Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[pandora-kernel.git] / fs / jbd2 / transaction.c
1 /*
2  * linux/fs/jbd2/transaction.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5  *
6  * Copyright 1998 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Generic filesystem transaction handling code; part of the ext2fs
13  * journaling system.
14  *
15  * This file manages transactions (compound commits managed by the
16  * journaling code) and handles (individual atomic operations by the
17  * filesystem).
18  */
19
20 #include <linux/time.h>
21 #include <linux/fs.h>
22 #include <linux/jbd2.h>
23 #include <linux/errno.h>
24 #include <linux/slab.h>
25 #include <linux/timer.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/hrtimer.h>
29 #include <linux/backing-dev.h>
30 #include <linux/module.h>
31
32 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh);
33
34 /*
35  * jbd2_get_transaction: obtain a new transaction_t object.
36  *
37  * Simply allocate and initialise a new transaction.  Create it in
38  * RUNNING state and add it to the current journal (which should not
39  * have an existing running transaction: we only make a new transaction
40  * once we have started to commit the old one).
41  *
42  * Preconditions:
43  *      The journal MUST be locked.  We don't perform atomic mallocs on the
44  *      new transaction and we can't block without protecting against other
45  *      processes trying to touch the journal while it is in transition.
46  *
47  */
48
49 static transaction_t *
50 jbd2_get_transaction(journal_t *journal, transaction_t *transaction)
51 {
52         transaction->t_journal = journal;
53         transaction->t_state = T_RUNNING;
54         transaction->t_start_time = ktime_get();
55         transaction->t_tid = journal->j_transaction_sequence++;
56         transaction->t_expires = jiffies + journal->j_commit_interval;
57         spin_lock_init(&transaction->t_handle_lock);
58         atomic_set(&transaction->t_updates, 0);
59         atomic_set(&transaction->t_outstanding_credits, 0);
60         atomic_set(&transaction->t_handle_count, 0);
61         INIT_LIST_HEAD(&transaction->t_inode_list);
62         INIT_LIST_HEAD(&transaction->t_private_list);
63
64         /* Set up the commit timer for the new transaction. */
65         journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires);
66         add_timer(&journal->j_commit_timer);
67
68         J_ASSERT(journal->j_running_transaction == NULL);
69         journal->j_running_transaction = transaction;
70         transaction->t_max_wait = 0;
71         transaction->t_start = jiffies;
72
73         return transaction;
74 }
75
76 /*
77  * Handle management.
78  *
79  * A handle_t is an object which represents a single atomic update to a
80  * filesystem, and which tracks all of the modifications which form part
81  * of that one update.
82  */
83
84 /*
85  * Update transaction's maximum wait time, if debugging is enabled.
86  *
87  * In order for t_max_wait to be reliable, it must be protected by a
88  * lock.  But doing so will mean that start_this_handle() can not be
89  * run in parallel on SMP systems, which limits our scalability.  So
90  * unless debugging is enabled, we no longer update t_max_wait, which
91  * means that maximum wait time reported by the jbd2_run_stats
92  * tracepoint will always be zero.
93  */
94 static inline void update_t_max_wait(transaction_t *transaction,
95                                      unsigned long ts)
96 {
97 #ifdef CONFIG_JBD2_DEBUG
98         if (jbd2_journal_enable_debug &&
99             time_after(transaction->t_start, ts)) {
100                 ts = jbd2_time_diff(ts, transaction->t_start);
101                 spin_lock(&transaction->t_handle_lock);
102                 if (ts > transaction->t_max_wait)
103                         transaction->t_max_wait = ts;
104                 spin_unlock(&transaction->t_handle_lock);
105         }
106 #endif
107 }
108
109 /*
110  * start_this_handle: Given a handle, deal with any locking or stalling
111  * needed to make sure that there is enough journal space for the handle
112  * to begin.  Attach the handle to a transaction and set up the
113  * transaction's buffer credits.
114  */
115
116 static int start_this_handle(journal_t *journal, handle_t *handle,
117                              int gfp_mask)
118 {
119         transaction_t   *transaction, *new_transaction = NULL;
120         tid_t           tid;
121         int             needed, need_to_start;
122         int             nblocks = handle->h_buffer_credits;
123         unsigned long ts = jiffies;
124
125         if (nblocks > journal->j_max_transaction_buffers) {
126                 printk(KERN_ERR "JBD: %s wants too many credits (%d > %d)\n",
127                        current->comm, nblocks,
128                        journal->j_max_transaction_buffers);
129                 return -ENOSPC;
130         }
131
132 alloc_transaction:
133         if (!journal->j_running_transaction) {
134                 new_transaction = kzalloc(sizeof(*new_transaction), gfp_mask);
135                 if (!new_transaction) {
136                         /*
137                          * If __GFP_FS is not present, then we may be
138                          * being called from inside the fs writeback
139                          * layer, so we MUST NOT fail.  Since
140                          * __GFP_NOFAIL is going away, we will arrange
141                          * to retry the allocation ourselves.
142                          */
143                         if ((gfp_mask & __GFP_FS) == 0) {
144                                 congestion_wait(BLK_RW_ASYNC, HZ/50);
145                                 goto alloc_transaction;
146                         }
147                         return -ENOMEM;
148                 }
149         }
150
151         jbd_debug(3, "New handle %p going live.\n", handle);
152
153         /*
154          * We need to hold j_state_lock until t_updates has been incremented,
155          * for proper journal barrier handling
156          */
157 repeat:
158         read_lock(&journal->j_state_lock);
159         BUG_ON(journal->j_flags & JBD2_UNMOUNT);
160         if (is_journal_aborted(journal) ||
161             (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) {
162                 read_unlock(&journal->j_state_lock);
163                 kfree(new_transaction);
164                 return -EROFS;
165         }
166
167         /* Wait on the journal's transaction barrier if necessary */
168         if (journal->j_barrier_count) {
169                 read_unlock(&journal->j_state_lock);
170                 wait_event(journal->j_wait_transaction_locked,
171                                 journal->j_barrier_count == 0);
172                 goto repeat;
173         }
174
175         if (!journal->j_running_transaction) {
176                 read_unlock(&journal->j_state_lock);
177                 if (!new_transaction)
178                         goto alloc_transaction;
179                 write_lock(&journal->j_state_lock);
180                 if (!journal->j_running_transaction) {
181                         jbd2_get_transaction(journal, new_transaction);
182                         new_transaction = NULL;
183                 }
184                 write_unlock(&journal->j_state_lock);
185                 goto repeat;
186         }
187
188         transaction = journal->j_running_transaction;
189
190         /*
191          * If the current transaction is locked down for commit, wait for the
192          * lock to be released.
193          */
194         if (transaction->t_state == T_LOCKED) {
195                 DEFINE_WAIT(wait);
196
197                 prepare_to_wait(&journal->j_wait_transaction_locked,
198                                         &wait, TASK_UNINTERRUPTIBLE);
199                 read_unlock(&journal->j_state_lock);
200                 schedule();
201                 finish_wait(&journal->j_wait_transaction_locked, &wait);
202                 goto repeat;
203         }
204
205         /*
206          * If there is not enough space left in the log to write all potential
207          * buffers requested by this operation, we need to stall pending a log
208          * checkpoint to free some more log space.
209          */
210         needed = atomic_add_return(nblocks,
211                                    &transaction->t_outstanding_credits);
212
213         if (needed > journal->j_max_transaction_buffers) {
214                 /*
215                  * If the current transaction is already too large, then start
216                  * to commit it: we can then go back and attach this handle to
217                  * a new transaction.
218                  */
219                 DEFINE_WAIT(wait);
220
221                 jbd_debug(2, "Handle %p starting new commit...\n", handle);
222                 atomic_sub(nblocks, &transaction->t_outstanding_credits);
223                 prepare_to_wait(&journal->j_wait_transaction_locked, &wait,
224                                 TASK_UNINTERRUPTIBLE);
225                 tid = transaction->t_tid;
226                 need_to_start = !tid_geq(journal->j_commit_request, tid);
227                 read_unlock(&journal->j_state_lock);
228                 if (need_to_start)
229                         jbd2_log_start_commit(journal, tid);
230                 schedule();
231                 finish_wait(&journal->j_wait_transaction_locked, &wait);
232                 goto repeat;
233         }
234
235         /*
236          * The commit code assumes that it can get enough log space
237          * without forcing a checkpoint.  This is *critical* for
238          * correctness: a checkpoint of a buffer which is also
239          * associated with a committing transaction creates a deadlock,
240          * so commit simply cannot force through checkpoints.
241          *
242          * We must therefore ensure the necessary space in the journal
243          * *before* starting to dirty potentially checkpointed buffers
244          * in the new transaction.
245          *
246          * The worst part is, any transaction currently committing can
247          * reduce the free space arbitrarily.  Be careful to account for
248          * those buffers when checkpointing.
249          */
250
251         /*
252          * @@@ AKPM: This seems rather over-defensive.  We're giving commit
253          * a _lot_ of headroom: 1/4 of the journal plus the size of
254          * the committing transaction.  Really, we only need to give it
255          * committing_transaction->t_outstanding_credits plus "enough" for
256          * the log control blocks.
257          * Also, this test is inconsistent with the matching one in
258          * jbd2_journal_extend().
259          */
260         if (__jbd2_log_space_left(journal) < jbd_space_needed(journal)) {
261                 jbd_debug(2, "Handle %p waiting for checkpoint...\n", handle);
262                 atomic_sub(nblocks, &transaction->t_outstanding_credits);
263                 read_unlock(&journal->j_state_lock);
264                 write_lock(&journal->j_state_lock);
265                 if (__jbd2_log_space_left(journal) < jbd_space_needed(journal))
266                         __jbd2_log_wait_for_space(journal);
267                 write_unlock(&journal->j_state_lock);
268                 goto repeat;
269         }
270
271         /* OK, account for the buffers that this operation expects to
272          * use and add the handle to the running transaction. 
