Merge branch 'next' into upstream-merge
[pandora-kernel.git] / fs / jbd2 / transaction.c
1 /*
2  * linux/fs/jbd2/transaction.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5  *
6  * Copyright 1998 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Generic filesystem transaction handling code; part of the ext2fs
13  * journaling system.
14  *
15  * This file manages transactions (compound commits managed by the
16  * journaling code) and handles (individual atomic operations by the
17  * filesystem).
18  */
19
20 #include <linux/time.h>
21 #include <linux/fs.h>
22 #include <linux/jbd2.h>
23 #include <linux/errno.h>
24 #include <linux/slab.h>
25 #include <linux/timer.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/hrtimer.h>
29 #include <linux/backing-dev.h>
30 #include <linux/module.h>
31
32 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh);
33
34 /*
35  * jbd2_get_transaction: obtain a new transaction_t object.
36  *
37  * Simply allocate and initialise a new transaction.  Create it in
38  * RUNNING state and add it to the current journal (which should not
39  * have an existing running transaction: we only make a new transaction
40  * once we have started to commit the old one).
41  *
42  * Preconditions:
43  *      The journal MUST be locked.  We don't perform atomic mallocs on the
44  *      new transaction and we can't block without protecting against other
45  *      processes trying to touch the journal while it is in transition.
46  *
47  */
48
49 static transaction_t *
50 jbd2_get_transaction(journal_t *journal, transaction_t *transaction)
51 {
52         transaction->t_journal = journal;
53         transaction->t_state = T_RUNNING;
54         transaction->t_start_time = ktime_get();
55         transaction->t_tid = journal->j_transaction_sequence++;
56         transaction->t_expires = jiffies + journal->j_commit_interval;
57         spin_lock_init(&transaction->t_handle_lock);
58         atomic_set(&transaction->t_updates, 0);
59         atomic_set(&transaction->t_outstanding_credits, 0);
60         atomic_set(&transaction->t_handle_count, 0);
61         INIT_LIST_HEAD(&transaction->t_inode_list);
62         INIT_LIST_HEAD(&transaction->t_private_list);
63
64         /* Set up the commit timer for the new transaction. */
65         journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires);
66         add_timer(&journal->j_commit_timer);
67
68         J_ASSERT(journal->j_running_transaction == NULL);
69         journal->j_running_transaction = transaction;
70         transaction->t_max_wait = 0;
71         transaction->t_start = jiffies;
72
73         return transaction;
74 }
75
76 /*
77  * Handle management.
78  *
79  * A handle_t is an object which represents a single atomic update to a
80  * filesystem, and which tracks all of the modifications which form part
81  * of that one update.
82  */
83
84 /*
85  * Update transiaction's maximum wait time, if debugging is enabled.
86  *
87  * In order for t_max_wait to be reliable, it must be protected by a
88  * lock.  But doing so will mean that start_this_handle() can not be
89  * run in parallel on SMP systems, which limits our scalability.  So
90  * unless debugging is enabled, we no longer update t_max_wait, which
91  * means that maximum wait time reported by the jbd2_run_stats
92  * tracepoint will always be zero.
93  */
94 static inline void update_t_max_wait(transaction_t *transaction)
95 {
96 #ifdef CONFIG_JBD2_DEBUG
97         unsigned long ts = jiffies;
98
99         if (jbd2_journal_enable_debug &&
100             time_after(transaction->t_start, ts)) {
101                 ts = jbd2_time_diff(ts, transaction->t_start);
102                 spin_lock(&transaction->t_handle_lock);
103                 if (ts > transaction->t_max_wait)
104                         transaction->t_max_wait = ts;
105                 spin_unlock(&transaction->t_handle_lock);
106         }
107 #endif
108 }
109
110 /*
111  * start_this_handle: Given a handle, deal with any locking or stalling
112  * needed to make sure that there is enough journal space for the handle
113  * to begin.  Attach the handle to a transaction and set up the
114  * transaction's buffer credits.
115  */
116
117 static int start_this_handle(journal_t *journal, handle_t *handle,
118                              int gfp_mask)
119 {
120         transaction_t *transaction;
121         int needed;
122         int nblocks = handle->h_buffer_credits;
123         transaction_t *new_transaction = NULL;
124
125         if (nblocks > journal->j_max_transaction_buffers) {
126                 printk(KERN_ERR "JBD: %s wants too many credits (%d > %d)\n",
127                        current->comm, nblocks,
128                        journal->j_max_transaction_buffers);
129                 return -ENOSPC;
130         }
131
132 alloc_transaction:
133         if (!journal->j_running_transaction) {
134                 new_transaction = kzalloc(sizeof(*new_transaction), gfp_mask);
135                 if (!new_transaction) {
136                         /*
137                          * If __GFP_FS is not present, then we may be
138                          * being called from inside the fs writeback
139                          * layer, so we MUST NOT fail.  Since
140                          * __GFP_NOFAIL is going away, we will arrange
141                          * to retry the allocation ourselves.
142                          */
143                         if ((gfp_mask & __GFP_FS) == 0) {
144                                 congestion_wait(BLK_RW_ASYNC, HZ/50);
145                                 goto alloc_transaction;
146                         }
147                         return -ENOMEM;
148                 }
149         }
150
151         jbd_debug(3, "New handle %p going live.\n", handle);
152
153         /*
154          * We need to hold j_state_lock until t_updates has been incremented,
155          * for proper journal barrier handling
156          */
157 repeat:
158         read_lock(&journal->j_state_lock);
159         BUG_ON(journal->j_flags & JBD2_UNMOUNT);
160         if (is_journal_aborted(journal) ||
161             (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) {
162                 read_unlock(&journal->j_state_lock);
163                 kfree(new_transaction);
164                 return -EROFS;
165         }
166
167         /* Wait on the journal's transaction barrier if necessary */
168         if (journal->j_barrier_count) {
169                 read_unlock(&journal->j_state_lock);
170                 wait_event(journal->j_wait_transaction_locked,
171                                 journal->j_barrier_count == 0);
172                 goto repeat;
173         }
174
175         if (!journal->j_running_transaction) {
176                 read_unlock(&journal->j_state_lock);
177                 if (!new_transaction)
178                         goto alloc_transaction;
179                 write_lock(&journal->j_state_lock);
180                 if (!journal->j_running_transaction) {
181                         jbd2_get_transaction(journal, new_transaction);
182                         new_transaction = NULL;
183                 }
184                 write_unlock(&journal->j_state_lock);
185                 goto repeat;
186         }
187
188         transaction = journal->j_running_transaction;
189
190         /*
191          * If the current transaction is locked down for commit, wait for the
192          * lock to be released.
193          */
194         if (transaction->t_state == T_LOCKED) {
195                 DEFINE_WAIT(wait);
196
197                 prepare_to_wait(&journal->j_wait_transaction_locked,
198                                         &wait, TASK_UNINTERRUPTIBLE);
199                 read_unlock(&journal->j_state_lock);
200                 schedule();
201                 finish_wait(&journal->j_wait_transaction_locked, &wait);
202                 goto repeat;
203         }
204
205         /*
206          * If there is not enough space left in the log to write all potential
207          * buffers requested by this operation, we need to stall pending a log
208          * checkpoint to free some more log space.
209          */
210         needed = atomic_add_return(nblocks,
211                                    &transaction->t_outstanding_credits);
212
213         if (needed > journal->j_max_transaction_buffers) {
214                 /*
215                  * If the current transaction is already too large, then start
216                  * to commit it: we can then go back and attach this handle to
217                  * a new transaction.
218                  */
219                 DEFINE_WAIT(wait);
220
221                 jbd_debug(2, "Handle %p starting new commit...\n", handle);
222                 atomic_sub(nblocks, &transaction->t_outstanding_credits);
223                 prepare_to_wait(&journal->j_wait_transaction_locked, &wait,
224                                 TASK_UNINTERRUPTIBLE);
225                 __jbd2_log_start_commit(journal, transaction->t_tid);
226                 read_unlock(&journal->j_state_lock);
227                 schedule();
228                 finish_wait(&journal->j_wait_transaction_locked, &wait);
229                 goto repeat;
230         }
231
232         /*
233          * The commit code assumes that it can get enough log space
234          * without forcing a checkpoint.  This is *critical* for
235          * correctness: a checkpoint of a buffer which is also
236          * associated with a committing transaction creates a deadlock,
237          * so commit simply cannot force through checkpoints.
238          *
239          * We must therefore ensure the necessary space in the journal
240          * *before* starting to dirty potentially checkpointed buffers
241          * in the new transaction.
242          *
243          * The worst part is, any transaction currently committing can
244          * reduce the free space arbitrarily.  Be careful to account for
245          * those buffers when checkpointing.
246          */
247
248         /*
249          * @@@ AKPM: This seems rather over-defensive.  We're giving commit
250          * a _lot_ of headroom: 1/4 of the journal plus the size of
251          * the committing transaction.  Really, we only need to give it
252          * committing_transaction->t_outstanding_credits plus "enough" for
253          * the log control blocks.
254          * Also, this test is inconsitent with the matching one in
255          * jbd2_journal_extend().
256          */
257         if (__jbd2_log_space_left(journal) < jbd_space_needed(journal)) {
258                 jbd_debug(2, "Handle %p waiting for checkpoint...\n", handle);
259                 atomic_sub(nblocks, &transaction->t_outstanding_credits);
260                 read_unlock(&journal->j_state_lock);
261                 write_lock(&journal->j_state_lock);
262                 if (__jbd2_log_space_left(journal) < jbd_space_needed(journal))
263                         __jbd2_log_wait_for_space(journal);
264                 write_unlock(&journal->j_state_lock);
265                 goto repeat;
266         }
267
268         /* OK, account for the buffers that this operation expects to
269          * use and add the handle to the running transaction. 
