Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/teigland/dlm
[pandora-kernel.git] / fs / gfs2 / aops.c
1 /*
2  * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved.
3  * Copyright (C) 2004-2008 Red Hat, Inc.  All rights reserved.
4  *
5  * This copyrighted material is made available to anyone wishing to use,
6  * modify, copy, or redistribute it subject to the terms and conditions
7  * of the GNU General Public License version 2.
8  */
9
10 #include <linux/sched.h>
11 #include <linux/slab.h>
12 #include <linux/spinlock.h>
13 #include <linux/completion.h>
14 #include <linux/buffer_head.h>
15 #include <linux/pagemap.h>
16 #include <linux/pagevec.h>
17 #include <linux/mpage.h>
18 #include <linux/fs.h>
19 #include <linux/writeback.h>
20 #include <linux/swap.h>
21 #include <linux/gfs2_ondisk.h>
22 #include <linux/backing-dev.h>
23
24 #include "gfs2.h"
25 #include "incore.h"
26 #include "bmap.h"
27 #include "glock.h"
28 #include "inode.h"
29 #include "log.h"
30 #include "meta_io.h"
31 #include "quota.h"
32 #include "trans.h"
33 #include "rgrp.h"
34 #include "super.h"
35 #include "util.h"
36 #include "glops.h"
37
38
39 static void gfs2_page_add_databufs(struct gfs2_inode *ip, struct page *page,
40                                    unsigned int from, unsigned int to)
41 {
42         struct buffer_head *head = page_buffers(page);
43         unsigned int bsize = head->b_size;
44         struct buffer_head *bh;
45         unsigned int start, end;
46
47         for (bh = head, start = 0; bh != head || !start;
48              bh = bh->b_this_page, start = end) {
49                 end = start + bsize;
50                 if (end <= from || start >= to)
51                         continue;
52                 if (gfs2_is_jdata(ip))
53                         set_buffer_uptodate(bh);
54                 gfs2_trans_add_bh(ip->i_gl, bh, 0);
55         }
56 }
57
58 /**
59  * gfs2_get_block_noalloc - Fills in a buffer head with details about a block
60  * @inode: The inode
61  * @lblock: The block number to look up
62  * @bh_result: The buffer head to return the result in
63  * @create: Non-zero if we may add block to the file
64  *
65  * Returns: errno
66  */
67
68 static int gfs2_get_block_noalloc(struct inode *inode, sector_t lblock,
69                                   struct buffer_head *bh_result, int create)
70 {
71         int error;
72
73         error = gfs2_block_map(inode, lblock, bh_result, 0);
74         if (error)
75                 return error;
76         if (!buffer_mapped(bh_result))
77                 return -EIO;
78         return 0;
79 }
80
81 static int gfs2_get_block_direct(struct inode *inode, sector_t lblock,
82                                  struct buffer_head *bh_result, int create)
83 {
84         return gfs2_block_map(inode, lblock, bh_result, 0);
85 }
86
87 /**
88  * gfs2_writepage_common - Common bits of writepage
89  * @page: The page to be written
90  * @wbc: The writeback control
91  *
92  * Returns: 1 if writepage is ok, otherwise an error code or zero if no error.
93  */
94
95 static int gfs2_writepage_common(struct page *page,
96                                  struct writeback_control *wbc)
97 {
98         struct inode *inode = page->mapping->host;
99         struct gfs2_inode *ip = GFS2_I(inode);
100         struct gfs2_sbd *sdp = GFS2_SB(inode);
101         loff_t i_size = i_size_read(inode);
102         pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
103         unsigned offset;
104
105         if (gfs2_assert_withdraw(sdp, gfs2_glock_is_held_excl(ip->i_gl)))
106                 goto out;
107         if (current->journal_info)
108                 goto redirty;
109         /* Is the page fully outside i_size? (truncate in progress) */
110         offset = i_size & (PAGE_CACHE_SIZE-1);
111         if (page->index > end_index || (page->index == end_index && !offset)) {
112                 page->mapping->a_ops->invalidatepage(page, 0);
113                 goto out;
114         }
115         return 1;
116 redirty:
117         redirty_page_for_writepage(wbc, page);
118 out:
119         unlock_page(page);
120         return 0;
121 }
122
123 /**
124  * gfs2_writeback_writepage - Write page for writeback mappings
125  * @page: The page
126  * @wbc: The writeback control
127  *
128  */
129
130 static int gfs2_writeback_writepage(struct page *page,
131                                     struct writeback_control *wbc)
132 {
133         int ret;
134
135         ret = gfs2_writepage_common(page, wbc);
136         if (ret <= 0)
137                 return ret;
138
139         ret = mpage_writepage(page, gfs2_get_block_noalloc, wbc);
140         if (ret == -EAGAIN)
141                 ret = block_write_full_page(page, gfs2_get_block_noalloc, wbc);
142         return ret;
143 }
144
145 /**
146  * gfs2_ordered_writepage - Write page for ordered data files
147  * @page: The page to write
148  * @wbc: The writeback control
149  *
150  */
151
152 static int gfs2_ordered_writepage(struct page *page,
153                                   struct writeback_control *wbc)
154 {
155         struct inode *inode = page->mapping->host;
156         struct gfs2_inode *ip = GFS2_I(inode);
157         int ret;
158
159         ret = gfs2_writepage_common(page, wbc);
160         if (ret <= 0)
161                 return ret;
162
163         if (!page_has_buffers(page)) {
164                 create_empty_buffers(page, inode->i_sb->s_blocksize,
165                                      (1 << BH_Dirty)|(1 << BH_Uptodate));
166         }
167         gfs2_page_add_databufs(ip, page, 0, inode->i_sb->s_blocksize-1);
168         return block_write_full_page(page, gfs2_get_block_noalloc, wbc);
169 }
170
171 /**
172  * __gfs2_jdata_writepage - The core of jdata writepage
173  * @page: The page to write
174  * @wbc: The writeback control
175  *
176  * This is shared between writepage and writepages and implements the
177  * core of the writepage operation. If a transaction is required then
178  * PageChecked will have been set and the transaction will have
179  * already been started before this is called.
