Merge git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6
[pandora-kernel.git] / fs / nfs / direct.c
1 /*
2  * linux/fs/nfs/direct.c
3  *
4  * Copyright (C) 2003 by Chuck Lever <cel@netapp.com>
5  *
6  * High-performance uncached I/O for the Linux NFS client
7  *
8  * There are important applications whose performance or correctness
9  * depends on uncached access to file data.  Database clusters
10  * (multiple copies of the same instance running on separate hosts)
11  * implement their own cache coherency protocol that subsumes file
12  * system cache protocols.  Applications that process datasets
13  * considerably larger than the client's memory do not always benefit
14  * from a local cache.  A streaming video server, for instance, has no
15  * need to cache the contents of a file.
16  *
17  * When an application requests uncached I/O, all read and write requests
18  * are made directly to the server; data stored or fetched via these
19  * requests is not cached in the Linux page cache.  The client does not
20  * correct unaligned requests from applications.  All requested bytes are
21  * held on permanent storage before a direct write system call returns to
22  * an application.
23  *
24  * Solaris implements an uncached I/O facility called directio() that
25  * is used for backups and sequential I/O to very large files.  Solaris
26  * also supports uncaching whole NFS partitions with "-o forcedirectio,"
27  * an undocumented mount option.
28  *
29  * Designed by Jeff Kimmel, Chuck Lever, and Trond Myklebust, with
30  * help from Andrew Morton.
31  *
32  * 18 Dec 2001  Initial implementation for 2.4  --cel
33  * 08 Jul 2002  Version for 2.4.19, with bug fixes --trondmy
34  * 08 Jun 2003  Port to 2.5 APIs  --cel
35  * 31 Mar 2004  Handle direct I/O without VFS support  --cel
36  * 15 Sep 2004  Parallel async reads  --cel
37  * 04 May 2005  support O_DIRECT with aio  --cel
38  *
39  */
40
41 #include <linux/errno.h>
42 #include <linux/sched.h>
43 #include <linux/kernel.h>
44 #include <linux/file.h>
45 #include <linux/pagemap.h>
46 #include <linux/kref.h>
47
48 #include <linux/nfs_fs.h>
49 #include <linux/nfs_page.h>
50 #include <linux/sunrpc/clnt.h>
51
52 #include <asm/system.h>
53 #include <asm/uaccess.h>
54 #include <asm/atomic.h>
55
56 #include "internal.h"
57 #include "iostat.h"
58
59 #define NFSDBG_FACILITY         NFSDBG_VFS
60
61 static struct kmem_cache *nfs_direct_cachep;
62
63 /*
64  * This represents a set of asynchronous requests that we're waiting on
65  */
66 struct nfs_direct_req {
67         struct kref             kref;           /* release manager */
68
69         /* I/O parameters */
70         struct nfs_open_context *ctx;           /* file open context info */
71         struct kiocb *          iocb;           /* controlling i/o request */
72         struct inode *          inode;          /* target file of i/o */
73
74         /* completion state */
75         atomic_t                io_count;       /* i/os we're waiting for */
76         spinlock_t              lock;           /* protect completion state */
77         ssize_t                 count,          /* bytes actually processed */
78                                 error;          /* any reported error */
79         struct completion       completion;     /* wait for i/o completion */
80
81         /* commit state */
82         struct list_head        rewrite_list;   /* saved nfs_write_data structs */
83         struct nfs_write_data * commit_data;    /* special write_data for commits */
84         int                     flags;
85 #define NFS_ODIRECT_DO_COMMIT           (1)     /* an unstable reply was received */
86 #define NFS_ODIRECT_RESCHED_WRITES      (2)     /* write verification failed */
87         struct nfs_writeverf    verf;           /* unstable write verifier */
88 };
89
90 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode);
91 static const struct rpc_call_ops nfs_write_direct_ops;
92
93 static inline void get_dreq(struct nfs_direct_req *dreq)
94 {
95         atomic_inc(&dreq->io_count);
96 }
97
98 static inline int put_dreq(struct nfs_direct_req *dreq)
99 {
100         return atomic_dec_and_test(&dreq->io_count);
101 }
102
103 /**
104  * nfs_direct_IO - NFS address space operation for direct I/O
105  * @rw: direction (read or write)
106  * @iocb: target I/O control block
107  * @iov: array of vectors that define I/O buffer
108  * @pos: offset in file to begin the operation
109  * @nr_segs: size of iovec array
110  *
111  * The presence of this routine in the address space ops vector means
112  * the NFS client supports direct I/O.  However, we shunt off direct
113  * read and write requests before the VFS gets them, so this method
114  * should never be called.