270          */
271         update_t_max_wait(transaction);
272         handle->h_transaction = transaction;
273         atomic_inc(&transaction->t_updates);
274         atomic_inc(&transaction->t_handle_count);
275         jbd_debug(4, "Handle %p given %d credits (total %d, free %d)\n",
276                   handle, nblocks,
277                   atomic_read(&transaction->t_outstanding_credits),
278                   __jbd2_log_space_left(journal));
279         read_unlock(&journal->j_state_lock);
280
281         lock_map_acquire(&handle->h_lockdep_map);
282         kfree(new_transaction);
283         return 0;
284 }
285
286 static struct lock_class_key jbd2_handle_key;
287
288 /* Allocate a new handle.  This should probably be in a slab... */
289 static handle_t *new_handle(int nblocks)
290 {
291         handle_t *handle = jbd2_alloc_handle(GFP_NOFS);
292         if (!handle)
293                 return NULL;
294         memset(handle, 0, sizeof(*handle));
295         handle->h_buffer_credits = nblocks;
296         handle->h_ref = 1;
297
298         lockdep_init_map(&handle->h_lockdep_map, "jbd2_handle",
299                                                 &jbd2_handle_key, 0);
300
301         return handle;
302 }
303
304 /**
305  * handle_t *jbd2_journal_start() - Obtain a new handle.
306  * @journal: Journal to start transaction on.
307  * @nblocks: number of block buffer we might modify
308  *
309  * We make sure that the transaction can guarantee at least nblocks of
310  * modified buffers in the log.  We block until the log can guarantee
311  * that much space.
312  *
313  * This function is visible to journal users (like ext3fs), so is not
314  * called with the journal already locked.
315  *
316  * Return a pointer to a newly allocated handle, or NULL on failure
317  */
318 handle_t *jbd2__journal_start(journal_t *journal, int nblocks, int gfp_mask)
319 {
320         handle_t *handle = journal_current_handle();
321         int err;
322
323         if (!journal)
324                 return ERR_PTR(-EROFS);
325
326         if (handle) {
327                 J_ASSERT(handle->h_transaction->t_journal == journal);
328                 handle->h_ref++;
329                 return handle;
330         }
331
332         handle = new_handle(nblocks);
333         if (!handle)
334                 return ERR_PTR(-ENOMEM);
335
336         current->journal_info = handle;
337
338         err = start_this_handle(journal, handle, gfp_mask);
339         if (err < 0) {
340                 jbd2_free_handle(handle);
341                 current->journal_info = NULL;
342                 handle = ERR_PTR(err);
343                 goto out;
344         }
345 out:
346         return handle;
347 }
348 EXPORT_SYMBOL(jbd2__journal_start);
349
350
351 handle_t *jbd2_journal_start(journal_t *journal, int nblocks)
352 {
353         return jbd2__journal_start(journal, nblocks, GFP_NOFS);
354 }
355 EXPORT_SYMBOL(jbd2_journal_start);
356
357
358 /**
359  * int jbd2_journal_extend() - extend buffer credits.
360  * @handle:  handle to 'extend'
361  * @nblocks: nr blocks to try to extend by.
362  *
363  * Some transactions, such as large extends and truncates, can be done
364  * atomically all at once or in several stages.  The operation requests
365  * a credit for a number of buffer modications in advance, but can
366  * extend its credit if it needs more.
367  *
368  * jbd2_journal_extend tries to give the running handle more buffer credits.
369  * It does not guarantee that allocation - this is a best-effort only.
370  * The calling process MUST be able to deal cleanly with a failure to
371  * extend here.
372  *
373  * Return 0 on success, non-zero on failure.
374  *
375  * return code < 0 implies an error
376  * return code > 0 implies normal transaction-full status.
377  */
378 int jbd2_journal_extend(handle_t *handle, int nblocks)
379 {
380         transaction_t *transaction = handle->h_transaction;
381         journal_t *journal = transaction->t_journal;
382         int result;
383         int wanted;
384
385         result = -EIO;
386         if (is_handle_aborted(handle))
387                 goto out;
388
389         result = 1;
390
391         read_lock(&journal->j_state_lock);
392
393         /* Don't extend a locked-down transaction! */
394         if (handle->h_transaction->t_state != T_RUNNING) {
395                 jbd_debug(3, "denied handle %p %d blocks: "
396                           "transaction not running\n", handle, nblocks);
397                 goto error_out;
398         }
399
400         spin_lock(&transaction->t_handle_lock);
401         wanted = atomic_read(&transaction->t_outstanding_credits) + nblocks;
402
403         if (wanted > journal->j_max_transaction_buffers) {
404                 jbd_debug(3, "denied handle %p %d blocks: "
405                           "transaction too large\n", handle, nblocks);
406                 goto unlock;
407         }
408
409         if (wanted > __jbd2_log_space_left(journal)) {
410                 jbd_debug(3, "denied handle %p %d blocks: "
411                           "insufficient log space\n", handle, nblocks);
412                 goto unlock;
413         }
414
415         handle->h_buffer_credits += nblocks;
416         atomic_add(nblocks, &transaction->t_outstanding_credits);
417         result = 0;
418
419         jbd_debug(3, "extended handle %p by %d\n", handle, nblocks);
420 unlock:
421         spin_unlock(&transaction->t_handle_lock);
422 error_out:
423         read_unlock(&journal->j_state_lock);
424 out:
425         return result;
426 }
427
428
429 /**
430  * int jbd2_journal_restart() - restart a handle .
431  * @handle:  handle to restart
432  * @nblocks: nr credits requested
433  *
434  * Restart a handle for a multi-transaction filesystem
435  * operation.
436  *
437  * If the jbd2_journal_extend() call above fails to grant new buffer credits
438  * to a running handle, a call to jbd2_journal_restart will commit the
439  * handle's transaction so far and reattach the handle to a new
440  * transaction capabable of guaranteeing the requested number of
441  * credits.
442  */
443 int jbd2__journal_restart(handle_t *handle, int nblocks, int gfp_mask)
444 {
445         transaction_t *transaction = handle->h_transaction;
446         journal_t *journal = transaction->t_journal;
447         int ret;
448
449         /* If we've had an abort of any type, don't even think about
450          * actually doing the restart! */
451         if (is_handle_aborted(handle))
452                 return 0;
453
454         /*
455          * First unlink the handle from its current transaction, and start the
456          * commit on that.
457          */
458         J_ASSERT(atomic_read(&transaction->t_updates) > 0);
459         J_ASSERT(journal_current_handle() == handle);
460
461         read_lock(&journal->j_state_lock);
462         spin_lock(&transaction->t_handle_lock);
463         atomic_sub(handle->h_buffer_credits,
464                    &transaction->t_outstanding_credits);
465         if (atomic_dec_and_test(&transaction->t_updates))
466                 wake_up(&journal->j_wait_updates);
467         spin_unlock(&transaction->t_handle_lock);
468
469         jbd_debug(2, "restarting handle %p\n", handle);
470         __jbd2_log_start_commit(journal, transaction->t_tid);
471         read_unlock(&journal->j_state_lock);
472
473         lock_map_release(&handle->h_lockdep_map);
474         handle->h_buffer_credits = nblocks;
475         ret = start_this_handle(journal, handle, gfp_mask);
476         return ret;
477 }
478 EXPORT_SYMBOL(jbd2__journal_restart);
479
480
481 int jbd2_journal_restart(handle_t *handle, int nblocks)
482 {
483         return jbd2__journal_restart(handle, nblocks, GFP_NOFS);
484 }
485 EXPORT_SYMBOL(jbd2_journal_restart);
486
487 /**
488  * void jbd2_journal_lock_updates () - establish a transaction barrier.
489  * @journal:  Journal to establish a barrier on.
490  *
491  * This locks out any further updates from being started, and blocks
492  * until all existing updates have completed, returning only once the
493  * journal is in a quiescent state with no updates running.
494  *
495  * The journal lock should not be held on entry.
496  */
497 void jbd2_journal_lock_updates(journal_t *journal)
498 {
499         DEFINE_WAIT(wait);
500
501         write_lock(&journal->j_state_lock);
502         ++journal->j_barrier_count;
503
504         /* Wait until there are no running updates */
505         while (1) {
506                 transaction_t *transaction = journal->j_running_transaction;
507
508                 if (!transaction)
509                         break;
510
511                 spin_lock(&transaction->t_handle_lock);
512                 if (!atomic_read(&transaction->t_updates)) {
513                         spin_unlock(&transaction->t_handle_lock);
514                         break;
515                 }
516                 prepare_to_wait(&journal->j_wait_updates, &wait,
517                                 TASK_UNINTERRUPTIBLE);
518                 spin_unlock(&transaction->t_handle_lock);
519                 write_unlock(&journal->j_state_lock);
520                 schedule();
521                 finish_wait(&journal->j_wait_updates, &wait);
522                 write_lock(&journal->j_state_lock);
523         }
524         write_unlock(&journal->j_state_lock);
525
526         /*
527          * We have now established a barrier against other normal updates, but
528          * we also need to barrier against other jbd2_journal_lock_updates() calls
529          * to make sure that we serialise special journal-locked operations
530          * too.
531          */
532         mutex_lock(&journal->j_barrier);
533 }
534
535 /**
536  * void jbd2_journal_unlock_updates (journal_t* journal) - release barrier
537  * @journal:  Journal to release the barrier on.
538  *
539  * Release a transaction barrier obtained with jbd2_journal_lock_updates().
540  *
541  * Should be called without the journal lock held.
542  */
543 void jbd2_journal_unlock_updates (journal_t *journal)
544 {
545         J_ASSERT(journal->j_barrier_count != 0);
546
547         mutex_unlock(&journal->j_barrier);
548         write_lock(&journal->j_state_lock);
549         --journal->j_barrier_count;
550         write_unlock(&journal->j_state_lock);
551         wake_up(&journal->j_wait_transaction_locked);
552 }
553
554 static void warn_dirty_buffer(struct buffer_head *bh)
555 {
556         char b[BDEVNAME_SIZE];
557
558         printk(KERN_WARNING
559                "JBD: Spotted dirty metadata buffer (dev = %s, blocknr = %llu). "
560                "There's a risk of filesystem corruption in case of system "
561                "crash.\n",
562                bdevname(bh->b_bdev, b), (unsigned long long)bh->b_blocknr);
563 }
564
565 /*
566  * If the buffer is already part of the current transaction, then there
567  * is nothing we need to do.  If it is already part of a prior
568  * transaction which we are still committing to disk, then we need to
569  * make sure that we do not overwrite the old copy: we do copy-out to
570  * preserve the copy going to disk.  We also account the buffer against
571  * the handle's metadata buffer credits (unless the buffer is already
572  * part of the transaction, that is).
