ext2: Fix fs corruption in ext2_get_xip_mem()
[pandora-kernel.git] / fs / fs-writeback.c
1 /*
2  * fs/fs-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * Contains all the functions related to writing back and waiting
7  * upon dirty inodes against superblocks, and writing back dirty
8  * pages against inodes.  ie: data writeback.  Writeout of the
9  * inode itself is not handled here.
10  *
11  * 10Apr2002    Andrew Morton
12  *              Split out of fs/inode.c
13  *              Additions for address_space-based writeback
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/kthread.h>
24 #include <linux/freezer.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/buffer_head.h>
29 #include <linux/tracepoint.h>
30 #include "internal.h"
31
32 /*
33  * Passed into wb_writeback(), essentially a subset of writeback_control
34  */
35 struct wb_writeback_work {
36         long nr_pages;
37         struct super_block *sb;
38         unsigned long *older_than_this;
39         enum writeback_sync_modes sync_mode;
40         unsigned int tagged_writepages:1;
41         unsigned int for_kupdate:1;
42         unsigned int range_cyclic:1;
43         unsigned int for_background:1;
44         enum wb_reason reason;          /* why was writeback initiated? */
45
46         struct list_head list;          /* pending work list */
47         struct completion *done;        /* set if the caller waits */
48 };
49
50 /*
51  * We don't actually have pdflush, but this one is exported though /proc...
52  */
53 int nr_pdflush_threads;
54
55 /**
56  * writeback_in_progress - determine whether there is writeback in progress
57  * @bdi: the device's backing_dev_info structure.
58  *
59  * Determine whether there is writeback waiting to be handled against a
60  * backing device.
61  */
62 int writeback_in_progress(struct backing_dev_info *bdi)
63 {
64         return test_bit(BDI_writeback_running, &bdi->state);
65 }
66 EXPORT_SYMBOL(writeback_in_progress);
67
68 static inline struct backing_dev_info *inode_to_bdi(struct inode *inode)
69 {
70         struct super_block *sb = inode->i_sb;
71
72         if (strcmp(sb->s_type->name, "bdev") == 0)
73                 return inode->i_mapping->backing_dev_info;
74
75         return sb->s_bdi;
76 }
77
78 static inline struct inode *wb_inode(struct list_head *head)
79 {
80         return list_entry(head, struct inode, i_wb_list);
81 }
82
83 /*
84  * Include the creation of the trace points after defining the
85  * wb_writeback_work structure and inline functions so that the definition
86  * remains local to this file.
87  */
88 #define CREATE_TRACE_POINTS
89 #include <trace/events/writeback.h>
90
91 /* Wakeup flusher thread or forker thread to fork it. Requires bdi->wb_lock. */
92 static void bdi_wakeup_flusher(struct backing_dev_info *bdi)
93 {
94         if (bdi->wb.task) {
95                 wake_up_process(bdi->wb.task);
96         } else {
97                 /*
98                  * The bdi thread isn't there, wake up the forker thread which
99                  * will create and run it.
100                  */
101                 wake_up_process(default_backing_dev_info.wb.task);
102         }
103 }
104
105 static void bdi_queue_work(struct backing_dev_info *bdi,
106                            struct wb_writeback_work *work)
107 {
108         trace_writeback_queue(bdi, work);
109
110         spin_lock_bh(&bdi->wb_lock);
111         list_add_tail(&work->list, &bdi->work_list);
112         if (!bdi->wb.task)
113                 trace_writeback_nothread(bdi, work);
114         bdi_wakeup_flusher(bdi);
115         spin_unlock_bh(&bdi->wb_lock);
116 }
117
118 static void
119 __bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
120                       bool range_cyclic, enum wb_reason reason)
121 {
122         struct wb_writeback_work *work;
123
124         /*
125          * This is WB_SYNC_NONE writeback, so if allocation fails just
126          * wakeup the thread for old dirty data writeback
127          */
128         work = kzalloc(sizeof(*work), GFP_ATOMIC);
129         if (!work) {
130                 if (bdi->wb.task) {
131                         trace_writeback_nowork(bdi);
132                         wake_up_process(bdi->wb.task);
133                 }
134                 return;
135         }
136
137         work->sync_mode = WB_SYNC_NONE;
138         work->nr_pages  = nr_pages;
139         work->range_cyclic = range_cyclic;
140         work->reason    = reason;
141
142         bdi_queue_work(bdi, work);
143 }
144
145 /**
146  * bdi_start_writeback - start writeback
147  * @bdi: the backing device to write from
148  * @nr_pages: the number of pages to write
149  * @reason: reason why some writeback work was initiated
150  *
151  * Description:
152  *   This does WB_SYNC_NONE opportunistic writeback. The IO is only
153  *   started when this function returns, we make no guarantees on
154  *   completion. Caller need not hold sb s_umount semaphore.
155  *
156  */
157 void bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
158                         enum wb_reason reason)
159 {
160         __bdi_start_writeback(bdi, nr_pages, true, reason);
161 }
162
163 /**
164  * bdi_start_background_writeback - start background writeback
165  * @bdi: the backing device to write from
166  *
167  * Description:
168  *   This makes sure WB_SYNC_NONE background writeback happens. When
169  *   this function returns, it is only guaranteed that for given BDI
170  *   some IO is happening if we are over background dirty threshold.
171  *   Caller need not hold sb s_umount semaphore.
172  */
173 void bdi_start_background_writeback(struct backing_dev_info *bdi)
174 {
175         /*
176          * We just wake up the flusher thread. It will perform background
177          * writeback as soon as there is no other work to do.
178          */
179         trace_writeback_wake_background(bdi);
180         spin_lock_bh(&bdi->wb_lock);
181         bdi_wakeup_flusher(bdi);
182         spin_unlock_bh(&bdi->wb_lock);
183 }
184
185 /*
186  * Remove the inode from the writeback list it is on.