180  */
181
182 static int __gfs2_jdata_writepage(struct page *page, struct writeback_control *wbc)
183 {
184         struct inode *inode = page->mapping->host;
185         struct gfs2_inode *ip = GFS2_I(inode);
186         struct gfs2_sbd *sdp = GFS2_SB(inode);
187
188         if (PageChecked(page)) {
189                 ClearPageChecked(page);
190                 if (!page_has_buffers(page)) {
191                         create_empty_buffers(page, inode->i_sb->s_blocksize,
192                                              (1 << BH_Dirty)|(1 << BH_Uptodate));
193                 }
194                 gfs2_page_add_databufs(ip, page, 0, sdp->sd_vfs->s_blocksize-1);
195         }
196         return block_write_full_page(page, gfs2_get_block_noalloc, wbc);
197 }
198
199 /**
200  * gfs2_jdata_writepage - Write complete page
201  * @page: Page to write
202  *
203  * Returns: errno
204  *
205  */
206
207 static int gfs2_jdata_writepage(struct page *page, struct writeback_control *wbc)
208 {
209         struct inode *inode = page->mapping->host;
210         struct gfs2_sbd *sdp = GFS2_SB(inode);
211         int ret;
212         int done_trans = 0;
213
214         if (PageChecked(page)) {
215                 if (wbc->sync_mode != WB_SYNC_ALL)
216                         goto out_ignore;
217                 ret = gfs2_trans_begin(sdp, RES_DINODE + 1, 0);
218                 if (ret)
219                         goto out_ignore;
220                 done_trans = 1;
221         }
222         ret = gfs2_writepage_common(page, wbc);
223         if (ret > 0)
224                 ret = __gfs2_jdata_writepage(page, wbc);
225         if (done_trans)
226                 gfs2_trans_end(sdp);
227         return ret;
228
229 out_ignore:
230         redirty_page_for_writepage(wbc, page);
231         unlock_page(page);
232         return 0;
233 }
234
235 /**
236  * gfs2_writeback_writepages - Write a bunch of dirty pages back to disk
237  * @mapping: The mapping to write
238  * @wbc: Write-back control
239  *
240  * For the data=writeback case we can already ignore buffer heads
241  * and write whole extents at once. This is a big reduction in the
242  * number of I/O requests we send and the bmap calls we make in this case.
243  */
244 static int gfs2_writeback_writepages(struct address_space *mapping,
245                                      struct writeback_control *wbc)
246 {
247         return mpage_writepages(mapping, wbc, gfs2_get_block_noalloc);
248 }
249
250 /**
251  * gfs2_write_jdata_pagevec - Write back a pagevec's worth of pages
252  * @mapping: The mapping
253  * @wbc: The writeback control
254  * @writepage: The writepage function to call for each page
255  * @pvec: The vector of pages
256  * @nr_pages: The number of pages to write
257  *
258  * Returns: non-zero if loop should terminate, zero otherwise
259  */
260
261 static int gfs2_write_jdata_pagevec(struct address_space *mapping,
262                                     struct writeback_control *wbc,
263                                     struct pagevec *pvec,
264                                     int nr_pages, pgoff_t end)
265 {
266         struct inode *inode = mapping->host;
267         struct gfs2_sbd *sdp = GFS2_SB(inode);
268         loff_t i_size = i_size_read(inode);
269         pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
270         unsigned offset = i_size & (PAGE_CACHE_SIZE-1);
271         unsigned nrblocks = nr_pages * (PAGE_CACHE_SIZE/inode->i_sb->s_blocksize);
272         int i;
273         int ret;
274
275         ret = gfs2_trans_begin(sdp, nrblocks, nrblocks);
276         if (ret < 0)
277                 return ret;
278
279         for(i = 0; i < nr_pages; i++) {
280                 struct page *page = pvec->pages[i];
281
282                 lock_page(page);
283
284                 if (unlikely(page->mapping != mapping)) {
285                         unlock_page(page);
286                         continue;
287                 }
288
289                 if (!wbc->range_cyclic && page->index > end) {
290                         ret = 1;
291                         unlock_page(page);
292                         continue;
293                 }
294
295                 if (wbc->sync_mode != WB_SYNC_NONE)
296                         wait_on_page_writeback(page);
297
298                 if (PageWriteback(page) ||
299                     !clear_page_dirty_for_io(page)) {
300                         unlock_page(page);
301                         continue;
302                 }
303
304                 /* Is the page fully outside i_size? (truncate in progress) */
305                 if (page->index > end_index || (page->index == end_index && !offset)) {
306                         page->mapping->a_ops->invalidatepage(page, 0);
307                         unlock_page(page);
308                         continue;
309                 }
310
311                 ret = __gfs2_jdata_writepage(page, wbc);
312
313                 if (ret || (--(wbc->nr_to_write) <= 0))
314                         ret = 1;
315         }
316         gfs2_trans_end(sdp);
317         return ret;
318 }
319
320 /**
321  * gfs2_write_cache_jdata - Like write_cache_pages but different
322  * @mapping: The mapping to write
323  * @wbc: The writeback control
324  * @writepage: The writepage function to call
325  * @data: The data to pass to writepage
326  *
327  * The reason that we use our own function here is that we need to
328  * start transactions before we grab page locks. This allows us
329  * to get the ordering right.