573  *
574  */
575 static int
576 do_get_write_access(handle_t *handle, struct journal_head *jh,
577                         int force_copy)
578 {
579         struct buffer_head *bh;
580         transaction_t *transaction;
581         journal_t *journal;
582         int error;
583         char *frozen_buffer = NULL;
584         int need_copy = 0;
585
586         if (is_handle_aborted(handle))
587                 return -EROFS;
588
589         transaction = handle->h_transaction;
590         journal = transaction->t_journal;
591
592         jbd_debug(5, "buffer_head %p, force_copy %d\n", jh, force_copy);
593
594         JBUFFER_TRACE(jh, "entry");
595 repeat:
596         bh = jh2bh(jh);
597
598         /* @@@ Need to check for errors here at some point. */
599
600         lock_buffer(bh);
601         jbd_lock_bh_state(bh);
602
603         /* We now hold the buffer lock so it is safe to query the buffer
604          * state.  Is the buffer dirty?
605          *
606          * If so, there are two possibilities.  The buffer may be
607          * non-journaled, and undergoing a quite legitimate writeback.
608          * Otherwise, it is journaled, and we don't expect dirty buffers
609          * in that state (the buffers should be marked JBD_Dirty
610          * instead.)  So either the IO is being done under our own
611          * control and this is a bug, or it's a third party IO such as
612          * dump(8) (which may leave the buffer scheduled for read ---
613          * ie. locked but not dirty) or tune2fs (which may actually have
614          * the buffer dirtied, ugh.)  */
615
616         if (buffer_dirty(bh)) {
617                 /*
618                  * First question: is this buffer already part of the current
619                  * transaction or the existing committing transaction?
620                  */
621                 if (jh->b_transaction) {
622                         J_ASSERT_JH(jh,
623                                 jh->b_transaction == transaction ||
624                                 jh->b_transaction ==
625                                         journal->j_committing_transaction);
626                         if (jh->b_next_transaction)
627                                 J_ASSERT_JH(jh, jh->b_next_transaction ==
628                                                         transaction);
629                         warn_dirty_buffer(bh);
630                 }
631                 /*
632                  * In any case we need to clean the dirty flag and we must
633                  * do it under the buffer lock to be sure we don't race
634                  * with running write-out.
635                  */
636                 JBUFFER_TRACE(jh, "Journalling dirty buffer");
637                 clear_buffer_dirty(bh);
638                 set_buffer_jbddirty(bh);
639         }
640
641         unlock_buffer(bh);
642
643         error = -EROFS;
644         if (is_handle_aborted(handle)) {
645                 jbd_unlock_bh_state(bh);
646                 goto out;
647         }
648         error = 0;
649
650         /*
651          * The buffer is already part of this transaction if b_transaction or
652          * b_next_transaction points to it
653          */
654         if (jh->b_transaction == transaction ||
655             jh->b_next_transaction == transaction)
656                 goto done;
657
658         /*
659          * this is the first time this transaction is touching this buffer,
660          * reset the modified flag
661          */
662        jh->b_modified = 0;
663
664         /*
665          * If there is already a copy-out version of this buffer, then we don't
666          * need to make another one
667          */
668         if (jh->b_frozen_data) {
669                 JBUFFER_TRACE(jh, "has frozen data");
670                 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
671                 jh->b_next_transaction = transaction;
672                 goto done;
673         }
674
675         /* Is there data here we need to preserve? */
676
677         if (jh->b_transaction && jh->b_transaction != transaction) {
678                 JBUFFER_TRACE(jh, "owned by older transaction");
679                 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
680                 J_ASSERT_JH(jh, jh->b_transaction ==
681                                         journal->j_committing_transaction);
682
683                 /* There is one case we have to be very careful about.
684                  * If the committing transaction is currently writing
685                  * this buffer out to disk and has NOT made a copy-out,
686                  * then we cannot modify the buffer contents at all
687                  * right now.  The essence of copy-out is that it is the
688                  * extra copy, not the primary copy, which gets
689                  * journaled.  If the primary copy is already going to
690                  * disk then we cannot do copy-out here. */
691
692                 if (jh->b_jlist == BJ_Shadow) {
693                         DEFINE_WAIT_BIT(wait, &bh->b_state, BH_Unshadow);
694                         wait_queue_head_t *wqh;
695
696                         wqh = bit_waitqueue(&bh->b_state, BH_Unshadow);
697
698                         JBUFFER_TRACE(jh, "on shadow: sleep");
699                         jbd_unlock_bh_state(bh);
700                         /* commit wakes up all shadow buffers after IO */
701                         for ( ; ; ) {
702                                 prepare_to_wait(wqh, &wait.wait,
703                                                 TASK_UNINTERRUPTIBLE);
704                                 if (jh->b_jlist != BJ_Shadow)
705                                         break;
706                                 schedule();
707                         }
708                         finish_wait(wqh, &wait.wait);
709                         goto repeat;
710                 }
711
712                 /* Only do the copy if the currently-owning transaction
713                  * still needs it.  If it is on the Forget list, the
714                  * committing transaction is past that stage.  The
715                  * buffer had better remain locked during the kmalloc,
716                  * but that should be true --- we hold the journal lock
717                  * still and the buffer is already on the BUF_JOURNAL
718                  * list so won't be flushed.
719                  *
720                  * Subtle point, though: if this is a get_undo_access,
721                  * then we will be relying on the frozen_data to contain
722                  * the new value of the committed_data record after the
723                  * transaction, so we HAVE to force the frozen_data copy
724                  * in that case. */
725
726                 if (jh->b_jlist != BJ_Forget || force_copy) {
727                         JBUFFER_TRACE(jh, "generate frozen data");
728                         if (!frozen_buffer) {
729                                 JBUFFER_TRACE(jh, "allocate memory for buffer");
730                                 jbd_unlock_bh_state(bh);
731                                 frozen_buffer =
732                                         jbd2_alloc(jh2bh(jh)->b_size,
733                                                          GFP_NOFS);
734                                 if (!frozen_buffer) {
735                                         printk(KERN_EMERG
736                                                "%s: OOM for frozen_buffer\n",
737                                                __func__);
738                                         JBUFFER_TRACE(jh, "oom!");
739                                         error = -ENOMEM;
740                                         jbd_lock_bh_state(bh);
741                                         goto done;
742                                 }
743                                 goto repeat;
744                         }
745                         jh->b_frozen_data = frozen_buffer;
746                         frozen_buffer = NULL;
747                         need_copy = 1;
748                 }
749                 jh->b_next_transaction = transaction;
750         }
751
752
753         /*
754          * Finally, if the buffer is not journaled right now, we need to make
755          * sure it doesn't get written to disk before the caller actually
756          * commits the new data
757          */
758         if (!jh->b_transaction) {
759                 JBUFFER_TRACE(jh, "no transaction");
760                 J_ASSERT_JH(jh, !jh->b_next_transaction);
761                 jh->b_transaction = transaction;
762                 JBUFFER_TRACE(jh, "file as BJ_Reserved");
763                 spin_lock(&journal->j_list_lock);
764                 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
765                 spin_unlock(&journal->j_list_lock);
766         }
767
768 done:
769         if (need_copy) {
770                 struct page *page;
771                 int offset;
772                 char *source;
773
774                 J_EXPECT_JH(jh, buffer_uptodate(jh2bh(jh)),
775                             "Possible IO failure.\n");
776                 page = jh2bh(jh)->b_page;
777                 offset = ((unsigned long) jh2bh(jh)->b_data) & ~PAGE_MASK;
778                 source = kmap_atomic(page, KM_USER0);
779                 /* Fire data frozen trigger just before we copy the data */
780                 jbd2_buffer_frozen_trigger(jh, source + offset,
781                                            jh->b_triggers);
782                 memcpy(jh->b_frozen_data, source+offset, jh2bh(jh)->b_size);
783                 kunmap_atomic(source, KM_USER0);
784
785                 /*
786                  * Now that the frozen data is saved off, we need to store
787                  * any matching triggers.
788                  */
789                 jh->b_frozen_triggers = jh->b_triggers;
790         }
791         jbd_unlock_bh_state(bh);
792
793         /*
794          * If we are about to journal a buffer, then any revoke pending on it is
795          * no longer valid
796          */
797         jbd2_journal_cancel_revoke(handle, jh);
798
799 out:
800         if (unlikely(frozen_buffer))    /* It's usually NULL */
801                 jbd2_free(frozen_buffer, bh->b_size);
802
803         JBUFFER_TRACE(jh, "exit");
804         return error;
805 }
806
807 /**
808  * int jbd2_journal_get_write_access() - notify intent to modify a buffer for metadata (not data) update.
809  * @handle: transaction to add buffer modifications to
810  * @bh:     bh to be used for metadata writes
811  * @credits: variable that will receive credits for the buffer
812  *
813  * Returns an error code or 0 on success.
814  *
815  * In full data journalling mode the buffer may be of type BJ_AsyncData,
816  * because we're write()ing a buffer which is also part of a shared mapping.
817  */
818
819 int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh)
820 {
821         struct journal_head *jh = jbd2_journal_add_journal_head(bh);
822         int rc;
823
824         /* We do not want to get caught playing with fields which the
825          * log thread also manipulates.  Make sure that the buffer
826          * completes any outstanding IO before proceeding. */
827         rc = do_get_write_access(handle, jh, 0);
828         jbd2_journal_put_journal_head(jh);
829         return rc;
830 }
831
832
833 /*
834  * When the user wants to journal a newly created buffer_head
835  * (ie. getblk() returned a new buffer and we are going to populate it
836  * manually rather than reading off disk), then we need to keep the
837  * buffer_head locked until it has been completely filled with new
838  * data.  In this case, we should be able to make the assertion that
839  * the bh is not already part of an existing transaction.
840  *
841  * The buffer should already be locked by the caller by this point.
842  * There is no lock ranking violation: it was a newly created,
843  * unlocked buffer beforehand. */
844
845 /**
846  * int jbd2_journal_get_create_access () - notify intent to use newly created bh
847  * @handle: transaction to new buffer to
848  * @bh: new buffer.
849  *
850  * Call this if you create a new bh.
