Merge branch 'x86-kbuild-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[pandora-kernel.git] / fs / fs-writeback.c
1 /*
2  * fs/fs-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * Contains all the functions related to writing back and waiting
7  * upon dirty inodes against superblocks, and writing back dirty
8  * pages against inodes.  ie: data writeback.  Writeout of the
9  * inode itself is not handled here.
10  *
11  * 10Apr2002    Andrew Morton
12  *              Split out of fs/inode.c
13  *              Additions for address_space-based writeback
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/spinlock.h>
19 #include <linux/sched.h>
20 #include <linux/fs.h>
21 #include <linux/mm.h>
22 #include <linux/kthread.h>
23 #include <linux/freezer.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/backing-dev.h>
27 #include <linux/buffer_head.h>
28 #include "internal.h"
29
30 #define inode_to_bdi(inode)     ((inode)->i_mapping->backing_dev_info)
31
32 /*
33  * We don't actually have pdflush, but this one is exported though /proc...
34  */
35 int nr_pdflush_threads;
36
37 /*
38  * Work items for the bdi_writeback threads
39  */
40 struct bdi_work {
41         struct list_head list;
42         struct list_head wait_list;
43         struct rcu_head rcu_head;
44
45         unsigned long seen;
46         atomic_t pending;
47
48         struct super_block *sb;
49         unsigned long nr_pages;
50         enum writeback_sync_modes sync_mode;
51
52         unsigned long state;
53 };
54
55 enum {
56         WS_USED_B = 0,
57         WS_ONSTACK_B,
58 };
59
60 #define WS_USED (1 << WS_USED_B)
61 #define WS_ONSTACK (1 << WS_ONSTACK_B)
62
63 static inline bool bdi_work_on_stack(struct bdi_work *work)
64 {
65         return test_bit(WS_ONSTACK_B, &work->state);
66 }
67
68 static inline void bdi_work_init(struct bdi_work *work,
69                                  struct writeback_control *wbc)
70 {
71         INIT_RCU_HEAD(&work->rcu_head);
72         work->sb = wbc->sb;
73         work->nr_pages = wbc->nr_to_write;
74         work->sync_mode = wbc->sync_mode;
75         work->state = WS_USED;
76 }
77
78 static inline void bdi_work_init_on_stack(struct bdi_work *work,
79                                           struct writeback_control *wbc)
80 {
81         bdi_work_init(work, wbc);
82         work->state |= WS_ONSTACK;
83 }
84
85 /**
86  * writeback_in_progress - determine whether there is writeback in progress
87  * @bdi: the device's backing_dev_info structure.
88  *
89  * Determine whether there is writeback waiting to be handled against a
90  * backing device.
91  */
92 int writeback_in_progress(struct backing_dev_info *bdi)
93 {
94         return !list_empty(&bdi->work_list);
95 }
96
97 static void bdi_work_clear(struct bdi_work *work)
98 {
99         clear_bit(WS_USED_B, &work->state);
100         smp_mb__after_clear_bit();
101         wake_up_bit(&work->state, WS_USED_B);
102 }
103
104 static void bdi_work_free(struct rcu_head *head)
105 {
106         struct bdi_work *work = container_of(head, struct bdi_work, rcu_head);
107
108         if (!bdi_work_on_stack(work))
109                 kfree(work);
110         else
111                 bdi_work_clear(work);
112 }
113
114 static void wb_work_complete(struct bdi_work *work)
115 {
116         const enum writeback_sync_modes sync_mode = work->sync_mode;
117
118         /*
119          * For allocated work, we can clear the done/seen bit right here.
120          * For on-stack work, we need to postpone both the clear and free
121          * to after the RCU grace period, since the stack could be invalidated
122          * as soon as bdi_work_clear() has done the wakeup.
123          */
124         if (!bdi_work_on_stack(work))
125                 bdi_work_clear(work);
126         if (sync_mode == WB_SYNC_NONE || bdi_work_on_stack(work))
127                 call_rcu(&work->rcu_head, bdi_work_free);
128 }
129
130 static void wb_clear_pending(struct bdi_writeback *wb, struct bdi_work *work)
131 {
132         /*
133          * The caller has retrieved the work arguments from this work,
134          * drop our reference. If this is the last ref, delete and free it
135          */
136         if (atomic_dec_and_test(&work->pending)) {
137                 struct backing_dev_info *bdi = wb->bdi;
138
139                 spin_lock(&bdi->wb_lock);
140                 list_del_rcu(&work->list);
141                 spin_unlock(&bdi->wb_lock);
142
143                 wb_work_complete(work);
144         }
145 }
146
147 static void bdi_queue_work(struct backing_dev_info *bdi, struct bdi_work *work)
148 {
149         if (work) {
150                 work->seen = bdi->wb_mask;
151                 BUG_ON(!work->seen);
152                 atomic_set(&work->pending, bdi->wb_cnt);
153                 BUG_ON(!bdi->wb_cnt);
154
155                 /*
156                  * Make sure stores are seen before it appears on the list
157                  */
158                 smp_mb();
159
160                 spin_lock(&bdi->wb_lock);
161                 list_add_tail_rcu(&work->list, &bdi->work_list);
162                 spin_unlock(&bdi->wb_lock);
163         }
164
165         /*
166          * If the default thread isn't there, make sure we add it. When
167          * it gets created and wakes up, we'll run this work.
