Merge tag 'trace-fixes-4.1' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt...
[pandora-kernel.git] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *      (jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/highuid.h>
24 #include <linux/pagemap.h>
25 #include <linux/quotaops.h>
26 #include <linux/string.h>
27 #include <linux/buffer_head.h>
28 #include <linux/writeback.h>
29 #include <linux/pagevec.h>
30 #include <linux/mpage.h>
31 #include <linux/namei.h>
32 #include <linux/uio.h>
33 #include <linux/bio.h>
34 #include <linux/workqueue.h>
35 #include <linux/kernel.h>
36 #include <linux/printk.h>
37 #include <linux/slab.h>
38 #include <linux/bitops.h>
39
40 #include "ext4_jbd2.h"
41 #include "xattr.h"
42 #include "acl.h"
43 #include "truncate.h"
44
45 #include <trace/events/ext4.h>
46
47 #define MPAGE_DA_EXTENT_TAIL 0x01
48
49 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
50                               struct ext4_inode_info *ei)
51 {
52         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
53         __u16 csum_lo;
54         __u16 csum_hi = 0;
55         __u32 csum;
56
57         csum_lo = le16_to_cpu(raw->i_checksum_lo);
58         raw->i_checksum_lo = 0;
59         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
60             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
61                 csum_hi = le16_to_cpu(raw->i_checksum_hi);
62                 raw->i_checksum_hi = 0;
63         }
64
65         csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
66                            EXT4_INODE_SIZE(inode->i_sb));
67
68         raw->i_checksum_lo = cpu_to_le16(csum_lo);
69         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
70             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
71                 raw->i_checksum_hi = cpu_to_le16(csum_hi);
72
73         return csum;
74 }
75
76 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
77                                   struct ext4_inode_info *ei)
78 {
79         __u32 provided, calculated;
80
81         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
82             cpu_to_le32(EXT4_OS_LINUX) ||
83             !ext4_has_metadata_csum(inode->i_sb))
84                 return 1;
85
86         provided = le16_to_cpu(raw->i_checksum_lo);
87         calculated = ext4_inode_csum(inode, raw, ei);
88         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
89             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
90                 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
91         else
92                 calculated &= 0xFFFF;
93
94         return provided == calculated;
95 }
96
97 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
98                                 struct ext4_inode_info *ei)
99 {
100         __u32 csum;
101
102         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
103             cpu_to_le32(EXT4_OS_LINUX) ||
104             !ext4_has_metadata_csum(inode->i_sb))
105                 return;
106
107         csum = ext4_inode_csum(inode, raw, ei);
108         raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
109         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
110             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
111                 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
112 }
113
114 static inline int ext4_begin_ordered_truncate(struct inode *inode,
115                                               loff_t new_size)
116 {
117         trace_ext4_begin_ordered_truncate(inode, new_size);
118         /*
119          * If jinode is zero, then we never opened the file for
120          * writing, so there's no need to call
121          * jbd2_journal_begin_ordered_truncate() since there's no
122          * outstanding writes we need to flush.
123          */
124         if (!EXT4_I(inode)->jinode)
125                 return 0;
126         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
127                                                    EXT4_I(inode)->jinode,
128                                                    new_size);
129 }
130
131 static void ext4_invalidatepage(struct page *page, unsigned int offset,
132                                 unsigned int length);
133 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
134 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
135 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
136                                   int pextents);
137
138 /*
139  * Test whether an inode is a fast symlink.
140  */
141 int ext4_inode_is_fast_symlink(struct inode *inode)
142 {
143         int ea_blocks = EXT4_I(inode)->i_file_acl ?
144                 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
145
146         if (ext4_has_inline_data(inode))
147                 return 0;
148
149         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
150 }
151
152 /*
153  * Restart the transaction associated with *handle.  This does a commit,
154  * so before we call here everything must be consistently dirtied against
155  * this transaction.
156  */
157 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
158                                  int nblocks)
159 {
160         int ret;
161
162         /*
163          * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
164          * moment, get_block can be called only for blocks inside i_size since
165          * page cache has been already dropped and writes are blocked by
166          * i_mutex. So we can safely drop the i_data_sem here.
167          */
168         BUG_ON(EXT4_JOURNAL(inode) == NULL);
169         jbd_debug(2, "restarting handle %p\n", handle);
170         up_write(&EXT4_I(inode)->i_data_sem);
171         ret = ext4_journal_restart(handle, nblocks);
172         down_write(&EXT4_I(inode)->i_data_sem);
173         ext4_discard_preallocations(inode);
174
175         return ret;
176 }
177
178 /*
179  * Called at the last iput() if i_nlink is zero.
180  */
181 void ext4_evict_inode(struct inode *inode)
182 {
183         handle_t *handle;
184         int err;
185
186         trace_ext4_evict_inode(inode);
187
188         if (inode->i_nlink) {
189                 /*
190                  * When journalling data dirty buffers are tracked only in the
191                  * journal. So although mm thinks everything is clean and
192                  * ready for reaping the inode might still have some pages to
193                  * write in the running transaction or waiting to be
194                  * checkpointed. Thus calling jbd2_journal_invalidatepage()
195                  * (via truncate_inode_pages()) to discard these buffers can
196                  * cause data loss. Also even if we did not discard these
197                  * buffers, we would have no way to find them after the inode
198                  * is reaped and thus user could see stale data if he tries to
199                  * read them before the transaction is checkpointed. So be
200                  * careful and force everything to disk here... We use
201                  * ei->i_datasync_tid to store the newest transaction
202                  * containing inode's data.
203                  *
204                  * Note that directories do not have this problem because they
205                  * don't use page cache.
206                  */
207                 if (ext4_should_journal_data(inode) &&
208                     (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
209                     inode->i_ino != EXT4_JOURNAL_INO) {
210                         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
211                         tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
212
213                         jbd2_complete_transaction(journal, commit_tid);
214                         filemap_write_and_wait(&inode->i_data);
215                 }
216                 truncate_inode_pages_final(&inode->i_data);
217
218                 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
219                 goto no_delete;
220         }
221
222         if (is_bad_inode(inode))
223                 goto no_delete;
224         dquot_initialize(inode);
225
226         if (ext4_should_order_data(inode))
227                 ext4_begin_ordered_truncate(inode, 0);
228         truncate_inode_pages_final(&inode->i_data);
229
230         WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
231
232         /*
233          * Protect us against freezing - iput() caller didn't have to have any
234          * protection against it
235          */
236         sb_start_intwrite(inode->i_sb);
237         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
238                                     ext4_blocks_for_truncate(inode)+3);
239         if (IS_ERR(handle)) {
240                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
241                 /*
242                  * If we're going to skip the normal cleanup, we still need to
243                  * make sure that the in-core orphan linked list is properly
244                  * cleaned up.