851  */
852 int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh)
853 {
854         transaction_t *transaction = handle->h_transaction;
855         journal_t *journal = transaction->t_journal;
856         struct journal_head *jh = jbd2_journal_add_journal_head(bh);
857         int err;
858
859         jbd_debug(5, "journal_head %p\n", jh);
860         err = -EROFS;
861         if (is_handle_aborted(handle))
862                 goto out;
863         err = 0;
864
865         JBUFFER_TRACE(jh, "entry");
866         /*
867          * The buffer may already belong to this transaction due to pre-zeroing
868          * in the filesystem's new_block code.  It may also be on the previous,
869          * committing transaction's lists, but it HAS to be in Forget state in
870          * that case: the transaction must have deleted the buffer for it to be
871          * reused here.
872          */
873         jbd_lock_bh_state(bh);
874         spin_lock(&journal->j_list_lock);
875         J_ASSERT_JH(jh, (jh->b_transaction == transaction ||
876                 jh->b_transaction == NULL ||
877                 (jh->b_transaction == journal->j_committing_transaction &&
878                           jh->b_jlist == BJ_Forget)));
879
880         J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
881         J_ASSERT_JH(jh, buffer_locked(jh2bh(jh)));
882
883         if (jh->b_transaction == NULL) {
884                 /*
885                  * Previous jbd2_journal_forget() could have left the buffer
886                  * with jbddirty bit set because it was being committed. When
887                  * the commit finished, we've filed the buffer for
888                  * checkpointing and marked it dirty. Now we are reallocating
889                  * the buffer so the transaction freeing it must have
890                  * committed and so it's safe to clear the dirty bit.
891                  */
892                 clear_buffer_dirty(jh2bh(jh));
893                 jh->b_transaction = transaction;
894
895                 /* first access by this transaction */
896                 jh->b_modified = 0;
897
898                 JBUFFER_TRACE(jh, "file as BJ_Reserved");
899                 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
900         } else if (jh->b_transaction == journal->j_committing_transaction) {
901                 /* first access by this transaction */
902                 jh->b_modified = 0;
903
904                 JBUFFER_TRACE(jh, "set next transaction");
905                 jh->b_next_transaction = transaction;
906         }
907         spin_unlock(&journal->j_list_lock);
908         jbd_unlock_bh_state(bh);
909
910         /*
911          * akpm: I added this.  ext3_alloc_branch can pick up new indirect
912          * blocks which contain freed but then revoked metadata.  We need
913          * to cancel the revoke in case we end up freeing it yet again
914          * and the reallocating as data - this would cause a second revoke,
915          * which hits an assertion error.
916          */
917         JBUFFER_TRACE(jh, "cancelling revoke");
918         jbd2_journal_cancel_revoke(handle, jh);
919         jbd2_journal_put_journal_head(jh);
920 out:
921         return err;
922 }
923
924 /**
925  * int jbd2_journal_get_undo_access() -  Notify intent to modify metadata with
926  *     non-rewindable consequences
927  * @handle: transaction
928  * @bh: buffer to undo
929  * @credits: store the number of taken credits here (if not NULL)
930  *
931  * Sometimes there is a need to distinguish between metadata which has
932  * been committed to disk and that which has not.  The ext3fs code uses
933  * this for freeing and allocating space, we have to make sure that we
934  * do not reuse freed space until the deallocation has been committed,
935  * since if we overwrote that space we would make the delete
936  * un-rewindable in case of a crash.
937  *
938  * To deal with that, jbd2_journal_get_undo_access requests write access to a
939  * buffer for parts of non-rewindable operations such as delete
940  * operations on the bitmaps.  The journaling code must keep a copy of
941  * the buffer's contents prior to the undo_access call until such time
942  * as we know that the buffer has definitely been committed to disk.
943  *
944  * We never need to know which transaction the committed data is part
945  * of, buffers touched here are guaranteed to be dirtied later and so
946  * will be committed to a new transaction in due course, at which point
947  * we can discard the old committed data pointer.
948  *
949  * Returns error number or 0 on success.
950  */
951 int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh)
952 {
953         int err;
954         struct journal_head *jh = jbd2_journal_add_journal_head(bh);
955         char *committed_data = NULL;
956
957         JBUFFER_TRACE(jh, "entry");
958
959         /*
960          * Do this first --- it can drop the journal lock, so we want to
961          * make sure that obtaining the committed_data is done
962          * atomically wrt. completion of any outstanding commits.
963          */
964         err = do_get_write_access(handle, jh, 1);
965         if (err)
966                 goto out;
967
968 repeat:
969         if (!jh->b_committed_data) {
970                 committed_data = jbd2_alloc(jh2bh(jh)->b_size, GFP_NOFS);
971                 if (!committed_data) {
972                         printk(KERN_EMERG "%s: No memory for committed data\n",
973                                 __func__);
974                         err = -ENOMEM;
975                         goto out;
976                 }
977         }
978
979         jbd_lock_bh_state(bh);
980         if (!jh->b_committed_data) {
981                 /* Copy out the current buffer contents into the
982                  * preserved, committed copy. */
983                 JBUFFER_TRACE(jh, "generate b_committed data");
984                 if (!committed_data) {
985                         jbd_unlock_bh_state(bh);
986                         goto repeat;
987                 }
988
989                 jh->b_committed_data = committed_data;
990                 committed_data = NULL;
991                 memcpy(jh->b_committed_data, bh->b_data, bh->b_size);
992         }
993         jbd_unlock_bh_state(bh);
994 out:
995         jbd2_journal_put_journal_head(jh);
996         if (unlikely(committed_data))
997                 jbd2_free(committed_data, bh->b_size);
998         return err;
999 }
1000
1001 /**
1002  * void jbd2_journal_set_triggers() - Add triggers for commit writeout
1003  * @bh: buffer to trigger on
1004  * @type: struct jbd2_buffer_trigger_type containing the trigger(s).
1005  *
1006  * Set any triggers on this journal_head.  This is always safe, because
1007  * triggers for a committing buffer will be saved off, and triggers for
1008  * a running transaction will match the buffer in that transaction.
1009  *
1010  * Call with NULL to clear the triggers.
1011  */
1012 void jbd2_journal_set_triggers(struct buffer_head *bh,
1013                                struct jbd2_buffer_trigger_type *type)
1014 {
1015         struct journal_head *jh = bh2jh(bh);
1016
1017         jh->b_triggers = type;
1018 }
1019
1020 void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data,
1021                                 struct jbd2_buffer_trigger_type *triggers)
1022 {
1023         struct buffer_head *bh = jh2bh(jh);
1024
1025         if (!triggers || !triggers->t_frozen)
1026                 return;
1027
1028         triggers->t_frozen(triggers, bh, mapped_data, bh->b_size);
1029 }
1030
1031 void jbd2_buffer_abort_trigger(struct journal_head *jh,
1032                                struct jbd2_buffer_trigger_type *triggers)
1033 {
1034         if (!triggers || !triggers->t_abort)
1035                 return;
1036
1037         triggers->t_abort(triggers, jh2bh(jh));
1038 }
1039
1040
1041
1042 /**
1043  * int jbd2_journal_dirty_metadata() -  mark a buffer as containing dirty metadata
1044  * @handle: transaction to add buffer to.
1045  * @bh: buffer to mark
1046  *
1047  * mark dirty metadata which needs to be journaled as part of the current
1048  * transaction.
1049  *
1050  * The buffer is placed on the transaction's metadata list and is marked
1051  * as belonging to the transaction.
1052  *
1053  * Returns error number or 0 on success.
1054  *
1055  * Special care needs to be taken if the buffer already belongs to the
1056  * current committing transaction (in which case we should have frozen
1057  * data present for that commit).  In that case, we don't relink the
1058  * buffer: that only gets done when the old transaction finally
1059  * completes its commit.
1060  */
1061 int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh)
1062 {
1063         transaction_t *transaction = handle->h_transaction;
1064         journal_t *journal = transaction->t_journal;
1065         struct journal_head *jh = bh2jh(bh);
1066
1067         jbd_debug(5, "journal_head %p\n", jh);
1068         JBUFFER_TRACE(jh, "entry");
1069         if (is_handle_aborted(handle))
1070                 goto out;
1071
1072         jbd_lock_bh_state(bh);
1073
1074         if (jh->b_modified == 0) {
1075                 /*
1076                  * This buffer's got modified and becoming part
1077                  * of the transaction. This needs to be done
1078                  * once a transaction -bzzz
1079                  */
1080                 jh->b_modified = 1;
1081                 J_ASSERT_JH(jh, handle->h_buffer_credits > 0);
1082                 handle->h_buffer_credits--;
1083         }
1084
1085         /*
1086          * fastpath, to avoid expensive locking.  If this buffer is already
1087          * on the running transaction's metadata list there is nothing to do.
1088          * Nobody can take it off again because there is a handle open.
1089          * I _think_ we're OK here with SMP barriers - a mistaken decision will
1090          * result in this test being false, so we go in and take the locks.
1091          */
1092         if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) {
1093                 JBUFFER_TRACE(jh, "fastpath");
1094                 J_ASSERT_JH(jh, jh->b_transaction ==
1095                                         journal->j_running_transaction);
1096                 goto out_unlock_bh;
1097         }
1098
1099         set_buffer_jbddirty(bh);
1100
1101         /*
1102          * Metadata already on the current transaction list doesn't
1103          * need to be filed.  Metadata on another transaction's list must
1104          * be committing, and will be refiled once the commit completes:
1105          * leave it alone for now.
1106          */
1107         if (jh->b_transaction != transaction) {
1108                 JBUFFER_TRACE(jh, "already on other transaction");
1109                 J_ASSERT_JH(jh, jh->b_transaction ==
1110                                         journal->j_committing_transaction);
1111                 J_ASSERT_JH(jh, jh->b_next_transaction == transaction);
1112                 /* And this case is illegal: we can't reuse another
1113                  * transaction's data buffer, ever. */
1114                 goto out_unlock_bh;
1115         }
1116
1117         /* That test should have eliminated the following case: */
1118         J_ASSERT_JH(jh, jh->b_frozen_data == NULL);
1119
1120         JBUFFER_TRACE(jh, "file as BJ_Metadata");
1121         spin_lock(&journal->j_list_lock);
1122         __jbd2_journal_file_buffer(jh, handle->h_transaction, BJ_Metadata);
1123         spin_unlock(&journal->j_list_lock);
1124 out_unlock_bh:
1125         jbd_unlock_bh_state(bh);
1126 out:
1127         JBUFFER_TRACE(jh, "exit");
1128         return 0;
1129 }
1130
1131 /*
1132  * jbd2_journal_release_buffer: undo a get_write_access without any buffer
1133  * updates, if the update decided in the end that it didn't need access.