168          */
169         if (unlikely(list_empty_careful(&bdi->wb_list)))
170                 wake_up_process(default_backing_dev_info.wb.task);
171         else {
172                 struct bdi_writeback *wb = &bdi->wb;
173
174                 /*
175                  * If we failed allocating the bdi work item, wake up the wb
176                  * thread always. As a safety precaution, it'll flush out
177                  * everything
178                  */
179                 if (!wb_has_dirty_io(wb)) {
180                         if (work)
181                                 wb_clear_pending(wb, work);
182                 } else if (wb->task)
183                         wake_up_process(wb->task);
184         }
185 }
186
187 /*
188  * Used for on-stack allocated work items. The caller needs to wait until
189  * the wb threads have acked the work before it's safe to continue.
190  */
191 static void bdi_wait_on_work_clear(struct bdi_work *work)
192 {
193         wait_on_bit(&work->state, WS_USED_B, bdi_sched_wait,
194                     TASK_UNINTERRUPTIBLE);
195 }
196
197 static struct bdi_work *bdi_alloc_work(struct writeback_control *wbc)
198 {
199         struct bdi_work *work;
200
201         work = kmalloc(sizeof(*work), GFP_ATOMIC);
202         if (work)
203                 bdi_work_init(work, wbc);
204
205         return work;
206 }
207
208 void bdi_start_writeback(struct writeback_control *wbc)
209 {
210         const bool must_wait = wbc->sync_mode == WB_SYNC_ALL;
211         struct bdi_work work_stack, *work = NULL;
212
213         if (!must_wait)
214                 work = bdi_alloc_work(wbc);
215
216         if (!work) {
217                 work = &work_stack;
218                 bdi_work_init_on_stack(work, wbc);
219         }
220
221         bdi_queue_work(wbc->bdi, work);
222
223         /*
224          * If the sync mode is WB_SYNC_ALL, block waiting for the work to
225          * complete. If not, we only need to wait for the work to be started,
226          * if we allocated it on-stack. We use the same mechanism, if the
227          * wait bit is set in the bdi_work struct, then threads will not
228          * clear pending until after they are done.
229          *
230          * Note that work == &work_stack if must_wait is true, so we don't
231          * need to do call_rcu() here ever, since the completion path will
232          * have done that for us.
233          */
234         if (must_wait || work == &work_stack) {
235                 bdi_wait_on_work_clear(work);
236                 if (work != &work_stack)
237                         call_rcu(&work->rcu_head, bdi_work_free);
238         }
239 }
240
241 /*
242  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
243  * furthest end of its superblock's dirty-inode list.
244  *
245  * Before stamping the inode's ->dirtied_when, we check to see whether it is
246  * already the most-recently-dirtied inode on the b_dirty list.  If that is
247  * the case then the inode must have been redirtied while it was being written
248  * out and we don't reset its dirtied_when.
249  */
250 static void redirty_tail(struct inode *inode)
251 {
252         struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
253
254         if (!list_empty(&wb->b_dirty)) {
255                 struct inode *tail;
256
257                 tail = list_entry(wb->b_dirty.next, struct inode, i_list);
258                 if (time_before(inode->dirtied_when, tail->dirtied_when))
259                         inode->dirtied_when = jiffies;
260         }
261         list_move(&inode->i_list, &wb->b_dirty);
262 }
263
264 /*
265  * requeue inode for re-scanning after bdi->b_io list is exhausted.
266  */
267 static void requeue_io(struct inode *inode)
268 {
269         struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
270
271         list_move(&inode->i_list, &wb->b_more_io);
272 }
273
274 static void inode_sync_complete(struct inode *inode)
275 {
276         /*
277          * Prevent speculative execution through spin_unlock(&inode_lock);
278          */
279         smp_mb();
280         wake_up_bit(&inode->i_state, __I_SYNC);
281 }
282
283 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
284 {
285         bool ret = time_after(inode->dirtied_when, t);
286 #ifndef CONFIG_64BIT
287         /*
288          * For inodes being constantly redirtied, dirtied_when can get stuck.
289          * It _appears_ to be in the future, but is actually in distant past.
290          * This test is necessary to prevent such wrapped-around relative times
291          * from permanently stopping the whole pdflush writeback.
292          */
293         ret = ret && time_before_eq(inode->dirtied_when, jiffies);
294 #endif
295         return ret;
296 }
297
298 /*
299  * Move expired dirty inodes from @delaying_queue to @dispatch_queue.
300  */
301 static void move_expired_inodes(struct list_head *delaying_queue,
302                                struct list_head *dispatch_queue,
303                                 unsigned long *older_than_this)
304 {
305         while (!list_empty(delaying_queue)) {
306                 struct inode *inode = list_entry(delaying_queue->prev,
307                                                 struct inode, i_list);
308                 if (older_than_this &&
309                     inode_dirtied_after(inode, *older_than_this))
310                         break;
311                 list_move(&inode->i_list, dispatch_queue);
312         }
313 }
314
315 /*
316  * Queue all expired dirty inodes for io, eldest first.
317  */
318 static void queue_io(struct bdi_writeback *wb, unsigned long *older_than_this)
319 {
320         list_splice_init(&wb->b_more_io, wb->b_io.prev);
321         move_expired_inodes(&wb->b_dirty, &wb->b_io, older_than_this);
322 }
323
324 static int write_inode(struct inode *inode, int sync)
325 {
326         if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode))
327                 return inode->i_sb->s_op->write_inode(inode, sync);
328         return 0;
329 }
330
331 /*
332  * Wait for writeback on an inode to complete.
