Merge branch 'linux-next' of git://git.infradead.org/ubifs-2.6
[pandora-kernel.git] / fs / nfs / write.c
1 /*
2  * linux/fs/nfs/write.c
3  *
4  * Write file data over NFS.
5  *
6  * Copyright (C) 1996, 1997, Olaf Kirch <okir@monad.swb.de>
7  */
8
9 #include <linux/types.h>
10 #include <linux/slab.h>
11 #include <linux/mm.h>
12 #include <linux/pagemap.h>
13 #include <linux/file.h>
14 #include <linux/writeback.h>
15 #include <linux/swap.h>
16
17 #include <linux/sunrpc/clnt.h>
18 #include <linux/nfs_fs.h>
19 #include <linux/nfs_mount.h>
20 #include <linux/nfs_page.h>
21 #include <linux/backing-dev.h>
22 #include <linux/blkdev.h>
23
24 #include <asm/uaccess.h>
25
26 #include "delegation.h"
27 #include "internal.h"
28 #include "iostat.h"
29 #include "nfs4_fs.h"
30
31 #define NFSDBG_FACILITY         NFSDBG_PAGECACHE
32
33 #define MIN_POOL_WRITE          (32)
34 #define MIN_POOL_COMMIT         (4)
35
36 /*
37  * Local function declarations
38  */
39 static void nfs_pageio_init_write(struct nfs_pageio_descriptor *desc,
40                                   struct inode *inode, int ioflags);
41 static void nfs_redirty_request(struct nfs_page *req);
42 static const struct rpc_call_ops nfs_write_partial_ops;
43 static const struct rpc_call_ops nfs_write_full_ops;
44 static const struct rpc_call_ops nfs_commit_ops;
45
46 static struct kmem_cache *nfs_wdata_cachep;
47 static mempool_t *nfs_wdata_mempool;
48 static mempool_t *nfs_commit_mempool;
49
50 struct nfs_write_data *nfs_commitdata_alloc(void)
51 {
52         struct nfs_write_data *p = mempool_alloc(nfs_commit_mempool, GFP_NOFS);
53
54         if (p) {
55                 memset(p, 0, sizeof(*p));
56                 INIT_LIST_HEAD(&p->pages);
57                 p->res.seq_res.sr_slotid = NFS4_MAX_SLOT_TABLE;
58         }
59         return p;
60 }
61
62 void nfs_commit_free(struct nfs_write_data *p)
63 {
64         if (p && (p->pagevec != &p->page_array[0]))
65                 kfree(p->pagevec);
66         mempool_free(p, nfs_commit_mempool);
67 }
68
69 struct nfs_write_data *nfs_writedata_alloc(unsigned int pagecount)
70 {
71         struct nfs_write_data *p = mempool_alloc(nfs_wdata_mempool, GFP_NOFS);
72
73         if (p) {
74                 memset(p, 0, sizeof(*p));
75                 INIT_LIST_HEAD(&p->pages);
76                 p->npages = pagecount;
77                 p->res.seq_res.sr_slotid = NFS4_MAX_SLOT_TABLE;
78                 if (pagecount <= ARRAY_SIZE(p->page_array))
79                         p->pagevec = p->page_array;
80                 else {
81                         p->pagevec = kcalloc(pagecount, sizeof(struct page *), GFP_NOFS);
82                         if (!p->pagevec) {
83                                 mempool_free(p, nfs_wdata_mempool);
84                                 p = NULL;
85                         }
86                 }
87         }
88         return p;
89 }
90
91 static void nfs_writedata_free(struct nfs_write_data *p)
92 {
93         if (p && (p->pagevec != &p->page_array[0]))
94                 kfree(p->pagevec);
95         mempool_free(p, nfs_wdata_mempool);
96 }
97
98 void nfs_writedata_release(void *data)
99 {
100         struct nfs_write_data *wdata = data;
101
102         put_nfs_open_context(wdata->args.context);
103         nfs_writedata_free(wdata);
104 }
105
106 static void nfs_context_set_write_error(struct nfs_open_context *ctx, int error)
107 {
108         ctx->error = error;
109         smp_wmb();
110         set_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags);
111 }
112
113 static struct nfs_page *nfs_page_find_request_locked(struct page *page)
114 {
115         struct nfs_page *req = NULL;
116
117         if (PagePrivate(page)) {
118                 req = (struct nfs_page *)page_private(page);
119                 if (req != NULL)
120                         kref_get(&req->wb_kref);
121         }
122         return req;
123 }
124
125 static struct nfs_page *nfs_page_find_request(struct page *page)
126 {
127         struct inode *inode = page->mapping->host;
128         struct nfs_page *req = NULL;
129
130         spin_lock(&inode->i_lock);
131         req = nfs_page_find_request_locked(page);
132         spin_unlock(&inode->i_lock);
133         return req;
134 }
135
136 /* Adjust the file length if we're writing beyond the end */
137 static void nfs_grow_file(struct page *page, unsigned int offset, unsigned int count)
138 {
139         struct inode *inode = page->mapping->host;
140         loff_t end, i_size;
141         pgoff_t end_index;
142
143         spin_lock(&inode->i_lock);
144         i_size = i_size_read(inode);
145         end_index = (i_size - 1) >> PAGE_CACHE_SHIFT;
146         if (i_size > 0 && page->index < end_index)
147                 goto out;
148         end = ((loff_t)page->index << PAGE_CACHE_SHIFT) + ((loff_t)offset+count);
149         if (i_size >= end)
150                 goto out;
151         i_size_write(inode, end);
152         nfs_inc_stats(inode, NFSIOS_EXTENDWRITE);
153 out:
154         spin_unlock(&inode->i_lock);
155 }
156
157 /* A writeback failed: mark the page as bad, and invalidate the page cache */
158 static void nfs_set_pageerror(struct page *page)
159 {
160         SetPageError(page);
161         nfs_zap_mapping(page->mapping->host, page->mapping);
162 }
163
164 /* We can set the PG_uptodate flag if we see that a write request
165  * covers the full page.
166  */
167 static void nfs_mark_uptodate(struct page *page, unsigned int base, unsigned int count)
168 {
169         if (PageUptodate(page))
170                 return;
171         if (base != 0)
172                 return;
173         if (count != nfs_page_length(page))
174                 return;
175         SetPageUptodate(page);
176 }
177
178 static int wb_priority(struct writeback_control *wbc)
179 {
180         if (wbc->for_reclaim)
181                 return FLUSH_HIGHPRI | FLUSH_STABLE;
182         if (wbc->for_kupdate)
183                 return FLUSH_LOWPRI;
184         return 0;
185 }
186
187 /*
188  * NFS congestion control
189  */
190
191 int nfs_congestion_kb;
192
193 #define NFS_CONGESTION_ON_THRESH        (nfs_congestion_kb >> (PAGE_SHIFT-10))
194 #define NFS_CONGESTION_OFF_THRESH       \
195         (NFS_CONGESTION_ON_THRESH - (NFS_CONGESTION_ON_THRESH >> 2))
196
197 static int nfs_set_page_writeback(struct page *page)
198 {
199         int ret = test_set_page_writeback(page);
200
201         if (!ret) {
202                 struct inode *inode = page->mapping->host;
203                 struct nfs_server *nfss = NFS_SERVER(inode);
204
205                 if (atomic_long_inc_return(&nfss->writeback) >
206                                 NFS_CONGESTION_ON_THRESH) {
207                         set_bdi_congested(&nfss->backing_dev_info,
208                                                 BLK_RW_ASYNC);
209                 }
210         }
211         return ret;
212 }
213
214 static void nfs_end_page_writeback(struct page *page)
215 {
216         struct inode *inode = page->mapping->host;
217         struct nfs_server *nfss = NFS_SERVER(inode);
218
219         end_page_writeback(page);
220         if (atomic_long_dec_return(&nfss->writeback) < NFS_CONGESTION_OFF_THRESH)
221                 clear_bdi_congested(&nfss->backing_dev_info, BLK_RW_ASYNC);
222 }
223
224 /*
225  * Find an associated nfs write request, and prepare to flush it out
226  * May return an error if the user signalled nfs_wait_on_request().
