ocfs2: fix several issues of append dio
[pandora-kernel.git] / fs / ocfs2 / aops.c
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public
17  * License along with this program; if not, write to the
18  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19  * Boston, MA 021110-1307, USA.
20  */
21
22 #include <linux/fs.h>
23 #include <linux/slab.h>
24 #include <linux/highmem.h>
25 #include <linux/pagemap.h>
26 #include <asm/byteorder.h>
27 #include <linux/swap.h>
28 #include <linux/pipe_fs_i.h>
29 #include <linux/mpage.h>
30 #include <linux/quotaops.h>
31 #include <linux/blkdev.h>
32 #include <linux/uio.h>
33
34 #include <cluster/masklog.h>
35
36 #include "ocfs2.h"
37
38 #include "alloc.h"
39 #include "aops.h"
40 #include "dlmglue.h"
41 #include "extent_map.h"
42 #include "file.h"
43 #include "inode.h"
44 #include "journal.h"
45 #include "suballoc.h"
46 #include "super.h"
47 #include "symlink.h"
48 #include "refcounttree.h"
49 #include "ocfs2_trace.h"
50
51 #include "buffer_head_io.h"
52 #include "dir.h"
53 #include "namei.h"
54 #include "sysfile.h"
55
56 static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
57                                    struct buffer_head *bh_result, int create)
58 {
59         int err = -EIO;
60         int status;
61         struct ocfs2_dinode *fe = NULL;
62         struct buffer_head *bh = NULL;
63         struct buffer_head *buffer_cache_bh = NULL;
64         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
65         void *kaddr;
66
67         trace_ocfs2_symlink_get_block(
68                         (unsigned long long)OCFS2_I(inode)->ip_blkno,
69                         (unsigned long long)iblock, bh_result, create);
70
71         BUG_ON(ocfs2_inode_is_fast_symlink(inode));
72
73         if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
74                 mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
75                      (unsigned long long)iblock);
76                 goto bail;
77         }
78
79         status = ocfs2_read_inode_block(inode, &bh);
80         if (status < 0) {
81                 mlog_errno(status);
82                 goto bail;
83         }
84         fe = (struct ocfs2_dinode *) bh->b_data;
85
86         if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
87                                                     le32_to_cpu(fe->i_clusters))) {
88                 err = -ENOMEM;
89                 mlog(ML_ERROR, "block offset is outside the allocated size: "
90                      "%llu\n", (unsigned long long)iblock);
91                 goto bail;
92         }
93
94         /* We don't use the page cache to create symlink data, so if
95          * need be, copy it over from the buffer cache. */
96         if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
97                 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
98                             iblock;
99                 buffer_cache_bh = sb_getblk(osb->sb, blkno);
100                 if (!buffer_cache_bh) {
101                         err = -ENOMEM;
102                         mlog(ML_ERROR, "couldn't getblock for symlink!\n");
103                         goto bail;
104                 }
105
106                 /* we haven't locked out transactions, so a commit
107                  * could've happened. Since we've got a reference on
108                  * the bh, even if it commits while we're doing the
109                  * copy, the data is still good. */
110                 if (buffer_jbd(buffer_cache_bh)
111                     && ocfs2_inode_is_new(inode)) {
112                         kaddr = kmap_atomic(bh_result->b_page);
113                         if (!kaddr) {
114                                 mlog(ML_ERROR, "couldn't kmap!\n");
115                                 goto bail;
116                         }
117                         memcpy(kaddr + (bh_result->b_size * iblock),
118                                buffer_cache_bh->b_data,
119                                bh_result->b_size);
120                         kunmap_atomic(kaddr);
121                         set_buffer_uptodate(bh_result);
122                 }
123                 brelse(buffer_cache_bh);
124         }
125
126         map_bh(bh_result, inode->i_sb,
127                le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
128
129         err = 0;
130
131 bail:
132         brelse(bh);
133
134         return err;
135 }
136
137 int ocfs2_get_block(struct inode *inode, sector_t iblock,
138                     struct buffer_head *bh_result, int create)
139 {
140         int err = 0;
141         unsigned int ext_flags;
142         u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
143         u64 p_blkno, count, past_eof;
144         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
145
146         trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno,
147                               (unsigned long long)iblock, bh_result, create);
148
149         if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
150                 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
151                      inode, inode->i_ino);
152
153         if (S_ISLNK(inode->i_mode)) {
154                 /* this always does I/O for some reason. */
155                 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
156                 goto bail;
157         }
158
159         err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
160                                           &ext_flags);
161         if (err) {
162                 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
163                      "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
164                      (unsigned long long)p_blkno);
165                 goto bail;
166         }
167
168         if (max_blocks < count)
169                 count = max_blocks;
170
171         /*
172          * ocfs2 never allocates in this function - the only time we
173          * need to use BH_New is when we're extending i_size on a file
174          * system which doesn't support holes, in which case BH_New
175          * allows __block_write_begin() to zero.
176          *
177          * If we see this on a sparse file system, then a truncate has
178          * raced us and removed the cluster. In this case, we clear
179          * the buffers dirty and uptodate bits and let the buffer code
180          * ignore it as a hole.
181          */
182         if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
183                 clear_buffer_dirty(bh_result);
184                 clear_buffer_uptodate(bh_result);
185                 goto bail;
186         }
187
188         /* Treat the unwritten extent as a hole for zeroing purposes. */
189         if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
190                 map_bh(bh_result, inode->i_sb, p_blkno);
191
192         bh_result->b_size = count << inode->i_blkbits;
193
194         if (!ocfs2_sparse_alloc(osb)) {
195                 if (p_blkno == 0) {
196                         err = -EIO;
197                         mlog(ML_ERROR,
198                              "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
199                              (unsigned long long)iblock,
200                              (unsigned long long)p_blkno,
201                              (unsigned long long)OCFS2_I(inode)->ip_blkno);
202                         mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
203                         dump_stack();
204                         goto bail;
205                 }
206         }
207
208         past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
209
210         trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno,
211                                   (unsigned long long)past_eof);
212         if (create && (iblock >= past_eof))
213                 set_buffer_new(bh_result);
214
215 bail:
216         if (err < 0)
217                 err = -EIO;
218
219         return err;
220 }
221
222 int ocfs2_read_inline_data(struct inode *inode, struct page *page,
223                            struct buffer_head *di_bh)
224 {
225         void *kaddr;
226         loff_t size;
227         struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
228
229         if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
230                 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag",
231                             (unsigned long long)OCFS2_I(inode)->ip_blkno);
232                 return -EROFS;
233         }
234
235         size = i_size_read(inode);
236
237         if (size > PAGE_CACHE_SIZE ||
238             size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
239                 ocfs2_error(inode->i_sb,
240                             "Inode %llu has with inline data has bad size: %Lu",
241                             (unsigned long long)OCFS2_I(inode)->ip_blkno,
242                             (unsigned long long)size);
243                 return -EROFS;
244         }
245
246         kaddr = kmap_atomic(page);
247         if (size)
248                 memcpy(kaddr, di->id2.i_data.id_data, size);
249         /* Clear the remaining part of the page */
250         memset(kaddr + size, 0, PAGE_CACHE_SIZE - size);
251         flush_dcache_page(page);
252         kunmap_atomic(kaddr);
253
254         SetPageUptodate(page);
255
256         return 0;
257 }
258
259 static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
260 {
261         int ret;
262         struct buffer_head *di_bh = NULL;
263
264         BUG_ON(!PageLocked(page));
265         BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
266
267         ret = ocfs2_read_inode_block(inode, &di_bh);
268         if (ret) {
269                 mlog_errno(ret);
270                 goto out;
271         }
272
273         ret = ocfs2_read_inline_data(inode, page, di_bh);
274 out:
275         unlock_page(page);
276
277         brelse(di_bh);
278         return ret;
279 }
280
281 static int ocfs2_readpage(struct file *file, struct page *page)
282 {
283         struct inode *inode = page->mapping->host;
284         struct ocfs2_inode_info *oi = OCFS2_I(inode);
285         loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
286         int ret, unlock = 1;
287
288         trace_ocfs2_readpage((unsigned long long)oi->ip_blkno,
289                              (page ? page->index : 0));
290
291         ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
292         if (ret != 0) {
293                 if (ret == AOP_TRUNCATED_PAGE)
294                         unlock = 0;
295                 mlog_errno(ret);
296                 goto out;
297         }
298
299         if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
300                 /*
301                  * Unlock the page and cycle ip_alloc_sem so that we don't
302                  * busyloop waiting for ip_alloc_sem to unlock
303                  */
304                 ret = AOP_TRUNCATED_PAGE;
305                 unlock_page(page);
306                 unlock = 0;
307                 down_read(&oi->ip_alloc_sem);
308                 up_read(&oi->ip_alloc_sem);
309                 goto out_inode_unlock;
310         }
311
312         /*
313          * i_size might have just been updated as we grabed the meta lock.  We
314          * might now be discovering a truncate that hit on another node.
315          * block_read_full_page->get_block freaks out if it is asked to read
316          * beyond the end of a file, so we check here.  Callers
317          * (generic_file_read, vm_ops->fault) are clever enough to check i_size
318          * and notice that the page they just read isn't needed.
319          *
320          * XXX sys_readahead() seems to get that wrong?
321          */
322         if (start >= i_size_read(inode)) {
323                 zero_user(page, 0, PAGE_SIZE);
324                 SetPageUptodate(page);
325                 ret = 0;
326                 goto out_alloc;
327         }
328
329         if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
330                 ret = ocfs2_readpage_inline(inode, page);
331         else
332                 ret = block_read_full_page(page, ocfs2_get_block);
333         unlock = 0;
334
335 out_alloc:
336         up_read(&OCFS2_I(inode)->ip_alloc_sem);
337 out_inode_unlock:
338         ocfs2_inode_unlock(inode, 0);
339 out:
340         if (unlock)
341                 unlock_page(page);
342         return ret;
343 }
344
345 /*
346  * This is used only for read-ahead. Failures or difficult to handle
347  * situations are safe to ignore.
