pandora: defconfig: update
[pandora-kernel.git] / fs / jbd / transaction.c
1 /*
2  * linux/fs/jbd/transaction.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5  *
6  * Copyright 1998 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Generic filesystem transaction handling code; part of the ext2fs
13  * journaling system.
14  *
15  * This file manages transactions (compound commits managed by the
16  * journaling code) and handles (individual atomic operations by the
17  * filesystem).
18  */
19
20 #include <linux/time.h>
21 #include <linux/fs.h>
22 #include <linux/jbd.h>
23 #include <linux/errno.h>
24 #include <linux/slab.h>
25 #include <linux/timer.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/hrtimer.h>
29 #include <linux/backing-dev.h>
30
31 static void __journal_temp_unlink_buffer(struct journal_head *jh);
32
33 /*
34  * get_transaction: obtain a new transaction_t object.
35  *
36  * Simply allocate and initialise a new transaction.  Create it in
37  * RUNNING state and add it to the current journal (which should not
38  * have an existing running transaction: we only make a new transaction
39  * once we have started to commit the old one).
40  *
41  * Preconditions:
42  *      The journal MUST be locked.  We don't perform atomic mallocs on the
43  *      new transaction and we can't block without protecting against other
44  *      processes trying to touch the journal while it is in transition.
45  *
46  * Called under j_state_lock
47  */
48
49 static transaction_t *
50 get_transaction(journal_t *journal, transaction_t *transaction)
51 {
52         transaction->t_journal = journal;
53         transaction->t_state = T_RUNNING;
54         transaction->t_start_time = ktime_get();
55         transaction->t_tid = journal->j_transaction_sequence++;
56         transaction->t_expires = jiffies + journal->j_commit_interval;
57         spin_lock_init(&transaction->t_handle_lock);
58
59         /* Set up the commit timer for the new transaction. */
60         journal->j_commit_timer.expires =
61                                 round_jiffies_up(transaction->t_expires);
62         add_timer(&journal->j_commit_timer);
63
64         J_ASSERT(journal->j_running_transaction == NULL);
65         journal->j_running_transaction = transaction;
66
67         return transaction;
68 }
69
70 /*
71  * Handle management.
72  *
73  * A handle_t is an object which represents a single atomic update to a
74  * filesystem, and which tracks all of the modifications which form part
75  * of that one update.
76  */
77
78 /*
79  * start_this_handle: Given a handle, deal with any locking or stalling
80  * needed to make sure that there is enough journal space for the handle
81  * to begin.  Attach the handle to a transaction and set up the
82  * transaction's buffer credits.
83  */
84
85 static int start_this_handle(journal_t *journal, handle_t *handle)
86 {
87         transaction_t *transaction;
88         int needed;
89         int nblocks = handle->h_buffer_credits;
90         transaction_t *new_transaction = NULL;
91         int ret = 0;
92
93         if (nblocks > journal->j_max_transaction_buffers) {
94                 printk(KERN_ERR "JBD: %s wants too many credits (%d > %d)\n",
95                        current->comm, nblocks,
96                        journal->j_max_transaction_buffers);
97                 ret = -ENOSPC;
98                 goto out;
99         }
100
101 alloc_transaction:
102         if (!journal->j_running_transaction) {
103                 new_transaction = kzalloc(sizeof(*new_transaction), GFP_NOFS);
104                 if (!new_transaction) {
105                         congestion_wait(BLK_RW_ASYNC, HZ/50);
106                         goto alloc_transaction;
107                 }
108         }
109
110         jbd_debug(3, "New handle %p going live.\n", handle);
111
112 repeat:
113
114         /*
115          * We need to hold j_state_lock until t_updates has been incremented,
116          * for proper journal barrier handling
117          */
118         spin_lock(&journal->j_state_lock);
119 repeat_locked:
120         if (is_journal_aborted(journal) ||
121             (journal->j_errno != 0 && !(journal->j_flags & JFS_ACK_ERR))) {
122                 spin_unlock(&journal->j_state_lock);
123                 ret = -EROFS;
124                 goto out;
125         }
126
127         /* Wait on the journal's transaction barrier if necessary */
128         if (journal->j_barrier_count) {
129                 spin_unlock(&journal->j_state_lock);
130                 wait_event(journal->j_wait_transaction_locked,
131                                 journal->j_barrier_count == 0);
132                 goto repeat;
133         }
134
135         if (!journal->j_running_transaction) {
136                 if (!new_transaction) {
137                         spin_unlock(&journal->j_state_lock);
138                         goto alloc_transaction;
139                 }
140                 get_transaction(journal, new_transaction);
141                 new_transaction = NULL;
142         }
143
144         transaction = journal->j_running_transaction;
145
146         /*
147          * If the current transaction is locked down for commit, wait for the
148          * lock to be released.
149          */
150         if (transaction->t_state == T_LOCKED) {
151                 DEFINE_WAIT(wait);
152
153                 prepare_to_wait(&journal->j_wait_transaction_locked,
154                                         &wait, TASK_UNINTERRUPTIBLE);
155                 spin_unlock(&journal->j_state_lock);
156                 schedule();
157                 finish_wait(&journal->j_wait_transaction_locked, &wait);
158                 goto repeat;
159         }
160
161         /*
162          * If there is not enough space left in the log to write all potential
163          * buffers requested by this operation, we need to stall pending a log
164          * checkpoint to free some more log space.
165          */
166         spin_lock(&transaction->t_handle_lock);
167         needed = transaction->t_outstanding_credits + nblocks;
168
169         if (needed > journal->j_max_transaction_buffers) {
170                 /*
171                  * If the current transaction is already too large, then start
172                  * to commit it: we can then go back and attach this handle to
173                  * a new transaction.
174                  */
175                 DEFINE_WAIT(wait);
176
177                 jbd_debug(2, "Handle %p starting new commit...\n", handle);
178                 spin_unlock(&transaction->t_handle_lock);
179                 prepare_to_wait(&journal->j_wait_transaction_locked, &wait,
180                                 TASK_UNINTERRUPTIBLE);
181                 __log_start_commit(journal, transaction->t_tid);
182                 spin_unlock(&journal->j_state_lock);
183                 schedule();
184                 finish_wait(&journal->j_wait_transaction_locked, &wait);
185                 goto repeat;
186         }
187
188         /*
189          * The commit code assumes that it can get enough log space
190          * without forcing a checkpoint.  This is *critical* for
191          * correctness: a checkpoint of a buffer which is also
192          * associated with a committing transaction creates a deadlock,
193          * so commit simply cannot force through checkpoints.
194          *
195          * We must therefore ensure the necessary space in the journal
196          * *before* starting to dirty potentially checkpointed buffers
197          * in the new transaction.
198          *
199          * The worst part is, any transaction currently committing can
200          * reduce the free space arbitrarily.  Be careful to account for
201          * those buffers when checkpointing.
202          */
203
204         /*
205          * @@@ AKPM: This seems rather over-defensive.  We're giving commit
206          * a _lot_ of headroom: 1/4 of the journal plus the size of
207          * the committing transaction.  Really, we only need to give it
208          * committing_transaction->t_outstanding_credits plus "enough" for
209          * the log control blocks.
210          * Also, this test is inconsistent with the matching one in
211          * journal_extend().
212          */
213         if (__log_space_left(journal) < jbd_space_needed(journal)) {
214                 jbd_debug(2, "Handle %p waiting for checkpoint...\n", handle);
215                 spin_unlock(&transaction->t_handle_lock);
216                 __log_wait_for_space(journal);
217                 goto repeat_locked;
218         }
219
220         /* OK, account for the buffers that this operation expects to
221          * use and add the handle to the running transaction. */
222
223         handle->h_transaction = transaction;
224         transaction->t_outstanding_credits += nblocks;
225         transaction->t_updates++;
226         transaction->t_handle_count++;
227         jbd_debug(4, "Handle %p given %d credits (total %d, free %d)\n",
228                   handle, nblocks, transaction->t_outstanding_credits,
229                   __log_space_left(journal));
230         spin_unlock(&transaction->t_handle_lock);
231         spin_unlock(&journal->j_state_lock);
232
233         lock_map_acquire(&handle->h_lockdep_map);
234 out:
235         if (unlikely(new_transaction))          /* It's usually NULL */
236                 kfree(new_transaction);
237         return ret;
238 }
239
240 static struct lock_class_key jbd_handle_key;
241
242 /* Allocate a new handle.  This should probably be in a slab... */
243 static handle_t *new_handle(int nblocks)
244 {
245         handle_t *handle = jbd_alloc_handle(GFP_NOFS);
246         if (!handle)
247                 return NULL;
248         memset(handle, 0, sizeof(*handle));
249         handle->h_buffer_credits = nblocks;
250         handle->h_ref = 1;
251
252         lockdep_init_map(&handle->h_lockdep_map, "jbd_handle", &jbd_handle_key, 0);
253
254         return handle;
255 }
256
257 /**
258  * handle_t *journal_start() - Obtain a new handle.
259  * @journal: Journal to start transaction on.
260  * @nblocks: number of block buffer we might modify
261  *
262  * We make sure that the transaction can guarantee at least nblocks of
263  * modified buffers in the log.  We block until the log can guarantee
264  * that much space.
265  *
266  * This function is visible to journal users (like ext3fs), so is not
267  * called with the journal already locked.
268  *
269  * Return a pointer to a newly allocated handle, or an ERR_PTR() value
270  * on failure.
271  */
272 handle_t *journal_start(journal_t *journal, int nblocks)
273 {
274         handle_t *handle = journal_current_handle();
275         int err;
276
277         if (!journal)
278                 return ERR_PTR(-EROFS);
279
280         if (handle) {
281                 J_ASSERT(handle->h_transaction->t_journal == journal);
282                 handle->h_ref++;
283                 return handle;
284         }
285
286         handle = new_handle(nblocks);
287         if (!handle)
288                 return ERR_PTR(-ENOMEM);
289
290         current->journal_info = handle;
291
292         err = start_this_handle(journal, handle);
293         if (err < 0) {
294                 jbd_free_handle(handle);
295                 current->journal_info = NULL;
296                 handle = ERR_PTR(err);
297         }
298         return handle;
299 }
300
301 /**
302  * int journal_extend() - extend buffer credits.
303  * @handle:  handle to 'extend'
304  * @nblocks: nr blocks to try to extend by.