227  */
228 static int nfs_page_async_flush(struct nfs_pageio_descriptor *pgio,
229                                 struct page *page)
230 {
231         struct inode *inode = page->mapping->host;
232         struct nfs_page *req;
233         int ret;
234
235         spin_lock(&inode->i_lock);
236         for(;;) {
237                 req = nfs_page_find_request_locked(page);
238                 if (req == NULL) {
239                         spin_unlock(&inode->i_lock);
240                         return 0;
241                 }
242                 if (nfs_set_page_tag_locked(req))
243                         break;
244                 /* Note: If we hold the page lock, as is the case in nfs_writepage,
245                  *       then the call to nfs_set_page_tag_locked() will always
246                  *       succeed provided that someone hasn't already marked the
247                  *       request as dirty (in which case we don't care).
248                  */
249                 spin_unlock(&inode->i_lock);
250                 ret = nfs_wait_on_request(req);
251                 nfs_release_request(req);
252                 if (ret != 0)
253                         return ret;
254                 spin_lock(&inode->i_lock);
255         }
256         if (test_bit(PG_CLEAN, &req->wb_flags)) {
257                 spin_unlock(&inode->i_lock);
258                 BUG();
259         }
260         if (nfs_set_page_writeback(page) != 0) {
261                 spin_unlock(&inode->i_lock);
262                 BUG();
263         }
264         spin_unlock(&inode->i_lock);
265         if (!nfs_pageio_add_request(pgio, req)) {
266                 nfs_redirty_request(req);
267                 return pgio->pg_error;
268         }
269         return 0;
270 }
271
272 static int nfs_do_writepage(struct page *page, struct writeback_control *wbc, struct nfs_pageio_descriptor *pgio)
273 {
274         struct inode *inode = page->mapping->host;
275
276         nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGE);
277         nfs_add_stats(inode, NFSIOS_WRITEPAGES, 1);
278
279         nfs_pageio_cond_complete(pgio, page->index);
280         return nfs_page_async_flush(pgio, page);
281 }
282
283 /*
284  * Write an mmapped page to the server.
285  */
286 static int nfs_writepage_locked(struct page *page, struct writeback_control *wbc)
287 {
288         struct nfs_pageio_descriptor pgio;
289         int err;
290
291         nfs_pageio_init_write(&pgio, page->mapping->host, wb_priority(wbc));
292         err = nfs_do_writepage(page, wbc, &pgio);
293         nfs_pageio_complete(&pgio);
294         if (err < 0)
295                 return err;
296         if (pgio.pg_error < 0)
297                 return pgio.pg_error;
298         return 0;
299 }
300
301 int nfs_writepage(struct page *page, struct writeback_control *wbc)
302 {
303         int ret;
304
305         ret = nfs_writepage_locked(page, wbc);
306         unlock_page(page);
307         return ret;
308 }
309
310 static int nfs_writepages_callback(struct page *page, struct writeback_control *wbc, void *data)
311 {
312         int ret;
313
314         ret = nfs_do_writepage(page, wbc, data);
315         unlock_page(page);
316         return ret;
317 }
318
319 int nfs_writepages(struct address_space *mapping, struct writeback_control *wbc)
320 {
321         struct inode *inode = mapping->host;
322         unsigned long *bitlock = &NFS_I(inode)->flags;
323         struct nfs_pageio_descriptor pgio;
324         int err;
325
326         /* Stop dirtying of new pages while we sync */
327         err = wait_on_bit_lock(bitlock, NFS_INO_FLUSHING,
328                         nfs_wait_bit_killable, TASK_KILLABLE);
329         if (err)
330                 goto out_err;
331
332         nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGES);
333
334         nfs_pageio_init_write(&pgio, inode, wb_priority(wbc));
335         err = write_cache_pages(mapping, wbc, nfs_writepages_callback, &pgio);
336         nfs_pageio_complete(&pgio);
337
338         clear_bit_unlock(NFS_INO_FLUSHING, bitlock);
339         smp_mb__after_clear_bit();
340         wake_up_bit(bitlock, NFS_INO_FLUSHING);
341
342         if (err < 0)
343                 goto out_err;
344         err = pgio.pg_error;
345         if (err < 0)
346                 goto out_err;
347         return 0;
348 out_err:
349         return err;
350 }
351
352 /*
353  * Insert a write request into an inode
354  */
355 static int nfs_inode_add_request(struct inode *inode, struct nfs_page *req)
356 {
357         struct nfs_inode *nfsi = NFS_I(inode);
358         int error;
359
360         error = radix_tree_preload(GFP_NOFS);
361         if (error != 0)
362                 goto out;
363
364         /* Lock the request! */
365         nfs_lock_request_dontget(req);
366
367         spin_lock(&inode->i_lock);
368         error = radix_tree_insert(&nfsi->nfs_page_tree, req->wb_index, req);
369         BUG_ON(error);
370         if (!nfsi->npages) {
371                 igrab(inode);
372                 if (nfs_have_delegation(inode, FMODE_WRITE))
373                         nfsi->change_attr++;
374         }
375         SetPagePrivate(req->wb_page);
376         set_page_private(req->wb_page, (unsigned long)req);
377         nfsi->npages++;
378         kref_get(&req->wb_kref);
379         radix_tree_tag_set(&nfsi->nfs_page_tree, req->wb_index,
380                                 NFS_PAGE_TAG_LOCKED);
381         spin_unlock(&inode->i_lock);
382         radix_tree_preload_end();
383 out:
384         return error;
385 }
386
387 /*
388  * Remove a write request from an inode
389  */
390 static void nfs_inode_remove_request(struct nfs_page *req)
391 {
392         struct inode *inode = req->wb_context->path.dentry->d_inode;
393         struct nfs_inode *nfsi = NFS_I(inode);
394
395         BUG_ON (!NFS_WBACK_BUSY(req));
396
397         spin_lock(&inode->i_lock);
398         set_page_private(req->wb_page, 0);
399         ClearPagePrivate(req->wb_page);
400         radix_tree_delete(&nfsi->nfs_page_tree, req->wb_index);
401         nfsi->npages--;
402         if (!nfsi->npages) {
403                 spin_unlock(&inode->i_lock);
404                 iput(inode);
405         } else
406                 spin_unlock(&inode->i_lock);
407         nfs_clear_request(req);
408         nfs_release_request(req);
409 }
410
411 static void
412 nfs_mark_request_dirty(struct nfs_page *req)
413 {
414         __set_page_dirty_nobuffers(req->wb_page);
415 }
416
417 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
418 /*
419  * Add a request to the inode's commit list.
