mm: properly reflect task dirty limits in dirty_exceeded logic
[pandora-kernel.git] / fs / fs-writeback.c
1 /*
2  * fs/fs-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * Contains all the functions related to writing back and waiting
7  * upon dirty inodes against superblocks, and writing back dirty
8  * pages against inodes.  ie: data writeback.  Writeout of the
9  * inode itself is not handled here.
10  *
11  * 10Apr2002    Andrew Morton
12  *              Split out of fs/inode.c
13  *              Additions for address_space-based writeback
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/kthread.h>
24 #include <linux/freezer.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/buffer_head.h>
29 #include <linux/tracepoint.h>
30 #include "internal.h"
31
32 /*
33  * Passed into wb_writeback(), essentially a subset of writeback_control
34  */
35 struct wb_writeback_work {
36         long nr_pages;
37         struct super_block *sb;
38         unsigned long *older_than_this;
39         enum writeback_sync_modes sync_mode;
40         unsigned int tagged_writepages:1;
41         unsigned int for_kupdate:1;
42         unsigned int range_cyclic:1;
43         unsigned int for_background:1;
44
45         struct list_head list;          /* pending work list */
46         struct completion *done;        /* set if the caller waits */
47 };
48
49 /*
50  * Include the creation of the trace points after defining the
51  * wb_writeback_work structure so that the definition remains local to this
52  * file.
53  */
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/writeback.h>
56
57 /*
58  * We don't actually have pdflush, but this one is exported though /proc...
59  */
60 int nr_pdflush_threads;
61
62 /**
63  * writeback_in_progress - determine whether there is writeback in progress
64  * @bdi: the device's backing_dev_info structure.
65  *
66  * Determine whether there is writeback waiting to be handled against a
67  * backing device.
68  */
69 int writeback_in_progress(struct backing_dev_info *bdi)
70 {
71         return test_bit(BDI_writeback_running, &bdi->state);
72 }
73
74 static inline struct backing_dev_info *inode_to_bdi(struct inode *inode)
75 {
76         struct super_block *sb = inode->i_sb;
77
78         if (strcmp(sb->s_type->name, "bdev") == 0)
79                 return inode->i_mapping->backing_dev_info;
80
81         return sb->s_bdi;
82 }
83
84 static inline struct inode *wb_inode(struct list_head *head)
85 {
86         return list_entry(head, struct inode, i_wb_list);
87 }
88
89 /* Wakeup flusher thread or forker thread to fork it. Requires bdi->wb_lock. */
90 static void bdi_wakeup_flusher(struct backing_dev_info *bdi)
91 {
92         if (bdi->wb.task) {
93                 wake_up_process(bdi->wb.task);
94         } else {
95                 /*
96                  * The bdi thread isn't there, wake up the forker thread which
97                  * will create and run it.
98                  */
99                 wake_up_process(default_backing_dev_info.wb.task);
100         }
101 }
102
103 static void bdi_queue_work(struct backing_dev_info *bdi,
104                            struct wb_writeback_work *work)
105 {
106         trace_writeback_queue(bdi, work);
107
108         spin_lock_bh(&bdi->wb_lock);
109         list_add_tail(&work->list, &bdi->work_list);
110         if (!bdi->wb.task)
111                 trace_writeback_nothread(bdi, work);
112         bdi_wakeup_flusher(bdi);
113         spin_unlock_bh(&bdi->wb_lock);
114 }
115
116 static void
117 __bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
118                       bool range_cyclic)
119 {
120         struct wb_writeback_work *work;
121
122         /*
123          * This is WB_SYNC_NONE writeback, so if allocation fails just
124          * wakeup the thread for old dirty data writeback
125          */
126         work = kzalloc(sizeof(*work), GFP_ATOMIC);
127         if (!work) {
128                 if (bdi->wb.task) {
129                         trace_writeback_nowork(bdi);
130                         wake_up_process(bdi->wb.task);
131                 }
132                 return;
133         }
134
135         work->sync_mode = WB_SYNC_NONE;
136         work->nr_pages  = nr_pages;
137         work->range_cyclic = range_cyclic;
138
139         bdi_queue_work(bdi, work);
140 }
141
142 /**
143  * bdi_start_writeback - start writeback
144  * @bdi: the backing device to write from
145  * @nr_pages: the number of pages to write
146  *
147  * Description:
148  *   This does WB_SYNC_NONE opportunistic writeback. The IO is only
149  *   started when this function returns, we make no guarantees on
150  *   completion. Caller need not hold sb s_umount semaphore.
151  *
152  */
153 void bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages)
154 {
155         __bdi_start_writeback(bdi, nr_pages, true);
156 }
157
158 /**
159  * bdi_start_background_writeback - start background writeback
160  * @bdi: the backing device to write from
161  *
162  * Description:
163  *   This makes sure WB_SYNC_NONE background writeback happens. When
164  *   this function returns, it is only guaranteed that for given BDI
165  *   some IO is happening if we are over background dirty threshold.
166  *   Caller need not hold sb s_umount semaphore.
167  */
168 void bdi_start_background_writeback(struct backing_dev_info *bdi)
169 {
170         /*
171          * We just wake up the flusher thread. It will perform background
172          * writeback as soon as there is no other work to do.
173          */
174         trace_writeback_wake_background(bdi);
175         spin_lock_bh(&bdi->wb_lock);
176         bdi_wakeup_flusher(bdi);
177         spin_unlock_bh(&bdi->wb_lock);
178 }
179
180 /*
181  * Remove the inode from the writeback list it is on.
182  */
183 void inode_wb_list_del(struct inode *inode)
184 {
185         struct backing_dev_info *bdi = inode_to_bdi(inode);
186
187         spin_lock(&bdi->wb.list_lock);
188         list_del_init(&inode->i_wb_list);
189         spin_unlock(&bdi->wb.list_lock);
190 }
191
192 /*
193  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
194  * furthest end of its superblock's dirty-inode list.