187  */
188 void inode_wb_list_del(struct inode *inode)
189 {
190         struct backing_dev_info *bdi = inode_to_bdi(inode);
191
192         spin_lock(&bdi->wb.list_lock);
193         list_del_init(&inode->i_wb_list);
194         spin_unlock(&bdi->wb.list_lock);
195 }
196
197 /*
198  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
199  * furthest end of its superblock's dirty-inode list.
200  *
201  * Before stamping the inode's ->dirtied_when, we check to see whether it is
202  * already the most-recently-dirtied inode on the b_dirty list.  If that is
203  * the case then the inode must have been redirtied while it was being written
204  * out and we don't reset its dirtied_when.
205  */
206 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
207 {
208         assert_spin_locked(&wb->list_lock);
209         if (!list_empty(&wb->b_dirty)) {
210                 struct inode *tail;
211
212                 tail = wb_inode(wb->b_dirty.next);
213                 if (time_before(inode->dirtied_when, tail->dirtied_when))
214                         inode->dirtied_when = jiffies;
215         }
216         list_move(&inode->i_wb_list, &wb->b_dirty);
217 }
218
219 /*
220  * requeue inode for re-scanning after bdi->b_io list is exhausted.
221  */
222 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
223 {
224         assert_spin_locked(&wb->list_lock);
225         list_move(&inode->i_wb_list, &wb->b_more_io);
226 }
227
228 static void inode_sync_complete(struct inode *inode)
229 {
230         /*
231          * Prevent speculative execution through
232          * spin_unlock(&wb->list_lock);
233          */
234
235         smp_mb();
236         wake_up_bit(&inode->i_state, __I_SYNC);
237 }
238
239 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
240 {
241         bool ret = time_after(inode->dirtied_when, t);
242 #ifndef CONFIG_64BIT
243         /*
244          * For inodes being constantly redirtied, dirtied_when can get stuck.
245          * It _appears_ to be in the future, but is actually in distant past.
246          * This test is necessary to prevent such wrapped-around relative times
247          * from permanently stopping the whole bdi writeback.
248          */
249         ret = ret && time_before_eq(inode->dirtied_when, jiffies);
250 #endif
251         return ret;
252 }
253
254 /*
255  * Move expired dirty inodes from @delaying_queue to @dispatch_queue.
256  */
257 static int move_expired_inodes(struct list_head *delaying_queue,
258                                struct list_head *dispatch_queue,
259                                struct wb_writeback_work *work)
260 {
261         LIST_HEAD(tmp);
262         struct list_head *pos, *node;
263         struct super_block *sb = NULL;
264         struct inode *inode;
265         int do_sb_sort = 0;
266         int moved = 0;
267
268         while (!list_empty(delaying_queue)) {
269                 inode = wb_inode(delaying_queue->prev);
270                 if (work->older_than_this &&
271                     inode_dirtied_after(inode, *work->older_than_this))
272                         break;
273                 if (sb && sb != inode->i_sb)
274                         do_sb_sort = 1;
275                 sb = inode->i_sb;
276                 list_move(&inode->i_wb_list, &tmp);
277                 moved++;
278         }
279
280         /* just one sb in list, splice to dispatch_queue and we're done */
281         if (!do_sb_sort) {
282                 list_splice(&tmp, dispatch_queue);
283                 goto out;
284         }
285
286         /* Move inodes from one superblock together */
287         while (!list_empty(&tmp)) {
288                 sb = wb_inode(tmp.prev)->i_sb;
289                 list_for_each_prev_safe(pos, node, &tmp) {
290                         inode = wb_inode(pos);
291                         if (inode->i_sb == sb)
292                                 list_move(&inode->i_wb_list, dispatch_queue);
293                 }
294         }
295 out:
296         return moved;
297 }
298
299 /*
300  * Queue all expired dirty inodes for io, eldest first.
301  * Before
302  *         newly dirtied     b_dirty    b_io    b_more_io
303  *         =============>    gf         edc     BA
304  * After
305  *         newly dirtied     b_dirty    b_io    b_more_io
306  *         =============>    g          fBAedc
307  *                                           |
308  *                                           +--> dequeue for IO
309  */
310 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
311 {
312         int moved;
313         assert_spin_locked(&wb->list_lock);
314         list_splice_init(&wb->b_more_io, &wb->b_io);
315         moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, work);
316         trace_writeback_queue_io(wb, work, moved);
317 }
318
319 static int write_inode(struct inode *inode, struct writeback_control *wbc)
320 {
321         if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode))
322                 return inode->i_sb->s_op->write_inode(inode, wbc);
323         return 0;
324 }
325
326 /*
327  * Wait for writeback on an inode to complete.
328  */
329 static void inode_wait_for_writeback(struct inode *inode,
330                                      struct bdi_writeback *wb)
331 {
332         DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
333         wait_queue_head_t *wqh;
334
335         wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
336         while (inode->i_state & I_SYNC) {
337                 spin_unlock(&inode->i_lock);
338                 spin_unlock(&wb->list_lock);
339                 __wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE);
340                 spin_lock(&wb->list_lock);
341                 spin_lock(&inode->i_lock);
342         }
343 }
344
345 /*
346  * Write out an inode's dirty pages.  Called under wb->list_lock and
347  * inode->i_lock.  Either the caller has an active reference on the inode or
348  * the inode has I_WILL_FREE set.
349  *
350  * If `wait' is set, wait on the writeout.
351  *
352  * The whole writeout design is quite complex and fragile.  We want to avoid
353  * starvation of particular inodes when others are being redirtied, prevent
354  * livelocks, etc.
355  */
356 static int
357 writeback_single_inode(struct inode *inode, struct bdi_writeback *wb,
358                        struct writeback_control *wbc)
359 {
360         struct address_space *mapping = inode->i_mapping;
361         long nr_to_write = wbc->nr_to_write;
362         unsigned dirty;
363         int ret;
364
365         assert_spin_locked(&wb->list_lock);
366         assert_spin_locked(&inode->i_lock);
367
368         if (!atomic_read(&inode->i_count))
369                 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
370         else
371                 WARN_ON(inode->i_state & I_WILL_FREE);
372
373         if (inode->i_state & I_SYNC) {
374                 /*
375                  * If this inode is locked for writeback and we are not doing
376                  * writeback-for-data-integrity, move it to b_more_io so that
377                  * writeback can proceed with the other inodes on s_io.