245                  */
246                 ext4_orphan_del(NULL, inode);
247                 sb_end_intwrite(inode->i_sb);
248                 goto no_delete;
249         }
250
251         if (IS_SYNC(inode))
252                 ext4_handle_sync(handle);
253         inode->i_size = 0;
254         err = ext4_mark_inode_dirty(handle, inode);
255         if (err) {
256                 ext4_warning(inode->i_sb,
257                              "couldn't mark inode dirty (err %d)", err);
258                 goto stop_handle;
259         }
260         if (inode->i_blocks)
261                 ext4_truncate(inode);
262
263         /*
264          * ext4_ext_truncate() doesn't reserve any slop when it
265          * restarts journal transactions; therefore there may not be
266          * enough credits left in the handle to remove the inode from
267          * the orphan list and set the dtime field.
268          */
269         if (!ext4_handle_has_enough_credits(handle, 3)) {
270                 err = ext4_journal_extend(handle, 3);
271                 if (err > 0)
272                         err = ext4_journal_restart(handle, 3);
273                 if (err != 0) {
274                         ext4_warning(inode->i_sb,
275                                      "couldn't extend journal (err %d)", err);
276                 stop_handle:
277                         ext4_journal_stop(handle);
278                         ext4_orphan_del(NULL, inode);
279                         sb_end_intwrite(inode->i_sb);
280                         goto no_delete;
281                 }
282         }
283
284         /*
285          * Kill off the orphan record which ext4_truncate created.
286          * AKPM: I think this can be inside the above `if'.
287          * Note that ext4_orphan_del() has to be able to cope with the
288          * deletion of a non-existent orphan - this is because we don't
289          * know if ext4_truncate() actually created an orphan record.
290          * (Well, we could do this if we need to, but heck - it works)
291          */
292         ext4_orphan_del(handle, inode);
293         EXT4_I(inode)->i_dtime  = get_seconds();
294
295         /*
296          * One subtle ordering requirement: if anything has gone wrong
297          * (transaction abort, IO errors, whatever), then we can still
298          * do these next steps (the fs will already have been marked as
299          * having errors), but we can't free the inode if the mark_dirty
300          * fails.
301          */
302         if (ext4_mark_inode_dirty(handle, inode))
303                 /* If that failed, just do the required in-core inode clear. */
304                 ext4_clear_inode(inode);
305         else
306                 ext4_free_inode(handle, inode);
307         ext4_journal_stop(handle);
308         sb_end_intwrite(inode->i_sb);
309         return;
310 no_delete:
311         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
312 }
313
314 #ifdef CONFIG_QUOTA
315 qsize_t *ext4_get_reserved_space(struct inode *inode)
316 {
317         return &EXT4_I(inode)->i_reserved_quota;
318 }
319 #endif
320
321 /*
322  * Called with i_data_sem down, which is important since we can call
323  * ext4_discard_preallocations() from here.
324  */
325 void ext4_da_update_reserve_space(struct inode *inode,
326                                         int used, int quota_claim)
327 {
328         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
329         struct ext4_inode_info *ei = EXT4_I(inode);
330
331         spin_lock(&ei->i_block_reservation_lock);
332         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
333         if (unlikely(used > ei->i_reserved_data_blocks)) {
334                 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
335                          "with only %d reserved data blocks",
336                          __func__, inode->i_ino, used,
337                          ei->i_reserved_data_blocks);
338                 WARN_ON(1);
339                 used = ei->i_reserved_data_blocks;
340         }
341
342         /* Update per-inode reservations */
343         ei->i_reserved_data_blocks -= used;
344         percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
345
346         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
347
348         /* Update quota subsystem for data blocks */
349         if (quota_claim)
350                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
351         else {
352                 /*
353                  * We did fallocate with an offset that is already delayed
354                  * allocated. So on delayed allocated writeback we should
355                  * not re-claim the quota for fallocated blocks.
356                  */
357                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
358         }
359
360         /*
361          * If we have done all the pending block allocations and if
362          * there aren't any writers on the inode, we can discard the
363          * inode's preallocations.
364          */
365         if ((ei->i_reserved_data_blocks == 0) &&
366             (atomic_read(&inode->i_writecount) == 0))
367                 ext4_discard_preallocations(inode);
368 }
369
370 static int __check_block_validity(struct inode *inode, const char *func,
371                                 unsigned int line,
372                                 struct ext4_map_blocks *map)
373 {
374         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
375                                    map->m_len)) {
376                 ext4_error_inode(inode, func, line, map->m_pblk,
377                                  "lblock %lu mapped to illegal pblock "
378                                  "(length %d)", (unsigned long) map->m_lblk,
379                                  map->m_len);
380                 return -EIO;
381         }
382         return 0;
383 }
384
385 #define check_block_validity(inode, map)        \
386         __check_block_validity((inode), __func__, __LINE__, (map))
387
388 #ifdef ES_AGGRESSIVE_TEST
389 static void ext4_map_blocks_es_recheck(handle_t *handle,
390                                        struct inode *inode,
391                                        struct ext4_map_blocks *es_map,
392                                        struct ext4_map_blocks *map,
393                                        int flags)
394 {
395         int retval;
396
397         map->m_flags = 0;
398         /*
399          * There is a race window that the result is not the same.
400          * e.g. xfstests #223 when dioread_nolock enables.  The reason
401          * is that we lookup a block mapping in extent status tree with
402          * out taking i_data_sem.  So at the time the unwritten extent
403          * could be converted.