273          */
274         update_t_max_wait(transaction, ts);
275         handle->h_transaction = transaction;
276         atomic_inc(&transaction->t_updates);
277         atomic_inc(&transaction->t_handle_count);
278         jbd_debug(4, "Handle %p given %d credits (total %d, free %d)\n",
279                   handle, nblocks,
280                   atomic_read(&transaction->t_outstanding_credits),
281                   __jbd2_log_space_left(journal));
282         read_unlock(&journal->j_state_lock);
283
284         lock_map_acquire(&handle->h_lockdep_map);
285         kfree(new_transaction);
286         return 0;
287 }
288
289 static struct lock_class_key jbd2_handle_key;
290
291 /* Allocate a new handle.  This should probably be in a slab... */
292 static handle_t *new_handle(int nblocks)
293 {
294         handle_t *handle = jbd2_alloc_handle(GFP_NOFS);
295         if (!handle)
296                 return NULL;
297         memset(handle, 0, sizeof(*handle));
298         handle->h_buffer_credits = nblocks;
299         handle->h_ref = 1;
300
301         lockdep_init_map(&handle->h_lockdep_map, "jbd2_handle",
302                                                 &jbd2_handle_key, 0);
303
304         return handle;
305 }
306
307 /**
308  * handle_t *jbd2_journal_start() - Obtain a new handle.
309  * @journal: Journal to start transaction on.
310  * @nblocks: number of block buffer we might modify
311  *
312  * We make sure that the transaction can guarantee at least nblocks of
313  * modified buffers in the log.  We block until the log can guarantee
314  * that much space.
315  *
316  * This function is visible to journal users (like ext3fs), so is not
317  * called with the journal already locked.
318  *
319  * Return a pointer to a newly allocated handle, or an ERR_PTR() value
320  * on failure.
321  */
322 handle_t *jbd2__journal_start(journal_t *journal, int nblocks, int gfp_mask)
323 {
324         handle_t *handle = journal_current_handle();
325         int err;
326
327         if (!journal)
328                 return ERR_PTR(-EROFS);
329
330         if (handle) {
331                 J_ASSERT(handle->h_transaction->t_journal == journal);
332                 handle->h_ref++;
333                 return handle;
334         }
335
336         handle = new_handle(nblocks);
337         if (!handle)
338                 return ERR_PTR(-ENOMEM);
339
340         current->journal_info = handle;
341
342         err = start_this_handle(journal, handle, gfp_mask);
343         if (err < 0) {
344                 jbd2_free_handle(handle);
345                 current->journal_info = NULL;
346                 handle = ERR_PTR(err);
347         }
348         return handle;
349 }
350 EXPORT_SYMBOL(jbd2__journal_start);
351
352
353 handle_t *jbd2_journal_start(journal_t *journal, int nblocks)
354 {
355         return jbd2__journal_start(journal, nblocks, GFP_NOFS);
356 }
357 EXPORT_SYMBOL(jbd2_journal_start);
358
359
360 /**
361  * int jbd2_journal_extend() - extend buffer credits.
362  * @handle:  handle to 'extend'
363  * @nblocks: nr blocks to try to extend by.
364  *
365  * Some transactions, such as large extends and truncates, can be done
366  * atomically all at once or in several stages.  The operation requests
367  * a credit for a number of buffer modications in advance, but can
368  * extend its credit if it needs more.
369  *
370  * jbd2_journal_extend tries to give the running handle more buffer credits.
371  * It does not guarantee that allocation - this is a best-effort only.
372  * The calling process MUST be able to deal cleanly with a failure to
373  * extend here.
374  *
375  * Return 0 on success, non-zero on failure.
376  *
377  * return code < 0 implies an error
378  * return code > 0 implies normal transaction-full status.
379  */
380 int jbd2_journal_extend(handle_t *handle, int nblocks)
381 {
382         transaction_t *transaction = handle->h_transaction;
383         journal_t *journal = transaction->t_journal;
384         int result;
385         int wanted;
386
387         result = -EIO;
388         if (is_handle_aborted(handle))
389                 goto out;
390
391         result = 1;
392
393         read_lock(&journal->j_state_lock);
394
395         /* Don't extend a locked-down transaction! */
396         if (handle->h_transaction->t_state != T_RUNNING) {
397                 jbd_debug(3, "denied handle %p %d blocks: "
398                           "transaction not running\n", handle, nblocks);
399                 goto error_out;
400         }
401
402         spin_lock(&transaction->t_handle_lock);
403         wanted = atomic_read(&transaction->t_outstanding_credits) + nblocks;
404
405         if (wanted > journal->j_max_transaction_buffers) {
406                 jbd_debug(3, "denied handle %p %d blocks: "
407                           "transaction too large\n", handle, nblocks);
408                 goto unlock;
409         }
410
411         if (wanted > __jbd2_log_space_left(journal)) {
412                 jbd_debug(3, "denied handle %p %d blocks: "
413                           "insufficient log space\n", handle, nblocks);
414                 goto unlock;
415         }
416
417         handle->h_buffer_credits += nblocks;
418         atomic_add(nblocks, &transaction->t_outstanding_credits);
419         result = 0;
420
421         jbd_debug(3, "extended handle %p by %d\n", handle, nblocks);
422 unlock:
423         spin_unlock(&transaction->t_handle_lock);
424 error_out:
425         read_unlock(&journal->j_state_lock);
426 out:
427         return result;
428 }
429
430
431 /**
432  * int jbd2_journal_restart() - restart a handle .
433  * @handle:  handle to restart
434  * @nblocks: nr credits requested
435  *
436  * Restart a handle for a multi-transaction filesystem
437  * operation.
438  *
439  * If the jbd2_journal_extend() call above fails to grant new buffer credits
440  * to a running handle, a call to jbd2_journal_restart will commit the
441  * handle's transaction so far and reattach the handle to a new
442  * transaction capabable of guaranteeing the requested number of
443  * credits.
444  */
445 int jbd2__journal_restart(handle_t *handle, int nblocks, int gfp_mask)
446 {
447         transaction_t *transaction = handle->h_transaction;
448         journal_t *journal = transaction->t_journal;
449         tid_t           tid;
450         int             need_to_start, ret;
451
452         /* If we've had an abort of any type, don't even think about
453          * actually doing the restart! */
454         if (is_handle_aborted(handle))
455                 return 0;
456
457         /*
458          * First unlink the handle from its current transaction, and start the
459          * commit on that.
460          */
461         J_ASSERT(atomic_read(&transaction->t_updates) > 0);
462         J_ASSERT(journal_current_handle() == handle);
463
464         read_lock(&journal->j_state_lock);
465         spin_lock(&transaction->t_handle_lock);
466         atomic_sub(handle->h_buffer_credits,
467                    &transaction->t_outstanding_credits);
468         if (atomic_dec_and_test(&transaction->t_updates))
469                 wake_up(&journal->j_wait_updates);
470         spin_unlock(&transaction->t_handle_lock);
471
472         jbd_debug(2, "restarting handle %p\n", handle);
473         tid = transaction->t_tid;
474         need_to_start = !tid_geq(journal->j_commit_request, tid);
475         read_unlock(&journal->j_state_lock);
476         if (need_to_start)
477                 jbd2_log_start_commit(journal, tid);
478
479         lock_map_release(&handle->h_lockdep_map);
480         handle->h_buffer_credits = nblocks;
481         ret = start_this_handle(journal, handle, gfp_mask);
482         return ret;
483 }
484 EXPORT_SYMBOL(jbd2__journal_restart);
485
486
487 int jbd2_journal_restart(handle_t *handle, int nblocks)
488 {
489         return jbd2__journal_restart(handle, nblocks, GFP_NOFS);
490 }
491 EXPORT_SYMBOL(jbd2_journal_restart);
492
493 /**
494  * void jbd2_journal_lock_updates () - establish a transaction barrier.
495  * @journal:  Journal to establish a barrier on.
496  *
497  * This locks out any further updates from being started, and blocks
498  * until all existing updates have completed, returning only once the
499  * journal is in a quiescent state with no updates running.
500  *
501  * The journal lock should not be held on entry.
502  */
503 void jbd2_journal_lock_updates(journal_t *journal)
504 {
505         DEFINE_WAIT(wait);
506
507         write_lock(&journal->j_state_lock);
508         ++journal->j_barrier_count;
509
510         /* Wait until there are no running updates */
511         while (1) {
512                 transaction_t *transaction = journal->j_running_transaction;
513
514                 if (!transaction)
515                         break;
516
517                 spin_lock(&transaction->t_handle_lock);
518                 if (!atomic_read(&transaction->t_updates)) {
519                         spin_unlock(&transaction->t_handle_lock);
520                         break;
521                 }
522                 prepare_to_wait(&journal->j_wait_updates, &wait,
523                                 TASK_UNINTERRUPTIBLE);
524                 spin_unlock(&transaction->t_handle_lock);
525                 write_unlock(&journal->j_state_lock);
526                 schedule();
527                 finish_wait(&journal->j_wait_updates, &wait);
528                 write_lock(&journal->j_state_lock);
529         }
530         write_unlock(&journal->j_state_lock);
531
532         /*
533          * We have now established a barrier against other normal updates, but
534          * we also need to barrier against other jbd2_journal_lock_updates() calls
535          * to make sure that we serialise special journal-locked operations
536          * too.
537          */
538         mutex_lock(&journal->j_barrier);
539 }
540
541 /**
542  * void jbd2_journal_unlock_updates (journal_t* journal) - release barrier
543  * @journal:  Journal to release the barrier on.
544  *
545  * Release a transaction barrier obtained with jbd2_journal_lock_updates().
546  *
547  * Should be called without the journal lock held.
548  */
549 void jbd2_journal_unlock_updates (journal_t *journal)
550 {
551         J_ASSERT(journal->j_barrier_count != 0);
552
553         mutex_unlock(&journal->j_barrier);
554         write_lock(&journal->j_state_lock);
555         --journal->j_barrier_count;
556         write_unlock(&journal->j_state_lock);
557         wake_up(&journal->j_wait_transaction_locked);
558 }
559
560 static void warn_dirty_buffer(struct buffer_head *bh)
561 {
562         char b[BDEVNAME_SIZE];
563
564         printk(KERN_WARNING
565                "JBD: Spotted dirty metadata buffer (dev = %s, blocknr = %llu). "
566                "There's a risk of filesystem corruption in case of system "
567                "crash.\n",
568                bdevname(bh->b_bdev, b), (unsigned long long)bh->b_blocknr);
569 }
570
571 /*
572  * If the buffer is already part of the current transaction, then there
573  * is nothing we need to do.  If it is already part of a prior
574  * transaction which we are still committing to disk, then we need to
575  * make sure that we do not overwrite the old copy: we do copy-out to
576  * preserve the copy going to disk.  We also account the buffer against
577  * the handle's metadata buffer credits (unless the buffer is already
578  * part of the transaction, that is).