195  *
196  * Before stamping the inode's ->dirtied_when, we check to see whether it is
197  * already the most-recently-dirtied inode on the b_dirty list.  If that is
198  * the case then the inode must have been redirtied while it was being written
199  * out and we don't reset its dirtied_when.
200  */
201 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
202 {
203         assert_spin_locked(&wb->list_lock);
204         if (!list_empty(&wb->b_dirty)) {
205                 struct inode *tail;
206
207                 tail = wb_inode(wb->b_dirty.next);
208                 if (time_before(inode->dirtied_when, tail->dirtied_when))
209                         inode->dirtied_when = jiffies;
210         }
211         list_move(&inode->i_wb_list, &wb->b_dirty);
212 }
213
214 /*
215  * requeue inode for re-scanning after bdi->b_io list is exhausted.
216  */
217 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
218 {
219         assert_spin_locked(&wb->list_lock);
220         list_move(&inode->i_wb_list, &wb->b_more_io);
221 }
222
223 static void inode_sync_complete(struct inode *inode)
224 {
225         /*
226          * Prevent speculative execution through
227          * spin_unlock(&wb->list_lock);
228          */
229
230         smp_mb();
231         wake_up_bit(&inode->i_state, __I_SYNC);
232 }
233
234 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
235 {
236         bool ret = time_after(inode->dirtied_when, t);
237 #ifndef CONFIG_64BIT
238         /*
239          * For inodes being constantly redirtied, dirtied_when can get stuck.
240          * It _appears_ to be in the future, but is actually in distant past.
241          * This test is necessary to prevent such wrapped-around relative times
242          * from permanently stopping the whole bdi writeback.
243          */
244         ret = ret && time_before_eq(inode->dirtied_when, jiffies);
245 #endif
246         return ret;
247 }
248
249 /*
250  * Move expired dirty inodes from @delaying_queue to @dispatch_queue.
251  */
252 static int move_expired_inodes(struct list_head *delaying_queue,
253                                struct list_head *dispatch_queue,
254                                unsigned long *older_than_this)
255 {
256         LIST_HEAD(tmp);
257         struct list_head *pos, *node;
258         struct super_block *sb = NULL;
259         struct inode *inode;
260         int do_sb_sort = 0;
261         int moved = 0;
262
263         while (!list_empty(delaying_queue)) {
264                 inode = wb_inode(delaying_queue->prev);
265                 if (older_than_this &&
266                     inode_dirtied_after(inode, *older_than_this))
267                         break;
268                 if (sb && sb != inode->i_sb)
269                         do_sb_sort = 1;
270                 sb = inode->i_sb;
271                 list_move(&inode->i_wb_list, &tmp);
272                 moved++;
273         }
274
275         /* just one sb in list, splice to dispatch_queue and we're done */
276         if (!do_sb_sort) {
277                 list_splice(&tmp, dispatch_queue);
278                 goto out;
279         }
280
281         /* Move inodes from one superblock together */
282         while (!list_empty(&tmp)) {
283                 sb = wb_inode(tmp.prev)->i_sb;
284                 list_for_each_prev_safe(pos, node, &tmp) {
285                         inode = wb_inode(pos);
286                         if (inode->i_sb == sb)
287                                 list_move(&inode->i_wb_list, dispatch_queue);
288                 }
289         }
290 out:
291         return moved;
292 }
293
294 /*
295  * Queue all expired dirty inodes for io, eldest first.
296  * Before
297  *         newly dirtied     b_dirty    b_io    b_more_io
298  *         =============>    gf         edc     BA
299  * After
300  *         newly dirtied     b_dirty    b_io    b_more_io
301  *         =============>    g          fBAedc
302  *                                           |
303  *                                           +--> dequeue for IO
304  */
305 static void queue_io(struct bdi_writeback *wb, unsigned long *older_than_this)
306 {
307         int moved;
308         assert_spin_locked(&wb->list_lock);
309         list_splice_init(&wb->b_more_io, &wb->b_io);
310         moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, older_than_this);
311         trace_writeback_queue_io(wb, older_than_this, moved);
312 }
313
314 static int write_inode(struct inode *inode, struct writeback_control *wbc)
315 {
316         if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode))
317                 return inode->i_sb->s_op->write_inode(inode, wbc);
318         return 0;
319 }
320
321 /*
322  * Wait for writeback on an inode to complete.
323  */
324 static void inode_wait_for_writeback(struct inode *inode,
325                                      struct bdi_writeback *wb)
326 {
327         DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
328         wait_queue_head_t *wqh;
329
330         wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
331         while (inode->i_state & I_SYNC) {
332                 spin_unlock(&inode->i_lock);
333                 spin_unlock(&wb->list_lock);
334                 __wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE);
335                 spin_lock(&wb->list_lock);
336                 spin_lock(&inode->i_lock);
337         }
338 }
339
340 /*
341  * Write out an inode's dirty pages.  Called under wb->list_lock and
342  * inode->i_lock.  Either the caller has an active reference on the inode or
343  * the inode has I_WILL_FREE set.
344  *
345  * If `wait' is set, wait on the writeout.
346  *
347  * The whole writeout design is quite complex and fragile.  We want to avoid
348  * starvation of particular inodes when others are being redirtied, prevent
349  * livelocks, etc.
350  */
351 static int
352 writeback_single_inode(struct inode *inode, struct bdi_writeback *wb,
353                        struct writeback_control *wbc)
354 {
355         struct address_space *mapping = inode->i_mapping;
356         long nr_to_write = wbc->nr_to_write;
357         unsigned dirty;
358         int ret;
359
360         assert_spin_locked(&wb->list_lock);
361         assert_spin_locked(&inode->i_lock);
362
363         if (!atomic_read(&inode->i_count))
364                 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
365         else
366                 WARN_ON(inode->i_state & I_WILL_FREE);
367
368         if (inode->i_state & I_SYNC) {
369                 /*
370                  * If this inode is locked for writeback and we are not doing
371                  * writeback-for-data-integrity, move it to b_more_io so that
372                  * writeback can proceed with the other inodes on s_io.