404          */
405         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
406                 down_read(&EXT4_I(inode)->i_data_sem);
407         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
408                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
409                                              EXT4_GET_BLOCKS_KEEP_SIZE);
410         } else {
411                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
412                                              EXT4_GET_BLOCKS_KEEP_SIZE);
413         }
414         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
415                 up_read((&EXT4_I(inode)->i_data_sem));
416
417         /*
418          * We don't check m_len because extent will be collpased in status
419          * tree.  So the m_len might not equal.
420          */
421         if (es_map->m_lblk != map->m_lblk ||
422             es_map->m_flags != map->m_flags ||
423             es_map->m_pblk != map->m_pblk) {
424                 printk("ES cache assertion failed for inode: %lu "
425                        "es_cached ex [%d/%d/%llu/%x] != "
426                        "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
427                        inode->i_ino, es_map->m_lblk, es_map->m_len,
428                        es_map->m_pblk, es_map->m_flags, map->m_lblk,
429                        map->m_len, map->m_pblk, map->m_flags,
430                        retval, flags);
431         }
432 }
433 #endif /* ES_AGGRESSIVE_TEST */
434
435 /*
436  * The ext4_map_blocks() function tries to look up the requested blocks,
437  * and returns if the blocks are already mapped.
438  *
439  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
440  * and store the allocated blocks in the result buffer head and mark it
441  * mapped.
442  *
443  * If file type is extents based, it will call ext4_ext_map_blocks(),
444  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
445  * based files
446  *
447  * On success, it returns the number of blocks being mapped or allocated.
448  * if create==0 and the blocks are pre-allocated and unwritten block,
449  * the result buffer head is unmapped. If the create ==1, it will make sure
450  * the buffer head is mapped.
451  *
452  * It returns 0 if plain look up failed (blocks have not been allocated), in
453  * that case, buffer head is unmapped
454  *
455  * It returns the error in case of allocation failure.
456  */
457 int ext4_map_blocks(handle_t *handle, struct inode *inode,
458                     struct ext4_map_blocks *map, int flags)
459 {
460         struct extent_status es;
461         int retval;
462         int ret = 0;
463 #ifdef ES_AGGRESSIVE_TEST
464         struct ext4_map_blocks orig_map;
465
466         memcpy(&orig_map, map, sizeof(*map));
467 #endif
468
469         map->m_flags = 0;
470         ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
471                   "logical block %lu\n", inode->i_ino, flags, map->m_len,
472                   (unsigned long) map->m_lblk);
473
474         /*
475          * ext4_map_blocks returns an int, and m_len is an unsigned int
476          */
477         if (unlikely(map->m_len > INT_MAX))
478                 map->m_len = INT_MAX;
479
480         /* We can handle the block number less than EXT_MAX_BLOCKS */
481         if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
482                 return -EIO;
483
484         /* Lookup extent status tree firstly */
485         if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
486                 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
487                         map->m_pblk = ext4_es_pblock(&es) +
488                                         map->m_lblk - es.es_lblk;
489                         map->m_flags |= ext4_es_is_written(&es) ?
490                                         EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
491                         retval = es.es_len - (map->m_lblk - es.es_lblk);
492                         if (retval > map->m_len)
493                                 retval = map->m_len;
494                         map->m_len = retval;
495                 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
496                         retval = 0;
497                 } else {
498                         BUG_ON(1);
499                 }
500 #ifdef ES_AGGRESSIVE_TEST
501                 ext4_map_blocks_es_recheck(handle, inode, map,
502                                            &orig_map, flags);
503 #endif
504                 goto found;
505         }
506
507         /*
508          * Try to see if we can get the block without requesting a new
509          * file system block.
510          */
511         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
512                 down_read(&EXT4_I(inode)->i_data_sem);
513         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
514                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
515                                              EXT4_GET_BLOCKS_KEEP_SIZE);
516         } else {
517                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
518                                              EXT4_GET_BLOCKS_KEEP_SIZE);
519         }
520         if (retval > 0) {
521                 unsigned int status;
522
523                 if (unlikely(retval != map->m_len)) {
524                         ext4_warning(inode->i_sb,
525                                      "ES len assertion failed for inode "
526                                      "%lu: retval %d != map->m_len %d",
527                                      inode->i_ino, retval, map->m_len);
528                         WARN_ON(1);
529                 }
530
531                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
532                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
533                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
534                     !(status & EXTENT_STATUS_WRITTEN) &&
535                     ext4_find_delalloc_range(inode, map->m_lblk,
536                                              map->m_lblk + map->m_len - 1))
537                         status |= EXTENT_STATUS_DELAYED;
538                 ret = ext4_es_insert_extent(inode, map->m_lblk,
539                                             map->m_len, map->m_pblk, status);
540                 if (ret < 0)
541                         retval = ret;
542         }
543         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
544                 up_read((&EXT4_I(inode)->i_data_sem));
545
546 found:
547         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
548                 ret = check_block_validity(inode, map);
549                 if (ret != 0)
550                         return ret;
551         }
552
553         /* If it is only a block(s) look up */
554         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
555                 return retval;
556
557         /*
558          * Returns if the blocks have already allocated
559          *
560          * Note that if blocks have been preallocated
561          * ext4_ext_get_block() returns the create = 0
562          * with buffer head unmapped.
563          */
564         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
565                 /*
566                  * If we need to convert extent to unwritten
567                  * we continue and do the actual work in
568                  * ext4_ext_map_blocks()
569                  */
570                 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
571                         return retval;
572
573         /*
574          * Here we clear m_flags because after allocating an new extent,
575          * it will be set again.
576          */
577         map->m_flags &= ~EXT4_MAP_FLAGS;
578
579         /*
580          * New blocks allocate and/or writing to unwritten extent
581          * will possibly result in updating i_data, so we take
582          * the write lock of i_data_sem, and call get_block()
583          * with create == 1 flag.
584          */
585         down_write(&EXT4_I(inode)->i_data_sem);
586
587         /*
588          * We need to check for EXT4 here because migrate
589          * could have changed the inode type in between
590          */
591         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
592                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
593         } else {
594                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
595
596                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
597                         /*
598                          * We allocated new blocks which will result in
599                          * i_data's format changing.  Force the migrate
600                          * to fail by clearing migrate flags
601                          */
602                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
603                 }
604
605                 /*
606                  * Update reserved blocks/metadata blocks after successful
607                  * block allocation which had been deferred till now. We don't
608                  * support fallocate for non extent files. So we can update
609                  * reserve space here.