378                  *
379                  * We'll have another go at writing back this inode when we
380                  * completed a full scan of b_io.
381                  */
382                 if (wbc->sync_mode != WB_SYNC_ALL) {
383                         requeue_io(inode, wb);
384                         trace_writeback_single_inode_requeue(inode, wbc,
385                                                              nr_to_write);
386                         return 0;
387                 }
388
389                 /*
390                  * It's a data-integrity sync.  We must wait.
391                  */
392                 inode_wait_for_writeback(inode, wb);
393         }
394
395         BUG_ON(inode->i_state & I_SYNC);
396
397         /* Set I_SYNC, reset I_DIRTY_PAGES */
398         inode->i_state |= I_SYNC;
399         inode->i_state &= ~I_DIRTY_PAGES;
400         spin_unlock(&inode->i_lock);
401         spin_unlock(&wb->list_lock);
402
403         ret = do_writepages(mapping, wbc);
404
405         /*
406          * Make sure to wait on the data before writing out the metadata.
407          * This is important for filesystems that modify metadata on data
408          * I/O completion.
409          */
410         if (wbc->sync_mode == WB_SYNC_ALL) {
411                 int err = filemap_fdatawait(mapping);
412                 if (ret == 0)
413                         ret = err;
414         }
415
416         /*
417          * Some filesystems may redirty the inode during the writeback
418          * due to delalloc, clear dirty metadata flags right before
419          * write_inode()
420          */
421         spin_lock(&inode->i_lock);
422         dirty = inode->i_state & I_DIRTY;
423         inode->i_state &= ~(I_DIRTY_SYNC | I_DIRTY_DATASYNC);
424         spin_unlock(&inode->i_lock);
425         /* Don't write the inode if only I_DIRTY_PAGES was set */
426         if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
427                 int err = write_inode(inode, wbc);
428                 if (ret == 0)
429                         ret = err;
430         }
431
432         spin_lock(&wb->list_lock);
433         spin_lock(&inode->i_lock);
434         inode->i_state &= ~I_SYNC;
435         if (!(inode->i_state & I_FREEING)) {
436                 /*
437                  * Sync livelock prevention. Each inode is tagged and synced in
438                  * one shot. If still dirty, it will be redirty_tail()'ed below.
439                  * Update the dirty time to prevent enqueue and sync it again.
440                  */
441                 if ((inode->i_state & I_DIRTY) &&
442                     (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
443                         inode->dirtied_when = jiffies;
444
445                 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
446                         /*
447                          * We didn't write back all the pages.  nfs_writepages()
448                          * sometimes bales out without doing anything.
449                          */
450                         inode->i_state |= I_DIRTY_PAGES;
451                         if (wbc->nr_to_write <= 0) {
452                                 /*
453                                  * slice used up: queue for next turn
454                                  */
455                                 requeue_io(inode, wb);
456                         } else {
457                                 /*
458                                  * Writeback blocked by something other than
459                                  * congestion. Delay the inode for some time to
460                                  * avoid spinning on the CPU (100% iowait)
461                                  * retrying writeback of the dirty page/inode
462                                  * that cannot be performed immediately.
463                                  */
464                                 redirty_tail(inode, wb);
465                         }
466                 } else if (inode->i_state & I_DIRTY) {
467                         /*
468                          * Filesystems can dirty the inode during writeback
469                          * operations, such as delayed allocation during
470                          * submission or metadata updates after data IO
471                          * completion.
472                          */
473                         redirty_tail(inode, wb);
474                 } else {
475                         /*
476                          * The inode is clean.  At this point we either have
477                          * a reference to the inode or it's on it's way out.
478                          * No need to add it back to the LRU.
479                          */
480                         list_del_init(&inode->i_wb_list);
481                 }
482         }
483         inode_sync_complete(inode);
484         trace_writeback_single_inode(inode, wbc, nr_to_write);
485         return ret;
486 }
487
488 static long writeback_chunk_size(struct backing_dev_info *bdi,
489                                  struct wb_writeback_work *work)
490 {
491         long pages;
492
493         /*
494          * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
495          * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
496          * here avoids calling into writeback_inodes_wb() more than once.
497          *
498          * The intended call sequence for WB_SYNC_ALL writeback is:
499          *
500          *      wb_writeback()
501          *          writeback_sb_inodes()       <== called only once
502          *              write_cache_pages()     <== called once for each inode
503          *                   (quickly) tag currently dirty pages
504          *                   (maybe slowly) sync all tagged pages
505          */
506         if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
507                 pages = LONG_MAX;
508         else {
509                 pages = min(bdi->avg_write_bandwidth / 2,
510                             global_dirty_limit / DIRTY_SCOPE);
511                 pages = min(pages, work->nr_pages);
512                 pages = round_down(pages + MIN_WRITEBACK_PAGES,
513                                    MIN_WRITEBACK_PAGES);
514         }
515
516         return pages;
517 }
518
519 /*
520  * Write a portion of b_io inodes which belong to @sb.
521  *
522  * If @only_this_sb is true, then find and write all such
523  * inodes. Otherwise write only ones which go sequentially
524  * in reverse order.
525  *
526  * Return the number of pages and/or inodes written.
527  */
528 static long writeback_sb_inodes(struct super_block *sb,
529                                 struct bdi_writeback *wb,
530                                 struct wb_writeback_work *work)
531 {
532         struct writeback_control wbc = {
533                 .sync_mode              = work->sync_mode,
534                 .tagged_writepages      = work->tagged_writepages,
535                 .for_kupdate            = work->for_kupdate,
536                 .for_background         = work->for_background,
537                 .range_cyclic           = work->range_cyclic,
538                 .range_start            = 0,
539                 .range_end              = LLONG_MAX,
540         };
541         unsigned long start_time = jiffies;
542         long write_chunk;
543         long wrote = 0;  /* count both pages and inodes */
544
545         while (!list_empty(&wb->b_io)) {
546                 struct inode *inode = wb_inode(wb->b_io.prev);
547
548                 if (inode->i_sb != sb) {
549                         if (work->sb) {
550                                 /*
551                                  * We only want to write back data for this
552                                  * superblock, move all inodes not belonging
553                                  * to it back onto the dirty list.