348  *
349  * Right now, we don't bother with BH_Boundary - in-inode extent lists
350  * are quite large (243 extents on 4k blocks), so most inodes don't
351  * grow out to a tree. If need be, detecting boundary extents could
352  * trivially be added in a future version of ocfs2_get_block().
353  */
354 static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
355                            struct list_head *pages, unsigned nr_pages)
356 {
357         int ret, err = -EIO;
358         struct inode *inode = mapping->host;
359         struct ocfs2_inode_info *oi = OCFS2_I(inode);
360         loff_t start;
361         struct page *last;
362
363         /*
364          * Use the nonblocking flag for the dlm code to avoid page
365          * lock inversion, but don't bother with retrying.
366          */
367         ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
368         if (ret)
369                 return err;
370
371         if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
372                 ocfs2_inode_unlock(inode, 0);
373                 return err;
374         }
375
376         /*
377          * Don't bother with inline-data. There isn't anything
378          * to read-ahead in that case anyway...
379          */
380         if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
381                 goto out_unlock;
382
383         /*
384          * Check whether a remote node truncated this file - we just
385          * drop out in that case as it's not worth handling here.
386          */
387         last = list_entry(pages->prev, struct page, lru);
388         start = (loff_t)last->index << PAGE_CACHE_SHIFT;
389         if (start >= i_size_read(inode))
390                 goto out_unlock;
391
392         err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
393
394 out_unlock:
395         up_read(&oi->ip_alloc_sem);
396         ocfs2_inode_unlock(inode, 0);
397
398         return err;
399 }
400
401 /* Note: Because we don't support holes, our allocation has
402  * already happened (allocation writes zeros to the file data)
403  * so we don't have to worry about ordered writes in
404  * ocfs2_writepage.
405  *
406  * ->writepage is called during the process of invalidating the page cache
407  * during blocked lock processing.  It can't block on any cluster locks
408  * to during block mapping.  It's relying on the fact that the block
409  * mapping can't have disappeared under the dirty pages that it is
410  * being asked to write back.
411  */
412 static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
413 {
414         trace_ocfs2_writepage(
415                 (unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno,
416                 page->index);
417
418         return block_write_full_page(page, ocfs2_get_block, wbc);
419 }
420
421 /* Taken from ext3. We don't necessarily need the full blown
422  * functionality yet, but IMHO it's better to cut and paste the whole
423  * thing so we can avoid introducing our own bugs (and easily pick up
424  * their fixes when they happen) --Mark */
425 int walk_page_buffers(  handle_t *handle,
426                         struct buffer_head *head,
427                         unsigned from,
428                         unsigned to,
429                         int *partial,
430                         int (*fn)(      handle_t *handle,
431                                         struct buffer_head *bh))
432 {
433         struct buffer_head *bh;
434         unsigned block_start, block_end;
435         unsigned blocksize = head->b_size;
436         int err, ret = 0;
437         struct buffer_head *next;
438
439         for (   bh = head, block_start = 0;
440                 ret == 0 && (bh != head || !block_start);
441                 block_start = block_end, bh = next)
442         {
443                 next = bh->b_this_page;
444                 block_end = block_start + blocksize;
445                 if (block_end <= from || block_start >= to) {
446                         if (partial && !buffer_uptodate(bh))
447                                 *partial = 1;
448                         continue;
449                 }
450                 err = (*fn)(handle, bh);
451                 if (!ret)
452                         ret = err;
453         }
454         return ret;
455 }
456
457 static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
458 {
459         sector_t status;
460         u64 p_blkno = 0;
461         int err = 0;
462         struct inode *inode = mapping->host;
463
464         trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno,
465                          (unsigned long long)block);
466
467         /* We don't need to lock journal system files, since they aren't
468          * accessed concurrently from multiple nodes.
469          */
470         if (!INODE_JOURNAL(inode)) {
471                 err = ocfs2_inode_lock(inode, NULL, 0);
472                 if (err) {
473                         if (err != -ENOENT)
474                                 mlog_errno(err);
475                         goto bail;
476                 }
477                 down_read(&OCFS2_I(inode)->ip_alloc_sem);
478         }
479
480         if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
481                 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
482                                                   NULL);
483
484         if (!INODE_JOURNAL(inode)) {
485                 up_read(&OCFS2_I(inode)->ip_alloc_sem);
486                 ocfs2_inode_unlock(inode, 0);
487         }
488
489         if (err) {
490                 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
491                      (unsigned long long)block);
492                 mlog_errno(err);
493                 goto bail;
494         }
495
496 bail:
497         status = err ? 0 : p_blkno;
498
499         return status;
500 }
501
502 /*
503  * TODO: Make this into a generic get_blocks function.
504  *
505  * From do_direct_io in direct-io.c:
506  *  "So what we do is to permit the ->get_blocks function to populate
507  *   bh.b_size with the size of IO which is permitted at this offset and
508  *   this i_blkbits."
509  *
510  * This function is called directly from get_more_blocks in direct-io.c.
511  *
512  * called like this: dio->get_blocks(dio->inode, fs_startblk,
513  *                                      fs_count, map_bh, dio->rw == WRITE);
514  */
515 static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
516                                      struct buffer_head *bh_result, int create)
517 {
518         int ret;
519         u32 cpos = 0;
520         int alloc_locked = 0;
521         u64 p_blkno, inode_blocks, contig_blocks;
522         unsigned int ext_flags;
523         unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
524         unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
525         unsigned long len = bh_result->b_size;
526         unsigned int clusters_to_alloc = 0, contig_clusters = 0;
527
528         cpos = ocfs2_blocks_to_clusters(inode->i_sb, iblock);
529
530         /* This function won't even be called if the request isn't all
531          * nicely aligned and of the right size, so there's no need
532          * for us to check any of that. */
533
534         inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
535
536         /* This figures out the size of the next contiguous block, and
537          * our logical offset */
538         ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
539                                           &contig_blocks, &ext_flags);
540         if (ret) {
541                 mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
542                      (unsigned long long)iblock);
543                 ret = -EIO;
544                 goto bail;
545         }
546
547         /* We should already CoW the refcounted extent in case of create. */
548         BUG_ON(create && (ext_flags & OCFS2_EXT_REFCOUNTED));
549
550         /* allocate blocks if no p_blkno is found, and create == 1 */
551         if (!p_blkno && create) {
552                 ret = ocfs2_inode_lock(inode, NULL, 1);
553                 if (ret < 0) {
554                         mlog_errno(ret);
555                         goto bail;
556                 }
557
558                 alloc_locked = 1;
559
560                 /* fill hole, allocate blocks can't be larger than the size
561                  * of the hole */
562                 clusters_to_alloc = ocfs2_clusters_for_bytes(inode->i_sb, len);
563                 contig_clusters = ocfs2_clusters_for_blocks(inode->i_sb,
564                                 contig_blocks);
565                 if (clusters_to_alloc > contig_clusters)
566                         clusters_to_alloc = contig_clusters;
567
568                 /* allocate extent and insert them into the extent tree */
569                 ret = ocfs2_extend_allocation(inode, cpos,
570                                 clusters_to_alloc, 0);
571                 if (ret < 0) {
572                         mlog_errno(ret);
573                         goto bail;
574                 }
575
576                 ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
577                                 &contig_blocks, &ext_flags);
578                 if (ret < 0) {
579                         mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
580                                         (unsigned long long)iblock);
581                         ret = -EIO;
582                         goto bail;
583                 }
584         }
585
586         /*
587          * get_more_blocks() expects us to describe a hole by clearing
588          * the mapped bit on bh_result().
589          *
590          * Consider an unwritten extent as a hole.
591          */
592         if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
593                 map_bh(bh_result, inode->i_sb, p_blkno);
594         else
595                 clear_buffer_mapped(bh_result);
596
597         /* make sure we don't map more than max_blocks blocks here as
598            that's all the kernel will handle at this point. */
599         if (max_blocks < contig_blocks)
600                 contig_blocks = max_blocks;
601         bh_result->b_size = contig_blocks << blocksize_bits;
602 bail:
603         if (alloc_locked)
604                 ocfs2_inode_unlock(inode, 1);
605         return ret;
606 }
607
608 /*
609  * ocfs2_dio_end_io is called by the dio core when a dio is finished.  We're
610  * particularly interested in the aio/dio case.  We use the rw_lock DLM lock
611  * to protect io on one node from truncation on another.
