Merge branch 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jwessel...
[pandora-kernel.git] / fs / ocfs2 / aops.c
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public
17  * License along with this program; if not, write to the
18  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19  * Boston, MA 021110-1307, USA.
20  */
21
22 #include <linux/fs.h>
23 #include <linux/slab.h>
24 #include <linux/highmem.h>
25 #include <linux/pagemap.h>
26 #include <asm/byteorder.h>
27 #include <linux/swap.h>
28 #include <linux/pipe_fs_i.h>
29 #include <linux/mpage.h>
30 #include <linux/quotaops.h>
31
32 #include <cluster/masklog.h>
33
34 #include "ocfs2.h"
35
36 #include "alloc.h"
37 #include "aops.h"
38 #include "dlmglue.h"
39 #include "extent_map.h"
40 #include "file.h"
41 #include "inode.h"
42 #include "journal.h"
43 #include "suballoc.h"
44 #include "super.h"
45 #include "symlink.h"
46 #include "refcounttree.h"
47 #include "ocfs2_trace.h"
48
49 #include "buffer_head_io.h"
50
51 static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
52                                    struct buffer_head *bh_result, int create)
53 {
54         int err = -EIO;
55         int status;
56         struct ocfs2_dinode *fe = NULL;
57         struct buffer_head *bh = NULL;
58         struct buffer_head *buffer_cache_bh = NULL;
59         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
60         void *kaddr;
61
62         trace_ocfs2_symlink_get_block(
63                         (unsigned long long)OCFS2_I(inode)->ip_blkno,
64                         (unsigned long long)iblock, bh_result, create);
65
66         BUG_ON(ocfs2_inode_is_fast_symlink(inode));
67
68         if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
69                 mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
70                      (unsigned long long)iblock);
71                 goto bail;
72         }
73
74         status = ocfs2_read_inode_block(inode, &bh);
75         if (status < 0) {
76                 mlog_errno(status);
77                 goto bail;
78         }
79         fe = (struct ocfs2_dinode *) bh->b_data;
80
81         if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
82                                                     le32_to_cpu(fe->i_clusters))) {
83                 mlog(ML_ERROR, "block offset is outside the allocated size: "
84                      "%llu\n", (unsigned long long)iblock);
85                 goto bail;
86         }
87
88         /* We don't use the page cache to create symlink data, so if
89          * need be, copy it over from the buffer cache. */
90         if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
91                 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
92                             iblock;
93                 buffer_cache_bh = sb_getblk(osb->sb, blkno);
94                 if (!buffer_cache_bh) {
95                         mlog(ML_ERROR, "couldn't getblock for symlink!\n");
96                         goto bail;
97                 }
98
99                 /* we haven't locked out transactions, so a commit
100                  * could've happened. Since we've got a reference on
101                  * the bh, even if it commits while we're doing the
102                  * copy, the data is still good. */
103                 if (buffer_jbd(buffer_cache_bh)
104                     && ocfs2_inode_is_new(inode)) {
105                         kaddr = kmap_atomic(bh_result->b_page, KM_USER0);
106                         if (!kaddr) {
107                                 mlog(ML_ERROR, "couldn't kmap!\n");
108                                 goto bail;
109                         }
110                         memcpy(kaddr + (bh_result->b_size * iblock),
111                                buffer_cache_bh->b_data,
112                                bh_result->b_size);
113                         kunmap_atomic(kaddr, KM_USER0);
114                         set_buffer_uptodate(bh_result);
115                 }
116                 brelse(buffer_cache_bh);
117         }
118
119         map_bh(bh_result, inode->i_sb,
120                le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
121
122         err = 0;
123
124 bail:
125         brelse(bh);
126
127         return err;
128 }
129
130 int ocfs2_get_block(struct inode *inode, sector_t iblock,
131                     struct buffer_head *bh_result, int create)
132 {
133         int err = 0;
134         unsigned int ext_flags;
135         u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
136         u64 p_blkno, count, past_eof;
137         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
138
139         trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno,
140                               (unsigned long long)iblock, bh_result, create);
141
142         if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
143                 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
144                      inode, inode->i_ino);
145
146         if (S_ISLNK(inode->i_mode)) {
147                 /* this always does I/O for some reason. */
148                 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
149                 goto bail;
150         }
151
152         err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
153                                           &ext_flags);
154         if (err) {
155                 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
156                      "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
157                      (unsigned long long)p_blkno);
158                 goto bail;
159         }
160
161         if (max_blocks < count)
162                 count = max_blocks;
163
164         /*
165          * ocfs2 never allocates in this function - the only time we
166          * need to use BH_New is when we're extending i_size on a file
167          * system which doesn't support holes, in which case BH_New
168          * allows __block_write_begin() to zero.
169          *
170          * If we see this on a sparse file system, then a truncate has
171          * raced us and removed the cluster. In this case, we clear
172          * the buffers dirty and uptodate bits and let the buffer code
173          * ignore it as a hole.
174          */
175         if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
176                 clear_buffer_dirty(bh_result);
177                 clear_buffer_uptodate(bh_result);
178                 goto bail;
179         }
180
181         /* Treat the unwritten extent as a hole for zeroing purposes. */
182         if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
183                 map_bh(bh_result, inode->i_sb, p_blkno);
184
185         bh_result->b_size = count << inode->i_blkbits;
186
187         if (!ocfs2_sparse_alloc(osb)) {
188                 if (p_blkno == 0) {
189                         err = -EIO;
190                         mlog(ML_ERROR,
191                              "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
192                              (unsigned long long)iblock,
193                              (unsigned long long)p_blkno,
194                              (unsigned long long)OCFS2_I(inode)->ip_blkno);
195                         mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
196                         dump_stack();
197                         goto bail;
198                 }
199         }
200
201         past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
202
203         trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno,
204                                   (unsigned long long)past_eof);
205         if (create && (iblock >= past_eof))
206                 set_buffer_new(bh_result);
207
208 bail:
209         if (err < 0)
210                 err = -EIO;
211
212         return err;
213 }
214
215 int ocfs2_read_inline_data(struct inode *inode, struct page *page,
216                            struct buffer_head *di_bh)
217 {
218         void *kaddr;
219         loff_t size;
220         struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
221
222         if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
223                 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag",
224                             (unsigned long long)OCFS2_I(inode)->ip_blkno);
225                 return -EROFS;
226         }
227
228         size = i_size_read(inode);
229
230         if (size > PAGE_CACHE_SIZE ||
231             size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
232                 ocfs2_error(inode->i_sb,
233                             "Inode %llu has with inline data has bad size: %Lu",
234                             (unsigned long long)OCFS2_I(inode)->ip_blkno,
235                             (unsigned long long)size);
236                 return -EROFS;
237         }
238
239         kaddr = kmap_atomic(page, KM_USER0);
240         if (size)
241                 memcpy(kaddr, di->id2.i_data.id_data, size);
242         /* Clear the remaining part of the page */
243         memset(kaddr + size, 0, PAGE_CACHE_SIZE - size);
244         flush_dcache_page(page);
245         kunmap_atomic(kaddr, KM_USER0);
246
247         SetPageUptodate(page);
248
249         return 0;
250 }
251
252 static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
253 {
254         int ret;
255         struct buffer_head *di_bh = NULL;
256
257         BUG_ON(!PageLocked(page));
258         BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
259
260         ret = ocfs2_read_inode_block(inode, &di_bh);
261         if (ret) {
262                 mlog_errno(ret);
263                 goto out;
264         }
265
266         ret = ocfs2_read_inline_data(inode, page, di_bh);
267 out:
268         unlock_page(page);
269
270         brelse(di_bh);
271         return ret;
272 }
273
274 static int ocfs2_readpage(struct file *file, struct page *page)
275 {
276         struct inode *inode = page->mapping->host;
277         struct ocfs2_inode_info *oi = OCFS2_I(inode);
278         loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
279         int ret, unlock = 1;
280
281         trace_ocfs2_readpage((unsigned long long)oi->ip_blkno,
282                              (page ? page->index : 0));
283
284         ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
285         if (ret != 0) {
286                 if (ret == AOP_TRUNCATED_PAGE)
287                         unlock = 0;
288                 mlog_errno(ret);
289                 goto out;
290         }
291
292         if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
293                 ret = AOP_TRUNCATED_PAGE;
294                 goto out_inode_unlock;
295         }
296
297         /*
298          * i_size might have just been updated as we grabed the meta lock.  We
299          * might now be discovering a truncate that hit on another node.