610                  */
611                 if ((retval > 0) &&
612                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
613                         ext4_da_update_reserve_space(inode, retval, 1);
614         }
615
616         if (retval > 0) {
617                 unsigned int status;
618
619                 if (unlikely(retval != map->m_len)) {
620                         ext4_warning(inode->i_sb,
621                                      "ES len assertion failed for inode "
622                                      "%lu: retval %d != map->m_len %d",
623                                      inode->i_ino, retval, map->m_len);
624                         WARN_ON(1);
625                 }
626
627                 /*
628                  * If the extent has been zeroed out, we don't need to update
629                  * extent status tree.
630                  */
631                 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
632                     ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
633                         if (ext4_es_is_written(&es))
634                                 goto has_zeroout;
635                 }
636                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
637                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
638                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
639                     !(status & EXTENT_STATUS_WRITTEN) &&
640                     ext4_find_delalloc_range(inode, map->m_lblk,
641                                              map->m_lblk + map->m_len - 1))
642                         status |= EXTENT_STATUS_DELAYED;
643                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
644                                             map->m_pblk, status);
645                 if (ret < 0)
646                         retval = ret;
647         }
648
649 has_zeroout:
650         up_write((&EXT4_I(inode)->i_data_sem));
651         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
652                 ret = check_block_validity(inode, map);
653                 if (ret != 0)
654                         return ret;
655         }
656         return retval;
657 }
658
659 static void ext4_end_io_unwritten(struct buffer_head *bh, int uptodate)
660 {
661         struct inode *inode = bh->b_assoc_map->host;
662         /* XXX: breaks on 32-bit > 16GB. Is that even supported? */
663         loff_t offset = (loff_t)(uintptr_t)bh->b_private << inode->i_blkbits;
664         int err;
665         if (!uptodate)
666                 return;
667         WARN_ON(!buffer_unwritten(bh));
668         err = ext4_convert_unwritten_extents(NULL, inode, offset, bh->b_size);
669 }
670
671 /* Maximum number of blocks we map for direct IO at once. */
672 #define DIO_MAX_BLOCKS 4096
673
674 static int _ext4_get_block(struct inode *inode, sector_t iblock,
675                            struct buffer_head *bh, int flags)
676 {
677         handle_t *handle = ext4_journal_current_handle();
678         struct ext4_map_blocks map;
679         int ret = 0, started = 0;
680         int dio_credits;
681
682         if (ext4_has_inline_data(inode))
683                 return -ERANGE;
684
685         map.m_lblk = iblock;
686         map.m_len = bh->b_size >> inode->i_blkbits;
687
688         if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
689                 /* Direct IO write... */
690                 if (map.m_len > DIO_MAX_BLOCKS)
691                         map.m_len = DIO_MAX_BLOCKS;
692                 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
693                 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
694                                             dio_credits);
695                 if (IS_ERR(handle)) {
696                         ret = PTR_ERR(handle);
697                         return ret;
698                 }
699                 started = 1;
700         }
701
702         ret = ext4_map_blocks(handle, inode, &map, flags);
703         if (ret > 0) {
704                 ext4_io_end_t *io_end = ext4_inode_aio(inode);
705
706                 map_bh(bh, inode->i_sb, map.m_pblk);
707                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
708                 if (IS_DAX(inode) && buffer_unwritten(bh) && !io_end) {
709                         bh->b_assoc_map = inode->i_mapping;
710                         bh->b_private = (void *)(unsigned long)iblock;
711                         bh->b_end_io = ext4_end_io_unwritten;
712                 }
713                 if (io_end && io_end->flag & EXT4_IO_END_UNWRITTEN)
714                         set_buffer_defer_completion(bh);
715                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
716                 ret = 0;
717         }
718         if (started)
719                 ext4_journal_stop(handle);
720         return ret;
721 }
722
723 int ext4_get_block(struct inode *inode, sector_t iblock,
724                    struct buffer_head *bh, int create)
725 {
726         return _ext4_get_block(inode, iblock, bh,
727                                create ? EXT4_GET_BLOCKS_CREATE : 0);
728 }
729
730 /*
731  * `handle' can be NULL if create is zero
732  */
733 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
734                                 ext4_lblk_t block, int map_flags)
735 {
736         struct ext4_map_blocks map;
737         struct buffer_head *bh;
738         int create = map_flags & EXT4_GET_BLOCKS_CREATE;
739         int err;
740
741         J_ASSERT(handle != NULL || create == 0);
742
743         map.m_lblk = block;
744         map.m_len = 1;
745         err = ext4_map_blocks(handle, inode, &map, map_flags);
746
747         if (err == 0)
748                 return create ? ERR_PTR(-ENOSPC) : NULL;
749         if (err < 0)
750                 return ERR_PTR(err);
751
752         bh = sb_getblk(inode->i_sb, map.m_pblk);
753         if (unlikely(!bh))
754                 return ERR_PTR(-ENOMEM);
755         if (map.m_flags & EXT4_MAP_NEW) {
756                 J_ASSERT(create != 0);
757                 J_ASSERT(handle != NULL);
758
759                 /*
760                  * Now that we do not always journal data, we should
761                  * keep in mind whether this should always journal the
762                  * new buffer as metadata.  For now, regular file
763                  * writes use ext4_get_block instead, so it's not a
764                  * problem.