612  */
613 static void ocfs2_dio_end_io(struct kiocb *iocb,
614                              loff_t offset,
615                              ssize_t bytes,
616                              void *private)
617 {
618         struct inode *inode = file_inode(iocb->ki_filp);
619         int level;
620
621         /* this io's submitter should not have unlocked this before we could */
622         BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
623
624         if (ocfs2_iocb_is_unaligned_aio(iocb)) {
625                 ocfs2_iocb_clear_unaligned_aio(iocb);
626
627                 mutex_unlock(&OCFS2_I(inode)->ip_unaligned_aio);
628         }
629
630         /* Let rw unlock to be done later to protect append direct io write */
631         if (offset + bytes <= i_size_read(inode)) {
632                 ocfs2_iocb_clear_rw_locked(iocb);
633
634                 level = ocfs2_iocb_rw_locked_level(iocb);
635                 ocfs2_rw_unlock(inode, level);
636         }
637 }
638
639 static int ocfs2_releasepage(struct page *page, gfp_t wait)
640 {
641         if (!page_has_buffers(page))
642                 return 0;
643         return try_to_free_buffers(page);
644 }
645
646 static int ocfs2_is_overwrite(struct ocfs2_super *osb,
647                 struct inode *inode, loff_t offset)
648 {
649         int ret = 0;
650         u32 v_cpos = 0;
651         u32 p_cpos = 0;
652         unsigned int num_clusters = 0;
653         unsigned int ext_flags = 0;
654
655         v_cpos = ocfs2_bytes_to_clusters(osb->sb, offset);
656         ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos,
657                         &num_clusters, &ext_flags);
658         if (ret < 0) {
659                 mlog_errno(ret);
660                 return ret;
661         }
662
663         if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN))
664                 return 1;
665
666         return 0;
667 }
668
669 static int ocfs2_direct_IO_zero_extend(struct ocfs2_super *osb,
670                 struct inode *inode, loff_t offset,
671                 u64 zero_len, int cluster_align)
672 {
673         u32 p_cpos = 0;
674         u32 v_cpos = ocfs2_bytes_to_clusters(osb->sb, i_size_read(inode));
675         unsigned int num_clusters = 0;
676         unsigned int ext_flags = 0;
677         int ret = 0;
678
679         if (offset <= i_size_read(inode) || cluster_align)
680                 return 0;
681
682         ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos, &num_clusters,
683                         &ext_flags);
684         if (ret < 0) {
685                 mlog_errno(ret);
686                 return ret;
687         }
688
689         if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) {
690                 u64 s = i_size_read(inode);
691                 sector_t sector = ((u64)p_cpos << (osb->s_clustersize_bits - 9)) +
692                         (do_div(s, osb->s_clustersize) >> 9);
693
694                 ret = blkdev_issue_zeroout(osb->sb->s_bdev, sector,
695                                 zero_len >> 9, GFP_NOFS, false);
696                 if (ret < 0)
697                         mlog_errno(ret);
698         }
699
700         return ret;
701 }
702
703 static int ocfs2_direct_IO_extend_no_holes(struct ocfs2_super *osb,
704                 struct inode *inode, loff_t offset)
705 {
706         u64 zero_start, zero_len, total_zero_len;
707         u32 p_cpos = 0, clusters_to_add;
708         u32 v_cpos = ocfs2_bytes_to_clusters(osb->sb, i_size_read(inode));
709         unsigned int num_clusters = 0;
710         unsigned int ext_flags = 0;
711         u32 size_div, offset_div;
712         int ret = 0;
713
714         {
715                 u64 o = offset;
716                 u64 s = i_size_read(inode);
717
718                 offset_div = do_div(o, osb->s_clustersize);
719                 size_div = do_div(s, osb->s_clustersize);
720         }
721
722         if (offset <= i_size_read(inode))
723                 return 0;
724
725         clusters_to_add = ocfs2_bytes_to_clusters(inode->i_sb, offset) -
726                 ocfs2_bytes_to_clusters(inode->i_sb, i_size_read(inode));
727         total_zero_len = offset - i_size_read(inode);
728         if (clusters_to_add)
729                 total_zero_len -= offset_div;
730
731         /* Allocate clusters to fill out holes, and this is only needed
732          * when we add more than one clusters. Otherwise the cluster will
733          * be allocated during direct IO */
734         if (clusters_to_add > 1) {
735                 ret = ocfs2_extend_allocation(inode,
736                                 OCFS2_I(inode)->ip_clusters,
737                                 clusters_to_add - 1, 0);
738                 if (ret) {
739                         mlog_errno(ret);
740                         goto out;
741                 }
742         }
743
744         while (total_zero_len) {
745                 ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos, &num_clusters,
746                                 &ext_flags);
747                 if (ret < 0) {
748                         mlog_errno(ret);
749                         goto out;
750                 }
751
752                 zero_start = ocfs2_clusters_to_bytes(osb->sb, p_cpos) +
753                         size_div;
754                 zero_len = ocfs2_clusters_to_bytes(osb->sb, num_clusters) -
755                         size_div;
756                 zero_len = min(total_zero_len, zero_len);
757
758                 if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) {
759                         ret = blkdev_issue_zeroout(osb->sb->s_bdev,
760                                         zero_start >> 9, zero_len >> 9,
761                                         GFP_NOFS, false);
762                         if (ret < 0) {
763                                 mlog_errno(ret);
764                                 goto out;
765                         }
766                 }
767
768                 total_zero_len -= zero_len;
769                 v_cpos += ocfs2_bytes_to_clusters(osb->sb, zero_len + size_div);
770
771                 /* Only at first iteration can be cluster not aligned.
772                  * So set size_div to 0 for the rest */
773                 size_div = 0;
774         }
775
776 out:
777         return ret;
778 }
779
780 static ssize_t ocfs2_direct_IO_write(struct kiocb *iocb,
781                 struct iov_iter *iter,
782                 loff_t offset)
783 {
784         ssize_t ret = 0;
785         ssize_t written = 0;
786         bool orphaned = false;
787         int is_overwrite = 0;
788         struct file *file = iocb->ki_filp;
789         struct inode *inode = file_inode(file)->i_mapping->host;
790         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
791         struct buffer_head *di_bh = NULL;
792         size_t count = iter->count;
793         journal_t *journal = osb->journal->j_journal;
794         u64 zero_len_head, zero_len_tail;
795         int cluster_align_head, cluster_align_tail;
796         loff_t final_size = offset + count;
797         int append_write = offset >= i_size_read(inode) ? 1 : 0;
798         unsigned int num_clusters = 0;
799         unsigned int ext_flags = 0;
800
801         {
802                 u64 o = offset;
803                 u64 s = i_size_read(inode);
804
805                 zero_len_head = do_div(o, 1 << osb->s_clustersize_bits);
806                 cluster_align_head = !zero_len_head;
807
808                 zero_len_tail = osb->s_clustersize -
809                         do_div(s, osb->s_clustersize);
810                 if ((offset - i_size_read(inode)) < zero_len_tail)
811                         zero_len_tail = offset - i_size_read(inode);
812                 cluster_align_tail = !zero_len_tail;
813         }
814
815         /*
816          * when final_size > inode->i_size, inode->i_size will be
817          * updated after direct write, so add the inode to orphan
818          * dir first.
819          */
820         if (final_size > i_size_read(inode)) {
821                 ret = ocfs2_add_inode_to_orphan(osb, inode);
822                 if (ret < 0) {
823                         mlog_errno(ret);
824                         goto out;
825                 }
826                 orphaned = true;
827         }
828
829         if (append_write) {
830                 ret = ocfs2_inode_lock(inode, NULL, 1);
831                 if (ret < 0) {
832                         mlog_errno(ret);
833                         goto clean_orphan;
834                 }
835
836                 /* zeroing out the previously allocated cluster tail
837                  * that but not zeroed */
838                 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
839                         ret = ocfs2_direct_IO_zero_extend(osb, inode, offset,
840                                         zero_len_tail, cluster_align_tail);
841                 else
842                         ret = ocfs2_direct_IO_extend_no_holes(osb, inode,
843                                         offset);
844                 if (ret < 0) {
845                         mlog_errno(ret);
846                         ocfs2_inode_unlock(inode, 1);
847                         goto clean_orphan;
848                 }
849
850                 is_overwrite = ocfs2_is_overwrite(osb, inode, offset);
851                 if (is_overwrite < 0) {
852                         mlog_errno(is_overwrite);
853                         ocfs2_inode_unlock(inode, 1);
854                         goto clean_orphan;
855                 }
856
857                 ocfs2_inode_unlock(inode, 1);
858         }
859
860         written = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
861                                        offset, ocfs2_direct_IO_get_blocks,
862                                        ocfs2_dio_end_io, NULL, 0);
863         /* overwrite aio may return -EIOCBQUEUED, and it is not an error */
864         if ((written < 0) && (written != -EIOCBQUEUED)) {
865                 loff_t i_size = i_size_read(inode);
866
867                 if (offset + count > i_size) {
868                         ret = ocfs2_inode_lock(inode, &di_bh, 1);
869                         if (ret < 0) {
870                                 mlog_errno(ret);
871                                 goto clean_orphan;
872                         }
873
874                         if (i_size == i_size_read(inode)) {
875                                 ret = ocfs2_truncate_file(inode, di_bh,
876                                                 i_size);
877                                 if (ret < 0) {
878                                         if (ret != -ENOSPC)
879                                                 mlog_errno(ret);
880
881                                         ocfs2_inode_unlock(inode, 1);
882                                         brelse(di_bh);
883                                         di_bh = NULL;
884                                         goto clean_orphan;
885                                 }
886                         }
887
888                         ocfs2_inode_unlock(inode, 1);
889                         brelse(di_bh);
890                         di_bh = NULL;
891
892                         ret = jbd2_journal_force_commit(journal);
893                         if (ret < 0)
894                                 mlog_errno(ret);
895                 }
896         } else if (written > 0 && append_write && !is_overwrite &&
897                         !cluster_align_head) {
898                 /* zeroing out the allocated cluster head */
899                 u32 p_cpos = 0;
900                 u32 v_cpos = ocfs2_bytes_to_clusters(osb->sb, offset);
901
902                 ret = ocfs2_inode_lock(inode, NULL, 0);
903                 if (ret < 0) {
904                         mlog_errno(ret);
905                         goto clean_orphan;
906                 }
907
908                 ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos,
909                                 &num_clusters, &ext_flags);
910                 if (ret < 0) {
911                         mlog_errno(ret);
912                         ocfs2_inode_unlock(inode, 0);
913                         goto clean_orphan;
914                 }
915
916                 BUG_ON(!p_cpos || (ext_flags & OCFS2_EXT_UNWRITTEN));
917
918                 ret = blkdev_issue_zeroout(osb->sb->s_bdev,
919                                 (u64)p_cpos << (osb->s_clustersize_bits - 9),
920                                 zero_len_head >> 9, GFP_NOFS, false);
921                 if (ret < 0)
922                         mlog_errno(ret);
923
924                 ocfs2_inode_unlock(inode, 0);
925         }
926
927 clean_orphan:
928         if (orphaned) {
929                 int tmp_ret;
930                 int update_isize = written > 0 ? 1 : 0;
931                 loff_t end = update_isize ? offset + written : 0;
932
933                 tmp_ret = ocfs2_inode_lock(inode, &di_bh, 1);
934                 if (tmp_ret < 0) {
935                         ret = tmp_ret;
936                         mlog_errno(ret);
937                         goto out;
938                 }
939
940                 tmp_ret = ocfs2_del_inode_from_orphan(osb, inode, di_bh,
941                                 update_isize, end);
942                 if (tmp_ret < 0) {
943                         ret = tmp_ret;
944                         mlog_errno(ret);
945                         brelse(di_bh);
946                         goto out;
947                 }
948
949                 ocfs2_inode_unlock(inode, 1);
950                 brelse(di_bh);
951
952                 tmp_ret = jbd2_journal_force_commit(journal);
953                 if (tmp_ret < 0) {
954                         ret = tmp_ret;
955                         mlog_errno(tmp_ret);
956                 }
957         }
958
959 out:
960         if (ret >= 0)
961                 ret = written;
962         return ret;
963 }
964
965 static ssize_t ocfs2_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
966                                loff_t offset)
967 {
968         struct file *file = iocb->ki_filp;
969         struct inode *inode = file_inode(file)->i_mapping->host;
970         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
971         int full_coherency = !(osb->s_mount_opt &
972                         OCFS2_MOUNT_COHERENCY_BUFFERED);
973
974         /*
975          * Fallback to buffered I/O if we see an inode without
976          * extents.
