Merge branch 'fixes' of http://ftp.arm.linux.org.uk/pub/linux/arm/kernel/git-cur...
[pandora-kernel.git] / fs / fs-writeback.c
1 /*
2  * fs/fs-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * Contains all the functions related to writing back and waiting
7  * upon dirty inodes against superblocks, and writing back dirty
8  * pages against inodes.  ie: data writeback.  Writeout of the
9  * inode itself is not handled here.
10  *
11  * 10Apr2002    Andrew Morton
12  *              Split out of fs/inode.c
13  *              Additions for address_space-based writeback
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/kthread.h>
24 #include <linux/freezer.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/buffer_head.h>
29 #include <linux/tracepoint.h>
30 #include "internal.h"
31
32 /*
33  * Passed into wb_writeback(), essentially a subset of writeback_control
34  */
35 struct wb_writeback_work {
36         long nr_pages;
37         struct super_block *sb;
38         unsigned long *older_than_this;
39         enum writeback_sync_modes sync_mode;
40         unsigned int tagged_writepages:1;
41         unsigned int for_kupdate:1;
42         unsigned int range_cyclic:1;
43         unsigned int for_background:1;
44         enum wb_reason reason;          /* why was writeback initiated? */
45
46         struct list_head list;          /* pending work list */
47         struct completion *done;        /* set if the caller waits */
48 };
49
50 const char *wb_reason_name[] = {
51         [WB_REASON_BACKGROUND]          = "background",
52         [WB_REASON_TRY_TO_FREE_PAGES]   = "try_to_free_pages",
53         [WB_REASON_SYNC]                = "sync",
54         [WB_REASON_PERIODIC]            = "periodic",
55         [WB_REASON_LAPTOP_TIMER]        = "laptop_timer",
56         [WB_REASON_FREE_MORE_MEM]       = "free_more_memory",
57         [WB_REASON_FS_FREE_SPACE]       = "fs_free_space",
58         [WB_REASON_FORKER_THREAD]       = "forker_thread"
59 };
60
61 /*
62  * Include the creation of the trace points after defining the
63  * wb_writeback_work structure so that the definition remains local to this
64  * file.
65  */
66 #define CREATE_TRACE_POINTS
67 #include <trace/events/writeback.h>
68
69 /*
70  * We don't actually have pdflush, but this one is exported though /proc...
71  */
72 int nr_pdflush_threads;
73
74 /**
75  * writeback_in_progress - determine whether there is writeback in progress
76  * @bdi: the device's backing_dev_info structure.
77  *
78  * Determine whether there is writeback waiting to be handled against a
79  * backing device.
80  */
81 int writeback_in_progress(struct backing_dev_info *bdi)
82 {
83         return test_bit(BDI_writeback_running, &bdi->state);
84 }
85
86 static inline struct backing_dev_info *inode_to_bdi(struct inode *inode)
87 {
88         struct super_block *sb = inode->i_sb;
89
90         if (strcmp(sb->s_type->name, "bdev") == 0)
91                 return inode->i_mapping->backing_dev_info;
92
93         return sb->s_bdi;
94 }
95
96 static inline struct inode *wb_inode(struct list_head *head)
97 {
98         return list_entry(head, struct inode, i_wb_list);
99 }
100
101 /* Wakeup flusher thread or forker thread to fork it. Requires bdi->wb_lock. */
102 static void bdi_wakeup_flusher(struct backing_dev_info *bdi)
103 {
104         if (bdi->wb.task) {
105                 wake_up_process(bdi->wb.task);
106         } else {
107                 /*
108                  * The bdi thread isn't there, wake up the forker thread which
109                  * will create and run it.
110                  */
111                 wake_up_process(default_backing_dev_info.wb.task);
112         }
113 }
114
115 static void bdi_queue_work(struct backing_dev_info *bdi,
116                            struct wb_writeback_work *work)
117 {
118         trace_writeback_queue(bdi, work);
119
120         spin_lock_bh(&bdi->wb_lock);
121         list_add_tail(&work->list, &bdi->work_list);
122         if (!bdi->wb.task)
123                 trace_writeback_nothread(bdi, work);
124         bdi_wakeup_flusher(bdi);
125         spin_unlock_bh(&bdi->wb_lock);
126 }
127
128 static void
129 __bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
130                       bool range_cyclic, enum wb_reason reason)
131 {
132         struct wb_writeback_work *work;
133
134         /*
135          * This is WB_SYNC_NONE writeback, so if allocation fails just
136          * wakeup the thread for old dirty data writeback
137          */
138         work = kzalloc(sizeof(*work), GFP_ATOMIC);
139         if (!work) {
140                 if (bdi->wb.task) {
141                         trace_writeback_nowork(bdi);
142                         wake_up_process(bdi->wb.task);
143                 }
144                 return;
145         }
146
147         work->sync_mode = WB_SYNC_NONE;
148         work->nr_pages  = nr_pages;
149         work->range_cyclic = range_cyclic;
150         work->reason    = reason;
151
152         bdi_queue_work(bdi, work);
153 }
154
155 /**
156  * bdi_start_writeback - start writeback
157  * @bdi: the backing device to write from
158  * @nr_pages: the number of pages to write
159  *
160  * Description:
161  *   This does WB_SYNC_NONE opportunistic writeback. The IO is only
162  *   started when this function returns, we make no guarantees on
163  *   completion. Caller need not hold sb s_umount semaphore.
164  *
165  */
166 void bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
167                         enum wb_reason reason)
168 {
169         __bdi_start_writeback(bdi, nr_pages, true, reason);
170 }
171
172 /**
173  * bdi_start_background_writeback - start background writeback
174  * @bdi: the backing device to write from
175  *
176  * Description:
177  *   This makes sure WB_SYNC_NONE background writeback happens. When
178  *   this function returns, it is only guaranteed that for given BDI
179  *   some IO is happening if we are over background dirty threshold.
180  *   Caller need not hold sb s_umount semaphore.
181  */
182 void bdi_start_background_writeback(struct backing_dev_info *bdi)
183 {
184         /*
185          * We just wake up the flusher thread. It will perform background
186          * writeback as soon as there is no other work to do.