305  *
306  * Some transactions, such as large extends and truncates, can be done
307  * atomically all at once or in several stages.  The operation requests
308  * a credit for a number of buffer modications in advance, but can
309  * extend its credit if it needs more.
310  *
311  * journal_extend tries to give the running handle more buffer credits.
312  * It does not guarantee that allocation - this is a best-effort only.
313  * The calling process MUST be able to deal cleanly with a failure to
314  * extend here.
315  *
316  * Return 0 on success, non-zero on failure.
317  *
318  * return code < 0 implies an error
319  * return code > 0 implies normal transaction-full status.
320  */
321 int journal_extend(handle_t *handle, int nblocks)
322 {
323         transaction_t *transaction = handle->h_transaction;
324         journal_t *journal = transaction->t_journal;
325         int result;
326         int wanted;
327
328         result = -EIO;
329         if (is_handle_aborted(handle))
330                 goto out;
331
332         result = 1;
333
334         spin_lock(&journal->j_state_lock);
335
336         /* Don't extend a locked-down transaction! */
337         if (handle->h_transaction->t_state != T_RUNNING) {
338                 jbd_debug(3, "denied handle %p %d blocks: "
339                           "transaction not running\n", handle, nblocks);
340                 goto error_out;
341         }
342
343         spin_lock(&transaction->t_handle_lock);
344         wanted = transaction->t_outstanding_credits + nblocks;
345
346         if (wanted > journal->j_max_transaction_buffers) {
347                 jbd_debug(3, "denied handle %p %d blocks: "
348                           "transaction too large\n", handle, nblocks);
349                 goto unlock;
350         }
351
352         if (wanted > __log_space_left(journal)) {
353                 jbd_debug(3, "denied handle %p %d blocks: "
354                           "insufficient log space\n", handle, nblocks);
355                 goto unlock;
356         }
357
358         handle->h_buffer_credits += nblocks;
359         transaction->t_outstanding_credits += nblocks;
360         result = 0;
361
362         jbd_debug(3, "extended handle %p by %d\n", handle, nblocks);
363 unlock:
364         spin_unlock(&transaction->t_handle_lock);
365 error_out:
366         spin_unlock(&journal->j_state_lock);
367 out:
368         return result;
369 }
370
371
372 /**
373  * int journal_restart() - restart a handle.
374  * @handle:  handle to restart
375  * @nblocks: nr credits requested
376  *
377  * Restart a handle for a multi-transaction filesystem
378  * operation.
379  *
380  * If the journal_extend() call above fails to grant new buffer credits
381  * to a running handle, a call to journal_restart will commit the
382  * handle's transaction so far and reattach the handle to a new
383  * transaction capabable of guaranteeing the requested number of
384  * credits.
385  */
386
387 int journal_restart(handle_t *handle, int nblocks)
388 {
389         transaction_t *transaction = handle->h_transaction;
390         journal_t *journal = transaction->t_journal;
391         int ret;
392
393         /* If we've had an abort of any type, don't even think about
394          * actually doing the restart! */
395         if (is_handle_aborted(handle))
396                 return 0;
397
398         /*
399          * First unlink the handle from its current transaction, and start the
400          * commit on that.
401          */
402         J_ASSERT(transaction->t_updates > 0);
403         J_ASSERT(journal_current_handle() == handle);
404
405         spin_lock(&journal->j_state_lock);
406         spin_lock(&transaction->t_handle_lock);
407         transaction->t_outstanding_credits -= handle->h_buffer_credits;
408         transaction->t_updates--;
409
410         if (!transaction->t_updates)
411                 wake_up(&journal->j_wait_updates);
412         spin_unlock(&transaction->t_handle_lock);
413
414         jbd_debug(2, "restarting handle %p\n", handle);
415         __log_start_commit(journal, transaction->t_tid);
416         spin_unlock(&journal->j_state_lock);
417
418         lock_map_release(&handle->h_lockdep_map);
419         handle->h_buffer_credits = nblocks;
420         ret = start_this_handle(journal, handle);
421         return ret;
422 }
423
424
425 /**
426  * void journal_lock_updates () - establish a transaction barrier.
427  * @journal:  Journal to establish a barrier on.
428  *
429  * This locks out any further updates from being started, and blocks
430  * until all existing updates have completed, returning only once the
431  * journal is in a quiescent state with no updates running.
432  *
433  * The journal lock should not be held on entry.
434  */
435 void journal_lock_updates(journal_t *journal)
436 {
437         DEFINE_WAIT(wait);
438
439         spin_lock(&journal->j_state_lock);
440         ++journal->j_barrier_count;
441
442         /* Wait until there are no running updates */
443         while (1) {
444                 transaction_t *transaction = journal->j_running_transaction;
445
446                 if (!transaction)
447                         break;
448
449                 spin_lock(&transaction->t_handle_lock);
450                 if (!transaction->t_updates) {
451                         spin_unlock(&transaction->t_handle_lock);
452                         break;
453                 }
454                 prepare_to_wait(&journal->j_wait_updates, &wait,
455                                 TASK_UNINTERRUPTIBLE);
456                 spin_unlock(&transaction->t_handle_lock);
457                 spin_unlock(&journal->j_state_lock);
458                 schedule();
459                 finish_wait(&journal->j_wait_updates, &wait);
460                 spin_lock(&journal->j_state_lock);
461         }
462         spin_unlock(&journal->j_state_lock);
463
464         /*
465          * We have now established a barrier against other normal updates, but
466          * we also need to barrier against other journal_lock_updates() calls
467          * to make sure that we serialise special journal-locked operations
468          * too.
469          */
470         mutex_lock(&journal->j_barrier);
471 }
472
473 /**
474  * void journal_unlock_updates (journal_t* journal) - release barrier
475  * @journal:  Journal to release the barrier on.
476  *
477  * Release a transaction barrier obtained with journal_lock_updates().
478  *
479  * Should be called without the journal lock held.
480  */
481 void journal_unlock_updates (journal_t *journal)
482 {
483         J_ASSERT(journal->j_barrier_count != 0);
484
485         mutex_unlock(&journal->j_barrier);
486         spin_lock(&journal->j_state_lock);
487         --journal->j_barrier_count;
488         spin_unlock(&journal->j_state_lock);
489         wake_up(&journal->j_wait_transaction_locked);
490 }
491
492 static void warn_dirty_buffer(struct buffer_head *bh)
493 {
494         char b[BDEVNAME_SIZE];
495
496         printk(KERN_WARNING
497                "JBD: Spotted dirty metadata buffer (dev = %s, blocknr = %llu). "
498                "There's a risk of filesystem corruption in case of system "
499                "crash.\n",
500                bdevname(bh->b_bdev, b), (unsigned long long)bh->b_blocknr);
501 }
502
503 /*
504  * If the buffer is already part of the current transaction, then there
505  * is nothing we need to do.  If it is already part of a prior
506  * transaction which we are still committing to disk, then we need to
507  * make sure that we do not overwrite the old copy: we do copy-out to
508  * preserve the copy going to disk.  We also account the buffer against
509  * the handle's metadata buffer credits (unless the buffer is already
510  * part of the transaction, that is).
511  *
512  */
513 static int
514 do_get_write_access(handle_t *handle, struct journal_head *jh,
515                         int force_copy)
516 {
517         struct buffer_head *bh;
518         transaction_t *transaction;
519         journal_t *journal;
520         int error;
521         char *frozen_buffer = NULL;
522         int need_copy = 0;
523
524         if (is_handle_aborted(handle))
525                 return -EROFS;
526
527         transaction = handle->h_transaction;
528         journal = transaction->t_journal;
529
530         jbd_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy);
531
532         JBUFFER_TRACE(jh, "entry");
533 repeat:
534         bh = jh2bh(jh);
535
536         /* @@@ Need to check for errors here at some point. */
537
538         lock_buffer(bh);
539         jbd_lock_bh_state(bh);
540
541         /* We now hold the buffer lock so it is safe to query the buffer
542          * state.  Is the buffer dirty?
543          *
544          * If so, there are two possibilities.  The buffer may be
545          * non-journaled, and undergoing a quite legitimate writeback.
546          * Otherwise, it is journaled, and we don't expect dirty buffers
547          * in that state (the buffers should be marked JBD_Dirty
548          * instead.)  So either the IO is being done under our own
549          * control and this is a bug, or it's a third party IO such as
550          * dump(8) (which may leave the buffer scheduled for read ---
551          * ie. locked but not dirty) or tune2fs (which may actually have
552          * the buffer dirtied, ugh.)  */
553
554         if (buffer_dirty(bh)) {
555                 /*
556                  * First question: is this buffer already part of the current
557                  * transaction or the existing committing transaction?
558                  */
559                 if (jh->b_transaction) {
560                         J_ASSERT_JH(jh,
561                                 jh->b_transaction == transaction ||
562                                 jh->b_transaction ==
563                                         journal->j_committing_transaction);
564                         if (jh->b_next_transaction)
565                                 J_ASSERT_JH(jh, jh->b_next_transaction ==
566                                                         transaction);
567                         warn_dirty_buffer(bh);
568                 }
569                 /*
570                  * In any case we need to clean the dirty flag and we must
571                  * do it under the buffer lock to be sure we don't race
572                  * with running write-out.
573                  */
574                 JBUFFER_TRACE(jh, "Journalling dirty buffer");
575                 clear_buffer_dirty(bh);
576                 set_buffer_jbddirty(bh);
577         }
578
579         unlock_buffer(bh);
580
581         error = -EROFS;
582         if (is_handle_aborted(handle)) {
583                 jbd_unlock_bh_state(bh);
584                 goto out;
585         }
586         error = 0;
587
588         /*
589          * The buffer is already part of this transaction if b_transaction or
590          * b_next_transaction points to it
591          */
592         if (jh->b_transaction == transaction ||
593             jh->b_next_transaction == transaction)
594                 goto done;
595
596         /*
597          * this is the first time this transaction is touching this buffer,
598          * reset the modified flag
599          */
600         jh->b_modified = 0;
601
602         /*
603          * If there is already a copy-out version of this buffer, then we don't
604          * need to make another one
605          */
606         if (jh->b_frozen_data) {
607                 JBUFFER_TRACE(jh, "has frozen data");
608                 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
609                 jh->b_next_transaction = transaction;
610                 goto done;
611         }
612
613         /* Is there data here we need to preserve? */
614
615         if (jh->b_transaction && jh->b_transaction != transaction) {
616                 JBUFFER_TRACE(jh, "owned by older transaction");
617                 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
618                 J_ASSERT_JH(jh, jh->b_transaction ==
619                                         journal->j_committing_transaction);
620
621                 /* There is one case we have to be very careful about.