330  */
331
332 static int gfs2_write_cache_jdata(struct address_space *mapping,
333                                   struct writeback_control *wbc)
334 {
335         int ret = 0;
336         int done = 0;
337         struct pagevec pvec;
338         int nr_pages;
339         pgoff_t index;
340         pgoff_t end;
341         int scanned = 0;
342         int range_whole = 0;
343
344         pagevec_init(&pvec, 0);
345         if (wbc->range_cyclic) {
346                 index = mapping->writeback_index; /* Start from prev offset */
347                 end = -1;
348         } else {
349                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
350                 end = wbc->range_end >> PAGE_CACHE_SHIFT;
351                 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
352                         range_whole = 1;
353                 scanned = 1;
354         }
355
356 retry:
357          while (!done && (index <= end) &&
358                 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
359                                                PAGECACHE_TAG_DIRTY,
360                                                min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
361                 scanned = 1;
362                 ret = gfs2_write_jdata_pagevec(mapping, wbc, &pvec, nr_pages, end);
363                 if (ret)
364                         done = 1;
365                 if (ret > 0)
366                         ret = 0;
367
368                 pagevec_release(&pvec);
369                 cond_resched();
370         }
371
372         if (!scanned && !done) {
373                 /*
374                  * We hit the last page and there is more work to be done: wrap
375                  * back to the start of the file
376                  */
377                 scanned = 1;
378                 index = 0;
379                 goto retry;
380         }
381
382         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
383                 mapping->writeback_index = index;
384         return ret;
385 }
386
387
388 /**
389  * gfs2_jdata_writepages - Write a bunch of dirty pages back to disk
390  * @mapping: The mapping to write
391  * @wbc: The writeback control
392  * 
393  */
394
395 static int gfs2_jdata_writepages(struct address_space *mapping,
396                                  struct writeback_control *wbc)
397 {
398         struct gfs2_inode *ip = GFS2_I(mapping->host);
399         struct gfs2_sbd *sdp = GFS2_SB(mapping->host);
400         int ret;
401
402         ret = gfs2_write_cache_jdata(mapping, wbc);
403         if (ret == 0 && wbc->sync_mode == WB_SYNC_ALL) {
404                 gfs2_log_flush(sdp, ip->i_gl);
405                 ret = gfs2_write_cache_jdata(mapping, wbc);
406         }
407         return ret;
408 }
409
410 /**
411  * stuffed_readpage - Fill in a Linux page with stuffed file data
412  * @ip: the inode
413  * @page: the page
414  *
415  * Returns: errno
416  */
417
418 static int stuffed_readpage(struct gfs2_inode *ip, struct page *page)
419 {
420         struct buffer_head *dibh;
421         void *kaddr;
422         int error;
423
424         /*
425          * Due to the order of unstuffing files and ->fault(), we can be
426          * asked for a zero page in the case of a stuffed file being extended,
427          * so we need to supply one here. It doesn't happen often.
428          */
429         if (unlikely(page->index)) {
430                 zero_user(page, 0, PAGE_CACHE_SIZE);
431                 SetPageUptodate(page);
432                 return 0;
433         }
434
435         error = gfs2_meta_inode_buffer(ip, &dibh);
436         if (error)
437                 return error;
438
439         kaddr = kmap_atomic(page, KM_USER0);
440         memcpy(kaddr, dibh->b_data + sizeof(struct gfs2_dinode),
441                ip->i_disksize);
442         memset(kaddr + ip->i_disksize, 0, PAGE_CACHE_SIZE - ip->i_disksize);
443         kunmap_atomic(kaddr, KM_USER0);
444         flush_dcache_page(page);
445         brelse(dibh);
446         SetPageUptodate(page);
447
448         return 0;
449 }
450
451
452 /**
453  * __gfs2_readpage - readpage
454  * @file: The file to read a page for
455  * @page: The page to read
456  *
457  * This is the core of gfs2's readpage. Its used by the internal file
458  * reading code as in that case we already hold the glock. Also its
459  * called by gfs2_readpage() once the required lock has been granted.
460  *
461  */
462
463 static int __gfs2_readpage(void *file, struct page *page)
464 {
465         struct gfs2_inode *ip = GFS2_I(page->mapping->host);
466         struct gfs2_sbd *sdp = GFS2_SB(page->mapping->host);
467         int error;
468
469         if (gfs2_is_stuffed(ip)) {
470                 error = stuffed_readpage(ip, page);
471                 unlock_page(page);
472         } else {
473                 error = mpage_readpage(page, gfs2_block_map);
474         }
475
476         if (unlikely(test_bit(SDF_SHUTDOWN, &sdp->sd_flags)))
477                 return -EIO;
478
479         return error;
480 }
481
482 /**
483  * gfs2_readpage - read a page of a file
484  * @file: The file to read
485  * @page: The page of the file
486  *
487  * This deals with the locking required. We have to unlock and
488  * relock the page in order to get the locking in the right
489  * order.