579  *
580  */
581 static int
582 do_get_write_access(handle_t *handle, struct journal_head *jh,
583                         int force_copy)
584 {
585         struct buffer_head *bh;
586         transaction_t *transaction;
587         journal_t *journal;
588         int error;
589         char *frozen_buffer = NULL;
590         int need_copy = 0;
591
592         if (is_handle_aborted(handle))
593                 return -EROFS;
594
595         transaction = handle->h_transaction;
596         journal = transaction->t_journal;
597
598         jbd_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy);
599
600         JBUFFER_TRACE(jh, "entry");
601 repeat:
602         bh = jh2bh(jh);
603
604         /* @@@ Need to check for errors here at some point. */
605
606         lock_buffer(bh);
607         jbd_lock_bh_state(bh);
608
609         /* We now hold the buffer lock so it is safe to query the buffer
610          * state.  Is the buffer dirty?
611          *
612          * If so, there are two possibilities.  The buffer may be
613          * non-journaled, and undergoing a quite legitimate writeback.
614          * Otherwise, it is journaled, and we don't expect dirty buffers
615          * in that state (the buffers should be marked JBD_Dirty
616          * instead.)  So either the IO is being done under our own
617          * control and this is a bug, or it's a third party IO such as
618          * dump(8) (which may leave the buffer scheduled for read ---
619          * ie. locked but not dirty) or tune2fs (which may actually have
620          * the buffer dirtied, ugh.)  */
621
622         if (buffer_dirty(bh)) {
623                 /*
624                  * First question: is this buffer already part of the current
625                  * transaction or the existing committing transaction?
626                  */
627                 if (jh->b_transaction) {
628                         J_ASSERT_JH(jh,
629                                 jh->b_transaction == transaction ||
630                                 jh->b_transaction ==
631                                         journal->j_committing_transaction);
632                         if (jh->b_next_transaction)
633                                 J_ASSERT_JH(jh, jh->b_next_transaction ==
634                                                         transaction);
635                         warn_dirty_buffer(bh);
636                 }
637                 /*
638                  * In any case we need to clean the dirty flag and we must
639                  * do it under the buffer lock to be sure we don't race
640                  * with running write-out.
641                  */
642                 JBUFFER_TRACE(jh, "Journalling dirty buffer");
643                 clear_buffer_dirty(bh);
644                 set_buffer_jbddirty(bh);
645         }
646
647         unlock_buffer(bh);
648
649         error = -EROFS;
650         if (is_handle_aborted(handle)) {
651                 jbd_unlock_bh_state(bh);
652                 goto out;
653         }
654         error = 0;
655
656         /*
657          * The buffer is already part of this transaction if b_transaction or
658          * b_next_transaction points to it
659          */
660         if (jh->b_transaction == transaction ||
661             jh->b_next_transaction == transaction)
662                 goto done;
663
664         /*
665          * this is the first time this transaction is touching this buffer,
666          * reset the modified flag
667          */
668        jh->b_modified = 0;
669
670         /*
671          * If there is already a copy-out version of this buffer, then we don't
672          * need to make another one
673          */
674         if (jh->b_frozen_data) {
675                 JBUFFER_TRACE(jh, "has frozen data");
676                 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
677                 jh->b_next_transaction = transaction;
678                 goto done;
679         }
680
681         /* Is there data here we need to preserve? */
682
683         if (jh->b_transaction && jh->b_transaction != transaction) {
684                 JBUFFER_TRACE(jh, "owned by older transaction");
685                 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
686                 J_ASSERT_JH(jh, jh->b_transaction ==
687                                         journal->j_committing_transaction);
688
689                 /* There is one case we have to be very careful about.
690                  * If the committing transaction is currently writing
691                  * this buffer out to disk and has NOT made a copy-out,
692                  * then we cannot modify the buffer contents at all
693                  * right now.  The essence of copy-out is that it is the
694                  * extra copy, not the primary copy, which gets
695                  * journaled.  If the primary copy is already going to
696                  * disk then we cannot do copy-out here. */
697
698                 if (jh->b_jlist == BJ_Shadow) {
699                         DEFINE_WAIT_BIT(wait, &bh->b_state, BH_Unshadow);
700                         wait_queue_head_t *wqh;
701
702                         wqh = bit_waitqueue(&bh->b_state, BH_Unshadow);
703
704                         JBUFFER_TRACE(jh, "on shadow: sleep");
705                         jbd_unlock_bh_state(bh);
706                         /* commit wakes up all shadow buffers after IO */
707                         for ( ; ; ) {
708                                 prepare_to_wait(wqh, &wait.wait,
709                                                 TASK_UNINTERRUPTIBLE);
710                                 if (jh->b_jlist != BJ_Shadow)
711                                         break;
712                                 schedule();
713                         }
714                         finish_wait(wqh, &wait.wait);
715                         goto repeat;
716                 }
717
718                 /* Only do the copy if the currently-owning transaction
719                  * still needs it.  If it is on the Forget list, the
720                  * committing transaction is past that stage.  The
721                  * buffer had better remain locked during the kmalloc,
722                  * but that should be true --- we hold the journal lock
723                  * still and the buffer is already on the BUF_JOURNAL
724                  * list so won't be flushed.
725                  *
726                  * Subtle point, though: if this is a get_undo_access,
727                  * then we will be relying on the frozen_data to contain
728                  * the new value of the committed_data record after the
729                  * transaction, so we HAVE to force the frozen_data copy
730                  * in that case. */
731
732                 if (jh->b_jlist != BJ_Forget || force_copy) {
733                         JBUFFER_TRACE(jh, "generate frozen data");
734                         if (!frozen_buffer) {
735                                 JBUFFER_TRACE(jh, "allocate memory for buffer");
736                                 jbd_unlock_bh_state(bh);
737                                 frozen_buffer =
738                                         jbd2_alloc(jh2bh(jh)->b_size,
739                                                          GFP_NOFS);
740                                 if (!frozen_buffer) {
741                                         printk(KERN_EMERG
742                                                "%s: OOM for frozen_buffer\n",
743                                                __func__);
744                                         JBUFFER_TRACE(jh, "oom!");
745                                         error = -ENOMEM;
746                                         jbd_lock_bh_state(bh);
747                                         goto done;
748                                 }
749                                 goto repeat;
750                         }
751                         jh->b_frozen_data = frozen_buffer;
752                         frozen_buffer = NULL;
753                         need_copy = 1;
754                 }
755                 jh->b_next_transaction = transaction;
756         }
757
758
759         /*
760          * Finally, if the buffer is not journaled right now, we need to make
761          * sure it doesn't get written to disk before the caller actually
762          * commits the new data
763          */
764         if (!jh->b_transaction) {
765                 JBUFFER_TRACE(jh, "no transaction");
766                 J_ASSERT_JH(jh, !jh->b_next_transaction);
767                 jh->b_transaction = transaction;
768                 JBUFFER_TRACE(jh, "file as BJ_Reserved");
769                 spin_lock(&journal->j_list_lock);
770                 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
771                 spin_unlock(&journal->j_list_lock);
772         }
773
774 done:
775         if (need_copy) {
776                 struct page *page;
777                 int offset;
778                 char *source;
779
780                 J_EXPECT_JH(jh, buffer_uptodate(jh2bh(jh)),
781                             "Possible IO failure.\n");
782                 page = jh2bh(jh)->b_page;
783                 offset = offset_in_page(jh2bh(jh)->b_data);
784                 source = kmap_atomic(page, KM_USER0);
785                 /* Fire data frozen trigger just before we copy the data */
786                 jbd2_buffer_frozen_trigger(jh, source + offset,
787                                            jh->b_triggers);
788                 memcpy(jh->b_frozen_data, source+offset, jh2bh(jh)->b_size);
789                 kunmap_atomic(source, KM_USER0);
790
791                 /*
792                  * Now that the frozen data is saved off, we need to store
793                  * any matching triggers.
794                  */
795                 jh->b_frozen_triggers = jh->b_triggers;
796         }
797         jbd_unlock_bh_state(bh);
798
799         /*
800          * If we are about to journal a buffer, then any revoke pending on it is
801          * no longer valid
802          */
803         jbd2_journal_cancel_revoke(handle, jh);
804
805 out:
806         if (unlikely(frozen_buffer))    /* It's usually NULL */
807                 jbd2_free(frozen_buffer, bh->b_size);
808
809         JBUFFER_TRACE(jh, "exit");
810         return error;
811 }
812
813 /**
814  * int jbd2_journal_get_write_access() - notify intent to modify a buffer for metadata (not data) update.
815  * @handle: transaction to add buffer modifications to
816  * @bh:     bh to be used for metadata writes
817  * @credits: variable that will receive credits for the buffer
818  *
819  * Returns an error code or 0 on success.
820  *
821  * In full data journalling mode the buffer may be of type BJ_AsyncData,
822  * because we're write()ing a buffer which is also part of a shared mapping.
823  */
824
825 int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh)
826 {
827         struct journal_head *jh = jbd2_journal_add_journal_head(bh);
828         int rc;
829
830         /* We do not want to get caught playing with fields which the
831          * log thread also manipulates.  Make sure that the buffer
832          * completes any outstanding IO before proceeding. */
833         rc = do_get_write_access(handle, jh, 0);
834         jbd2_journal_put_journal_head(jh);
835         return rc;
836 }
837
838
839 /*
840  * When the user wants to journal a newly created buffer_head
841  * (ie. getblk() returned a new buffer and we are going to populate it
842  * manually rather than reading off disk), then we need to keep the
843  * buffer_head locked until it has been completely filled with new
844  * data.  In this case, we should be able to make the assertion that
845  * the bh is not already part of an existing transaction.
846  *
847  * The buffer should already be locked by the caller by this point.
848  * There is no lock ranking violation: it was a newly created,
849  * unlocked buffer beforehand. */
850
851 /**
852  * int jbd2_journal_get_create_access () - notify intent to use newly created bh
853  * @handle: transaction to new buffer to
854  * @bh: new buffer.
855  *
856  * Call this if you create a new bh.