765                  */
766                 lock_buffer(bh);
767                 BUFFER_TRACE(bh, "call get_create_access");
768                 err = ext4_journal_get_create_access(handle, bh);
769                 if (unlikely(err)) {
770                         unlock_buffer(bh);
771                         goto errout;
772                 }
773                 if (!buffer_uptodate(bh)) {
774                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
775                         set_buffer_uptodate(bh);
776                 }
777                 unlock_buffer(bh);
778                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
779                 err = ext4_handle_dirty_metadata(handle, inode, bh);
780                 if (unlikely(err))
781                         goto errout;
782         } else
783                 BUFFER_TRACE(bh, "not a new buffer");
784         return bh;
785 errout:
786         brelse(bh);
787         return ERR_PTR(err);
788 }
789
790 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
791                                ext4_lblk_t block, int map_flags)
792 {
793         struct buffer_head *bh;
794
795         bh = ext4_getblk(handle, inode, block, map_flags);
796         if (IS_ERR(bh))
797                 return bh;
798         if (!bh || buffer_uptodate(bh))
799                 return bh;
800         ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
801         wait_on_buffer(bh);
802         if (buffer_uptodate(bh))
803                 return bh;
804         put_bh(bh);
805         return ERR_PTR(-EIO);
806 }
807
808 int ext4_walk_page_buffers(handle_t *handle,
809                            struct buffer_head *head,
810                            unsigned from,
811                            unsigned to,
812                            int *partial,
813                            int (*fn)(handle_t *handle,
814                                      struct buffer_head *bh))
815 {
816         struct buffer_head *bh;
817         unsigned block_start, block_end;
818         unsigned blocksize = head->b_size;
819         int err, ret = 0;
820         struct buffer_head *next;
821
822         for (bh = head, block_start = 0;
823              ret == 0 && (bh != head || !block_start);
824              block_start = block_end, bh = next) {
825                 next = bh->b_this_page;
826                 block_end = block_start + blocksize;
827                 if (block_end <= from || block_start >= to) {
828                         if (partial && !buffer_uptodate(bh))
829                                 *partial = 1;
830                         continue;
831                 }
832                 err = (*fn)(handle, bh);
833                 if (!ret)
834                         ret = err;
835         }
836         return ret;
837 }
838
839 /*
840  * To preserve ordering, it is essential that the hole instantiation and
841  * the data write be encapsulated in a single transaction.  We cannot
842  * close off a transaction and start a new one between the ext4_get_block()
843  * and the commit_write().  So doing the jbd2_journal_start at the start of
844  * prepare_write() is the right place.
845  *
846  * Also, this function can nest inside ext4_writepage().  In that case, we
847  * *know* that ext4_writepage() has generated enough buffer credits to do the
848  * whole page.  So we won't block on the journal in that case, which is good,
849  * because the caller may be PF_MEMALLOC.
850  *
851  * By accident, ext4 can be reentered when a transaction is open via
852  * quota file writes.  If we were to commit the transaction while thus
853  * reentered, there can be a deadlock - we would be holding a quota
854  * lock, and the commit would never complete if another thread had a
855  * transaction open and was blocking on the quota lock - a ranking
856  * violation.
857  *
858  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
859  * will _not_ run commit under these circumstances because handle->h_ref
860  * is elevated.  We'll still have enough credits for the tiny quotafile
861  * write.
862  */
863 int do_journal_get_write_access(handle_t *handle,
864                                 struct buffer_head *bh)
865 {
866         int dirty = buffer_dirty(bh);
867         int ret;
868
869         if (!buffer_mapped(bh) || buffer_freed(bh))
870                 return 0;
871         /*
872          * __block_write_begin() could have dirtied some buffers. Clean
873          * the dirty bit as jbd2_journal_get_write_access() could complain
874          * otherwise about fs integrity issues. Setting of the dirty bit
875          * by __block_write_begin() isn't a real problem here as we clear
876          * the bit before releasing a page lock and thus writeback cannot
877          * ever write the buffer.
878          */
879         if (dirty)
880                 clear_buffer_dirty(bh);
881         BUFFER_TRACE(bh, "get write access");
882         ret = ext4_journal_get_write_access(handle, bh);
883         if (!ret && dirty)
884                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
885         return ret;
886 }
887
888 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
889                    struct buffer_head *bh_result, int create);
890
891 #ifdef CONFIG_EXT4_FS_ENCRYPTION
892 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
893                                   get_block_t *get_block)
894 {
895         unsigned from = pos & (PAGE_CACHE_SIZE - 1);
896         unsigned to = from + len;
897         struct inode *inode = page->mapping->host;
898         unsigned block_start, block_end;
899         sector_t block;
900         int err = 0;
901         unsigned blocksize = inode->i_sb->s_blocksize;
902         unsigned bbits;
903         struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
904         bool decrypt = false;
905
906         BUG_ON(!PageLocked(page));
907         BUG_ON(from > PAGE_CACHE_SIZE);
908         BUG_ON(to > PAGE_CACHE_SIZE);
909         BUG_ON(from > to);
910
911         if (!page_has_buffers(page))
912                 create_empty_buffers(page, blocksize, 0);
913         head = page_buffers(page);
914         bbits = ilog2(blocksize);
915         block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
916
917         for (bh = head, block_start = 0; bh != head || !block_start;
918             block++, block_start = block_end, bh = bh->b_this_page) {
919                 block_end = block_start + blocksize;
920                 if (block_end <= from || block_start >= to) {
921                         if (PageUptodate(page)) {
922                                 if (!buffer_uptodate(bh))
923                                         set_buffer_uptodate(bh);
924                         }
925                         continue;
926                 }
927                 if (buffer_new(bh))
928                         clear_buffer_new(bh);
929                 if (!buffer_mapped(bh)) {
930                         WARN_ON(bh->b_size != blocksize);
931                         err = get_block(inode, block, bh, 1);
932                         if (err)
933                                 break;
934                         if (buffer_new(bh)) {
935                                 unmap_underlying_metadata(bh->b_bdev,
936                                                           bh->b_blocknr);
937                                 if (PageUptodate(page)) {
938                                         clear_buffer_new(bh);
939                                         set_buffer_uptodate(bh);
940                                         mark_buffer_dirty(bh);
941                                         continue;
942                                 }
943                                 if (block_end > to || block_start < from)
944                                         zero_user_segments(page, to, block_end,
945                                                            block_start, from);
946                                 continue;
947                         }
948                 }
949                 if (PageUptodate(page)) {
950                         if (!buffer_uptodate(bh))
951                                 set_buffer_uptodate(bh);
952                         continue;
953                 }
954                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
955                     !buffer_unwritten(bh) &&
956                     (block_start < from || block_end > to)) {
957                         ll_rw_block(READ, 1, &bh);
958                         *wait_bh++ = bh;
959                         decrypt = ext4_encrypted_inode(inode) &&
960                                 S_ISREG(inode->i_mode);
961                 }
962         }
963         /*
964          * If we issued read requests, let them complete.