490  */
491
492 static int gfs2_readpage(struct file *file, struct page *page)
493 {
494         struct address_space *mapping = page->mapping;
495         struct gfs2_inode *ip = GFS2_I(mapping->host);
496         struct gfs2_holder gh;
497         int error;
498
499         unlock_page(page);
500         gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
501         error = gfs2_glock_nq(&gh);
502         if (unlikely(error))
503                 goto out;
504         error = AOP_TRUNCATED_PAGE;
505         lock_page(page);
506         if (page->mapping == mapping && !PageUptodate(page))
507                 error = __gfs2_readpage(file, page);
508         else
509                 unlock_page(page);
510         gfs2_glock_dq(&gh);
511 out:
512         gfs2_holder_uninit(&gh);
513         if (error && error != AOP_TRUNCATED_PAGE)
514                 lock_page(page);
515         return error;
516 }
517
518 /**
519  * gfs2_internal_read - read an internal file
520  * @ip: The gfs2 inode
521  * @ra_state: The readahead state (or NULL for no readahead)
522  * @buf: The buffer to fill
523  * @pos: The file position
524  * @size: The amount to read
525  *
526  */
527
528 int gfs2_internal_read(struct gfs2_inode *ip, struct file_ra_state *ra_state,
529                        char *buf, loff_t *pos, unsigned size)
530 {
531         struct address_space *mapping = ip->i_inode.i_mapping;
532         unsigned long index = *pos / PAGE_CACHE_SIZE;
533         unsigned offset = *pos & (PAGE_CACHE_SIZE - 1);
534         unsigned copied = 0;
535         unsigned amt;
536         struct page *page;
537         void *p;
538
539         do {
540                 amt = size - copied;
541                 if (offset + size > PAGE_CACHE_SIZE)
542                         amt = PAGE_CACHE_SIZE - offset;
543                 page = read_cache_page(mapping, index, __gfs2_readpage, NULL);
544                 if (IS_ERR(page))
545                         return PTR_ERR(page);
546                 p = kmap_atomic(page, KM_USER0);
547                 memcpy(buf + copied, p + offset, amt);
548                 kunmap_atomic(p, KM_USER0);
549                 mark_page_accessed(page);
550                 page_cache_release(page);
551                 copied += amt;
552                 index++;
553                 offset = 0;
554         } while(copied < size);
555         (*pos) += size;
556         return size;
557 }
558
559 /**
560  * gfs2_readpages - Read a bunch of pages at once
561  *
562  * Some notes:
563  * 1. This is only for readahead, so we can simply ignore any things
564  *    which are slightly inconvenient (such as locking conflicts between
565  *    the page lock and the glock) and return having done no I/O. Its
566  *    obviously not something we'd want to do on too regular a basis.
567  *    Any I/O we ignore at this time will be done via readpage later.
568  * 2. We don't handle stuffed files here we let readpage do the honours.
569  * 3. mpage_readpages() does most of the heavy lifting in the common case.
570  * 4. gfs2_block_map() is relied upon to set BH_Boundary in the right places.
571  */
572
573 static int gfs2_readpages(struct file *file, struct address_space *mapping,
574                           struct list_head *pages, unsigned nr_pages)
575 {
576         struct inode *inode = mapping->host;
577         struct gfs2_inode *ip = GFS2_I(inode);
578         struct gfs2_sbd *sdp = GFS2_SB(inode);
579         struct gfs2_holder gh;
580         int ret;
581
582         gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
583         ret = gfs2_glock_nq(&gh);
584         if (unlikely(ret))
585                 goto out_uninit;
586         if (!gfs2_is_stuffed(ip))
587                 ret = mpage_readpages(mapping, pages, nr_pages, gfs2_block_map);
588         gfs2_glock_dq(&gh);
589 out_uninit:
590         gfs2_holder_uninit(&gh);
591         if (unlikely(test_bit(SDF_SHUTDOWN, &sdp->sd_flags)))
592                 ret = -EIO;
593         return ret;
594 }
595
596 /**
597  * gfs2_write_begin - Begin to write to a file
598  * @file: The file to write to
599  * @mapping: The mapping in which to write
600  * @pos: The file offset at which to start writing
601  * @len: Length of the write
602  * @flags: Various flags
603  * @pagep: Pointer to return the page
604  * @fsdata: Pointer to return fs data (unused by GFS2)
605  *
606  * Returns: errno
607  */
608
609 static int gfs2_write_begin(struct file *file, struct address_space *mapping,
610                             loff_t pos, unsigned len, unsigned flags,
611                             struct page **pagep, void **fsdata)
612 {
613         struct gfs2_inode *ip = GFS2_I(mapping->host);
614         struct gfs2_sbd *sdp = GFS2_SB(mapping->host);
615         struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
616         unsigned int data_blocks = 0, ind_blocks = 0, rblocks;
617         int alloc_required;
618         int error = 0;
619         struct gfs2_alloc *al;
620         pgoff_t index = pos >> PAGE_CACHE_SHIFT;
621         unsigned from = pos & (PAGE_CACHE_SIZE - 1);
622         unsigned to = from + len;
623         struct page *page;
624
625         gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &ip->i_gh);
626         error = gfs2_glock_nq(&ip->i_gh);
627         if (unlikely(error))
628                 goto out_uninit;
629         if (&ip->i_inode == sdp->sd_rindex) {