420  */
421 static void
422 nfs_mark_request_commit(struct nfs_page *req)
423 {
424         struct inode *inode = req->wb_context->path.dentry->d_inode;
425         struct nfs_inode *nfsi = NFS_I(inode);
426
427         spin_lock(&inode->i_lock);
428         set_bit(PG_CLEAN, &(req)->wb_flags);
429         radix_tree_tag_set(&nfsi->nfs_page_tree,
430                         req->wb_index,
431                         NFS_PAGE_TAG_COMMIT);
432         spin_unlock(&inode->i_lock);
433         inc_zone_page_state(req->wb_page, NR_UNSTABLE_NFS);
434         inc_bdi_stat(req->wb_page->mapping->backing_dev_info, BDI_RECLAIMABLE);
435         __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
436 }
437
438 static int
439 nfs_clear_request_commit(struct nfs_page *req)
440 {
441         struct page *page = req->wb_page;
442
443         if (test_and_clear_bit(PG_CLEAN, &(req)->wb_flags)) {
444                 dec_zone_page_state(page, NR_UNSTABLE_NFS);
445                 dec_bdi_stat(page->mapping->backing_dev_info, BDI_RECLAIMABLE);
446                 return 1;
447         }
448         return 0;
449 }
450
451 static inline
452 int nfs_write_need_commit(struct nfs_write_data *data)
453 {
454         return data->verf.committed != NFS_FILE_SYNC;
455 }
456
457 static inline
458 int nfs_reschedule_unstable_write(struct nfs_page *req)
459 {
460         if (test_and_clear_bit(PG_NEED_COMMIT, &req->wb_flags)) {
461                 nfs_mark_request_commit(req);
462                 return 1;
463         }
464         if (test_and_clear_bit(PG_NEED_RESCHED, &req->wb_flags)) {
465                 nfs_mark_request_dirty(req);
466                 return 1;
467         }
468         return 0;
469 }
470 #else
471 static inline void
472 nfs_mark_request_commit(struct nfs_page *req)
473 {
474 }
475
476 static inline int
477 nfs_clear_request_commit(struct nfs_page *req)
478 {
479         return 0;
480 }
481
482 static inline
483 int nfs_write_need_commit(struct nfs_write_data *data)
484 {
485         return 0;
486 }
487
488 static inline
489 int nfs_reschedule_unstable_write(struct nfs_page *req)
490 {
491         return 0;
492 }
493 #endif
494
495 /*
496  * Wait for a request to complete.
497  *
498  * Interruptible by fatal signals only.
499  */
500 static int nfs_wait_on_requests_locked(struct inode *inode, pgoff_t idx_start, unsigned int npages)
501 {
502         struct nfs_inode *nfsi = NFS_I(inode);
503         struct nfs_page *req;
504         pgoff_t idx_end, next;
505         unsigned int            res = 0;
506         int                     error;
507
508         if (npages == 0)
509                 idx_end = ~0;
510         else
511                 idx_end = idx_start + npages - 1;
512
513         next = idx_start;
514         while (radix_tree_gang_lookup_tag(&nfsi->nfs_page_tree, (void **)&req, next, 1, NFS_PAGE_TAG_LOCKED)) {
515                 if (req->wb_index > idx_end)
516                         break;
517
518                 next = req->wb_index + 1;
519                 BUG_ON(!NFS_WBACK_BUSY(req));
520
521                 kref_get(&req->wb_kref);
522                 spin_unlock(&inode->i_lock);
523                 error = nfs_wait_on_request(req);
524                 nfs_release_request(req);
525                 spin_lock(&inode->i_lock);
526                 if (error < 0)
527                         return error;
528                 res++;
529         }
530         return res;
531 }
532
533 static void nfs_cancel_commit_list(struct list_head *head)
534 {
535         struct nfs_page *req;
536
537         while(!list_empty(head)) {
538                 req = nfs_list_entry(head->next);
539                 nfs_list_remove_request(req);
540                 nfs_clear_request_commit(req);
541                 nfs_inode_remove_request(req);
542                 nfs_unlock_request(req);
543         }
544 }
545
546 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
547 static int
548 nfs_need_commit(struct nfs_inode *nfsi)
549 {
550         return radix_tree_tagged(&nfsi->nfs_page_tree, NFS_PAGE_TAG_COMMIT);
551 }
552
553 /*
554  * nfs_scan_commit - Scan an inode for commit requests
555  * @inode: NFS inode to scan
556  * @dst: destination list
557  * @idx_start: lower bound of page->index to scan.
558  * @npages: idx_start + npages sets the upper bound to scan.
559  *
560  * Moves requests from the inode's 'commit' request list.
561  * The requests are *not* checked to ensure that they form a contiguous set.
562  */
563 static int
564 nfs_scan_commit(struct inode *inode, struct list_head *dst, pgoff_t idx_start, unsigned int npages)
565 {
566         struct nfs_inode *nfsi = NFS_I(inode);
567
568         if (!nfs_need_commit(nfsi))
569                 return 0;
570
571         return nfs_scan_list(nfsi, dst, idx_start, npages, NFS_PAGE_TAG_COMMIT);
572 }
573 #else
574 static inline int nfs_need_commit(struct nfs_inode *nfsi)
575 {
576         return 0;
577 }
578
579 static inline int nfs_scan_commit(struct inode *inode, struct list_head *dst, pgoff_t idx_start, unsigned int npages)
580 {
581         return 0;
582 }
583 #endif
584
585 /*
586  * Search for an existing write request, and attempt to update
587  * it to reflect a new dirty region on a given page.
588  *
589  * If the attempt fails, then the existing request is flushed out
590  * to disk.
591  */
592 static struct nfs_page *nfs_try_to_update_request(struct inode *inode,
593                 struct page *page,
594                 unsigned int offset,
595                 unsigned int bytes)
596 {
597         struct nfs_page *req;
598         unsigned int rqend;
599         unsigned int end;
600         int error;
601
602         if (!PagePrivate(page))
603                 return NULL;
604
605         end = offset + bytes;
606         spin_lock(&inode->i_lock);
607
608         for (;;) {
609                 req = nfs_page_find_request_locked(page);
610                 if (req == NULL)
611                         goto out_unlock;
612
613                 rqend = req->wb_offset + req->wb_bytes;
614                 /*
615                  * Tell the caller to flush out the request if
616                  * the offsets are non-contiguous.
617                  * Note: nfs_flush_incompatible() will already
618                  * have flushed out requests having wrong owners.
619                  */
620                 if (offset > rqend
621                     || end < req->wb_offset)
622                         goto out_flushme;
623
624                 if (nfs_set_page_tag_locked(req))
625                         break;
626
627                 /* The request is locked, so wait and then retry */
628                 spin_unlock(&inode->i_lock);
629                 error = nfs_wait_on_request(req);
630                 nfs_release_request(req);
631                 if (error != 0)
632                         goto out_err;
633                 spin_lock(&inode->i_lock);
634         }
635
636         if (nfs_clear_request_commit(req))
637                 radix_tree_tag_clear(&NFS_I(inode)->nfs_page_tree,
638                                 req->wb_index, NFS_PAGE_TAG_COMMIT);
639
640         /* Okay, the request matches. Update the region */
641         if (offset < req->wb_offset) {
642                 req->wb_offset = offset;
643                 req->wb_pgbase = offset;
644         }
645         if (end > rqend)
646                 req->wb_bytes = end - req->wb_offset;
647         else
648                 req->wb_bytes = rqend - req->wb_offset;
649 out_unlock:
650         spin_unlock(&inode->i_lock);
651         return req;
652 out_flushme:
653         spin_unlock(&inode->i_lock);
654         nfs_release_request(req);
655         error = nfs_wb_page(inode, page);
656 out_err:
657         return ERR_PTR(error);
658 }
659
660 /*
661  * Try to update an existing write request, or create one if there is none.