333  */
334 static void inode_wait_for_writeback(struct inode *inode)
335 {
336         DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
337         wait_queue_head_t *wqh;
338
339         wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
340         do {
341                 spin_unlock(&inode_lock);
342                 __wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE);
343                 spin_lock(&inode_lock);
344         } while (inode->i_state & I_SYNC);
345 }
346
347 /*
348  * Write out an inode's dirty pages.  Called under inode_lock.  Either the
349  * caller has ref on the inode (either via __iget or via syscall against an fd)
350  * or the inode has I_WILL_FREE set (via generic_forget_inode)
351  *
352  * If `wait' is set, wait on the writeout.
353  *
354  * The whole writeout design is quite complex and fragile.  We want to avoid
355  * starvation of particular inodes when others are being redirtied, prevent
356  * livelocks, etc.
357  *
358  * Called under inode_lock.
359  */
360 static int
361 writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
362 {
363         struct address_space *mapping = inode->i_mapping;
364         int wait = wbc->sync_mode == WB_SYNC_ALL;
365         unsigned dirty;
366         int ret;
367
368         if (!atomic_read(&inode->i_count))
369                 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
370         else
371                 WARN_ON(inode->i_state & I_WILL_FREE);
372
373         if (inode->i_state & I_SYNC) {
374                 /*
375                  * If this inode is locked for writeback and we are not doing
376                  * writeback-for-data-integrity, move it to b_more_io so that
377                  * writeback can proceed with the other inodes on s_io.
378                  *
379                  * We'll have another go at writing back this inode when we
380                  * completed a full scan of b_io.
381                  */
382                 if (!wait) {
383                         requeue_io(inode);
384                         return 0;
385                 }
386
387                 /*
388                  * It's a data-integrity sync.  We must wait.
389                  */
390                 inode_wait_for_writeback(inode);
391         }
392
393         BUG_ON(inode->i_state & I_SYNC);
394
395         /* Set I_SYNC, reset I_DIRTY */
396         dirty = inode->i_state & I_DIRTY;
397         inode->i_state |= I_SYNC;
398         inode->i_state &= ~I_DIRTY;
399
400         spin_unlock(&inode_lock);
401
402         ret = do_writepages(mapping, wbc);
403
404         /* Don't write the inode if only I_DIRTY_PAGES was set */
405         if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
406                 int err = write_inode(inode, wait);
407                 if (ret == 0)
408                         ret = err;
409         }
410
411         if (wait) {
412                 int err = filemap_fdatawait(mapping);
413                 if (ret == 0)
414                         ret = err;
415         }
416
417         spin_lock(&inode_lock);
418         inode->i_state &= ~I_SYNC;
419         if (!(inode->i_state & (I_FREEING | I_CLEAR))) {
420                 if (!(inode->i_state & I_DIRTY) &&
421                     mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
422                         /*
423                          * We didn't write back all the pages.  nfs_writepages()
424                          * sometimes bales out without doing anything. Redirty
425                          * the inode; Move it from b_io onto b_more_io/b_dirty.
426                          */
427                         /*
428                          * akpm: if the caller was the kupdate function we put
429                          * this inode at the head of b_dirty so it gets first
430                          * consideration.  Otherwise, move it to the tail, for
431                          * the reasons described there.  I'm not really sure
432                          * how much sense this makes.  Presumably I had a good
433                          * reasons for doing it this way, and I'd rather not
434                          * muck with it at present.
435                          */
436                         if (wbc->for_kupdate) {
437                                 /*
438                                  * For the kupdate function we move the inode
439                                  * to b_more_io so it will get more writeout as
440                                  * soon as the queue becomes uncongested.
441                                  */
442                                 inode->i_state |= I_DIRTY_PAGES;
443                                 if (wbc->nr_to_write <= 0) {
444                                         /*
445                                          * slice used up: queue for next turn
446                                          */
447                                         requeue_io(inode);
448                                 } else {
449                                         /*
450                                          * somehow blocked: retry later
451                                          */
452                                         redirty_tail(inode);
453                                 }
454                         } else {
455                                 /*
456                                  * Otherwise fully redirty the inode so that
457                                  * other inodes on this superblock will get some
458                                  * writeout.  Otherwise heavy writing to one
459                                  * file would indefinitely suspend writeout of
460                                  * all the other files.
461                                  */
462                                 inode->i_state |= I_DIRTY_PAGES;
463                                 redirty_tail(inode);
464                         }
465                 } else if (inode->i_state & I_DIRTY) {
466                         /*
467                          * Someone redirtied the inode while were writing back
468                          * the pages.
469                          */
470                         redirty_tail(inode);
471                 } else if (atomic_read(&inode->i_count)) {
472                         /*
473                          * The inode is clean, inuse
474                          */
475                         list_move(&inode->i_list, &inode_in_use);
476                 } else {
477                         /*
478                          * The inode is clean, unused
479                          */
480                         list_move(&inode->i_list, &inode_unused);
481                 }
482         }
483         inode_sync_complete(inode);
484         return ret;
485 }
486
487 /*
488  * For WB_SYNC_NONE writeback, the caller does not have the sb pinned
489  * before calling writeback. So make sure that we do pin it, so it doesn't
490  * go away while we are writing inodes from it.
491  *
492  * Returns 0 if the super was successfully pinned (or pinning wasn't needed),
493  * 1 if we failed.