630                 error = gfs2_glock_nq_init(m_ip->i_gl, LM_ST_EXCLUSIVE,
631                                            GL_NOCACHE, &m_ip->i_gh);
632                 if (unlikely(error)) {
633                         gfs2_glock_dq(&ip->i_gh);
634                         goto out_uninit;
635                 }
636         }
637
638         error = gfs2_write_alloc_required(ip, pos, len, &alloc_required);
639         if (error)
640                 goto out_unlock;
641
642         if (alloc_required || gfs2_is_jdata(ip))
643                 gfs2_write_calc_reserv(ip, len, &data_blocks, &ind_blocks);
644
645         if (alloc_required) {
646                 al = gfs2_alloc_get(ip);
647                 if (!al) {
648                         error = -ENOMEM;
649                         goto out_unlock;
650                 }
651
652                 error = gfs2_quota_lock_check(ip);
653                 if (error)
654                         goto out_alloc_put;
655
656                 al->al_requested = data_blocks + ind_blocks;
657                 error = gfs2_inplace_reserve(ip);
658                 if (error)
659                         goto out_qunlock;
660         }
661
662         rblocks = RES_DINODE + ind_blocks;
663         if (gfs2_is_jdata(ip))
664                 rblocks += data_blocks ? data_blocks : 1;
665         if (ind_blocks || data_blocks)
666                 rblocks += RES_STATFS + RES_QUOTA;
667         if (&ip->i_inode == sdp->sd_rindex)
668                 rblocks += 2 * RES_STATFS;
669
670         error = gfs2_trans_begin(sdp, rblocks,
671                                  PAGE_CACHE_SIZE/sdp->sd_sb.sb_bsize);
672         if (error)
673                 goto out_trans_fail;
674
675         error = -ENOMEM;
676         flags |= AOP_FLAG_NOFS;
677         page = grab_cache_page_write_begin(mapping, index, flags);
678         *pagep = page;
679         if (unlikely(!page))
680                 goto out_endtrans;
681
682         if (gfs2_is_stuffed(ip)) {
683                 error = 0;
684                 if (pos + len > sdp->sd_sb.sb_bsize - sizeof(struct gfs2_dinode)) {
685                         error = gfs2_unstuff_dinode(ip, page);
686                         if (error == 0)
687                                 goto prepare_write;
688                 } else if (!PageUptodate(page)) {
689                         error = stuffed_readpage(ip, page);
690                 }
691                 goto out;
692         }
693
694 prepare_write:
695         error = block_prepare_write(page, from, to, gfs2_block_map);
696 out:
697         if (error == 0)
698                 return 0;
699
700         page_cache_release(page);
701         if (pos + len > ip->i_inode.i_size)
702                 vmtruncate(&ip->i_inode, ip->i_inode.i_size);
703 out_endtrans:
704         gfs2_trans_end(sdp);
705 out_trans_fail:
706         if (alloc_required) {
707                 gfs2_inplace_release(ip);
708 out_qunlock:
709                 gfs2_quota_unlock(ip);
710 out_alloc_put:
711                 gfs2_alloc_put(ip);
712         }
713 out_unlock:
714         if (&ip->i_inode == sdp->sd_rindex) {
715                 gfs2_glock_dq(&m_ip->i_gh);
716                 gfs2_holder_uninit(&m_ip->i_gh);
717         }
718         gfs2_glock_dq(&ip->i_gh);
719 out_uninit:
720         gfs2_holder_uninit(&ip->i_gh);
721         return error;
722 }
723
724 /**
725  * adjust_fs_space - Adjusts the free space available due to gfs2_grow
726  * @inode: the rindex inode
727  */
728 static void adjust_fs_space(struct inode *inode)
729 {
730         struct gfs2_sbd *sdp = inode->i_sb->s_fs_info;
731         struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
732         struct gfs2_inode *l_ip = GFS2_I(sdp->sd_sc_inode);
733         struct gfs2_statfs_change_host *m_sc = &sdp->sd_statfs_master;
734         struct gfs2_statfs_change_host *l_sc = &sdp->sd_statfs_local;
735         struct buffer_head *m_bh, *l_bh;
736         u64 fs_total, new_free;
737
738         /* Total up the file system space, according to the latest rindex. */
739         fs_total = gfs2_ri_total(sdp);
740         if (gfs2_meta_inode_buffer(m_ip, &m_bh) != 0)
741                 return;
742
743         spin_lock(&sdp->sd_statfs_spin);
744         gfs2_statfs_change_in(m_sc, m_bh->b_data +
745                               sizeof(struct gfs2_dinode));
746         if (fs_total > (m_sc->sc_total + l_sc->sc_total))
747                 new_free = fs_total - (m_sc->sc_total + l_sc->sc_total);
748         else
749                 new_free = 0;
750         spin_unlock(&sdp->sd_statfs_spin);
751         fs_warn(sdp, "File system extended by %llu blocks.\n",
752                 (unsigned long long)new_free);
753         gfs2_statfs_change(sdp, new_free, new_free, 0);
754
755         if (gfs2_meta_inode_buffer(l_ip, &l_bh) != 0)
756                 goto out;
757         update_statfs(sdp, m_bh, l_bh);
758         brelse(l_bh);
759 out:
760         brelse(m_bh);
761 }
762
763 /**
764  * gfs2_stuffed_write_end - Write end for stuffed files
765  * @inode: The inode
766  * @dibh: The buffer_head containing the on-disk inode
767  * @pos: The file position
768  * @len: The length of the write
769  * @copied: How much was actually copied by the VFS
770  * @page: The page
771  *
772  * This copies the data from the page into the inode block after
773  * the inode data structure itself.