187          */
188         trace_writeback_wake_background(bdi);
189         spin_lock_bh(&bdi->wb_lock);
190         bdi_wakeup_flusher(bdi);
191         spin_unlock_bh(&bdi->wb_lock);
192 }
193
194 /*
195  * Remove the inode from the writeback list it is on.
196  */
197 void inode_wb_list_del(struct inode *inode)
198 {
199         struct backing_dev_info *bdi = inode_to_bdi(inode);
200
201         spin_lock(&bdi->wb.list_lock);
202         list_del_init(&inode->i_wb_list);
203         spin_unlock(&bdi->wb.list_lock);
204 }
205
206 /*
207  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
208  * furthest end of its superblock's dirty-inode list.
209  *
210  * Before stamping the inode's ->dirtied_when, we check to see whether it is
211  * already the most-recently-dirtied inode on the b_dirty list.  If that is
212  * the case then the inode must have been redirtied while it was being written
213  * out and we don't reset its dirtied_when.
214  */
215 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
216 {
217         assert_spin_locked(&wb->list_lock);
218         if (!list_empty(&wb->b_dirty)) {
219                 struct inode *tail;
220
221                 tail = wb_inode(wb->b_dirty.next);
222                 if (time_before(inode->dirtied_when, tail->dirtied_when))
223                         inode->dirtied_when = jiffies;
224         }
225         list_move(&inode->i_wb_list, &wb->b_dirty);
226 }
227
228 /*
229  * requeue inode for re-scanning after bdi->b_io list is exhausted.
230  */
231 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
232 {
233         assert_spin_locked(&wb->list_lock);
234         list_move(&inode->i_wb_list, &wb->b_more_io);
235 }
236
237 static void inode_sync_complete(struct inode *inode)
238 {
239         /*
240          * Prevent speculative execution through
241          * spin_unlock(&wb->list_lock);
242          */
243
244         smp_mb();
245         wake_up_bit(&inode->i_state, __I_SYNC);
246 }
247
248 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
249 {
250         bool ret = time_after(inode->dirtied_when, t);
251 #ifndef CONFIG_64BIT
252         /*
253          * For inodes being constantly redirtied, dirtied_when can get stuck.
254          * It _appears_ to be in the future, but is actually in distant past.
255          * This test is necessary to prevent such wrapped-around relative times
256          * from permanently stopping the whole bdi writeback.
257          */
258         ret = ret && time_before_eq(inode->dirtied_when, jiffies);
259 #endif
260         return ret;
261 }
262
263 /*
264  * Move expired dirty inodes from @delaying_queue to @dispatch_queue.
265  */
266 static int move_expired_inodes(struct list_head *delaying_queue,
267                                struct list_head *dispatch_queue,
268                                struct wb_writeback_work *work)
269 {
270         LIST_HEAD(tmp);
271         struct list_head *pos, *node;
272         struct super_block *sb = NULL;
273         struct inode *inode;
274         int do_sb_sort = 0;
275         int moved = 0;
276
277         while (!list_empty(delaying_queue)) {
278                 inode = wb_inode(delaying_queue->prev);
279                 if (work->older_than_this &&
280                     inode_dirtied_after(inode, *work->older_than_this))
281                         break;
282                 if (sb && sb != inode->i_sb)
283                         do_sb_sort = 1;
284                 sb = inode->i_sb;
285                 list_move(&inode->i_wb_list, &tmp);
286                 moved++;
287         }
288
289         /* just one sb in list, splice to dispatch_queue and we're done */
290         if (!do_sb_sort) {
291                 list_splice(&tmp, dispatch_queue);
292                 goto out;
293         }
294
295         /* Move inodes from one superblock together */
296         while (!list_empty(&tmp)) {
297                 sb = wb_inode(tmp.prev)->i_sb;
298                 list_for_each_prev_safe(pos, node, &tmp) {
299                         inode = wb_inode(pos);
300                         if (inode->i_sb == sb)
301                                 list_move(&inode->i_wb_list, dispatch_queue);
302                 }
303         }
304 out:
305         return moved;
306 }
307
308 /*
309  * Queue all expired dirty inodes for io, eldest first.
310  * Before
311  *         newly dirtied     b_dirty    b_io    b_more_io
312  *         =============>    gf         edc     BA
313  * After
314  *         newly dirtied     b_dirty    b_io    b_more_io
315  *         =============>    g          fBAedc
316  *                                           |
317  *                                           +--> dequeue for IO
318  */
319 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
320 {
321         int moved;
322         assert_spin_locked(&wb->list_lock);
323         list_splice_init(&wb->b_more_io, &wb->b_io);
324         moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, work);
325         trace_writeback_queue_io(wb, work, moved);
326 }
327
328 static int write_inode(struct inode *inode, struct writeback_control *wbc)
329 {
330         if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode))
331                 return inode->i_sb->s_op->write_inode(inode, wbc);
332         return 0;
333 }
334
335 /*
336  * Wait for writeback on an inode to complete.
337  */
338 static void inode_wait_for_writeback(struct inode *inode,
339                                      struct bdi_writeback *wb)
340 {
341         DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
342         wait_queue_head_t *wqh;
343
344         wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
345         while (inode->i_state & I_SYNC) {
346                 spin_unlock(&inode->i_lock);
347                 spin_unlock(&wb->list_lock);
348                 __wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE);
349                 spin_lock(&wb->list_lock);
350                 spin_lock(&inode->i_lock);
351         }
352 }
353
354 /*
355  * Write out an inode's dirty pages.  Called under wb->list_lock and
356  * inode->i_lock.  Either the caller has an active reference on the inode or
357  * the inode has I_WILL_FREE set.
358  *
359  * If `wait' is set, wait on the writeout.
360  *
361  * The whole writeout design is quite complex and fragile.  We want to avoid
362  * starvation of particular inodes when others are being redirtied, prevent
363  * livelocks, etc.