622                  * If the committing transaction is currently writing
623                  * this buffer out to disk and has NOT made a copy-out,
624                  * then we cannot modify the buffer contents at all
625                  * right now.  The essence of copy-out is that it is the
626                  * extra copy, not the primary copy, which gets
627                  * journaled.  If the primary copy is already going to
628                  * disk then we cannot do copy-out here. */
629
630                 if (jh->b_jlist == BJ_Shadow) {
631                         DEFINE_WAIT_BIT(wait, &bh->b_state, BH_Unshadow);
632                         wait_queue_head_t *wqh;
633
634                         wqh = bit_waitqueue(&bh->b_state, BH_Unshadow);
635
636                         JBUFFER_TRACE(jh, "on shadow: sleep");
637                         jbd_unlock_bh_state(bh);
638                         /* commit wakes up all shadow buffers after IO */
639                         for ( ; ; ) {
640                                 prepare_to_wait(wqh, &wait.wait,
641                                                 TASK_UNINTERRUPTIBLE);
642                                 if (jh->b_jlist != BJ_Shadow)
643                                         break;
644                                 schedule();
645                         }
646                         finish_wait(wqh, &wait.wait);
647                         goto repeat;
648                 }
649
650                 /* Only do the copy if the currently-owning transaction
651                  * still needs it.  If it is on the Forget list, the
652                  * committing transaction is past that stage.  The
653                  * buffer had better remain locked during the kmalloc,
654                  * but that should be true --- we hold the journal lock
655                  * still and the buffer is already on the BUF_JOURNAL
656                  * list so won't be flushed.
657                  *
658                  * Subtle point, though: if this is a get_undo_access,
659                  * then we will be relying on the frozen_data to contain
660                  * the new value of the committed_data record after the
661                  * transaction, so we HAVE to force the frozen_data copy
662                  * in that case. */
663
664                 if (jh->b_jlist != BJ_Forget || force_copy) {
665                         JBUFFER_TRACE(jh, "generate frozen data");
666                         if (!frozen_buffer) {
667                                 JBUFFER_TRACE(jh, "allocate memory for buffer");
668                                 jbd_unlock_bh_state(bh);
669                                 frozen_buffer =
670                                         jbd_alloc(jh2bh(jh)->b_size,
671                                                          GFP_NOFS);
672                                 if (!frozen_buffer) {
673                                         printk(KERN_EMERG
674                                                "%s: OOM for frozen_buffer\n",
675                                                __func__);
676                                         JBUFFER_TRACE(jh, "oom!");
677                                         error = -ENOMEM;
678                                         jbd_lock_bh_state(bh);
679                                         goto done;
680                                 }
681                                 goto repeat;
682                         }
683                         jh->b_frozen_data = frozen_buffer;
684                         frozen_buffer = NULL;
685                         need_copy = 1;
686                 }
687                 jh->b_next_transaction = transaction;
688         }
689
690
691         /*
692          * Finally, if the buffer is not journaled right now, we need to make
693          * sure it doesn't get written to disk before the caller actually
694          * commits the new data
695          */
696         if (!jh->b_transaction) {
697                 JBUFFER_TRACE(jh, "no transaction");
698                 J_ASSERT_JH(jh, !jh->b_next_transaction);
699                 JBUFFER_TRACE(jh, "file as BJ_Reserved");
700                 spin_lock(&journal->j_list_lock);
701                 __journal_file_buffer(jh, transaction, BJ_Reserved);
702                 spin_unlock(&journal->j_list_lock);
703         }
704
705 done:
706         if (need_copy) {
707                 struct page *page;
708                 int offset;
709                 char *source;
710
711                 J_EXPECT_JH(jh, buffer_uptodate(jh2bh(jh)),
712                             "Possible IO failure.\n");
713                 page = jh2bh(jh)->b_page;
714                 offset = offset_in_page(jh2bh(jh)->b_data);
715                 source = kmap_atomic(page, KM_USER0);
716                 memcpy(jh->b_frozen_data, source+offset, jh2bh(jh)->b_size);
717                 kunmap_atomic(source, KM_USER0);
718         }
719         jbd_unlock_bh_state(bh);
720
721         /*
722          * If we are about to journal a buffer, then any revoke pending on it is
723          * no longer valid
724          */
725         journal_cancel_revoke(handle, jh);
726
727 out:
728         if (unlikely(frozen_buffer))    /* It's usually NULL */
729                 jbd_free(frozen_buffer, bh->b_size);
730
731         JBUFFER_TRACE(jh, "exit");
732         return error;
733 }
734
735 /**
736  * int journal_get_write_access() - notify intent to modify a buffer for metadata (not data) update.
737  * @handle: transaction to add buffer modifications to
738  * @bh:     bh to be used for metadata writes
739  *
740  * Returns an error code or 0 on success.
741  *
742  * In full data journalling mode the buffer may be of type BJ_AsyncData,
743  * because we're write()ing a buffer which is also part of a shared mapping.
744  */
745
746 int journal_get_write_access(handle_t *handle, struct buffer_head *bh)
747 {
748         struct journal_head *jh = journal_add_journal_head(bh);
749         int rc;
750
751         /* We do not want to get caught playing with fields which the
752          * log thread also manipulates.  Make sure that the buffer
753          * completes any outstanding IO before proceeding. */
754         rc = do_get_write_access(handle, jh, 0);
755         journal_put_journal_head(jh);
756         return rc;
757 }
758
759
760 /*
761  * When the user wants to journal a newly created buffer_head
762  * (ie. getblk() returned a new buffer and we are going to populate it
763  * manually rather than reading off disk), then we need to keep the
764  * buffer_head locked until it has been completely filled with new
765  * data.  In this case, we should be able to make the assertion that
766  * the bh is not already part of an existing transaction.
767  *
768  * The buffer should already be locked by the caller by this point.
769  * There is no lock ranking violation: it was a newly created,
770  * unlocked buffer beforehand. */
771
772 /**
773  * int journal_get_create_access () - notify intent to use newly created bh
774  * @handle: transaction to new buffer to
775  * @bh: new buffer.
776  *
777  * Call this if you create a new bh.
778  */
779 int journal_get_create_access(handle_t *handle, struct buffer_head *bh)
780 {
781         transaction_t *transaction = handle->h_transaction;
782         journal_t *journal = transaction->t_journal;
783         struct journal_head *jh = journal_add_journal_head(bh);
784         int err;
785
786         jbd_debug(5, "journal_head %p\n", jh);
787         err = -EROFS;
788         if (is_handle_aborted(handle))
789                 goto out;
790         err = 0;
791
792         JBUFFER_TRACE(jh, "entry");
793         /*
794          * The buffer may already belong to this transaction due to pre-zeroing
795          * in the filesystem's new_block code.  It may also be on the previous,
796          * committing transaction's lists, but it HAS to be in Forget state in
797          * that case: the transaction must have deleted the buffer for it to be
798          * reused here.
799          */
800         jbd_lock_bh_state(bh);
801         spin_lock(&journal->j_list_lock);
802         J_ASSERT_JH(jh, (jh->b_transaction == transaction ||
803                 jh->b_transaction == NULL ||
804                 (jh->b_transaction == journal->j_committing_transaction &&
805                           jh->b_jlist == BJ_Forget)));
806
807         J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
808         J_ASSERT_JH(jh, buffer_locked(jh2bh(jh)));
809
810         if (jh->b_transaction == NULL) {
811                 /*
812                  * Previous journal_forget() could have left the buffer
813                  * with jbddirty bit set because it was being committed. When
814                  * the commit finished, we've filed the buffer for
815                  * checkpointing and marked it dirty. Now we are reallocating
816                  * the buffer so the transaction freeing it must have
817                  * committed and so it's safe to clear the dirty bit.
818                  */
819                 clear_buffer_dirty(jh2bh(jh));
820
821                 /* first access by this transaction */
822                 jh->b_modified = 0;
823
824                 JBUFFER_TRACE(jh, "file as BJ_Reserved");
825                 __journal_file_buffer(jh, transaction, BJ_Reserved);
826         } else if (jh->b_transaction == journal->j_committing_transaction) {
827                 /* first access by this transaction */
828                 jh->b_modified = 0;
829
830                 JBUFFER_TRACE(jh, "set next transaction");
831                 jh->b_next_transaction = transaction;
832         }
833         spin_unlock(&journal->j_list_lock);
834         jbd_unlock_bh_state(bh);
835
836         /*
837          * akpm: I added this.  ext3_alloc_branch can pick up new indirect
838          * blocks which contain freed but then revoked metadata.  We need
839          * to cancel the revoke in case we end up freeing it yet again
840          * and the reallocating as data - this would cause a second revoke,
841          * which hits an assertion error.
842          */
843         JBUFFER_TRACE(jh, "cancelling revoke");
844         journal_cancel_revoke(handle, jh);
845 out:
846         journal_put_journal_head(jh);
847         return err;
848 }
849
850 /**
851  * int journal_get_undo_access() - Notify intent to modify metadata with non-rewindable consequences
852  * @handle: transaction
853  * @bh: buffer to undo
854  *
855  * Sometimes there is a need to distinguish between metadata which has
856  * been committed to disk and that which has not.  The ext3fs code uses
857  * this for freeing and allocating space, we have to make sure that we
858  * do not reuse freed space until the deallocation has been committed,
859  * since if we overwrote that space we would make the delete
860  * un-rewindable in case of a crash.
861  *
862  * To deal with that, journal_get_undo_access requests write access to a
863  * buffer for parts of non-rewindable operations such as delete
864  * operations on the bitmaps.  The journaling code must keep a copy of
865  * the buffer's contents prior to the undo_access call until such time
866  * as we know that the buffer has definitely been committed to disk.
867  *
868  * We never need to know which transaction the committed data is part
869  * of, buffers touched here are guaranteed to be dirtied later and so
870  * will be committed to a new transaction in due course, at which point
871  * we can discard the old committed data pointer.