1134  *
1135  */
1136 void
1137 jbd2_journal_release_buffer(handle_t *handle, struct buffer_head *bh)
1138 {
1139         BUFFER_TRACE(bh, "entry");
1140 }
1141
1142 /**
1143  * void jbd2_journal_forget() - bforget() for potentially-journaled buffers.
1144  * @handle: transaction handle
1145  * @bh:     bh to 'forget'
1146  *
1147  * We can only do the bforget if there are no commits pending against the
1148  * buffer.  If the buffer is dirty in the current running transaction we
1149  * can safely unlink it.
1150  *
1151  * bh may not be a journalled buffer at all - it may be a non-JBD
1152  * buffer which came off the hashtable.  Check for this.
1153  *
1154  * Decrements bh->b_count by one.
1155  *
1156  * Allow this call even if the handle has aborted --- it may be part of
1157  * the caller's cleanup after an abort.
1158  */
1159 int jbd2_journal_forget (handle_t *handle, struct buffer_head *bh)
1160 {
1161         transaction_t *transaction = handle->h_transaction;
1162         journal_t *journal = transaction->t_journal;
1163         struct journal_head *jh;
1164         int drop_reserve = 0;
1165         int err = 0;
1166         int was_modified = 0;
1167
1168         BUFFER_TRACE(bh, "entry");
1169
1170         jbd_lock_bh_state(bh);
1171         spin_lock(&journal->j_list_lock);
1172
1173         if (!buffer_jbd(bh))
1174                 goto not_jbd;
1175         jh = bh2jh(bh);
1176
1177         /* Critical error: attempting to delete a bitmap buffer, maybe?
1178          * Don't do any jbd operations, and return an error. */
1179         if (!J_EXPECT_JH(jh, !jh->b_committed_data,
1180                          "inconsistent data on disk")) {
1181                 err = -EIO;
1182                 goto not_jbd;
1183         }
1184
1185         /* keep track of wether or not this transaction modified us */
1186         was_modified = jh->b_modified;
1187
1188         /*
1189          * The buffer's going from the transaction, we must drop
1190          * all references -bzzz
1191          */
1192         jh->b_modified = 0;
1193
1194         if (jh->b_transaction == handle->h_transaction) {
1195                 J_ASSERT_JH(jh, !jh->b_frozen_data);
1196
1197                 /* If we are forgetting a buffer which is already part
1198                  * of this transaction, then we can just drop it from
1199                  * the transaction immediately. */
1200                 clear_buffer_dirty(bh);
1201                 clear_buffer_jbddirty(bh);
1202
1203                 JBUFFER_TRACE(jh, "belongs to current transaction: unfile");
1204
1205                 /*
1206                  * we only want to drop a reference if this transaction
1207                  * modified the buffer
1208                  */
1209                 if (was_modified)
1210                         drop_reserve = 1;
1211
1212                 /*
1213                  * We are no longer going to journal this buffer.
1214                  * However, the commit of this transaction is still
1215                  * important to the buffer: the delete that we are now
1216                  * processing might obsolete an old log entry, so by
1217                  * committing, we can satisfy the buffer's checkpoint.
1218                  *
1219                  * So, if we have a checkpoint on the buffer, we should
1220                  * now refile the buffer on our BJ_Forget list so that
1221                  * we know to remove the checkpoint after we commit.
1222                  */
1223
1224                 if (jh->b_cp_transaction) {
1225                         __jbd2_journal_temp_unlink_buffer(jh);
1226                         __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1227                 } else {
1228                         __jbd2_journal_unfile_buffer(jh);
1229                         jbd2_journal_remove_journal_head(bh);
1230                         __brelse(bh);
1231                         if (!buffer_jbd(bh)) {
1232                                 spin_unlock(&journal->j_list_lock);
1233                                 jbd_unlock_bh_state(bh);
1234                                 __bforget(bh);
1235                                 goto drop;
1236                         }
1237                 }
1238         } else if (jh->b_transaction) {
1239                 J_ASSERT_JH(jh, (jh->b_transaction ==
1240                                  journal->j_committing_transaction));
1241                 /* However, if the buffer is still owned by a prior
1242                  * (committing) transaction, we can't drop it yet... */
1243                 JBUFFER_TRACE(jh, "belongs to older transaction");
1244                 /* ... but we CAN drop it from the new transaction if we
1245                  * have also modified it since the original commit. */
1246
1247                 if (jh->b_next_transaction) {
1248                         J_ASSERT(jh->b_next_transaction == transaction);
1249                         jh->b_next_transaction = NULL;
1250
1251                         /*
1252                          * only drop a reference if this transaction modified
1253                          * the buffer
1254                          */
1255                         if (was_modified)
1256                                 drop_reserve = 1;
1257                 }
1258         }
1259
1260 not_jbd:
1261         spin_unlock(&journal->j_list_lock);
1262         jbd_unlock_bh_state(bh);
1263         __brelse(bh);
1264 drop:
1265         if (drop_reserve) {
1266                 /* no need to reserve log space for this block -bzzz */
1267                 handle->h_buffer_credits++;
1268         }
1269         return err;
1270 }
1271
1272 /**
1273  * int jbd2_journal_stop() - complete a transaction
1274  * @handle: tranaction to complete.
1275  *
1276  * All done for a particular handle.
1277  *
1278  * There is not much action needed here.  We just return any remaining
1279  * buffer credits to the transaction and remove the handle.  The only
1280  * complication is that we need to start a commit operation if the
1281  * filesystem is marked for synchronous update.
1282  *
1283  * jbd2_journal_stop itself will not usually return an error, but it may
1284  * do so in unusual circumstances.  In particular, expect it to
1285  * return -EIO if a jbd2_journal_abort has been executed since the
1286  * transaction began.
1287  */
1288 int jbd2_journal_stop(handle_t *handle)
1289 {
1290         transaction_t *transaction = handle->h_transaction;
1291         journal_t *journal = transaction->t_journal;
1292         int err, wait_for_commit = 0;
1293         tid_t tid;
1294         pid_t pid;
1295
1296         J_ASSERT(journal_current_handle() == handle);
1297
1298         if (is_handle_aborted(handle))
1299                 err = -EIO;
1300         else {
1301                 J_ASSERT(atomic_read(&transaction->t_updates) > 0);
1302                 err = 0;
1303         }
1304
1305         if (--handle->h_ref > 0) {
1306                 jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1307                           handle->h_ref);
1308                 return err;
1309         }
1310
1311         jbd_debug(4, "Handle %p going down\n", handle);
1312
1313         /*
1314          * Implement synchronous transaction batching.  If the handle
1315          * was synchronous, don't force a commit immediately.  Let's
1316          * yield and let another thread piggyback onto this
1317          * transaction.  Keep doing that while new threads continue to
1318          * arrive.  It doesn't cost much - we're about to run a commit
1319          * and sleep on IO anyway.  Speeds up many-threaded, many-dir
1320          * operations by 30x or more...
1321          *
1322          * We try and optimize the sleep time against what the
1323          * underlying disk can do, instead of having a static sleep
1324          * time.  This is useful for the case where our storage is so
1325          * fast that it is more optimal to go ahead and force a flush
1326          * and wait for the transaction to be committed than it is to
1327          * wait for an arbitrary amount of time for new writers to
1328          * join the transaction.  We achieve this by measuring how
1329          * long it takes to commit a transaction, and compare it with
1330          * how long this transaction has been running, and if run time
1331          * < commit time then we sleep for the delta and commit.  This
1332          * greatly helps super fast disks that would see slowdowns as
1333          * more threads started doing fsyncs.
1334          *
1335          * But don't do this if this process was the most recent one
1336          * to perform a synchronous write.  We do this to detect the
1337          * case where a single process is doing a stream of sync
1338          * writes.  No point in waiting for joiners in that case.
1339          */
1340         pid = current->pid;
1341         if (handle->h_sync && journal->j_last_sync_writer != pid) {
1342                 u64 commit_time, trans_time;
1343
1344                 journal->j_last_sync_writer = pid;
1345
1346                 read_lock(&journal->j_state_lock);
1347                 commit_time = journal->j_average_commit_time;
1348                 read_unlock(&journal->j_state_lock);
1349
1350                 trans_time = ktime_to_ns(ktime_sub(ktime_get(),
1351                                                    transaction->t_start_time));
1352
1353                 commit_time = max_t(u64, commit_time,
1354                                     1000*journal->j_min_batch_time);
1355                 commit_time = min_t(u64, commit_time,
1356                                     1000*journal->j_max_batch_time);
1357
1358                 if (trans_time < commit_time) {
1359                         ktime_t expires = ktime_add_ns(ktime_get(),
1360                                                        commit_time);
1361                         set_current_state(TASK_UNINTERRUPTIBLE);
1362                         schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1363                 }
1364         }
1365
1366         if (handle->h_sync)
1367                 transaction->t_synchronous_commit = 1;
1368         current->journal_info = NULL;
1369         atomic_sub(handle->h_buffer_credits,
1370                    &transaction->t_outstanding_credits);
1371
1372         /*
1373          * If the handle is marked SYNC, we need to set another commit
1374          * going!  We also want to force a commit if the current
1375          * transaction is occupying too much of the log, or if the
1376          * transaction is too old now.
1377          */
1378         if (handle->h_sync ||
1379             (atomic_read(&transaction->t_outstanding_credits) >
1380              journal->j_max_transaction_buffers) ||
1381             time_after_eq(jiffies, transaction->t_expires)) {
1382                 /* Do this even for aborted journals: an abort still
1383                  * completes the commit thread, it just doesn't write
1384                  * anything to disk. */
1385
1386                 jbd_debug(2, "transaction too old, requesting commit for "
1387                                         "handle %p\n", handle);
1388                 /* This is non-blocking */
1389                 jbd2_log_start_commit(journal, transaction->t_tid);
1390
1391                 /*
1392                  * Special case: JBD2_SYNC synchronous updates require us
1393                  * to wait for the commit to complete.