364  */
365 static int
366 writeback_single_inode(struct inode *inode, struct bdi_writeback *wb,
367                        struct writeback_control *wbc)
368 {
369         struct address_space *mapping = inode->i_mapping;
370         long nr_to_write = wbc->nr_to_write;
371         unsigned dirty;
372         int ret;
373
374         assert_spin_locked(&wb->list_lock);
375         assert_spin_locked(&inode->i_lock);
376
377         if (!atomic_read(&inode->i_count))
378                 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
379         else
380                 WARN_ON(inode->i_state & I_WILL_FREE);
381
382         if (inode->i_state & I_SYNC) {
383                 /*
384                  * If this inode is locked for writeback and we are not doing
385                  * writeback-for-data-integrity, move it to b_more_io so that
386                  * writeback can proceed with the other inodes on s_io.
387                  *
388                  * We'll have another go at writing back this inode when we
389                  * completed a full scan of b_io.
390                  */
391                 if (wbc->sync_mode != WB_SYNC_ALL) {
392                         requeue_io(inode, wb);
393                         trace_writeback_single_inode_requeue(inode, wbc,
394                                                              nr_to_write);
395                         return 0;
396                 }
397
398                 /*
399                  * It's a data-integrity sync.  We must wait.
400                  */
401                 inode_wait_for_writeback(inode, wb);
402         }
403
404         BUG_ON(inode->i_state & I_SYNC);
405
406         /* Set I_SYNC, reset I_DIRTY_PAGES */
407         inode->i_state |= I_SYNC;
408         inode->i_state &= ~I_DIRTY_PAGES;
409         spin_unlock(&inode->i_lock);
410         spin_unlock(&wb->list_lock);
411
412         ret = do_writepages(mapping, wbc);
413
414         /*
415          * Make sure to wait on the data before writing out the metadata.
416          * This is important for filesystems that modify metadata on data
417          * I/O completion.
418          */
419         if (wbc->sync_mode == WB_SYNC_ALL) {
420                 int err = filemap_fdatawait(mapping);
421                 if (ret == 0)
422                         ret = err;
423         }
424
425         /*
426          * Some filesystems may redirty the inode during the writeback
427          * due to delalloc, clear dirty metadata flags right before
428          * write_inode()
429          */
430         spin_lock(&inode->i_lock);
431         dirty = inode->i_state & I_DIRTY;
432         inode->i_state &= ~(I_DIRTY_SYNC | I_DIRTY_DATASYNC);
433         spin_unlock(&inode->i_lock);
434         /* Don't write the inode if only I_DIRTY_PAGES was set */
435         if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
436                 int err = write_inode(inode, wbc);
437                 if (ret == 0)
438                         ret = err;
439         }
440
441         spin_lock(&wb->list_lock);
442         spin_lock(&inode->i_lock);
443         inode->i_state &= ~I_SYNC;
444         if (!(inode->i_state & I_FREEING)) {
445                 /*
446                  * Sync livelock prevention. Each inode is tagged and synced in
447                  * one shot. If still dirty, it will be redirty_tail()'ed below.
448                  * Update the dirty time to prevent enqueue and sync it again.
449                  */
450                 if ((inode->i_state & I_DIRTY) &&
451                     (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
452                         inode->dirtied_when = jiffies;
453
454                 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
455                         /*
456                          * We didn't write back all the pages.  nfs_writepages()
457                          * sometimes bales out without doing anything.
458                          */
459                         inode->i_state |= I_DIRTY_PAGES;
460                         if (wbc->nr_to_write <= 0) {
461                                 /*
462                                  * slice used up: queue for next turn
463                                  */
464                                 requeue_io(inode, wb);
465                         } else {
466                                 /*
467                                  * Writeback blocked by something other than
468                                  * congestion. Delay the inode for some time to
469                                  * avoid spinning on the CPU (100% iowait)
470                                  * retrying writeback of the dirty page/inode
471                                  * that cannot be performed immediately.
472                                  */
473                                 redirty_tail(inode, wb);
474                         }
475                 } else if (inode->i_state & I_DIRTY) {
476                         /*
477                          * Filesystems can dirty the inode during writeback
478                          * operations, such as delayed allocation during
479                          * submission or metadata updates after data IO
480                          * completion.
481                          */
482                         redirty_tail(inode, wb);
483                 } else {
484                         /*
485                          * The inode is clean.  At this point we either have
486                          * a reference to the inode or it's on it's way out.
487                          * No need to add it back to the LRU.
488                          */
489                         list_del_init(&inode->i_wb_list);
490                 }
491         }
492         inode_sync_complete(inode);
493         trace_writeback_single_inode(inode, wbc, nr_to_write);
494         return ret;
495 }
496
497 static long writeback_chunk_size(struct backing_dev_info *bdi,
498                                  struct wb_writeback_work *work)
499 {
500         long pages;
501
502         /*
503          * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
504          * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
505          * here avoids calling into writeback_inodes_wb() more than once.
506          *
507          * The intended call sequence for WB_SYNC_ALL writeback is:
508          *
509          *      wb_writeback()
510          *          writeback_sb_inodes()       <== called only once
511          *              write_cache_pages()     <== called once for each inode
512          *                   (quickly) tag currently dirty pages
513          *                   (maybe slowly) sync all tagged pages
514          */
515         if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
516                 pages = LONG_MAX;
517         else {
518                 pages = min(bdi->avg_write_bandwidth / 2,
519                             global_dirty_limit / DIRTY_SCOPE);
520                 pages = min(pages, work->nr_pages);
521                 pages = round_down(pages + MIN_WRITEBACK_PAGES,
522                                    MIN_WRITEBACK_PAGES);
523         }
524
525         return pages;
526 }
527
528 /*
529  * Write a portion of b_io inodes which belong to @sb.
530  *
531  * If @only_this_sb is true, then find and write all such
532  * inodes. Otherwise write only ones which go sequentially
533  * in reverse order.
534  *
535  * Return the number of pages and/or inodes written.