115  */
116 ssize_t nfs_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov, loff_t pos, unsigned long nr_segs)
117 {
118         dprintk("NFS: nfs_direct_IO (%s) off/no(%Ld/%lu) EINVAL\n",
119                         iocb->ki_filp->f_path.dentry->d_name.name,
120                         (long long) pos, nr_segs);
121
122         return -EINVAL;
123 }
124
125 static void nfs_direct_dirty_pages(struct page **pages, unsigned int pgbase, size_t count)
126 {
127         unsigned int npages;
128         unsigned int i;
129
130         if (count == 0)
131                 return;
132         pages += (pgbase >> PAGE_SHIFT);
133         npages = (count + (pgbase & ~PAGE_MASK) + PAGE_SIZE - 1) >> PAGE_SHIFT;
134         for (i = 0; i < npages; i++) {
135                 struct page *page = pages[i];
136                 if (!PageCompound(page))
137                         set_page_dirty(page);
138         }
139 }
140
141 static void nfs_direct_release_pages(struct page **pages, unsigned int npages)
142 {
143         unsigned int i;
144         for (i = 0; i < npages; i++)
145                 page_cache_release(pages[i]);
146 }
147
148 static inline struct nfs_direct_req *nfs_direct_req_alloc(void)
149 {
150         struct nfs_direct_req *dreq;
151
152         dreq = kmem_cache_alloc(nfs_direct_cachep, GFP_KERNEL);
153         if (!dreq)
154                 return NULL;
155
156         kref_init(&dreq->kref);
157         kref_get(&dreq->kref);
158         init_completion(&dreq->completion);
159         INIT_LIST_HEAD(&dreq->rewrite_list);
160         dreq->iocb = NULL;
161         dreq->ctx = NULL;
162         spin_lock_init(&dreq->lock);
163         atomic_set(&dreq->io_count, 0);
164         dreq->count = 0;
165         dreq->error = 0;
166         dreq->flags = 0;
167
168         return dreq;
169 }
170
171 static void nfs_direct_req_free(struct kref *kref)
172 {
173         struct nfs_direct_req *dreq = container_of(kref, struct nfs_direct_req, kref);
174
175         if (dreq->ctx != NULL)
176                 put_nfs_open_context(dreq->ctx);
177         kmem_cache_free(nfs_direct_cachep, dreq);
178 }
179
180 static void nfs_direct_req_release(struct nfs_direct_req *dreq)
181 {
182         kref_put(&dreq->kref, nfs_direct_req_free);
183 }
184
185 /*
186  * Collects and returns the final error value/byte-count.
187  */
188 static ssize_t nfs_direct_wait(struct nfs_direct_req *dreq)
189 {
190         ssize_t result = -EIOCBQUEUED;
191
192         /* Async requests don't wait here */
193         if (dreq->iocb)
194                 goto out;
195
196         result = wait_for_completion_interruptible(&dreq->completion);
197
198         if (!result)
199                 result = dreq->error;
200         if (!result)
201                 result = dreq->count;
202
203 out:
204         return (ssize_t) result;
205 }
206
207 /*
208  * Synchronous I/O uses a stack-allocated iocb.  Thus we can't trust
209  * the iocb is still valid here if this is a synchronous request.
210  */
211 static void nfs_direct_complete(struct nfs_direct_req *dreq)
212 {
213         if (dreq->iocb) {
214                 long res = (long) dreq->error;
215                 if (!res)
216                         res = (long) dreq->count;
217                 aio_complete(dreq->iocb, res, 0);
218         }
219         complete_all(&dreq->completion);
220
221         nfs_direct_req_release(dreq);
222 }
223
224 /*
225  * We must hold a reference to all the pages in this direct read request
226  * until the RPCs complete.  This could be long *after* we are woken up in
227  * nfs_direct_wait (for instance, if someone hits ^C on a slow server).