300          * block_read_full_page->get_block freaks out if it is asked to read
301          * beyond the end of a file, so we check here.  Callers
302          * (generic_file_read, vm_ops->fault) are clever enough to check i_size
303          * and notice that the page they just read isn't needed.
304          *
305          * XXX sys_readahead() seems to get that wrong?
306          */
307         if (start >= i_size_read(inode)) {
308                 zero_user(page, 0, PAGE_SIZE);
309                 SetPageUptodate(page);
310                 ret = 0;
311                 goto out_alloc;
312         }
313
314         if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
315                 ret = ocfs2_readpage_inline(inode, page);
316         else
317                 ret = block_read_full_page(page, ocfs2_get_block);
318         unlock = 0;
319
320 out_alloc:
321         up_read(&OCFS2_I(inode)->ip_alloc_sem);
322 out_inode_unlock:
323         ocfs2_inode_unlock(inode, 0);
324 out:
325         if (unlock)
326                 unlock_page(page);
327         return ret;
328 }
329
330 /*
331  * This is used only for read-ahead. Failures or difficult to handle
332  * situations are safe to ignore.
333  *
334  * Right now, we don't bother with BH_Boundary - in-inode extent lists
335  * are quite large (243 extents on 4k blocks), so most inodes don't
336  * grow out to a tree. If need be, detecting boundary extents could
337  * trivially be added in a future version of ocfs2_get_block().
338  */
339 static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
340                            struct list_head *pages, unsigned nr_pages)
341 {
342         int ret, err = -EIO;
343         struct inode *inode = mapping->host;
344         struct ocfs2_inode_info *oi = OCFS2_I(inode);
345         loff_t start;
346         struct page *last;
347
348         /*
349          * Use the nonblocking flag for the dlm code to avoid page
350          * lock inversion, but don't bother with retrying.
351          */
352         ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
353         if (ret)
354                 return err;
355
356         if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
357                 ocfs2_inode_unlock(inode, 0);
358                 return err;
359         }
360
361         /*
362          * Don't bother with inline-data. There isn't anything
363          * to read-ahead in that case anyway...
364          */
365         if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
366                 goto out_unlock;
367
368         /*
369          * Check whether a remote node truncated this file - we just
370          * drop out in that case as it's not worth handling here.
371          */
372         last = list_entry(pages->prev, struct page, lru);
373         start = (loff_t)last->index << PAGE_CACHE_SHIFT;
374         if (start >= i_size_read(inode))
375                 goto out_unlock;
376
377         err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
378
379 out_unlock:
380         up_read(&oi->ip_alloc_sem);
381         ocfs2_inode_unlock(inode, 0);
382
383         return err;
384 }
385
386 /* Note: Because we don't support holes, our allocation has
387  * already happened (allocation writes zeros to the file data)
388  * so we don't have to worry about ordered writes in
389  * ocfs2_writepage.
390  *
391  * ->writepage is called during the process of invalidating the page cache
392  * during blocked lock processing.  It can't block on any cluster locks
393  * to during block mapping.  It's relying on the fact that the block
394  * mapping can't have disappeared under the dirty pages that it is
395  * being asked to write back.
396  */
397 static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
398 {
399         trace_ocfs2_writepage(
400                 (unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno,
401                 page->index);
402
403         return block_write_full_page(page, ocfs2_get_block, wbc);
404 }
405
406 /* Taken from ext3. We don't necessarily need the full blown
407  * functionality yet, but IMHO it's better to cut and paste the whole
408  * thing so we can avoid introducing our own bugs (and easily pick up
409  * their fixes when they happen) --Mark */
410 int walk_page_buffers(  handle_t *handle,
411                         struct buffer_head *head,
412                         unsigned from,
413                         unsigned to,
414                         int *partial,
415                         int (*fn)(      handle_t *handle,
416                                         struct buffer_head *bh))
417 {
418         struct buffer_head *bh;
419         unsigned block_start, block_end;
420         unsigned blocksize = head->b_size;
421         int err, ret = 0;
422         struct buffer_head *next;
423
424         for (   bh = head, block_start = 0;
425                 ret == 0 && (bh != head || !block_start);
426                 block_start = block_end, bh = next)
427         {
428                 next = bh->b_this_page;
429                 block_end = block_start + blocksize;
430                 if (block_end <= from || block_start >= to) {
431                         if (partial && !buffer_uptodate(bh))
432                                 *partial = 1;
433                         continue;
434                 }
435                 err = (*fn)(handle, bh);
436                 if (!ret)
437                         ret = err;
438         }
439         return ret;
440 }
441
442 static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
443 {
444         sector_t status;
445         u64 p_blkno = 0;
446         int err = 0;
447         struct inode *inode = mapping->host;
448
449         trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno,
450                          (unsigned long long)block);
451
452         /* We don't need to lock journal system files, since they aren't
453          * accessed concurrently from multiple nodes.
454          */
455         if (!INODE_JOURNAL(inode)) {
456                 err = ocfs2_inode_lock(inode, NULL, 0);
457                 if (err) {
458                         if (err != -ENOENT)
459                                 mlog_errno(err);
460                         goto bail;
461                 }
462                 down_read(&OCFS2_I(inode)->ip_alloc_sem);
463         }
464
465         if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
466                 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
467                                                   NULL);
468
469         if (!INODE_JOURNAL(inode)) {
470                 up_read(&OCFS2_I(inode)->ip_alloc_sem);
471                 ocfs2_inode_unlock(inode, 0);
472         }
473
474         if (err) {
475                 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
476                      (unsigned long long)block);
477                 mlog_errno(err);
478                 goto bail;
479         }
480
481 bail:
482         status = err ? 0 : p_blkno;
483
484         return status;
485 }
486
487 /*
488  * TODO: Make this into a generic get_blocks function.
489  *
490  * From do_direct_io in direct-io.c:
491  *  "So what we do is to permit the ->get_blocks function to populate
492  *   bh.b_size with the size of IO which is permitted at this offset and
493  *   this i_blkbits."
494  *
495  * This function is called directly from get_more_blocks in direct-io.c.
496  *
497  * called like this: dio->get_blocks(dio->inode, fs_startblk,
498  *                                      fs_count, map_bh, dio->rw == WRITE);
499  *
500  * Note that we never bother to allocate blocks here, and thus ignore the
501  * create argument.
502  */
503 static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
504                                      struct buffer_head *bh_result, int create)
505 {
506         int ret;
507         u64 p_blkno, inode_blocks, contig_blocks;
508         unsigned int ext_flags;
509         unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
510         unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
511
512         /* This function won't even be called if the request isn't all
513          * nicely aligned and of the right size, so there's no need
514          * for us to check any of that. */
515
516         inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
517
518         /* This figures out the size of the next contiguous block, and
519          * our logical offset */
520         ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
521                                           &contig_blocks, &ext_flags);
522         if (ret) {
523                 mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
524                      (unsigned long long)iblock);
525                 ret = -EIO;
526                 goto bail;
527         }
528
529         /* We should already CoW the refcounted extent in case of create. */
530         BUG_ON(create && (ext_flags & OCFS2_EXT_REFCOUNTED));
531
532         /*
533          * get_more_blocks() expects us to describe a hole by clearing
534          * the mapped bit on bh_result().