977          */
978         if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
979                 return 0;
980
981         /* Fallback to buffered I/O if we are appending and
982          * concurrent O_DIRECT writes are allowed.
983          */
984         if (i_size_read(inode) <= offset && !full_coherency)
985                 return 0;
986
987         if (iov_iter_rw(iter) == READ)
988                 return __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
989                                             iter, offset,
990                                             ocfs2_direct_IO_get_blocks,
991                                             ocfs2_dio_end_io, NULL, 0);
992         else
993                 return ocfs2_direct_IO_write(iocb, iter, offset);
994 }
995
996 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
997                                             u32 cpos,
998                                             unsigned int *start,
999                                             unsigned int *end)
1000 {
1001         unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
1002
1003         if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
1004                 unsigned int cpp;
1005
1006                 cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
1007
1008                 cluster_start = cpos % cpp;
1009                 cluster_start = cluster_start << osb->s_clustersize_bits;
1010
1011                 cluster_end = cluster_start + osb->s_clustersize;
1012         }
1013
1014         BUG_ON(cluster_start > PAGE_SIZE);
1015         BUG_ON(cluster_end > PAGE_SIZE);
1016
1017         if (start)
1018                 *start = cluster_start;
1019         if (end)
1020                 *end = cluster_end;
1021 }
1022
1023 /*
1024  * 'from' and 'to' are the region in the page to avoid zeroing.
1025  *
1026  * If pagesize > clustersize, this function will avoid zeroing outside
1027  * of the cluster boundary.
1028  *
1029  * from == to == 0 is code for "zero the entire cluster region"
1030  */
1031 static void ocfs2_clear_page_regions(struct page *page,
1032                                      struct ocfs2_super *osb, u32 cpos,
1033                                      unsigned from, unsigned to)
1034 {
1035         void *kaddr;
1036         unsigned int cluster_start, cluster_end;
1037
1038         ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
1039
1040         kaddr = kmap_atomic(page);
1041
1042         if (from || to) {
1043                 if (from > cluster_start)
1044                         memset(kaddr + cluster_start, 0, from - cluster_start);
1045                 if (to < cluster_end)
1046                         memset(kaddr + to, 0, cluster_end - to);
1047         } else {
1048                 memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
1049         }
1050
1051         kunmap_atomic(kaddr);
1052 }
1053
1054 /*
1055  * Nonsparse file systems fully allocate before we get to the write
1056  * code. This prevents ocfs2_write() from tagging the write as an
1057  * allocating one, which means ocfs2_map_page_blocks() might try to
1058  * read-in the blocks at the tail of our file. Avoid reading them by
1059  * testing i_size against each block offset.
1060  */
1061 static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
1062                                  unsigned int block_start)
1063 {
1064         u64 offset = page_offset(page) + block_start;
1065
1066         if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
1067                 return 1;
1068
1069         if (i_size_read(inode) > offset)
1070                 return 1;
1071
1072         return 0;
1073 }
1074
1075 /*
1076  * Some of this taken from __block_write_begin(). We already have our
1077  * mapping by now though, and the entire write will be allocating or
1078  * it won't, so not much need to use BH_New.
1079  *
1080  * This will also skip zeroing, which is handled externally.
1081  */
1082 int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
1083                           struct inode *inode, unsigned int from,
1084                           unsigned int to, int new)
1085 {
1086         int ret = 0;
1087         struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
1088         unsigned int block_end, block_start;
1089         unsigned int bsize = 1 << inode->i_blkbits;
1090
1091         if (!page_has_buffers(page))
1092                 create_empty_buffers(page, bsize, 0);
1093
1094         head = page_buffers(page);
1095         for (bh = head, block_start = 0; bh != head || !block_start;
1096              bh = bh->b_this_page, block_start += bsize) {
1097                 block_end = block_start + bsize;
1098
1099                 clear_buffer_new(bh);
1100
1101                 /*
1102                  * Ignore blocks outside of our i/o range -
1103                  * they may belong to unallocated clusters.
1104                  */
1105                 if (block_start >= to || block_end <= from) {
1106                         if (PageUptodate(page))
1107                                 set_buffer_uptodate(bh);
1108                         continue;
1109                 }
1110
1111                 /*
1112                  * For an allocating write with cluster size >= page
1113                  * size, we always write the entire page.
1114                  */
1115                 if (new)
1116                         set_buffer_new(bh);
1117
1118                 if (!buffer_mapped(bh)) {
1119                         map_bh(bh, inode->i_sb, *p_blkno);
1120                         unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
1121                 }
1122
1123                 if (PageUptodate(page)) {
1124                         if (!buffer_uptodate(bh))
1125                                 set_buffer_uptodate(bh);
1126                 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1127                            !buffer_new(bh) &&
1128                            ocfs2_should_read_blk(inode, page, block_start) &&
1129                            (block_start < from || block_end > to)) {
1130                         ll_rw_block(READ, 1, &bh);
1131                         *wait_bh++=bh;
1132                 }
1133
1134                 *p_blkno = *p_blkno + 1;
1135         }
1136
1137         /*
1138          * If we issued read requests - let them complete.
1139          */
1140         while(wait_bh > wait) {
1141                 wait_on_buffer(*--wait_bh);
1142                 if (!buffer_uptodate(*wait_bh))
1143                         ret = -EIO;
1144         }
1145
1146         if (ret == 0 || !new)
1147                 return ret;
1148
1149         /*
1150          * If we get -EIO above, zero out any newly allocated blocks
1151          * to avoid exposing stale data.
1152          */
1153         bh = head;
1154         block_start = 0;
1155         do {
1156                 block_end = block_start + bsize;
1157                 if (block_end <= from)
1158                         goto next_bh;
1159                 if (block_start >= to)
1160                         break;
1161
1162                 zero_user(page, block_start, bh->b_size);
1163                 set_buffer_uptodate(bh);
1164                 mark_buffer_dirty(bh);
1165
1166 next_bh:
1167                 block_start = block_end;
1168                 bh = bh->b_this_page;
1169         } while (bh != head);
1170
1171         return ret;
1172 }
1173
1174 #if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
1175 #define OCFS2_MAX_CTXT_PAGES    1
1176 #else
1177 #define OCFS2_MAX_CTXT_PAGES    (OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
1178 #endif
1179
1180 #define OCFS2_MAX_CLUSTERS_PER_PAGE     (PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
1181
1182 /*
1183  * Describe the state of a single cluster to be written to.
1184  */
1185 struct ocfs2_write_cluster_desc {
1186         u32             c_cpos;
1187         u32             c_phys;
1188         /*
1189          * Give this a unique field because c_phys eventually gets
1190          * filled.
1191          */
1192         unsigned        c_new;
1193         unsigned        c_unwritten;
1194         unsigned        c_needs_zero;
1195 };
1196
1197 struct ocfs2_write_ctxt {
1198         /* Logical cluster position / len of write */
1199         u32                             w_cpos;
1200         u32                             w_clen;
1201
1202         /* First cluster allocated in a nonsparse extend */
1203         u32                             w_first_new_cpos;
1204
1205         struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
1206
1207         /*
1208          * This is true if page_size > cluster_size.
1209          *
1210          * It triggers a set of special cases during write which might
1211          * have to deal with allocating writes to partial pages.
1212          */
1213         unsigned int                    w_large_pages;
1214
1215         /*
1216          * Pages involved in this write.
1217          *
1218          * w_target_page is the page being written to by the user.
1219          *
1220          * w_pages is an array of pages which always contains
1221          * w_target_page, and in the case of an allocating write with
1222          * page_size < cluster size, it will contain zero'd and mapped
1223          * pages adjacent to w_target_page which need to be written
1224          * out in so that future reads from that region will get
1225          * zero's.
1226          */
1227         unsigned int                    w_num_pages;
1228         struct page                     *w_pages[OCFS2_MAX_CTXT_PAGES];
1229         struct page                     *w_target_page;
1230
1231         /*
1232          * w_target_locked is used for page_mkwrite path indicating no unlocking
1233          * against w_target_page in ocfs2_write_end_nolock.
1234          */
1235         unsigned int                    w_target_locked:1;
1236
1237         /*
1238          * ocfs2_write_end() uses this to know what the real range to
1239          * write in the target should be.