1394                  */
1395                 if (handle->h_sync && !(current->flags & PF_MEMALLOC))
1396                         wait_for_commit = 1;
1397         }
1398
1399         /*
1400          * Once we drop t_updates, if it goes to zero the transaction
1401          * could start commiting on us and eventually disappear.  So
1402          * once we do this, we must not dereference transaction
1403          * pointer again.
1404          */
1405         tid = transaction->t_tid;
1406         if (atomic_dec_and_test(&transaction->t_updates)) {
1407                 wake_up(&journal->j_wait_updates);
1408                 if (journal->j_barrier_count)
1409                         wake_up(&journal->j_wait_transaction_locked);
1410         }
1411
1412         if (wait_for_commit)
1413                 err = jbd2_log_wait_commit(journal, tid);
1414
1415         lock_map_release(&handle->h_lockdep_map);
1416
1417         jbd2_free_handle(handle);
1418         return err;
1419 }
1420
1421 /**
1422  * int jbd2_journal_force_commit() - force any uncommitted transactions
1423  * @journal: journal to force
1424  *
1425  * For synchronous operations: force any uncommitted transactions
1426  * to disk.  May seem kludgy, but it reuses all the handle batching
1427  * code in a very simple manner.
1428  */
1429 int jbd2_journal_force_commit(journal_t *journal)
1430 {
1431         handle_t *handle;
1432         int ret;
1433
1434         handle = jbd2_journal_start(journal, 1);
1435         if (IS_ERR(handle)) {
1436                 ret = PTR_ERR(handle);
1437         } else {
1438                 handle->h_sync = 1;
1439                 ret = jbd2_journal_stop(handle);
1440         }
1441         return ret;
1442 }
1443
1444 /*
1445  *
1446  * List management code snippets: various functions for manipulating the
1447  * transaction buffer lists.
1448  *
1449  */
1450
1451 /*
1452  * Append a buffer to a transaction list, given the transaction's list head
1453  * pointer.
1454  *
1455  * j_list_lock is held.
1456  *
1457  * jbd_lock_bh_state(jh2bh(jh)) is held.
1458  */
1459
1460 static inline void
1461 __blist_add_buffer(struct journal_head **list, struct journal_head *jh)
1462 {
1463         if (!*list) {
1464                 jh->b_tnext = jh->b_tprev = jh;
1465                 *list = jh;
1466         } else {
1467                 /* Insert at the tail of the list to preserve order */
1468                 struct journal_head *first = *list, *last = first->b_tprev;
1469                 jh->b_tprev = last;
1470                 jh->b_tnext = first;
1471                 last->b_tnext = first->b_tprev = jh;
1472         }
1473 }
1474
1475 /*
1476  * Remove a buffer from a transaction list, given the transaction's list
1477  * head pointer.
1478  *
1479  * Called with j_list_lock held, and the journal may not be locked.
1480  *
1481  * jbd_lock_bh_state(jh2bh(jh)) is held.
1482  */
1483
1484 static inline void
1485 __blist_del_buffer(struct journal_head **list, struct journal_head *jh)
1486 {
1487         if (*list == jh) {
1488                 *list = jh->b_tnext;
1489                 if (*list == jh)
1490                         *list = NULL;
1491         }
1492         jh->b_tprev->b_tnext = jh->b_tnext;
1493         jh->b_tnext->b_tprev = jh->b_tprev;
1494 }
1495
1496 /*
1497  * Remove a buffer from the appropriate transaction list.
1498  *
1499  * Note that this function can *change* the value of
1500  * bh->b_transaction->t_buffers, t_forget, t_iobuf_list, t_shadow_list,
1501  * t_log_list or t_reserved_list.  If the caller is holding onto a copy of one
1502  * of these pointers, it could go bad.  Generally the caller needs to re-read
1503  * the pointer from the transaction_t.
1504  *
1505  * Called under j_list_lock.  The journal may not be locked.
1506  */
1507 void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh)
1508 {
1509         struct journal_head **list = NULL;
1510         transaction_t *transaction;
1511         struct buffer_head *bh = jh2bh(jh);
1512
1513         J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
1514         transaction = jh->b_transaction;
1515         if (transaction)
1516                 assert_spin_locked(&transaction->t_journal->j_list_lock);
1517
1518         J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
1519         if (jh->b_jlist != BJ_None)
1520                 J_ASSERT_JH(jh, transaction != NULL);
1521
1522         switch (jh->b_jlist) {
1523         case BJ_None:
1524                 return;
1525         case BJ_Metadata:
1526                 transaction->t_nr_buffers--;
1527                 J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0);
1528                 list = &transaction->t_buffers;
1529                 break;
1530         case BJ_Forget:
1531                 list = &transaction->t_forget;
1532                 break;
1533         case BJ_IO:
1534                 list = &transaction->t_iobuf_list;
1535                 break;
1536         case BJ_Shadow:
1537                 list = &transaction->t_shadow_list;
1538                 break;
1539         case BJ_LogCtl:
1540                 list = &transaction->t_log_list;
1541                 break;
1542         case BJ_Reserved:
1543                 list = &transaction->t_reserved_list;
1544                 break;
1545         }
1546
1547         __blist_del_buffer(list, jh);
1548         jh->b_jlist = BJ_None;
1549         if (test_clear_buffer_jbddirty(bh))
1550                 mark_buffer_dirty(bh);  /* Expose it to the VM */
1551 }
1552
1553 void __jbd2_journal_unfile_buffer(struct journal_head *jh)
1554 {
1555         __jbd2_journal_temp_unlink_buffer(jh);
1556         jh->b_transaction = NULL;
1557 }
1558
1559 void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh)
1560 {
1561         jbd_lock_bh_state(jh2bh(jh));
1562         spin_lock(&journal->j_list_lock);
1563         __jbd2_journal_unfile_buffer(jh);
1564         spin_unlock(&journal->j_list_lock);
1565         jbd_unlock_bh_state(jh2bh(jh));
1566 }
1567
1568 /*
1569  * Called from jbd2_journal_try_to_free_buffers().
1570  *
1571  * Called under jbd_lock_bh_state(bh)
1572  */
1573 static void
1574 __journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh)
1575 {
1576         struct journal_head *jh;
1577
1578         jh = bh2jh(bh);
1579
1580         if (buffer_locked(bh) || buffer_dirty(bh))
1581                 goto out;
1582
1583         if (jh->b_next_transaction != NULL)
1584                 goto out;
1585
1586         spin_lock(&journal->j_list_lock);
1587         if (jh->b_cp_transaction != NULL && jh->b_transaction == NULL) {
1588                 /* written-back checkpointed metadata buffer */
1589                 if (jh->b_jlist == BJ_None) {
1590                         JBUFFER_TRACE(jh, "remove from checkpoint list");
1591                         __jbd2_journal_remove_checkpoint(jh);
1592                         jbd2_journal_remove_journal_head(bh);
1593                         __brelse(bh);
1594                 }
1595         }
1596         spin_unlock(&journal->j_list_lock);
1597 out:
1598         return;
1599 }
1600
1601 /**
1602  * int jbd2_journal_try_to_free_buffers() - try to free page buffers.
1603  * @journal: journal for operation
1604  * @page: to try and free
1605  * @gfp_mask: we use the mask to detect how hard should we try to release
1606  * buffers. If __GFP_WAIT and __GFP_FS is set, we wait for commit code to
1607  * release the buffers.
1608  *
1609  *
1610  * For all the buffers on this page,
1611  * if they are fully written out ordered data, move them onto BUF_CLEAN
1612  * so try_to_free_buffers() can reap them.
1613  *
1614  * This function returns non-zero if we wish try_to_free_buffers()
1615  * to be called. We do this if the page is releasable by try_to_free_buffers().
1616  * We also do it if the page has locked or dirty buffers and the caller wants
1617  * us to perform sync or async writeout.
1618  *
1619  * This complicates JBD locking somewhat.  We aren't protected by the
1620  * BKL here.  We wish to remove the buffer from its committing or
1621  * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer.
1622  *
1623  * This may *change* the value of transaction_t->t_datalist, so anyone
1624  * who looks at t_datalist needs to lock against this function.
1625  *
1626  * Even worse, someone may be doing a jbd2_journal_dirty_data on this
1627  * buffer.  So we need to lock against that.  jbd2_journal_dirty_data()
1628  * will come out of the lock with the buffer dirty, which makes it
1629  * ineligible for release here.
1630  *
1631  * Who else is affected by this?  hmm...  Really the only contender
1632  * is do_get_write_access() - it could be looking at the buffer while
1633  * journal_try_to_free_buffer() is changing its state.  But that
1634  * cannot happen because we never reallocate freed data as metadata
1635  * while the data is part of a transaction.  Yes?
1636  *
1637  * Return 0 on failure, 1 on success
1638  */
1639 int jbd2_journal_try_to_free_buffers(journal_t *journal,
1640                                 struct page *page, gfp_t gfp_mask)
1641 {
1642         struct buffer_head *head;
1643         struct buffer_head *bh;
1644         int ret = 0;
1645
1646         J_ASSERT(PageLocked(page));
1647
1648         head = page_buffers(page);
1649         bh = head;
1650         do {
1651                 struct journal_head *jh;
1652
1653                 /*
1654                  * We take our own ref against the journal_head here to avoid
1655                  * having to add tons of locking around each instance of
1656                  * jbd2_journal_remove_journal_head() and
1657                  * jbd2_journal_put_journal_head().
1658                  */
1659                 jh = jbd2_journal_grab_journal_head(bh);
1660                 if (!jh)
1661                         continue;
1662
1663                 jbd_lock_bh_state(bh);
1664                 __journal_try_to_free_buffer(journal, bh);
1665                 jbd2_journal_put_journal_head(jh);
1666                 jbd_unlock_bh_state(bh);
1667                 if (buffer_jbd(bh))
1668                         goto busy;
1669         } while ((bh = bh->b_this_page) != head);
1670
1671         ret = try_to_free_buffers(page);
1672
1673 busy:
1674         return ret;
1675 }
1676
1677 /*
1678  * This buffer is no longer needed.  If it is on an older transaction's
1679  * checkpoint list we need to record it on this transaction's forget list
1680  * to pin this buffer (and hence its checkpointing transaction) down until
1681  * this transaction commits.  If the buffer isn't on a checkpoint list, we
1682  * release it.