535          *
536          * Consider an unwritten extent as a hole.
537          */
538         if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
539                 map_bh(bh_result, inode->i_sb, p_blkno);
540         else
541                 clear_buffer_mapped(bh_result);
542
543         /* make sure we don't map more than max_blocks blocks here as
544            that's all the kernel will handle at this point. */
545         if (max_blocks < contig_blocks)
546                 contig_blocks = max_blocks;
547         bh_result->b_size = contig_blocks << blocksize_bits;
548 bail:
549         return ret;
550 }
551
552 /*
553  * ocfs2_dio_end_io is called by the dio core when a dio is finished.  We're
554  * particularly interested in the aio/dio case.  We use the rw_lock DLM lock
555  * to protect io on one node from truncation on another.
556  */
557 static void ocfs2_dio_end_io(struct kiocb *iocb,
558                              loff_t offset,
559                              ssize_t bytes,
560                              void *private,
561                              int ret,
562                              bool is_async)
563 {
564         struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
565         int level;
566
567         /* this io's submitter should not have unlocked this before we could */
568         BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
569
570         if (ocfs2_iocb_is_sem_locked(iocb))
571                 ocfs2_iocb_clear_sem_locked(iocb);
572
573         ocfs2_iocb_clear_rw_locked(iocb);
574
575         level = ocfs2_iocb_rw_locked_level(iocb);
576         ocfs2_rw_unlock(inode, level);
577
578         if (is_async)
579                 aio_complete(iocb, ret, 0);
580         inode_dio_done(inode);
581 }
582
583 /*
584  * ocfs2_invalidatepage() and ocfs2_releasepage() are shamelessly stolen
585  * from ext3.  PageChecked() bits have been removed as OCFS2 does not
586  * do journalled data.
587  */
588 static void ocfs2_invalidatepage(struct page *page, unsigned long offset)
589 {
590         journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
591
592         jbd2_journal_invalidatepage(journal, page, offset);
593 }
594
595 static int ocfs2_releasepage(struct page *page, gfp_t wait)
596 {
597         journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
598
599         if (!page_has_buffers(page))
600                 return 0;
601         return jbd2_journal_try_to_free_buffers(journal, page, wait);
602 }
603
604 static ssize_t ocfs2_direct_IO(int rw,
605                                struct kiocb *iocb,
606                                const struct iovec *iov,
607                                loff_t offset,
608                                unsigned long nr_segs)
609 {
610         struct file *file = iocb->ki_filp;
611         struct inode *inode = file->f_path.dentry->d_inode->i_mapping->host;
612
613         /*
614          * Fallback to buffered I/O if we see an inode without
615          * extents.
616          */
617         if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
618                 return 0;
619
620         /* Fallback to buffered I/O if we are appending. */
621         if (i_size_read(inode) <= offset)
622                 return 0;
623
624         return __blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev,
625                                     iov, offset, nr_segs,
626                                     ocfs2_direct_IO_get_blocks,
627                                     ocfs2_dio_end_io, NULL, 0);
628 }
629
630 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
631                                             u32 cpos,
632                                             unsigned int *start,
633                                             unsigned int *end)
634 {
635         unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
636
637         if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
638                 unsigned int cpp;
639
640                 cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
641
642                 cluster_start = cpos % cpp;
643                 cluster_start = cluster_start << osb->s_clustersize_bits;
644
645                 cluster_end = cluster_start + osb->s_clustersize;
646         }
647
648         BUG_ON(cluster_start > PAGE_SIZE);
649         BUG_ON(cluster_end > PAGE_SIZE);
650
651         if (start)
652                 *start = cluster_start;
653         if (end)
654                 *end = cluster_end;
655 }
656
657 /*
658  * 'from' and 'to' are the region in the page to avoid zeroing.
659  *
660  * If pagesize > clustersize, this function will avoid zeroing outside
661  * of the cluster boundary.
662  *
663  * from == to == 0 is code for "zero the entire cluster region"
664  */
665 static void ocfs2_clear_page_regions(struct page *page,
666                                      struct ocfs2_super *osb, u32 cpos,
667                                      unsigned from, unsigned to)
668 {
669         void *kaddr;
670         unsigned int cluster_start, cluster_end;
671
672         ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
673
674         kaddr = kmap_atomic(page, KM_USER0);
675
676         if (from || to) {
677                 if (from > cluster_start)
678                         memset(kaddr + cluster_start, 0, from - cluster_start);
679                 if (to < cluster_end)
680                         memset(kaddr + to, 0, cluster_end - to);
681         } else {
682                 memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
683         }
684
685         kunmap_atomic(kaddr, KM_USER0);
686 }
687
688 /*
689  * Nonsparse file systems fully allocate before we get to the write
690  * code. This prevents ocfs2_write() from tagging the write as an
691  * allocating one, which means ocfs2_map_page_blocks() might try to
692  * read-in the blocks at the tail of our file. Avoid reading them by
693  * testing i_size against each block offset.
694  */
695 static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
696                                  unsigned int block_start)
697 {
698         u64 offset = page_offset(page) + block_start;
699
700         if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
701                 return 1;
702
703         if (i_size_read(inode) > offset)
704                 return 1;
705
706         return 0;
707 }
708
709 /*
710  * Some of this taken from __block_write_begin(). We already have our
711  * mapping by now though, and the entire write will be allocating or
712  * it won't, so not much need to use BH_New.
713  *
714  * This will also skip zeroing, which is handled externally.
715  */
716 int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
717                           struct inode *inode, unsigned int from,
718                           unsigned int to, int new)
719 {
720         int ret = 0;
721         struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
722         unsigned int block_end, block_start;
723         unsigned int bsize = 1 << inode->i_blkbits;
724
725         if (!page_has_buffers(page))
726                 create_empty_buffers(page, bsize, 0);
727
728         head = page_buffers(page);
729         for (bh = head, block_start = 0; bh != head || !block_start;
730              bh = bh->b_this_page, block_start += bsize) {
731                 block_end = block_start + bsize;
732
733                 clear_buffer_new(bh);
734
735                 /*
736                  * Ignore blocks outside of our i/o range -
737                  * they may belong to unallocated clusters.
738                  */
739                 if (block_start >= to || block_end <= from) {
740                         if (PageUptodate(page))
741                                 set_buffer_uptodate(bh);
742                         continue;
743                 }
744
745                 /*
746                  * For an allocating write with cluster size >= page
747                  * size, we always write the entire page.
748                  */
749                 if (new)
750                         set_buffer_new(bh);
751
752                 if (!buffer_mapped(bh)) {
753                         map_bh(bh, inode->i_sb, *p_blkno);
754                         unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
755                 }
756
757                 if (PageUptodate(page)) {
758                         if (!buffer_uptodate(bh))
759                                 set_buffer_uptodate(bh);
760                 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
761                            !buffer_new(bh) &&
762                            ocfs2_should_read_blk(inode, page, block_start) &&
763                            (block_start < from || block_end > to)) {
764                         ll_rw_block(READ, 1, &bh);
765                         *wait_bh++=bh;
766                 }
767
768                 *p_blkno = *p_blkno + 1;
769         }
770
771         /*
772          * If we issued read requests - let them complete.
773          */
774         while(wait_bh > wait) {
775                 wait_on_buffer(*--wait_bh);
776                 if (!buffer_uptodate(*wait_bh))
777                         ret = -EIO;
778         }
779
780         if (ret == 0 || !new)
781                 return ret;
782
783         /*
784          * If we get -EIO above, zero out any newly allocated blocks
785          * to avoid exposing stale data.