662  *
663  * Note: Should always be called with the Page Lock held to prevent races
664  * if we have to add a new request. Also assumes that the caller has
665  * already called nfs_flush_incompatible() if necessary.
666  */
667 static struct nfs_page * nfs_setup_write_request(struct nfs_open_context* ctx,
668                 struct page *page, unsigned int offset, unsigned int bytes)
669 {
670         struct inode *inode = page->mapping->host;
671         struct nfs_page *req;
672         int error;
673
674         req = nfs_try_to_update_request(inode, page, offset, bytes);
675         if (req != NULL)
676                 goto out;
677         req = nfs_create_request(ctx, inode, page, offset, bytes);
678         if (IS_ERR(req))
679                 goto out;
680         error = nfs_inode_add_request(inode, req);
681         if (error != 0) {
682                 nfs_release_request(req);
683                 req = ERR_PTR(error);
684         }
685 out:
686         return req;
687 }
688
689 static int nfs_writepage_setup(struct nfs_open_context *ctx, struct page *page,
690                 unsigned int offset, unsigned int count)
691 {
692         struct nfs_page *req;
693
694         req = nfs_setup_write_request(ctx, page, offset, count);
695         if (IS_ERR(req))
696                 return PTR_ERR(req);
697         /* Update file length */
698         nfs_grow_file(page, offset, count);
699         nfs_mark_uptodate(page, req->wb_pgbase, req->wb_bytes);
700         nfs_clear_page_tag_locked(req);
701         return 0;
702 }
703
704 int nfs_flush_incompatible(struct file *file, struct page *page)
705 {
706         struct nfs_open_context *ctx = nfs_file_open_context(file);
707         struct nfs_page *req;
708         int do_flush, status;
709         /*
710          * Look for a request corresponding to this page. If there
711          * is one, and it belongs to another file, we flush it out
712          * before we try to copy anything into the page. Do this
713          * due to the lack of an ACCESS-type call in NFSv2.
714          * Also do the same if we find a request from an existing
715          * dropped page.
716          */
717         do {
718                 req = nfs_page_find_request(page);
719                 if (req == NULL)
720                         return 0;
721                 do_flush = req->wb_page != page || req->wb_context != ctx;
722                 nfs_release_request(req);
723                 if (!do_flush)
724                         return 0;
725                 status = nfs_wb_page(page->mapping->host, page);
726         } while (status == 0);
727         return status;
728 }
729
730 /*
731  * If the page cache is marked as unsafe or invalid, then we can't rely on
732  * the PageUptodate() flag. In this case, we will need to turn off
733  * write optimisations that depend on the page contents being correct.
734  */
735 static int nfs_write_pageuptodate(struct page *page, struct inode *inode)
736 {
737         return PageUptodate(page) &&
738                 !(NFS_I(inode)->cache_validity & (NFS_INO_REVAL_PAGECACHE|NFS_INO_INVALID_DATA));
739 }
740
741 /*
742  * Update and possibly write a cached page of an NFS file.
743  *
744  * XXX: Keep an eye on generic_file_read to make sure it doesn't do bad
745  * things with a page scheduled for an RPC call (e.g. invalidate it).
746  */
747 int nfs_updatepage(struct file *file, struct page *page,
748                 unsigned int offset, unsigned int count)
749 {
750         struct nfs_open_context *ctx = nfs_file_open_context(file);
751         struct inode    *inode = page->mapping->host;
752         int             status = 0;
753
754         nfs_inc_stats(inode, NFSIOS_VFSUPDATEPAGE);
755
756         dprintk("NFS:       nfs_updatepage(%s/%s %d@%lld)\n",
757                 file->f_path.dentry->d_parent->d_name.name,
758                 file->f_path.dentry->d_name.name, count,
759                 (long long)(page_offset(page) + offset));
760
761         /* If we're not using byte range locks, and we know the page
762          * is up to date, it may be more efficient to extend the write
763          * to cover the entire page in order to avoid fragmentation
764          * inefficiencies.
765          */
766         if (nfs_write_pageuptodate(page, inode) &&
767                         inode->i_flock == NULL &&
768                         !(file->f_flags & O_SYNC)) {
769                 count = max(count + offset, nfs_page_length(page));
770                 offset = 0;
771         }
772
773         status = nfs_writepage_setup(ctx, page, offset, count);
774         if (status < 0)
775                 nfs_set_pageerror(page);
776         else
777                 __set_page_dirty_nobuffers(page);
778
779         dprintk("NFS:       nfs_updatepage returns %d (isize %lld)\n",
780                         status, (long long)i_size_read(inode));
781         return status;
782 }
783
784 static void nfs_writepage_release(struct nfs_page *req)
785 {
786
787         if (PageError(req->wb_page) || !nfs_reschedule_unstable_write(req)) {
788                 nfs_end_page_writeback(req->wb_page);
789                 nfs_inode_remove_request(req);
790         } else
791                 nfs_end_page_writeback(req->wb_page);
792         nfs_clear_page_tag_locked(req);
793 }
794
795 static int flush_task_priority(int how)
796 {
797         switch (how & (FLUSH_HIGHPRI|FLUSH_LOWPRI)) {
798                 case FLUSH_HIGHPRI:
799                         return RPC_PRIORITY_HIGH;
800                 case FLUSH_LOWPRI:
801                         return RPC_PRIORITY_LOW;
802         }
803         return RPC_PRIORITY_NORMAL;
804 }
805
806 /*
807  * Set up the argument/result storage required for the RPC call.
808  */
809 static int nfs_write_rpcsetup(struct nfs_page *req,
810                 struct nfs_write_data *data,
811                 const struct rpc_call_ops *call_ops,
812                 unsigned int count, unsigned int offset,
813                 int how)
814 {
815         struct inode *inode = req->wb_context->path.dentry->d_inode;
816         int flags = (how & FLUSH_SYNC) ? 0 : RPC_TASK_ASYNC;
817         int priority = flush_task_priority(how);
818         struct rpc_task *task;
819         struct rpc_message msg = {
820                 .rpc_argp = &data->args,
821                 .rpc_resp = &data->res,
822                 .rpc_cred = req->wb_context->cred,
823         };
824         struct rpc_task_setup task_setup_data = {
825                 .rpc_client = NFS_CLIENT(inode),
826                 .task = &data->task,
827                 .rpc_message = &msg,
828                 .callback_ops = call_ops,
829                 .callback_data = data,
830                 .workqueue = nfsiod_workqueue,
831                 .flags = flags,
832                 .priority = priority,
833         };
834
835         /* Set up the RPC argument and reply structs
836          * NB: take care not to mess about with data->commit et al. */
837
838         data->req = req;
839         data->inode = inode = req->wb_context->path.dentry->d_inode;
840         data->cred = msg.rpc_cred;
841
842         data->args.fh     = NFS_FH(inode);
843         data->args.offset = req_offset(req) + offset;
844         data->args.pgbase = req->wb_pgbase + offset;
845         data->args.pages  = data->pagevec;
846         data->args.count  = count;
847         data->args.context = get_nfs_open_context(req->wb_context);
848         data->args.stable  = NFS_UNSTABLE;
849         if (how & FLUSH_STABLE) {
850                 data->args.stable = NFS_DATA_SYNC;
851                 if (!nfs_need_commit(NFS_I(inode)))
852                         data->args.stable = NFS_FILE_SYNC;
853         }
854
855         data->res.fattr   = &data->fattr;
856         data->res.count   = count;
857         data->res.verf    = &data->verf;
858         nfs_fattr_init(&data->fattr);
859
860         /* Set up the initial task struct.  */
861         NFS_PROTO(inode)->write_setup(data, &msg);
862
863         dprintk("NFS: %5u initiated write call "
864                 "(req %s/%lld, %u bytes @ offset %llu)\n",
865                 data->task.tk_pid,
866                 inode->i_sb->s_id,
867                 (long long)NFS_FILEID(inode),
868                 count,
869                 (unsigned long long)data->args.offset);
870
871         task = rpc_run_task(&task_setup_data);
872         if (IS_ERR(task))
873                 return PTR_ERR(task);
874         rpc_put_task(task);
875         return 0;
876 }
877
878 /* If a nfs_flush_* function fails, it should remove reqs from @head and
879  * call this on each, which will prepare them to be retried on next
880  * writeback using standard nfs.