494  */
495 static int pin_sb_for_writeback(struct writeback_control *wbc,
496                                    struct inode *inode)
497 {
498         struct super_block *sb = inode->i_sb;
499
500         /*
501          * Caller must already hold the ref for this
502          */
503         if (wbc->sync_mode == WB_SYNC_ALL) {
504                 WARN_ON(!rwsem_is_locked(&sb->s_umount));
505                 return 0;
506         }
507
508         spin_lock(&sb_lock);
509         sb->s_count++;
510         if (down_read_trylock(&sb->s_umount)) {
511                 if (sb->s_root) {
512                         spin_unlock(&sb_lock);
513                         return 0;
514                 }
515                 /*
516                  * umounted, drop rwsem again and fall through to failure
517                  */
518                 up_read(&sb->s_umount);
519         }
520
521         sb->s_count--;
522         spin_unlock(&sb_lock);
523         return 1;
524 }
525
526 static void unpin_sb_for_writeback(struct writeback_control *wbc,
527                                    struct inode *inode)
528 {
529         struct super_block *sb = inode->i_sb;
530
531         if (wbc->sync_mode == WB_SYNC_ALL)
532                 return;
533
534         up_read(&sb->s_umount);
535         put_super(sb);
536 }
537
538 static void writeback_inodes_wb(struct bdi_writeback *wb,
539                                 struct writeback_control *wbc)
540 {
541         struct super_block *sb = wbc->sb;
542         const int is_blkdev_sb = sb_is_blkdev_sb(sb);
543         const unsigned long start = jiffies;    /* livelock avoidance */
544
545         spin_lock(&inode_lock);
546
547         if (!wbc->for_kupdate || list_empty(&wb->b_io))
548                 queue_io(wb, wbc->older_than_this);
549
550         while (!list_empty(&wb->b_io)) {
551                 struct inode *inode = list_entry(wb->b_io.prev,
552                                                 struct inode, i_list);
553                 long pages_skipped;
554
555                 /*
556                  * super block given and doesn't match, skip this inode
557                  */
558                 if (sb && sb != inode->i_sb) {
559                         redirty_tail(inode);
560                         continue;
561                 }
562
563                 if (!bdi_cap_writeback_dirty(wb->bdi)) {
564                         redirty_tail(inode);
565                         if (is_blkdev_sb) {
566                                 /*
567                                  * Dirty memory-backed blockdev: the ramdisk
568                                  * driver does this.  Skip just this inode
569                                  */
570                                 continue;
571                         }
572                         /*
573                          * Dirty memory-backed inode against a filesystem other
574                          * than the kernel-internal bdev filesystem.  Skip the
575                          * entire superblock.
576                          */
577                         break;
578                 }
579
580                 if (inode->i_state & (I_NEW | I_WILL_FREE)) {
581                         requeue_io(inode);
582                         continue;
583                 }
584
585                 if (wbc->nonblocking && bdi_write_congested(wb->bdi)) {
586                         wbc->encountered_congestion = 1;
587                         if (!is_blkdev_sb)
588                                 break;          /* Skip a congested fs */
589                         requeue_io(inode);
590                         continue;               /* Skip a congested blockdev */
591                 }
592
593                 /*
594                  * Was this inode dirtied after sync_sb_inodes was called?
595                  * This keeps sync from extra jobs and livelock.
596                  */
597                 if (inode_dirtied_after(inode, start))
598                         break;
599
600                 if (pin_sb_for_writeback(wbc, inode)) {
601                         requeue_io(inode);
602                         continue;
603                 }
604
605                 BUG_ON(inode->i_state & (I_FREEING | I_CLEAR));
606                 __iget(inode);
607                 pages_skipped = wbc->pages_skipped;
608                 writeback_single_inode(inode, wbc);
609                 unpin_sb_for_writeback(wbc, inode);
610                 if (wbc->pages_skipped != pages_skipped) {
611                         /*
612                          * writeback is not making progress due to locked
613                          * buffers.  Skip this inode for now.
614                          */
615                         redirty_tail(inode);
616                 }
617                 spin_unlock(&inode_lock);
618                 iput(inode);
619                 cond_resched();
620                 spin_lock(&inode_lock);
621                 if (wbc->nr_to_write <= 0) {
622                         wbc->more_io = 1;
623                         break;
624                 }
625                 if (!list_empty(&wb->b_more_io))
626                         wbc->more_io = 1;
627         }
628
629         spin_unlock(&inode_lock);
630         /* Leave any unwritten inodes on b_io */
631 }
632
633 void writeback_inodes_wbc(struct writeback_control *wbc)
634 {
635         struct backing_dev_info *bdi = wbc->bdi;
636
637         writeback_inodes_wb(&bdi->wb, wbc);
638 }
639
640 /*
641  * The maximum number of pages to writeout in a single bdi flush/kupdate
642  * operation.  We do this so we don't hold I_SYNC against an inode for
643  * enormous amounts of time, which would block a userspace task which has
644  * been forced to throttle against that inode.  Also, the code reevaluates
645  * the dirty each time it has written this many pages.
646  */
647 #define MAX_WRITEBACK_PAGES     1024
648
649 static inline bool over_bground_thresh(void)
650 {
651         unsigned long background_thresh, dirty_thresh;
652
653         get_dirty_limits(&background_thresh, &dirty_thresh, NULL, NULL);
654
655         return (global_page_state(NR_FILE_DIRTY) +
656                 global_page_state(NR_UNSTABLE_NFS) >= background_thresh);
657 }
658
659 /*
660  * Explicit flushing or periodic writeback of "old" data.
661  *
662  * Define "old": the first time one of an inode's pages is dirtied, we mark the
663  * dirtying-time in the inode's address_space.  So this periodic writeback code
664  * just walks the superblock inode list, writing back any inodes which are
665  * older than a specific point in time.
666  *
667  * Try to run once per dirty_writeback_interval.  But if a writeback event
668  * takes longer than a dirty_writeback_interval interval, then leave a
669  * one-second gap.