554                                  */
555                                 redirty_tail(inode, wb);
556                                 continue;
557                         }
558
559                         /*
560                          * The inode belongs to a different superblock.
561                          * Bounce back to the caller to unpin this and
562                          * pin the next superblock.
563                          */
564                         break;
565                 }
566
567                 /*
568                  * Don't bother with new inodes or inodes beeing freed, first
569                  * kind does not need peridic writeout yet, and for the latter
570                  * kind writeout is handled by the freer.
571                  */
572                 spin_lock(&inode->i_lock);
573                 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
574                         spin_unlock(&inode->i_lock);
575                         redirty_tail(inode, wb);
576                         continue;
577                 }
578                 __iget(inode);
579                 write_chunk = writeback_chunk_size(wb->bdi, work);
580                 wbc.nr_to_write = write_chunk;
581                 wbc.pages_skipped = 0;
582
583                 writeback_single_inode(inode, wb, &wbc);
584
585                 work->nr_pages -= write_chunk - wbc.nr_to_write;
586                 wrote += write_chunk - wbc.nr_to_write;
587                 if (!(inode->i_state & I_DIRTY))
588                         wrote++;
589                 if (wbc.pages_skipped) {
590                         /*
591                          * writeback is not making progress due to locked
592                          * buffers.  Skip this inode for now.
593                          */
594                         redirty_tail(inode, wb);
595                 }
596                 spin_unlock(&inode->i_lock);
597                 spin_unlock(&wb->list_lock);
598                 iput(inode);
599                 cond_resched();
600                 spin_lock(&wb->list_lock);
601                 /*
602                  * bail out to wb_writeback() often enough to check
603                  * background threshold and other termination conditions.
604                  */
605                 if (wrote) {
606                         if (time_is_before_jiffies(start_time + HZ / 10UL))
607                                 break;
608                         if (work->nr_pages <= 0)
609                                 break;
610                 }
611         }
612         return wrote;
613 }
614
615 static long __writeback_inodes_wb(struct bdi_writeback *wb,
616                                   struct wb_writeback_work *work)
617 {
618         unsigned long start_time = jiffies;
619         long wrote = 0;
620
621         while (!list_empty(&wb->b_io)) {
622                 struct inode *inode = wb_inode(wb->b_io.prev);
623                 struct super_block *sb = inode->i_sb;
624
625                 if (!grab_super_passive(sb)) {
626                         /*
627                          * grab_super_passive() may fail consistently due to
628                          * s_umount being grabbed by someone else. Don't use
629                          * requeue_io() to avoid busy retrying the inode/sb.
630                          */
631                         redirty_tail(inode, wb);
632                         continue;
633                 }
634                 wrote += writeback_sb_inodes(sb, wb, work);
635                 drop_super(sb);
636
637                 /* refer to the same tests at the end of writeback_sb_inodes */
638                 if (wrote) {
639                         if (time_is_before_jiffies(start_time + HZ / 10UL))
640                                 break;
641                         if (work->nr_pages <= 0)
642                                 break;
643                 }
644         }
645         /* Leave any unwritten inodes on b_io */
646         return wrote;
647 }
648
649 long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
650                                 enum wb_reason reason)
651 {
652         struct wb_writeback_work work = {
653                 .nr_pages       = nr_pages,
654                 .sync_mode      = WB_SYNC_NONE,
655                 .range_cyclic   = 1,
656                 .reason         = reason,
657         };
658
659         spin_lock(&wb->list_lock);
660         if (list_empty(&wb->b_io))
661                 queue_io(wb, &work);
662         __writeback_inodes_wb(wb, &work);
663         spin_unlock(&wb->list_lock);
664
665         return nr_pages - work.nr_pages;
666 }
667
668 static bool over_bground_thresh(struct backing_dev_info *bdi)
669 {
670         unsigned long background_thresh, dirty_thresh;
671
672         global_dirty_limits(&background_thresh, &dirty_thresh);
673
674         if (global_page_state(NR_FILE_DIRTY) +
675             global_page_state(NR_UNSTABLE_NFS) > background_thresh)
676                 return true;
677
678         if (bdi_stat(bdi, BDI_RECLAIMABLE) >
679                                 bdi_dirty_limit(bdi, background_thresh))
680                 return true;
681
682         return false;
683 }
684
685 /*
686  * Called under wb->list_lock. If there are multiple wb per bdi,
687  * only the flusher working on the first wb should do it.
688  */
689 static void wb_update_bandwidth(struct bdi_writeback *wb,
690                                 unsigned long start_time)
691 {
692         __bdi_update_bandwidth(wb->bdi, 0, 0, 0, 0, 0, start_time);
693 }
694
695 /*
696  * Explicit flushing or periodic writeback of "old" data.
697  *
698  * Define "old": the first time one of an inode's pages is dirtied, we mark the
699  * dirtying-time in the inode's address_space.  So this periodic writeback code
700  * just walks the superblock inode list, writing back any inodes which are
701  * older than a specific point in time.
702  *
703  * Try to run once per dirty_writeback_interval.  But if a writeback event
704  * takes longer than a dirty_writeback_interval interval, then leave a
705  * one-second gap.
706  *
707  * older_than_this takes precedence over nr_to_write.  So we'll only write back
708  * all dirty pages if they are all attached to "old" mappings.