857  */
858 int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh)
859 {
860         transaction_t *transaction = handle->h_transaction;
861         journal_t *journal = transaction->t_journal;
862         struct journal_head *jh = jbd2_journal_add_journal_head(bh);
863         int err;
864
865         jbd_debug(5, "journal_head %p\n", jh);
866         err = -EROFS;
867         if (is_handle_aborted(handle))
868                 goto out;
869         err = 0;
870
871         JBUFFER_TRACE(jh, "entry");
872         /*
873          * The buffer may already belong to this transaction due to pre-zeroing
874          * in the filesystem's new_block code.  It may also be on the previous,
875          * committing transaction's lists, but it HAS to be in Forget state in
876          * that case: the transaction must have deleted the buffer for it to be
877          * reused here.
878          */
879         jbd_lock_bh_state(bh);
880         spin_lock(&journal->j_list_lock);
881         J_ASSERT_JH(jh, (jh->b_transaction == transaction ||
882                 jh->b_transaction == NULL ||
883                 (jh->b_transaction == journal->j_committing_transaction &&
884                           jh->b_jlist == BJ_Forget)));
885
886         J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
887         J_ASSERT_JH(jh, buffer_locked(jh2bh(jh)));
888
889         if (jh->b_transaction == NULL) {
890                 /*
891                  * Previous jbd2_journal_forget() could have left the buffer
892                  * with jbddirty bit set because it was being committed. When
893                  * the commit finished, we've filed the buffer for
894                  * checkpointing and marked it dirty. Now we are reallocating
895                  * the buffer so the transaction freeing it must have
896                  * committed and so it's safe to clear the dirty bit.
897                  */
898                 clear_buffer_dirty(jh2bh(jh));
899                 jh->b_transaction = transaction;
900
901                 /* first access by this transaction */
902                 jh->b_modified = 0;
903
904                 JBUFFER_TRACE(jh, "file as BJ_Reserved");
905                 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
906         } else if (jh->b_transaction == journal->j_committing_transaction) {
907                 /* first access by this transaction */
908                 jh->b_modified = 0;
909
910                 JBUFFER_TRACE(jh, "set next transaction");
911                 jh->b_next_transaction = transaction;
912         }
913         spin_unlock(&journal->j_list_lock);
914         jbd_unlock_bh_state(bh);
915
916         /*
917          * akpm: I added this.  ext3_alloc_branch can pick up new indirect
918          * blocks which contain freed but then revoked metadata.  We need
919          * to cancel the revoke in case we end up freeing it yet again
920          * and the reallocating as data - this would cause a second revoke,
921          * which hits an assertion error.
922          */
923         JBUFFER_TRACE(jh, "cancelling revoke");
924         jbd2_journal_cancel_revoke(handle, jh);
925 out:
926         jbd2_journal_put_journal_head(jh);
927         return err;
928 }
929
930 /**
931  * int jbd2_journal_get_undo_access() -  Notify intent to modify metadata with
932  *     non-rewindable consequences
933  * @handle: transaction
934  * @bh: buffer to undo
935  * @credits: store the number of taken credits here (if not NULL)
936  *
937  * Sometimes there is a need to distinguish between metadata which has
938  * been committed to disk and that which has not.  The ext3fs code uses
939  * this for freeing and allocating space, we have to make sure that we
940  * do not reuse freed space until the deallocation has been committed,
941  * since if we overwrote that space we would make the delete
942  * un-rewindable in case of a crash.
943  *
944  * To deal with that, jbd2_journal_get_undo_access requests write access to a
945  * buffer for parts of non-rewindable operations such as delete
946  * operations on the bitmaps.  The journaling code must keep a copy of
947  * the buffer's contents prior to the undo_access call until such time
948  * as we know that the buffer has definitely been committed to disk.
949  *
950  * We never need to know which transaction the committed data is part
951  * of, buffers touched here are guaranteed to be dirtied later and so
952  * will be committed to a new transaction in due course, at which point
953  * we can discard the old committed data pointer.
954  *
955  * Returns error number or 0 on success.
956  */
957 int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh)
958 {
959         int err;
960         struct journal_head *jh = jbd2_journal_add_journal_head(bh);
961         char *committed_data = NULL;
962
963         JBUFFER_TRACE(jh, "entry");
964
965         /*
966          * Do this first --- it can drop the journal lock, so we want to
967          * make sure that obtaining the committed_data is done
968          * atomically wrt. completion of any outstanding commits.
969          */
970         err = do_get_write_access(handle, jh, 1);
971         if (err)
972                 goto out;
973
974 repeat:
975         if (!jh->b_committed_data) {
976                 committed_data = jbd2_alloc(jh2bh(jh)->b_size, GFP_NOFS);
977                 if (!committed_data) {
978                         printk(KERN_EMERG "%s: No memory for committed data\n",
979                                 __func__);
980                         err = -ENOMEM;
981                         goto out;
982                 }
983         }
984
985         jbd_lock_bh_state(bh);
986         if (!jh->b_committed_data) {
987                 /* Copy out the current buffer contents into the
988                  * preserved, committed copy. */
989                 JBUFFER_TRACE(jh, "generate b_committed data");
990                 if (!committed_data) {
991                         jbd_unlock_bh_state(bh);
992                         goto repeat;
993                 }
994
995                 jh->b_committed_data = committed_data;
996                 committed_data = NULL;
997                 memcpy(jh->b_committed_data, bh->b_data, bh->b_size);
998         }
999         jbd_unlock_bh_state(bh);
1000 out:
1001         jbd2_journal_put_journal_head(jh);
1002         if (unlikely(committed_data))
1003                 jbd2_free(committed_data, bh->b_size);
1004         return err;
1005 }
1006
1007 /**
1008  * void jbd2_journal_set_triggers() - Add triggers for commit writeout
1009  * @bh: buffer to trigger on
1010  * @type: struct jbd2_buffer_trigger_type containing the trigger(s).
1011  *
1012  * Set any triggers on this journal_head.  This is always safe, because
1013  * triggers for a committing buffer will be saved off, and triggers for
1014  * a running transaction will match the buffer in that transaction.
1015  *
1016  * Call with NULL to clear the triggers.
1017  */
1018 void jbd2_journal_set_triggers(struct buffer_head *bh,
1019                                struct jbd2_buffer_trigger_type *type)
1020 {
1021         struct journal_head *jh = bh2jh(bh);
1022
1023         jh->b_triggers = type;
1024 }
1025
1026 void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data,
1027                                 struct jbd2_buffer_trigger_type *triggers)
1028 {
1029         struct buffer_head *bh = jh2bh(jh);
1030
1031         if (!triggers || !triggers->t_frozen)
1032                 return;
1033
1034         triggers->t_frozen(triggers, bh, mapped_data, bh->b_size);
1035 }
1036
1037 void jbd2_buffer_abort_trigger(struct journal_head *jh,
1038                                struct jbd2_buffer_trigger_type *triggers)
1039 {
1040         if (!triggers || !triggers->t_abort)
1041                 return;
1042
1043         triggers->t_abort(triggers, jh2bh(jh));
1044 }
1045
1046
1047
1048 /**
1049  * int jbd2_journal_dirty_metadata() -  mark a buffer as containing dirty metadata
1050  * @handle: transaction to add buffer to.
1051  * @bh: buffer to mark
1052  *
1053  * mark dirty metadata which needs to be journaled as part of the current
1054  * transaction.
1055  *
1056  * The buffer is placed on the transaction's metadata list and is marked
1057  * as belonging to the transaction.
1058  *
1059  * Returns error number or 0 on success.
1060  *
1061  * Special care needs to be taken if the buffer already belongs to the
1062  * current committing transaction (in which case we should have frozen
1063  * data present for that commit).  In that case, we don't relink the
1064  * buffer: that only gets done when the old transaction finally
1065  * completes its commit.
1066  */
1067 int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh)
1068 {
1069         transaction_t *transaction = handle->h_transaction;
1070         journal_t *journal = transaction->t_journal;
1071         struct journal_head *jh = bh2jh(bh);
1072
1073         jbd_debug(5, "journal_head %p\n", jh);
1074         JBUFFER_TRACE(jh, "entry");
1075         if (is_handle_aborted(handle))
1076                 goto out;
1077
1078         jbd_lock_bh_state(bh);
1079
1080         if (jh->b_modified == 0) {
1081                 /*
1082                  * This buffer's got modified and becoming part
1083                  * of the transaction. This needs to be done
1084                  * once a transaction -bzzz
1085                  */
1086                 jh->b_modified = 1;
1087                 J_ASSERT_JH(jh, handle->h_buffer_credits > 0);
1088                 handle->h_buffer_credits--;
1089         }
1090
1091         /*
1092          * fastpath, to avoid expensive locking.  If this buffer is already
1093          * on the running transaction's metadata list there is nothing to do.
1094          * Nobody can take it off again because there is a handle open.
1095          * I _think_ we're OK here with SMP barriers - a mistaken decision will
1096          * result in this test being false, so we go in and take the locks.
1097          */
1098         if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) {
1099                 JBUFFER_TRACE(jh, "fastpath");
1100                 J_ASSERT_JH(jh, jh->b_transaction ==
1101                                         journal->j_running_transaction);
1102                 goto out_unlock_bh;
1103         }
1104
1105         set_buffer_jbddirty(bh);
1106
1107         /*
1108          * Metadata already on the current transaction list doesn't
1109          * need to be filed.  Metadata on another transaction's list must
1110          * be committing, and will be refiled once the commit completes:
1111          * leave it alone for now.
1112          */
1113         if (jh->b_transaction != transaction) {
1114                 JBUFFER_TRACE(jh, "already on other transaction");
1115                 J_ASSERT_JH(jh, jh->b_transaction ==
1116                                         journal->j_committing_transaction);
1117                 J_ASSERT_JH(jh, jh->b_next_transaction == transaction);
1118                 /* And this case is illegal: we can't reuse another
1119                  * transaction's data buffer, ever. */
1120                 goto out_unlock_bh;
1121         }
1122
1123         /* That test should have eliminated the following case: */
1124         J_ASSERT_JH(jh, jh->b_frozen_data == NULL);
1125
1126         JBUFFER_TRACE(jh, "file as BJ_Metadata");
1127         spin_lock(&journal->j_list_lock);
1128         __jbd2_journal_file_buffer(jh, handle->h_transaction, BJ_Metadata);
1129         spin_unlock(&journal->j_list_lock);
1130 out_unlock_bh:
1131         jbd_unlock_bh_state(bh);
1132 out:
1133         JBUFFER_TRACE(jh, "exit");
1134         return 0;
1135 }
1136
1137 /*
1138  * jbd2_journal_release_buffer: undo a get_write_access without any buffer
1139  * updates, if the update decided in the end that it didn't need access.