881  */
882 static void nfs_redirty_request(struct nfs_page *req)
883 {
884         nfs_mark_request_dirty(req);
885         nfs_end_page_writeback(req->wb_page);
886         nfs_clear_page_tag_locked(req);
887 }
888
889 /*
890  * Generate multiple small requests to write out a single
891  * contiguous dirty area on one page.
892  */
893 static int nfs_flush_multi(struct inode *inode, struct list_head *head, unsigned int npages, size_t count, int how)
894 {
895         struct nfs_page *req = nfs_list_entry(head->next);
896         struct page *page = req->wb_page;
897         struct nfs_write_data *data;
898         size_t wsize = NFS_SERVER(inode)->wsize, nbytes;
899         unsigned int offset;
900         int requests = 0;
901         int ret = 0;
902         LIST_HEAD(list);
903
904         nfs_list_remove_request(req);
905
906         nbytes = count;
907         do {
908                 size_t len = min(nbytes, wsize);
909
910                 data = nfs_writedata_alloc(1);
911                 if (!data)
912                         goto out_bad;
913                 list_add(&data->pages, &list);
914                 requests++;
915                 nbytes -= len;
916         } while (nbytes != 0);
917         atomic_set(&req->wb_complete, requests);
918
919         ClearPageError(page);
920         offset = 0;
921         nbytes = count;
922         do {
923                 int ret2;
924
925                 data = list_entry(list.next, struct nfs_write_data, pages);
926                 list_del_init(&data->pages);
927
928                 data->pagevec[0] = page;
929
930                 if (nbytes < wsize)
931                         wsize = nbytes;
932                 ret2 = nfs_write_rpcsetup(req, data, &nfs_write_partial_ops,
933                                    wsize, offset, how);
934                 if (ret == 0)
935                         ret = ret2;
936                 offset += wsize;
937                 nbytes -= wsize;
938         } while (nbytes != 0);
939
940         return ret;
941
942 out_bad:
943         while (!list_empty(&list)) {
944                 data = list_entry(list.next, struct nfs_write_data, pages);
945                 list_del(&data->pages);
946                 nfs_writedata_release(data);
947         }
948         nfs_redirty_request(req);
949         return -ENOMEM;
950 }
951
952 /*
953  * Create an RPC task for the given write request and kick it.
954  * The page must have been locked by the caller.
955  *
956  * It may happen that the page we're passed is not marked dirty.
957  * This is the case if nfs_updatepage detects a conflicting request
958  * that has been written but not committed.
959  */
960 static int nfs_flush_one(struct inode *inode, struct list_head *head, unsigned int npages, size_t count, int how)
961 {
962         struct nfs_page         *req;
963         struct page             **pages;
964         struct nfs_write_data   *data;
965
966         data = nfs_writedata_alloc(npages);
967         if (!data)
968                 goto out_bad;
969
970         pages = data->pagevec;
971         while (!list_empty(head)) {
972                 req = nfs_list_entry(head->next);
973                 nfs_list_remove_request(req);
974                 nfs_list_add_request(req, &data->pages);
975                 ClearPageError(req->wb_page);
976                 *pages++ = req->wb_page;
977         }
978         req = nfs_list_entry(data->pages.next);
979
980         /* Set up the argument struct */
981         return nfs_write_rpcsetup(req, data, &nfs_write_full_ops, count, 0, how);
982  out_bad:
983         while (!list_empty(head)) {
984                 req = nfs_list_entry(head->next);
985                 nfs_list_remove_request(req);
986                 nfs_redirty_request(req);
987         }
988         return -ENOMEM;
989 }
990
991 static void nfs_pageio_init_write(struct nfs_pageio_descriptor *pgio,
992                                   struct inode *inode, int ioflags)
993 {
994         size_t wsize = NFS_SERVER(inode)->wsize;
995
996         if (wsize < PAGE_CACHE_SIZE)
997                 nfs_pageio_init(pgio, inode, nfs_flush_multi, wsize, ioflags);
998         else
999                 nfs_pageio_init(pgio, inode, nfs_flush_one, wsize, ioflags);
1000 }
1001
1002 /*
1003  * Handle a write reply that flushed part of a page.
1004  */
1005 static void nfs_writeback_done_partial(struct rpc_task *task, void *calldata)
1006 {
1007         struct nfs_write_data   *data = calldata;
1008
1009         dprintk("NFS: %5u write(%s/%lld %d@%lld)",
1010                 task->tk_pid,
1011                 data->req->wb_context->path.dentry->d_inode->i_sb->s_id,
1012                 (long long)
1013                   NFS_FILEID(data->req->wb_context->path.dentry->d_inode),
1014                 data->req->wb_bytes, (long long)req_offset(data->req));
1015
1016         nfs_writeback_done(task, data);
1017 }
1018
1019 static void nfs_writeback_release_partial(void *calldata)
1020 {
1021         struct nfs_write_data   *data = calldata;
1022         struct nfs_page         *req = data->req;
1023         struct page             *page = req->wb_page;
1024         int status = data->task.tk_status;
1025
1026         if (status < 0) {
1027                 nfs_set_pageerror(page);
1028                 nfs_context_set_write_error(req->wb_context, status);
1029                 dprintk(", error = %d\n", status);
1030                 goto out;
1031         }
1032
1033         if (nfs_write_need_commit(data)) {
1034                 struct inode *inode = page->mapping->host;
1035
1036                 spin_lock(&inode->i_lock);
1037                 if (test_bit(PG_NEED_RESCHED, &req->wb_flags)) {
1038                         /* Do nothing we need to resend the writes */
1039                 } else if (!test_and_set_bit(PG_NEED_COMMIT, &req->wb_flags)) {
1040                         memcpy(&req->wb_verf, &data->verf, sizeof(req->wb_verf));
1041                         dprintk(" defer commit\n");
1042                 } else if (memcmp(&req->wb_verf, &data->verf, sizeof(req->wb_verf))) {
1043                         set_bit(PG_NEED_RESCHED, &req->wb_flags);
1044                         clear_bit(PG_NEED_COMMIT, &req->wb_flags);
1045                         dprintk(" server reboot detected\n");
1046                 }
1047                 spin_unlock(&inode->i_lock);
1048         } else
1049                 dprintk(" OK\n");
1050
1051 out:
1052         if (atomic_dec_and_test(&req->wb_complete))
1053                 nfs_writepage_release(req);
1054         nfs_writedata_release(calldata);
1055 }
1056
1057 #if defined(CONFIG_NFS_V4_1)
1058 void nfs_write_prepare(struct rpc_task *task, void *calldata)
1059 {
1060         struct nfs_write_data *data = calldata;
1061         struct nfs_client *clp = (NFS_SERVER(data->inode))->nfs_client;
1062
1063         if (nfs4_setup_sequence(clp, &data->args.seq_args,
1064                                 &data->res.seq_res, 1, task))
1065                 return;
1066         rpc_call_start(task);
1067 }
1068 #endif /* CONFIG_NFS_V4_1 */
1069
1070 static const struct rpc_call_ops nfs_write_partial_ops = {
1071 #if defined(CONFIG_NFS_V4_1)
1072         .rpc_call_prepare = nfs_write_prepare,
1073 #endif /* CONFIG_NFS_V4_1 */
1074         .rpc_call_done = nfs_writeback_done_partial,
1075         .rpc_release = nfs_writeback_release_partial,
1076 };
1077
1078 /*
1079  * Handle a write reply that flushes a whole page.