709  */
710 static long wb_writeback(struct bdi_writeback *wb,
711                          struct wb_writeback_work *work)
712 {
713         unsigned long wb_start = jiffies;
714         long nr_pages = work->nr_pages;
715         unsigned long oldest_jif;
716         struct inode *inode;
717         long progress;
718
719         oldest_jif = jiffies;
720         work->older_than_this = &oldest_jif;
721
722         spin_lock(&wb->list_lock);
723         for (;;) {
724                 /*
725                  * Stop writeback when nr_pages has been consumed
726                  */
727                 if (work->nr_pages <= 0)
728                         break;
729
730                 /*
731                  * Background writeout and kupdate-style writeback may
732                  * run forever. Stop them if there is other work to do
733                  * so that e.g. sync can proceed. They'll be restarted
734                  * after the other works are all done.
735                  */
736                 if ((work->for_background || work->for_kupdate) &&
737                     !list_empty(&wb->bdi->work_list))
738                         break;
739
740                 /*
741                  * For background writeout, stop when we are below the
742                  * background dirty threshold
743                  */
744                 if (work->for_background && !over_bground_thresh(wb->bdi))
745                         break;
746
747                 if (work->for_kupdate) {
748                         oldest_jif = jiffies -
749                                 msecs_to_jiffies(dirty_expire_interval * 10);
750                         work->older_than_this = &oldest_jif;
751                 }
752
753                 trace_writeback_start(wb->bdi, work);
754                 if (list_empty(&wb->b_io))
755                         queue_io(wb, work);
756                 if (work->sb)
757                         progress = writeback_sb_inodes(work->sb, wb, work);
758                 else
759                         progress = __writeback_inodes_wb(wb, work);
760                 trace_writeback_written(wb->bdi, work);
761
762                 wb_update_bandwidth(wb, wb_start);
763
764                 /*
765                  * Did we write something? Try for more
766                  *
767                  * Dirty inodes are moved to b_io for writeback in batches.
768                  * The completion of the current batch does not necessarily
769                  * mean the overall work is done. So we keep looping as long
770                  * as made some progress on cleaning pages or inodes.
771                  */
772                 if (progress)
773                         continue;
774                 /*
775                  * No more inodes for IO, bail
776                  */
777                 if (list_empty(&wb->b_more_io))
778                         break;
779                 /*
780                  * Nothing written. Wait for some inode to
781                  * become available for writeback. Otherwise
782                  * we'll just busyloop.
783                  */
784                 if (!list_empty(&wb->b_more_io))  {
785                         trace_writeback_wait(wb->bdi, work);
786                         inode = wb_inode(wb->b_more_io.prev);
787                         spin_lock(&inode->i_lock);
788                         inode_wait_for_writeback(inode, wb);
789                         spin_unlock(&inode->i_lock);
790                 }
791         }
792         spin_unlock(&wb->list_lock);
793
794         return nr_pages - work->nr_pages;
795 }
796
797 /*
798  * Return the next wb_writeback_work struct that hasn't been processed yet.
799  */
800 static struct wb_writeback_work *
801 get_next_work_item(struct backing_dev_info *bdi)
802 {
803         struct wb_writeback_work *work = NULL;
804
805         spin_lock_bh(&bdi->wb_lock);
806         if (!list_empty(&bdi->work_list)) {
807                 work = list_entry(bdi->work_list.next,
808                                   struct wb_writeback_work, list);
809                 list_del_init(&work->list);
810         }
811         spin_unlock_bh(&bdi->wb_lock);
812         return work;
813 }
814
815 /*
816  * Add in the number of potentially dirty inodes, because each inode
817  * write can dirty pagecache in the underlying blockdev.
818  */
819 static unsigned long get_nr_dirty_pages(void)
820 {
821         return global_page_state(NR_FILE_DIRTY) +
822                 global_page_state(NR_UNSTABLE_NFS) +
823                 get_nr_dirty_inodes();
824 }
825
826 static long wb_check_background_flush(struct bdi_writeback *wb)
827 {
828         if (over_bground_thresh(wb->bdi)) {
829
830                 struct wb_writeback_work work = {
831                         .nr_pages       = LONG_MAX,
832                         .sync_mode      = WB_SYNC_NONE,
833                         .for_background = 1,
834                         .range_cyclic   = 1,
835                         .reason         = WB_REASON_BACKGROUND,
836                 };
837
838                 return wb_writeback(wb, &work);
839         }
840
841         return 0;
842 }
843
844 static long wb_check_old_data_flush(struct bdi_writeback *wb)
845 {
846         unsigned long expired;
847         long nr_pages;
848
849         /*
850          * When set to zero, disable periodic writeback
851          */
852         if (!dirty_writeback_interval)
853                 return 0;
854
855         expired = wb->last_old_flush +
856                         msecs_to_jiffies(dirty_writeback_interval * 10);
857         if (time_before(jiffies, expired))
858                 return 0;
859
860         wb->last_old_flush = jiffies;
861         nr_pages = get_nr_dirty_pages();
862
863         if (nr_pages) {
864                 struct wb_writeback_work work = {
865                         .nr_pages       = nr_pages,
866                         .sync_mode      = WB_SYNC_NONE,
867                         .for_kupdate    = 1,
868                         .range_cyclic   = 1,
869                         .reason         = WB_REASON_PERIODIC,
870                 };
871
872                 return wb_writeback(wb, &work);
873         }
874
875         return 0;
876 }
877
878 /*
879  * Retrieve work items and do the writeback they describe
880  */
881 long wb_do_writeback(struct bdi_writeback *wb, int force_wait)
882 {
883         struct backing_dev_info *bdi = wb->bdi;
884         struct wb_writeback_work *work;
885         long wrote = 0;
886
887         set_bit(BDI_writeback_running, &wb->bdi->state);
888         while ((work = get_next_work_item(bdi)) != NULL) {
889                 /*
890                  * Override sync mode, in case we must wait for completion
891                  * because this thread is exiting now.
892                  */
893                 if (force_wait)
894                         work->sync_mode = WB_SYNC_ALL;
895
896                 trace_writeback_exec(bdi, work);
897
898                 wrote += wb_writeback(wb, work);
899
900                 /*
901                  * Notify the caller of completion if this is a synchronous
902                  * work item, otherwise just free it.