536  */
537 static long writeback_sb_inodes(struct super_block *sb,
538                                 struct bdi_writeback *wb,
539                                 struct wb_writeback_work *work)
540 {
541         struct writeback_control wbc = {
542                 .sync_mode              = work->sync_mode,
543                 .tagged_writepages      = work->tagged_writepages,
544                 .for_kupdate            = work->for_kupdate,
545                 .for_background         = work->for_background,
546                 .range_cyclic           = work->range_cyclic,
547                 .range_start            = 0,
548                 .range_end              = LLONG_MAX,
549         };
550         unsigned long start_time = jiffies;
551         long write_chunk;
552         long wrote = 0;  /* count both pages and inodes */
553
554         while (!list_empty(&wb->b_io)) {
555                 struct inode *inode = wb_inode(wb->b_io.prev);
556
557                 if (inode->i_sb != sb) {
558                         if (work->sb) {
559                                 /*
560                                  * We only want to write back data for this
561                                  * superblock, move all inodes not belonging
562                                  * to it back onto the dirty list.
563                                  */
564                                 redirty_tail(inode, wb);
565                                 continue;
566                         }
567
568                         /*
569                          * The inode belongs to a different superblock.
570                          * Bounce back to the caller to unpin this and
571                          * pin the next superblock.
572                          */
573                         break;
574                 }
575
576                 /*
577                  * Don't bother with new inodes or inodes beeing freed, first
578                  * kind does not need peridic writeout yet, and for the latter
579                  * kind writeout is handled by the freer.
580                  */
581                 spin_lock(&inode->i_lock);
582                 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
583                         spin_unlock(&inode->i_lock);
584                         redirty_tail(inode, wb);
585                         continue;
586                 }
587                 __iget(inode);
588                 write_chunk = writeback_chunk_size(wb->bdi, work);
589                 wbc.nr_to_write = write_chunk;
590                 wbc.pages_skipped = 0;
591
592                 writeback_single_inode(inode, wb, &wbc);
593
594                 work->nr_pages -= write_chunk - wbc.nr_to_write;
595                 wrote += write_chunk - wbc.nr_to_write;
596                 if (!(inode->i_state & I_DIRTY))
597                         wrote++;
598                 if (wbc.pages_skipped) {
599                         /*
600                          * writeback is not making progress due to locked
601                          * buffers.  Skip this inode for now.
602                          */
603                         redirty_tail(inode, wb);
604                 }
605                 spin_unlock(&inode->i_lock);
606                 spin_unlock(&wb->list_lock);
607                 iput(inode);
608                 cond_resched();
609                 spin_lock(&wb->list_lock);
610                 /*
611                  * bail out to wb_writeback() often enough to check
612                  * background threshold and other termination conditions.
613                  */
614                 if (wrote) {
615                         if (time_is_before_jiffies(start_time + HZ / 10UL))
616                                 break;
617                         if (work->nr_pages <= 0)
618                                 break;
619                 }
620         }
621         return wrote;
622 }
623
624 static long __writeback_inodes_wb(struct bdi_writeback *wb,
625                                   struct wb_writeback_work *work)
626 {
627         unsigned long start_time = jiffies;
628         long wrote = 0;
629
630         while (!list_empty(&wb->b_io)) {
631                 struct inode *inode = wb_inode(wb->b_io.prev);
632                 struct super_block *sb = inode->i_sb;
633
634                 if (!grab_super_passive(sb)) {
635                         /*
636                          * grab_super_passive() may fail consistently due to
637                          * s_umount being grabbed by someone else. Don't use
638                          * requeue_io() to avoid busy retrying the inode/sb.
639                          */
640                         redirty_tail(inode, wb);
641                         continue;
642                 }
643                 wrote += writeback_sb_inodes(sb, wb, work);
644                 drop_super(sb);
645
646                 /* refer to the same tests at the end of writeback_sb_inodes */
647                 if (wrote) {
648                         if (time_is_before_jiffies(start_time + HZ / 10UL))
649                                 break;
650                         if (work->nr_pages <= 0)
651                                 break;
652                 }
653         }
654         /* Leave any unwritten inodes on b_io */
655         return wrote;
656 }
657
658 long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
659                                 enum wb_reason reason)
660 {
661         struct wb_writeback_work work = {
662                 .nr_pages       = nr_pages,
663                 .sync_mode      = WB_SYNC_NONE,
664                 .range_cyclic   = 1,
665                 .reason         = reason,
666         };
667
668         spin_lock(&wb->list_lock);
669         if (list_empty(&wb->b_io))
670                 queue_io(wb, &work);
671         __writeback_inodes_wb(wb, &work);
672         spin_unlock(&wb->list_lock);
673
674         return nr_pages - work.nr_pages;
675 }
676
677 static bool over_bground_thresh(struct backing_dev_info *bdi)
678 {
679         unsigned long background_thresh, dirty_thresh;
680
681         global_dirty_limits(&background_thresh, &dirty_thresh);
682
683         if (global_page_state(NR_FILE_DIRTY) +
684             global_page_state(NR_UNSTABLE_NFS) > background_thresh)
685                 return true;
686
687         if (bdi_stat(bdi, BDI_RECLAIMABLE) >
688                                 bdi_dirty_limit(bdi, background_thresh))
689                 return true;
690
691         return false;
692 }
693
694 /*
695  * Called under wb->list_lock. If there are multiple wb per bdi,
696  * only the flusher working on the first wb should do it.
697  */
698 static void wb_update_bandwidth(struct bdi_writeback *wb,
699                                 unsigned long start_time)
700 {
701         __bdi_update_bandwidth(wb->bdi, 0, 0, 0, 0, 0, start_time);
702 }
703
704 /*
705  * Explicit flushing or periodic writeback of "old" data.
706  *
707  * Define "old": the first time one of an inode's pages is dirtied, we mark the
708  * dirtying-time in the inode's address_space.  So this periodic writeback code
709  * just walks the superblock inode list, writing back any inodes which are
710  * older than a specific point in time.
711  *
712  * Try to run once per dirty_writeback_interval.  But if a writeback event
713  * takes longer than a dirty_writeback_interval interval, then leave a
714  * one-second gap.