228  */
229 static void nfs_direct_read_result(struct rpc_task *task, void *calldata)
230 {
231         struct nfs_read_data *data = calldata;
232         struct nfs_direct_req *dreq = (struct nfs_direct_req *) data->req;
233
234         if (nfs_readpage_result(task, data) != 0)
235                 return;
236
237         spin_lock(&dreq->lock);
238         if (unlikely(task->tk_status < 0)) {
239                 dreq->error = task->tk_status;
240                 spin_unlock(&dreq->lock);
241         } else {
242                 dreq->count += data->res.count;
243                 spin_unlock(&dreq->lock);
244                 nfs_direct_dirty_pages(data->pagevec,
245                                 data->args.pgbase,
246                                 data->res.count);
247         }
248         nfs_direct_release_pages(data->pagevec, data->npages);
249
250         if (put_dreq(dreq))
251                 nfs_direct_complete(dreq);
252 }
253
254 static const struct rpc_call_ops nfs_read_direct_ops = {
255         .rpc_call_done = nfs_direct_read_result,
256         .rpc_release = nfs_readdata_release,
257 };
258
259 /*
260  * For each rsize'd chunk of the user's buffer, dispatch an NFS READ
261  * operation.  If nfs_readdata_alloc() or get_user_pages() fails,
262  * bail and stop sending more reads.  Read length accounting is
263  * handled automatically by nfs_direct_read_result().  Otherwise, if
264  * no requests have been sent, just return an error.
265  */
266 static ssize_t nfs_direct_read_schedule_segment(struct nfs_direct_req *dreq,
267                                                 const struct iovec *iov,
268                                                 loff_t pos)
269 {
270         struct nfs_open_context *ctx = dreq->ctx;
271         struct inode *inode = ctx->path.dentry->d_inode;
272         unsigned long user_addr = (unsigned long)iov->iov_base;
273         size_t count = iov->iov_len;
274         size_t rsize = NFS_SERVER(inode)->rsize;
275         unsigned int pgbase;
276         int result;
277         ssize_t started = 0;
278
279         do {
280                 struct nfs_read_data *data;
281                 size_t bytes;
282
283                 pgbase = user_addr & ~PAGE_MASK;
284                 bytes = min(rsize,count);
285
286                 result = -ENOMEM;
287                 data = nfs_readdata_alloc(nfs_page_array_len(pgbase, bytes));
288                 if (unlikely(!data))
289                         break;
290
291                 down_read(&current->mm->mmap_sem);
292                 result = get_user_pages(current, current->mm, user_addr,
293                                         data->npages, 1, 0, data->pagevec, NULL);
294                 up_read(&current->mm->mmap_sem);
295                 if (result < 0) {
296                         nfs_readdata_release(data);
297                         break;
298                 }
299                 if ((unsigned)result < data->npages) {
300                         bytes = result * PAGE_SIZE;
301                         if (bytes <= pgbase) {
302                                 nfs_direct_release_pages(data->pagevec, result);
303                                 nfs_readdata_release(data);
304                                 break;
305                         }
306                         bytes -= pgbase;
307                         data->npages = result;
308                 }
309
310                 get_dreq(dreq);
311
312                 data->req = (struct nfs_page *) dreq;
313                 data->inode = inode;
314                 data->cred = ctx->cred;
315                 data->args.fh = NFS_FH(inode);
316                 data->args.context = ctx;
317                 data->args.offset = pos;
318                 data->args.pgbase = pgbase;
319                 data->args.pages = data->pagevec;
320                 data->args.count = bytes;
321                 data->res.fattr = &data->fattr;
322                 data->res.eof = 0;
323                 data->res.count = bytes;
324
325                 rpc_init_task(&data->task, NFS_CLIENT(inode), RPC_TASK_ASYNC,
326                                 &nfs_read_direct_ops, data);
327                 NFS_PROTO(inode)->read_setup(data);
328
329                 data->task.tk_cookie = (unsigned long) inode;
330
331                 rpc_execute(&data->task);
332
333                 dprintk("NFS: %5u initiated direct read call "
334                         "(req %s/%Ld, %zu bytes @ offset %Lu)\n",
335                                 data->task.tk_pid,
336                                 inode->i_sb->s_id,
337                                 (long long)NFS_FILEID(inode),