786          */
787         bh = head;
788         block_start = 0;
789         do {
790                 block_end = block_start + bsize;
791                 if (block_end <= from)
792                         goto next_bh;
793                 if (block_start >= to)
794                         break;
795
796                 zero_user(page, block_start, bh->b_size);
797                 set_buffer_uptodate(bh);
798                 mark_buffer_dirty(bh);
799
800 next_bh:
801                 block_start = block_end;
802                 bh = bh->b_this_page;
803         } while (bh != head);
804
805         return ret;
806 }
807
808 #if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
809 #define OCFS2_MAX_CTXT_PAGES    1
810 #else
811 #define OCFS2_MAX_CTXT_PAGES    (OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
812 #endif
813
814 #define OCFS2_MAX_CLUSTERS_PER_PAGE     (PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
815
816 /*
817  * Describe the state of a single cluster to be written to.
818  */
819 struct ocfs2_write_cluster_desc {
820         u32             c_cpos;
821         u32             c_phys;
822         /*
823          * Give this a unique field because c_phys eventually gets
824          * filled.
825          */
826         unsigned        c_new;
827         unsigned        c_unwritten;
828         unsigned        c_needs_zero;
829 };
830
831 struct ocfs2_write_ctxt {
832         /* Logical cluster position / len of write */
833         u32                             w_cpos;
834         u32                             w_clen;
835
836         /* First cluster allocated in a nonsparse extend */
837         u32                             w_first_new_cpos;
838
839         struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
840
841         /*
842          * This is true if page_size > cluster_size.
843          *
844          * It triggers a set of special cases during write which might
845          * have to deal with allocating writes to partial pages.
846          */
847         unsigned int                    w_large_pages;
848
849         /*
850          * Pages involved in this write.
851          *
852          * w_target_page is the page being written to by the user.
853          *
854          * w_pages is an array of pages which always contains
855          * w_target_page, and in the case of an allocating write with
856          * page_size < cluster size, it will contain zero'd and mapped
857          * pages adjacent to w_target_page which need to be written
858          * out in so that future reads from that region will get
859          * zero's.
860          */
861         unsigned int                    w_num_pages;
862         struct page                     *w_pages[OCFS2_MAX_CTXT_PAGES];
863         struct page                     *w_target_page;
864
865         /*
866          * ocfs2_write_end() uses this to know what the real range to
867          * write in the target should be.
868          */
869         unsigned int                    w_target_from;
870         unsigned int                    w_target_to;
871
872         /*
873          * We could use journal_current_handle() but this is cleaner,
874          * IMHO -Mark
875          */
876         handle_t                        *w_handle;
877
878         struct buffer_head              *w_di_bh;
879
880         struct ocfs2_cached_dealloc_ctxt w_dealloc;
881 };
882
883 void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
884 {
885         int i;
886
887         for(i = 0; i < num_pages; i++) {
888                 if (pages[i]) {
889                         unlock_page(pages[i]);
890                         mark_page_accessed(pages[i]);
891                         page_cache_release(pages[i]);
892                 }
893         }
894 }
895
896 static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
897 {
898         ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
899
900         brelse(wc->w_di_bh);
901         kfree(wc);
902 }
903
904 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
905                                   struct ocfs2_super *osb, loff_t pos,
906                                   unsigned len, struct buffer_head *di_bh)
907 {
908         u32 cend;
909         struct ocfs2_write_ctxt *wc;
910
911         wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
912         if (!wc)
913                 return -ENOMEM;
914
915         wc->w_cpos = pos >> osb->s_clustersize_bits;
916         wc->w_first_new_cpos = UINT_MAX;
917         cend = (pos + len - 1) >> osb->s_clustersize_bits;
918         wc->w_clen = cend - wc->w_cpos + 1;
919         get_bh(di_bh);
920         wc->w_di_bh = di_bh;
921
922         if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
923                 wc->w_large_pages = 1;
924         else
925                 wc->w_large_pages = 0;
926
927         ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
928
929         *wcp = wc;
930
931         return 0;
932 }
933
934 /*
935  * If a page has any new buffers, zero them out here, and mark them uptodate
936  * and dirty so they'll be written out (in order to prevent uninitialised
937  * block data from leaking). And clear the new bit.
938  */
939 static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
940 {
941         unsigned int block_start, block_end;
942         struct buffer_head *head, *bh;
943
944         BUG_ON(!PageLocked(page));
945         if (!page_has_buffers(page))
946                 return;
947
948         bh = head = page_buffers(page);
949         block_start = 0;
950         do {
951                 block_end = block_start + bh->b_size;
952
953                 if (buffer_new(bh)) {
954                         if (block_end > from && block_start < to) {
955                                 if (!PageUptodate(page)) {
956                                         unsigned start, end;
957
958                                         start = max(from, block_start);
959                                         end = min(to, block_end);
960
961                                         zero_user_segment(page, start, end);
962                                         set_buffer_uptodate(bh);
963                                 }
964
965                                 clear_buffer_new(bh);
966                                 mark_buffer_dirty(bh);
967                         }
968                 }
969
970                 block_start = block_end;
971                 bh = bh->b_this_page;
972         } while (bh != head);
973 }
974
975 /*
976  * Only called when we have a failure during allocating write to write
977  * zero's to the newly allocated region.
978  */
979 static void ocfs2_write_failure(struct inode *inode,
980                                 struct ocfs2_write_ctxt *wc,
981                                 loff_t user_pos, unsigned user_len)
982 {
983         int i;
984         unsigned from = user_pos & (PAGE_CACHE_SIZE - 1),
985                 to = user_pos + user_len;
986         struct page *tmppage;
987
988         ocfs2_zero_new_buffers(wc->w_target_page, from, to);
989
990         for(i = 0; i < wc->w_num_pages; i++) {
991                 tmppage = wc->w_pages[i];
992
993                 if (page_has_buffers(tmppage)) {
994                         if (ocfs2_should_order_data(inode))
995                                 ocfs2_jbd2_file_inode(wc->w_handle, inode);
996
997                         block_commit_write(tmppage, from, to);
998                 }
999         }
1000 }
1001
1002 static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
1003                                         struct ocfs2_write_ctxt *wc,
1004                                         struct page *page, u32 cpos,
1005                                         loff_t user_pos, unsigned user_len,
1006                                         int new)
1007 {
1008         int ret;
1009         unsigned int map_from = 0, map_to = 0;
1010         unsigned int cluster_start, cluster_end;
1011         unsigned int user_data_from = 0, user_data_to = 0;
1012
1013         ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
1014                                         &cluster_start, &cluster_end);
1015
1016         /* treat the write as new if the a hole/lseek spanned across
1017          * the page boundary.
1018          */
1019         new = new | ((i_size_read(inode) <= page_offset(page)) &&
1020                         (page_offset(page) <= user_pos));
1021
1022         if (page == wc->w_target_page) {
1023                 map_from = user_pos & (PAGE_CACHE_SIZE - 1);
1024                 map_to = map_from + user_len;
1025
1026                 if (new)
1027                         ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1028                                                     cluster_start, cluster_end,
1029                                                     new);
1030                 else
1031                         ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1032                                                     map_from, map_to, new);
1033                 if (ret) {
1034                         mlog_errno(ret);
1035                         goto out;
1036                 }
1037
1038                 user_data_from = map_from;
1039                 user_data_to = map_to;
1040                 if (new) {
1041                         map_from = cluster_start;
1042                         map_to = cluster_end;
1043                 }
1044         } else {
1045                 /*
1046                  * If we haven't allocated the new page yet, we
1047                  * shouldn't be writing it out without copying user
1048                  * data. This is likely a math error from the caller.
1049                  */
1050                 BUG_ON(!new);
1051
1052                 map_from = cluster_start;
1053                 map_to = cluster_end;
1054
1055                 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1056                                             cluster_start, cluster_end, new);
1057                 if (ret) {
1058                         mlog_errno(ret);
1059                         goto out;
1060                 }
1061         }
1062
1063         /*
1064          * Parts of newly allocated pages need to be zero'd.
1065          *
1066          * Above, we have also rewritten 'to' and 'from' - as far as
1067          * the rest of the function is concerned, the entire cluster
1068          * range inside of a page needs to be written.