1683  * Returns non-zero if JBD no longer has an interest in the buffer.
1684  *
1685  * Called under j_list_lock.
1686  *
1687  * Called under jbd_lock_bh_state(bh).
1688  */
1689 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction)
1690 {
1691         int may_free = 1;
1692         struct buffer_head *bh = jh2bh(jh);
1693
1694         __jbd2_journal_unfile_buffer(jh);
1695
1696         if (jh->b_cp_transaction) {
1697                 JBUFFER_TRACE(jh, "on running+cp transaction");
1698                 /*
1699                  * We don't want to write the buffer anymore, clear the
1700                  * bit so that we don't confuse checks in
1701                  * __journal_file_buffer
1702                  */
1703                 clear_buffer_dirty(bh);
1704                 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1705                 may_free = 0;
1706         } else {
1707                 JBUFFER_TRACE(jh, "on running transaction");
1708                 jbd2_journal_remove_journal_head(bh);
1709                 __brelse(bh);
1710         }
1711         return may_free;
1712 }
1713
1714 /*
1715  * jbd2_journal_invalidatepage
1716  *
1717  * This code is tricky.  It has a number of cases to deal with.
1718  *
1719  * There are two invariants which this code relies on:
1720  *
1721  * i_size must be updated on disk before we start calling invalidatepage on the
1722  * data.
1723  *
1724  *  This is done in ext3 by defining an ext3_setattr method which
1725  *  updates i_size before truncate gets going.  By maintaining this
1726  *  invariant, we can be sure that it is safe to throw away any buffers
1727  *  attached to the current transaction: once the transaction commits,
1728  *  we know that the data will not be needed.
1729  *
1730  *  Note however that we can *not* throw away data belonging to the
1731  *  previous, committing transaction!
1732  *
1733  * Any disk blocks which *are* part of the previous, committing
1734  * transaction (and which therefore cannot be discarded immediately) are
1735  * not going to be reused in the new running transaction
1736  *
1737  *  The bitmap committed_data images guarantee this: any block which is
1738  *  allocated in one transaction and removed in the next will be marked
1739  *  as in-use in the committed_data bitmap, so cannot be reused until
1740  *  the next transaction to delete the block commits.  This means that
1741  *  leaving committing buffers dirty is quite safe: the disk blocks
1742  *  cannot be reallocated to a different file and so buffer aliasing is
1743  *  not possible.
1744  *
1745  *
1746  * The above applies mainly to ordered data mode.  In writeback mode we
1747  * don't make guarantees about the order in which data hits disk --- in
1748  * particular we don't guarantee that new dirty data is flushed before
1749  * transaction commit --- so it is always safe just to discard data
1750  * immediately in that mode.  --sct
1751  */
1752
1753 /*
1754  * The journal_unmap_buffer helper function returns zero if the buffer
1755  * concerned remains pinned as an anonymous buffer belonging to an older
1756  * transaction.
1757  *
1758  * We're outside-transaction here.  Either or both of j_running_transaction
1759  * and j_committing_transaction may be NULL.
1760  */
1761 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh)
1762 {
1763         transaction_t *transaction;
1764         struct journal_head *jh;
1765         int may_free = 1;
1766         int ret;
1767
1768         BUFFER_TRACE(bh, "entry");
1769
1770         /*
1771          * It is safe to proceed here without the j_list_lock because the
1772          * buffers cannot be stolen by try_to_free_buffers as long as we are
1773          * holding the page lock. --sct
1774          */
1775
1776         if (!buffer_jbd(bh))
1777                 goto zap_buffer_unlocked;
1778
1779         /* OK, we have data buffer in journaled mode */
1780         write_lock(&journal->j_state_lock);
1781         jbd_lock_bh_state(bh);
1782         spin_lock(&journal->j_list_lock);
1783
1784         jh = jbd2_journal_grab_journal_head(bh);
1785         if (!jh)
1786                 goto zap_buffer_no_jh;
1787
1788         /*
1789          * We cannot remove the buffer from checkpoint lists until the
1790          * transaction adding inode to orphan list (let's call it T)
1791          * is committed.  Otherwise if the transaction changing the
1792          * buffer would be cleaned from the journal before T is
1793          * committed, a crash will cause that the correct contents of
1794          * the buffer will be lost.  On the other hand we have to
1795          * clear the buffer dirty bit at latest at the moment when the
1796          * transaction marking the buffer as freed in the filesystem
1797          * structures is committed because from that moment on the
1798          * buffer can be reallocated and used by a different page.
1799          * Since the block hasn't been freed yet but the inode has
1800          * already been added to orphan list, it is safe for us to add
1801          * the buffer to BJ_Forget list of the newest transaction.
1802          */
1803         transaction = jh->b_transaction;
1804         if (transaction == NULL) {
1805                 /* First case: not on any transaction.  If it
1806                  * has no checkpoint link, then we can zap it:
1807                  * it's a writeback-mode buffer so we don't care
1808                  * if it hits disk safely. */
1809                 if (!jh->b_cp_transaction) {
1810                         JBUFFER_TRACE(jh, "not on any transaction: zap");
1811                         goto zap_buffer;
1812                 }
1813
1814                 if (!buffer_dirty(bh)) {
1815                         /* bdflush has written it.  We can drop it now */
1816                         goto zap_buffer;
1817                 }
1818
1819                 /* OK, it must be in the journal but still not
1820                  * written fully to disk: it's metadata or
1821                  * journaled data... */
1822
1823                 if (journal->j_running_transaction) {
1824                         /* ... and once the current transaction has
1825                          * committed, the buffer won't be needed any
1826                          * longer. */
1827                         JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget");
1828                         ret = __dispose_buffer(jh,
1829                                         journal->j_running_transaction);
1830                         jbd2_journal_put_journal_head(jh);
1831                         spin_unlock(&journal->j_list_lock);
1832                         jbd_unlock_bh_state(bh);
1833                         write_unlock(&journal->j_state_lock);
1834                         return ret;
1835                 } else {
1836                         /* There is no currently-running transaction. So the
1837                          * orphan record which we wrote for this file must have
1838                          * passed into commit.  We must attach this buffer to
1839                          * the committing transaction, if it exists. */
1840                         if (journal->j_committing_transaction) {
1841                                 JBUFFER_TRACE(jh, "give to committing trans");
1842                                 ret = __dispose_buffer(jh,
1843                                         journal->j_committing_transaction);
1844                                 jbd2_journal_put_journal_head(jh);
1845                                 spin_unlock(&journal->j_list_lock);
1846                                 jbd_unlock_bh_state(bh);
1847                                 write_unlock(&journal->j_state_lock);
1848                                 return ret;
1849                         } else {
1850                                 /* The orphan record's transaction has
1851                                  * committed.  We can cleanse this buffer */
1852                                 clear_buffer_jbddirty(bh);
1853                                 goto zap_buffer;
1854                         }
1855                 }
1856         } else if (transaction == journal->j_committing_transaction) {
1857                 JBUFFER_TRACE(jh, "on committing transaction");
1858                 /*
1859                  * The buffer is committing, we simply cannot touch
1860                  * it. So we just set j_next_transaction to the
1861                  * running transaction (if there is one) and mark
1862                  * buffer as freed so that commit code knows it should
1863                  * clear dirty bits when it is done with the buffer.
1864                  */
1865                 set_buffer_freed(bh);
1866                 if (journal->j_running_transaction && buffer_jbddirty(bh))
1867                         jh->b_next_transaction = journal->j_running_transaction;
1868                 jbd2_journal_put_journal_head(jh);
1869                 spin_unlock(&journal->j_list_lock);
1870                 jbd_unlock_bh_state(bh);
1871                 write_unlock(&journal->j_state_lock);
1872                 return 0;
1873         } else {
1874                 /* Good, the buffer belongs to the running transaction.
1875                  * We are writing our own transaction's data, not any
1876                  * previous one's, so it is safe to throw it away
1877                  * (remember that we expect the filesystem to have set
1878                  * i_size already for this truncate so recovery will not
1879                  * expose the disk blocks we are discarding here.) */
1880                 J_ASSERT_JH(jh, transaction == journal->j_running_transaction);
1881                 JBUFFER_TRACE(jh, "on running transaction");
1882                 may_free = __dispose_buffer(jh, transaction);
1883         }
1884
1885 zap_buffer:
1886         jbd2_journal_put_journal_head(jh);
1887 zap_buffer_no_jh:
1888         spin_unlock(&journal->j_list_lock);
1889         jbd_unlock_bh_state(bh);
1890         write_unlock(&journal->j_state_lock);
1891 zap_buffer_unlocked:
1892         clear_buffer_dirty(bh);
1893         J_ASSERT_BH(bh, !buffer_jbddirty(bh));
1894         clear_buffer_mapped(bh);
1895         clear_buffer_req(bh);
1896         clear_buffer_new(bh);
1897         bh->b_bdev = NULL;
1898         return may_free;
1899 }
1900
1901 /**
1902  * void jbd2_journal_invalidatepage()
1903  * @journal: journal to use for flush...
1904  * @page:    page to flush
1905  * @offset:  length of page to invalidate.
1906  *
1907  * Reap page buffers containing data after offset in page.
1908  *
1909  */
1910 void jbd2_journal_invalidatepage(journal_t *journal,
1911                       struct page *page,
1912                       unsigned long offset)
1913 {
1914         struct buffer_head *head, *bh, *next;
1915         unsigned int curr_off = 0;
1916         int may_free = 1;
1917
1918         if (!PageLocked(page))
1919                 BUG();
1920         if (!page_has_buffers(page))
1921                 return;
1922
1923         /* We will potentially be playing with lists other than just the
1924          * data lists (especially for journaled data mode), so be
1925          * cautious in our locking. */
1926
1927         head = bh = page_buffers(page);
1928         do {
1929                 unsigned int next_off = curr_off + bh->b_size;
1930                 next = bh->b_this_page;
1931
1932                 if (offset <= curr_off) {
1933                         /* This block is wholly outside the truncation point */
1934                         lock_buffer(bh);
1935                         may_free &= journal_unmap_buffer(journal, bh);
1936                         unlock_buffer(bh);
1937                 }
1938                 curr_off = next_off;
1939                 bh = next;
1940
1941         } while (bh != head);
1942
1943         if (!offset) {
1944                 if (may_free && try_to_free_buffers(page))
1945                         J_ASSERT(!page_has_buffers(page));
1946         }
1947 }
1948
1949 /*
1950  * File a buffer on the given transaction list.