1140  *
1141  */
1142 void
1143 jbd2_journal_release_buffer(handle_t *handle, struct buffer_head *bh)
1144 {
1145         BUFFER_TRACE(bh, "entry");
1146 }
1147
1148 /**
1149  * void jbd2_journal_forget() - bforget() for potentially-journaled buffers.
1150  * @handle: transaction handle
1151  * @bh:     bh to 'forget'
1152  *
1153  * We can only do the bforget if there are no commits pending against the
1154  * buffer.  If the buffer is dirty in the current running transaction we
1155  * can safely unlink it.
1156  *
1157  * bh may not be a journalled buffer at all - it may be a non-JBD
1158  * buffer which came off the hashtable.  Check for this.
1159  *
1160  * Decrements bh->b_count by one.
1161  *
1162  * Allow this call even if the handle has aborted --- it may be part of
1163  * the caller's cleanup after an abort.
1164  */
1165 int jbd2_journal_forget (handle_t *handle, struct buffer_head *bh)
1166 {
1167         transaction_t *transaction = handle->h_transaction;
1168         journal_t *journal = transaction->t_journal;
1169         struct journal_head *jh;
1170         int drop_reserve = 0;
1171         int err = 0;
1172         int was_modified = 0;
1173
1174         BUFFER_TRACE(bh, "entry");
1175
1176         jbd_lock_bh_state(bh);
1177         spin_lock(&journal->j_list_lock);
1178
1179         if (!buffer_jbd(bh))
1180                 goto not_jbd;
1181         jh = bh2jh(bh);
1182
1183         /* Critical error: attempting to delete a bitmap buffer, maybe?
1184          * Don't do any jbd operations, and return an error. */
1185         if (!J_EXPECT_JH(jh, !jh->b_committed_data,
1186                          "inconsistent data on disk")) {
1187                 err = -EIO;
1188                 goto not_jbd;
1189         }
1190
1191         /* keep track of wether or not this transaction modified us */
1192         was_modified = jh->b_modified;
1193
1194         /*
1195          * The buffer's going from the transaction, we must drop
1196          * all references -bzzz
1197          */
1198         jh->b_modified = 0;
1199
1200         if (jh->b_transaction == handle->h_transaction) {
1201                 J_ASSERT_JH(jh, !jh->b_frozen_data);
1202
1203                 /* If we are forgetting a buffer which is already part
1204                  * of this transaction, then we can just drop it from
1205                  * the transaction immediately. */
1206                 clear_buffer_dirty(bh);
1207                 clear_buffer_jbddirty(bh);
1208
1209                 JBUFFER_TRACE(jh, "belongs to current transaction: unfile");
1210
1211                 /*
1212                  * we only want to drop a reference if this transaction
1213                  * modified the buffer
1214                  */
1215                 if (was_modified)
1216                         drop_reserve = 1;
1217
1218                 /*
1219                  * We are no longer going to journal this buffer.
1220                  * However, the commit of this transaction is still
1221                  * important to the buffer: the delete that we are now
1222                  * processing might obsolete an old log entry, so by
1223                  * committing, we can satisfy the buffer's checkpoint.
1224                  *
1225                  * So, if we have a checkpoint on the buffer, we should
1226                  * now refile the buffer on our BJ_Forget list so that
1227                  * we know to remove the checkpoint after we commit.
1228                  */
1229
1230                 if (jh->b_cp_transaction) {
1231                         __jbd2_journal_temp_unlink_buffer(jh);
1232                         __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1233                 } else {
1234                         __jbd2_journal_unfile_buffer(jh);
1235                         jbd2_journal_remove_journal_head(bh);
1236                         __brelse(bh);
1237                         if (!buffer_jbd(bh)) {
1238                                 spin_unlock(&journal->j_list_lock);
1239                                 jbd_unlock_bh_state(bh);
1240                                 __bforget(bh);
1241                                 goto drop;
1242                         }
1243                 }
1244         } else if (jh->b_transaction) {
1245                 J_ASSERT_JH(jh, (jh->b_transaction ==
1246                                  journal->j_committing_transaction));
1247                 /* However, if the buffer is still owned by a prior
1248                  * (committing) transaction, we can't drop it yet... */
1249                 JBUFFER_TRACE(jh, "belongs to older transaction");
1250                 /* ... but we CAN drop it from the new transaction if we
1251                  * have also modified it since the original commit. */
1252
1253                 if (jh->b_next_transaction) {
1254                         J_ASSERT(jh->b_next_transaction == transaction);
1255                         jh->b_next_transaction = NULL;
1256
1257                         /*
1258                          * only drop a reference if this transaction modified
1259                          * the buffer
1260                          */
1261                         if (was_modified)
1262                                 drop_reserve = 1;
1263                 }
1264         }
1265
1266 not_jbd:
1267         spin_unlock(&journal->j_list_lock);
1268         jbd_unlock_bh_state(bh);
1269         __brelse(bh);
1270 drop:
1271         if (drop_reserve) {
1272                 /* no need to reserve log space for this block -bzzz */
1273                 handle->h_buffer_credits++;
1274         }
1275         return err;
1276 }
1277
1278 /**
1279  * int jbd2_journal_stop() - complete a transaction
1280  * @handle: tranaction to complete.
1281  *
1282  * All done for a particular handle.
1283  *
1284  * There is not much action needed here.  We just return any remaining
1285  * buffer credits to the transaction and remove the handle.  The only
1286  * complication is that we need to start a commit operation if the
1287  * filesystem is marked for synchronous update.
1288  *
1289  * jbd2_journal_stop itself will not usually return an error, but it may
1290  * do so in unusual circumstances.  In particular, expect it to
1291  * return -EIO if a jbd2_journal_abort has been executed since the
1292  * transaction began.
1293  */
1294 int jbd2_journal_stop(handle_t *handle)
1295 {
1296         transaction_t *transaction = handle->h_transaction;
1297         journal_t *journal = transaction->t_journal;
1298         int err, wait_for_commit = 0;
1299         tid_t tid;
1300         pid_t pid;
1301
1302         J_ASSERT(journal_current_handle() == handle);
1303
1304         if (is_handle_aborted(handle))
1305                 err = -EIO;
1306         else {
1307                 J_ASSERT(atomic_read(&transaction->t_updates) > 0);
1308                 err = 0;
1309         }
1310
1311         if (--handle->h_ref > 0) {
1312                 jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1313                           handle->h_ref);
1314                 return err;
1315         }
1316
1317         jbd_debug(4, "Handle %p going down\n", handle);
1318
1319         /*
1320          * Implement synchronous transaction batching.  If the handle
1321          * was synchronous, don't force a commit immediately.  Let's
1322          * yield and let another thread piggyback onto this
1323          * transaction.  Keep doing that while new threads continue to
1324          * arrive.  It doesn't cost much - we're about to run a commit
1325          * and sleep on IO anyway.  Speeds up many-threaded, many-dir
1326          * operations by 30x or more...
1327          *
1328          * We try and optimize the sleep time against what the
1329          * underlying disk can do, instead of having a static sleep
1330          * time.  This is useful for the case where our storage is so
1331          * fast that it is more optimal to go ahead and force a flush
1332          * and wait for the transaction to be committed than it is to
1333          * wait for an arbitrary amount of time for new writers to
1334          * join the transaction.  We achieve this by measuring how
1335          * long it takes to commit a transaction, and compare it with
1336          * how long this transaction has been running, and if run time
1337          * < commit time then we sleep for the delta and commit.  This
1338          * greatly helps super fast disks that would see slowdowns as
1339          * more threads started doing fsyncs.
1340          *
1341          * But don't do this if this process was the most recent one
1342          * to perform a synchronous write.  We do this to detect the
1343          * case where a single process is doing a stream of sync
1344          * writes.  No point in waiting for joiners in that case.
1345          */
1346         pid = current->pid;
1347         if (handle->h_sync && journal->j_last_sync_writer != pid) {
1348                 u64 commit_time, trans_time;
1349
1350                 journal->j_last_sync_writer = pid;
1351
1352                 read_lock(&journal->j_state_lock);
1353                 commit_time = journal->j_average_commit_time;
1354                 read_unlock(&journal->j_state_lock);
1355
1356                 trans_time = ktime_to_ns(ktime_sub(ktime_get(),
1357                                                    transaction->t_start_time));
1358
1359                 commit_time = max_t(u64, commit_time,
1360                                     1000*journal->j_min_batch_time);
1361                 commit_time = min_t(u64, commit_time,
1362                                     1000*journal->j_max_batch_time);
1363
1364                 if (trans_time < commit_time) {
1365                         ktime_t expires = ktime_add_ns(ktime_get(),
1366                                                        commit_time);
1367                         set_current_state(TASK_UNINTERRUPTIBLE);
1368                         schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1369                 }
1370         }
1371
1372         if (handle->h_sync)
1373                 transaction->t_synchronous_commit = 1;
1374         current->journal_info = NULL;
1375         atomic_sub(handle->h_buffer_credits,
1376                    &transaction->t_outstanding_credits);
1377
1378         /*
1379          * If the handle is marked SYNC, we need to set another commit
1380          * going!  We also want to force a commit if the current
1381          * transaction is occupying too much of the log, or if the
1382          * transaction is too old now.
1383          */
1384         if (handle->h_sync ||
1385             (atomic_read(&transaction->t_outstanding_credits) >
1386              journal->j_max_transaction_buffers) ||
1387             time_after_eq(jiffies, transaction->t_expires)) {
1388                 /* Do this even for aborted journals: an abort still
1389                  * completes the commit thread, it just doesn't write
1390                  * anything to disk. */
1391
1392                 jbd_debug(2, "transaction too old, requesting commit for "
1393                                         "handle %p\n", handle);
1394                 /* This is non-blocking */
1395                 jbd2_log_start_commit(journal, transaction->t_tid);
1396
1397                 /*
1398                  * Special case: JBD2_SYNC synchronous updates require us
1399                  * to wait for the commit to complete.