670  *
671  * older_than_this takes precedence over nr_to_write.  So we'll only write back
672  * all dirty pages if they are all attached to "old" mappings.
673  */
674 static long wb_writeback(struct bdi_writeback *wb, long nr_pages,
675                          struct super_block *sb,
676                          enum writeback_sync_modes sync_mode, int for_kupdate)
677 {
678         struct writeback_control wbc = {
679                 .bdi                    = wb->bdi,
680                 .sb                     = sb,
681                 .sync_mode              = sync_mode,
682                 .older_than_this        = NULL,
683                 .for_kupdate            = for_kupdate,
684                 .range_cyclic           = 1,
685         };
686         unsigned long oldest_jif;
687         long wrote = 0;
688
689         if (wbc.for_kupdate) {
690                 wbc.older_than_this = &oldest_jif;
691                 oldest_jif = jiffies -
692                                 msecs_to_jiffies(dirty_expire_interval * 10);
693         }
694
695         for (;;) {
696                 /*
697                  * Don't flush anything for non-integrity writeback where
698                  * no nr_pages was given
699                  */
700                 if (!for_kupdate && nr_pages <= 0 && sync_mode == WB_SYNC_NONE)
701                         break;
702
703                 /*
704                  * If no specific pages were given and this is just a
705                  * periodic background writeout and we are below the
706                  * background dirty threshold, don't do anything
707                  */
708                 if (for_kupdate && nr_pages <= 0 && !over_bground_thresh())
709                         break;
710
711                 wbc.more_io = 0;
712                 wbc.encountered_congestion = 0;
713                 wbc.nr_to_write = MAX_WRITEBACK_PAGES;
714                 wbc.pages_skipped = 0;
715                 writeback_inodes_wb(wb, &wbc);
716                 nr_pages -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
717                 wrote += MAX_WRITEBACK_PAGES - wbc.nr_to_write;
718
719                 /*
720                  * If we ran out of stuff to write, bail unless more_io got set
721                  */
722                 if (wbc.nr_to_write > 0 || wbc.pages_skipped > 0) {
723                         if (wbc.more_io && !wbc.for_kupdate)
724                                 continue;
725                         break;
726                 }
727         }
728
729         return wrote;
730 }
731
732 /*
733  * Return the next bdi_work struct that hasn't been processed by this
734  * wb thread yet
735  */
736 static struct bdi_work *get_next_work_item(struct backing_dev_info *bdi,
737                                            struct bdi_writeback *wb)
738 {
739         struct bdi_work *work, *ret = NULL;
740
741         rcu_read_lock();
742
743         list_for_each_entry_rcu(work, &bdi->work_list, list) {
744                 if (!test_and_clear_bit(wb->nr, &work->seen))
745                         continue;
746
747                 ret = work;
748                 break;
749         }
750
751         rcu_read_unlock();
752         return ret;
753 }
754
755 static long wb_check_old_data_flush(struct bdi_writeback *wb)
756 {
757         unsigned long expired;
758         long nr_pages;
759
760         expired = wb->last_old_flush +
761                         msecs_to_jiffies(dirty_writeback_interval * 10);
762         if (time_before(jiffies, expired))
763                 return 0;
764
765         wb->last_old_flush = jiffies;
766         nr_pages = global_page_state(NR_FILE_DIRTY) +
767                         global_page_state(NR_UNSTABLE_NFS) +
768                         (inodes_stat.nr_inodes - inodes_stat.nr_unused);
769
770         if (nr_pages)
771                 return wb_writeback(wb, nr_pages, NULL, WB_SYNC_NONE, 1);
772
773         return 0;
774 }
775
776 /*
777  * Retrieve work items and do the writeback they describe
778  */
779 long wb_do_writeback(struct bdi_writeback *wb, int force_wait)
780 {
781         struct backing_dev_info *bdi = wb->bdi;
782         struct bdi_work *work;
783         long nr_pages, wrote = 0;
784
785         while ((work = get_next_work_item(bdi, wb)) != NULL) {
786                 enum writeback_sync_modes sync_mode;
787
788                 nr_pages = work->nr_pages;
789
790                 /*
791                  * Override sync mode, in case we must wait for completion
792                  */
793                 if (force_wait)
794                         work->sync_mode = sync_mode = WB_SYNC_ALL;
795                 else
796                         sync_mode = work->sync_mode;
797
798                 /*
799                  * If this isn't a data integrity operation, just notify
800                  * that we have seen this work and we are now starting it.
801                  */
802                 if (sync_mode == WB_SYNC_NONE)
803                         wb_clear_pending(wb, work);
804
805                 wrote += wb_writeback(wb, nr_pages, work->sb, sync_mode, 0);
806
807                 /*
808                  * This is a data integrity writeback, so only do the
809                  * notification when we have completed the work.
810                  */
811                 if (sync_mode == WB_SYNC_ALL)
812                         wb_clear_pending(wb, work);
813         }
814
815         /*
816          * Check for periodic writeback, kupdated() style
817          */
818         wrote += wb_check_old_data_flush(wb);
819
820         return wrote;
821 }
822
823 /*
824  * Handle writeback of dirty data for the device backed by this bdi. Also
825  * wakes up periodically and does kupdated style flushing.