1069          *
1070          * We can skip this if the page is up to date - it's already
1071          * been zero'd from being read in as a hole.
1072          */
1073         if (new && !PageUptodate(page))
1074                 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1075                                          cpos, user_data_from, user_data_to);
1076
1077         flush_dcache_page(page);
1078
1079 out:
1080         return ret;
1081 }
1082
1083 /*
1084  * This function will only grab one clusters worth of pages.
1085  */
1086 static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1087                                       struct ocfs2_write_ctxt *wc,
1088                                       u32 cpos, loff_t user_pos,
1089                                       unsigned user_len, int new,
1090                                       struct page *mmap_page)
1091 {
1092         int ret = 0, i;
1093         unsigned long start, target_index, end_index, index;
1094         struct inode *inode = mapping->host;
1095         loff_t last_byte;
1096
1097         target_index = user_pos >> PAGE_CACHE_SHIFT;
1098
1099         /*
1100          * Figure out how many pages we'll be manipulating here. For
1101          * non allocating write, we just change the one
1102          * page. Otherwise, we'll need a whole clusters worth.  If we're
1103          * writing past i_size, we only need enough pages to cover the
1104          * last page of the write.
1105          */
1106         if (new) {
1107                 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1108                 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1109                 /*
1110                  * We need the index *past* the last page we could possibly
1111                  * touch.  This is the page past the end of the write or
1112                  * i_size, whichever is greater.
1113                  */
1114                 last_byte = max(user_pos + user_len, i_size_read(inode));
1115                 BUG_ON(last_byte < 1);
1116                 end_index = ((last_byte - 1) >> PAGE_CACHE_SHIFT) + 1;
1117                 if ((start + wc->w_num_pages) > end_index)
1118                         wc->w_num_pages = end_index - start;
1119         } else {
1120                 wc->w_num_pages = 1;
1121                 start = target_index;
1122         }
1123
1124         for(i = 0; i < wc->w_num_pages; i++) {
1125                 index = start + i;
1126
1127                 if (index == target_index && mmap_page) {
1128                         /*
1129                          * ocfs2_pagemkwrite() is a little different
1130                          * and wants us to directly use the page
1131                          * passed in.
1132                          */
1133                         lock_page(mmap_page);
1134
1135                         if (mmap_page->mapping != mapping) {
1136                                 unlock_page(mmap_page);
1137                                 /*
1138                                  * Sanity check - the locking in
1139                                  * ocfs2_pagemkwrite() should ensure
1140                                  * that this code doesn't trigger.
1141                                  */
1142                                 ret = -EINVAL;
1143                                 mlog_errno(ret);
1144                                 goto out;
1145                         }
1146
1147                         page_cache_get(mmap_page);
1148                         wc->w_pages[i] = mmap_page;
1149                 } else {
1150                         wc->w_pages[i] = find_or_create_page(mapping, index,
1151                                                              GFP_NOFS);
1152                         if (!wc->w_pages[i]) {
1153                                 ret = -ENOMEM;
1154                                 mlog_errno(ret);
1155                                 goto out;
1156                         }
1157                 }
1158
1159                 if (index == target_index)
1160                         wc->w_target_page = wc->w_pages[i];
1161         }
1162 out:
1163         return ret;
1164 }
1165
1166 /*
1167  * Prepare a single cluster for write one cluster into the file.
1168  */
1169 static int ocfs2_write_cluster(struct address_space *mapping,
1170                                u32 phys, unsigned int unwritten,
1171                                unsigned int should_zero,
1172                                struct ocfs2_alloc_context *data_ac,
1173                                struct ocfs2_alloc_context *meta_ac,
1174                                struct ocfs2_write_ctxt *wc, u32 cpos,
1175                                loff_t user_pos, unsigned user_len)
1176 {
1177         int ret, i, new;
1178         u64 v_blkno, p_blkno;
1179         struct inode *inode = mapping->host;
1180         struct ocfs2_extent_tree et;
1181
1182         new = phys == 0 ? 1 : 0;
1183         if (new) {
1184                 u32 tmp_pos;
1185
1186                 /*
1187                  * This is safe to call with the page locks - it won't take
1188                  * any additional semaphores or cluster locks.
1189                  */
1190                 tmp_pos = cpos;
1191                 ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1192                                            &tmp_pos, 1, 0, wc->w_di_bh,
1193                                            wc->w_handle, data_ac,
1194                                            meta_ac, NULL);
1195                 /*
1196                  * This shouldn't happen because we must have already
1197                  * calculated the correct meta data allocation required. The
1198                  * internal tree allocation code should know how to increase
1199                  * transaction credits itself.
1200                  *
1201                  * If need be, we could handle -EAGAIN for a
1202                  * RESTART_TRANS here.
1203                  */
1204                 mlog_bug_on_msg(ret == -EAGAIN,
1205                                 "Inode %llu: EAGAIN return during allocation.\n",
1206                                 (unsigned long long)OCFS2_I(inode)->ip_blkno);
1207                 if (ret < 0) {
1208                         mlog_errno(ret);
1209                         goto out;
1210                 }
1211         } else if (unwritten) {
1212                 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1213                                               wc->w_di_bh);
1214                 ret = ocfs2_mark_extent_written(inode, &et,
1215                                                 wc->w_handle, cpos, 1, phys,
1216                                                 meta_ac, &wc->w_dealloc);
1217                 if (ret < 0) {
1218                         mlog_errno(ret);
1219                         goto out;
1220                 }
1221         }
1222
1223         if (should_zero)
1224                 v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos);
1225         else
1226                 v_blkno = user_pos >> inode->i_sb->s_blocksize_bits;
1227
1228         /*
1229          * The only reason this should fail is due to an inability to
1230          * find the extent added.
1231          */
1232         ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
1233                                           NULL);
1234         if (ret < 0) {
1235                 ocfs2_error(inode->i_sb, "Corrupting extend for inode %llu, "
1236                             "at logical block %llu",
1237                             (unsigned long long)OCFS2_I(inode)->ip_blkno,
1238                             (unsigned long long)v_blkno);
1239                 goto out;
1240         }
1241
1242         BUG_ON(p_blkno == 0);
1243
1244         for(i = 0; i < wc->w_num_pages; i++) {
1245                 int tmpret;
1246
1247                 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1248                                                       wc->w_pages[i], cpos,
1249                                                       user_pos, user_len,
1250                                                       should_zero);
1251                 if (tmpret) {
1252                         mlog_errno(tmpret);
1253                         if (ret == 0)
1254                                 ret = tmpret;
1255                 }
1256         }
1257
1258         /*
1259          * We only have cleanup to do in case of allocating write.
1260          */
1261         if (ret && new)
1262                 ocfs2_write_failure(inode, wc, user_pos, user_len);
1263
1264 out:
1265
1266         return ret;
1267 }
1268
1269 static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1270                                        struct ocfs2_alloc_context *data_ac,
1271                                        struct ocfs2_alloc_context *meta_ac,
1272                                        struct ocfs2_write_ctxt *wc,
1273                                        loff_t pos, unsigned len)
1274 {
1275         int ret, i;
1276         loff_t cluster_off;
1277         unsigned int local_len = len;
1278         struct ocfs2_write_cluster_desc *desc;
1279         struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1280
1281         for (i = 0; i < wc->w_clen; i++) {
1282                 desc = &wc->w_desc[i];
1283
1284                 /*
1285                  * We have to make sure that the total write passed in
1286                  * doesn't extend past a single cluster.