1240          */
1241         unsigned int                    w_target_from;
1242         unsigned int                    w_target_to;
1243
1244         /*
1245          * We could use journal_current_handle() but this is cleaner,
1246          * IMHO -Mark
1247          */
1248         handle_t                        *w_handle;
1249
1250         struct buffer_head              *w_di_bh;
1251
1252         struct ocfs2_cached_dealloc_ctxt w_dealloc;
1253 };
1254
1255 void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
1256 {
1257         int i;
1258
1259         for(i = 0; i < num_pages; i++) {
1260                 if (pages[i]) {
1261                         unlock_page(pages[i]);
1262                         mark_page_accessed(pages[i]);
1263                         page_cache_release(pages[i]);
1264                 }
1265         }
1266 }
1267
1268 static void ocfs2_unlock_pages(struct ocfs2_write_ctxt *wc)
1269 {
1270         int i;
1271
1272         /*
1273          * w_target_locked is only set to true in the page_mkwrite() case.
1274          * The intent is to allow us to lock the target page from write_begin()
1275          * to write_end(). The caller must hold a ref on w_target_page.
1276          */
1277         if (wc->w_target_locked) {
1278                 BUG_ON(!wc->w_target_page);
1279                 for (i = 0; i < wc->w_num_pages; i++) {
1280                         if (wc->w_target_page == wc->w_pages[i]) {
1281                                 wc->w_pages[i] = NULL;
1282                                 break;
1283                         }
1284                 }
1285                 mark_page_accessed(wc->w_target_page);
1286                 page_cache_release(wc->w_target_page);
1287         }
1288         ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
1289 }
1290
1291 static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
1292 {
1293         ocfs2_unlock_pages(wc);
1294         brelse(wc->w_di_bh);
1295         kfree(wc);
1296 }
1297
1298 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
1299                                   struct ocfs2_super *osb, loff_t pos,
1300                                   unsigned len, struct buffer_head *di_bh)
1301 {
1302         u32 cend;
1303         struct ocfs2_write_ctxt *wc;
1304
1305         wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
1306         if (!wc)
1307                 return -ENOMEM;
1308
1309         wc->w_cpos = pos >> osb->s_clustersize_bits;
1310         wc->w_first_new_cpos = UINT_MAX;
1311         cend = (pos + len - 1) >> osb->s_clustersize_bits;
1312         wc->w_clen = cend - wc->w_cpos + 1;
1313         get_bh(di_bh);
1314         wc->w_di_bh = di_bh;
1315
1316         if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
1317                 wc->w_large_pages = 1;
1318         else
1319                 wc->w_large_pages = 0;
1320
1321         ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
1322
1323         *wcp = wc;
1324
1325         return 0;
1326 }
1327
1328 /*
1329  * If a page has any new buffers, zero them out here, and mark them uptodate
1330  * and dirty so they'll be written out (in order to prevent uninitialised
1331  * block data from leaking). And clear the new bit.
1332  */
1333 static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1334 {
1335         unsigned int block_start, block_end;
1336         struct buffer_head *head, *bh;
1337
1338         BUG_ON(!PageLocked(page));
1339         if (!page_has_buffers(page))
1340                 return;
1341
1342         bh = head = page_buffers(page);
1343         block_start = 0;
1344         do {
1345                 block_end = block_start + bh->b_size;
1346
1347                 if (buffer_new(bh)) {
1348                         if (block_end > from && block_start < to) {
1349                                 if (!PageUptodate(page)) {
1350                                         unsigned start, end;
1351
1352                                         start = max(from, block_start);
1353                                         end = min(to, block_end);
1354
1355                                         zero_user_segment(page, start, end);
1356                                         set_buffer_uptodate(bh);
1357                                 }
1358
1359                                 clear_buffer_new(bh);
1360                                 mark_buffer_dirty(bh);
1361                         }
1362                 }
1363
1364                 block_start = block_end;
1365                 bh = bh->b_this_page;
1366         } while (bh != head);
1367 }
1368
1369 /*
1370  * Only called when we have a failure during allocating write to write
1371  * zero's to the newly allocated region.
1372  */
1373 static void ocfs2_write_failure(struct inode *inode,
1374                                 struct ocfs2_write_ctxt *wc,
1375                                 loff_t user_pos, unsigned user_len)
1376 {
1377         int i;
1378         unsigned from = user_pos & (PAGE_CACHE_SIZE - 1),
1379                 to = user_pos + user_len;
1380         struct page *tmppage;
1381
1382         ocfs2_zero_new_buffers(wc->w_target_page, from, to);
1383
1384         for(i = 0; i < wc->w_num_pages; i++) {
1385                 tmppage = wc->w_pages[i];
1386
1387                 if (page_has_buffers(tmppage)) {
1388                         if (ocfs2_should_order_data(inode))
1389                                 ocfs2_jbd2_file_inode(wc->w_handle, inode);
1390
1391                         block_commit_write(tmppage, from, to);
1392                 }
1393         }
1394 }
1395
1396 static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
1397                                         struct ocfs2_write_ctxt *wc,
1398                                         struct page *page, u32 cpos,
1399                                         loff_t user_pos, unsigned user_len,
1400                                         int new)
1401 {
1402         int ret;
1403         unsigned int map_from = 0, map_to = 0;
1404         unsigned int cluster_start, cluster_end;
1405         unsigned int user_data_from = 0, user_data_to = 0;
1406
1407         ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
1408                                         &cluster_start, &cluster_end);
1409
1410         /* treat the write as new if the a hole/lseek spanned across
1411          * the page boundary.
1412          */
1413         new = new | ((i_size_read(inode) <= page_offset(page)) &&
1414                         (page_offset(page) <= user_pos));
1415
1416         if (page == wc->w_target_page) {
1417                 map_from = user_pos & (PAGE_CACHE_SIZE - 1);
1418                 map_to = map_from + user_len;
1419
1420                 if (new)
1421                         ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1422                                                     cluster_start, cluster_end,
1423                                                     new);
1424                 else
1425                         ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1426                                                     map_from, map_to, new);
1427                 if (ret) {
1428                         mlog_errno(ret);
1429                         goto out;
1430                 }
1431
1432                 user_data_from = map_from;
1433                 user_data_to = map_to;
1434                 if (new) {
1435                         map_from = cluster_start;
1436                         map_to = cluster_end;
1437                 }
1438         } else {
1439                 /*
1440                  * If we haven't allocated the new page yet, we
1441                  * shouldn't be writing it out without copying user
1442                  * data. This is likely a math error from the caller.
1443                  */
1444                 BUG_ON(!new);
1445
1446                 map_from = cluster_start;
1447                 map_to = cluster_end;
1448
1449                 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1450                                             cluster_start, cluster_end, new);
1451                 if (ret) {
1452                         mlog_errno(ret);
1453                         goto out;
1454                 }
1455         }
1456
1457         /*
1458          * Parts of newly allocated pages need to be zero'd.
1459          *
1460          * Above, we have also rewritten 'to' and 'from' - as far as
1461          * the rest of the function is concerned, the entire cluster
1462          * range inside of a page needs to be written.
1463          *
1464          * We can skip this if the page is up to date - it's already
1465          * been zero'd from being read in as a hole.
1466          */
1467         if (new && !PageUptodate(page))
1468                 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1469                                          cpos, user_data_from, user_data_to);
1470
1471         flush_dcache_page(page);
1472
1473 out:
1474         return ret;
1475 }
1476
1477 /*
1478  * This function will only grab one clusters worth of pages.
1479  */
1480 static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1481                                       struct ocfs2_write_ctxt *wc,
1482                                       u32 cpos, loff_t user_pos,
1483                                       unsigned user_len, int new,
1484                                       struct page *mmap_page)
1485 {
1486         int ret = 0, i;
1487         unsigned long start, target_index, end_index, index;
1488         struct inode *inode = mapping->host;
1489         loff_t last_byte;
1490
1491         target_index = user_pos >> PAGE_CACHE_SHIFT;
1492
1493         /*
1494          * Figure out how many pages we'll be manipulating here. For
1495          * non allocating write, we just change the one
1496          * page. Otherwise, we'll need a whole clusters worth.  If we're
1497          * writing past i_size, we only need enough pages to cover the
1498          * last page of the write.
1499          */
1500         if (new) {
1501                 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1502                 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1503                 /*
1504                  * We need the index *past* the last page we could possibly
1505                  * touch.  This is the page past the end of the write or
1506                  * i_size, whichever is greater.
1507                  */
1508                 last_byte = max(user_pos + user_len, i_size_read(inode));
1509                 BUG_ON(last_byte < 1);
1510                 end_index = ((last_byte - 1) >> PAGE_CACHE_SHIFT) + 1;
1511                 if ((start + wc->w_num_pages) > end_index)
1512                         wc->w_num_pages = end_index - start;
1513         } else {
1514                 wc->w_num_pages = 1;
1515                 start = target_index;
1516         }
1517
1518         for(i = 0; i < wc->w_num_pages; i++) {
1519                 index = start + i;
1520
1521                 if (index == target_index && mmap_page) {
1522                         /*
1523                          * ocfs2_pagemkwrite() is a little different
1524                          * and wants us to directly use the page
1525                          * passed in.
1526                          */
1527                         lock_page(mmap_page);
1528
1529                         /* Exit and let the caller retry */
1530                         if (mmap_page->mapping != mapping) {
1531                                 WARN_ON(mmap_page->mapping);
1532                                 unlock_page(mmap_page);
1533                                 ret = -EAGAIN;
1534                                 goto out;
1535                         }
1536
1537                         page_cache_get(mmap_page);
1538                         wc->w_pages[i] = mmap_page;
1539                         wc->w_target_locked = true;
1540                 } else {
1541                         wc->w_pages[i] = find_or_create_page(mapping, index,
1542                                                              GFP_NOFS);
1543                         if (!wc->w_pages[i]) {
1544                                 ret = -ENOMEM;
1545                                 mlog_errno(ret);
1546                                 goto out;
1547                         }
1548                 }
1549                 wait_for_stable_page(wc->w_pages[i]);
1550
1551                 if (index == target_index)
1552                         wc->w_target_page = wc->w_pages[i];
1553         }
1554 out:
1555         if (ret)
1556                 wc->w_target_locked = false;
1557         return ret;
1558 }
1559
1560 /*
1561  * Prepare a single cluster for write one cluster into the file.