826  */
827 int bdi_writeback_task(struct bdi_writeback *wb)
828 {
829         unsigned long last_active = jiffies;
830         unsigned long wait_jiffies = -1UL;
831         long pages_written;
832
833         while (!kthread_should_stop()) {
834                 pages_written = wb_do_writeback(wb, 0);
835
836                 if (pages_written)
837                         last_active = jiffies;
838                 else if (wait_jiffies != -1UL) {
839                         unsigned long max_idle;
840
841                         /*
842                          * Longest period of inactivity that we tolerate. If we
843                          * see dirty data again later, the task will get
844                          * recreated automatically.
845                          */
846                         max_idle = max(5UL * 60 * HZ, wait_jiffies);
847                         if (time_after(jiffies, max_idle + last_active))
848                                 break;
849                 }
850
851                 wait_jiffies = msecs_to_jiffies(dirty_writeback_interval * 10);
852                 set_current_state(TASK_INTERRUPTIBLE);
853                 schedule_timeout(wait_jiffies);
854                 try_to_freeze();
855         }
856
857         return 0;
858 }
859
860 /*
861  * Schedule writeback for all backing devices. Expensive! If this is a data
862  * integrity operation, writeback will be complete when this returns. If
863  * we are simply called for WB_SYNC_NONE, then writeback will merely be
864  * scheduled to run.
865  */
866 static void bdi_writeback_all(struct writeback_control *wbc)
867 {
868         const bool must_wait = wbc->sync_mode == WB_SYNC_ALL;
869         struct backing_dev_info *bdi;
870         struct bdi_work *work;
871         LIST_HEAD(list);
872
873 restart:
874         spin_lock(&bdi_lock);
875
876         list_for_each_entry(bdi, &bdi_list, bdi_list) {
877                 struct bdi_work *work;
878
879                 if (!bdi_has_dirty_io(bdi))
880                         continue;
881
882                 /*
883                  * If work allocation fails, do the writes inline. We drop
884                  * the lock and restart the list writeout. This should be OK,
885                  * since this happens rarely and because the writeout should
886                  * eventually make more free memory available.
887                  */
888                 work = bdi_alloc_work(wbc);
889                 if (!work) {
890                         struct writeback_control __wbc;
891
892                         /*
893                          * Not a data integrity writeout, just continue
894                          */
895                         if (!must_wait)
896                                 continue;
897
898                         spin_unlock(&bdi_lock);
899                         __wbc = *wbc;
900                         __wbc.bdi = bdi;
901                         writeback_inodes_wbc(&__wbc);
902                         goto restart;
903                 }
904                 if (must_wait)
905                         list_add_tail(&work->wait_list, &list);
906
907                 bdi_queue_work(bdi, work);
908         }
909
910         spin_unlock(&bdi_lock);
911
912         /*
913          * If this is for WB_SYNC_ALL, wait for pending work to complete
914          * before returning.
915          */
916         while (!list_empty(&list)) {
917                 work = list_entry(list.next, struct bdi_work, wait_list);
918                 list_del(&work->wait_list);
919                 bdi_wait_on_work_clear(work);
920                 call_rcu(&work->rcu_head, bdi_work_free);
921         }
922 }
923
924 /*
925  * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
926  * the whole world.
927  */
928 void wakeup_flusher_threads(long nr_pages)
929 {
930         struct writeback_control wbc = {
931                 .sync_mode      = WB_SYNC_NONE,
932                 .older_than_this = NULL,
933                 .range_cyclic   = 1,
934         };
935
936         if (nr_pages == 0)
937                 nr_pages = global_page_state(NR_FILE_DIRTY) +
938                                 global_page_state(NR_UNSTABLE_NFS);
939         wbc.nr_to_write = nr_pages;
940         bdi_writeback_all(&wbc);
941 }
942
943 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
944 {
945         if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
946                 struct dentry *dentry;
947                 const char *name = "?";
948
949                 dentry = d_find_alias(inode);
950                 if (dentry) {
951                         spin_lock(&dentry->d_lock);
952                         name = (const char *) dentry->d_name.name;
953                 }
954                 printk(KERN_DEBUG
955                        "%s(%d): dirtied inode %lu (%s) on %s\n",
956                        current->comm, task_pid_nr(current), inode->i_ino,
957                        name, inode->i_sb->s_id);
958                 if (dentry) {
959                         spin_unlock(&dentry->d_lock);
960                         dput(dentry);
961                 }
962         }
963 }
964
965 /**
966  *      __mark_inode_dirty -    internal function
967  *      @inode: inode to mark
968  *      @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
969  *      Mark an inode as dirty. Callers should use mark_inode_dirty or
970  *      mark_inode_dirty_sync.
971  *
972  * Put the inode on the super block's dirty list.
973  *
974  * CAREFUL! We mark it dirty unconditionally, but move it onto the
975  * dirty list only if it is hashed or if it refers to a blockdev.
976  * If it was not hashed, it will never be added to the dirty list
977  * even if it is later hashed, as it will have been marked dirty already.
978  *
979  * In short, make sure you hash any inodes _before_ you start marking
980  * them dirty.
981  *
982  * This function *must* be atomic for the I_DIRTY_PAGES case -
983  * set_page_dirty() is called under spinlock in several places.
984  *
985  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
986  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
987  * the kernel-internal blockdev inode represents the dirtying time of the
988  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
989  * page->mapping->host, so the page-dirtying time is recorded in the internal
990  * blockdev inode.