872  *
873  * Returns error number or 0 on success.
874  */
875 int journal_get_undo_access(handle_t *handle, struct buffer_head *bh)
876 {
877         int err;
878         struct journal_head *jh = journal_add_journal_head(bh);
879         char *committed_data = NULL;
880
881         JBUFFER_TRACE(jh, "entry");
882
883         /*
884          * Do this first --- it can drop the journal lock, so we want to
885          * make sure that obtaining the committed_data is done
886          * atomically wrt. completion of any outstanding commits.
887          */
888         err = do_get_write_access(handle, jh, 1);
889         if (err)
890                 goto out;
891
892 repeat:
893         if (!jh->b_committed_data) {
894                 committed_data = jbd_alloc(jh2bh(jh)->b_size, GFP_NOFS);
895                 if (!committed_data) {
896                         printk(KERN_EMERG "%s: No memory for committed data\n",
897                                 __func__);
898                         err = -ENOMEM;
899                         goto out;
900                 }
901         }
902
903         jbd_lock_bh_state(bh);
904         if (!jh->b_committed_data) {
905                 /* Copy out the current buffer contents into the
906                  * preserved, committed copy. */
907                 JBUFFER_TRACE(jh, "generate b_committed data");
908                 if (!committed_data) {
909                         jbd_unlock_bh_state(bh);
910                         goto repeat;
911                 }
912
913                 jh->b_committed_data = committed_data;
914                 committed_data = NULL;
915                 memcpy(jh->b_committed_data, bh->b_data, bh->b_size);
916         }
917         jbd_unlock_bh_state(bh);
918 out:
919         journal_put_journal_head(jh);
920         if (unlikely(committed_data))
921                 jbd_free(committed_data, bh->b_size);
922         return err;
923 }
924
925 /**
926  * int journal_dirty_data() - mark a buffer as containing dirty data to be flushed
927  * @handle: transaction
928  * @bh: bufferhead to mark
929  *
930  * Description:
931  * Mark a buffer as containing dirty data which needs to be flushed before
932  * we can commit the current transaction.
933  *
934  * The buffer is placed on the transaction's data list and is marked as
935  * belonging to the transaction.
936  *
937  * Returns error number or 0 on success.
938  *
939  * journal_dirty_data() can be called via page_launder->ext3_writepage
940  * by kswapd.
941  */
942 int journal_dirty_data(handle_t *handle, struct buffer_head *bh)
943 {
944         journal_t *journal = handle->h_transaction->t_journal;
945         int need_brelse = 0;
946         struct journal_head *jh;
947         int ret = 0;
948
949         if (is_handle_aborted(handle))
950                 return ret;
951
952         jh = journal_add_journal_head(bh);
953         JBUFFER_TRACE(jh, "entry");
954
955         /*
956          * The buffer could *already* be dirty.  Writeout can start
957          * at any time.
958          */
959         jbd_debug(4, "jh: %p, tid:%d\n", jh, handle->h_transaction->t_tid);
960
961         /*
962          * What if the buffer is already part of a running transaction?
963          *
964          * There are two cases:
965          * 1) It is part of the current running transaction.  Refile it,
966          *    just in case we have allocated it as metadata, deallocated
967          *    it, then reallocated it as data.
968          * 2) It is part of the previous, still-committing transaction.
969          *    If all we want to do is to guarantee that the buffer will be
970          *    written to disk before this new transaction commits, then
971          *    being sure that the *previous* transaction has this same
972          *    property is sufficient for us!  Just leave it on its old
973          *    transaction.
974          *
975          * In case (2), the buffer must not already exist as metadata
976          * --- that would violate write ordering (a transaction is free
977          * to write its data at any point, even before the previous
978          * committing transaction has committed).  The caller must
979          * never, ever allow this to happen: there's nothing we can do
980          * about it in this layer.
981          */
982         jbd_lock_bh_state(bh);
983         spin_lock(&journal->j_list_lock);
984
985         /* Now that we have bh_state locked, are we really still mapped? */
986         if (!buffer_mapped(bh)) {
987                 JBUFFER_TRACE(jh, "unmapped buffer, bailing out");
988                 goto no_journal;
989         }
990
991         if (jh->b_transaction) {
992                 JBUFFER_TRACE(jh, "has transaction");
993                 if (jh->b_transaction != handle->h_transaction) {
994                         JBUFFER_TRACE(jh, "belongs to older transaction");
995                         J_ASSERT_JH(jh, jh->b_transaction ==
996                                         journal->j_committing_transaction);
997
998                         /* @@@ IS THIS TRUE  ? */
999                         /*
1000                          * Not any more.  Scenario: someone does a write()
1001                          * in data=journal mode.  The buffer's transaction has
1002                          * moved into commit.  Then someone does another
1003                          * write() to the file.  We do the frozen data copyout
1004                          * and set b_next_transaction to point to j_running_t.
1005                          * And while we're in that state, someone does a
1006                          * writepage() in an attempt to pageout the same area
1007                          * of the file via a shared mapping.  At present that
1008                          * calls journal_dirty_data(), and we get right here.
1009                          * It may be too late to journal the data.  Simply
1010                          * falling through to the next test will suffice: the
1011                          * data will be dirty and wil be checkpointed.  The
1012                          * ordering comments in the next comment block still
1013                          * apply.
1014                          */
1015                         //J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1016
1017                         /*
1018                          * If we're journalling data, and this buffer was
1019                          * subject to a write(), it could be metadata, forget
1020                          * or shadow against the committing transaction.  Now,
1021                          * someone has dirtied the same darn page via a mapping
1022                          * and it is being writepage()'d.
1023                          * We *could* just steal the page from commit, with some
1024                          * fancy locking there.  Instead, we just skip it -
1025                          * don't tie the page's buffers to the new transaction
1026                          * at all.
1027                          * Implication: if we crash before the writepage() data
1028                          * is written into the filesystem, recovery will replay
1029                          * the write() data.
1030                          */
1031                         if (jh->b_jlist != BJ_None &&
1032                                         jh->b_jlist != BJ_SyncData &&
1033                                         jh->b_jlist != BJ_Locked) {
1034                                 JBUFFER_TRACE(jh, "Not stealing");
1035                                 goto no_journal;
1036                         }
1037
1038                         /*
1039                          * This buffer may be undergoing writeout in commit.  We
1040                          * can't return from here and let the caller dirty it
1041                          * again because that can cause the write-out loop in
1042                          * commit to never terminate.
1043                          */
1044                         if (buffer_dirty(bh)) {
1045                                 get_bh(bh);
1046                                 spin_unlock(&journal->j_list_lock);
1047                                 jbd_unlock_bh_state(bh);
1048                                 need_brelse = 1;
1049                                 sync_dirty_buffer(bh);
1050                                 jbd_lock_bh_state(bh);
1051                                 spin_lock(&journal->j_list_lock);
1052                                 /* Since we dropped the lock... */
1053                                 if (!buffer_mapped(bh)) {
1054                                         JBUFFER_TRACE(jh, "buffer got unmapped");
1055                                         goto no_journal;
1056                                 }
1057                                 /* The buffer may become locked again at any
1058                                    time if it is redirtied */
1059                         }
1060
1061                         /*
1062                          * We cannot remove the buffer with io error from the
1063                          * committing transaction, because otherwise it would
1064                          * miss the error and the commit would not abort.
1065                          */
1066                         if (unlikely(!buffer_uptodate(bh))) {
1067                                 ret = -EIO;
1068                                 goto no_journal;
1069                         }
1070                         /* We might have slept so buffer could be refiled now */
1071                         if (jh->b_transaction != NULL &&
1072                             jh->b_transaction != handle->h_transaction) {
1073                                 JBUFFER_TRACE(jh, "unfile from commit");
1074                                 __journal_temp_unlink_buffer(jh);
1075                                 /* It still points to the committing
1076                                  * transaction; move it to this one so
1077                                  * that the refile assert checks are
1078                                  * happy. */
1079                                 jh->b_transaction = handle->h_transaction;
1080                         }
1081                         /* The buffer will be refiled below */
1082
1083                 }
1084                 /*
1085                  * Special case --- the buffer might actually have been
1086                  * allocated and then immediately deallocated in the previous,
1087                  * committing transaction, so might still be left on that
1088                  * transaction's metadata lists.
1089                  */
1090                 if (jh->b_jlist != BJ_SyncData && jh->b_jlist != BJ_Locked) {
1091                         JBUFFER_TRACE(jh, "not on correct data list: unfile");
1092                         J_ASSERT_JH(jh, jh->b_jlist != BJ_Shadow);
1093                         JBUFFER_TRACE(jh, "file as data");
1094                         __journal_file_buffer(jh, handle->h_transaction,
1095                                                 BJ_SyncData);
1096                 }
1097         } else {
1098                 JBUFFER_TRACE(jh, "not on a transaction");
1099                 __journal_file_buffer(jh, handle->h_transaction, BJ_SyncData);
1100         }
1101 no_journal:
1102         spin_unlock(&journal->j_list_lock);
1103         jbd_unlock_bh_state(bh);
1104         if (need_brelse) {
1105                 BUFFER_TRACE(bh, "brelse");
1106                 __brelse(bh);
1107         }
1108         JBUFFER_TRACE(jh, "exit");
1109         journal_put_journal_head(jh);
1110         return ret;
1111 }
1112
1113 /**
1114  * int journal_dirty_metadata() - mark a buffer as containing dirty metadata
1115  * @handle: transaction to add buffer to.
1116  * @bh: buffer to mark
1117  *
1118  * Mark dirty metadata which needs to be journaled as part of the current
1119  * transaction.
1120  *
1121  * The buffer is placed on the transaction's metadata list and is marked
1122  * as belonging to the transaction.
1123  *
1124  * Returns error number or 0 on success.
1125  *
1126  * Special care needs to be taken if the buffer already belongs to the
1127  * current committing transaction (in which case we should have frozen
1128  * data present for that commit).  In that case, we don't relink the
1129  * buffer: that only gets done when the old transaction finally
1130  * completes its commit.