1287                  */
1288                 local_len = len;
1289                 cluster_off = pos & (osb->s_clustersize - 1);
1290                 if ((cluster_off + local_len) > osb->s_clustersize)
1291                         local_len = osb->s_clustersize - cluster_off;
1292
1293                 ret = ocfs2_write_cluster(mapping, desc->c_phys,
1294                                           desc->c_unwritten,
1295                                           desc->c_needs_zero,
1296                                           data_ac, meta_ac,
1297                                           wc, desc->c_cpos, pos, local_len);
1298                 if (ret) {
1299                         mlog_errno(ret);
1300                         goto out;
1301                 }
1302
1303                 len -= local_len;
1304                 pos += local_len;
1305         }
1306
1307         ret = 0;
1308 out:
1309         return ret;
1310 }
1311
1312 /*
1313  * ocfs2_write_end() wants to know which parts of the target page it
1314  * should complete the write on. It's easiest to compute them ahead of
1315  * time when a more complete view of the write is available.
1316  */
1317 static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1318                                         struct ocfs2_write_ctxt *wc,
1319                                         loff_t pos, unsigned len, int alloc)
1320 {
1321         struct ocfs2_write_cluster_desc *desc;
1322
1323         wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
1324         wc->w_target_to = wc->w_target_from + len;
1325
1326         if (alloc == 0)
1327                 return;
1328
1329         /*
1330          * Allocating write - we may have different boundaries based
1331          * on page size and cluster size.
1332          *
1333          * NOTE: We can no longer compute one value from the other as
1334          * the actual write length and user provided length may be
1335          * different.
1336          */
1337
1338         if (wc->w_large_pages) {
1339                 /*
1340                  * We only care about the 1st and last cluster within
1341                  * our range and whether they should be zero'd or not. Either
1342                  * value may be extended out to the start/end of a
1343                  * newly allocated cluster.
1344                  */
1345                 desc = &wc->w_desc[0];
1346                 if (desc->c_needs_zero)
1347                         ocfs2_figure_cluster_boundaries(osb,
1348                                                         desc->c_cpos,
1349                                                         &wc->w_target_from,
1350                                                         NULL);
1351
1352                 desc = &wc->w_desc[wc->w_clen - 1];
1353                 if (desc->c_needs_zero)
1354                         ocfs2_figure_cluster_boundaries(osb,
1355                                                         desc->c_cpos,
1356                                                         NULL,
1357                                                         &wc->w_target_to);
1358         } else {
1359                 wc->w_target_from = 0;
1360                 wc->w_target_to = PAGE_CACHE_SIZE;
1361         }
1362 }
1363
1364 /*
1365  * Populate each single-cluster write descriptor in the write context
1366  * with information about the i/o to be done.
1367  *
1368  * Returns the number of clusters that will have to be allocated, as
1369  * well as a worst case estimate of the number of extent records that
1370  * would have to be created during a write to an unwritten region.
1371  */
1372 static int ocfs2_populate_write_desc(struct inode *inode,
1373                                      struct ocfs2_write_ctxt *wc,
1374                                      unsigned int *clusters_to_alloc,
1375                                      unsigned int *extents_to_split)
1376 {
1377         int ret;
1378         struct ocfs2_write_cluster_desc *desc;
1379         unsigned int num_clusters = 0;
1380         unsigned int ext_flags = 0;
1381         u32 phys = 0;
1382         int i;
1383
1384         *clusters_to_alloc = 0;
1385         *extents_to_split = 0;
1386
1387         for (i = 0; i < wc->w_clen; i++) {
1388                 desc = &wc->w_desc[i];
1389                 desc->c_cpos = wc->w_cpos + i;
1390
1391                 if (num_clusters == 0) {
1392                         /*
1393                          * Need to look up the next extent record.
1394                          */
1395                         ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1396                                                  &num_clusters, &ext_flags);
1397                         if (ret) {
1398                                 mlog_errno(ret);
1399                                 goto out;
1400                         }
1401
1402                         /* We should already CoW the refcountd extent. */
1403                         BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1404
1405                         /*
1406                          * Assume worst case - that we're writing in
1407                          * the middle of the extent.
1408                          *
1409                          * We can assume that the write proceeds from
1410                          * left to right, in which case the extent
1411                          * insert code is smart enough to coalesce the
1412                          * next splits into the previous records created.
1413                          */
1414                         if (ext_flags & OCFS2_EXT_UNWRITTEN)
1415                                 *extents_to_split = *extents_to_split + 2;
1416                 } else if (phys) {
1417                         /*
1418                          * Only increment phys if it doesn't describe
1419                          * a hole.
1420                          */
1421                         phys++;
1422                 }
1423
1424                 /*
1425                  * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1426                  * file that got extended.  w_first_new_cpos tells us
1427                  * where the newly allocated clusters are so we can
1428                  * zero them.
1429                  */
1430                 if (desc->c_cpos >= wc->w_first_new_cpos) {
1431                         BUG_ON(phys == 0);
1432                         desc->c_needs_zero = 1;
1433                 }
1434
1435                 desc->c_phys = phys;
1436                 if (phys == 0) {
1437                         desc->c_new = 1;
1438                         desc->c_needs_zero = 1;
1439                         *clusters_to_alloc = *clusters_to_alloc + 1;
1440                 }
1441
1442                 if (ext_flags & OCFS2_EXT_UNWRITTEN) {
1443                         desc->c_unwritten = 1;
1444                         desc->c_needs_zero = 1;
1445                 }
1446
1447                 num_clusters--;
1448         }
1449
1450         ret = 0;
1451 out:
1452         return ret;
1453 }
1454
1455 static int ocfs2_write_begin_inline(struct address_space *mapping,
1456                                     struct inode *inode,
1457                                     struct ocfs2_write_ctxt *wc)
1458 {
1459         int ret;
1460         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1461         struct page *page;
1462         handle_t *handle;
1463         struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1464
1465         page = find_or_create_page(mapping, 0, GFP_NOFS);
1466         if (!page) {
1467                 ret = -ENOMEM;
1468                 mlog_errno(ret);
1469                 goto out;
1470         }
1471         /*
1472          * If we don't set w_num_pages then this page won't get unlocked
1473          * and freed on cleanup of the write context.
1474          */
1475         wc->w_pages[0] = wc->w_target_page = page;
1476         wc->w_num_pages = 1;
1477
1478         handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1479         if (IS_ERR(handle)) {
1480                 ret = PTR_ERR(handle);
1481                 mlog_errno(ret);
1482                 goto out;
1483         }
1484
1485         ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1486                                       OCFS2_JOURNAL_ACCESS_WRITE);
1487         if (ret) {
1488                 ocfs2_commit_trans(osb, handle);
1489
1490                 mlog_errno(ret);
1491                 goto out;
1492         }
1493
1494         if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1495                 ocfs2_set_inode_data_inline(inode, di);
1496
1497         if (!PageUptodate(page)) {
1498                 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1499                 if (ret) {
1500                         ocfs2_commit_trans(osb, handle);
1501
1502                         goto out;
1503                 }
1504         }
1505
1506         wc->w_handle = handle;
1507 out:
1508         return ret;
1509 }
1510
1511 int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1512 {
1513         struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1514
1515         if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1516                 return 1;
1517         return 0;
1518 }
1519
1520 static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1521                                           struct inode *inode, loff_t pos,
1522                                           unsigned len, struct page *mmap_page,
1523                                           struct ocfs2_write_ctxt *wc)
1524 {
1525         int ret, written = 0;
1526         loff_t end = pos + len;
1527         struct ocfs2_inode_info *oi = OCFS2_I(inode);
1528         struct ocfs2_dinode *di = NULL;
1529
1530         trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno,
1531                                              len, (unsigned long long)pos,
1532                                              oi->ip_dyn_features);
1533
1534         /*
1535          * Handle inodes which already have inline data 1st.
1536          */
1537         if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1538                 if (mmap_page == NULL &&
1539                     ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1540                         goto do_inline_write;
1541
1542                 /*
1543                  * The write won't fit - we have to give this inode an
1544                  * inline extent list now.
1545                  */
1546                 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1547                 if (ret)
1548                         mlog_errno(ret);
1549                 goto out;
1550         }
1551
1552         /*
1553          * Check whether the inode can accept inline data.