1400                  */
1401                 if (handle->h_sync && !(current->flags & PF_MEMALLOC))
1402                         wait_for_commit = 1;
1403         }
1404
1405         /*
1406          * Once we drop t_updates, if it goes to zero the transaction
1407          * could start committing on us and eventually disappear.  So
1408          * once we do this, we must not dereference transaction
1409          * pointer again.
1410          */
1411         tid = transaction->t_tid;
1412         if (atomic_dec_and_test(&transaction->t_updates)) {
1413                 wake_up(&journal->j_wait_updates);
1414                 if (journal->j_barrier_count)
1415                         wake_up(&journal->j_wait_transaction_locked);
1416         }
1417
1418         if (wait_for_commit)
1419                 err = jbd2_log_wait_commit(journal, tid);
1420
1421         lock_map_release(&handle->h_lockdep_map);
1422
1423         jbd2_free_handle(handle);
1424         return err;
1425 }
1426
1427 /**
1428  * int jbd2_journal_force_commit() - force any uncommitted transactions
1429  * @journal: journal to force
1430  *
1431  * For synchronous operations: force any uncommitted transactions
1432  * to disk.  May seem kludgy, but it reuses all the handle batching
1433  * code in a very simple manner.
1434  */
1435 int jbd2_journal_force_commit(journal_t *journal)
1436 {
1437         handle_t *handle;
1438         int ret;
1439
1440         handle = jbd2_journal_start(journal, 1);
1441         if (IS_ERR(handle)) {
1442                 ret = PTR_ERR(handle);
1443         } else {
1444                 handle->h_sync = 1;
1445                 ret = jbd2_journal_stop(handle);
1446         }
1447         return ret;
1448 }
1449
1450 /*
1451  *
1452  * List management code snippets: various functions for manipulating the
1453  * transaction buffer lists.
1454  *
1455  */
1456
1457 /*
1458  * Append a buffer to a transaction list, given the transaction's list head
1459  * pointer.
1460  *
1461  * j_list_lock is held.
1462  *
1463  * jbd_lock_bh_state(jh2bh(jh)) is held.
1464  */
1465
1466 static inline void
1467 __blist_add_buffer(struct journal_head **list, struct journal_head *jh)
1468 {
1469         if (!*list) {
1470                 jh->b_tnext = jh->b_tprev = jh;
1471                 *list = jh;
1472         } else {
1473                 /* Insert at the tail of the list to preserve order */
1474                 struct journal_head *first = *list, *last = first->b_tprev;
1475                 jh->b_tprev = last;
1476                 jh->b_tnext = first;
1477                 last->b_tnext = first->b_tprev = jh;
1478         }
1479 }
1480
1481 /*
1482  * Remove a buffer from a transaction list, given the transaction's list
1483  * head pointer.
1484  *
1485  * Called with j_list_lock held, and the journal may not be locked.
1486  *
1487  * jbd_lock_bh_state(jh2bh(jh)) is held.
1488  */
1489
1490 static inline void
1491 __blist_del_buffer(struct journal_head **list, struct journal_head *jh)
1492 {
1493         if (*list == jh) {
1494                 *list = jh->b_tnext;
1495                 if (*list == jh)
1496                         *list = NULL;
1497         }
1498         jh->b_tprev->b_tnext = jh->b_tnext;
1499         jh->b_tnext->b_tprev = jh->b_tprev;
1500 }
1501
1502 /*
1503  * Remove a buffer from the appropriate transaction list.
1504  *
1505  * Note that this function can *change* the value of
1506  * bh->b_transaction->t_buffers, t_forget, t_iobuf_list, t_shadow_list,
1507  * t_log_list or t_reserved_list.  If the caller is holding onto a copy of one
1508  * of these pointers, it could go bad.  Generally the caller needs to re-read
1509  * the pointer from the transaction_t.
1510  *
1511  * Called under j_list_lock.  The journal may not be locked.
1512  */
1513 void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh)
1514 {
1515         struct journal_head **list = NULL;
1516         transaction_t *transaction;
1517         struct buffer_head *bh = jh2bh(jh);
1518
1519         J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
1520         transaction = jh->b_transaction;
1521         if (transaction)
1522                 assert_spin_locked(&transaction->t_journal->j_list_lock);
1523
1524         J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
1525         if (jh->b_jlist != BJ_None)
1526                 J_ASSERT_JH(jh, transaction != NULL);
1527
1528         switch (jh->b_jlist) {
1529         case BJ_None:
1530                 return;
1531         case BJ_Metadata:
1532                 transaction->t_nr_buffers--;
1533                 J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0);
1534                 list = &transaction->t_buffers;
1535                 break;
1536         case BJ_Forget:
1537                 list = &transaction->t_forget;
1538                 break;
1539         case BJ_IO:
1540                 list = &transaction->t_iobuf_list;
1541                 break;
1542         case BJ_Shadow:
1543                 list = &transaction->t_shadow_list;
1544                 break;
1545         case BJ_LogCtl:
1546                 list = &transaction->t_log_list;
1547                 break;
1548         case BJ_Reserved:
1549                 list = &transaction->t_reserved_list;
1550                 break;
1551         }
1552
1553         __blist_del_buffer(list, jh);
1554         jh->b_jlist = BJ_None;
1555         if (test_clear_buffer_jbddirty(bh))
1556                 mark_buffer_dirty(bh);  /* Expose it to the VM */
1557 }
1558
1559 void __jbd2_journal_unfile_buffer(struct journal_head *jh)
1560 {
1561         __jbd2_journal_temp_unlink_buffer(jh);
1562         jh->b_transaction = NULL;
1563 }
1564
1565 void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh)
1566 {
1567         jbd_lock_bh_state(jh2bh(jh));
1568         spin_lock(&journal->j_list_lock);
1569         __jbd2_journal_unfile_buffer(jh);
1570         spin_unlock(&journal->j_list_lock);
1571         jbd_unlock_bh_state(jh2bh(jh));
1572 }
1573
1574 /*
1575  * Called from jbd2_journal_try_to_free_buffers().
1576  *
1577  * Called under jbd_lock_bh_state(bh)
1578  */
1579 static void
1580 __journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh)
1581 {
1582         struct journal_head *jh;
1583
1584         jh = bh2jh(bh);
1585
1586         if (buffer_locked(bh) || buffer_dirty(bh))
1587                 goto out;
1588
1589         if (jh->b_next_transaction != NULL)
1590                 goto out;
1591
1592         spin_lock(&journal->j_list_lock);
1593         if (jh->b_cp_transaction != NULL && jh->b_transaction == NULL) {
1594                 /* written-back checkpointed metadata buffer */
1595                 if (jh->b_jlist == BJ_None) {
1596                         JBUFFER_TRACE(jh, "remove from checkpoint list");
1597                         __jbd2_journal_remove_checkpoint(jh);
1598                         jbd2_journal_remove_journal_head(bh);
1599                         __brelse(bh);
1600                 }
1601         }
1602         spin_unlock(&journal->j_list_lock);
1603 out:
1604         return;
1605 }
1606
1607 /**
1608  * int jbd2_journal_try_to_free_buffers() - try to free page buffers.
1609  * @journal: journal for operation
1610  * @page: to try and free
1611  * @gfp_mask: we use the mask to detect how hard should we try to release
1612  * buffers. If __GFP_WAIT and __GFP_FS is set, we wait for commit code to
1613  * release the buffers.
1614  *
1615  *
1616  * For all the buffers on this page,
1617  * if they are fully written out ordered data, move them onto BUF_CLEAN
1618  * so try_to_free_buffers() can reap them.
1619  *
1620  * This function returns non-zero if we wish try_to_free_buffers()
1621  * to be called. We do this if the page is releasable by try_to_free_buffers().
1622  * We also do it if the page has locked or dirty buffers and the caller wants
1623  * us to perform sync or async writeout.
1624  *
1625  * This complicates JBD locking somewhat.  We aren't protected by the
1626  * BKL here.  We wish to remove the buffer from its committing or
1627  * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer.
1628  *
1629  * This may *change* the value of transaction_t->t_datalist, so anyone
1630  * who looks at t_datalist needs to lock against this function.
1631  *
1632  * Even worse, someone may be doing a jbd2_journal_dirty_data on this
1633  * buffer.  So we need to lock against that.  jbd2_journal_dirty_data()
1634  * will come out of the lock with the buffer dirty, which makes it
1635  * ineligible for release here.
1636  *
1637  * Who else is affected by this?  hmm...  Really the only contender
1638  * is do_get_write_access() - it could be looking at the buffer while
1639  * journal_try_to_free_buffer() is changing its state.  But that
1640  * cannot happen because we never reallocate freed data as metadata
1641  * while the data is part of a transaction.  Yes?
1642  *
1643  * Return 0 on failure, 1 on success
1644  */
1645 int jbd2_journal_try_to_free_buffers(journal_t *journal,
1646                                 struct page *page, gfp_t gfp_mask)
1647 {
1648         struct buffer_head *head;
1649         struct buffer_head *bh;
1650         int ret = 0;
1651
1652         J_ASSERT(PageLocked(page));
1653
1654         head = page_buffers(page);
1655         bh = head;
1656         do {
1657                 struct journal_head *jh;
1658
1659                 /*
1660                  * We take our own ref against the journal_head here to avoid
1661                  * having to add tons of locking around each instance of
1662                  * jbd2_journal_remove_journal_head() and
1663                  * jbd2_journal_put_journal_head().
1664                  */
1665                 jh = jbd2_journal_grab_journal_head(bh);
1666                 if (!jh)
1667                         continue;
1668
1669                 jbd_lock_bh_state(bh);
1670                 __journal_try_to_free_buffer(journal, bh);
1671                 jbd2_journal_put_journal_head(jh);
1672                 jbd_unlock_bh_state(bh);
1673                 if (buffer_jbd(bh))
1674                         goto busy;
1675         } while ((bh = bh->b_this_page) != head);
1676
1677         ret = try_to_free_buffers(page);
1678
1679 busy:
1680         return ret;
1681 }
1682
1683 /*
1684  * This buffer is no longer needed.  If it is on an older transaction's
1685  * checkpoint list we need to record it on this transaction's forget list
1686  * to pin this buffer (and hence its checkpointing transaction) down until
1687  * this transaction commits.  If the buffer isn't on a checkpoint list, we
1688  * release it.
1689  * Returns non-zero if JBD no longer has an interest in the buffer.