903                  */
904                 if (work->done)
905                         complete(work->done);
906                 else
907                         kfree(work);
908         }
909
910         /*
911          * Check for periodic writeback, kupdated() style
912          */
913         wrote += wb_check_old_data_flush(wb);
914         wrote += wb_check_background_flush(wb);
915         clear_bit(BDI_writeback_running, &wb->bdi->state);
916
917         return wrote;
918 }
919
920 /*
921  * Handle writeback of dirty data for the device backed by this bdi. Also
922  * wakes up periodically and does kupdated style flushing.
923  */
924 int bdi_writeback_thread(void *data)
925 {
926         struct bdi_writeback *wb = data;
927         struct backing_dev_info *bdi = wb->bdi;
928         long pages_written;
929
930         current->flags |= PF_SWAPWRITE;
931         set_freezable();
932         wb->last_active = jiffies;
933
934         /*
935          * Our parent may run at a different priority, just set us to normal
936          */
937         set_user_nice(current, 0);
938
939         trace_writeback_thread_start(bdi);
940
941         while (!kthread_should_stop()) {
942                 /*
943                  * Remove own delayed wake-up timer, since we are already awake
944                  * and we'll take care of the preriodic write-back.
945                  */
946                 del_timer(&wb->wakeup_timer);
947
948                 pages_written = wb_do_writeback(wb, 0);
949
950                 trace_writeback_pages_written(pages_written);
951
952                 if (pages_written)
953                         wb->last_active = jiffies;
954
955                 set_current_state(TASK_INTERRUPTIBLE);
956                 if (!list_empty(&bdi->work_list) || kthread_should_stop()) {
957                         __set_current_state(TASK_RUNNING);
958                         continue;
959                 }
960
961                 if (wb_has_dirty_io(wb) && dirty_writeback_interval)
962                         schedule_timeout(msecs_to_jiffies(dirty_writeback_interval * 10));
963                 else {
964                         /*
965                          * We have nothing to do, so can go sleep without any
966                          * timeout and save power. When a work is queued or
967                          * something is made dirty - we will be woken up.
968                          */
969                         schedule();
970                 }
971
972                 try_to_freeze();
973         }
974
975         /* Flush any work that raced with us exiting */
976         if (!list_empty(&bdi->work_list))
977                 wb_do_writeback(wb, 1);
978
979         trace_writeback_thread_stop(bdi);
980         return 0;
981 }
982
983
984 /*
985  * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
986  * the whole world.
987  */
988 void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
989 {
990         struct backing_dev_info *bdi;
991
992         if (!nr_pages) {
993                 nr_pages = global_page_state(NR_FILE_DIRTY) +
994                                 global_page_state(NR_UNSTABLE_NFS);
995         }
996
997         rcu_read_lock();
998         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
999                 if (!bdi_has_dirty_io(bdi))
1000                         continue;
1001                 __bdi_start_writeback(bdi, nr_pages, false, reason);
1002         }
1003         rcu_read_unlock();
1004 }
1005
1006 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
1007 {
1008         if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
1009                 struct dentry *dentry;
1010                 const char *name = "?";
1011
1012                 dentry = d_find_alias(inode);
1013                 if (dentry) {
1014                         spin_lock(&dentry->d_lock);
1015                         name = (const char *) dentry->d_name.name;
1016                 }
1017                 printk(KERN_DEBUG
1018                        "%s(%d): dirtied inode %lu (%s) on %s\n",
1019                        current->comm, task_pid_nr(current), inode->i_ino,
1020                        name, inode->i_sb->s_id);
1021                 if (dentry) {
1022                         spin_unlock(&dentry->d_lock);
1023                         dput(dentry);
1024                 }
1025         }
1026 }
1027
1028 /**
1029  *      __mark_inode_dirty -    internal function
1030  *      @inode: inode to mark
1031  *      @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
1032  *      Mark an inode as dirty. Callers should use mark_inode_dirty or
1033  *      mark_inode_dirty_sync.
1034  *
1035  * Put the inode on the super block's dirty list.
1036  *
1037  * CAREFUL! We mark it dirty unconditionally, but move it onto the
1038  * dirty list only if it is hashed or if it refers to a blockdev.
1039  * If it was not hashed, it will never be added to the dirty list
1040  * even if it is later hashed, as it will have been marked dirty already.
1041  *
1042  * In short, make sure you hash any inodes _before_ you start marking
1043  * them dirty.
1044  *
1045  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
1046  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
1047  * the kernel-internal blockdev inode represents the dirtying time of the
1048  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
1049  * page->mapping->host, so the page-dirtying time is recorded in the internal
1050  * blockdev inode.
1051  */
1052 void __mark_inode_dirty(struct inode *inode, int flags)
1053 {
1054         struct super_block *sb = inode->i_sb;
1055         struct backing_dev_info *bdi = NULL;
1056
1057         /*
1058          * Don't do this for I_DIRTY_PAGES - that doesn't actually
1059          * dirty the inode itself
1060          */
1061         if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
1062                 if (sb->s_op->dirty_inode)
1063                         sb->s_op->dirty_inode(inode, flags);
1064         }
1065
1066         /*
1067          * make sure that changes are seen by all cpus before we test i_state
1068          * -- mikulas
1069          */
1070         smp_mb();
1071
1072         /* avoid the locking if we can */
1073         if ((inode->i_state & flags) == flags)
1074                 return;
1075
1076         if (unlikely(block_dump))
1077                 block_dump___mark_inode_dirty(inode);
1078
1079         spin_lock(&inode->i_lock);
1080         if ((inode->i_state & flags) != flags) {
1081                 const int was_dirty = inode->i_state & I_DIRTY;
1082
1083                 inode->i_state |= flags;
1084
1085                 /*
1086                  * If the inode is being synced, just update its dirty state.
1087                  * The unlocker will place the inode on the appropriate
1088                  * superblock list, based upon its state.