1554          */
1555         if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1556                 return 0;
1557
1558         /*
1559          * Check whether the write can fit.
1560          */
1561         di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1562         if (mmap_page ||
1563             end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1564                 return 0;
1565
1566 do_inline_write:
1567         ret = ocfs2_write_begin_inline(mapping, inode, wc);
1568         if (ret) {
1569                 mlog_errno(ret);
1570                 goto out;
1571         }
1572
1573         /*
1574          * This signals to the caller that the data can be written
1575          * inline.
1576          */
1577         written = 1;
1578 out:
1579         return written ? written : ret;
1580 }
1581
1582 /*
1583  * This function only does anything for file systems which can't
1584  * handle sparse files.
1585  *
1586  * What we want to do here is fill in any hole between the current end
1587  * of allocation and the end of our write. That way the rest of the
1588  * write path can treat it as an non-allocating write, which has no
1589  * special case code for sparse/nonsparse files.
1590  */
1591 static int ocfs2_expand_nonsparse_inode(struct inode *inode,
1592                                         struct buffer_head *di_bh,
1593                                         loff_t pos, unsigned len,
1594                                         struct ocfs2_write_ctxt *wc)
1595 {
1596         int ret;
1597         loff_t newsize = pos + len;
1598
1599         BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1600
1601         if (newsize <= i_size_read(inode))
1602                 return 0;
1603
1604         ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
1605         if (ret)
1606                 mlog_errno(ret);
1607
1608         wc->w_first_new_cpos =
1609                 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
1610
1611         return ret;
1612 }
1613
1614 static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
1615                            loff_t pos)
1616 {
1617         int ret = 0;
1618
1619         BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1620         if (pos > i_size_read(inode))
1621                 ret = ocfs2_zero_extend(inode, di_bh, pos);
1622
1623         return ret;
1624 }
1625
1626 /*
1627  * Try to flush truncate logs if we can free enough clusters from it.
1628  * As for return value, "< 0" means error, "0" no space and "1" means
1629  * we have freed enough spaces and let the caller try to allocate again.
1630  */
1631 static int ocfs2_try_to_free_truncate_log(struct ocfs2_super *osb,
1632                                           unsigned int needed)
1633 {
1634         tid_t target;
1635         int ret = 0;
1636         unsigned int truncated_clusters;
1637
1638         mutex_lock(&osb->osb_tl_inode->i_mutex);
1639         truncated_clusters = osb->truncated_clusters;
1640         mutex_unlock(&osb->osb_tl_inode->i_mutex);
1641
1642         /*
1643          * Check whether we can succeed in allocating if we free
1644          * the truncate log.
1645          */
1646         if (truncated_clusters < needed)
1647                 goto out;
1648
1649         ret = ocfs2_flush_truncate_log(osb);
1650         if (ret) {
1651                 mlog_errno(ret);
1652                 goto out;
1653         }
1654
1655         if (jbd2_journal_start_commit(osb->journal->j_journal, &target)) {
1656                 jbd2_log_wait_commit(osb->journal->j_journal, target);
1657                 ret = 1;
1658         }
1659 out:
1660         return ret;
1661 }
1662
1663 int ocfs2_write_begin_nolock(struct file *filp,
1664                              struct address_space *mapping,
1665                              loff_t pos, unsigned len, unsigned flags,
1666                              struct page **pagep, void **fsdata,
1667                              struct buffer_head *di_bh, struct page *mmap_page)
1668 {
1669         int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
1670         unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0;
1671         struct ocfs2_write_ctxt *wc;
1672         struct inode *inode = mapping->host;
1673         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1674         struct ocfs2_dinode *di;
1675         struct ocfs2_alloc_context *data_ac = NULL;
1676         struct ocfs2_alloc_context *meta_ac = NULL;
1677         handle_t *handle;
1678         struct ocfs2_extent_tree et;
1679         int try_free = 1, ret1;
1680
1681 try_again:
1682         ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh);
1683         if (ret) {
1684                 mlog_errno(ret);
1685                 return ret;
1686         }
1687
1688         if (ocfs2_supports_inline_data(osb)) {
1689                 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1690                                                      mmap_page, wc);
1691                 if (ret == 1) {
1692                         ret = 0;
1693                         goto success;
1694                 }
1695                 if (ret < 0) {
1696                         mlog_errno(ret);
1697                         goto out;
1698                 }
1699         }
1700
1701         if (ocfs2_sparse_alloc(osb))
1702                 ret = ocfs2_zero_tail(inode, di_bh, pos);
1703         else
1704                 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos, len,
1705                                                    wc);
1706         if (ret) {
1707                 mlog_errno(ret);
1708                 goto out;
1709         }
1710
1711         ret = ocfs2_check_range_for_refcount(inode, pos, len);
1712         if (ret < 0) {
1713                 mlog_errno(ret);
1714                 goto out;
1715         } else if (ret == 1) {
1716                 clusters_need = wc->w_clen;
1717                 ret = ocfs2_refcount_cow(inode, filp, di_bh,
1718                                          wc->w_cpos, wc->w_clen, UINT_MAX);
1719                 if (ret) {
1720                         mlog_errno(ret);
1721                         goto out;
1722                 }
1723         }
1724
1725         ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1726                                         &extents_to_split);
1727         if (ret) {
1728                 mlog_errno(ret);
1729                 goto out;
1730         }
1731         clusters_need += clusters_to_alloc;
1732
1733         di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1734
1735         trace_ocfs2_write_begin_nolock(
1736                         (unsigned long long)OCFS2_I(inode)->ip_blkno,
1737                         (long long)i_size_read(inode),
1738                         le32_to_cpu(di->i_clusters),
1739                         pos, len, flags, mmap_page,
1740                         clusters_to_alloc, extents_to_split);
1741
1742         /*
1743          * We set w_target_from, w_target_to here so that
1744          * ocfs2_write_end() knows which range in the target page to
1745          * write out. An allocation requires that we write the entire
1746          * cluster range.
1747          */
1748         if (clusters_to_alloc || extents_to_split) {
1749                 /*
1750                  * XXX: We are stretching the limits of
1751                  * ocfs2_lock_allocators(). It greatly over-estimates
1752                  * the work to be done.
1753                  */
1754                 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1755                                               wc->w_di_bh);
1756                 ret = ocfs2_lock_allocators(inode, &et,
1757                                             clusters_to_alloc, extents_to_split,
1758                                             &data_ac, &meta_ac);
1759                 if (ret) {
1760                         mlog_errno(ret);
1761                         goto out;
1762                 }
1763
1764                 if (data_ac)
1765                         data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
1766
1767                 credits = ocfs2_calc_extend_credits(inode->i_sb,
1768                                                     &di->id2.i_list,
1769                                                     clusters_to_alloc);
1770
1771         }
1772
1773         /*
1774          * We have to zero sparse allocated clusters, unwritten extent clusters,
1775          * and non-sparse clusters we just extended.  For non-sparse writes,
1776          * we know zeros will only be needed in the first and/or last cluster.
1777          */
1778         if (clusters_to_alloc || extents_to_split ||
1779             (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
1780                             wc->w_desc[wc->w_clen - 1].c_needs_zero)))
1781                 cluster_of_pages = 1;
1782         else
1783                 cluster_of_pages = 0;
1784
1785         ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
1786
1787         handle = ocfs2_start_trans(osb, credits);
1788         if (IS_ERR(handle)) {
1789                 ret = PTR_ERR(handle);
1790                 mlog_errno(ret);
1791                 goto out;
1792         }
1793
1794         wc->w_handle = handle;
1795
1796         if (clusters_to_alloc) {
1797                 ret = dquot_alloc_space_nodirty(inode,
1798                         ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1799                 if (ret)
1800                         goto out_commit;
1801         }
1802         /*
1803          * We don't want this to fail in ocfs2_write_end(), so do it
1804          * here.