774  *
775  * Returns: errno
776  */
777 static int gfs2_stuffed_write_end(struct inode *inode, struct buffer_head *dibh,
778                                   loff_t pos, unsigned len, unsigned copied,
779                                   struct page *page)
780 {
781         struct gfs2_inode *ip = GFS2_I(inode);
782         struct gfs2_sbd *sdp = GFS2_SB(inode);
783         struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
784         u64 to = pos + copied;
785         void *kaddr;
786         unsigned char *buf = dibh->b_data + sizeof(struct gfs2_dinode);
787         struct gfs2_dinode *di = (struct gfs2_dinode *)dibh->b_data;
788
789         BUG_ON((pos + len) > (dibh->b_size - sizeof(struct gfs2_dinode)));
790         kaddr = kmap_atomic(page, KM_USER0);
791         memcpy(buf + pos, kaddr + pos, copied);
792         memset(kaddr + pos + copied, 0, len - copied);
793         flush_dcache_page(page);
794         kunmap_atomic(kaddr, KM_USER0);
795
796         if (!PageUptodate(page))
797                 SetPageUptodate(page);
798         unlock_page(page);
799         page_cache_release(page);
800
801         if (copied) {
802                 if (inode->i_size < to) {
803                         i_size_write(inode, to);
804                         ip->i_disksize = inode->i_size;
805                 }
806                 gfs2_dinode_out(ip, di);
807                 mark_inode_dirty(inode);
808         }
809
810         if (inode == sdp->sd_rindex) {
811                 adjust_fs_space(inode);
812                 ip->i_gh.gh_flags |= GL_NOCACHE;
813         }
814
815         brelse(dibh);
816         gfs2_trans_end(sdp);
817         if (inode == sdp->sd_rindex) {
818                 gfs2_glock_dq(&m_ip->i_gh);
819                 gfs2_holder_uninit(&m_ip->i_gh);
820         }
821         gfs2_glock_dq(&ip->i_gh);
822         gfs2_holder_uninit(&ip->i_gh);
823         return copied;
824 }
825
826 /**
827  * gfs2_write_end
828  * @file: The file to write to
829  * @mapping: The address space to write to
830  * @pos: The file position
831  * @len: The length of the data
832  * @copied:
833  * @page: The page that has been written
834  * @fsdata: The fsdata (unused in GFS2)
835  *
836  * The main write_end function for GFS2. We have a separate one for
837  * stuffed files as they are slightly different, otherwise we just
838  * put our locking around the VFS provided functions.
839  *
840  * Returns: errno
841  */
842
843 static int gfs2_write_end(struct file *file, struct address_space *mapping,
844                           loff_t pos, unsigned len, unsigned copied,
845                           struct page *page, void *fsdata)
846 {
847         struct inode *inode = page->mapping->host;
848         struct gfs2_inode *ip = GFS2_I(inode);
849         struct gfs2_sbd *sdp = GFS2_SB(inode);
850         struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
851         struct buffer_head *dibh;
852         struct gfs2_alloc *al = ip->i_alloc;
853         unsigned int from = pos & (PAGE_CACHE_SIZE - 1);
854         unsigned int to = from + len;
855         int ret;
856
857         BUG_ON(gfs2_glock_is_locked_by_me(ip->i_gl) == NULL);
858
859         ret = gfs2_meta_inode_buffer(ip, &dibh);
860         if (unlikely(ret)) {
861                 unlock_page(page);
862                 page_cache_release(page);
863                 goto failed;
864         }
865
866         gfs2_trans_add_bh(ip->i_gl, dibh, 1);
867
868         if (gfs2_is_stuffed(ip))
869                 return gfs2_stuffed_write_end(inode, dibh, pos, len, copied, page);
870
871         if (!gfs2_is_writeback(ip))
872                 gfs2_page_add_databufs(ip, page, from, to);
873
874         ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
875         if (ret > 0) {
876                 if (inode->i_size > ip->i_disksize)
877                         ip->i_disksize = inode->i_size;
878                 gfs2_dinode_out(ip, dibh->b_data);
879                 mark_inode_dirty(inode);
880         }
881
882         if (inode == sdp->sd_rindex) {
883                 adjust_fs_space(inode);
884                 ip->i_gh.gh_flags |= GL_NOCACHE;
885         }
886
887         brelse(dibh);
888         gfs2_trans_end(sdp);
889 failed:
890         if (al) {
891                 gfs2_inplace_release(ip);
892                 gfs2_quota_unlock(ip);
893                 gfs2_alloc_put(ip);
894         }
895         if (inode == sdp->sd_rindex) {
896                 gfs2_glock_dq(&m_ip->i_gh);
897                 gfs2_holder_uninit(&m_ip->i_gh);
898         }
899         gfs2_glock_dq(&ip->i_gh);
900         gfs2_holder_uninit(&ip->i_gh);
901         return ret;
902 }
903
904 /**
905  * gfs2_set_page_dirty - Page dirtying function
906  * @page: The page to dirty
907  *
908  * Returns: 1 if it dirtyed the page, or 0 otherwise
909  */
910  
911 static int gfs2_set_page_dirty(struct page *page)
912 {
913         SetPageChecked(page);
914         return __set_page_dirty_buffers(page);