338                                 bytes,
339                                 (unsigned long long)data->args.offset);
340
341                 started += bytes;
342                 user_addr += bytes;
343                 pos += bytes;
344                 /* FIXME: Remove this unnecessary math from final patch */
345                 pgbase += bytes;
346                 pgbase &= ~PAGE_MASK;
347                 BUG_ON(pgbase != (user_addr & ~PAGE_MASK));
348
349                 count -= bytes;
350         } while (count != 0);
351
352         if (started)
353                 return started;
354         return result < 0 ? (ssize_t) result : -EFAULT;
355 }
356
357 static ssize_t nfs_direct_read_schedule_iovec(struct nfs_direct_req *dreq,
358                                               const struct iovec *iov,
359                                               unsigned long nr_segs,
360                                               loff_t pos)
361 {
362         ssize_t result = -EINVAL;
363         size_t requested_bytes = 0;
364         unsigned long seg;
365
366         get_dreq(dreq);
367
368         for (seg = 0; seg < nr_segs; seg++) {
369                 const struct iovec *vec = &iov[seg];
370                 result = nfs_direct_read_schedule_segment(dreq, vec, pos);
371                 if (result < 0)
372                         break;
373                 requested_bytes += result;
374                 if ((size_t)result < vec->iov_len)
375                         break;
376                 pos += vec->iov_len;
377         }
378
379         if (put_dreq(dreq))
380                 nfs_direct_complete(dreq);
381
382         if (requested_bytes != 0)
383                 return 0;
384
385         if (result < 0)
386                 return result;
387         return -EIO;
388 }
389
390 static ssize_t nfs_direct_read(struct kiocb *iocb, const struct iovec *iov,
391                                unsigned long nr_segs, loff_t pos)
392 {
393         ssize_t result = 0;
394         sigset_t oldset;
395         struct inode *inode = iocb->ki_filp->f_mapping->host;
396         struct rpc_clnt *clnt = NFS_CLIENT(inode);
397         struct nfs_direct_req *dreq;
398
399         dreq = nfs_direct_req_alloc();
400         if (!dreq)
401                 return -ENOMEM;
402
403         dreq->inode = inode;
404         dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
405         if (!is_sync_kiocb(iocb))
406                 dreq->iocb = iocb;
407
408         rpc_clnt_sigmask(clnt, &oldset);
409         result = nfs_direct_read_schedule_iovec(dreq, iov, nr_segs, pos);
410         if (!result)
411                 result = nfs_direct_wait(dreq);
412         rpc_clnt_sigunmask(clnt, &oldset);
413         nfs_direct_req_release(dreq);
414
415         return result;
416 }
417
418 static void nfs_direct_free_writedata(struct nfs_direct_req *dreq)
419 {
420         while (!list_empty(&dreq->rewrite_list)) {
421                 struct nfs_write_data *data = list_entry(dreq->rewrite_list.next, struct nfs_write_data, pages);
422                 list_del(&data->pages);
423                 nfs_direct_release_pages(data->pagevec, data->npages);
424                 nfs_writedata_release(data);
425         }
426 }
427
428 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
429 static void nfs_direct_write_reschedule(struct nfs_direct_req *dreq)
430 {
431         struct inode *inode = dreq->inode;
432         struct list_head *p;
433         struct nfs_write_data *data;
434
435         dreq->count = 0;
436         get_dreq(dreq);
437
438         list_for_each(p, &dreq->rewrite_list) {
439                 data = list_entry(p, struct nfs_write_data, pages);
440
441                 get_dreq(dreq);
442
443                 /*
444                  * Reset data->res.
445                  */
446                 nfs_fattr_init(&data->fattr);
447                 data->res.count = data->args.count;
448                 memset(&data->verf, 0, sizeof(data->verf));
449
450                 /*
451                  * Reuse data->task; data->args should not have changed
452                  * since the original request was sent.
453                  */
454                 rpc_init_task(&data->task, NFS_CLIENT(inode), RPC_TASK_ASYNC,
455                                 &nfs_write_direct_ops, data);
456                 NFS_PROTO(inode)->write_setup(data, FLUSH_STABLE);
457
458                 data->task.tk_priority = RPC_PRIORITY_NORMAL;
459                 data->task.tk_cookie = (unsigned long) inode;
460
461                 /*
462                  * We're called via an RPC callback, so BKL is already held.