965          */
966         while (wait_bh > wait) {
967                 wait_on_buffer(*--wait_bh);
968                 if (!buffer_uptodate(*wait_bh))
969                         err = -EIO;
970         }
971         if (unlikely(err))
972                 page_zero_new_buffers(page, from, to);
973         else if (decrypt)
974                 err = ext4_decrypt_one(inode, page);
975         return err;
976 }
977 #endif
978
979 static int ext4_write_begin(struct file *file, struct address_space *mapping,
980                             loff_t pos, unsigned len, unsigned flags,
981                             struct page **pagep, void **fsdata)
982 {
983         struct inode *inode = mapping->host;
984         int ret, needed_blocks;
985         handle_t *handle;
986         int retries = 0;
987         struct page *page;
988         pgoff_t index;
989         unsigned from, to;
990
991         trace_ext4_write_begin(inode, pos, len, flags);
992         /*
993          * Reserve one block more for addition to orphan list in case
994          * we allocate blocks but write fails for some reason
995          */
996         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
997         index = pos >> PAGE_CACHE_SHIFT;
998         from = pos & (PAGE_CACHE_SIZE - 1);
999         to = from + len;
1000
1001         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1002                 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1003                                                     flags, pagep);
1004                 if (ret < 0)
1005                         return ret;
1006                 if (ret == 1)
1007                         return 0;
1008         }
1009
1010         /*
1011          * grab_cache_page_write_begin() can take a long time if the
1012          * system is thrashing due to memory pressure, or if the page
1013          * is being written back.  So grab it first before we start
1014          * the transaction handle.  This also allows us to allocate
1015          * the page (if needed) without using GFP_NOFS.
1016          */
1017 retry_grab:
1018         page = grab_cache_page_write_begin(mapping, index, flags);
1019         if (!page)
1020                 return -ENOMEM;
1021         unlock_page(page);
1022
1023 retry_journal:
1024         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1025         if (IS_ERR(handle)) {
1026                 page_cache_release(page);
1027                 return PTR_ERR(handle);
1028         }
1029
1030         lock_page(page);
1031         if (page->mapping != mapping) {
1032                 /* The page got truncated from under us */
1033                 unlock_page(page);
1034                 page_cache_release(page);
1035                 ext4_journal_stop(handle);
1036                 goto retry_grab;
1037         }
1038         /* In case writeback began while the page was unlocked */
1039         wait_for_stable_page(page);
1040
1041 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1042         if (ext4_should_dioread_nolock(inode))
1043                 ret = ext4_block_write_begin(page, pos, len,
1044                                              ext4_get_block_write);
1045         else
1046                 ret = ext4_block_write_begin(page, pos, len,
1047                                              ext4_get_block);
1048 #else
1049         if (ext4_should_dioread_nolock(inode))
1050                 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
1051         else
1052                 ret = __block_write_begin(page, pos, len, ext4_get_block);
1053 #endif
1054         if (!ret && ext4_should_journal_data(inode)) {
1055                 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1056                                              from, to, NULL,
1057                                              do_journal_get_write_access);
1058         }
1059
1060         if (ret) {
1061                 unlock_page(page);
1062                 /*
1063                  * __block_write_begin may have instantiated a few blocks
1064                  * outside i_size.  Trim these off again. Don't need
1065                  * i_size_read because we hold i_mutex.
1066                  *
1067                  * Add inode to orphan list in case we crash before
1068                  * truncate finishes
1069                  */
1070                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1071                         ext4_orphan_add(handle, inode);
1072
1073                 ext4_journal_stop(handle);
1074                 if (pos + len > inode->i_size) {
1075                         ext4_truncate_failed_write(inode);
1076                         /*
1077                          * If truncate failed early the inode might
1078                          * still be on the orphan list; we need to
1079                          * make sure the inode is removed from the
1080                          * orphan list in that case.
1081                          */
1082                         if (inode->i_nlink)
1083                                 ext4_orphan_del(NULL, inode);
1084                 }
1085
1086                 if (ret == -ENOSPC &&
1087                     ext4_should_retry_alloc(inode->i_sb, &retries))
1088                         goto retry_journal;
1089                 page_cache_release(page);
1090                 return ret;
1091         }
1092         *pagep = page;
1093         return ret;
1094 }
1095
1096 /* For write_end() in data=journal mode */
1097 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1098 {
1099         int ret;
1100         if (!buffer_mapped(bh) || buffer_freed(bh))
1101                 return 0;
1102         set_buffer_uptodate(bh);
1103         ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1104         clear_buffer_meta(bh);
1105         clear_buffer_prio(bh);
1106         return ret;
1107 }
1108
1109 /*
1110  * We need to pick up the new inode size which generic_commit_write gave us
1111  * `file' can be NULL - eg, when called from page_symlink().
1112  *
1113  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1114  * buffers are managed internally.
1115  */
1116 static int ext4_write_end(struct file *file,
1117                           struct address_space *mapping,
1118                           loff_t pos, unsigned len, unsigned copied,
1119                           struct page *page, void *fsdata)
1120 {
1121         handle_t *handle = ext4_journal_current_handle();
1122         struct inode *inode = mapping->host;
1123         loff_t old_size = inode->i_size;
1124         int ret = 0, ret2;
1125         int i_size_changed = 0;
1126
1127         trace_ext4_write_end(inode, pos, len, copied);
1128         if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1129                 ret = ext4_jbd2_file_inode(handle, inode);
1130                 if (ret) {
1131                         unlock_page(page);
1132                         page_cache_release(page);
1133                         goto errout;
1134                 }
1135         }
1136
1137         if (ext4_has_inline_data(inode)) {
1138                 ret = ext4_write_inline_data_end(inode, pos, len,
1139                                                  copied, page);
1140                 if (ret < 0)
1141                         goto errout;
1142                 copied = ret;
1143         } else
1144                 copied = block_write_end(file, mapping, pos,
1145                                          len, copied, page, fsdata);
1146         /*
1147          * it's important to update i_size while still holding page lock:
1148          * page writeout could otherwise come in and zero beyond i_size.