1805          */
1806         ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1807                                       OCFS2_JOURNAL_ACCESS_WRITE);
1808         if (ret) {
1809                 mlog_errno(ret);
1810                 goto out_quota;
1811         }
1812
1813         /*
1814          * Fill our page array first. That way we've grabbed enough so
1815          * that we can zero and flush if we error after adding the
1816          * extent.
1817          */
1818         ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
1819                                          cluster_of_pages, mmap_page);
1820         if (ret) {
1821                 mlog_errno(ret);
1822                 goto out_quota;
1823         }
1824
1825         ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
1826                                           len);
1827         if (ret) {
1828                 mlog_errno(ret);
1829                 goto out_quota;
1830         }
1831
1832         if (data_ac)
1833                 ocfs2_free_alloc_context(data_ac);
1834         if (meta_ac)
1835                 ocfs2_free_alloc_context(meta_ac);
1836
1837 success:
1838         *pagep = wc->w_target_page;
1839         *fsdata = wc;
1840         return 0;
1841 out_quota:
1842         if (clusters_to_alloc)
1843                 dquot_free_space(inode,
1844                           ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1845 out_commit:
1846         ocfs2_commit_trans(osb, handle);
1847
1848 out:
1849         ocfs2_free_write_ctxt(wc);
1850
1851         if (data_ac)
1852                 ocfs2_free_alloc_context(data_ac);
1853         if (meta_ac)
1854                 ocfs2_free_alloc_context(meta_ac);
1855
1856         if (ret == -ENOSPC && try_free) {
1857                 /*
1858                  * Try to free some truncate log so that we can have enough
1859                  * clusters to allocate.
1860                  */
1861                 try_free = 0;
1862
1863                 ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need);
1864                 if (ret1 == 1)
1865                         goto try_again;
1866
1867                 if (ret1 < 0)
1868                         mlog_errno(ret1);
1869         }
1870
1871         return ret;
1872 }
1873
1874 static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1875                              loff_t pos, unsigned len, unsigned flags,
1876                              struct page **pagep, void **fsdata)
1877 {
1878         int ret;
1879         struct buffer_head *di_bh = NULL;
1880         struct inode *inode = mapping->host;
1881
1882         ret = ocfs2_inode_lock(inode, &di_bh, 1);
1883         if (ret) {
1884                 mlog_errno(ret);
1885                 return ret;
1886         }
1887
1888         /*
1889          * Take alloc sem here to prevent concurrent lookups. That way
1890          * the mapping, zeroing and tree manipulation within
1891          * ocfs2_write() will be safe against ->readpage(). This
1892          * should also serve to lock out allocation from a shared
1893          * writeable region.
1894          */
1895         down_write(&OCFS2_I(inode)->ip_alloc_sem);
1896
1897         ret = ocfs2_write_begin_nolock(file, mapping, pos, len, flags, pagep,
1898                                        fsdata, di_bh, NULL);
1899         if (ret) {
1900                 mlog_errno(ret);
1901                 goto out_fail;
1902         }
1903
1904         brelse(di_bh);
1905
1906         return 0;
1907
1908 out_fail:
1909         up_write(&OCFS2_I(inode)->ip_alloc_sem);
1910
1911         brelse(di_bh);
1912         ocfs2_inode_unlock(inode, 1);
1913
1914         return ret;
1915 }
1916
1917 static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
1918                                    unsigned len, unsigned *copied,
1919                                    struct ocfs2_dinode *di,
1920                                    struct ocfs2_write_ctxt *wc)
1921 {
1922         void *kaddr;
1923
1924         if (unlikely(*copied < len)) {
1925                 if (!PageUptodate(wc->w_target_page)) {
1926                         *copied = 0;
1927                         return;
1928                 }
1929         }
1930
1931         kaddr = kmap_atomic(wc->w_target_page, KM_USER0);
1932         memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
1933         kunmap_atomic(kaddr, KM_USER0);
1934
1935         trace_ocfs2_write_end_inline(
1936              (unsigned long long)OCFS2_I(inode)->ip_blkno,
1937              (unsigned long long)pos, *copied,
1938              le16_to_cpu(di->id2.i_data.id_count),
1939              le16_to_cpu(di->i_dyn_features));
1940 }
1941
1942 int ocfs2_write_end_nolock(struct address_space *mapping,
1943                            loff_t pos, unsigned len, unsigned copied,
1944                            struct page *page, void *fsdata)
1945 {
1946         int i;
1947         unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
1948         struct inode *inode = mapping->host;
1949         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1950         struct ocfs2_write_ctxt *wc = fsdata;
1951         struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1952         handle_t *handle = wc->w_handle;
1953         struct page *tmppage;
1954
1955         if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1956                 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
1957                 goto out_write_size;
1958         }
1959
1960         if (unlikely(copied < len)) {
1961                 if (!PageUptodate(wc->w_target_page))
1962                         copied = 0;
1963
1964                 ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
1965                                        start+len);
1966         }
1967         flush_dcache_page(wc->w_target_page);
1968
1969         for(i = 0; i < wc->w_num_pages; i++) {
1970                 tmppage = wc->w_pages[i];
1971
1972                 if (tmppage == wc->w_target_page) {
1973                         from = wc->w_target_from;
1974                         to = wc->w_target_to;
1975
1976                         BUG_ON(from > PAGE_CACHE_SIZE ||
1977                                to > PAGE_CACHE_SIZE ||
1978                                to < from);
1979                 } else {
1980                         /*
1981                          * Pages adjacent to the target (if any) imply
1982                          * a hole-filling write in which case we want
1983                          * to flush their entire range.
1984                          */
1985                         from = 0;
1986                         to = PAGE_CACHE_SIZE;
1987                 }
1988
1989                 if (page_has_buffers(tmppage)) {
1990                         if (ocfs2_should_order_data(inode))
1991                                 ocfs2_jbd2_file_inode(wc->w_handle, inode);
1992                         block_commit_write(tmppage, from, to);
1993                 }
1994         }
1995
1996 out_write_size:
1997         pos += copied;
1998         if (pos > inode->i_size) {
1999                 i_size_write(inode, pos);
2000                 mark_inode_dirty(inode);
2001         }
2002         inode->i_blocks = ocfs2_inode_sector_count(inode);
2003         di->i_size = cpu_to_le64((u64)i_size_read(inode));
2004         inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2005         di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
2006         di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
2007         ocfs2_journal_dirty(handle, wc->w_di_bh);
2008
2009         ocfs2_commit_trans(osb, handle);
2010
2011         ocfs2_run_deallocs(osb, &wc->w_dealloc);
2012
2013         ocfs2_free_write_ctxt(wc);
2014
2015         return copied;
2016 }
2017
2018 static int ocfs2_write_end(struct file *file, struct address_space *mapping,
2019                            loff_t pos, unsigned len, unsigned copied,
2020                            struct page *page, void *fsdata)
2021 {
2022         int ret;
2023         struct inode *inode = mapping->host;
2024
2025         ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
2026
2027         up_write(&OCFS2_I(inode)->ip_alloc_sem);
2028         ocfs2_inode_unlock(inode, 1);
2029
2030         return ret;
2031 }
2032
2033 const struct address_space_operations ocfs2_aops = {
2034         .readpage               = ocfs2_readpage,
2035         .readpages              = ocfs2_readpages,
2036         .writepage              = ocfs2_writepage,
2037         .write_begin            = ocfs2_write_begin,
2038         .write_end              = ocfs2_write_end,
2039         .bmap                   = ocfs2_bmap,
2040         .direct_IO              = ocfs2_direct_IO,
2041         .invalidatepage         = ocfs2_invalidatepage,
2042         .releasepage            = ocfs2_releasepage,
2043         .migratepage            = buffer_migrate_page,
2044         .is_partially_uptodate  = block_is_partially_uptodate,
2045         .error_remove_page      = generic_error_remove_page,
2046 };