991  */
992 void __mark_inode_dirty(struct inode *inode, int flags)
993 {
994         struct super_block *sb = inode->i_sb;
995
996         /*
997          * Don't do this for I_DIRTY_PAGES - that doesn't actually
998          * dirty the inode itself
999          */
1000         if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
1001                 if (sb->s_op->dirty_inode)
1002                         sb->s_op->dirty_inode(inode);
1003         }
1004
1005         /*
1006          * make sure that changes are seen by all cpus before we test i_state
1007          * -- mikulas
1008          */
1009         smp_mb();
1010
1011         /* avoid the locking if we can */
1012         if ((inode->i_state & flags) == flags)
1013                 return;
1014
1015         if (unlikely(block_dump))
1016                 block_dump___mark_inode_dirty(inode);
1017
1018         spin_lock(&inode_lock);
1019         if ((inode->i_state & flags) != flags) {
1020                 const int was_dirty = inode->i_state & I_DIRTY;
1021
1022                 inode->i_state |= flags;
1023
1024                 /*
1025                  * If the inode is being synced, just update its dirty state.
1026                  * The unlocker will place the inode on the appropriate
1027                  * superblock list, based upon its state.
1028                  */
1029                 if (inode->i_state & I_SYNC)
1030                         goto out;
1031
1032                 /*
1033                  * Only add valid (hashed) inodes to the superblock's
1034                  * dirty list.  Add blockdev inodes as well.
1035                  */
1036                 if (!S_ISBLK(inode->i_mode)) {
1037                         if (hlist_unhashed(&inode->i_hash))
1038                                 goto out;
1039                 }
1040                 if (inode->i_state & (I_FREEING|I_CLEAR))
1041                         goto out;
1042
1043                 /*
1044                  * If the inode was already on b_dirty/b_io/b_more_io, don't
1045                  * reposition it (that would break b_dirty time-ordering).
1046                  */
1047                 if (!was_dirty) {
1048                         struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1049                         struct backing_dev_info *bdi = wb->bdi;
1050
1051                         if (bdi_cap_writeback_dirty(bdi) &&
1052                             !test_bit(BDI_registered, &bdi->state)) {
1053                                 WARN_ON(1);
1054                                 printk(KERN_ERR "bdi-%s not registered\n",
1055                                                                 bdi->name);
1056                         }
1057
1058                         inode->dirtied_when = jiffies;
1059                         list_move(&inode->i_list, &wb->b_dirty);
1060                 }
1061         }
1062 out:
1063         spin_unlock(&inode_lock);
1064 }
1065 EXPORT_SYMBOL(__mark_inode_dirty);
1066
1067 /*
1068  * Write out a superblock's list of dirty inodes.  A wait will be performed
1069  * upon no inodes, all inodes or the final one, depending upon sync_mode.
1070  *
1071  * If older_than_this is non-NULL, then only write out inodes which
1072  * had their first dirtying at a time earlier than *older_than_this.
1073  *
1074  * If we're a pdlfush thread, then implement pdflush collision avoidance
1075  * against the entire list.
1076  *
1077  * If `bdi' is non-zero then we're being asked to writeback a specific queue.
1078  * This function assumes that the blockdev superblock's inodes are backed by
1079  * a variety of queues, so all inodes are searched.  For other superblocks,
1080  * assume that all inodes are backed by the same queue.
1081  *
1082  * The inodes to be written are parked on bdi->b_io.  They are moved back onto
1083  * bdi->b_dirty as they are selected for writing.  This way, none can be missed
1084  * on the writer throttling path, and we get decent balancing between many
1085  * throttled threads: we don't want them all piling up on inode_sync_wait.
1086  */
1087 static void wait_sb_inodes(struct writeback_control *wbc)
1088 {
1089         struct inode *inode, *old_inode = NULL;
1090
1091         /*
1092          * We need to be protected against the filesystem going from
1093          * r/o to r/w or vice versa.
1094          */
1095         WARN_ON(!rwsem_is_locked(&wbc->sb->s_umount));
1096
1097         spin_lock(&inode_lock);
1098
1099         /*
1100          * Data integrity sync. Must wait for all pages under writeback,
1101          * because there may have been pages dirtied before our sync
1102          * call, but which had writeout started before we write it out.
1103          * In which case, the inode may not be on the dirty list, but
1104          * we still have to wait for that writeout.
1105          */
1106         list_for_each_entry(inode, &wbc->sb->s_inodes, i_sb_list) {
1107                 struct address_space *mapping;
1108
1109                 if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE|I_NEW))
1110                         continue;
1111                 mapping = inode->i_mapping;
1112                 if (mapping->nrpages == 0)
1113                         continue;
1114                 __iget(inode);
1115                 spin_unlock(&inode_lock);
1116                 /*
1117                  * We hold a reference to 'inode' so it couldn't have
1118                  * been removed from s_inodes list while we dropped the
1119                  * inode_lock.  We cannot iput the inode now as we can
1120                  * be holding the last reference and we cannot iput it
1121                  * under inode_lock. So we keep the reference and iput
1122                  * it later.
1123                  */
1124                 iput(old_inode);
1125                 old_inode = inode;
1126
1127                 filemap_fdatawait(mapping);
1128
1129                 cond_resched();
1130
1131                 spin_lock(&inode_lock);
1132         }
1133         spin_unlock(&inode_lock);
1134         iput(old_inode);
1135 }
1136
1137 /**
1138  * writeback_inodes_sb  -       writeback dirty inodes from given super_block
1139  * @sb: the superblock
1140  *
1141  * Start writeback on some inodes on this super_block. No guarantees are made
1142  * on how many (if any) will be written, and this function does not wait
1143  * for IO completion of submitted IO. The number of pages submitted is
1144  * returned.