1149          */
1150         i_size_changed = ext4_update_inode_size(inode, pos + copied);
1151         unlock_page(page);
1152         page_cache_release(page);
1153
1154         if (old_size < pos)
1155                 pagecache_isize_extended(inode, old_size, pos);
1156         /*
1157          * Don't mark the inode dirty under page lock. First, it unnecessarily
1158          * makes the holding time of page lock longer. Second, it forces lock
1159          * ordering of page lock and transaction start for journaling
1160          * filesystems.
1161          */
1162         if (i_size_changed)
1163                 ext4_mark_inode_dirty(handle, inode);
1164
1165         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1166                 /* if we have allocated more blocks and copied
1167                  * less. We will have blocks allocated outside
1168                  * inode->i_size. So truncate them
1169                  */
1170                 ext4_orphan_add(handle, inode);
1171 errout:
1172         ret2 = ext4_journal_stop(handle);
1173         if (!ret)
1174                 ret = ret2;
1175
1176         if (pos + len > inode->i_size) {
1177                 ext4_truncate_failed_write(inode);
1178                 /*
1179                  * If truncate failed early the inode might still be
1180                  * on the orphan list; we need to make sure the inode
1181                  * is removed from the orphan list in that case.
1182                  */
1183                 if (inode->i_nlink)
1184                         ext4_orphan_del(NULL, inode);
1185         }
1186
1187         return ret ? ret : copied;
1188 }
1189
1190 static int ext4_journalled_write_end(struct file *file,
1191                                      struct address_space *mapping,
1192                                      loff_t pos, unsigned len, unsigned copied,
1193                                      struct page *page, void *fsdata)
1194 {
1195         handle_t *handle = ext4_journal_current_handle();
1196         struct inode *inode = mapping->host;
1197         loff_t old_size = inode->i_size;
1198         int ret = 0, ret2;
1199         int partial = 0;
1200         unsigned from, to;
1201         int size_changed = 0;
1202
1203         trace_ext4_journalled_write_end(inode, pos, len, copied);
1204         from = pos & (PAGE_CACHE_SIZE - 1);
1205         to = from + len;
1206
1207         BUG_ON(!ext4_handle_valid(handle));
1208
1209         if (ext4_has_inline_data(inode))
1210                 copied = ext4_write_inline_data_end(inode, pos, len,
1211                                                     copied, page);
1212         else {
1213                 if (copied < len) {
1214                         if (!PageUptodate(page))
1215                                 copied = 0;
1216                         page_zero_new_buffers(page, from+copied, to);
1217                 }
1218
1219                 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1220                                              to, &partial, write_end_fn);
1221                 if (!partial)
1222                         SetPageUptodate(page);
1223         }
1224         size_changed = ext4_update_inode_size(inode, pos + copied);
1225         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1226         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1227         unlock_page(page);
1228         page_cache_release(page);
1229
1230         if (old_size < pos)
1231                 pagecache_isize_extended(inode, old_size, pos);
1232
1233         if (size_changed) {
1234                 ret2 = ext4_mark_inode_dirty(handle, inode);
1235                 if (!ret)
1236                         ret = ret2;
1237         }
1238
1239         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1240                 /* if we have allocated more blocks and copied
1241                  * less. We will have blocks allocated outside
1242                  * inode->i_size. So truncate them
1243                  */
1244                 ext4_orphan_add(handle, inode);
1245
1246         ret2 = ext4_journal_stop(handle);
1247         if (!ret)
1248                 ret = ret2;
1249         if (pos + len > inode->i_size) {
1250                 ext4_truncate_failed_write(inode);
1251                 /*
1252                  * If truncate failed early the inode might still be
1253                  * on the orphan list; we need to make sure the inode
1254                  * is removed from the orphan list in that case.
1255                  */
1256                 if (inode->i_nlink)
1257                         ext4_orphan_del(NULL, inode);
1258         }
1259
1260         return ret ? ret : copied;
1261 }
1262
1263 /*
1264  * Reserve space for a single cluster
1265  */
1266 static int ext4_da_reserve_space(struct inode *inode)
1267 {
1268         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1269         struct ext4_inode_info *ei = EXT4_I(inode);
1270         int ret;
1271
1272         /*
1273          * We will charge metadata quota at writeout time; this saves
1274          * us from metadata over-estimation, though we may go over by
1275          * a small amount in the end.  Here we just reserve for data.
1276          */
1277         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1278         if (ret)
1279                 return ret;
1280
1281         spin_lock(&ei->i_block_reservation_lock);
1282         if (ext4_claim_free_clusters(sbi, 1, 0)) {
1283                 spin_unlock(&ei->i_block_reservation_lock);
1284                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1285                 return -ENOSPC;
1286         }
1287         ei->i_reserved_data_blocks++;
1288         trace_ext4_da_reserve_space(inode);
1289         spin_unlock(&ei->i_block_reservation_lock);
1290
1291         return 0;       /* success */
1292 }
1293
1294 static void ext4_da_release_space(struct inode *inode, int to_free)
1295 {
1296         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1297         struct ext4_inode_info *ei = EXT4_I(inode);
1298
1299         if (!to_free)
1300                 return;         /* Nothing to release, exit */
1301
1302         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1303
1304         trace_ext4_da_release_space(inode, to_free);
1305         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1306                 /*
1307                  * if there aren't enough reserved blocks, then the
1308                  * counter is messed up somewhere.  Since this
1309                  * function is called from invalidate page, it's
1310                  * harmless to return without any action.