1080  *
1081  * FIXME: There is an inherent race with invalidate_inode_pages and
1082  *        writebacks since the page->count is kept > 1 for as long
1083  *        as the page has a write request pending.
1084  */
1085 static void nfs_writeback_done_full(struct rpc_task *task, void *calldata)
1086 {
1087         struct nfs_write_data   *data = calldata;
1088
1089         nfs_writeback_done(task, data);
1090 }
1091
1092 static void nfs_writeback_release_full(void *calldata)
1093 {
1094         struct nfs_write_data   *data = calldata;
1095         int status = data->task.tk_status;
1096
1097         /* Update attributes as result of writeback. */
1098         while (!list_empty(&data->pages)) {
1099                 struct nfs_page *req = nfs_list_entry(data->pages.next);
1100                 struct page *page = req->wb_page;
1101
1102                 nfs_list_remove_request(req);
1103
1104                 dprintk("NFS: %5u write (%s/%lld %d@%lld)",
1105                         data->task.tk_pid,
1106                         req->wb_context->path.dentry->d_inode->i_sb->s_id,
1107                         (long long)NFS_FILEID(req->wb_context->path.dentry->d_inode),
1108                         req->wb_bytes,
1109                         (long long)req_offset(req));
1110
1111                 if (status < 0) {
1112                         nfs_set_pageerror(page);
1113                         nfs_context_set_write_error(req->wb_context, status);
1114                         dprintk(", error = %d\n", status);
1115                         goto remove_request;
1116                 }
1117
1118                 if (nfs_write_need_commit(data)) {
1119                         memcpy(&req->wb_verf, &data->verf, sizeof(req->wb_verf));
1120                         nfs_mark_request_commit(req);
1121                         nfs_end_page_writeback(page);
1122                         dprintk(" marked for commit\n");
1123                         goto next;
1124                 }
1125                 dprintk(" OK\n");
1126 remove_request:
1127                 nfs_end_page_writeback(page);
1128                 nfs_inode_remove_request(req);
1129         next:
1130                 nfs_clear_page_tag_locked(req);
1131         }
1132         nfs_writedata_release(calldata);
1133 }
1134
1135 static const struct rpc_call_ops nfs_write_full_ops = {
1136 #if defined(CONFIG_NFS_V4_1)
1137         .rpc_call_prepare = nfs_write_prepare,
1138 #endif /* CONFIG_NFS_V4_1 */
1139         .rpc_call_done = nfs_writeback_done_full,
1140         .rpc_release = nfs_writeback_release_full,
1141 };
1142
1143
1144 /*
1145  * This function is called when the WRITE call is complete.
1146  */
1147 int nfs_writeback_done(struct rpc_task *task, struct nfs_write_data *data)
1148 {
1149         struct nfs_writeargs    *argp = &data->args;
1150         struct nfs_writeres     *resp = &data->res;
1151         struct nfs_server       *server = NFS_SERVER(data->inode);
1152         int status;
1153
1154         dprintk("NFS: %5u nfs_writeback_done (status %d)\n",
1155                 task->tk_pid, task->tk_status);
1156
1157         /*
1158          * ->write_done will attempt to use post-op attributes to detect
1159          * conflicting writes by other clients.  A strict interpretation
1160          * of close-to-open would allow us to continue caching even if
1161          * another writer had changed the file, but some applications
1162          * depend on tighter cache coherency when writing.
1163          */
1164         status = NFS_PROTO(data->inode)->write_done(task, data);
1165         if (status != 0)
1166                 return status;
1167         nfs_add_stats(data->inode, NFSIOS_SERVERWRITTENBYTES, resp->count);
1168
1169 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
1170         if (resp->verf->committed < argp->stable && task->tk_status >= 0) {
1171                 /* We tried a write call, but the server did not
1172                  * commit data to stable storage even though we
1173                  * requested it.
1174                  * Note: There is a known bug in Tru64 < 5.0 in which
1175                  *       the server reports NFS_DATA_SYNC, but performs
1176                  *       NFS_FILE_SYNC. We therefore implement this checking
1177                  *       as a dprintk() in order to avoid filling syslog.
1178                  */
1179                 static unsigned long    complain;
1180
1181                 if (time_before(complain, jiffies)) {
1182                         dprintk("NFS:       faulty NFS server %s:"
1183                                 " (committed = %d) != (stable = %d)\n",
1184                                 server->nfs_client->cl_hostname,
1185                                 resp->verf->committed, argp->stable);
1186                         complain = jiffies + 300 * HZ;
1187                 }
1188         }
1189 #endif
1190         /* Is this a short write? */
1191         if (task->tk_status >= 0 && resp->count < argp->count) {
1192                 static unsigned long    complain;
1193
1194                 nfs_inc_stats(data->inode, NFSIOS_SHORTWRITE);
1195
1196                 /* Has the server at least made some progress? */
1197                 if (resp->count != 0) {
1198                         /* Was this an NFSv2 write or an NFSv3 stable write? */
1199                         if (resp->verf->committed != NFS_UNSTABLE) {
1200                                 /* Resend from where the server left off */
1201                                 argp->offset += resp->count;
1202                                 argp->pgbase += resp->count;
1203                                 argp->count -= resp->count;
1204                         } else {
1205                                 /* Resend as a stable write in order to avoid
1206                                  * headaches in the case of a server crash.
1207                                  */
1208                                 argp->stable = NFS_FILE_SYNC;
1209                         }
1210                         nfs4_restart_rpc(task, server->nfs_client);
1211                         return -EAGAIN;
1212                 }
1213                 if (time_before(complain, jiffies)) {
1214                         printk(KERN_WARNING
1215                                "NFS: Server wrote zero bytes, expected %u.\n",
1216                                         argp->count);
1217                         complain = jiffies + 300 * HZ;
1218                 }
1219                 /* Can't do anything about it except throw an error. */
1220                 task->tk_status = -EIO;
1221         }
1222         nfs4_sequence_free_slot(server->nfs_client, &data->res.seq_res);
1223         return 0;
1224 }
1225
1226
1227 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
1228 void nfs_commitdata_release(void *data)
1229 {
1230         struct nfs_write_data *wdata = data;
1231
1232         put_nfs_open_context(wdata->args.context);
1233         nfs_commit_free(wdata);
1234 }
1235
1236 /*
1237  * Set up the argument/result storage required for the RPC call.