463                  */
464                 rpc_execute(&data->task);
465
466                 dprintk("NFS: %5u rescheduled direct write call (req %s/%Ld, %u bytes @ offset %Lu)\n",
467                                 data->task.tk_pid,
468                                 inode->i_sb->s_id,
469                                 (long long)NFS_FILEID(inode),
470                                 data->args.count,
471                                 (unsigned long long)data->args.offset);
472         }
473
474         if (put_dreq(dreq))
475                 nfs_direct_write_complete(dreq, inode);
476 }
477
478 static void nfs_direct_commit_result(struct rpc_task *task, void *calldata)
479 {
480         struct nfs_write_data *data = calldata;
481         struct nfs_direct_req *dreq = (struct nfs_direct_req *) data->req;
482
483         /* Call the NFS version-specific code */
484         if (NFS_PROTO(data->inode)->commit_done(task, data) != 0)
485                 return;
486         if (unlikely(task->tk_status < 0)) {
487                 dprintk("NFS: %5u commit failed with error %d.\n",
488                                 task->tk_pid, task->tk_status);
489                 dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
490         } else if (memcmp(&dreq->verf, &data->verf, sizeof(data->verf))) {
491                 dprintk("NFS: %5u commit verify failed\n", task->tk_pid);
492                 dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
493         }
494
495         dprintk("NFS: %5u commit returned %d\n", task->tk_pid, task->tk_status);
496         nfs_direct_write_complete(dreq, data->inode);
497 }
498
499 static const struct rpc_call_ops nfs_commit_direct_ops = {
500         .rpc_call_done = nfs_direct_commit_result,
501         .rpc_release = nfs_commit_release,
502 };
503
504 static void nfs_direct_commit_schedule(struct nfs_direct_req *dreq)
505 {
506         struct nfs_write_data *data = dreq->commit_data;
507
508         data->inode = dreq->inode;
509         data->cred = dreq->ctx->cred;
510
511         data->args.fh = NFS_FH(data->inode);
512         data->args.offset = 0;
513         data->args.count = 0;
514         data->res.count = 0;
515         data->res.fattr = &data->fattr;
516         data->res.verf = &data->verf;
517
518         rpc_init_task(&data->task, NFS_CLIENT(dreq->inode), RPC_TASK_ASYNC,
519                                 &nfs_commit_direct_ops, data);
520         NFS_PROTO(data->inode)->commit_setup(data, 0);
521
522         data->task.tk_priority = RPC_PRIORITY_NORMAL;
523         data->task.tk_cookie = (unsigned long)data->inode;
524         /* Note: task.tk_ops->rpc_release will free dreq->commit_data */
525         dreq->commit_data = NULL;
526
527         dprintk("NFS: %5u initiated commit call\n", data->task.tk_pid);
528
529         rpc_execute(&data->task);
530 }
531
532 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode)
533 {
534         int flags = dreq->flags;
535
536         dreq->flags = 0;
537         switch (flags) {
538                 case NFS_ODIRECT_DO_COMMIT:
539                         nfs_direct_commit_schedule(dreq);
540                         break;
541                 case NFS_ODIRECT_RESCHED_WRITES:
542                         nfs_direct_write_reschedule(dreq);
543                         break;
544                 default:
545                         if (dreq->commit_data != NULL)
546                                 nfs_commit_free(dreq->commit_data);
547                         nfs_direct_free_writedata(dreq);
548                         nfs_zap_mapping(inode, inode->i_mapping);
549                         nfs_direct_complete(dreq);
550         }
551 }
552
553 static void nfs_alloc_commit_data(struct nfs_direct_req *dreq)
554 {
555         dreq->commit_data = nfs_commit_alloc();
556         if (dreq->commit_data != NULL)
557                 dreq->commit_data->req = (struct nfs_page *) dreq;
558 }
559 #else
560 static inline void nfs_alloc_commit_data(struct nfs_direct_req *dreq)
561 {
562         dreq->commit_data = NULL;
563 }
564
565 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode)
566 {
567         nfs_direct_free_writedata(dreq);
568         nfs_zap_mapping(inode, inode->i_mapping);
569         nfs_direct_complete(dreq);
570 }
571 #endif
572
573 static void nfs_direct_write_result(struct rpc_task *task, void *calldata)
574 {
575         struct nfs_write_data *data = calldata;
576         struct nfs_direct_req *dreq = (struct nfs_direct_req *) data->req;
577         int status = task->tk_status;
578
579         if (nfs_writeback_done(task, data) != 0)
580                 return;
581
582         spin_lock(&dreq->lock);
583
584         if (unlikely(status < 0)) {
585                 /* An error has occurred, so we should not commit */
586                 dreq->flags = 0;
587                 dreq->error = status;
588         }
589         if (unlikely(dreq->error != 0))
590                 goto out_unlock;
591
592         dreq->count += data->res.count;
593
594         if (data->res.verf->committed != NFS_FILE_SYNC) {
595                 switch (dreq->flags) {
596                         case 0:
597                                 memcpy(&dreq->verf, &data->verf, sizeof(dreq->verf));
598                                 dreq->flags = NFS_ODIRECT_DO_COMMIT;
599                                 break;
600                         case NFS_ODIRECT_DO_COMMIT:
601                                 if (memcmp(&dreq->verf, &data->verf, sizeof(dreq->verf))) {
602                                         dprintk("NFS: %5u write verify failed\n", task->tk_pid);
603                                         dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
604                                 }
605                 }
606         }
607 out_unlock:
608         spin_unlock(&dreq->lock);
609 }
610
611 /*
612  * NB: Return the value of the first error return code.  Subsequent
613  *     errors after the first one are ignored.