1562  */
1563 static int ocfs2_write_cluster(struct address_space *mapping,
1564                                u32 phys, unsigned int unwritten,
1565                                unsigned int should_zero,
1566                                struct ocfs2_alloc_context *data_ac,
1567                                struct ocfs2_alloc_context *meta_ac,
1568                                struct ocfs2_write_ctxt *wc, u32 cpos,
1569                                loff_t user_pos, unsigned user_len)
1570 {
1571         int ret, i, new;
1572         u64 v_blkno, p_blkno;
1573         struct inode *inode = mapping->host;
1574         struct ocfs2_extent_tree et;
1575
1576         new = phys == 0 ? 1 : 0;
1577         if (new) {
1578                 u32 tmp_pos;
1579
1580                 /*
1581                  * This is safe to call with the page locks - it won't take
1582                  * any additional semaphores or cluster locks.
1583                  */
1584                 tmp_pos = cpos;
1585                 ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1586                                            &tmp_pos, 1, 0, wc->w_di_bh,
1587                                            wc->w_handle, data_ac,
1588                                            meta_ac, NULL);
1589                 /*
1590                  * This shouldn't happen because we must have already
1591                  * calculated the correct meta data allocation required. The
1592                  * internal tree allocation code should know how to increase
1593                  * transaction credits itself.
1594                  *
1595                  * If need be, we could handle -EAGAIN for a
1596                  * RESTART_TRANS here.
1597                  */
1598                 mlog_bug_on_msg(ret == -EAGAIN,
1599                                 "Inode %llu: EAGAIN return during allocation.\n",
1600                                 (unsigned long long)OCFS2_I(inode)->ip_blkno);
1601                 if (ret < 0) {
1602                         mlog_errno(ret);
1603                         goto out;
1604                 }
1605         } else if (unwritten) {
1606                 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1607                                               wc->w_di_bh);
1608                 ret = ocfs2_mark_extent_written(inode, &et,
1609                                                 wc->w_handle, cpos, 1, phys,
1610                                                 meta_ac, &wc->w_dealloc);
1611                 if (ret < 0) {
1612                         mlog_errno(ret);
1613                         goto out;
1614                 }
1615         }
1616
1617         if (should_zero)
1618                 v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos);
1619         else
1620                 v_blkno = user_pos >> inode->i_sb->s_blocksize_bits;
1621
1622         /*
1623          * The only reason this should fail is due to an inability to
1624          * find the extent added.
1625          */
1626         ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
1627                                           NULL);
1628         if (ret < 0) {
1629                 mlog(ML_ERROR, "Get physical blkno failed for inode %llu, "
1630                             "at logical block %llu",
1631                             (unsigned long long)OCFS2_I(inode)->ip_blkno,
1632                             (unsigned long long)v_blkno);
1633                 goto out;
1634         }
1635
1636         BUG_ON(p_blkno == 0);
1637
1638         for(i = 0; i < wc->w_num_pages; i++) {
1639                 int tmpret;
1640
1641                 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1642                                                       wc->w_pages[i], cpos,
1643                                                       user_pos, user_len,
1644                                                       should_zero);
1645                 if (tmpret) {
1646                         mlog_errno(tmpret);
1647                         if (ret == 0)
1648                                 ret = tmpret;
1649                 }
1650         }
1651
1652         /*
1653          * We only have cleanup to do in case of allocating write.
1654          */
1655         if (ret && new)
1656                 ocfs2_write_failure(inode, wc, user_pos, user_len);
1657
1658 out:
1659
1660         return ret;
1661 }
1662
1663 static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1664                                        struct ocfs2_alloc_context *data_ac,
1665                                        struct ocfs2_alloc_context *meta_ac,
1666                                        struct ocfs2_write_ctxt *wc,
1667                                        loff_t pos, unsigned len)
1668 {
1669         int ret, i;
1670         loff_t cluster_off;
1671         unsigned int local_len = len;
1672         struct ocfs2_write_cluster_desc *desc;
1673         struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1674
1675         for (i = 0; i < wc->w_clen; i++) {
1676                 desc = &wc->w_desc[i];
1677
1678                 /*
1679                  * We have to make sure that the total write passed in
1680                  * doesn't extend past a single cluster.
1681                  */
1682                 local_len = len;
1683                 cluster_off = pos & (osb->s_clustersize - 1);
1684                 if ((cluster_off + local_len) > osb->s_clustersize)
1685                         local_len = osb->s_clustersize - cluster_off;
1686
1687                 ret = ocfs2_write_cluster(mapping, desc->c_phys,
1688                                           desc->c_unwritten,
1689                                           desc->c_needs_zero,
1690                                           data_ac, meta_ac,
1691                                           wc, desc->c_cpos, pos, local_len);
1692                 if (ret) {
1693                         mlog_errno(ret);
1694                         goto out;
1695                 }
1696
1697                 len -= local_len;
1698                 pos += local_len;
1699         }
1700
1701         ret = 0;
1702 out:
1703         return ret;
1704 }
1705
1706 /*
1707  * ocfs2_write_end() wants to know which parts of the target page it
1708  * should complete the write on. It's easiest to compute them ahead of
1709  * time when a more complete view of the write is available.
1710  */
1711 static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1712                                         struct ocfs2_write_ctxt *wc,
1713                                         loff_t pos, unsigned len, int alloc)
1714 {
1715         struct ocfs2_write_cluster_desc *desc;
1716
1717         wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
1718         wc->w_target_to = wc->w_target_from + len;
1719
1720         if (alloc == 0)
1721                 return;
1722
1723         /*
1724          * Allocating write - we may have different boundaries based
1725          * on page size and cluster size.
1726          *
1727          * NOTE: We can no longer compute one value from the other as
1728          * the actual write length and user provided length may be
1729          * different.
1730          */
1731
1732         if (wc->w_large_pages) {
1733                 /*
1734                  * We only care about the 1st and last cluster within
1735                  * our range and whether they should be zero'd or not. Either
1736                  * value may be extended out to the start/end of a
1737                  * newly allocated cluster.
1738                  */
1739                 desc = &wc->w_desc[0];
1740                 if (desc->c_needs_zero)
1741                         ocfs2_figure_cluster_boundaries(osb,
1742                                                         desc->c_cpos,
1743                                                         &wc->w_target_from,
1744                                                         NULL);
1745
1746                 desc = &wc->w_desc[wc->w_clen - 1];
1747                 if (desc->c_needs_zero)
1748                         ocfs2_figure_cluster_boundaries(osb,
1749                                                         desc->c_cpos,
1750                                                         NULL,
1751                                                         &wc->w_target_to);
1752         } else {
1753                 wc->w_target_from = 0;
1754                 wc->w_target_to = PAGE_CACHE_SIZE;
1755         }
1756 }
1757
1758 /*
1759  * Populate each single-cluster write descriptor in the write context
1760  * with information about the i/o to be done.
1761  *
1762  * Returns the number of clusters that will have to be allocated, as
1763  * well as a worst case estimate of the number of extent records that
1764  * would have to be created during a write to an unwritten region.
1765  */
1766 static int ocfs2_populate_write_desc(struct inode *inode,
1767                                      struct ocfs2_write_ctxt *wc,
1768                                      unsigned int *clusters_to_alloc,
1769                                      unsigned int *extents_to_split)
1770 {
1771         int ret;
1772         struct ocfs2_write_cluster_desc *desc;
1773         unsigned int num_clusters = 0;
1774         unsigned int ext_flags = 0;
1775         u32 phys = 0;
1776         int i;
1777
1778         *clusters_to_alloc = 0;
1779         *extents_to_split = 0;
1780
1781         for (i = 0; i < wc->w_clen; i++) {
1782                 desc = &wc->w_desc[i];
1783                 desc->c_cpos = wc->w_cpos + i;
1784
1785                 if (num_clusters == 0) {
1786                         /*
1787                          * Need to look up the next extent record.
1788                          */
1789                         ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1790                                                  &num_clusters, &ext_flags);
1791                         if (ret) {
1792                                 mlog_errno(ret);
1793                                 goto out;
1794                         }
1795
1796                         /* We should already CoW the refcountd extent. */
1797                         BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1798
1799                         /*
1800                          * Assume worst case - that we're writing in
1801                          * the middle of the extent.
1802                          *
1803                          * We can assume that the write proceeds from
1804                          * left to right, in which case the extent
1805                          * insert code is smart enough to coalesce the
1806                          * next splits into the previous records created.
1807                          */
1808                         if (ext_flags & OCFS2_EXT_UNWRITTEN)
1809                                 *extents_to_split = *extents_to_split + 2;
1810                 } else if (phys) {
1811                         /*
1812                          * Only increment phys if it doesn't describe
1813                          * a hole.
1814                          */
1815                         phys++;
1816                 }
1817
1818                 /*
1819                  * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1820                  * file that got extended.  w_first_new_cpos tells us
1821                  * where the newly allocated clusters are so we can
1822                  * zero them.