1238  */
1239 static int nfs_commit_rpcsetup(struct list_head *head,
1240                 struct nfs_write_data *data,
1241                 int how)
1242 {
1243         struct nfs_page *first = nfs_list_entry(head->next);
1244         struct inode *inode = first->wb_context->path.dentry->d_inode;
1245         int flags = (how & FLUSH_SYNC) ? 0 : RPC_TASK_ASYNC;
1246         int priority = flush_task_priority(how);
1247         struct rpc_task *task;
1248         struct rpc_message msg = {
1249                 .rpc_argp = &data->args,
1250                 .rpc_resp = &data->res,
1251                 .rpc_cred = first->wb_context->cred,
1252         };
1253         struct rpc_task_setup task_setup_data = {
1254                 .task = &data->task,
1255                 .rpc_client = NFS_CLIENT(inode),
1256                 .rpc_message = &msg,
1257                 .callback_ops = &nfs_commit_ops,
1258                 .callback_data = data,
1259                 .workqueue = nfsiod_workqueue,
1260                 .flags = flags,
1261                 .priority = priority,
1262         };
1263
1264         /* Set up the RPC argument and reply structs
1265          * NB: take care not to mess about with data->commit et al. */
1266
1267         list_splice_init(head, &data->pages);
1268
1269         data->inode       = inode;
1270         data->cred        = msg.rpc_cred;
1271
1272         data->args.fh     = NFS_FH(data->inode);
1273         /* Note: we always request a commit of the entire inode */
1274         data->args.offset = 0;
1275         data->args.count  = 0;
1276         data->args.context = get_nfs_open_context(first->wb_context);
1277         data->res.count   = 0;
1278         data->res.fattr   = &data->fattr;
1279         data->res.verf    = &data->verf;
1280         nfs_fattr_init(&data->fattr);
1281
1282         /* Set up the initial task struct.  */
1283         NFS_PROTO(inode)->commit_setup(data, &msg);
1284
1285         dprintk("NFS: %5u initiated commit call\n", data->task.tk_pid);
1286
1287         task = rpc_run_task(&task_setup_data);
1288         if (IS_ERR(task))
1289                 return PTR_ERR(task);
1290         rpc_put_task(task);
1291         return 0;
1292 }
1293
1294 /*
1295  * Commit dirty pages
1296  */
1297 static int
1298 nfs_commit_list(struct inode *inode, struct list_head *head, int how)
1299 {
1300         struct nfs_write_data   *data;
1301         struct nfs_page         *req;
1302
1303         data = nfs_commitdata_alloc();
1304
1305         if (!data)
1306                 goto out_bad;
1307
1308         /* Set up the argument struct */
1309         return nfs_commit_rpcsetup(head, data, how);
1310  out_bad:
1311         while (!list_empty(head)) {
1312                 req = nfs_list_entry(head->next);
1313                 nfs_list_remove_request(req);
1314                 nfs_mark_request_commit(req);
1315                 dec_zone_page_state(req->wb_page, NR_UNSTABLE_NFS);
1316                 dec_bdi_stat(req->wb_page->mapping->backing_dev_info,
1317                                 BDI_RECLAIMABLE);
1318                 nfs_clear_page_tag_locked(req);
1319         }
1320         return -ENOMEM;
1321 }
1322
1323 /*
1324  * COMMIT call returned
1325  */
1326 static void nfs_commit_done(struct rpc_task *task, void *calldata)
1327 {
1328         struct nfs_write_data   *data = calldata;
1329
1330         dprintk("NFS: %5u nfs_commit_done (status %d)\n",
1331                                 task->tk_pid, task->tk_status);
1332
1333         /* Call the NFS version-specific code */
1334         if (NFS_PROTO(data->inode)->commit_done(task, data) != 0)
1335                 return;
1336 }
1337
1338 static void nfs_commit_release(void *calldata)
1339 {
1340         struct nfs_write_data   *data = calldata;
1341         struct nfs_page         *req;
1342         int status = data->task.tk_status;
1343
1344         while (!list_empty(&data->pages)) {
1345                 req = nfs_list_entry(data->pages.next);
1346                 nfs_list_remove_request(req);
1347                 nfs_clear_request_commit(req);
1348
1349                 dprintk("NFS:       commit (%s/%lld %d@%lld)",
1350                         req->wb_context->path.dentry->d_inode->i_sb->s_id,
1351                         (long long)NFS_FILEID(req->wb_context->path.dentry->d_inode),
1352                         req->wb_bytes,
1353                         (long long)req_offset(req));
1354                 if (status < 0) {
1355                         nfs_context_set_write_error(req->wb_context, status);
1356                         nfs_inode_remove_request(req);
1357                         dprintk(", error = %d\n", status);
1358                         goto next;
1359                 }
1360
1361                 /* Okay, COMMIT succeeded, apparently. Check the verifier
1362                  * returned by the server against all stored verfs. */
1363                 if (!memcmp(req->wb_verf.verifier, data->verf.verifier, sizeof(data->verf.verifier))) {
1364                         /* We have a match */
1365                         nfs_inode_remove_request(req);
1366                         dprintk(" OK\n");
1367                         goto next;
1368                 }
1369                 /* We have a mismatch. Write the page again */
1370                 dprintk(" mismatch\n");
1371                 nfs_mark_request_dirty(req);
1372         next:
1373                 nfs_clear_page_tag_locked(req);
1374         }
1375         nfs_commitdata_release(calldata);
1376 }
1377
1378 static const struct rpc_call_ops nfs_commit_ops = {
1379 #if defined(CONFIG_NFS_V4_1)
1380         .rpc_call_prepare = nfs_write_prepare,
1381 #endif /* CONFIG_NFS_V4_1 */
1382         .rpc_call_done = nfs_commit_done,
1383         .rpc_release = nfs_commit_release,
1384 };
1385
1386 int nfs_commit_inode(struct inode *inode, int how)
1387 {
1388         LIST_HEAD(head);
1389         int res;
1390
1391         spin_lock(&inode->i_lock);
1392         res = nfs_scan_commit(inode, &head, 0, 0);
1393         spin_unlock(&inode->i_lock);
1394         if (res) {
1395                 int error = nfs_commit_list(inode, &head, how);
1396                 if (error < 0)
1397                         return error;
1398         }
1399         return res;
1400 }
1401 #else
1402 static inline int nfs_commit_list(struct inode *inode, struct list_head *head, int how)
1403 {
1404         return 0;
1405 }
1406 #endif
1407
1408 long nfs_sync_mapping_wait(struct address_space *mapping, struct writeback_control *wbc, int how)
1409 {
1410         struct inode *inode = mapping->host;
1411         pgoff_t idx_start, idx_end;
1412         unsigned int npages = 0;
1413         LIST_HEAD(head);
1414         int nocommit = how & FLUSH_NOCOMMIT;
1415         long pages, ret;
1416
1417         /* FIXME */
1418         if (wbc->range_cyclic)
1419                 idx_start = 0;
1420         else {
1421                 idx_start = wbc->range_start >> PAGE_CACHE_SHIFT;
1422                 idx_end = wbc->range_end >> PAGE_CACHE_SHIFT;
1423                 if (idx_end > idx_start) {
1424                         pgoff_t l_npages = 1 + idx_end - idx_start;
1425                         npages = l_npages;
1426                         if (sizeof(npages) != sizeof(l_npages) &&
1427                                         (pgoff_t)npages != l_npages)
1428                                 npages = 0;
1429                 }
1430         }
1431         how &= ~FLUSH_NOCOMMIT;
1432         spin_lock(&inode->i_lock);
1433         do {
1434                 ret = nfs_wait_on_requests_locked(inode, idx_start, npages);
1435                 if (ret != 0)
1436                         continue;
1437                 if (nocommit)
1438                         break;
1439                 pages = nfs_scan_commit(inode, &head, idx_start, npages);
1440                 if (pages == 0)
1441                         break;
1442                 if (how & FLUSH_INVALIDATE) {
1443                         spin_unlock(&inode->i_lock);
1444                         nfs_cancel_commit_list(&head);
1445                         ret = pages;
1446                         spin_lock(&inode->i_lock);
1447                         continue;
1448                 }
1449                 pages += nfs_scan_commit(inode, &head, 0, 0);
1450                 spin_unlock(&inode->i_lock);
1451                 ret = nfs_commit_list(inode, &head, how);
1452                 spin_lock(&inode->i_lock);
1453
1454         } while (ret >= 0);
1455         spin_unlock(&inode->i_lock);
1456         return ret;
1457 }
1458
1459 static int __nfs_write_mapping(struct address_space *mapping, struct writeback_control *wbc, int how)
1460 {
1461         int ret;
1462
1463         ret = nfs_writepages(mapping, wbc);
1464         if (ret < 0)
1465                 goto out;
1466         ret = nfs_sync_mapping_wait(mapping, wbc, how);
1467         if (ret < 0)
1468                 goto out;
1469         return 0;
1470 out:
1471         __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1472         return ret;
1473 }
1474
1475 /* Two pass sync: first using WB_SYNC_NONE, then WB_SYNC_ALL */
1476 static int nfs_write_mapping(struct address_space *mapping, int how)
1477 {
1478         struct writeback_control wbc = {
1479                 .bdi = mapping->backing_dev_info,
1480                 .sync_mode = WB_SYNC_ALL,
1481                 .nr_to_write = LONG_MAX,
1482                 .range_start = 0,
1483                 .range_end = LLONG_MAX,
1484                 .for_writepages = 1,
1485         };
1486
1487         return __nfs_write_mapping(mapping, &wbc, how);
1488 }
1489
1490 /*
1491  * flush the inode to disk.