915 }
916
917 /**
918  * gfs2_bmap - Block map function
919  * @mapping: Address space info
920  * @lblock: The block to map
921  *
922  * Returns: The disk address for the block or 0 on hole or error
923  */
924
925 static sector_t gfs2_bmap(struct address_space *mapping, sector_t lblock)
926 {
927         struct gfs2_inode *ip = GFS2_I(mapping->host);
928         struct gfs2_holder i_gh;
929         sector_t dblock = 0;
930         int error;
931
932         error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY, &i_gh);
933         if (error)
934                 return 0;
935
936         if (!gfs2_is_stuffed(ip))
937                 dblock = generic_block_bmap(mapping, lblock, gfs2_block_map);
938
939         gfs2_glock_dq_uninit(&i_gh);
940
941         return dblock;
942 }
943
944 static void gfs2_discard(struct gfs2_sbd *sdp, struct buffer_head *bh)
945 {
946         struct gfs2_bufdata *bd;
947
948         lock_buffer(bh);
949         gfs2_log_lock(sdp);
950         clear_buffer_dirty(bh);
951         bd = bh->b_private;
952         if (bd) {
953                 if (!list_empty(&bd->bd_le.le_list) && !buffer_pinned(bh))
954                         list_del_init(&bd->bd_le.le_list);
955                 else
956                         gfs2_remove_from_journal(bh, current->journal_info, 0);
957         }
958         bh->b_bdev = NULL;
959         clear_buffer_mapped(bh);
960         clear_buffer_req(bh);
961         clear_buffer_new(bh);
962         gfs2_log_unlock(sdp);
963         unlock_buffer(bh);
964 }
965
966 static void gfs2_invalidatepage(struct page *page, unsigned long offset)
967 {
968         struct gfs2_sbd *sdp = GFS2_SB(page->mapping->host);
969         struct buffer_head *bh, *head;
970         unsigned long pos = 0;
971
972         BUG_ON(!PageLocked(page));
973         if (offset == 0)
974                 ClearPageChecked(page);
975         if (!page_has_buffers(page))
976                 goto out;
977
978         bh = head = page_buffers(page);
979         do {
980                 if (offset <= pos)
981                         gfs2_discard(sdp, bh);
982                 pos += bh->b_size;
983                 bh = bh->b_this_page;
984         } while (bh != head);
985 out:
986         if (offset == 0)
987                 try_to_release_page(page, 0);
988 }
989
990 /**
991  * gfs2_ok_for_dio - check that dio is valid on this file
992  * @ip: The inode
993  * @rw: READ or WRITE
994  * @offset: The offset at which we are reading or writing
995  *
996  * Returns: 0 (to ignore the i/o request and thus fall back to buffered i/o)
997  *          1 (to accept the i/o request)
998  */
999 static int gfs2_ok_for_dio(struct gfs2_inode *ip, int rw, loff_t offset)
1000 {
1001         /*
1002          * Should we return an error here? I can't see that O_DIRECT for
1003          * a stuffed file makes any sense. For now we'll silently fall
1004          * back to buffered I/O
1005          */
1006         if (gfs2_is_stuffed(ip))
1007                 return 0;
1008
1009         if (offset >= i_size_read(&ip->i_inode))
1010                 return 0;
1011         return 1;
1012 }
1013
1014
1015
1016 static ssize_t gfs2_direct_IO(int rw, struct kiocb *iocb,
1017                               const struct iovec *iov, loff_t offset,
1018                               unsigned long nr_segs)
1019 {
1020         struct file *file = iocb->ki_filp;
1021         struct inode *inode = file->f_mapping->host;
1022         struct gfs2_inode *ip = GFS2_I(inode);
1023         struct gfs2_holder gh;
1024         int rv;
1025
1026         /*
1027          * Deferred lock, even if its a write, since we do no allocation
1028          * on this path. All we need change is atime, and this lock mode
1029          * ensures that other nodes have flushed their buffered read caches
1030          * (i.e. their page cache entries for this inode). We do not,
1031          * unfortunately have the option of only flushing a range like
1032          * the VFS does.
1033          */
1034         gfs2_holder_init(ip->i_gl, LM_ST_DEFERRED, 0, &gh);
1035         rv = gfs2_glock_nq(&gh);
1036         if (rv)
1037                 return rv;
1038         rv = gfs2_ok_for_dio(ip, rw, offset);
1039         if (rv != 1)
1040                 goto out; /* dio not valid, fall back to buffered i/o */
1041
1042         rv = blockdev_direct_IO_no_locking(rw, iocb, inode, inode->i_sb->s_bdev,
1043                                            iov, offset, nr_segs,
1044                                            gfs2_get_block_direct, NULL);
1045 out:
1046         gfs2_glock_dq_m(1, &gh);
1047         gfs2_holder_uninit(&gh);
1048         return rv;
1049 }
1050
1051 /**
1052  * gfs2_releasepage - free the metadata associated with a page
1053  * @page: the page that's being released
1054  * @gfp_mask: passed from Linux VFS, ignored by us
1055  *
1056  * Call try_to_free_buffers() if the buffers in this page can be
1057  * released.