373                  *
374                  * We'll have another go at writing back this inode when we
375                  * completed a full scan of b_io.
376                  */
377                 if (wbc->sync_mode != WB_SYNC_ALL) {
378                         requeue_io(inode, wb);
379                         trace_writeback_single_inode_requeue(inode, wbc,
380                                                              nr_to_write);
381                         return 0;
382                 }
383
384                 /*
385                  * It's a data-integrity sync.  We must wait.
386                  */
387                 inode_wait_for_writeback(inode, wb);
388         }
389
390         BUG_ON(inode->i_state & I_SYNC);
391
392         /* Set I_SYNC, reset I_DIRTY_PAGES */
393         inode->i_state |= I_SYNC;
394         inode->i_state &= ~I_DIRTY_PAGES;
395         spin_unlock(&inode->i_lock);
396         spin_unlock(&wb->list_lock);
397
398         ret = do_writepages(mapping, wbc);
399
400         /*
401          * Make sure to wait on the data before writing out the metadata.
402          * This is important for filesystems that modify metadata on data
403          * I/O completion.
404          */
405         if (wbc->sync_mode == WB_SYNC_ALL) {
406                 int err = filemap_fdatawait(mapping);
407                 if (ret == 0)
408                         ret = err;
409         }
410
411         /*
412          * Some filesystems may redirty the inode during the writeback
413          * due to delalloc, clear dirty metadata flags right before
414          * write_inode()
415          */
416         spin_lock(&inode->i_lock);
417         dirty = inode->i_state & I_DIRTY;
418         inode->i_state &= ~(I_DIRTY_SYNC | I_DIRTY_DATASYNC);
419         spin_unlock(&inode->i_lock);
420         /* Don't write the inode if only I_DIRTY_PAGES was set */
421         if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
422                 int err = write_inode(inode, wbc);
423                 if (ret == 0)
424                         ret = err;
425         }
426
427         spin_lock(&wb->list_lock);
428         spin_lock(&inode->i_lock);
429         inode->i_state &= ~I_SYNC;
430         if (!(inode->i_state & I_FREEING)) {
431                 /*
432                  * Sync livelock prevention. Each inode is tagged and synced in
433                  * one shot. If still dirty, it will be redirty_tail()'ed below.
434                  * Update the dirty time to prevent enqueue and sync it again.
435                  */
436                 if ((inode->i_state & I_DIRTY) &&
437                     (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
438                         inode->dirtied_when = jiffies;
439
440                 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
441                         /*
442                          * We didn't write back all the pages.  nfs_writepages()
443                          * sometimes bales out without doing anything.
444                          */
445                         inode->i_state |= I_DIRTY_PAGES;
446                         if (wbc->nr_to_write <= 0) {
447                                 /*
448                                  * slice used up: queue for next turn
449                                  */
450                                 requeue_io(inode, wb);
451                         } else {
452                                 /*
453                                  * Writeback blocked by something other than
454                                  * congestion. Delay the inode for some time to
455                                  * avoid spinning on the CPU (100% iowait)
456                                  * retrying writeback of the dirty page/inode
457                                  * that cannot be performed immediately.
458                                  */
459                                 redirty_tail(inode, wb);
460                         }
461                 } else if (inode->i_state & I_DIRTY) {
462                         /*
463                          * Filesystems can dirty the inode during writeback
464                          * operations, such as delayed allocation during
465                          * submission or metadata updates after data IO
466                          * completion.
467                          */
468                         redirty_tail(inode, wb);
469                 } else {
470                         /*
471                          * The inode is clean.  At this point we either have
472                          * a reference to the inode or it's on it's way out.
473                          * No need to add it back to the LRU.
474                          */
475                         list_del_init(&inode->i_wb_list);
476                 }
477         }
478         inode_sync_complete(inode);
479         trace_writeback_single_inode(inode, wbc, nr_to_write);
480         return ret;
481 }
482
483 /*
484  * For background writeback the caller does not have the sb pinned
485  * before calling writeback. So make sure that we do pin it, so it doesn't
486  * go away while we are writing inodes from it.
487  */
488 static bool pin_sb_for_writeback(struct super_block *sb)
489 {
490         spin_lock(&sb_lock);
491         if (list_empty(&sb->s_instances)) {
492                 spin_unlock(&sb_lock);
493                 return false;
494         }
495
496         sb->s_count++;
497         spin_unlock(&sb_lock);
498
499         if (down_read_trylock(&sb->s_umount)) {
500                 if (sb->s_root)
501                         return true;
502                 up_read(&sb->s_umount);
503         }
504
505         put_super(sb);
506         return false;
507 }
508
509 static long writeback_chunk_size(struct backing_dev_info *bdi,
510                                  struct wb_writeback_work *work)
511 {
512         long pages;
513
514         /*
515          * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
516          * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
517          * here avoids calling into writeback_inodes_wb() more than once.
518          *
519          * The intended call sequence for WB_SYNC_ALL writeback is:
520          *
521          *      wb_writeback()
522          *          writeback_sb_inodes()       <== called only once
523          *              write_cache_pages()     <== called once for each inode
524          *                   (quickly) tag currently dirty pages
525          *                   (maybe slowly) sync all tagged pages
526          */
527         if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
528                 pages = LONG_MAX;
529         else {
530                 pages = min(bdi->avg_write_bandwidth / 2,
531                             global_dirty_limit / DIRTY_SCOPE);
532                 pages = min(pages, work->nr_pages);
533                 pages = round_down(pages + MIN_WRITEBACK_PAGES,
534                                    MIN_WRITEBACK_PAGES);
535         }
536
537         return pages;
538 }
539
540 /*
541  * Write a portion of b_io inodes which belong to @sb.
542  *
543  * If @only_this_sb is true, then find and write all such
544  * inodes. Otherwise write only ones which go sequentially
545  * in reverse order.