1492  */
1493 int nfs_wb_all(struct inode *inode)
1494 {
1495         return nfs_write_mapping(inode->i_mapping, 0);
1496 }
1497
1498 int nfs_wb_nocommit(struct inode *inode)
1499 {
1500         return nfs_write_mapping(inode->i_mapping, FLUSH_NOCOMMIT);
1501 }
1502
1503 int nfs_wb_page_cancel(struct inode *inode, struct page *page)
1504 {
1505         struct nfs_page *req;
1506         loff_t range_start = page_offset(page);
1507         loff_t range_end = range_start + (loff_t)(PAGE_CACHE_SIZE - 1);
1508         struct writeback_control wbc = {
1509                 .bdi = page->mapping->backing_dev_info,
1510                 .sync_mode = WB_SYNC_ALL,
1511                 .nr_to_write = LONG_MAX,
1512                 .range_start = range_start,
1513                 .range_end = range_end,
1514         };
1515         int ret = 0;
1516
1517         BUG_ON(!PageLocked(page));
1518         for (;;) {
1519                 req = nfs_page_find_request(page);
1520                 if (req == NULL)
1521                         goto out;
1522                 if (test_bit(PG_CLEAN, &req->wb_flags)) {
1523                         nfs_release_request(req);
1524                         break;
1525                 }
1526                 if (nfs_lock_request_dontget(req)) {
1527                         nfs_inode_remove_request(req);
1528                         /*
1529                          * In case nfs_inode_remove_request has marked the
1530                          * page as being dirty
1531                          */
1532                         cancel_dirty_page(page, PAGE_CACHE_SIZE);
1533                         nfs_unlock_request(req);
1534                         break;
1535                 }
1536                 ret = nfs_wait_on_request(req);
1537                 if (ret < 0)
1538                         goto out;
1539         }
1540         if (!PagePrivate(page))
1541                 return 0;
1542         ret = nfs_sync_mapping_wait(page->mapping, &wbc, FLUSH_INVALIDATE);
1543 out:
1544         return ret;
1545 }
1546
1547 static int nfs_wb_page_priority(struct inode *inode, struct page *page,
1548                                 int how)
1549 {
1550         loff_t range_start = page_offset(page);
1551         loff_t range_end = range_start + (loff_t)(PAGE_CACHE_SIZE - 1);
1552         struct writeback_control wbc = {
1553                 .bdi = page->mapping->backing_dev_info,
1554                 .sync_mode = WB_SYNC_ALL,
1555                 .nr_to_write = LONG_MAX,
1556                 .range_start = range_start,
1557                 .range_end = range_end,
1558         };
1559         int ret;
1560
1561         do {
1562                 if (clear_page_dirty_for_io(page)) {
1563                         ret = nfs_writepage_locked(page, &wbc);
1564                         if (ret < 0)
1565                                 goto out_error;
1566                 } else if (!PagePrivate(page))
1567                         break;
1568                 ret = nfs_sync_mapping_wait(page->mapping, &wbc, how);
1569                 if (ret < 0)
1570                         goto out_error;
1571         } while (PagePrivate(page));
1572         return 0;
1573 out_error:
1574         __mark_inode_dirty(inode, I_DIRTY_PAGES);
1575         return ret;
1576 }
1577
1578 /*
1579  * Write back all requests on one page - we do this before reading it.
1580  */
1581 int nfs_wb_page(struct inode *inode, struct page* page)
1582 {
1583         return nfs_wb_page_priority(inode, page, FLUSH_STABLE);
1584 }
1585
1586 int __init nfs_init_writepagecache(void)
1587 {
1588         nfs_wdata_cachep = kmem_cache_create("nfs_write_data",
1589                                              sizeof(struct nfs_write_data),
1590                                              0, SLAB_HWCACHE_ALIGN,
1591                                              NULL);
1592         if (nfs_wdata_cachep == NULL)
1593                 return -ENOMEM;
1594
1595         nfs_wdata_mempool = mempool_create_slab_pool(MIN_POOL_WRITE,
1596                                                      nfs_wdata_cachep);
1597         if (nfs_wdata_mempool == NULL)
1598                 return -ENOMEM;
1599
1600         nfs_commit_mempool = mempool_create_slab_pool(MIN_POOL_COMMIT,
1601                                                       nfs_wdata_cachep);
1602         if (nfs_commit_mempool == NULL)
1603                 return -ENOMEM;
1604
1605         /*
1606          * NFS congestion size, scale with available memory.
1607          *
1608          *  64MB:    8192k
1609          * 128MB:   11585k
1610          * 256MB:   16384k
1611          * 512MB:   23170k
1612          *   1GB:   32768k
1613          *   2GB:   46340k
1614          *   4GB:   65536k
1615          *   8GB:   92681k
1616          *  16GB:  131072k
1617          *
1618          * This allows larger machines to have larger/more transfers.
1619          * Limit the default to 256M
1620          */
1621         nfs_congestion_kb = (16*int_sqrt(totalram_pages)) << (PAGE_SHIFT-10);
1622         if (nfs_congestion_kb > 256*1024)
1623                 nfs_congestion_kb = 256*1024;
1624
1625         return 0;
1626 }
1627
1628 void nfs_destroy_writepagecache(void)
1629 {
1630         mempool_destroy(nfs_commit_mempool);
1631         mempool_destroy(nfs_wdata_mempool);
1632         kmem_cache_destroy(nfs_wdata_cachep);
1633 }
1634