
2513         }
2514         ocfs2_inode_unlock(inode, lock_level);
2515
2516         ret = generic_file_read_iter(iocb, to);
2517         trace_generic_file_aio_read_ret(ret);
2518
2519         /* buffered aio wouldn't have proper lock coverage today */
2520         BUG_ON(ret == -EIOCBQUEUED && !(filp->f_flags & O_DIRECT));
2521
2522         /* see ocfs2_file_write_iter */
2523         if (ret == -EIOCBQUEUED || !ocfs2_iocb_is_rw_locked(iocb)) {
2524                 rw_level = -1;
2525                 have_alloc_sem = 0;
2526         }
2527
2528 bail:
2529         if (have_alloc_sem)
2530                 ocfs2_iocb_clear_sem_locked(iocb);
2531
2532         if (rw_level != -1)
2533                 ocfs2_rw_unlock(inode, rw_level);
2534
2535         return ret;
2536 }
2537
2538 /* Refer generic_file_llseek_unlocked() */
2539 static loff_t ocfs2_file_llseek(struct file *file, loff_t offset, int whence)
2540 {
2541         struct inode *inode = file->f_mapping->host;
2542         int ret = 0;
2543
2544         mutex_lock(&inode->i_mutex);
2545
2546         switch (whence) {
2547         case SEEK_SET:
2548                 break;
2549         case SEEK_END:
2550                 /* SEEK_END requires the OCFS2 inode lock for the file
2551                  * because it references the file's size.
2552                  */
2553                 ret = ocfs2_inode_lock(inode, NULL, 0);
2554                 if (ret < 0) {
2555                         mlog_errno(ret);
2556                         goto out;
2557                 }
2558                 offset += i_size_read(inode);
2559                 ocfs2_inode_unlock(inode, 0);
2560                 break;
2561         case SEEK_CUR:
2562                 if (offset == 0) {
2563                         offset = file->f_pos;
2564                         goto out;
2565                 }
2566                 offset += file->f_pos;
2567                 break;
2568         case SEEK_DATA:
2569         case SEEK_HOLE:
2570                 ret = ocfs2_seek_data_hole_offset(file, &offset, whence);
2571                 if (ret)
2572                         goto out;
2573                 break;
2574         default:
2575                 ret = -EINVAL;
2576                 goto out;
2577         }
2578
2579         offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
2580
2581 out:
2582         mutex_unlock(&inode->i_mutex);
2583         if (ret)
2584                 return ret;
2585         return offset;
2586 }
2587
2588 const struct inode_operations ocfs2_file_iops = {
2589         .setattr        = ocfs2_setattr,
2590         .getattr        = ocfs2_getattr,
2591         .permission     = ocfs2_permission,
2592         .setxattr       = generic_setxattr,
2593         .getxattr       = generic_getxattr,
2594         .listxattr      = ocfs2_listxattr,
2595         .removexattr    = generic_removexattr,
2596         .fiemap         = ocfs2_fiemap,
2597         .get_acl        = ocfs2_iop_get_acl,
2598         .set_acl        = ocfs2_iop_set_acl,
2599 };
2600
2601 const struct inode_operations ocfs2_special_file_iops = {
2602         .setattr        = ocfs2_setattr,
2603         .getattr        = ocfs2_getattr,
2604         .permission     = ocfs2_permission,
2605         .get_acl        = ocfs2_iop_get_acl,
2606         .set_acl        = ocfs2_iop_set_acl,
2607 };
2608
2609 /*
2610  * Other than ->lock, keep ocfs2_fops and ocfs2_dops in sync with
2611  * ocfs2_fops_no_plocks and ocfs2_dops_no_plocks!
2612  */
2613 const struct file_operations ocfs2_fops = {
2614         .llseek         = ocfs2_file_llseek,
2615         .read           = new_sync_read,
2616         .write          = new_sync_write,
2617         .mmap           = ocfs2_mmap,
2618         .fsync          = ocfs2_sync_file,
2619         .release        = ocfs2_file_release,
2620         .open           = ocfs2_file_open,
2621         .read_iter      = ocfs2_file_read_iter,
2622         .write_iter     = ocfs2_file_write_iter,
2623         .unlocked_ioctl = ocfs2_ioctl,
2624 #ifdef CONFIG_COMPAT
2625         .compat_ioctl   = ocfs2_compat_ioctl,
2626 #endif
2627         .lock           = ocfs2_lock,
2628         .flock          = ocfs2_flock,
2629         .splice_read    = ocfs2_file_splice_read,
2630         .splice_write   = iter_file_splice_write,
2631         .fallocate      = ocfs2_fallocate,
2632 };
2633
2634 const struct file_operations ocfs2_dops = {
2635         .llseek         = generic_file_llseek,
2636         .read           = generic_read_dir,
2637         .iterate        = ocfs2_readdir,
2638         .fsync          = ocfs2_sync_file,
2639         .release        = ocfs2_dir_release,
2640         .open           = ocfs2_dir_open,
2641         .unlocked_ioctl = ocfs2_ioctl,
2642 #ifdef CONFIG_COMPAT
2643         .compat_ioctl   = ocfs2_compat_ioctl,
2644 #endif
2645         .lock           = ocfs2_lock,
2646         .flock          = ocfs2_flock,
2647 };
2648
2649 /*
2650  * POSIX-lockless variants of our file_operations.
2651  *
2652  * These will be used if the underlying cluster stack does not support
2653  * posix file locking, if the user passes the "localflocks" mount
2654  * option, or if we have a local-only fs.
2655  *
2656  * ocfs2_flock is in here because all stacks handle UNIX file locks,
2657  * so we still want it in the case of no stack support for
2658  * plocks. Internally, it will do the right thing when asked to ignore
2659  * the cluster.
2660  */
2661 const struct file_operations ocfs2_fops_no_plocks = {
2662         .llseek         = ocfs2_file_llseek,
2663         .read           = new_sync_read,
2664         .write          = new_sync_write,
2665         .mmap           = ocfs2_mmap,
2666         .fsync          = ocfs2_sync_file,
2667         .release        = ocfs2_file_release,
2668         .open           = ocfs2_file_open,
2669         .read_iter      = ocfs2_file_read_iter,
2670         .write_iter     = ocfs2_file_write_iter,
2671         .unlocked_ioctl = ocfs2_ioctl,
2672 #ifdef CONFIG_COMPAT
2673         .compat_ioctl   = ocfs2_compat_ioctl,
2674 #endif
2675         .flock          = ocfs2_flock,
2676         .splice_read    = ocfs2_file_splice_read,
2677         .splice_write   = iter_file_splice_write,
2678         .fallocate      = ocfs2_fallocate,
2679 };
2680
2681 const struct file_operations ocfs2_dops_no_plocks = {
2682         .llseek         = generic_file_llseek,
2683         .read           = generic_read_dir,
2684         .iterate        = ocfs2_readdir,
2685         .fsync          = ocfs2_sync_file,
2686         .release        = ocfs2_dir_release,
2687         .open           = ocfs2_dir_open,
2688         .unlocked_ioctl = ocfs2_ioctl,
2689 #ifdef CONFIG_COMPAT
2690         .compat_ioctl   = ocfs2_compat_ioctl,
2691 #endif
2692         .flock          = ocfs2_flock,
2693 };