546  *
547  * Return the number of pages and/or inodes written.
548  */
549 static long writeback_sb_inodes(struct super_block *sb,
550                                 struct bdi_writeback *wb,
551                                 struct wb_writeback_work *work)
552 {
553         struct writeback_control wbc = {
554                 .sync_mode              = work->sync_mode,
555                 .tagged_writepages      = work->tagged_writepages,
556                 .for_kupdate            = work->for_kupdate,
557                 .for_background         = work->for_background,
558                 .range_cyclic           = work->range_cyclic,
559                 .range_start            = 0,
560                 .range_end              = LLONG_MAX,
561         };
562         unsigned long start_time = jiffies;
563         long write_chunk;
564         long wrote = 0;  /* count both pages and inodes */
565
566         while (!list_empty(&wb->b_io)) {
567                 struct inode *inode = wb_inode(wb->b_io.prev);
568
569                 if (inode->i_sb != sb) {
570                         if (work->sb) {
571                                 /*
572                                  * We only want to write back data for this
573                                  * superblock, move all inodes not belonging
574                                  * to it back onto the dirty list.
575                                  */
576                                 redirty_tail(inode, wb);
577                                 continue;
578                         }
579
580                         /*
581                          * The inode belongs to a different superblock.
582                          * Bounce back to the caller to unpin this and
583                          * pin the next superblock.
584                          */
585                         break;
586                 }
587
588                 /*
589                  * Don't bother with new inodes or inodes beeing freed, first
590                  * kind does not need peridic writeout yet, and for the latter
591                  * kind writeout is handled by the freer.
592                  */
593                 spin_lock(&inode->i_lock);
594                 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
595                         spin_unlock(&inode->i_lock);
596                         redirty_tail(inode, wb);
597                         continue;
598                 }
599                 __iget(inode);
600                 write_chunk = writeback_chunk_size(wb->bdi, work);
601                 wbc.nr_to_write = write_chunk;
602                 wbc.pages_skipped = 0;
603
604                 writeback_single_inode(inode, wb, &wbc);
605
606                 work->nr_pages -= write_chunk - wbc.nr_to_write;
607                 wrote += write_chunk - wbc.nr_to_write;
608                 if (!(inode->i_state & I_DIRTY))
609                         wrote++;
610                 if (wbc.pages_skipped) {
611                         /*
612                          * writeback is not making progress due to locked
613                          * buffers.  Skip this inode for now.
614                          */
615                         redirty_tail(inode, wb);
616                 }
617                 spin_unlock(&inode->i_lock);
618                 spin_unlock(&wb->list_lock);
619                 iput(inode);
620                 cond_resched();
621                 spin_lock(&wb->list_lock);
622                 /*
623                  * bail out to wb_writeback() often enough to check
624                  * background threshold and other termination conditions.
625                  */
626                 if (wrote) {
627                         if (time_is_before_jiffies(start_time + HZ / 10UL))
628                                 break;
629                         if (work->nr_pages <= 0)
630                                 break;
631                 }
632         }
633         return wrote;
634 }
635
636 static long __writeback_inodes_wb(struct bdi_writeback *wb,
637                                   struct wb_writeback_work *work)
638 {
639         unsigned long start_time = jiffies;
640         long wrote = 0;
641
642         while (!list_empty(&wb->b_io)) {
643                 struct inode *inode = wb_inode(wb->b_io.prev);
644                 struct super_block *sb = inode->i_sb;
645
646                 if (!pin_sb_for_writeback(sb)) {
647                         requeue_io(inode, wb);
648                         continue;
649                 }
650                 wrote += writeback_sb_inodes(sb, wb, work);
651                 drop_super(sb);
652
653                 /* refer to the same tests at the end of writeback_sb_inodes */
654                 if (wrote) {
655                         if (time_is_before_jiffies(start_time + HZ / 10UL))
656                                 break;
657                         if (work->nr_pages <= 0)
658                                 break;
659                 }
660         }
661         /* Leave any unwritten inodes on b_io */
662         return wrote;
663 }
664
665 long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages)
666 {
667         struct wb_writeback_work work = {
668                 .nr_pages       = nr_pages,
669                 .sync_mode      = WB_SYNC_NONE,
670                 .range_cyclic   = 1,
671         };
672
673         spin_lock(&wb->list_lock);
674         if (list_empty(&wb->b_io))
675                 queue_io(wb, NULL);
676         __writeback_inodes_wb(wb, &work);
677         spin_unlock(&wb->list_lock);
678
679         return nr_pages - work.nr_pages;
680 }
681
682 static inline bool over_bground_thresh(void)
683 {
684         unsigned long background_thresh, dirty_thresh;
685
686         global_dirty_limits(&background_thresh, &dirty_thresh);
687
688         return (global_page_state(NR_FILE_DIRTY) +
689                 global_page_state(NR_UNSTABLE_NFS) > background_thresh);
690 }
691
692 /*
693  * Called under wb->list_lock. If there are multiple wb per bdi,
694  * only the flusher working on the first wb should do it.
695  */
696 static void wb_update_bandwidth(struct bdi_writeback *wb,
697                                 unsigned long start_time)
698 {
699         __bdi_update_bandwidth(wb->bdi, 0, 0, 0, 0, start_time);
700 }
701
702 /*
703  * Explicit flushing or periodic writeback of "old" data.
704  *
705  * Define "old": the first time one of an inode's pages is dirtied, we mark the
706  * dirtying-time in the inode's address_space.  So this periodic writeback code
707  * just walks the superblock inode list, writing back any inodes which are
708  * older than a specific point in time.
709  *
710  * Try to run once per dirty_writeback_interval.  But if a writeback event
711  * takes longer than a dirty_writeback_interval interval, then leave a
712  * one-second gap.
713  *
714  * older_than_this takes precedence over nr_to_write.  So we'll only write back
715  * all dirty pages if they are all attached to "old" mappings.