614  */
615 static void nfs_direct_write_release(void *calldata)
616 {
617         struct nfs_write_data *data = calldata;
618         struct nfs_direct_req *dreq = (struct nfs_direct_req *) data->req;
619
620         if (put_dreq(dreq))
621                 nfs_direct_write_complete(dreq, data->inode);
622 }
623
624 static const struct rpc_call_ops nfs_write_direct_ops = {
625         .rpc_call_done = nfs_direct_write_result,
626         .rpc_release = nfs_direct_write_release,
627 };
628
629 /*
630  * For each wsize'd chunk of the user's buffer, dispatch an NFS WRITE
631  * operation.  If nfs_writedata_alloc() or get_user_pages() fails,
632  * bail and stop sending more writes.  Write length accounting is
633  * handled automatically by nfs_direct_write_result().  Otherwise, if
634  * no requests have been sent, just return an error.
635  */
636 static ssize_t nfs_direct_write_schedule_segment(struct nfs_direct_req *dreq,
637                                                  const struct iovec *iov,
638                                                  loff_t pos, int sync)
639 {
640         struct nfs_open_context *ctx = dreq->ctx;
641         struct inode *inode = ctx->path.dentry->d_inode;
642         unsigned long user_addr = (unsigned long)iov->iov_base;
643         size_t count = iov->iov_len;
644         size_t wsize = NFS_SERVER(inode)->wsize;
645         unsigned int pgbase;
646         int result;
647         ssize_t started = 0;
648
649         do {
650                 struct nfs_write_data *data;
651                 size_t bytes;
652
653                 pgbase = user_addr & ~PAGE_MASK;
654                 bytes = min(wsize,count);
655
656                 result = -ENOMEM;
657                 data = nfs_writedata_alloc(nfs_page_array_len(pgbase, bytes));
658                 if (unlikely(!data))
659                         break;
660
661                 down_read(&current->mm->mmap_sem);
662                 result = get_user_pages(current, current->mm, user_addr,
663                                         data->npages, 0, 0, data->pagevec, NULL);
664                 up_read(&current->mm->mmap_sem);
665                 if (result < 0) {
666                         nfs_writedata_release(data);
667                         break;
668                 }
669                 if ((unsigned)result < data->npages) {
670                         bytes = result * PAGE_SIZE;
671                         if (bytes <= pgbase) {
672                                 nfs_direct_release_pages(data->pagevec, result);
673                                 nfs_writedata_release(data);
674                                 break;
675                         }
676                         bytes -= pgbase;
677                         data->npages = result;
678                 }
679
680                 get_dreq(dreq);
681
682                 list_move_tail(&data->pages, &dreq->rewrite_list);
683
684                 data->req = (struct nfs_page *) dreq;
685                 data->inode = inode;
686                 data->cred = ctx->cred;
687                 data->args.fh = NFS_FH(inode);
688                 data->args.context = ctx;
689                 data->args.offset = pos;
690                 data->args.pgbase = pgbase;
691                 data->args.pages = data->pagevec;
692                 data->args.count = bytes;
693                 data->res.fattr = &data->fattr;
694                 data->res.count = bytes;
695                 data->res.verf = &data->verf;
696
697                 rpc_init_task(&data->task, NFS_CLIENT(inode), RPC_TASK_ASYNC,
698                                 &nfs_write_direct_ops, data);
699                 NFS_PROTO(inode)->write_setup(data, sync);
700
701                 data->task.tk_priority = RPC_PRIORITY_NORMAL;
702                 data->task.tk_cookie = (unsigned long) inode;
703
704                 rpc_execute(&data->task);
705
706                 dprintk("NFS: %5u initiated direct write call "
707                         "(req %s/%Ld, %zu bytes @ offset %Lu)\n",
708                                 data->task.tk_pid,