1131  */
1132 int journal_dirty_metadata(handle_t *handle, struct buffer_head *bh)
1133 {
1134         transaction_t *transaction = handle->h_transaction;
1135         journal_t *journal = transaction->t_journal;
1136         struct journal_head *jh = bh2jh(bh);
1137
1138         jbd_debug(5, "journal_head %p\n", jh);
1139         JBUFFER_TRACE(jh, "entry");
1140         if (is_handle_aborted(handle))
1141                 goto out;
1142
1143         jbd_lock_bh_state(bh);
1144
1145         if (jh->b_modified == 0) {
1146                 /*
1147                  * This buffer's got modified and becoming part
1148                  * of the transaction. This needs to be done
1149                  * once a transaction -bzzz
1150                  */
1151                 jh->b_modified = 1;
1152                 J_ASSERT_JH(jh, handle->h_buffer_credits > 0);
1153                 handle->h_buffer_credits--;
1154         }
1155
1156         /*
1157          * fastpath, to avoid expensive locking.  If this buffer is already
1158          * on the running transaction's metadata list there is nothing to do.
1159          * Nobody can take it off again because there is a handle open.
1160          * I _think_ we're OK here with SMP barriers - a mistaken decision will
1161          * result in this test being false, so we go in and take the locks.
1162          */
1163         if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) {
1164                 JBUFFER_TRACE(jh, "fastpath");
1165                 J_ASSERT_JH(jh, jh->b_transaction ==
1166                                         journal->j_running_transaction);
1167                 goto out_unlock_bh;
1168         }
1169
1170         set_buffer_jbddirty(bh);
1171
1172         /*
1173          * Metadata already on the current transaction list doesn't
1174          * need to be filed.  Metadata on another transaction's list must
1175          * be committing, and will be refiled once the commit completes:
1176          * leave it alone for now.
1177          */
1178         if (jh->b_transaction != transaction) {
1179                 JBUFFER_TRACE(jh, "already on other transaction");
1180                 J_ASSERT_JH(jh, jh->b_transaction ==
1181                                         journal->j_committing_transaction);
1182                 J_ASSERT_JH(jh, jh->b_next_transaction == transaction);
1183                 /* And this case is illegal: we can't reuse another
1184                  * transaction's data buffer, ever. */
1185                 goto out_unlock_bh;
1186         }
1187
1188         /* That test should have eliminated the following case: */
1189         J_ASSERT_JH(jh, jh->b_frozen_data == NULL);
1190
1191         JBUFFER_TRACE(jh, "file as BJ_Metadata");
1192         spin_lock(&journal->j_list_lock);
1193         __journal_file_buffer(jh, handle->h_transaction, BJ_Metadata);
1194         spin_unlock(&journal->j_list_lock);
1195 out_unlock_bh:
1196         jbd_unlock_bh_state(bh);
1197 out:
1198         JBUFFER_TRACE(jh, "exit");
1199         return 0;
1200 }
1201
1202 /*
1203  * journal_release_buffer: undo a get_write_access without any buffer
1204  * updates, if the update decided in the end that it didn't need access.
1205  *
1206  */
1207 void
1208 journal_release_buffer(handle_t *handle, struct buffer_head *bh)
1209 {
1210         BUFFER_TRACE(bh, "entry");
1211 }
1212
1213 /**
1214  * void journal_forget() - bforget() for potentially-journaled buffers.
1215  * @handle: transaction handle
1216  * @bh:     bh to 'forget'
1217  *
1218  * We can only do the bforget if there are no commits pending against the
1219  * buffer.  If the buffer is dirty in the current running transaction we
1220  * can safely unlink it.
1221  *
1222  * bh may not be a journalled buffer at all - it may be a non-JBD
1223  * buffer which came off the hashtable.  Check for this.
1224  *
1225  * Decrements bh->b_count by one.
1226  *
1227  * Allow this call even if the handle has aborted --- it may be part of
1228  * the caller's cleanup after an abort.
1229  */
1230 int journal_forget (handle_t *handle, struct buffer_head *bh)
1231 {
1232         transaction_t *transaction = handle->h_transaction;
1233         journal_t *journal = transaction->t_journal;
1234         struct journal_head *jh;
1235         int drop_reserve = 0;
1236         int err = 0;
1237         int was_modified = 0;
1238
1239         BUFFER_TRACE(bh, "entry");
1240
1241         jbd_lock_bh_state(bh);
1242         spin_lock(&journal->j_list_lock);
1243
1244         if (!buffer_jbd(bh))
1245                 goto not_jbd;
1246         jh = bh2jh(bh);
1247
1248         /* Critical error: attempting to delete a bitmap buffer, maybe?
1249          * Don't do any jbd operations, and return an error. */
1250         if (!J_EXPECT_JH(jh, !jh->b_committed_data,
1251                          "inconsistent data on disk")) {
1252                 err = -EIO;
1253                 goto not_jbd;
1254         }
1255
1256         /* keep track of wether or not this transaction modified us */
1257         was_modified = jh->b_modified;
1258
1259         /*
1260          * The buffer's going from the transaction, we must drop
1261          * all references -bzzz
1262          */
1263         jh->b_modified = 0;
1264
1265         if (jh->b_transaction == handle->h_transaction) {
1266                 J_ASSERT_JH(jh, !jh->b_frozen_data);
1267
1268                 /* If we are forgetting a buffer which is already part
1269                  * of this transaction, then we can just drop it from
1270                  * the transaction immediately. */
1271                 clear_buffer_dirty(bh);
1272                 clear_buffer_jbddirty(bh);
1273
1274                 JBUFFER_TRACE(jh, "belongs to current transaction: unfile");
1275
1276                 /*
1277                  * we only want to drop a reference if this transaction
1278                  * modified the buffer
1279                  */
1280                 if (was_modified)
1281                         drop_reserve = 1;
1282
1283                 /*
1284                  * We are no longer going to journal this buffer.
1285                  * However, the commit of this transaction is still
1286                  * important to the buffer: the delete that we are now
1287                  * processing might obsolete an old log entry, so by
1288                  * committing, we can satisfy the buffer's checkpoint.
1289                  *
1290                  * So, if we have a checkpoint on the buffer, we should
1291                  * now refile the buffer on our BJ_Forget list so that
1292                  * we know to remove the checkpoint after we commit.
1293                  */
1294
1295                 if (jh->b_cp_transaction) {
1296                         __journal_temp_unlink_buffer(jh);
1297                         __journal_file_buffer(jh, transaction, BJ_Forget);
1298                 } else {
1299                         __journal_unfile_buffer(jh);
1300                         if (!buffer_jbd(bh)) {
1301                                 spin_unlock(&journal->j_list_lock);
1302                                 jbd_unlock_bh_state(bh);
1303                                 __bforget(bh);
1304                                 goto drop;
1305                         }
1306                 }
1307         } else if (jh->b_transaction) {
1308                 J_ASSERT_JH(jh, (jh->b_transaction ==
1309                                  journal->j_committing_transaction));
1310                 /* However, if the buffer is still owned by a prior
1311                  * (committing) transaction, we can't drop it yet... */
1312                 JBUFFER_TRACE(jh, "belongs to older transaction");
1313                 /* ... but we CAN drop it from the new transaction if we
1314                  * have also modified it since the original commit. */
1315
1316                 if (jh->b_next_transaction) {
1317                         J_ASSERT(jh->b_next_transaction == transaction);
1318                         jh->b_next_transaction = NULL;
1319
1320                         /*
1321                          * only drop a reference if this transaction modified
1322                          * the buffer
1323                          */
1324                         if (was_modified)
1325                                 drop_reserve = 1;
1326                 }
1327         }
1328
1329 not_jbd:
1330         spin_unlock(&journal->j_list_lock);
1331         jbd_unlock_bh_state(bh);
1332         __brelse(bh);
1333 drop:
1334         if (drop_reserve) {
1335                 /* no need to reserve log space for this block -bzzz */
1336                 handle->h_buffer_credits++;
1337         }
1338         return err;
1339 }
1340
1341 /**
1342  * int journal_stop() - complete a transaction
1343  * @handle: tranaction to complete.
1344  *
1345  * All done for a particular handle.
1346  *
1347  * There is not much action needed here.  We just return any remaining
1348  * buffer credits to the transaction and remove the handle.  The only
1349  * complication is that we need to start a commit operation if the
1350  * filesystem is marked for synchronous update.
1351  *
1352  * journal_stop itself will not usually return an error, but it may
1353  * do so in unusual circumstances.  In particular, expect it to
1354  * return -EIO if a journal_abort has been executed since the
1355  * transaction began.
1356  */
1357 int journal_stop(handle_t *handle)
1358 {
1359         transaction_t *transaction = handle->h_transaction;
1360         journal_t *journal = transaction->t_journal;
1361         int err;
1362         pid_t pid;
1363
1364         J_ASSERT(journal_current_handle() == handle);
1365
1366         if (is_handle_aborted(handle))
1367                 err = -EIO;
1368         else {
1369                 J_ASSERT(transaction->t_updates > 0);
1370                 err = 0;
1371         }
1372
1373         if (--handle->h_ref > 0) {
1374                 jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1375                           handle->h_ref);
1376                 return err;
1377         }
1378
1379         jbd_debug(4, "Handle %p going down\n", handle);
1380
1381         /*
1382          * Implement synchronous transaction batching.  If the handle
1383          * was synchronous, don't force a commit immediately.  Let's
1384          * yield and let another thread piggyback onto this transaction.
1385          * Keep doing that while new threads continue to arrive.
1386          * It doesn't cost much - we're about to run a commit and sleep
1387          * on IO anyway.  Speeds up many-threaded, many-dir operations
1388          * by 30x or more...
1389          *
1390          * We try and optimize the sleep time against what the underlying disk
1391          * can do, instead of having a static sleep time.  This is useful for
1392          * the case where our storage is so fast that it is more optimal to go
1393          * ahead and force a flush and wait for the transaction to be committed
1394          * than it is to wait for an arbitrary amount of time for new writers to
1395          * join the transaction.  We achieve this by measuring how long it takes
1396          * to commit a transaction, and compare it with how long this
1397          * transaction has been running, and if run time < commit time then we
1398          * sleep for the delta and commit.  This greatly helps super fast disks
1399          * that would see slowdowns as more threads started doing fsyncs.
1400          *
1401          * But don't do this if this process was the most recent one to
1402          * perform a synchronous write.  We do this to detect the case where a
1403          * single process is doing a stream of sync writes.  No point in waiting
1404          * for joiners in that case.