716  */
717 static long wb_writeback(struct bdi_writeback *wb,
718                          struct wb_writeback_work *work)
719 {
720         unsigned long wb_start = jiffies;
721         long nr_pages = work->nr_pages;
722         unsigned long oldest_jif;
723         struct inode *inode;
724         long progress;
725
726         oldest_jif = jiffies;
727         work->older_than_this = &oldest_jif;
728
729         spin_lock(&wb->list_lock);
730         for (;;) {
731                 /*
732                  * Stop writeback when nr_pages has been consumed
733                  */
734                 if (work->nr_pages <= 0)
735                         break;
736
737                 /*
738                  * Background writeout and kupdate-style writeback may
739                  * run forever. Stop them if there is other work to do
740                  * so that e.g. sync can proceed. They'll be restarted
741                  * after the other works are all done.
742                  */
743                 if ((work->for_background || work->for_kupdate) &&
744                     !list_empty(&wb->bdi->work_list))
745                         break;
746
747                 /*
748                  * For background writeout, stop when we are below the
749                  * background dirty threshold
750                  */
751                 if (work->for_background && !over_bground_thresh())
752                         break;
753
754                 if (work->for_kupdate) {
755                         oldest_jif = jiffies -
756                                 msecs_to_jiffies(dirty_expire_interval * 10);
757                         work->older_than_this = &oldest_jif;
758                 }
759
760                 trace_writeback_start(wb->bdi, work);
761                 if (list_empty(&wb->b_io))
762                         queue_io(wb, work->older_than_this);
763                 if (work->sb)
764                         progress = writeback_sb_inodes(work->sb, wb, work);
765                 else
766                         progress = __writeback_inodes_wb(wb, work);
767                 trace_writeback_written(wb->bdi, work);
768
769                 wb_update_bandwidth(wb, wb_start);
770
771                 /*
772                  * Did we write something? Try for more
773                  *
774                  * Dirty inodes are moved to b_io for writeback in batches.
775                  * The completion of the current batch does not necessarily
776                  * mean the overall work is done. So we keep looping as long
777                  * as made some progress on cleaning pages or inodes.
778                  */
779                 if (progress)
780                         continue;
781                 /*
782                  * No more inodes for IO, bail
783                  */
784                 if (list_empty(&wb->b_more_io))
785                         break;
786                 /*
787                  * Nothing written. Wait for some inode to
788                  * become available for writeback. Otherwise
789                  * we'll just busyloop.
790                  */
791                 if (!list_empty(&wb->b_more_io))  {
792                         trace_writeback_wait(wb->bdi, work);
793                         inode = wb_inode(wb->b_more_io.prev);
794                         spin_lock(&inode->i_lock);
795                         inode_wait_for_writeback(inode, wb);
796                         spin_unlock(&inode->i_lock);
797                 }
798         }
799         spin_unlock(&wb->list_lock);
800
801         return nr_pages - work->nr_pages;
802 }
803
804 /*
805  * Return the next wb_writeback_work struct that hasn't been processed yet.
806  */
807 static struct wb_writeback_work *
808 get_next_work_item(struct backing_dev_info *bdi)
809 {
810         struct wb_writeback_work *work = NULL;
811
812         spin_lock_bh(&bdi->wb_lock);
813         if (!list_empty(&bdi->work_list)) {
814                 work = list_entry(bdi->work_list.next,
815                                   struct wb_writeback_work, list);
816                 list_del_init(&work->list);
817         }
818         spin_unlock_bh(&bdi->wb_lock);
819         return work;
820 }
821
822 /*
823  * Add in the number of potentially dirty inodes, because each inode
824  * write can dirty pagecache in the underlying blockdev.
825  */
826 static unsigned long get_nr_dirty_pages(void)
827 {
828         return global_page_state(NR_FILE_DIRTY) +
829                 global_page_state(NR_UNSTABLE_NFS) +
830                 get_nr_dirty_inodes();
831 }
832
833 static long wb_check_background_flush(struct bdi_writeback *wb)
834 {
835         if (over_bground_thresh()) {
836
837                 struct wb_writeback_work work = {
838                         .nr_pages       = LONG_MAX,
839                         .sync_mode      = WB_SYNC_NONE,
840                         .for_background = 1,
841                         .range_cyclic   = 1,
842                 };
843
844                 return wb_writeback(wb, &work);
845         }
846
847         return 0;
848 }
849
850 static long wb_check_old_data_flush(struct bdi_writeback *wb)
851 {
852         unsigned long expired;
853         long nr_pages;
854
855         /*
856          * When set to zero, disable periodic writeback
857          */
858         if (!dirty_writeback_interval)
859                 return 0;
860
861         expired = wb->last_old_flush +
862                         msecs_to_jiffies(dirty_writeback_interval * 10);
863         if (time_before(jiffies, expired))
864                 return 0;
865
866         wb->last_old_flush = jiffies;
867         nr_pages = get_nr_dirty_pages();
868
869         if (nr_pages) {
870                 struct wb_writeback_work work = {
871                         .nr_pages       = nr_pages,
872                         .sync_mode      = WB_SYNC_NONE,
873                         .for_kupdate    = 1,
874                         .range_cyclic   = 1,
875                 };
876
877                 return wb_writeback(wb, &work);
878         }
879
880         return 0;
881 }
882
883 /*
884  * Retrieve work items and do the writeback they describe
885  */
886 long wb_do_writeback(struct bdi_writeback *wb, int force_wait)
887 {
888         struct backing_dev_info *bdi = wb->bdi;
889         struct wb_writeback_work *work;
890         long wrote = 0;
891
892         set_bit(BDI_writeback_running, &wb->bdi->state);
893         while ((work = get_next_work_item(bdi)) != NULL) {
894                 /*
895                  * Override sync mode, in case we must wait for completion
896                  * because this thread is exiting now.
897                  */
898                 if (force_wait)
899                         work->sync_mode = WB_SYNC_ALL;
900
901                 trace_writeback_exec(bdi, work);
902
903                 wrote += wb_writeback(wb, work);
904
905                 /*
906                  * Notify the caller of completion if this is a synchronous
907                  * work item, otherwise just free it.