709                                 inode->i_sb->s_id,
710                                 (long long)NFS_FILEID(inode),
711                                 bytes,
712                                 (unsigned long long)data->args.offset);
713
714                 started += bytes;
715                 user_addr += bytes;
716                 pos += bytes;
717
718                 /* FIXME: Remove this useless math from the final patch */
719                 pgbase += bytes;
720                 pgbase &= ~PAGE_MASK;
721                 BUG_ON(pgbase != (user_addr & ~PAGE_MASK));
722
723                 count -= bytes;
724         } while (count != 0);
725
726         if (started)
727                 return started;
728         return result < 0 ? (ssize_t) result : -EFAULT;
729 }
730
731 static ssize_t nfs_direct_write_schedule_iovec(struct nfs_direct_req *dreq,
732                                                const struct iovec *iov,
733                                                unsigned long nr_segs,
734                                                loff_t pos, int sync)
735 {
736         ssize_t result = 0;
737         size_t requested_bytes = 0;
738         unsigned long seg;
739
740         get_dreq(dreq);
741
742         for (seg = 0; seg < nr_segs; seg++) {
743                 const struct iovec *vec = &iov[seg];
744                 result = nfs_direct_write_schedule_segment(dreq, vec,
745                                                            pos, sync);
746                 if (result < 0)
747                         break;
748                 requested_bytes += result;
749                 if ((size_t)result < vec->iov_len)
750                         break;
751                 pos += vec->iov_len;
752         }
753
754         if (put_dreq(dreq))
755                 nfs_direct_write_complete(dreq, dreq->inode);
756
757         if (requested_bytes != 0)
758                 return 0;
759
760         if (result < 0)
761                 return result;
762         return -EIO;
763 }
764
765 static ssize_t nfs_direct_write(struct kiocb *iocb, const struct iovec *iov,
766                                 unsigned long nr_segs, loff_t pos,
767                                 size_t count)
768 {
769         ssize_t result = 0;
770         sigset_t oldset;
771         struct inode *inode = iocb->ki_filp->f_mapping->host;
772         struct rpc_clnt *clnt = NFS_CLIENT(inode);
773         struct nfs_direct_req *dreq;
774         size_t wsize = NFS_SERVER(inode)->wsize;
775         int sync = 0;
776
777         dreq = nfs_direct_req_alloc();
778         if (!dreq)
779                 return -ENOMEM;
780         nfs_alloc_commit_data(dreq);
781
782         if (dreq->commit_data == NULL || count < wsize)
783                 sync = FLUSH_STABLE;
784
785         dreq->inode = inode;
786         dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
787         if (!is_sync_kiocb(iocb))
788                 dreq->iocb = iocb;
789
790         rpc_clnt_sigmask(clnt, &oldset);
791         result = nfs_direct_write_schedule_iovec(dreq, iov, nr_segs, pos, sync);
792         if (!result)
793                 result = nfs_direct_wait(dreq);
794         rpc_clnt_sigunmask(clnt, &oldset);
795         nfs_direct_req_release(dreq);
796
797         return result;
798 }
799
800 /**
801  * nfs_file_direct_read - file direct read operation for NFS files
802  * @iocb: target I/O control block
803  * @iov: vector of user buffers into which to read data
804  * @nr_segs: size of iov vector
805  * @pos: byte offset in file where reading starts
806  *
807  * We use this function for direct reads instead of calling
808  * generic_file_aio_read() in order to avoid gfar's check to see if
809  * the request starts before the end of the file.  For that check
810  * to work, we must generate a GETATTR before each direct read, and
811  * even then there is a window between the GETATTR and the subsequent
812  * READ where the file size could change.  Our preference is simply
813  * to do all reads the application wants, and the server will take
814  * care of managing the end of file boundary.