715  *
716  * older_than_this takes precedence over nr_to_write.  So we'll only write back
717  * all dirty pages if they are all attached to "old" mappings.
718  */
719 static long wb_writeback(struct bdi_writeback *wb,
720                          struct wb_writeback_work *work)
721 {
722         unsigned long wb_start = jiffies;
723         long nr_pages = work->nr_pages;
724         unsigned long oldest_jif;
725         struct inode *inode;
726         long progress;
727
728         oldest_jif = jiffies;
729         work->older_than_this = &oldest_jif;
730
731         spin_lock(&wb->list_lock);
732         for (;;) {
733                 /*
734                  * Stop writeback when nr_pages has been consumed
735                  */
736                 if (work->nr_pages <= 0)
737                         break;
738
739                 /*
740                  * Background writeout and kupdate-style writeback may
741                  * run forever. Stop them if there is other work to do
742                  * so that e.g. sync can proceed. They'll be restarted
743                  * after the other works are all done.
744                  */
745                 if ((work->for_background || work->for_kupdate) &&
746                     !list_empty(&wb->bdi->work_list))
747                         break;
748
749                 /*
750                  * For background writeout, stop when we are below the
751                  * background dirty threshold
752                  */
753                 if (work->for_background && !over_bground_thresh(wb->bdi))
754                         break;
755
756                 if (work->for_kupdate) {
757                         oldest_jif = jiffies -
758                                 msecs_to_jiffies(dirty_expire_interval * 10);
759                         work->older_than_this = &oldest_jif;
760                 }
761
762                 trace_writeback_start(wb->bdi, work);
763                 if (list_empty(&wb->b_io))
764                         queue_io(wb, work);
765                 if (work->sb)
766                         progress = writeback_sb_inodes(work->sb, wb, work);
767                 else
768                         progress = __writeback_inodes_wb(wb, work);
769                 trace_writeback_written(wb->bdi, work);
770
771                 wb_update_bandwidth(wb, wb_start);
772
773                 /*
774                  * Did we write something? Try for more
775                  *
776                  * Dirty inodes are moved to b_io for writeback in batches.
777                  * The completion of the current batch does not necessarily
778                  * mean the overall work is done. So we keep looping as long
779                  * as made some progress on cleaning pages or inodes.
780                  */
781                 if (progress)
782                         continue;
783                 /*
784                  * No more inodes for IO, bail
785                  */
786                 if (list_empty(&wb->b_more_io))
787                         break;
788                 /*
789                  * Nothing written. Wait for some inode to
790                  * become available for writeback. Otherwise
791                  * we'll just busyloop.
792                  */
793                 if (!list_empty(&wb->b_more_io))  {
794                         trace_writeback_wait(wb->bdi, work);
795                         inode = wb_inode(wb->b_more_io.prev);
796                         spin_lock(&inode->i_lock);
797                         inode_wait_for_writeback(inode, wb);
798                         spin_unlock(&inode->i_lock);
799                 }
800         }
801         spin_unlock(&wb->list_lock);
802
803         return nr_pages - work->nr_pages;
804 }
805
806 /*
807  * Return the next wb_writeback_work struct that hasn't been processed yet.
808  */
809 static struct wb_writeback_work *
810 get_next_work_item(struct backing_dev_info *bdi)
811 {
812         struct wb_writeback_work *work = NULL;
813
814         spin_lock_bh(&bdi->wb_lock);
815         if (!list_empty(&bdi->work_list)) {
816                 work = list_entry(bdi->work_list.next,
817                                   struct wb_writeback_work, list);
818                 list_del_init(&work->list);
819         }
820         spin_unlock_bh(&bdi->wb_lock);
821         return work;
822 }
823
824 /*
825  * Add in the number of potentially dirty inodes, because each inode
826  * write can dirty pagecache in the underlying blockdev.
827  */
828 static unsigned long get_nr_dirty_pages(void)
829 {
830         return global_page_state(NR_FILE_DIRTY) +
831                 global_page_state(NR_UNSTABLE_NFS) +
832                 get_nr_dirty_inodes();
833 }
834
835 static long wb_check_background_flush(struct bdi_writeback *wb)
836 {
837         if (over_bground_thresh(wb->bdi)) {
838
839                 struct wb_writeback_work work = {
840                         .nr_pages       = LONG_MAX,
841                         .sync_mode      = WB_SYNC_NONE,
842                         .for_background = 1,
843                         .range_cyclic   = 1,
844                         .reason         = WB_REASON_BACKGROUND,
845                 };
846
847                 return wb_writeback(wb, &work);
848         }
849
850         return 0;
851 }
852
853 static long wb_check_old_data_flush(struct bdi_writeback *wb)
854 {
855         unsigned long expired;
856         long nr_pages;
857
858         /*
859          * When set to zero, disable periodic writeback
860          */
861         if (!dirty_writeback_interval)
862                 return 0;
863
864         expired = wb->last_old_flush +
865                         msecs_to_jiffies(dirty_writeback_interval * 10);
866         if (time_before(jiffies, expired))
867                 return 0;
868
869         wb->last_old_flush = jiffies;
870         nr_pages = get_nr_dirty_pages();
871
872         if (nr_pages) {
873                 struct wb_writeback_work work = {
874                         .nr_pages       = nr_pages,
875                         .sync_mode      = WB_SYNC_NONE,
876                         .for_kupdate    = 1,
877                         .range_cyclic   = 1,
878                         .reason         = WB_REASON_PERIODIC,
879                 };
880
881                 return wb_writeback(wb, &work);
882         }
883
884         return 0;
885 }
886
887 /*
888  * Retrieve work items and do the writeback they describe
889  */
890 long wb_do_writeback(struct bdi_writeback *wb, int force_wait)
891 {
892         struct backing_dev_info *bdi = wb->bdi;
893         struct wb_writeback_work *work;
894         long wrote = 0;
895
896         set_bit(BDI_writeback_running, &wb->bdi->state);
897         while ((work = get_next_work_item(bdi)) != NULL) {
898                 /*
899                  * Override sync mode, in case we must wait for completion
900                  * because this thread is exiting now.