1823                  */
1824                 if (desc->c_cpos >= wc->w_first_new_cpos) {
1825                         BUG_ON(phys == 0);
1826                         desc->c_needs_zero = 1;
1827                 }
1828
1829                 desc->c_phys = phys;
1830                 if (phys == 0) {
1831                         desc->c_new = 1;
1832                         desc->c_needs_zero = 1;
1833                         *clusters_to_alloc = *clusters_to_alloc + 1;
1834                 }
1835
1836                 if (ext_flags & OCFS2_EXT_UNWRITTEN) {
1837                         desc->c_unwritten = 1;
1838                         desc->c_needs_zero = 1;
1839                 }
1840
1841                 num_clusters--;
1842         }
1843
1844         ret = 0;
1845 out:
1846         return ret;
1847 }
1848
1849 static int ocfs2_write_begin_inline(struct address_space *mapping,
1850                                     struct inode *inode,
1851                                     struct ocfs2_write_ctxt *wc)
1852 {
1853         int ret;
1854         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1855         struct page *page;
1856         handle_t *handle;
1857         struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1858
1859         handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1860         if (IS_ERR(handle)) {
1861                 ret = PTR_ERR(handle);
1862                 mlog_errno(ret);
1863                 goto out;
1864         }
1865
1866         page = find_or_create_page(mapping, 0, GFP_NOFS);
1867         if (!page) {
1868                 ocfs2_commit_trans(osb, handle);
1869                 ret = -ENOMEM;
1870                 mlog_errno(ret);
1871                 goto out;
1872         }
1873         /*
1874          * If we don't set w_num_pages then this page won't get unlocked
1875          * and freed on cleanup of the write context.
1876          */
1877         wc->w_pages[0] = wc->w_target_page = page;
1878         wc->w_num_pages = 1;
1879
1880         ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1881                                       OCFS2_JOURNAL_ACCESS_WRITE);
1882         if (ret) {
1883                 ocfs2_commit_trans(osb, handle);
1884
1885                 mlog_errno(ret);
1886                 goto out;
1887         }
1888
1889         if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1890                 ocfs2_set_inode_data_inline(inode, di);
1891
1892         if (!PageUptodate(page)) {
1893                 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1894                 if (ret) {
1895                         ocfs2_commit_trans(osb, handle);
1896
1897                         goto out;
1898                 }
1899         }
1900
1901         wc->w_handle = handle;
1902 out:
1903         return ret;
1904 }
1905
1906 int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1907 {
1908         struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1909
1910         if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1911                 return 1;
1912         return 0;
1913 }
1914
1915 static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1916                                           struct inode *inode, loff_t pos,
1917                                           unsigned len, struct page *mmap_page,
1918                                           struct ocfs2_write_ctxt *wc)
1919 {
1920         int ret, written = 0;
1921         loff_t end = pos + len;
1922         struct ocfs2_inode_info *oi = OCFS2_I(inode);
1923         struct ocfs2_dinode *di = NULL;
1924
1925         trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno,
1926                                              len, (unsigned long long)pos,
1927                                              oi->ip_dyn_features);
1928
1929         /*
1930          * Handle inodes which already have inline data 1st.
1931          */
1932         if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1933                 if (mmap_page == NULL &&
1934                     ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1935                         goto do_inline_write;
1936
1937                 /*
1938                  * The write won't fit - we have to give this inode an
1939                  * inline extent list now.
1940                  */
1941                 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1942                 if (ret)
1943                         mlog_errno(ret);
1944                 goto out;
1945         }
1946
1947         /*
1948          * Check whether the inode can accept inline data.
1949          */
1950         if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1951                 return 0;
1952
1953         /*
1954          * Check whether the write can fit.
1955          */
1956         di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1957         if (mmap_page ||
1958             end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1959                 return 0;
1960
1961 do_inline_write:
1962         ret = ocfs2_write_begin_inline(mapping, inode, wc);
1963         if (ret) {
1964                 mlog_errno(ret);
1965                 goto out;
1966         }
1967
1968         /*
1969          * This signals to the caller that the data can be written
1970          * inline.
1971          */
1972         written = 1;
1973 out:
1974         return written ? written : ret;
1975 }
1976
1977 /*
1978  * This function only does anything for file systems which can't
1979  * handle sparse files.
1980  *
1981  * What we want to do here is fill in any hole between the current end
1982  * of allocation and the end of our write. That way the rest of the
1983  * write path can treat it as an non-allocating write, which has no
1984  * special case code for sparse/nonsparse files.
1985  */
1986 static int ocfs2_expand_nonsparse_inode(struct inode *inode,
1987                                         struct buffer_head *di_bh,
1988                                         loff_t pos, unsigned len,
1989                                         struct ocfs2_write_ctxt *wc)
1990 {
1991         int ret;
1992         loff_t newsize = pos + len;
1993
1994         BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1995
1996         if (newsize <= i_size_read(inode))
1997                 return 0;
1998
1999         ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
2000         if (ret)
2001                 mlog_errno(ret);
2002
2003         wc->w_first_new_cpos =
2004                 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
2005
2006         return ret;
2007 }
2008
2009 static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
2010                            loff_t pos)
2011 {
2012         int ret = 0;
2013
2014         BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
2015         if (pos > i_size_read(inode))
2016                 ret = ocfs2_zero_extend(inode, di_bh, pos);
2017
2018         return ret;
2019 }
2020
2021 /*
2022  * Try to flush truncate logs if we can free enough clusters from it.
2023  * As for return value, "< 0" means error, "0" no space and "1" means
2024  * we have freed enough spaces and let the caller try to allocate again.
2025  */
2026 static int ocfs2_try_to_free_truncate_log(struct ocfs2_super *osb,
2027                                           unsigned int needed)
2028 {
2029         tid_t target;
2030         int ret = 0;
2031         unsigned int truncated_clusters;
2032
2033         mutex_lock(&osb->osb_tl_inode->i_mutex);
2034         truncated_clusters = osb->truncated_clusters;
2035         mutex_unlock(&osb->osb_tl_inode->i_mutex);
2036
2037         /*
2038          * Check whether we can succeed in allocating if we free
2039          * the truncate log.
2040          */
2041         if (truncated_clusters < needed)
2042                 goto out;
2043
2044         ret = ocfs2_flush_truncate_log(osb);
2045         if (ret) {
2046                 mlog_errno(ret);
2047                 goto out;
2048         }
2049
2050         if (jbd2_journal_start_commit(osb->journal->j_journal, &target)) {
2051                 jbd2_log_wait_commit(osb->journal->j_journal, target);
2052                 ret = 1;
2053         }
2054 out:
2055         return ret;
2056 }
2057
2058 int ocfs2_write_begin_nolock(struct file *filp,
2059                              struct address_space *mapping,
2060                              loff_t pos, unsigned len, unsigned flags,
2061                              struct page **pagep, void **fsdata,
2062                              struct buffer_head *di_bh, struct page *mmap_page)
2063 {
2064         int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
2065         unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0;
2066         struct ocfs2_write_ctxt *wc;
2067         struct inode *inode = mapping->host;
2068         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2069         struct ocfs2_dinode *di;
2070         struct ocfs2_alloc_context *data_ac = NULL;
2071         struct ocfs2_alloc_context *meta_ac = NULL;
2072         handle_t *handle;
2073         struct ocfs2_extent_tree et;
2074         int try_free = 1, ret1;
2075
2076 try_again:
2077         ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh);
2078         if (ret) {
2079                 mlog_errno(ret);
2080                 return ret;
2081         }
2082
2083         if (ocfs2_supports_inline_data(osb)) {
2084                 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
2085                                                      mmap_page, wc);
2086                 if (ret == 1) {
2087                         ret = 0;
2088                         goto success;
2089                 }
2090                 if (ret < 0) {
2091                         mlog_errno(ret);
2092                         goto out;
2093                 }
2094         }
2095
2096         if (ocfs2_sparse_alloc(osb))
2097                 ret = ocfs2_zero_tail(inode, di_bh, pos);
2098         else
2099                 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos, len,
2100                                                    wc);
2101         if (ret) {
2102                 mlog_errno(ret);
2103                 goto out;
2104         }
2105
2106         ret = ocfs2_check_range_for_refcount(inode, pos, len);
2107         if (ret < 0) {
2108                 mlog_errno(ret);
2109                 goto out;
2110         } else if (ret == 1) {
2111                 clusters_need = wc->w_clen;
2112                 ret = ocfs2_refcount_cow(inode, di_bh,
2113                                          wc->w_cpos, wc->w_clen, UINT_MAX);
2114                 if (ret) {
2115                         mlog_errno(ret);
2116                         goto out;
2117                 }
2118         }
2119
2120         ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
2121                                         &extents_to_split);
2122         if (ret) {
2123                 mlog_errno(ret);
2124                 goto out;
2125         }
2126         clusters_need += clusters_to_alloc;
2127
2128         di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
2129
2130         trace_ocfs2_write_begin_nolock(
2131                         (unsigned long long)OCFS2_I(inode)->ip_blkno,
2132                         (long long)i_size_read(inode),
2133                         le32_to_cpu(di->i_clusters),
2134                         pos, len, flags, mmap_page,
2135                         clusters_to_alloc, extents_to_split);
2136
2137         /*
2138          * We set w_target_from, w_target_to here so that
2139          * ocfs2_write_end() knows which range in the target page to
2140          * write out. An allocation requires that we write the entire
2141          * cluster range.
2142          */
2143         if (clusters_to_alloc || extents_to_split) {
2144                 /*
2145                  * XXX: We are stretching the limits of
2146                  * ocfs2_lock_allocators(). It greatly over-estimates
2147                  * the work to be done.
2148                  */
2149                 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
2150                                               wc->w_di_bh);
2151                 ret = ocfs2_lock_allocators(inode, &et,
2152                                             clusters_to_alloc, extents_to_split,
2153                                             &data_ac, &meta_ac);
2154                 if (ret) {
2155                         mlog_errno(ret);
2156                         goto out;
2157                 }
2158
2159                 if (data_ac)
2160                         data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
2161
2162                 credits = ocfs2_calc_extend_credits(inode->i_sb,
2163                                                     &di->id2.i_list);
2164
2165         }
2166
2167         /*
2168          * We have to zero sparse allocated clusters, unwritten extent clusters,
2169          * and non-sparse clusters we just extended.  For non-sparse writes,
2170          * we know zeros will only be needed in the first and/or last cluster.