1690  *
1691  * Called under j_list_lock.
1692  *
1693  * Called under jbd_lock_bh_state(bh).
1694  */
1695 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction)
1696 {
1697         int may_free = 1;
1698         struct buffer_head *bh = jh2bh(jh);
1699
1700         __jbd2_journal_unfile_buffer(jh);
1701
1702         if (jh->b_cp_transaction) {
1703                 JBUFFER_TRACE(jh, "on running+cp transaction");
1704                 /*
1705                  * We don't want to write the buffer anymore, clear the
1706                  * bit so that we don't confuse checks in
1707                  * __journal_file_buffer
1708                  */
1709                 clear_buffer_dirty(bh);
1710                 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1711                 may_free = 0;
1712         } else {
1713                 JBUFFER_TRACE(jh, "on running transaction");
1714                 jbd2_journal_remove_journal_head(bh);
1715                 __brelse(bh);
1716         }
1717         return may_free;
1718 }
1719
1720 /*
1721  * jbd2_journal_invalidatepage
1722  *
1723  * This code is tricky.  It has a number of cases to deal with.
1724  *
1725  * There are two invariants which this code relies on:
1726  *
1727  * i_size must be updated on disk before we start calling invalidatepage on the
1728  * data.
1729  *
1730  *  This is done in ext3 by defining an ext3_setattr method which
1731  *  updates i_size before truncate gets going.  By maintaining this
1732  *  invariant, we can be sure that it is safe to throw away any buffers
1733  *  attached to the current transaction: once the transaction commits,
1734  *  we know that the data will not be needed.
1735  *
1736  *  Note however that we can *not* throw away data belonging to the
1737  *  previous, committing transaction!
1738  *
1739  * Any disk blocks which *are* part of the previous, committing
1740  * transaction (and which therefore cannot be discarded immediately) are
1741  * not going to be reused in the new running transaction
1742  *
1743  *  The bitmap committed_data images guarantee this: any block which is
1744  *  allocated in one transaction and removed in the next will be marked
1745  *  as in-use in the committed_data bitmap, so cannot be reused until
1746  *  the next transaction to delete the block commits.  This means that
1747  *  leaving committing buffers dirty is quite safe: the disk blocks
1748  *  cannot be reallocated to a different file and so buffer aliasing is
1749  *  not possible.
1750  *
1751  *
1752  * The above applies mainly to ordered data mode.  In writeback mode we
1753  * don't make guarantees about the order in which data hits disk --- in
1754  * particular we don't guarantee that new dirty data is flushed before
1755  * transaction commit --- so it is always safe just to discard data
1756  * immediately in that mode.  --sct
1757  */
1758
1759 /*
1760  * The journal_unmap_buffer helper function returns zero if the buffer
1761  * concerned remains pinned as an anonymous buffer belonging to an older
1762  * transaction.
1763  *
1764  * We're outside-transaction here.  Either or both of j_running_transaction
1765  * and j_committing_transaction may be NULL.
1766  */
1767 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh)
1768 {
1769         transaction_t *transaction;
1770         struct journal_head *jh;
1771         int may_free = 1;
1772         int ret;
1773
1774         BUFFER_TRACE(bh, "entry");
1775
1776         /*
1777          * It is safe to proceed here without the j_list_lock because the
1778          * buffers cannot be stolen by try_to_free_buffers as long as we are
1779          * holding the page lock. --sct
1780          */
1781
1782         if (!buffer_jbd(bh))
1783                 goto zap_buffer_unlocked;
1784
1785         /* OK, we have data buffer in journaled mode */
1786         write_lock(&journal->j_state_lock);
1787         jbd_lock_bh_state(bh);
1788         spin_lock(&journal->j_list_lock);
1789
1790         jh = jbd2_journal_grab_journal_head(bh);
1791         if (!jh)
1792                 goto zap_buffer_no_jh;
1793
1794         /*
1795          * We cannot remove the buffer from checkpoint lists until the
1796          * transaction adding inode to orphan list (let's call it T)
1797          * is committed.  Otherwise if the transaction changing the
1798          * buffer would be cleaned from the journal before T is
1799          * committed, a crash will cause that the correct contents of
1800          * the buffer will be lost.  On the other hand we have to
1801          * clear the buffer dirty bit at latest at the moment when the
1802          * transaction marking the buffer as freed in the filesystem
1803          * structures is committed because from that moment on the
1804          * buffer can be reallocated and used by a different page.
1805          * Since the block hasn't been freed yet but the inode has
1806          * already been added to orphan list, it is safe for us to add
1807          * the buffer to BJ_Forget list of the newest transaction.
1808          */
1809         transaction = jh->b_transaction;
1810         if (transaction == NULL) {
1811                 /* First case: not on any transaction.  If it
1812                  * has no checkpoint link, then we can zap it:
1813                  * it's a writeback-mode buffer so we don't care
1814                  * if it hits disk safely. */
1815                 if (!jh->b_cp_transaction) {
1816                         JBUFFER_TRACE(jh, "not on any transaction: zap");
1817                         goto zap_buffer;
1818                 }
1819
1820                 if (!buffer_dirty(bh)) {
1821                         /* bdflush has written it.  We can drop it now */
1822                         goto zap_buffer;
1823                 }
1824
1825                 /* OK, it must be in the journal but still not
1826                  * written fully to disk: it's metadata or
1827                  * journaled data... */
1828
1829                 if (journal->j_running_transaction) {
1830                         /* ... and once the current transaction has
1831                          * committed, the buffer won't be needed any
1832                          * longer. */
1833                         JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget");
1834                         ret = __dispose_buffer(jh,
1835                                         journal->j_running_transaction);
1836                         jbd2_journal_put_journal_head(jh);
1837                         spin_unlock(&journal->j_list_lock);
1838                         jbd_unlock_bh_state(bh);
1839                         write_unlock(&journal->j_state_lock);
1840                         return ret;
1841                 } else {
1842                         /* There is no currently-running transaction. So the
1843                          * orphan record which we wrote for this file must have
1844                          * passed into commit.  We must attach this buffer to
1845                          * the committing transaction, if it exists. */
1846                         if (journal->j_committing_transaction) {
1847                                 JBUFFER_TRACE(jh, "give to committing trans");
1848                                 ret = __dispose_buffer(jh,
1849                                         journal->j_committing_transaction);
1850                                 jbd2_journal_put_journal_head(jh);
1851                                 spin_unlock(&journal->j_list_lock);
1852                                 jbd_unlock_bh_state(bh);
1853                                 write_unlock(&journal->j_state_lock);
1854                                 return ret;
1855                         } else {
1856                                 /* The orphan record's transaction has
1857                                  * committed.  We can cleanse this buffer */
1858                                 clear_buffer_jbddirty(bh);
1859                                 goto zap_buffer;
1860                         }
1861                 }
1862         } else if (transaction == journal->j_committing_transaction) {
1863                 JBUFFER_TRACE(jh, "on committing transaction");
1864                 /*
1865                  * The buffer is committing, we simply cannot touch
1866                  * it. So we just set j_next_transaction to the
1867                  * running transaction (if there is one) and mark
1868                  * buffer as freed so that commit code knows it should
1869                  * clear dirty bits when it is done with the buffer.
1870                  */
1871                 set_buffer_freed(bh);
1872                 if (journal->j_running_transaction && buffer_jbddirty(bh))
1873                         jh->b_next_transaction = journal->j_running_transaction;
1874                 jbd2_journal_put_journal_head(jh);
1875                 spin_unlock(&journal->j_list_lock);
1876                 jbd_unlock_bh_state(bh);
1877                 write_unlock(&journal->j_state_lock);
1878                 return 0;
1879         } else {
1880                 /* Good, the buffer belongs to the running transaction.
1881                  * We are writing our own transaction's data, not any
1882                  * previous one's, so it is safe to throw it away
1883                  * (remember that we expect the filesystem to have set
1884                  * i_size already for this truncate so recovery will not
1885                  * expose the disk blocks we are discarding here.) */
1886                 J_ASSERT_JH(jh, transaction == journal->j_running_transaction);
1887                 JBUFFER_TRACE(jh, "on running transaction");
1888                 may_free = __dispose_buffer(jh, transaction);
1889         }
1890
1891 zap_buffer:
1892         jbd2_journal_put_journal_head(jh);
1893 zap_buffer_no_jh:
1894         spin_unlock(&journal->j_list_lock);
1895         jbd_unlock_bh_state(bh);
1896         write_unlock(&journal->j_state_lock);
1897 zap_buffer_unlocked:
1898         clear_buffer_dirty(bh);
1899         J_ASSERT_BH(bh, !buffer_jbddirty(bh));
1900         clear_buffer_mapped(bh);
1901         clear_buffer_req(bh);
1902         clear_buffer_new(bh);
1903         bh->b_bdev = NULL;
1904         return may_free;
1905 }
1906
1907 /**
1908  * void jbd2_journal_invalidatepage()
1909  * @journal: journal to use for flush...
1910  * @page:    page to flush
1911  * @offset:  length of page to invalidate.
1912  *
1913  * Reap page buffers containing data after offset in page.
1914  *
1915  */
1916 void jbd2_journal_invalidatepage(journal_t *journal,
1917                       struct page *page,
1918                       unsigned long offset)
1919 {
1920         struct buffer_head *head, *bh, *next;
1921         unsigned int curr_off = 0;
1922         int may_free = 1;
1923
1924         if (!PageLocked(page))
1925                 BUG();
1926         if (!page_has_buffers(page))
1927                 return;
1928
1929         /* We will potentially be playing with lists other than just the
1930          * data lists (especially for journaled data mode), so be
1931          * cautious in our locking. */
1932
1933         head = bh = page_buffers(page);
1934         do {
1935                 unsigned int next_off = curr_off + bh->b_size;
1936                 next = bh->b_this_page;
1937
1938                 if (offset <= curr_off) {
1939                         /* This block is wholly outside the truncation point */
1940                         lock_buffer(bh);
1941                         may_free &= journal_unmap_buffer(journal, bh);
1942                         unlock_buffer(bh);
1943                 }
1944                 curr_off = next_off;
1945                 bh = next;
1946
1947         } while (bh != head);
1948
1949         if (!offset) {
1950                 if (may_free && try_to_free_buffers(page))
1951                         J_ASSERT(!page_has_buffers(page));
1952         }
1953 }
1954
1955 /*
1956  * File a buffer on the given transaction list.