1145  */
1146 long writeback_inodes_sb(struct super_block *sb)
1147 {
1148         struct writeback_control wbc = {
1149                 .sb             = sb,
1150                 .sync_mode      = WB_SYNC_NONE,
1151                 .range_start    = 0,
1152                 .range_end      = LLONG_MAX,
1153         };
1154         unsigned long nr_dirty = global_page_state(NR_FILE_DIRTY);
1155         unsigned long nr_unstable = global_page_state(NR_UNSTABLE_NFS);
1156         long nr_to_write;
1157
1158         nr_to_write = nr_dirty + nr_unstable +
1159                         (inodes_stat.nr_inodes - inodes_stat.nr_unused);
1160
1161         wbc.nr_to_write = nr_to_write;
1162         bdi_writeback_all(&wbc);
1163         return nr_to_write - wbc.nr_to_write;
1164 }
1165 EXPORT_SYMBOL(writeback_inodes_sb);
1166
1167 /**
1168  * sync_inodes_sb       -       sync sb inode pages
1169  * @sb: the superblock
1170  *
1171  * This function writes and waits on any dirty inode belonging to this
1172  * super_block. The number of pages synced is returned.
1173  */
1174 long sync_inodes_sb(struct super_block *sb)
1175 {
1176         struct writeback_control wbc = {
1177                 .sb             = sb,
1178                 .sync_mode      = WB_SYNC_ALL,
1179                 .range_start    = 0,
1180                 .range_end      = LLONG_MAX,
1181         };
1182         long nr_to_write = LONG_MAX; /* doesn't actually matter */
1183
1184         wbc.nr_to_write = nr_to_write;
1185         bdi_writeback_all(&wbc);
1186         wait_sb_inodes(&wbc);
1187         return nr_to_write - wbc.nr_to_write;
1188 }
1189 EXPORT_SYMBOL(sync_inodes_sb);
1190
1191 /**
1192  * write_inode_now      -       write an inode to disk
1193  * @inode: inode to write to disk
1194  * @sync: whether the write should be synchronous or not
1195  *
1196  * This function commits an inode to disk immediately if it is dirty. This is
1197  * primarily needed by knfsd.
1198  *
1199  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1200  */
1201 int write_inode_now(struct inode *inode, int sync)
1202 {
1203         int ret;
1204         struct writeback_control wbc = {
1205                 .nr_to_write = LONG_MAX,
1206                 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
1207                 .range_start = 0,
1208                 .range_end = LLONG_MAX,
1209         };
1210
1211         if (!mapping_cap_writeback_dirty(inode->i_mapping))
1212                 wbc.nr_to_write = 0;
1213
1214         might_sleep();
1215         spin_lock(&inode_lock);
1216         ret = writeback_single_inode(inode, &wbc);
1217         spin_unlock(&inode_lock);
1218         if (sync)
1219                 inode_sync_wait(inode);
1220         return ret;
1221 }
1222 EXPORT_SYMBOL(write_inode_now);
1223
1224 /**
1225  * sync_inode - write an inode and its pages to disk.
1226  * @inode: the inode to sync
1227  * @wbc: controls the writeback mode
1228  *
1229  * sync_inode() will write an inode and its pages to disk.  It will also
1230  * correctly update the inode on its superblock's dirty inode lists and will
1231  * update inode->i_state.
1232  *
1233  * The caller must have a ref on the inode.
1234  */
1235 int sync_inode(struct inode *inode, struct writeback_control *wbc)
1236 {
1237         int ret;
1238
1239         spin_lock(&inode_lock);
1240         ret = writeback_single_inode(inode, wbc);
1241         spin_unlock(&inode_lock);
1242         return ret;
1243 }
1244 EXPORT_SYMBOL(sync_inode);
1245
1246 /**
1247  * generic_osync_inode - flush all dirty data for a given inode to disk
1248  * @inode: inode to write
1249  * @mapping: the address_space that should be flushed
1250  * @what:  what to write and wait upon
1251  *
1252  * This can be called by file_write functions for files which have the
1253  * O_SYNC flag set, to flush dirty writes to disk.
1254  *
1255  * @what is a bitmask, specifying which part of the inode's data should be
1256  * written and waited upon.
1257  *
1258  *    OSYNC_DATA:     i_mapping's dirty data
1259  *    OSYNC_METADATA: the buffers at i_mapping->private_list
1260  *    OSYNC_INODE:    the inode itself
1261  */
1262
1263 int generic_osync_inode(struct inode *inode, struct address_space *mapping, int what)
1264 {
1265         int err = 0;
1266         int need_write_inode_now = 0;
1267         int err2;
1268
1269         if (what & OSYNC_DATA)
1270                 err = filemap_fdatawrite(mapping);
1271         if (what & (OSYNC_METADATA|OSYNC_DATA)) {
1272                 err2 = sync_mapping_buffers(mapping);
1273                 if (!err)
1274                         err = err2;
1275         }
1276         if (what & OSYNC_DATA) {
1277                 err2 = filemap_fdatawait(mapping);
1278                 if (!err)
1279                         err = err2;
1280         }
1281
1282         spin_lock(&inode_lock);
1283         if ((inode->i_state & I_DIRTY) &&
1284             ((what & OSYNC_INODE) || (inode->i_state & I_DIRTY_DATASYNC)))
1285                 need_write_inode_now = 1;
1286         spin_unlock(&inode_lock);
1287
1288         if (need_write_inode_now) {
1289                 err2 = write_inode_now(inode, 1);
1290                 if (!err)
1291                         err = err2;
1292         }
1293         else
1294                 inode_sync_wait(inode);
1295
1296         return err;
1297 }
1298 EXPORT_SYMBOL(generic_osync_inode);