1089                  */
1090                 if (inode->i_state & I_SYNC)
1091                         goto out_unlock_inode;
1092
1093                 /*
1094                  * Only add valid (hashed) inodes to the superblock's
1095                  * dirty list.  Add blockdev inodes as well.
1096                  */
1097                 if (!S_ISBLK(inode->i_mode)) {
1098                         if (inode_unhashed(inode))
1099                                 goto out_unlock_inode;
1100                 }
1101                 if (inode->i_state & I_FREEING)
1102                         goto out_unlock_inode;
1103
1104                 /*
1105                  * If the inode was already on b_dirty/b_io/b_more_io, don't
1106                  * reposition it (that would break b_dirty time-ordering).
1107                  */
1108                 if (!was_dirty) {
1109                         bool wakeup_bdi = false;
1110                         bdi = inode_to_bdi(inode);
1111
1112                         if (bdi_cap_writeback_dirty(bdi)) {
1113                                 WARN(!test_bit(BDI_registered, &bdi->state),
1114                                      "bdi-%s not registered\n", bdi->name);
1115
1116                                 /*
1117                                  * If this is the first dirty inode for this
1118                                  * bdi, we have to wake-up the corresponding
1119                                  * bdi thread to make sure background
1120                                  * write-back happens later.
1121                                  */
1122                                 if (!wb_has_dirty_io(&bdi->wb))
1123                                         wakeup_bdi = true;
1124                         }
1125
1126                         spin_unlock(&inode->i_lock);
1127                         spin_lock(&bdi->wb.list_lock);
1128                         inode->dirtied_when = jiffies;
1129                         list_move(&inode->i_wb_list, &bdi->wb.b_dirty);
1130                         spin_unlock(&bdi->wb.list_lock);
1131
1132                         if (wakeup_bdi)
1133                                 bdi_wakeup_thread_delayed(bdi);
1134                         return;
1135                 }
1136         }
1137 out_unlock_inode:
1138         spin_unlock(&inode->i_lock);
1139
1140 }
1141 EXPORT_SYMBOL(__mark_inode_dirty);
1142
1143 /*
1144  * Write out a superblock's list of dirty inodes.  A wait will be performed
1145  * upon no inodes, all inodes or the final one, depending upon sync_mode.
1146  *
1147  * If older_than_this is non-NULL, then only write out inodes which
1148  * had their first dirtying at a time earlier than *older_than_this.
1149  *
1150  * If `bdi' is non-zero then we're being asked to writeback a specific queue.
1151  * This function assumes that the blockdev superblock's inodes are backed by
1152  * a variety of queues, so all inodes are searched.  For other superblocks,
1153  * assume that all inodes are backed by the same queue.
1154  *
1155  * The inodes to be written are parked on bdi->b_io.  They are moved back onto
1156  * bdi->b_dirty as they are selected for writing.  This way, none can be missed
1157  * on the writer throttling path, and we get decent balancing between many
1158  * throttled threads: we don't want them all piling up on inode_sync_wait.
1159  */
1160 static void wait_sb_inodes(struct super_block *sb)
1161 {
1162         struct inode *inode, *old_inode = NULL;
1163
1164         /*
1165          * We need to be protected against the filesystem going from
1166          * r/o to r/w or vice versa.
1167          */
1168         WARN_ON(!rwsem_is_locked(&sb->s_umount));
1169
1170         spin_lock(&inode_sb_list_lock);
1171
1172         /*
1173          * Data integrity sync. Must wait for all pages under writeback,
1174          * because there may have been pages dirtied before our sync
1175          * call, but which had writeout started before we write it out.
1176          * In which case, the inode may not be on the dirty list, but
1177          * we still have to wait for that writeout.
1178          */
1179         list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
1180                 struct address_space *mapping = inode->i_mapping;
1181
1182                 spin_lock(&inode->i_lock);
1183                 if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) ||
1184                     (mapping->nrpages == 0)) {
1185                         spin_unlock(&inode->i_lock);
1186                         continue;
1187                 }
1188                 __iget(inode);
1189                 spin_unlock(&inode->i_lock);
1190                 spin_unlock(&inode_sb_list_lock);
1191
1192                 /*
1193                  * We hold a reference to 'inode' so it couldn't have been
1194                  * removed from s_inodes list while we dropped the
1195                  * inode_sb_list_lock.  We cannot iput the inode now as we can
1196                  * be holding the last reference and we cannot iput it under
1197                  * inode_sb_list_lock. So we keep the reference and iput it
1198                  * later.
1199                  */
1200                 iput(old_inode);
1201                 old_inode = inode;
1202
1203                 filemap_fdatawait(mapping);
1204
1205                 cond_resched();
1206
1207                 spin_lock(&inode_sb_list_lock);
1208         }
1209         spin_unlock(&inode_sb_list_lock);
1210         iput(old_inode);
1211 }
1212
1213 /**
1214  * writeback_inodes_sb_nr -     writeback dirty inodes from given super_block
1215  * @sb: the superblock
1216  * @nr: the number of pages to write
1217  * @reason: reason why some writeback work initiated
1218  *
1219  * Start writeback on some inodes on this super_block. No guarantees are made
1220  * on how many (if any) will be written, and this function does not wait
1221  * for IO completion of submitted IO.
1222  */
1223 void writeback_inodes_sb_nr(struct super_block *sb,
1224                             unsigned long nr,
1225                             enum wb_reason reason)
1226 {
1227         DECLARE_COMPLETION_ONSTACK(done);
1228         struct wb_writeback_work work = {
1229                 .sb                     = sb,
1230                 .sync_mode              = WB_SYNC_NONE,
1231                 .tagged_writepages      = 1,
1232                 .done                   = &done,
1233                 .nr_pages               = nr,
1234                 .reason                 = reason,
1235         };
1236
1237         WARN_ON(!rwsem_is_locked(&sb->s_umount));
1238         bdi_queue_work(sb->s_bdi, &work);
1239         wait_for_completion(&done);
1240 }
1241 EXPORT_SYMBOL(writeback_inodes_sb_nr);
1242
1243 /**
1244  * writeback_inodes_sb  -       writeback dirty inodes from given super_block
1245  * @sb: the superblock
1246  * @reason: reason why some writeback work was initiated
1247  *
1248  * Start writeback on some inodes on this super_block. No guarantees are made
1249  * on how many (if any) will be written, and this function does not wait
1250  * for IO completion of submitted IO.