1058  *
1059  * Returns: 0
1060  */
1061
1062 int gfs2_releasepage(struct page *page, gfp_t gfp_mask)
1063 {
1064         struct address_space *mapping = page->mapping;
1065         struct gfs2_sbd *sdp = gfs2_mapping2sbd(mapping);
1066         struct buffer_head *bh, *head;
1067         struct gfs2_bufdata *bd;
1068
1069         if (!page_has_buffers(page))
1070                 return 0;
1071
1072         gfs2_log_lock(sdp);
1073         head = bh = page_buffers(page);
1074         do {
1075                 if (atomic_read(&bh->b_count))
1076                         goto cannot_release;
1077                 bd = bh->b_private;
1078                 if (bd && bd->bd_ail)
1079                         goto cannot_release;
1080                 gfs2_assert_warn(sdp, !buffer_pinned(bh));
1081                 gfs2_assert_warn(sdp, !buffer_dirty(bh));
1082                 bh = bh->b_this_page;
1083         } while(bh != head);
1084         gfs2_log_unlock(sdp);
1085
1086         head = bh = page_buffers(page);
1087         do {
1088                 gfs2_log_lock(sdp);
1089                 bd = bh->b_private;
1090                 if (bd) {
1091                         gfs2_assert_warn(sdp, bd->bd_bh == bh);
1092                         gfs2_assert_warn(sdp, list_empty(&bd->bd_list_tr));
1093                         if (!list_empty(&bd->bd_le.le_list)) {
1094                                 if (!buffer_pinned(bh))
1095                                         list_del_init(&bd->bd_le.le_list);
1096                                 else
1097                                         bd = NULL;
1098                         }
1099                         if (bd)
1100                                 bd->bd_bh = NULL;
1101                         bh->b_private = NULL;
1102                 }
1103                 gfs2_log_unlock(sdp);
1104                 if (bd)
1105                         kmem_cache_free(gfs2_bufdata_cachep, bd);
1106
1107                 bh = bh->b_this_page;
1108         } while (bh != head);
1109
1110         return try_to_free_buffers(page);
1111 cannot_release:
1112         gfs2_log_unlock(sdp);
1113         return 0;
1114 }
1115
1116 static const struct address_space_operations gfs2_writeback_aops = {
1117         .writepage = gfs2_writeback_writepage,
1118         .writepages = gfs2_writeback_writepages,
1119         .readpage = gfs2_readpage,
1120         .readpages = gfs2_readpages,
1121         .sync_page = block_sync_page,
1122         .write_begin = gfs2_write_begin,
1123         .write_end = gfs2_write_end,
1124         .bmap = gfs2_bmap,
1125         .invalidatepage = gfs2_invalidatepage,
1126         .releasepage = gfs2_releasepage,
1127         .direct_IO = gfs2_direct_IO,
1128         .migratepage = buffer_migrate_page,
1129         .is_partially_uptodate = block_is_partially_uptodate,
1130         .error_remove_page = generic_error_remove_page,
1131 };
1132
1133 static const struct address_space_operations gfs2_ordered_aops = {
1134         .writepage = gfs2_ordered_writepage,
1135         .readpage = gfs2_readpage,
1136         .readpages = gfs2_readpages,
1137         .sync_page = block_sync_page,
1138         .write_begin = gfs2_write_begin,
1139         .write_end = gfs2_write_end,
1140         .set_page_dirty = gfs2_set_page_dirty,
1141         .bmap = gfs2_bmap,
1142         .invalidatepage = gfs2_invalidatepage,
1143         .releasepage = gfs2_releasepage,
1144         .direct_IO = gfs2_direct_IO,
1145         .migratepage = buffer_migrate_page,
1146         .is_partially_uptodate = block_is_partially_uptodate,
1147         .error_remove_page = generic_error_remove_page,
1148 };
1149
1150 static const struct address_space_operations gfs2_jdata_aops = {
1151         .writepage = gfs2_jdata_writepage,
1152         .writepages = gfs2_jdata_writepages,
1153         .readpage = gfs2_readpage,
1154         .readpages = gfs2_readpages,
1155         .sync_page = block_sync_page,
1156         .write_begin = gfs2_write_begin,
1157         .write_end = gfs2_write_end,
1158         .set_page_dirty = gfs2_set_page_dirty,
1159         .bmap = gfs2_bmap,
1160         .invalidatepage = gfs2_invalidatepage,
1161         .releasepage = gfs2_releasepage,
1162         .is_partially_uptodate = block_is_partially_uptodate,
1163         .error_remove_page = generic_error_remove_page,
1164 };
1165
1166 void gfs2_set_aops(struct inode *inode)
1167 {
1168         struct gfs2_inode *ip = GFS2_I(inode);
1169
1170         if (gfs2_is_writeback(ip))
1171                 inode->i_mapping->a_ops = &gfs2_writeback_aops;
1172         else if (gfs2_is_ordered(ip))
1173                 inode->i_mapping->a_ops = &gfs2_ordered_aops;
1174         else if (gfs2_is_jdata(ip))
1175                 inode->i_mapping->a_ops = &gfs2_jdata_aops;
1176         else
1177                 BUG();
1178 }
1179