1957  */
1958 void __jbd2_journal_file_buffer(struct journal_head *jh,
1959                         transaction_t *transaction, int jlist)
1960 {
1961         struct journal_head **list = NULL;
1962         int was_dirty = 0;
1963         struct buffer_head *bh = jh2bh(jh);
1964
1965         J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
1966         assert_spin_locked(&transaction->t_journal->j_list_lock);
1967
1968         J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
1969         J_ASSERT_JH(jh, jh->b_transaction == transaction ||
1970                                 jh->b_transaction == NULL);
1971
1972         if (jh->b_transaction && jh->b_jlist == jlist)
1973                 return;
1974
1975         if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
1976             jlist == BJ_Shadow || jlist == BJ_Forget) {
1977                 /*
1978                  * For metadata buffers, we track dirty bit in buffer_jbddirty
1979                  * instead of buffer_dirty. We should not see a dirty bit set
1980                  * here because we clear it in do_get_write_access but e.g.
1981                  * tune2fs can modify the sb and set the dirty bit at any time
1982                  * so we try to gracefully handle that.
1983                  */
1984                 if (buffer_dirty(bh))
1985                         warn_dirty_buffer(bh);
1986                 if (test_clear_buffer_dirty(bh) ||
1987                     test_clear_buffer_jbddirty(bh))
1988                         was_dirty = 1;
1989         }
1990
1991         if (jh->b_transaction)
1992                 __jbd2_journal_temp_unlink_buffer(jh);
1993         jh->b_transaction = transaction;
1994
1995         switch (jlist) {
1996         case BJ_None:
1997                 J_ASSERT_JH(jh, !jh->b_committed_data);
1998                 J_ASSERT_JH(jh, !jh->b_frozen_data);
1999                 return;
2000         case BJ_Metadata:
2001                 transaction->t_nr_buffers++;
2002                 list = &transaction->t_buffers;
2003                 break;
2004         case BJ_Forget:
2005                 list = &transaction->t_forget;
2006                 break;
2007         case BJ_IO:
2008                 list = &transaction->t_iobuf_list;
2009                 break;
2010         case BJ_Shadow:
2011                 list = &transaction->t_shadow_list;
2012                 break;
2013         case BJ_LogCtl:
2014                 list = &transaction->t_log_list;
2015                 break;
2016         case BJ_Reserved:
2017                 list = &transaction->t_reserved_list;
2018                 break;
2019         }
2020
2021         __blist_add_buffer(list, jh);
2022         jh->b_jlist = jlist;
2023
2024         if (was_dirty)
2025                 set_buffer_jbddirty(bh);
2026 }
2027
2028 void jbd2_journal_file_buffer(struct journal_head *jh,
2029                                 transaction_t *transaction, int jlist)
2030 {
2031         jbd_lock_bh_state(jh2bh(jh));
2032         spin_lock(&transaction->t_journal->j_list_lock);
2033         __jbd2_journal_file_buffer(jh, transaction, jlist);
2034         spin_unlock(&transaction->t_journal->j_list_lock);
2035         jbd_unlock_bh_state(jh2bh(jh));
2036 }
2037
2038 /*
2039  * Remove a buffer from its current buffer list in preparation for
2040  * dropping it from its current transaction entirely.  If the buffer has
2041  * already started to be used by a subsequent transaction, refile the
2042  * buffer on that transaction's metadata list.
2043  *
2044  * Called under journal->j_list_lock
2045  *
2046  * Called under jbd_lock_bh_state(jh2bh(jh))
2047  */
2048 void __jbd2_journal_refile_buffer(struct journal_head *jh)
2049 {
2050         int was_dirty, jlist;
2051         struct buffer_head *bh = jh2bh(jh);
2052
2053         J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2054         if (jh->b_transaction)
2055                 assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock);
2056
2057         /* If the buffer is now unused, just drop it. */
2058         if (jh->b_next_transaction == NULL) {
2059                 __jbd2_journal_unfile_buffer(jh);
2060                 return;
2061         }
2062
2063         /*
2064          * It has been modified by a later transaction: add it to the new
2065          * transaction's metadata list.
2066          */
2067
2068         was_dirty = test_clear_buffer_jbddirty(bh);
2069         __jbd2_journal_temp_unlink_buffer(jh);
2070         jh->b_transaction = jh->b_next_transaction;
2071         jh->b_next_transaction = NULL;
2072         if (buffer_freed(bh))
2073                 jlist = BJ_Forget;
2074         else if (jh->b_modified)
2075                 jlist = BJ_Metadata;
2076         else
2077                 jlist = BJ_Reserved;
2078         __jbd2_journal_file_buffer(jh, jh->b_transaction, jlist);
2079         J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING);
2080
2081         if (was_dirty)
2082                 set_buffer_jbddirty(bh);
2083 }
2084
2085 /*
2086  * For the unlocked version of this call, also make sure that any
2087  * hanging journal_head is cleaned up if necessary.
2088  *
2089  * __jbd2_journal_refile_buffer is usually called as part of a single locked
2090  * operation on a buffer_head, in which the caller is probably going to
2091  * be hooking the journal_head onto other lists.  In that case it is up
2092  * to the caller to remove the journal_head if necessary.  For the
2093  * unlocked jbd2_journal_refile_buffer call, the caller isn't going to be
2094  * doing anything else to the buffer so we need to do the cleanup
2095  * ourselves to avoid a jh leak.
2096  *
2097  * *** The journal_head may be freed by this call! ***
2098  */
2099 void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh)
2100 {
2101         struct buffer_head *bh = jh2bh(jh);
2102
2103         jbd_lock_bh_state(bh);
2104         spin_lock(&journal->j_list_lock);
2105
2106         __jbd2_journal_refile_buffer(jh);
2107         jbd_unlock_bh_state(bh);
2108         jbd2_journal_remove_journal_head(bh);
2109
2110         spin_unlock(&journal->j_list_lock);
2111         __brelse(bh);
2112 }
2113
2114 /*
2115  * File inode in the inode list of the handle's transaction
2116  */
2117 int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode)
2118 {
2119         transaction_t *transaction = handle->h_transaction;
2120         journal_t *journal = transaction->t_journal;
2121
2122         if (is_handle_aborted(handle))
2123                 return -EIO;
2124
2125         jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino,
2126                         transaction->t_tid);
2127
2128         /*
2129          * First check whether inode isn't already on the transaction's
2130          * lists without taking the lock. Note that this check is safe
2131          * without the lock as we cannot race with somebody removing inode
2132          * from the transaction. The reason is that we remove inode from the
2133          * transaction only in journal_release_jbd_inode() and when we commit
2134          * the transaction. We are guarded from the first case by holding
2135          * a reference to the inode. We are safe against the second case
2136          * because if jinode->i_transaction == transaction, commit code
2137          * cannot touch the transaction because we hold reference to it,
2138          * and if jinode->i_next_transaction == transaction, commit code
2139          * will only file the inode where we want it.
2140          */
2141         if (jinode->i_transaction == transaction ||
2142             jinode->i_next_transaction == transaction)
2143                 return 0;
2144
2145         spin_lock(&journal->j_list_lock);
2146
2147         if (jinode->i_transaction == transaction ||
2148             jinode->i_next_transaction == transaction)
2149                 goto done;
2150
2151         /*
2152          * We only ever set this variable to 1 so the test is safe. Since
2153          * t_need_data_flush is likely to be set, we do the test to save some
2154          * cacheline bouncing
2155          */
2156         if (!transaction->t_need_data_flush)
2157                 transaction->t_need_data_flush = 1;
2158         /* On some different transaction's list - should be
2159          * the committing one */
2160         if (jinode->i_transaction) {
2161                 J_ASSERT(jinode->i_next_transaction == NULL);
2162                 J_ASSERT(jinode->i_transaction ==
2163                                         journal->j_committing_transaction);
2164                 jinode->i_next_transaction = transaction;
2165                 goto done;
2166         }
2167         /* Not on any transaction list... */
2168         J_ASSERT(!jinode->i_next_transaction);
2169         jinode->i_transaction = transaction;
2170         list_add(&jinode->i_list, &transaction->t_inode_list);
2171 done:
2172         spin_unlock(&journal->j_list_lock);
2173
2174         return 0;
2175 }
2176
2177 /*
2178  * File truncate and transaction commit interact with each other in a
2179  * non-trivial way.  If a transaction writing data block A is
2180  * committing, we cannot discard the data by truncate until we have
2181  * written them.  Otherwise if we crashed after the transaction with
2182  * write has committed but before the transaction with truncate has
2183  * committed, we could see stale data in block A.  This function is a
2184  * helper to solve this problem.  It starts writeout of the truncated
2185  * part in case it is in the committing transaction.
2186  *
2187  * Filesystem code must call this function when inode is journaled in
2188  * ordered mode before truncation happens and after the inode has been
2189  * placed on orphan list with the new inode size. The second condition
2190  * avoids the race that someone writes new data and we start
2191  * committing the transaction after this function has been called but
2192  * before a transaction for truncate is started (and furthermore it
2193  * allows us to optimize the case where the addition to orphan list
2194  * happens in the same transaction as write --- we don't have to write
2195  * any data in such case).
2196  */
2197 int jbd2_journal_begin_ordered_truncate(journal_t *journal,
2198                                         struct jbd2_inode *jinode,
2199                                         loff_t new_size)
2200 {
2201         transaction_t *inode_trans, *commit_trans;
2202         int ret = 0;
2203
2204         /* This is a quick check to avoid locking if not necessary */
2205         if (!jinode->i_transaction)
2206                 goto out;
2207         /* Locks are here just to force reading of recent values, it is
2208          * enough that the transaction was not committing before we started
2209          * a transaction adding the inode to orphan list */
2210         read_lock(&journal->j_state_lock);
2211         commit_trans = journal->j_committing_transaction;
2212         read_unlock(&journal->j_state_lock);
2213         spin_lock(&journal->j_list_lock);
2214         inode_trans = jinode->i_transaction;
2215         spin_unlock(&journal->j_list_lock);
2216         if (inode_trans == commit_trans) {
2217                 ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping,
2218                         new_size, LLONG_MAX);
2219                 if (ret)
2220                         jbd2_journal_abort(journal, ret);
2221         }
2222 out:
2223         return ret;
2224 }