901                  */
902                 if (force_wait)
903                         work->sync_mode = WB_SYNC_ALL;
904
905                 trace_writeback_exec(bdi, work);
906
907                 wrote += wb_writeback(wb, work);
908
909                 /*
910                  * Notify the caller of completion if this is a synchronous
911                  * work item, otherwise just free it.
912                  */
913                 if (work->done)
914                         complete(work->done);
915                 else
916                         kfree(work);
917         }
918
919         /*
920          * Check for periodic writeback, kupdated() style
921          */
922         wrote += wb_check_old_data_flush(wb);
923         wrote += wb_check_background_flush(wb);
924         clear_bit(BDI_writeback_running, &wb->bdi->state);
925
926         return wrote;
927 }
928
929 /*
930  * Handle writeback of dirty data for the device backed by this bdi. Also
931  * wakes up periodically and does kupdated style flushing.
932  */
933 int bdi_writeback_thread(void *data)
934 {
935         struct bdi_writeback *wb = data;
936         struct backing_dev_info *bdi = wb->bdi;
937         long pages_written;
938
939         current->flags |= PF_SWAPWRITE;
940         set_freezable();
941         wb->last_active = jiffies;
942
943         /*
944          * Our parent may run at a different priority, just set us to normal
945          */
946         set_user_nice(current, 0);
947
948         trace_writeback_thread_start(bdi);
949
950         while (!kthread_should_stop()) {
951                 /*
952                  * Remove own delayed wake-up timer, since we are already awake
953                  * and we'll take care of the preriodic write-back.
954                  */
955                 del_timer(&wb->wakeup_timer);
956
957                 pages_written = wb_do_writeback(wb, 0);
958
959                 trace_writeback_pages_written(pages_written);
960
961                 if (pages_written)
962                         wb->last_active = jiffies;
963
964                 set_current_state(TASK_INTERRUPTIBLE);
965                 if (!list_empty(&bdi->work_list) || kthread_should_stop()) {
966                         __set_current_state(TASK_RUNNING);
967                         continue;
968                 }
969
970                 if (wb_has_dirty_io(wb) && dirty_writeback_interval)
971                         schedule_timeout(msecs_to_jiffies(dirty_writeback_interval * 10));
972                 else {
973                         /*
974                          * We have nothing to do, so can go sleep without any
975                          * timeout and save power. When a work is queued or
976                          * something is made dirty - we will be woken up.
977                          */
978                         schedule();
979                 }
980
981                 try_to_freeze();
982         }
983
984         /* Flush any work that raced with us exiting */
985         if (!list_empty(&bdi->work_list))
986                 wb_do_writeback(wb, 1);
987
988         trace_writeback_thread_stop(bdi);
989         return 0;
990 }
991
992
993 /*
994  * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
995  * the whole world.
996  */
997 void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
998 {
999         struct backing_dev_info *bdi;
1000
1001         if (!nr_pages) {
1002                 nr_pages = global_page_state(NR_FILE_DIRTY) +
1003                                 global_page_state(NR_UNSTABLE_NFS);
1004         }
1005
1006         rcu_read_lock();
1007         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1008                 if (!bdi_has_dirty_io(bdi))
1009                         continue;
1010                 __bdi_start_writeback(bdi, nr_pages, false, reason);
1011         }
1012         rcu_read_unlock();
1013 }
1014
1015 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
1016 {
1017         if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
1018                 struct dentry *dentry;
1019                 const char *name = "?";
1020
1021                 dentry = d_find_alias(inode);
1022                 if (dentry) {
1023                         spin_lock(&dentry->d_lock);
1024                         name = (const char *) dentry->d_name.name;
1025                 }
1026                 printk(KERN_DEBUG
1027                        "%s(%d): dirtied inode %lu (%s) on %s\n",
1028                        current->comm, task_pid_nr(current), inode->i_ino,
1029                        name, inode->i_sb->s_id);
1030                 if (dentry) {
1031                         spin_unlock(&dentry->d_lock);
1032                         dput(dentry);
1033                 }
1034         }
1035 }
1036
1037 /**
1038  *      __mark_inode_dirty -    internal function
1039  *      @inode: inode to mark
1040  *      @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
1041  *      Mark an inode as dirty. Callers should use mark_inode_dirty or
1042  *      mark_inode_dirty_sync.
1043  *
1044  * Put the inode on the super block's dirty list.
1045  *
1046  * CAREFUL! We mark it dirty unconditionally, but move it onto the
1047  * dirty list only if it is hashed or if it refers to a blockdev.
1048  * If it was not hashed, it will never be added to the dirty list
1049  * even if it is later hashed, as it will have been marked dirty already.
1050  *
1051  * In short, make sure you hash any inodes _before_ you start marking
1052  * them dirty.
1053  *
1054  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
1055  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
1056  * the kernel-internal blockdev inode represents the dirtying time of the
1057  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
1058  * page->mapping->host, so the page-dirtying time is recorded in the internal
1059  * blockdev inode.
1060  */
1061 void __mark_inode_dirty(struct inode *inode, int flags)
1062 {
1063         struct super_block *sb = inode->i_sb;
1064         struct backing_dev_info *bdi = NULL;
1065
1066         /*
1067          * Don't do this for I_DIRTY_PAGES - that doesn't actually
1068          * dirty the inode itself
1069          */
1070         if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
1071                 if (sb->s_op->dirty_inode)
1072                         sb->s_op->dirty_inode(inode, flags);
1073         }
1074
1075         /*
1076          * make sure that changes are seen by all cpus before we test i_state
1077          * -- mikulas
1078          */
1079         smp_mb();
1080
1081         /* avoid the locking if we can */
1082         if ((inode->i_state & flags) == flags)
1083                 return;
1084
1085         if (unlikely(block_dump))
1086                 block_dump___mark_inode_dirty(inode);
1087
1088         spin_lock(&inode->i_lock);
1089         if ((inode->i_state & flags) != flags) {
1090                 const int was_dirty = inode->i_state & I_DIRTY;
1091
1092                 inode->i_state |= flags;
1093
1094                 /*
1095                  * If the inode is being synced, just update its dirty state.