908                  */
909                 if (work->done)
910                         complete(work->done);
911                 else
912                         kfree(work);
913         }
914
915         /*
916          * Check for periodic writeback, kupdated() style
917          */
918         wrote += wb_check_old_data_flush(wb);
919         wrote += wb_check_background_flush(wb);
920         clear_bit(BDI_writeback_running, &wb->bdi->state);
921
922         return wrote;
923 }
924
925 /*
926  * Handle writeback of dirty data for the device backed by this bdi. Also
927  * wakes up periodically and does kupdated style flushing.
928  */
929 int bdi_writeback_thread(void *data)
930 {
931         struct bdi_writeback *wb = data;
932         struct backing_dev_info *bdi = wb->bdi;
933         long pages_written;
934
935         current->flags |= PF_SWAPWRITE;
936         set_freezable();
937         wb->last_active = jiffies;
938
939         /*
940          * Our parent may run at a different priority, just set us to normal
941          */
942         set_user_nice(current, 0);
943
944         trace_writeback_thread_start(bdi);
945
946         while (!kthread_should_stop()) {
947                 /*
948                  * Remove own delayed wake-up timer, since we are already awake
949                  * and we'll take care of the preriodic write-back.
950                  */
951                 del_timer(&wb->wakeup_timer);
952
953                 pages_written = wb_do_writeback(wb, 0);
954
955                 trace_writeback_pages_written(pages_written);
956
957                 if (pages_written)
958                         wb->last_active = jiffies;
959
960                 set_current_state(TASK_INTERRUPTIBLE);
961                 if (!list_empty(&bdi->work_list) || kthread_should_stop()) {
962                         __set_current_state(TASK_RUNNING);
963                         continue;
964                 }
965
966                 if (wb_has_dirty_io(wb) && dirty_writeback_interval)
967                         schedule_timeout(msecs_to_jiffies(dirty_writeback_interval * 10));
968                 else {
969                         /*
970                          * We have nothing to do, so can go sleep without any
971                          * timeout and save power. When a work is queued or
972                          * something is made dirty - we will be woken up.
973                          */
974                         schedule();
975                 }
976
977                 try_to_freeze();
978         }
979
980         /* Flush any work that raced with us exiting */
981         if (!list_empty(&bdi->work_list))
982                 wb_do_writeback(wb, 1);
983
984         trace_writeback_thread_stop(bdi);
985         return 0;
986 }
987
988
989 /*
990  * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
991  * the whole world.
992  */
993 void wakeup_flusher_threads(long nr_pages)
994 {
995         struct backing_dev_info *bdi;
996
997         if (!nr_pages) {
998                 nr_pages = global_page_state(NR_FILE_DIRTY) +
999                                 global_page_state(NR_UNSTABLE_NFS);
1000         }
1001
1002         rcu_read_lock();
1003         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1004                 if (!bdi_has_dirty_io(bdi))
1005                         continue;
1006                 __bdi_start_writeback(bdi, nr_pages, false);
1007         }
1008         rcu_read_unlock();
1009 }
1010
1011 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
1012 {
1013         if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
1014                 struct dentry *dentry;
1015                 const char *name = "?";
1016
1017                 dentry = d_find_alias(inode);
1018                 if (dentry) {
1019                         spin_lock(&dentry->d_lock);
1020                         name = (const char *) dentry->d_name.name;
1021                 }
1022                 printk(KERN_DEBUG
1023                        "%s(%d): dirtied inode %lu (%s) on %s\n",
1024                        current->comm, task_pid_nr(current), inode->i_ino,
1025                        name, inode->i_sb->s_id);
1026                 if (dentry) {
1027                         spin_unlock(&dentry->d_lock);
1028                         dput(dentry);
1029                 }
1030         }
1031 }
1032
1033 /**
1034  *      __mark_inode_dirty -    internal function
1035  *      @inode: inode to mark
1036  *      @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
1037  *      Mark an inode as dirty. Callers should use mark_inode_dirty or
1038  *      mark_inode_dirty_sync.
1039  *
1040  * Put the inode on the super block's dirty list.
1041  *
1042  * CAREFUL! We mark it dirty unconditionally, but move it onto the
1043  * dirty list only if it is hashed or if it refers to a blockdev.
1044  * If it was not hashed, it will never be added to the dirty list
1045  * even if it is later hashed, as it will have been marked dirty already.
1046  *
1047  * In short, make sure you hash any inodes _before_ you start marking
1048  * them dirty.
1049  *
1050  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
1051  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
1052  * the kernel-internal blockdev inode represents the dirtying time of the
1053  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
1054  * page->mapping->host, so the page-dirtying time is recorded in the internal
1055  * blockdev inode.
1056  */
1057 void __mark_inode_dirty(struct inode *inode, int flags)
1058 {
1059         struct super_block *sb = inode->i_sb;
1060         struct backing_dev_info *bdi = NULL;
1061
1062         /*
1063          * Don't do this for I_DIRTY_PAGES - that doesn't actually
1064          * dirty the inode itself
1065          */
1066         if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
1067                 if (sb->s_op->dirty_inode)
1068                         sb->s_op->dirty_inode(inode, flags);
1069         }
1070
1071         /*
1072          * make sure that changes are seen by all cpus before we test i_state
1073          * -- mikulas
1074          */
1075         smp_mb();
1076
1077         /* avoid the locking if we can */
1078         if ((inode->i_state & flags) == flags)
1079                 return;
1080
1081         if (unlikely(block_dump))
1082                 block_dump___mark_inode_dirty(inode);
1083
1084         spin_lock(&inode->i_lock);
1085         if ((inode->i_state & flags) != flags) {
1086                 const int was_dirty = inode->i_state & I_DIRTY;
1087
1088                 inode->i_state |= flags;
1089
1090                 /*
1091                  * If the inode is being synced, just update its dirty state.