1951  */
1952 void __jbd2_journal_file_buffer(struct journal_head *jh,
1953                         transaction_t *transaction, int jlist)
1954 {
1955         struct journal_head **list = NULL;
1956         int was_dirty = 0;
1957         struct buffer_head *bh = jh2bh(jh);
1958
1959         J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
1960         assert_spin_locked(&transaction->t_journal->j_list_lock);
1961
1962         J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
1963         J_ASSERT_JH(jh, jh->b_transaction == transaction ||
1964                                 jh->b_transaction == NULL);
1965
1966         if (jh->b_transaction && jh->b_jlist == jlist)
1967                 return;
1968
1969         if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
1970             jlist == BJ_Shadow || jlist == BJ_Forget) {
1971                 /*
1972                  * For metadata buffers, we track dirty bit in buffer_jbddirty
1973                  * instead of buffer_dirty. We should not see a dirty bit set
1974                  * here because we clear it in do_get_write_access but e.g.
1975                  * tune2fs can modify the sb and set the dirty bit at any time
1976                  * so we try to gracefully handle that.
1977                  */
1978                 if (buffer_dirty(bh))
1979                         warn_dirty_buffer(bh);
1980                 if (test_clear_buffer_dirty(bh) ||
1981                     test_clear_buffer_jbddirty(bh))
1982                         was_dirty = 1;
1983         }
1984
1985         if (jh->b_transaction)
1986                 __jbd2_journal_temp_unlink_buffer(jh);
1987         jh->b_transaction = transaction;
1988
1989         switch (jlist) {
1990         case BJ_None:
1991                 J_ASSERT_JH(jh, !jh->b_committed_data);
1992                 J_ASSERT_JH(jh, !jh->b_frozen_data);
1993                 return;
1994         case BJ_Metadata:
1995                 transaction->t_nr_buffers++;
1996                 list = &transaction->t_buffers;
1997                 break;
1998         case BJ_Forget:
1999                 list = &transaction->t_forget;
2000                 break;
2001         case BJ_IO:
2002                 list = &transaction->t_iobuf_list;
2003                 break;
2004         case BJ_Shadow:
2005                 list = &transaction->t_shadow_list;
2006                 break;
2007         case BJ_LogCtl:
2008                 list = &transaction->t_log_list;
2009                 break;
2010         case BJ_Reserved:
2011                 list = &transaction->t_reserved_list;
2012                 break;
2013         }
2014
2015         __blist_add_buffer(list, jh);
2016         jh->b_jlist = jlist;
2017
2018         if (was_dirty)
2019                 set_buffer_jbddirty(bh);
2020 }
2021
2022 void jbd2_journal_file_buffer(struct journal_head *jh,
2023                                 transaction_t *transaction, int jlist)
2024 {
2025         jbd_lock_bh_state(jh2bh(jh));
2026         spin_lock(&transaction->t_journal->j_list_lock);
2027         __jbd2_journal_file_buffer(jh, transaction, jlist);
2028         spin_unlock(&transaction->t_journal->j_list_lock);
2029         jbd_unlock_bh_state(jh2bh(jh));
2030 }
2031
2032 /*
2033  * Remove a buffer from its current buffer list in preparation for
2034  * dropping it from its current transaction entirely.  If the buffer has
2035  * already started to be used by a subsequent transaction, refile the
2036  * buffer on that transaction's metadata list.
2037  *
2038  * Called under journal->j_list_lock
2039  *
2040  * Called under jbd_lock_bh_state(jh2bh(jh))
2041  */
2042 void __jbd2_journal_refile_buffer(struct journal_head *jh)
2043 {
2044         int was_dirty, jlist;
2045         struct buffer_head *bh = jh2bh(jh);
2046
2047         J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2048         if (jh->b_transaction)
2049                 assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock);
2050
2051         /* If the buffer is now unused, just drop it. */
2052         if (jh->b_next_transaction == NULL) {
2053                 __jbd2_journal_unfile_buffer(jh);
2054                 return;
2055         }
2056
2057         /*
2058          * It has been modified by a later transaction: add it to the new
2059          * transaction's metadata list.
2060          */
2061
2062         was_dirty = test_clear_buffer_jbddirty(bh);
2063         __jbd2_journal_temp_unlink_buffer(jh);
2064         jh->b_transaction = jh->b_next_transaction;
2065         jh->b_next_transaction = NULL;
2066         if (buffer_freed(bh))
2067                 jlist = BJ_Forget;
2068         else if (jh->b_modified)
2069                 jlist = BJ_Metadata;
2070         else
2071                 jlist = BJ_Reserved;
2072         __jbd2_journal_file_buffer(jh, jh->b_transaction, jlist);
2073         J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING);
2074
2075         if (was_dirty)
2076                 set_buffer_jbddirty(bh);
2077 }
2078
2079 /*
2080  * For the unlocked version of this call, also make sure that any
2081  * hanging journal_head is cleaned up if necessary.
2082  *
2083  * __jbd2_journal_refile_buffer is usually called as part of a single locked
2084  * operation on a buffer_head, in which the caller is probably going to
2085  * be hooking the journal_head onto other lists.  In that case it is up
2086  * to the caller to remove the journal_head if necessary.  For the
2087  * unlocked jbd2_journal_refile_buffer call, the caller isn't going to be
2088  * doing anything else to the buffer so we need to do the cleanup
2089  * ourselves to avoid a jh leak.
2090  *
2091  * *** The journal_head may be freed by this call! ***
2092  */
2093 void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh)
2094 {
2095         struct buffer_head *bh = jh2bh(jh);
2096
2097         jbd_lock_bh_state(bh);
2098         spin_lock(&journal->j_list_lock);
2099
2100         __jbd2_journal_refile_buffer(jh);
2101         jbd_unlock_bh_state(bh);
2102         jbd2_journal_remove_journal_head(bh);
2103
2104         spin_unlock(&journal->j_list_lock);
2105         __brelse(bh);
2106 }
2107
2108 /*
2109  * File inode in the inode list of the handle's transaction
2110  */
2111 int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode)
2112 {
2113         transaction_t *transaction = handle->h_transaction;
2114         journal_t *journal = transaction->t_journal;
2115
2116         if (is_handle_aborted(handle))
2117                 return -EIO;
2118
2119         jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino,
2120                         transaction->t_tid);
2121
2122         /*
2123          * First check whether inode isn't already on the transaction's
2124          * lists without taking the lock. Note that this check is safe
2125          * without the lock as we cannot race with somebody removing inode
2126          * from the transaction. The reason is that we remove inode from the
2127          * transaction only in journal_release_jbd_inode() and when we commit
2128          * the transaction. We are guarded from the first case by holding
2129          * a reference to the inode. We are safe against the second case
2130          * because if jinode->i_transaction == transaction, commit code
2131          * cannot touch the transaction because we hold reference to it,
2132          * and if jinode->i_next_transaction == transaction, commit code
2133          * will only file the inode where we want it.
2134          */
2135         if (jinode->i_transaction == transaction ||
2136             jinode->i_next_transaction == transaction)
2137                 return 0;
2138
2139         spin_lock(&journal->j_list_lock);
2140
2141         if (jinode->i_transaction == transaction ||
2142             jinode->i_next_transaction == transaction)
2143                 goto done;
2144
2145         /* On some different transaction's list - should be
2146          * the committing one */
2147         if (jinode->i_transaction) {
2148                 J_ASSERT(jinode->i_next_transaction == NULL);
2149                 J_ASSERT(jinode->i_transaction ==
2150                                         journal->j_committing_transaction);
2151                 jinode->i_next_transaction = transaction;
2152                 goto done;
2153         }
2154         /* Not on any transaction list... */
2155         J_ASSERT(!jinode->i_next_transaction);
2156         jinode->i_transaction = transaction;
2157         list_add(&jinode->i_list, &transaction->t_inode_list);
2158 done:
2159         spin_unlock(&journal->j_list_lock);
2160
2161         return 0;
2162 }
2163
2164 /*
2165  * File truncate and transaction commit interact with each other in a
2166  * non-trivial way.  If a transaction writing data block A is
2167  * committing, we cannot discard the data by truncate until we have
2168  * written them.  Otherwise if we crashed after the transaction with
2169  * write has committed but before the transaction with truncate has
2170  * committed, we could see stale data in block A.  This function is a
2171  * helper to solve this problem.  It starts writeout of the truncated
2172  * part in case it is in the committing transaction.
2173  *
2174  * Filesystem code must call this function when inode is journaled in
2175  * ordered mode before truncation happens and after the inode has been
2176  * placed on orphan list with the new inode size. The second condition
2177  * avoids the race that someone writes new data and we start
2178  * committing the transaction after this function has been called but
2179  * before a transaction for truncate is started (and furthermore it
2180  * allows us to optimize the case where the addition to orphan list
2181  * happens in the same transaction as write --- we don't have to write
2182  * any data in such case).
2183  */
2184 int jbd2_journal_begin_ordered_truncate(journal_t *journal,
2185                                         struct jbd2_inode *jinode,
2186                                         loff_t new_size)
2187 {
2188         transaction_t *inode_trans, *commit_trans;
2189         int ret = 0;
2190
2191         /* This is a quick check to avoid locking if not necessary */
2192         if (!jinode->i_transaction)
2193                 goto out;
2194         /* Locks are here just to force reading of recent values, it is
2195          * enough that the transaction was not committing before we started
2196          * a transaction adding the inode to orphan list */
2197         read_lock(&journal->j_state_lock);
2198         commit_trans = journal->j_committing_transaction;
2199         read_unlock(&journal->j_state_lock);
2200         spin_lock(&journal->j_list_lock);
2201         inode_trans = jinode->i_transaction;
2202         spin_unlock(&journal->j_list_lock);
2203         if (inode_trans == commit_trans) {
2204                 ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping,
2205                         new_size, LLONG_MAX);
2206                 if (ret)
2207                         jbd2_journal_abort(journal, ret);
2208         }
2209 out:
2210         return ret;
2211 }