1096                  * The unlocker will place the inode on the appropriate
1097                  * superblock list, based upon its state.
1098                  */
1099                 if (inode->i_state & I_SYNC)
1100                         goto out_unlock_inode;
1101
1102                 /*
1103                  * Only add valid (hashed) inodes to the superblock's
1104                  * dirty list.  Add blockdev inodes as well.
1105                  */
1106                 if (!S_ISBLK(inode->i_mode)) {
1107                         if (inode_unhashed(inode))
1108                                 goto out_unlock_inode;
1109                 }
1110                 if (inode->i_state & I_FREEING)
1111                         goto out_unlock_inode;
1112
1113                 /*
1114                  * If the inode was already on b_dirty/b_io/b_more_io, don't
1115                  * reposition it (that would break b_dirty time-ordering).
1116                  */
1117                 if (!was_dirty) {
1118                         bool wakeup_bdi = false;
1119                         bdi = inode_to_bdi(inode);
1120
1121                         if (bdi_cap_writeback_dirty(bdi)) {
1122                                 WARN(!test_bit(BDI_registered, &bdi->state),
1123                                      "bdi-%s not registered\n", bdi->name);
1124
1125                                 /*
1126                                  * If this is the first dirty inode for this
1127                                  * bdi, we have to wake-up the corresponding
1128                                  * bdi thread to make sure background
1129                                  * write-back happens later.
1130                                  */
1131                                 if (!wb_has_dirty_io(&bdi->wb))
1132                                         wakeup_bdi = true;
1133                         }
1134
1135                         spin_unlock(&inode->i_lock);
1136                         spin_lock(&bdi->wb.list_lock);
1137                         inode->dirtied_when = jiffies;
1138                         list_move(&inode->i_wb_list, &bdi->wb.b_dirty);
1139                         spin_unlock(&bdi->wb.list_lock);
1140
1141                         if (wakeup_bdi)
1142                                 bdi_wakeup_thread_delayed(bdi);
1143                         return;
1144                 }
1145         }
1146 out_unlock_inode:
1147         spin_unlock(&inode->i_lock);
1148
1149 }
1150 EXPORT_SYMBOL(__mark_inode_dirty);
1151
1152 /*
1153  * Write out a superblock's list of dirty inodes.  A wait will be performed
1154  * upon no inodes, all inodes or the final one, depending upon sync_mode.
1155  *
1156  * If older_than_this is non-NULL, then only write out inodes which
1157  * had their first dirtying at a time earlier than *older_than_this.
1158  *
1159  * If `bdi' is non-zero then we're being asked to writeback a specific queue.
1160  * This function assumes that the blockdev superblock's inodes are backed by
1161  * a variety of queues, so all inodes are searched.  For other superblocks,
1162  * assume that all inodes are backed by the same queue.
1163  *
1164  * The inodes to be written are parked on bdi->b_io.  They are moved back onto
1165  * bdi->b_dirty as they are selected for writing.  This way, none can be missed
1166  * on the writer throttling path, and we get decent balancing between many
1167  * throttled threads: we don't want them all piling up on inode_sync_wait.
1168  */
1169 static void wait_sb_inodes(struct super_block *sb)
1170 {
1171         struct inode *inode, *old_inode = NULL;
1172
1173         /*
1174          * We need to be protected against the filesystem going from
1175          * r/o to r/w or vice versa.
1176          */
1177         WARN_ON(!rwsem_is_locked(&sb->s_umount));
1178
1179         spin_lock(&inode_sb_list_lock);
1180
1181         /*
1182          * Data integrity sync. Must wait for all pages under writeback,
1183          * because there may have been pages dirtied before our sync
1184          * call, but which had writeout started before we write it out.
1185          * In which case, the inode may not be on the dirty list, but
1186          * we still have to wait for that writeout.
1187          */
1188         list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
1189                 struct address_space *mapping = inode->i_mapping;
1190
1191                 spin_lock(&inode->i_lock);
1192                 if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) ||
1193                     (mapping->nrpages == 0)) {
1194                         spin_unlock(&inode->i_lock);
1195                         continue;
1196                 }
1197                 __iget(inode);
1198                 spin_unlock(&inode->i_lock);
1199                 spin_unlock(&inode_sb_list_lock);
1200
1201                 /*
1202                  * We hold a reference to 'inode' so it couldn't have been
1203                  * removed from s_inodes list while we dropped the
1204                  * inode_sb_list_lock.  We cannot iput the inode now as we can
1205                  * be holding the last reference and we cannot iput it under
1206                  * inode_sb_list_lock. So we keep the reference and iput it
1207                  * later.
1208                  */
1209                 iput(old_inode);
1210                 old_inode = inode;
1211
1212                 filemap_fdatawait(mapping);
1213
1214                 cond_resched();
1215
1216                 spin_lock(&inode_sb_list_lock);
1217         }
1218         spin_unlock(&inode_sb_list_lock);
1219         iput(old_inode);
1220 }
1221
1222 /**
1223  * writeback_inodes_sb_nr -     writeback dirty inodes from given super_block
1224  * @sb: the superblock
1225  * @nr: the number of pages to write
1226  *
1227  * Start writeback on some inodes on this super_block. No guarantees are made
1228  * on how many (if any) will be written, and this function does not wait
1229  * for IO completion of submitted IO.
1230  */
1231 void writeback_inodes_sb_nr(struct super_block *sb,
1232                             unsigned long nr,
1233                             enum wb_reason reason)
1234 {
1235         DECLARE_COMPLETION_ONSTACK(done);
1236         struct wb_writeback_work work = {
1237                 .sb                     = sb,
1238                 .sync_mode              = WB_SYNC_NONE,
1239                 .tagged_writepages      = 1,
1240                 .done                   = &done,
1241                 .nr_pages               = nr,
1242                 .reason                 = reason,
1243         };
1244
1245         WARN_ON(!rwsem_is_locked(&sb->s_umount));
1246         bdi_queue_work(sb->s_bdi, &work);
1247         wait_for_completion(&done);
1248 }
1249 EXPORT_SYMBOL(writeback_inodes_sb_nr);
1250
1251 /**
1252  * writeback_inodes_sb  -       writeback dirty inodes from given super_block
1253  * @sb: the superblock
1254  *
1255  * Start writeback on some inodes on this super_block. No guarantees are made
1256  * on how many (if any) will be written, and this function does not wait
1257  * for IO completion of submitted IO.