1092                  * The unlocker will place the inode on the appropriate
1093                  * superblock list, based upon its state.
1094                  */
1095                 if (inode->i_state & I_SYNC)
1096                         goto out_unlock_inode;
1097
1098                 /*
1099                  * Only add valid (hashed) inodes to the superblock's
1100                  * dirty list.  Add blockdev inodes as well.
1101                  */
1102                 if (!S_ISBLK(inode->i_mode)) {
1103                         if (inode_unhashed(inode))
1104                                 goto out_unlock_inode;
1105                 }
1106                 if (inode->i_state & I_FREEING)
1107                         goto out_unlock_inode;
1108
1109                 /*
1110                  * If the inode was already on b_dirty/b_io/b_more_io, don't
1111                  * reposition it (that would break b_dirty time-ordering).
1112                  */
1113                 if (!was_dirty) {
1114                         bool wakeup_bdi = false;
1115                         bdi = inode_to_bdi(inode);
1116
1117                         if (bdi_cap_writeback_dirty(bdi)) {
1118                                 WARN(!test_bit(BDI_registered, &bdi->state),
1119                                      "bdi-%s not registered\n", bdi->name);
1120
1121                                 /*
1122                                  * If this is the first dirty inode for this
1123                                  * bdi, we have to wake-up the corresponding
1124                                  * bdi thread to make sure background
1125                                  * write-back happens later.
1126                                  */
1127                                 if (!wb_has_dirty_io(&bdi->wb))
1128                                         wakeup_bdi = true;
1129                         }
1130
1131                         spin_unlock(&inode->i_lock);
1132                         spin_lock(&bdi->wb.list_lock);
1133                         inode->dirtied_when = jiffies;
1134                         list_move(&inode->i_wb_list, &bdi->wb.b_dirty);
1135                         spin_unlock(&bdi->wb.list_lock);
1136
1137                         if (wakeup_bdi)
1138                                 bdi_wakeup_thread_delayed(bdi);
1139                         return;
1140                 }
1141         }
1142 out_unlock_inode:
1143         spin_unlock(&inode->i_lock);
1144
1145 }
1146 EXPORT_SYMBOL(__mark_inode_dirty);
1147
1148 /*
1149  * Write out a superblock's list of dirty inodes.  A wait will be performed
1150  * upon no inodes, all inodes or the final one, depending upon sync_mode.
1151  *
1152  * If older_than_this is non-NULL, then only write out inodes which
1153  * had their first dirtying at a time earlier than *older_than_this.
1154  *
1155  * If `bdi' is non-zero then we're being asked to writeback a specific queue.
1156  * This function assumes that the blockdev superblock's inodes are backed by
1157  * a variety of queues, so all inodes are searched.  For other superblocks,
1158  * assume that all inodes are backed by the same queue.
1159  *
1160  * The inodes to be written are parked on bdi->b_io.  They are moved back onto
1161  * bdi->b_dirty as they are selected for writing.  This way, none can be missed
1162  * on the writer throttling path, and we get decent balancing between many
1163  * throttled threads: we don't want them all piling up on inode_sync_wait.
1164  */
1165 static void wait_sb_inodes(struct super_block *sb)
1166 {
1167         struct inode *inode, *old_inode = NULL;
1168
1169         /*
1170          * We need to be protected against the filesystem going from
1171          * r/o to r/w or vice versa.
1172          */
1173         WARN_ON(!rwsem_is_locked(&sb->s_umount));
1174
1175         spin_lock(&inode_sb_list_lock);
1176
1177         /*
1178          * Data integrity sync. Must wait for all pages under writeback,
1179          * because there may have been pages dirtied before our sync
1180          * call, but which had writeout started before we write it out.
1181          * In which case, the inode may not be on the dirty list, but
1182          * we still have to wait for that writeout.
1183          */
1184         list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
1185                 struct address_space *mapping = inode->i_mapping;
1186
1187                 spin_lock(&inode->i_lock);
1188                 if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) ||
1189                     (mapping->nrpages == 0)) {
1190                         spin_unlock(&inode->i_lock);
1191                         continue;
1192                 }
1193                 __iget(inode);
1194                 spin_unlock(&inode->i_lock);
1195                 spin_unlock(&inode_sb_list_lock);
1196
1197                 /*
1198                  * We hold a reference to 'inode' so it couldn't have been
1199                  * removed from s_inodes list while we dropped the
1200                  * inode_sb_list_lock.  We cannot iput the inode now as we can
1201                  * be holding the last reference and we cannot iput it under
1202                  * inode_sb_list_lock. So we keep the reference and iput it
1203                  * later.
1204                  */
1205                 iput(old_inode);
1206                 old_inode = inode;
1207
1208                 filemap_fdatawait(mapping);
1209
1210                 cond_resched();
1211
1212                 spin_lock(&inode_sb_list_lock);
1213         }
1214         spin_unlock(&inode_sb_list_lock);
1215         iput(old_inode);
1216 }
1217
1218 /**
1219  * writeback_inodes_sb_nr -     writeback dirty inodes from given super_block
1220  * @sb: the superblock
1221  * @nr: the number of pages to write
1222  *
1223  * Start writeback on some inodes on this super_block. No guarantees are made
1224  * on how many (if any) will be written, and this function does not wait
1225  * for IO completion of submitted IO.
1226  */
1227 void writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr)
1228 {
1229         DECLARE_COMPLETION_ONSTACK(done);
1230         struct wb_writeback_work work = {
1231                 .sb                     = sb,
1232                 .sync_mode              = WB_SYNC_NONE,
1233                 .tagged_writepages      = 1,
1234                 .done                   = &done,
1235                 .nr_pages               = nr,
1236         };
1237
1238         WARN_ON(!rwsem_is_locked(&sb->s_umount));
1239         bdi_queue_work(sb->s_bdi, &work);
1240         wait_for_completion(&done);
1241 }
1242 EXPORT_SYMBOL(writeback_inodes_sb_nr);
1243
1244 /**
1245  * writeback_inodes_sb  -       writeback dirty inodes from given super_block
1246  * @sb: the superblock
1247  *
1248  * Start writeback on some inodes on this super_block. No guarantees are made
1249  * on how many (if any) will be written, and this function does not wait
1250  * for IO completion of submitted IO.