1405          */
1406         pid = current->pid;
1407         if (handle->h_sync && journal->j_last_sync_writer != pid) {
1408                 u64 commit_time, trans_time;
1409
1410                 journal->j_last_sync_writer = pid;
1411
1412                 spin_lock(&journal->j_state_lock);
1413                 commit_time = journal->j_average_commit_time;
1414                 spin_unlock(&journal->j_state_lock);
1415
1416                 trans_time = ktime_to_ns(ktime_sub(ktime_get(),
1417                                                    transaction->t_start_time));
1418
1419                 commit_time = min_t(u64, commit_time,
1420                                     1000*jiffies_to_usecs(1));
1421
1422                 if (trans_time < commit_time) {
1423                         ktime_t expires = ktime_add_ns(ktime_get(),
1424                                                        commit_time);
1425                         set_current_state(TASK_UNINTERRUPTIBLE);
1426                         schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1427                 }
1428         }
1429
1430         if (handle->h_sync)
1431                 transaction->t_synchronous_commit = 1;
1432         current->journal_info = NULL;
1433         spin_lock(&journal->j_state_lock);
1434         spin_lock(&transaction->t_handle_lock);
1435         transaction->t_outstanding_credits -= handle->h_buffer_credits;
1436         transaction->t_updates--;
1437         if (!transaction->t_updates) {
1438                 wake_up(&journal->j_wait_updates);
1439                 if (journal->j_barrier_count)
1440                         wake_up(&journal->j_wait_transaction_locked);
1441         }
1442
1443         /*
1444          * If the handle is marked SYNC, we need to set another commit
1445          * going!  We also want to force a commit if the current
1446          * transaction is occupying too much of the log, or if the
1447          * transaction is too old now.
1448          */
1449         if (handle->h_sync ||
1450                         transaction->t_outstanding_credits >
1451                                 journal->j_max_transaction_buffers ||
1452                         time_after_eq(jiffies, transaction->t_expires)) {
1453                 /* Do this even for aborted journals: an abort still
1454                  * completes the commit thread, it just doesn't write
1455                  * anything to disk. */
1456                 tid_t tid = transaction->t_tid;
1457
1458                 spin_unlock(&transaction->t_handle_lock);
1459                 jbd_debug(2, "transaction too old, requesting commit for "
1460                                         "handle %p\n", handle);
1461                 /* This is non-blocking */
1462                 __log_start_commit(journal, transaction->t_tid);
1463                 spin_unlock(&journal->j_state_lock);
1464
1465                 /*
1466                  * Special case: JFS_SYNC synchronous updates require us
1467                  * to wait for the commit to complete.
1468                  */
1469                 if (handle->h_sync && !(current->flags & PF_MEMALLOC))
1470                         err = log_wait_commit(journal, tid);
1471         } else {
1472                 spin_unlock(&transaction->t_handle_lock);
1473                 spin_unlock(&journal->j_state_lock);
1474         }
1475
1476         lock_map_release(&handle->h_lockdep_map);
1477
1478         jbd_free_handle(handle);
1479         return err;
1480 }
1481
1482 /**
1483  * int journal_force_commit() - force any uncommitted transactions
1484  * @journal: journal to force
1485  *
1486  * For synchronous operations: force any uncommitted transactions
1487  * to disk.  May seem kludgy, but it reuses all the handle batching
1488  * code in a very simple manner.
1489  */
1490 int journal_force_commit(journal_t *journal)
1491 {
1492         handle_t *handle;
1493         int ret;
1494
1495         handle = journal_start(journal, 1);
1496         if (IS_ERR(handle)) {
1497                 ret = PTR_ERR(handle);
1498         } else {
1499                 handle->h_sync = 1;
1500                 ret = journal_stop(handle);
1501         }
1502         return ret;
1503 }
1504
1505 /*
1506  *
1507  * List management code snippets: various functions for manipulating the
1508  * transaction buffer lists.
1509  *
1510  */
1511
1512 /*
1513  * Append a buffer to a transaction list, given the transaction's list head
1514  * pointer.
1515  *
1516  * j_list_lock is held.
1517  *
1518  * jbd_lock_bh_state(jh2bh(jh)) is held.
1519  */
1520
1521 static inline void
1522 __blist_add_buffer(struct journal_head **list, struct journal_head *jh)
1523 {
1524         if (!*list) {
1525                 jh->b_tnext = jh->b_tprev = jh;
1526                 *list = jh;
1527         } else {
1528                 /* Insert at the tail of the list to preserve order */
1529                 struct journal_head *first = *list, *last = first->b_tprev;
1530                 jh->b_tprev = last;
1531                 jh->b_tnext = first;
1532                 last->b_tnext = first->b_tprev = jh;
1533         }
1534 }
1535
1536 /*
1537  * Remove a buffer from a transaction list, given the transaction's list
1538  * head pointer.
1539  *
1540  * Called with j_list_lock held, and the journal may not be locked.
1541  *
1542  * jbd_lock_bh_state(jh2bh(jh)) is held.
1543  */
1544
1545 static inline void
1546 __blist_del_buffer(struct journal_head **list, struct journal_head *jh)
1547 {
1548         if (*list == jh) {
1549                 *list = jh->b_tnext;
1550                 if (*list == jh)
1551                         *list = NULL;
1552         }
1553         jh->b_tprev->b_tnext = jh->b_tnext;
1554         jh->b_tnext->b_tprev = jh->b_tprev;
1555 }
1556
1557 /*
1558  * Remove a buffer from the appropriate transaction list.
1559  *
1560  * Note that this function can *change* the value of
1561  * bh->b_transaction->t_sync_datalist, t_buffers, t_forget,
1562  * t_iobuf_list, t_shadow_list, t_log_list or t_reserved_list.  If the caller
1563  * is holding onto a copy of one of thee pointers, it could go bad.
1564  * Generally the caller needs to re-read the pointer from the transaction_t.
1565  *
1566  * Called under j_list_lock.  The journal may not be locked.
1567  */
1568 static void __journal_temp_unlink_buffer(struct journal_head *jh)
1569 {
1570         struct journal_head **list = NULL;
1571         transaction_t *transaction;
1572         struct buffer_head *bh = jh2bh(jh);
1573
1574         J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
1575         transaction = jh->b_transaction;
1576         if (transaction)
1577                 assert_spin_locked(&transaction->t_journal->j_list_lock);
1578
1579         J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
1580         if (jh->b_jlist != BJ_None)
1581                 J_ASSERT_JH(jh, transaction != NULL);
1582
1583         switch (jh->b_jlist) {
1584         case BJ_None:
1585                 return;
1586         case BJ_SyncData:
1587                 list = &transaction->t_sync_datalist;
1588                 break;
1589         case BJ_Metadata:
1590                 transaction->t_nr_buffers--;
1591                 J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0);
1592                 list = &transaction->t_buffers;
1593                 break;
1594         case BJ_Forget:
1595                 list = &transaction->t_forget;
1596                 break;
1597         case BJ_IO:
1598                 list = &transaction->t_iobuf_list;
1599                 break;
1600         case BJ_Shadow:
1601                 list = &transaction->t_shadow_list;
1602                 break;
1603         case BJ_LogCtl:
1604                 list = &transaction->t_log_list;
1605                 break;
1606         case BJ_Reserved:
1607                 list = &transaction->t_reserved_list;
1608                 break;
1609         case BJ_Locked:
1610                 list = &transaction->t_locked_list;
1611                 break;
1612         }
1613
1614         __blist_del_buffer(list, jh);
1615         jh->b_jlist = BJ_None;
1616         if (test_clear_buffer_jbddirty(bh))
1617                 mark_buffer_dirty(bh);  /* Expose it to the VM */
1618 }
1619
1620 /*
1621  * Remove buffer from all transactions.
1622  *
1623  * Called with bh_state lock and j_list_lock
1624  *
1625  * jh and bh may be already freed when this function returns.
1626  */
1627 void __journal_unfile_buffer(struct journal_head *jh)
1628 {
1629         __journal_temp_unlink_buffer(jh);
1630         jh->b_transaction = NULL;
1631         journal_put_journal_head(jh);
1632 }
1633
1634 void journal_unfile_buffer(journal_t *journal, struct journal_head *jh)
1635 {
1636         struct buffer_head *bh = jh2bh(jh);
1637
1638         /* Get reference so that buffer cannot be freed before we unlock it */
1639         get_bh(bh);
1640         jbd_lock_bh_state(bh);
1641         spin_lock(&journal->j_list_lock);
1642         __journal_unfile_buffer(jh);
1643         spin_unlock(&journal->j_list_lock);
1644         jbd_unlock_bh_state(bh);
1645         __brelse(bh);
1646 }
1647
1648 /*
1649  * Called from journal_try_to_free_buffers().
1650  *
1651  * Called under jbd_lock_bh_state(bh)
1652  */
1653 static void
1654 __journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh)
1655 {
1656         struct journal_head *jh;
1657
1658         jh = bh2jh(bh);
1659
1660         if (buffer_locked(bh) || buffer_dirty(bh))
1661                 goto out;
1662
1663         if (jh->b_next_transaction != NULL)
1664                 goto out;
1665
1666         spin_lock(&journal->j_list_lock);
1667         if (jh->b_transaction != NULL && jh->b_cp_transaction == NULL) {
1668                 if (jh->b_jlist == BJ_SyncData || jh->b_jlist == BJ_Locked) {
1669                         /* A written-back ordered data buffer */
1670                         JBUFFER_TRACE(jh, "release data");
1671                         __journal_unfile_buffer(jh);
1672                 }
1673         } else if (jh->b_cp_transaction != NULL && jh->b_transaction == NULL) {
1674                 /* written-back checkpointed metadata buffer */
1675                 if (jh->b_jlist == BJ_None) {
1676                         JBUFFER_TRACE(jh, "remove from checkpoint list");
1677                         __journal_remove_checkpoint(jh);
1678                 }
1679         }
1680         spin_unlock(&journal->j_list_lock);
1681 out:
1682         return;
1683 }
1684
1685 /**
1686  * int journal_try_to_free_buffers() - try to free page buffers.
1687  * @journal: journal for operation
1688  * @page: to try and free
1689  * @gfp_mask: we use the mask to detect how hard should we try to release
1690  * buffers. If __GFP_WAIT and __GFP_FS is set, we wait for commit code to
1691  * release the buffers.