1251  */
1252 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
1253 {
1254         return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
1255 }
1256 EXPORT_SYMBOL(writeback_inodes_sb);
1257
1258 /**
1259  * writeback_inodes_sb_if_idle  -       start writeback if none underway
1260  * @sb: the superblock
1261  * @reason: reason why some writeback work was initiated
1262  *
1263  * Invoke writeback_inodes_sb if no writeback is currently underway.
1264  * Returns 1 if writeback was started, 0 if not.
1265  */
1266 int writeback_inodes_sb_if_idle(struct super_block *sb, enum wb_reason reason)
1267 {
1268         if (!writeback_in_progress(sb->s_bdi)) {
1269                 down_read(&sb->s_umount);
1270                 writeback_inodes_sb(sb, reason);
1271                 up_read(&sb->s_umount);
1272                 return 1;
1273         } else
1274                 return 0;
1275 }
1276 EXPORT_SYMBOL(writeback_inodes_sb_if_idle);
1277
1278 /**
1279  * writeback_inodes_sb_if_idle  -       start writeback if none underway
1280  * @sb: the superblock
1281  * @nr: the number of pages to write
1282  * @reason: reason why some writeback work was initiated
1283  *
1284  * Invoke writeback_inodes_sb if no writeback is currently underway.
1285  * Returns 1 if writeback was started, 0 if not.
1286  */
1287 int writeback_inodes_sb_nr_if_idle(struct super_block *sb,
1288                                    unsigned long nr,
1289                                    enum wb_reason reason)
1290 {
1291         if (!writeback_in_progress(sb->s_bdi)) {
1292                 down_read(&sb->s_umount);
1293                 writeback_inodes_sb_nr(sb, nr, reason);
1294                 up_read(&sb->s_umount);
1295                 return 1;
1296         } else
1297                 return 0;
1298 }
1299 EXPORT_SYMBOL(writeback_inodes_sb_nr_if_idle);
1300
1301 /**
1302  * sync_inodes_sb       -       sync sb inode pages
1303  * @sb: the superblock
1304  *
1305  * This function writes and waits on any dirty inode belonging to this
1306  * super_block.
1307  */
1308 void sync_inodes_sb(struct super_block *sb)
1309 {
1310         DECLARE_COMPLETION_ONSTACK(done);
1311         struct wb_writeback_work work = {
1312                 .sb             = sb,
1313                 .sync_mode      = WB_SYNC_ALL,
1314                 .nr_pages       = LONG_MAX,
1315                 .range_cyclic   = 0,
1316                 .done           = &done,
1317                 .reason         = WB_REASON_SYNC,
1318         };
1319
1320         WARN_ON(!rwsem_is_locked(&sb->s_umount));
1321
1322         bdi_queue_work(sb->s_bdi, &work);
1323         wait_for_completion(&done);
1324
1325         wait_sb_inodes(sb);
1326 }
1327 EXPORT_SYMBOL(sync_inodes_sb);
1328
1329 /**
1330  * write_inode_now      -       write an inode to disk
1331  * @inode: inode to write to disk
1332  * @sync: whether the write should be synchronous or not
1333  *
1334  * This function commits an inode to disk immediately if it is dirty. This is
1335  * primarily needed by knfsd.
1336  *
1337  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1338  */
1339 int write_inode_now(struct inode *inode, int sync)
1340 {
1341         struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1342         int ret;
1343         struct writeback_control wbc = {
1344                 .nr_to_write = LONG_MAX,
1345                 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
1346                 .range_start = 0,
1347                 .range_end = LLONG_MAX,
1348         };
1349
1350         if (!mapping_cap_writeback_dirty(inode->i_mapping))
1351                 wbc.nr_to_write = 0;
1352
1353         might_sleep();
1354         spin_lock(&wb->list_lock);
1355         spin_lock(&inode->i_lock);
1356         ret = writeback_single_inode(inode, wb, &wbc);
1357         spin_unlock(&inode->i_lock);
1358         spin_unlock(&wb->list_lock);
1359         if (sync)
1360                 inode_sync_wait(inode);
1361         return ret;
1362 }
1363 EXPORT_SYMBOL(write_inode_now);
1364
1365 /**
1366  * sync_inode - write an inode and its pages to disk.
1367  * @inode: the inode to sync
1368  * @wbc: controls the writeback mode
1369  *
1370  * sync_inode() will write an inode and its pages to disk.  It will also
1371  * correctly update the inode on its superblock's dirty inode lists and will
1372  * update inode->i_state.
1373  *
1374  * The caller must have a ref on the inode.
1375  */
1376 int sync_inode(struct inode *inode, struct writeback_control *wbc)
1377 {
1378         struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1379         int ret;
1380
1381         spin_lock(&wb->list_lock);
1382         spin_lock(&inode->i_lock);
1383         ret = writeback_single_inode(inode, wb, wbc);
1384         spin_unlock(&inode->i_lock);
1385         spin_unlock(&wb->list_lock);
1386         return ret;
1387 }
1388 EXPORT_SYMBOL(sync_inode);
1389
1390 /**
1391  * sync_inode_metadata - write an inode to disk
1392  * @inode: the inode to sync
1393  * @wait: wait for I/O to complete.
1394  *
1395  * Write an inode to disk and adjust its dirty state after completion.
1396  *
1397  * Note: only writes the actual inode, no associated data or other metadata.
1398  */
1399 int sync_inode_metadata(struct inode *inode, int wait)
1400 {
1401         struct writeback_control wbc = {
1402                 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
1403                 .nr_to_write = 0, /* metadata-only */
1404         };
1405
1406         return sync_inode(inode, &wbc);
1407 }
1408 EXPORT_SYMBOL(sync_inode_metadata);