1251  */
1252 void writeback_inodes_sb(struct super_block *sb)
1253 {
1254         return writeback_inodes_sb_nr(sb, get_nr_dirty_pages());
1255 }
1256 EXPORT_SYMBOL(writeback_inodes_sb);
1257
1258 /**
1259  * writeback_inodes_sb_if_idle  -       start writeback if none underway
1260  * @sb: the superblock
1261  *
1262  * Invoke writeback_inodes_sb if no writeback is currently underway.
1263  * Returns 1 if writeback was started, 0 if not.
1264  */
1265 int writeback_inodes_sb_if_idle(struct super_block *sb)
1266 {
1267         if (!writeback_in_progress(sb->s_bdi)) {
1268                 down_read(&sb->s_umount);
1269                 writeback_inodes_sb(sb);
1270                 up_read(&sb->s_umount);
1271                 return 1;
1272         } else
1273                 return 0;
1274 }
1275 EXPORT_SYMBOL(writeback_inodes_sb_if_idle);
1276
1277 /**
1278  * writeback_inodes_sb_if_idle  -       start writeback if none underway
1279  * @sb: the superblock
1280  * @nr: the number of pages to write
1281  *
1282  * Invoke writeback_inodes_sb if no writeback is currently underway.
1283  * Returns 1 if writeback was started, 0 if not.
1284  */
1285 int writeback_inodes_sb_nr_if_idle(struct super_block *sb,
1286                                    unsigned long nr)
1287 {
1288         if (!writeback_in_progress(sb->s_bdi)) {
1289                 down_read(&sb->s_umount);
1290                 writeback_inodes_sb_nr(sb, nr);
1291                 up_read(&sb->s_umount);
1292                 return 1;
1293         } else
1294                 return 0;
1295 }
1296 EXPORT_SYMBOL(writeback_inodes_sb_nr_if_idle);
1297
1298 /**
1299  * sync_inodes_sb       -       sync sb inode pages
1300  * @sb: the superblock
1301  *
1302  * This function writes and waits on any dirty inode belonging to this
1303  * super_block.
1304  */
1305 void sync_inodes_sb(struct super_block *sb)
1306 {
1307         DECLARE_COMPLETION_ONSTACK(done);
1308         struct wb_writeback_work work = {
1309                 .sb             = sb,
1310                 .sync_mode      = WB_SYNC_ALL,
1311                 .nr_pages       = LONG_MAX,
1312                 .range_cyclic   = 0,
1313                 .done           = &done,
1314         };
1315
1316         WARN_ON(!rwsem_is_locked(&sb->s_umount));
1317
1318         bdi_queue_work(sb->s_bdi, &work);
1319         wait_for_completion(&done);
1320
1321         wait_sb_inodes(sb);
1322 }
1323 EXPORT_SYMBOL(sync_inodes_sb);
1324
1325 /**
1326  * write_inode_now      -       write an inode to disk
1327  * @inode: inode to write to disk
1328  * @sync: whether the write should be synchronous or not
1329  *
1330  * This function commits an inode to disk immediately if it is dirty. This is
1331  * primarily needed by knfsd.
1332  *
1333  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1334  */
1335 int write_inode_now(struct inode *inode, int sync)
1336 {
1337         struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1338         int ret;
1339         struct writeback_control wbc = {
1340                 .nr_to_write = LONG_MAX,
1341                 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
1342                 .range_start = 0,
1343                 .range_end = LLONG_MAX,
1344         };
1345
1346         if (!mapping_cap_writeback_dirty(inode->i_mapping))
1347                 wbc.nr_to_write = 0;
1348
1349         might_sleep();
1350         spin_lock(&wb->list_lock);
1351         spin_lock(&inode->i_lock);
1352         ret = writeback_single_inode(inode, wb, &wbc);
1353         spin_unlock(&inode->i_lock);
1354         spin_unlock(&wb->list_lock);
1355         if (sync)
1356                 inode_sync_wait(inode);
1357         return ret;
1358 }
1359 EXPORT_SYMBOL(write_inode_now);
1360
1361 /**
1362  * sync_inode - write an inode and its pages to disk.
1363  * @inode: the inode to sync
1364  * @wbc: controls the writeback mode
1365  *
1366  * sync_inode() will write an inode and its pages to disk.  It will also
1367  * correctly update the inode on its superblock's dirty inode lists and will
1368  * update inode->i_state.
1369  *
1370  * The caller must have a ref on the inode.
1371  */
1372 int sync_inode(struct inode *inode, struct writeback_control *wbc)
1373 {
1374         struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1375         int ret;
1376
1377         spin_lock(&wb->list_lock);
1378         spin_lock(&inode->i_lock);
1379         ret = writeback_single_inode(inode, wb, wbc);
1380         spin_unlock(&inode->i_lock);
1381         spin_unlock(&wb->list_lock);
1382         return ret;
1383 }
1384 EXPORT_SYMBOL(sync_inode);
1385
1386 /**
1387  * sync_inode_metadata - write an inode to disk
1388  * @inode: the inode to sync
1389  * @wait: wait for I/O to complete.
1390  *
1391  * Write an inode to disk and adjust its dirty state after completion.
1392  *
1393  * Note: only writes the actual inode, no associated data or other metadata.
1394  */
1395 int sync_inode_metadata(struct inode *inode, int wait)
1396 {
1397         struct writeback_control wbc = {
1398                 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
1399                 .nr_to_write = 0, /* metadata-only */
1400         };
1401
1402         return sync_inode(inode, &wbc);
1403 }
1404 EXPORT_SYMBOL(sync_inode_metadata);