2171          */
2172         if (clusters_to_alloc || extents_to_split ||
2173             (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
2174                             wc->w_desc[wc->w_clen - 1].c_needs_zero)))
2175                 cluster_of_pages = 1;
2176         else
2177                 cluster_of_pages = 0;
2178
2179         ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
2180
2181         handle = ocfs2_start_trans(osb, credits);
2182         if (IS_ERR(handle)) {
2183                 ret = PTR_ERR(handle);
2184                 mlog_errno(ret);
2185                 goto out;
2186         }
2187
2188         wc->w_handle = handle;
2189
2190         if (clusters_to_alloc) {
2191                 ret = dquot_alloc_space_nodirty(inode,
2192                         ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
2193                 if (ret)
2194                         goto out_commit;
2195         }
2196         /*
2197          * We don't want this to fail in ocfs2_write_end(), so do it
2198          * here.
2199          */
2200         ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
2201                                       OCFS2_JOURNAL_ACCESS_WRITE);
2202         if (ret) {
2203                 mlog_errno(ret);
2204                 goto out_quota;
2205         }
2206
2207         /*
2208          * Fill our page array first. That way we've grabbed enough so
2209          * that we can zero and flush if we error after adding the
2210          * extent.
2211          */
2212         ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
2213                                          cluster_of_pages, mmap_page);
2214         if (ret && ret != -EAGAIN) {
2215                 mlog_errno(ret);
2216                 goto out_quota;
2217         }
2218
2219         /*
2220          * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock
2221          * the target page. In this case, we exit with no error and no target
2222          * page. This will trigger the caller, page_mkwrite(), to re-try
2223          * the operation.
2224          */
2225         if (ret == -EAGAIN) {
2226                 BUG_ON(wc->w_target_page);
2227                 ret = 0;
2228                 goto out_quota;
2229         }
2230
2231         ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
2232                                           len);
2233         if (ret) {
2234                 mlog_errno(ret);
2235                 goto out_quota;
2236         }
2237
2238         if (data_ac)
2239                 ocfs2_free_alloc_context(data_ac);
2240         if (meta_ac)
2241                 ocfs2_free_alloc_context(meta_ac);
2242
2243 success:
2244         *pagep = wc->w_target_page;
2245         *fsdata = wc;
2246         return 0;
2247 out_quota:
2248         if (clusters_to_alloc)
2249                 dquot_free_space(inode,
2250                           ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
2251 out_commit:
2252         ocfs2_commit_trans(osb, handle);
2253
2254 out:
2255         ocfs2_free_write_ctxt(wc);
2256
2257         if (data_ac) {
2258                 ocfs2_free_alloc_context(data_ac);
2259                 data_ac = NULL;
2260         }
2261         if (meta_ac) {
2262                 ocfs2_free_alloc_context(meta_ac);
2263                 meta_ac = NULL;
2264         }
2265
2266         if (ret == -ENOSPC && try_free) {
2267                 /*
2268                  * Try to free some truncate log so that we can have enough
2269                  * clusters to allocate.
2270                  */
2271                 try_free = 0;
2272
2273                 ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need);
2274                 if (ret1 == 1)
2275                         goto try_again;
2276
2277                 if (ret1 < 0)
2278                         mlog_errno(ret1);
2279         }
2280
2281         return ret;
2282 }
2283
2284 static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
2285                              loff_t pos, unsigned len, unsigned flags,
2286                              struct page **pagep, void **fsdata)
2287 {
2288         int ret;
2289         struct buffer_head *di_bh = NULL;
2290         struct inode *inode = mapping->host;
2291
2292         ret = ocfs2_inode_lock(inode, &di_bh, 1);
2293         if (ret) {
2294                 mlog_errno(ret);
2295                 return ret;
2296         }
2297
2298         /*
2299          * Take alloc sem here to prevent concurrent lookups. That way
2300          * the mapping, zeroing and tree manipulation within
2301          * ocfs2_write() will be safe against ->readpage(). This
2302          * should also serve to lock out allocation from a shared
2303          * writeable region.
2304          */
2305         down_write(&OCFS2_I(inode)->ip_alloc_sem);
2306
2307         ret = ocfs2_write_begin_nolock(file, mapping, pos, len, flags, pagep,
2308                                        fsdata, di_bh, NULL);
2309         if (ret) {
2310                 mlog_errno(ret);
2311                 goto out_fail;
2312         }
2313
2314         brelse(di_bh);
2315
2316         return 0;
2317
2318 out_fail:
2319         up_write(&OCFS2_I(inode)->ip_alloc_sem);
2320
2321         brelse(di_bh);
2322         ocfs2_inode_unlock(inode, 1);
2323
2324         return ret;
2325 }
2326
2327 static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
2328                                    unsigned len, unsigned *copied,
2329                                    struct ocfs2_dinode *di,
2330                                    struct ocfs2_write_ctxt *wc)
2331 {
2332         void *kaddr;
2333
2334         if (unlikely(*copied < len)) {
2335                 if (!PageUptodate(wc->w_target_page)) {
2336                         *copied = 0;
2337                         return;
2338                 }
2339         }
2340
2341         kaddr = kmap_atomic(wc->w_target_page);
2342         memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
2343         kunmap_atomic(kaddr);
2344
2345         trace_ocfs2_write_end_inline(
2346              (unsigned long long)OCFS2_I(inode)->ip_blkno,
2347              (unsigned long long)pos, *copied,
2348              le16_to_cpu(di->id2.i_data.id_count),
2349              le16_to_cpu(di->i_dyn_features));
2350 }
2351
2352 int ocfs2_write_end_nolock(struct address_space *mapping,
2353                            loff_t pos, unsigned len, unsigned copied,
2354                            struct page *page, void *fsdata)
2355 {
2356         int i;
2357         unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
2358         struct inode *inode = mapping->host;
2359         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2360         struct ocfs2_write_ctxt *wc = fsdata;
2361         struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
2362         handle_t *handle = wc->w_handle;
2363         struct page *tmppage;
2364
2365         if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
2366                 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
2367                 goto out_write_size;
2368         }
2369
2370         if (unlikely(copied < len)) {
2371                 if (!PageUptodate(wc->w_target_page))
2372                         copied = 0;
2373
2374                 ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
2375                                        start+len);
2376         }
2377         flush_dcache_page(wc->w_target_page);
2378
2379         for(i = 0; i < wc->w_num_pages; i++) {
2380                 tmppage = wc->w_pages[i];
2381
2382                 if (tmppage == wc->w_target_page) {
2383                         from = wc->w_target_from;
2384                         to = wc->w_target_to;
2385
2386                         BUG_ON(from > PAGE_CACHE_SIZE ||
2387                                to > PAGE_CACHE_SIZE ||
2388                                to < from);
2389                 } else {
2390                         /*
2391                          * Pages adjacent to the target (if any) imply
2392                          * a hole-filling write in which case we want
2393                          * to flush their entire range.
2394                          */
2395                         from = 0;
2396                         to = PAGE_CACHE_SIZE;
2397                 }
2398
2399                 if (page_has_buffers(tmppage)) {
2400                         if (ocfs2_should_order_data(inode))
2401                                 ocfs2_jbd2_file_inode(wc->w_handle, inode);
2402                         block_commit_write(tmppage, from, to);
2403                 }
2404         }
2405
2406 out_write_size:
2407         pos += copied;
2408         if (pos > i_size_read(inode)) {
2409                 i_size_write(inode, pos);
2410                 mark_inode_dirty(inode);
2411         }
2412         inode->i_blocks = ocfs2_inode_sector_count(inode);
2413         di->i_size = cpu_to_le64((u64)i_size_read(inode));
2414         inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2415         di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
2416         di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
2417         ocfs2_update_inode_fsync_trans(handle, inode, 1);
2418         ocfs2_journal_dirty(handle, wc->w_di_bh);
2419
2420         /* unlock pages before dealloc since it needs acquiring j_trans_barrier
2421          * lock, or it will cause a deadlock since journal commit threads holds
2422          * this lock and will ask for the page lock when flushing the data.
2423          * put it here to preserve the unlock order.
2424          */
2425         ocfs2_unlock_pages(wc);
2426
2427         ocfs2_commit_trans(osb, handle);
2428
2429         ocfs2_run_deallocs(osb, &wc->w_dealloc);
2430
2431         brelse(wc->w_di_bh);
2432         kfree(wc);
2433
2434         return copied;
2435 }
2436
2437 static int ocfs2_write_end(struct file *file, struct address_space *mapping,
2438                            loff_t pos, unsigned len, unsigned copied,
2439                            struct page *page, void *fsdata)
2440 {
2441         int ret;
2442         struct inode *inode = mapping->host;
2443
2444         ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
2445
2446         up_write(&OCFS2_I(inode)->ip_alloc_sem);
2447         ocfs2_inode_unlock(inode, 1);
2448
2449         return ret;
2450 }
2451
2452 const struct address_space_operations ocfs2_aops = {
2453         .readpage               = ocfs2_readpage,
2454         .readpages              = ocfs2_readpages,
2455         .writepage              = ocfs2_writepage,
2456         .write_begin            = ocfs2_write_begin,
2457         .write_end              = ocfs2_write_end,
2458         .bmap                   = ocfs2_bmap,
2459         .direct_IO              = ocfs2_direct_IO,
2460         .invalidatepage         = block_invalidatepage,
2461         .releasepage            = ocfs2_releasepage,
2462         .migratepage            = buffer_migrate_page,
2463         .is_partially_uptodate  = block_is_partially_uptodate,
2464         .error_remove_page      = generic_error_remove_page,
2465 };