815  *
816  * This function also eliminates unnecessarily updating the file's
817  * atime locally, as the NFS server sets the file's atime, and this
818  * client must read the updated atime from the server back into its
819  * cache.
820  */
821 ssize_t nfs_file_direct_read(struct kiocb *iocb, const struct iovec *iov,
822                                 unsigned long nr_segs, loff_t pos)
823 {
824         ssize_t retval = -EINVAL;
825         struct file *file = iocb->ki_filp;
826         struct address_space *mapping = file->f_mapping;
827         size_t count;
828
829         count = iov_length(iov, nr_segs);
830         nfs_add_stats(mapping->host, NFSIOS_DIRECTREADBYTES, count);
831
832         dprintk("nfs: direct read(%s/%s, %zd@%Ld)\n",
833                 file->f_path.dentry->d_parent->d_name.name,
834                 file->f_path.dentry->d_name.name,
835                 count, (long long) pos);
836
837         retval = 0;
838         if (!count)
839                 goto out;
840
841         retval = nfs_sync_mapping(mapping);
842         if (retval)
843                 goto out;
844
845         retval = nfs_direct_read(iocb, iov, nr_segs, pos);
846         if (retval > 0)
847                 iocb->ki_pos = pos + retval;
848
849 out:
850         return retval;
851 }
852
853 /**
854  * nfs_file_direct_write - file direct write operation for NFS files
855  * @iocb: target I/O control block
856  * @iov: vector of user buffers from which to write data
857  * @nr_segs: size of iov vector
858  * @pos: byte offset in file where writing starts
859  *
860  * We use this function for direct writes instead of calling
861  * generic_file_aio_write() in order to avoid taking the inode
862  * semaphore and updating the i_size.  The NFS server will set
863  * the new i_size and this client must read the updated size
864  * back into its cache.  We let the server do generic write
865  * parameter checking and report problems.
866  *
867  * We also avoid an unnecessary invocation of generic_osync_inode(),
868  * as it is fairly meaningless to sync the metadata of an NFS file.
869  *
870  * We eliminate local atime updates, see direct read above.
871  *
872  * We avoid unnecessary page cache invalidations for normal cached
873  * readers of this file.
874  *
875  * Note that O_APPEND is not supported for NFS direct writes, as there
876  * is no atomic O_APPEND write facility in the NFS protocol.
877  */
878 ssize_t nfs_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
879                                 unsigned long nr_segs, loff_t pos)
880 {
881         ssize_t retval = -EINVAL;
882         struct file *file = iocb->ki_filp;
883         struct address_space *mapping = file->f_mapping;
884         size_t count;
885
886         count = iov_length(iov, nr_segs);
887         nfs_add_stats(mapping->host, NFSIOS_DIRECTWRITTENBYTES, count);
888
889         dfprintk(VFS, "nfs: direct write(%s/%s, %zd@%Ld)\n",
890                 file->f_path.dentry->d_parent->d_name.name,
891                 file->f_path.dentry->d_name.name,
892                 count, (long long) pos);
893
894         retval = generic_write_checks(file, &pos, &count, 0);
895         if (retval)
896                 goto out;
897
898         retval = -EINVAL;
899         if ((ssize_t) count < 0)
900                 goto out;
901         retval = 0;
902         if (!count)
903                 goto out;
904
905         retval = nfs_sync_mapping(mapping);
906         if (retval)
907                 goto out;
908
909         retval = nfs_direct_write(iocb, iov, nr_segs, pos, count);
910
911         if (retval > 0)
912                 iocb->ki_pos = pos + retval;
913
914 out:
915         return retval;
916 }
917
918 /**
919  * nfs_init_directcache - create a slab cache for nfs_direct_req structures
920  *
921  */
922 int __init nfs_init_directcache(void)
923 {
924         nfs_direct_cachep = kmem_cache_create("nfs_direct_cache",
925                                                 sizeof(struct nfs_direct_req),
926                                                 0, (SLAB_RECLAIM_ACCOUNT|
927                                                         SLAB_MEM_SPREAD),
928                                                 NULL);
929         if (nfs_direct_cachep == NULL)
930                 return -ENOMEM;
931
932         return 0;
933 }
934
935 /**
936  * nfs_destroy_directcache - destroy the slab cache for nfs_direct_req structures
937  *
938  */
939 void nfs_destroy_directcache(void)
940 {
941         kmem_cache_destroy(nfs_direct_cachep);
942 }