1258  */
1259 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
1260 {
1261         return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
1262 }
1263 EXPORT_SYMBOL(writeback_inodes_sb);
1264
1265 /**
1266  * writeback_inodes_sb_if_idle  -       start writeback if none underway
1267  * @sb: the superblock
1268  *
1269  * Invoke writeback_inodes_sb if no writeback is currently underway.
1270  * Returns 1 if writeback was started, 0 if not.
1271  */
1272 int writeback_inodes_sb_if_idle(struct super_block *sb, enum wb_reason reason)
1273 {
1274         if (!writeback_in_progress(sb->s_bdi)) {
1275                 down_read(&sb->s_umount);
1276                 writeback_inodes_sb(sb, reason);
1277                 up_read(&sb->s_umount);
1278                 return 1;
1279         } else
1280                 return 0;
1281 }
1282 EXPORT_SYMBOL(writeback_inodes_sb_if_idle);
1283
1284 /**
1285  * writeback_inodes_sb_if_idle  -       start writeback if none underway
1286  * @sb: the superblock
1287  * @nr: the number of pages to write
1288  *
1289  * Invoke writeback_inodes_sb if no writeback is currently underway.
1290  * Returns 1 if writeback was started, 0 if not.
1291  */
1292 int writeback_inodes_sb_nr_if_idle(struct super_block *sb,
1293                                    unsigned long nr,
1294                                    enum wb_reason reason)
1295 {
1296         if (!writeback_in_progress(sb->s_bdi)) {
1297                 down_read(&sb->s_umount);
1298                 writeback_inodes_sb_nr(sb, nr, reason);
1299                 up_read(&sb->s_umount);
1300                 return 1;
1301         } else
1302                 return 0;
1303 }
1304 EXPORT_SYMBOL(writeback_inodes_sb_nr_if_idle);
1305
1306 /**
1307  * sync_inodes_sb       -       sync sb inode pages
1308  * @sb: the superblock
1309  *
1310  * This function writes and waits on any dirty inode belonging to this
1311  * super_block.
1312  */
1313 void sync_inodes_sb(struct super_block *sb)
1314 {
1315         DECLARE_COMPLETION_ONSTACK(done);
1316         struct wb_writeback_work work = {
1317                 .sb             = sb,
1318                 .sync_mode      = WB_SYNC_ALL,
1319                 .nr_pages       = LONG_MAX,
1320                 .range_cyclic   = 0,
1321                 .done           = &done,
1322                 .reason         = WB_REASON_SYNC,
1323         };
1324
1325         WARN_ON(!rwsem_is_locked(&sb->s_umount));
1326
1327         bdi_queue_work(sb->s_bdi, &work);
1328         wait_for_completion(&done);
1329
1330         wait_sb_inodes(sb);
1331 }
1332 EXPORT_SYMBOL(sync_inodes_sb);
1333
1334 /**
1335  * write_inode_now      -       write an inode to disk
1336  * @inode: inode to write to disk
1337  * @sync: whether the write should be synchronous or not
1338  *
1339  * This function commits an inode to disk immediately if it is dirty. This is
1340  * primarily needed by knfsd.
1341  *
1342  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1343  */
1344 int write_inode_now(struct inode *inode, int sync)
1345 {
1346         struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1347         int ret;
1348         struct writeback_control wbc = {
1349                 .nr_to_write = LONG_MAX,
1350                 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
1351                 .range_start = 0,
1352                 .range_end = LLONG_MAX,
1353         };
1354
1355         if (!mapping_cap_writeback_dirty(inode->i_mapping))
1356                 wbc.nr_to_write = 0;
1357
1358         might_sleep();
1359         spin_lock(&wb->list_lock);
1360         spin_lock(&inode->i_lock);
1361         ret = writeback_single_inode(inode, wb, &wbc);
1362         spin_unlock(&inode->i_lock);
1363         spin_unlock(&wb->list_lock);
1364         if (sync)
1365                 inode_sync_wait(inode);
1366         return ret;
1367 }
1368 EXPORT_SYMBOL(write_inode_now);
1369
1370 /**
1371  * sync_inode - write an inode and its pages to disk.
1372  * @inode: the inode to sync
1373  * @wbc: controls the writeback mode
1374  *
1375  * sync_inode() will write an inode and its pages to disk.  It will also
1376  * correctly update the inode on its superblock's dirty inode lists and will
1377  * update inode->i_state.
1378  *
1379  * The caller must have a ref on the inode.
1380  */
1381 int sync_inode(struct inode *inode, struct writeback_control *wbc)
1382 {
1383         struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1384         int ret;
1385
1386         spin_lock(&wb->list_lock);
1387         spin_lock(&inode->i_lock);
1388         ret = writeback_single_inode(inode, wb, wbc);
1389         spin_unlock(&inode->i_lock);
1390         spin_unlock(&wb->list_lock);
1391         return ret;
1392 }
1393 EXPORT_SYMBOL(sync_inode);
1394
1395 /**
1396  * sync_inode_metadata - write an inode to disk
1397  * @inode: the inode to sync
1398  * @wait: wait for I/O to complete.
1399  *
1400  * Write an inode to disk and adjust its dirty state after completion.
1401  *
1402  * Note: only writes the actual inode, no associated data or other metadata.
1403  */
1404 int sync_inode_metadata(struct inode *inode, int wait)
1405 {
1406         struct writeback_control wbc = {
1407                 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
1408                 .nr_to_write = 0, /* metadata-only */
1409         };
1410
1411         return sync_inode(inode, &wbc);
1412 }
1413 EXPORT_SYMBOL(sync_inode_metadata);