1692  *
1693  *
1694  * For all the buffers on this page,
1695  * if they are fully written out ordered data, move them onto BUF_CLEAN
1696  * so try_to_free_buffers() can reap them.
1697  *
1698  * This function returns non-zero if we wish try_to_free_buffers()
1699  * to be called. We do this if the page is releasable by try_to_free_buffers().
1700  * We also do it if the page has locked or dirty buffers and the caller wants
1701  * us to perform sync or async writeout.
1702  *
1703  * This complicates JBD locking somewhat.  We aren't protected by the
1704  * BKL here.  We wish to remove the buffer from its committing or
1705  * running transaction's ->t_datalist via __journal_unfile_buffer.
1706  *
1707  * This may *change* the value of transaction_t->t_datalist, so anyone
1708  * who looks at t_datalist needs to lock against this function.
1709  *
1710  * Even worse, someone may be doing a journal_dirty_data on this
1711  * buffer.  So we need to lock against that.  journal_dirty_data()
1712  * will come out of the lock with the buffer dirty, which makes it
1713  * ineligible for release here.
1714  *
1715  * Who else is affected by this?  hmm...  Really the only contender
1716  * is do_get_write_access() - it could be looking at the buffer while
1717  * journal_try_to_free_buffer() is changing its state.  But that
1718  * cannot happen because we never reallocate freed data as metadata
1719  * while the data is part of a transaction.  Yes?
1720  *
1721  * Return 0 on failure, 1 on success
1722  */
1723 int journal_try_to_free_buffers(journal_t *journal,
1724                                 struct page *page, gfp_t gfp_mask)
1725 {
1726         struct buffer_head *head;
1727         struct buffer_head *bh;
1728         int ret = 0;
1729
1730         J_ASSERT(PageLocked(page));
1731
1732         head = page_buffers(page);
1733         bh = head;
1734         do {
1735                 struct journal_head *jh;
1736
1737                 /*
1738                  * We take our own ref against the journal_head here to avoid
1739                  * having to add tons of locking around each instance of
1740                  * journal_put_journal_head().
1741                  */
1742                 jh = journal_grab_journal_head(bh);
1743                 if (!jh)
1744                         continue;
1745
1746                 jbd_lock_bh_state(bh);
1747                 __journal_try_to_free_buffer(journal, bh);
1748                 journal_put_journal_head(jh);
1749                 jbd_unlock_bh_state(bh);
1750                 if (buffer_jbd(bh))
1751                         goto busy;
1752         } while ((bh = bh->b_this_page) != head);
1753
1754         ret = try_to_free_buffers(page);
1755
1756 busy:
1757         return ret;
1758 }
1759
1760 /*
1761  * This buffer is no longer needed.  If it is on an older transaction's
1762  * checkpoint list we need to record it on this transaction's forget list
1763  * to pin this buffer (and hence its checkpointing transaction) down until
1764  * this transaction commits.  If the buffer isn't on a checkpoint list, we
1765  * release it.
1766  * Returns non-zero if JBD no longer has an interest in the buffer.
1767  *
1768  * Called under j_list_lock.
1769  *
1770  * Called under jbd_lock_bh_state(bh).
1771  */
1772 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction)
1773 {
1774         int may_free = 1;
1775         struct buffer_head *bh = jh2bh(jh);
1776
1777         if (jh->b_cp_transaction) {
1778                 JBUFFER_TRACE(jh, "on running+cp transaction");
1779                 __journal_temp_unlink_buffer(jh);
1780                 /*
1781                  * We don't want to write the buffer anymore, clear the
1782                  * bit so that we don't confuse checks in
1783                  * __journal_file_buffer
1784                  */
1785                 clear_buffer_dirty(bh);
1786                 __journal_file_buffer(jh, transaction, BJ_Forget);
1787                 may_free = 0;
1788         } else {
1789                 JBUFFER_TRACE(jh, "on running transaction");
1790                 __journal_unfile_buffer(jh);
1791         }
1792         return may_free;
1793 }
1794
1795 /*
1796  * journal_invalidatepage
1797  *
1798  * This code is tricky.  It has a number of cases to deal with.
1799  *
1800  * There are two invariants which this code relies on:
1801  *
1802  * i_size must be updated on disk before we start calling invalidatepage on the
1803  * data.
1804  *
1805  *  This is done in ext3 by defining an ext3_setattr method which
1806  *  updates i_size before truncate gets going.  By maintaining this
1807  *  invariant, we can be sure that it is safe to throw away any buffers
1808  *  attached to the current transaction: once the transaction commits,
1809  *  we know that the data will not be needed.
1810  *
1811  *  Note however that we can *not* throw away data belonging to the
1812  *  previous, committing transaction!
1813  *
1814  * Any disk blocks which *are* part of the previous, committing
1815  * transaction (and which therefore cannot be discarded immediately) are
1816  * not going to be reused in the new running transaction
1817  *
1818  *  The bitmap committed_data images guarantee this: any block which is
1819  *  allocated in one transaction and removed in the next will be marked
1820  *  as in-use in the committed_data bitmap, so cannot be reused until
1821  *  the next transaction to delete the block commits.  This means that
1822  *  leaving committing buffers dirty is quite safe: the disk blocks
1823  *  cannot be reallocated to a different file and so buffer aliasing is
1824  *  not possible.
1825  *
1826  *
1827  * The above applies mainly to ordered data mode.  In writeback mode we
1828  * don't make guarantees about the order in which data hits disk --- in
1829  * particular we don't guarantee that new dirty data is flushed before
1830  * transaction commit --- so it is always safe just to discard data
1831  * immediately in that mode.  --sct
1832  */
1833
1834 /*
1835  * The journal_unmap_buffer helper function returns zero if the buffer
1836  * concerned remains pinned as an anonymous buffer belonging to an older
1837  * transaction.
1838  *
1839  * We're outside-transaction here.  Either or both of j_running_transaction
1840  * and j_committing_transaction may be NULL.
1841  */
1842 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh,
1843                                 int partial_page)
1844 {
1845         transaction_t *transaction;
1846         struct journal_head *jh;
1847         int may_free = 1;
1848
1849         BUFFER_TRACE(bh, "entry");
1850
1851 retry:
1852         /*
1853          * It is safe to proceed here without the j_list_lock because the
1854          * buffers cannot be stolen by try_to_free_buffers as long as we are
1855          * holding the page lock. --sct
1856          */
1857
1858         if (!buffer_jbd(bh))
1859                 goto zap_buffer_unlocked;
1860
1861         spin_lock(&journal->j_state_lock);
1862         jbd_lock_bh_state(bh);
1863         spin_lock(&journal->j_list_lock);
1864
1865         jh = journal_grab_journal_head(bh);
1866         if (!jh)
1867                 goto zap_buffer_no_jh;
1868
1869         /*
1870          * We cannot remove the buffer from checkpoint lists until the
1871          * transaction adding inode to orphan list (let's call it T)
1872          * is committed.  Otherwise if the transaction changing the
1873          * buffer would be cleaned from the journal before T is
1874          * committed, a crash will cause that the correct contents of
1875          * the buffer will be lost.  On the other hand we have to
1876          * clear the buffer dirty bit at latest at the moment when the
1877          * transaction marking the buffer as freed in the filesystem
1878          * structures is committed because from that moment on the
1879          * block can be reallocated and used by a different page.
1880          * Since the block hasn't been freed yet but the inode has
1881          * already been added to orphan list, it is safe for us to add
1882          * the buffer to BJ_Forget list of the newest transaction.
1883          *
1884          * Also we have to clear buffer_mapped flag of a truncated buffer
1885          * because the buffer_head may be attached to the page straddling
1886          * i_size (can happen only when blocksize < pagesize) and thus the
1887          * buffer_head can be reused when the file is extended again. So we end
1888          * up keeping around invalidated buffers attached to transactions'
1889          * BJ_Forget list just to stop checkpointing code from cleaning up
1890          * the transaction this buffer was modified in.
1891          */
1892         transaction = jh->b_transaction;
1893         if (transaction == NULL) {
1894                 /* First case: not on any transaction.  If it
1895                  * has no checkpoint link, then we can zap it:
1896                  * it's a writeback-mode buffer so we don't care
1897                  * if it hits disk safely. */
1898                 if (!jh->b_cp_transaction) {
1899                         JBUFFER_TRACE(jh, "not on any transaction: zap");
1900                         goto zap_buffer;
1901                 }
1902
1903                 if (!buffer_dirty(bh)) {
1904                         /* bdflush has written it.  We can drop it now */
1905                         goto zap_buffer;
1906                 }
1907
1908                 /* OK, it must be in the journal but still not
1909                  * written fully to disk: it's metadata or
1910                  * journaled data... */
1911
1912                 if (journal->j_running_transaction) {
1913                         /* ... and once the current transaction has
1914                          * committed, the buffer won't be needed any
1915                          * longer. */
1916                         JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget");
1917                         may_free = __dispose_buffer(jh,
1918                                         journal->j_running_transaction);
1919                         goto zap_buffer;
1920                 } else {
1921                         /* There is no currently-running transaction. So the
1922                          * orphan record which we wrote for this file must have
1923                          * passed into commit.  We must attach this buffer to
1924                          * the committing transaction, if it exists. */
1925                         if (journal->j_committing_transaction) {
1926                                 JBUFFER_TRACE(jh, "give to committing trans");
1927                                 may_free = __dispose_buffer(jh,
1928                                         journal->j_committing_transaction);
1929                                 goto zap_buffer;
1930                         } else {
1931                                 /* The orphan record's transaction has
1932                                  * committed.  We can cleanse this buffer */
1933                                 clear_buffer_jbddirty(bh);
1934                                 goto zap_buffer;
1935                         }
1936                 }
1937         } else if (transaction == journal->j_committing_transaction) {
1938                 JBUFFER_TRACE(jh, "on committing transaction");
1939                 if (jh->b_jlist == BJ_Locked) {
1940                         /*
1941                          * The buffer is on the committing transaction's locked
1942                          * list.  We have the buffer locked, so I/O has
1943                          * completed.  So we can nail the buffer now.
1944                          */
1945                         may_free = __dispose_buffer(jh, transaction);
1946                         goto zap_buffer;
1947                 }
1948                 /*
1949                  * The buffer is committing, we simply cannot touch
1950                  * it. If the page is straddling i_size we have to wait
1951                  * for commit and try again.
1952                  */
1953                 if (partial_page) {
1954                         tid_t tid = journal->j_committing_transaction->t_tid;
1955
1956                         journal_put_journal_head(jh);
1957                         spin_unlock(&journal->j_list_lock);
1958                         jbd_unlock_bh_state(bh);
1959                         spin_unlock(&journal->j_state_lock);
1960                         unlock_buffer(bh);
1961                         log_wait_commit(journal, tid);
1962                         lock_buffer(bh);
1963                         goto retry;
1964                 }
1965                 /*
1966                  * OK, buffer won't be reachable after truncate. We just set
1967                  * j_next_transaction to the running transaction (if there is
1968                  * one) and mark buffer as freed so that commit code knows it
1969                  * should clear dirty bits when it is done with the buffer.
1970                  */
1971                 set_buffer_freed(bh);
1972                 if (journal->j_running_transaction && buffer_jbddirty(bh))
1973                         jh->b_next_transaction = journal->j_running_transaction;
1974                 journal_put_journal_head(jh);
1975                 spin_unlock(&journal->j_list_lock);
1976                 jbd_unlock_bh_state(bh);
1977                 spin_unlock(&journal->j_state_lock);
1978                 return 0;
1979         } else {
1980                 /* Good, the buffer belongs to the running transaction.
1981                  * We are writing our own transaction's data, not any
1982                  * previous one's, so it is safe to throw it away
1983                  * (remember that we expect the filesystem to have set
1984                  * i_size already for this truncate so recovery will not
1985                  * expose the disk blocks we are discarding here.) */
1986                 J_ASSERT_JH(jh, transaction == journal->j_running_transaction);
1987                 JBUFFER_TRACE(jh, "on running transaction");
1988                 may_free = __dispose_buffer(jh, transaction);
1989         }
1990
1991 zap_buffer:
1992         /*
1993          * This is tricky. Although the buffer is truncated, it may be reused
1994          * if blocksize < pagesize and it is attached to the page straddling
1995          * EOF. Since the buffer might have been added to BJ_Forget list of the
1996          * running transaction, journal_get_write_access() won't clear
1997          * b_modified and credit accounting gets confused. So clear b_modified
1998          * here. */
1999         jh->b_modified = 0;
2000         journal_put_journal_head(jh);
2001 zap_buffer_no_jh:
2002         spin_unlock(&journal->j_list_lock);
2003         jbd_unlock_bh_state(bh);
2004         spin_unlock(&journal->j_state_lock);
2005 zap_buffer_unlocked:
2006         clear_buffer_dirty(bh);
2007         J_ASSERT_BH(bh, !buffer_jbddirty(bh));
2008         clear_buffer_mapped(bh);
2009         clear_buffer_req(bh);
2010         clear_buffer_new(bh);
2011         bh->b_bdev = NULL;
2012         return may_free;
2013 }
2014
2015 /**
2016  * void journal_invalidatepage() - invalidate a journal page
2017  * @journal: journal to use for flush
2018  * @page:    page to flush
2019  * @offset:  length of page to invalidate.
2020  *
2021  * Reap page buffers containing data after offset in page.
2022  */
2023 void journal_invalidatepage(journal_t *journal,
2024                       struct page *page,
2025                       unsigned long offset)
2026 {
2027         struct buffer_head *head, *bh, *next;
2028         unsigned int curr_off = 0;
2029         int may_free = 1;
2030
2031         if (!PageLocked(page))
2032                 BUG();
2033         if (!page_has_buffers(page))
2034                 return;
2035
2036         /* We will potentially be playing with lists other than just the
2037          * data lists (especially for journaled data mode), so be
2038          * cautious in our locking. */
2039
2040         head = bh = page_buffers(page);
2041         do {
2042                 unsigned int next_off = curr_off + bh->b_size;
2043                 next = bh->b_this_page;
2044
2045                 if (offset <= curr_off) {
2046                         /* This block is wholly outside the truncation point */
2047                         lock_buffer(bh);
2048                         may_free &= journal_unmap_buffer(journal, bh,
2049                                                          offset > 0);
2050                         unlock_buffer(bh);
2051                 }
2052                 curr_off = next_off;
2053                 bh = next;
2054
2055         } while (bh != head);
2056
2057         if (!offset) {
2058                 if (may_free && try_to_free_buffers(page))
2059                         J_ASSERT(!page_has_buffers(page));
2060         }
2061 }
2062
2063 /*
2064  * File a buffer on the given transaction list.
2065  */
2066 void __journal_file_buffer(struct journal_head *jh,
2067                         transaction_t *transaction, int jlist)
2068 {
2069         struct journal_head **list = NULL;
2070         int was_dirty = 0;
2071         struct buffer_head *bh = jh2bh(jh);
2072
2073         J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2074         assert_spin_locked(&transaction->t_journal->j_list_lock);
2075
2076         J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
2077         J_ASSERT_JH(jh, jh->b_transaction == transaction ||
2078                                 jh->b_transaction == NULL);
2079
2080         if (jh->b_transaction && jh->b_jlist == jlist)
2081                 return;
2082
2083         if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
2084             jlist == BJ_Shadow || jlist == BJ_Forget) {
2085                 /*
2086                  * For metadata buffers, we track dirty bit in buffer_jbddirty
2087                  * instead of buffer_dirty. We should not see a dirty bit set
2088                  * here because we clear it in do_get_write_access but e.g.
2089                  * tune2fs can modify the sb and set the dirty bit at any time
2090                  * so we try to gracefully handle that.
2091                  */
2092                 if (buffer_dirty(bh))
2093                         warn_dirty_buffer(bh);
2094                 if (test_clear_buffer_dirty(bh) ||
2095                     test_clear_buffer_jbddirty(bh))
2096                         was_dirty = 1;
2097         }
2098
2099         if (jh->b_transaction)
2100                 __journal_temp_unlink_buffer(jh);
2101         else
2102                 journal_grab_journal_head(bh);
2103         jh->b_transaction = transaction;
2104
2105         switch (jlist) {
2106         case BJ_None:
2107                 J_ASSERT_JH(jh, !jh->b_committed_data);
2108                 J_ASSERT_JH(jh, !jh->b_frozen_data);
2109                 return;
2110         case BJ_SyncData:
2111                 list = &transaction->t_sync_datalist;
2112                 break;
2113         case BJ_Metadata:
2114                 transaction->t_nr_buffers++;
2115                 list = &transaction->t_buffers;
2116                 break;
2117         case BJ_Forget:
2118                 list = &transaction->t_forget;
2119                 break;
2120         case BJ_IO:
2121                 list = &transaction->t_iobuf_list;
2122                 break;
2123         case BJ_Shadow:
2124                 list = &transaction->t_shadow_list;
2125                 break;
2126         case BJ_LogCtl:
2127                 list = &transaction->t_log_list;
2128                 break;
2129         case BJ_Reserved:
2130                 list = &transaction->t_reserved_list;
2131                 break;
2132         case BJ_Locked:
2133                 list =  &transaction->t_locked_list;
2134                 break;
2135         }
2136
2137         __blist_add_buffer(list, jh);
2138         jh->b_jlist = jlist;
2139
2140         if (was_dirty)
2141                 set_buffer_jbddirty(bh);
2142 }
2143
2144 void journal_file_buffer(struct journal_head *jh,
2145                                 transaction_t *transaction, int jlist)
2146 {
2147         jbd_lock_bh_state(jh2bh(jh));
2148         spin_lock(&transaction->t_journal->j_list_lock);
2149         __journal_file_buffer(jh, transaction, jlist);
2150         spin_unlock(&transaction->t_journal->j_list_lock);
2151         jbd_unlock_bh_state(jh2bh(jh));
2152 }
2153
2154 /*
2155  * Remove a buffer from its current buffer list in preparation for
2156  * dropping it from its current transaction entirely.  If the buffer has
2157  * already started to be used by a subsequent transaction, refile the
2158  * buffer on that transaction's metadata list.
2159  *
2160  * Called under j_list_lock
2161  * Called under jbd_lock_bh_state(jh2bh(jh))
2162  *
2163  * jh and bh may be already free when this function returns
2164  */
2165 void __journal_refile_buffer(struct journal_head *jh)
2166 {
2167         int was_dirty, jlist;
2168         struct buffer_head *bh = jh2bh(jh);
2169
2170         J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2171         if (jh->b_transaction)
2172                 assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock);
2173
2174         /* If the buffer is now unused, just drop it. */
2175         if (jh->b_next_transaction == NULL) {
2176                 __journal_unfile_buffer(jh);
2177                 return;
2178         }
2179
2180         /*
2181          * It has been modified by a later transaction: add it to the new
2182          * transaction's metadata list.
2183          */
2184
2185         was_dirty = test_clear_buffer_jbddirty(bh);
2186         __journal_temp_unlink_buffer(jh);
2187         /*
2188          * We set b_transaction here because b_next_transaction will inherit
2189          * our jh reference and thus __journal_file_buffer() must not take a
2190          * new one.
2191          */
2192         jh->b_transaction = jh->b_next_transaction;
2193         jh->b_next_transaction = NULL;
2194         if (buffer_freed(bh))
2195                 jlist = BJ_Forget;
2196         else if (jh->b_modified)
2197                 jlist = BJ_Metadata;
2198         else
2199                 jlist = BJ_Reserved;
2200         __journal_file_buffer(jh, jh->b_transaction, jlist);
2201         J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING);
2202
2203         if (was_dirty)
2204                 set_buffer_jbddirty(bh);
2205 }
2206
2207 /*
2208  * __journal_refile_buffer() with necessary locking added. We take our bh
2209  * reference so that we can safely unlock bh.
2210  *
2211  * The jh and bh may be freed by this call.
2212  */
2213 void journal_refile_buffer(journal_t *journal, struct journal_head *jh)
2214 {
2215         struct buffer_head *bh = jh2bh(jh);
2216
2217         /* Get reference so that buffer cannot be freed before we unlock it */
2218         get_bh(bh);
2219         jbd_lock_bh_state(bh);
2220         spin_lock(&journal->j_list_lock);
2221         __journal_refile_buffer(jh);
2222         jbd_unlock_bh_state(bh);
2223         spin_unlock(&journal->j_list_lock);
2224         __brelse(bh);
2225 }