1311                  */
1312                 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1313                          "ino %lu, to_free %d with only %d reserved "
1314                          "data blocks", inode->i_ino, to_free,
1315                          ei->i_reserved_data_blocks);
1316                 WARN_ON(1);
1317                 to_free = ei->i_reserved_data_blocks;
1318         }
1319         ei->i_reserved_data_blocks -= to_free;
1320
1321         /* update fs dirty data blocks counter */
1322         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1323
1324         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1325
1326         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1327 }
1328
1329 static void ext4_da_page_release_reservation(struct page *page,
1330                                              unsigned int offset,
1331                                              unsigned int length)
1332 {
1333         int to_release = 0;
1334         struct buffer_head *head, *bh;
1335         unsigned int curr_off = 0;
1336         struct inode *inode = page->mapping->host;
1337         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1338         unsigned int stop = offset + length;
1339         int num_clusters;
1340         ext4_fsblk_t lblk;
1341
1342         BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1343
1344         head = page_buffers(page);
1345         bh = head;
1346         do {
1347                 unsigned int next_off = curr_off + bh->b_size;
1348
1349                 if (next_off > stop)
1350                         break;
1351
1352                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1353                         to_release++;
1354                         clear_buffer_delay(bh);
1355                 }
1356                 curr_off = next_off;
1357         } while ((bh = bh->b_this_page) != head);
1358
1359         if (to_release) {
1360                 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1361                 ext4_es_remove_extent(inode, lblk, to_release);
1362         }
1363
1364         /* If we have released all the blocks belonging to a cluster, then we
1365          * need to release the reserved space for that cluster. */
1366         num_clusters = EXT4_NUM_B2C(sbi, to_release);
1367         while (num_clusters > 0) {
1368                 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1369                         ((num_clusters - 1) << sbi->s_cluster_bits);
1370                 if (sbi->s_cluster_ratio == 1 ||
1371                     !ext4_find_delalloc_cluster(inode, lblk))
1372                         ext4_da_release_space(inode, 1);
1373
1374                 num_clusters--;
1375         }
1376 }
1377
1378 /*
1379  * Delayed allocation stuff
1380  */
1381
1382 struct mpage_da_data {
1383         struct inode *inode;
1384         struct writeback_control *wbc;
1385
1386         pgoff_t first_page;     /* The first page to write */
1387         pgoff_t next_page;      /* Current page to examine */
1388         pgoff_t last_page;      /* Last page to examine */
1389         /*
1390          * Extent to map - this can be after first_page because that can be
1391          * fully mapped. We somewhat abuse m_flags to store whether the extent
1392          * is delalloc or unwritten.
1393          */
1394         struct ext4_map_blocks map;
1395         struct ext4_io_submit io_submit;        /* IO submission data */
1396 };
1397
1398 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1399                                        bool invalidate)
1400 {
1401         int nr_pages, i;
1402         pgoff_t index, end;
1403         struct pagevec pvec;
1404         struct inode *inode = mpd->inode;
1405         struct address_space *mapping = inode->i_mapping;
1406
1407         /* This is necessary when next_page == 0. */
1408         if (mpd->first_page >= mpd->next_page)
1409                 return;
1410
1411         index = mpd->first_page;
1412         end   = mpd->next_page - 1;
1413         if (invalidate) {
1414                 ext4_lblk_t start, last;
1415                 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1416                 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1417                 ext4_es_remove_extent(inode, start, last - start + 1);
1418         }
1419
1420         pagevec_init(&pvec, 0);
1421         while (index <= end) {
1422                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1423                 if (nr_pages == 0)
1424                         break;
1425                 for (i = 0; i < nr_pages; i++) {
1426                         struct page *page = pvec.pages[i];
1427                         if (page->index > end)
1428                                 break;
1429                         BUG_ON(!PageLocked(page));
1430                         BUG_ON(PageWriteback(page));
1431                         if (invalidate) {
1432                                 block_invalidatepage(page, 0, PAGE_CACHE_SIZE);
1433                                 ClearPageUptodate(page);
1434                         }
1435                         unlock_page(page);
1436                 }
1437                 index = pvec.pages[nr_pages - 1]->index + 1;
1438                 pagevec_release(&pvec);
1439         }
1440 }
1441
1442 static void ext4_print_free_blocks(struct inode *inode)
1443 {
1444         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1445         struct super_block *sb = inode->i_sb;
1446         struct ext4_inode_info *ei = EXT4_I(inode);
1447
1448         ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1449                EXT4_C2B(EXT4_SB(inode->i_sb),
1450                         ext4_count_free_clusters(sb)));
1451         ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1452         ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1453                (long long) EXT4_C2B(EXT4_SB(sb),
1454                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1455         ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1456                (long long) EXT4_C2B(EXT4_SB(sb),
1457                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1458         ext4_msg(sb, KERN_CRIT, "Block reservation details");
1459         ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1460                  ei->i_reserved_data_blocks);
1461         return;
1462 }
1463
1464 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1465 {
1466         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1467 }
1468
1469 /*
1470  * This function is grabs code from the very beginning of
1471  * ext4_map_blocks, but assumes that the caller is from delayed write
1472  * time. This function looks up the requested blocks and sets the
1473  * buffer delay bit under the protection of i_data_sem.
1474  */
1475 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1476                               struct ext4_map_blocks *map,
1477                               struct buffer_head *bh)
1478 {
1479         struct extent_status es;
1480         int retval;
1481         sector_t invalid_block = ~((sector_t) 0xffff);
1482 #ifdef ES_AGGRESSIVE_TEST
1483         struct ext4_map_blocks orig_map;
1484
1485         memcpy(&orig_map, map, sizeof(*map));
1486 #endif
1487
1488         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1489                 invalid_block = ~0;
1490
1491         map->m_flags = 0;
1492         ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1493                   "logical block %lu\n", inode->i_ino, map->m_len,
1494                   (unsigned long) map->m_lblk);
1495
1496         /* Lookup extent status tree firstly */
1497         if (ext4_es_lookup_extent(inode, iblock, &es)) {
1498                 if (ext4_es_is_hole(&es)) {
1499                         retval = 0;
1500                         down_read(&EXT4_I(inode)->i_data_sem);
1501                         goto add_delayed;
1502                 }
1503
1504                 /*
1505                  * Delayed extent could be allocated by fallocate.
1506                  * So we need to check it.
1507                  */
1508                 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1509                         map_bh(bh, inode->i_sb, invalid_block);
1510                         set_buffer_new(bh);
1511                         set_buffer_delay(bh);
1512                         return 0;
1513                 }
1514
1515                 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1516                 retval = es.es_len - (iblock - es.es_lblk);
1517                 if (retval > map->m_len)
1518                         retval = map->m_len;
1519                 map->m_len = retval;
1520                 if (ext4_es_is_written(&es))
1521                         map->m_flags |= EXT4_MAP_MAPPED;
1522                 else if (ext4_es_is_unwritten(&es))
1523                         map->m_flags |= EXT4_MAP_UNWRITTEN;
1524                 else
1525                         BUG_ON(1);
1526
1527 #ifdef ES_AGGRESSIVE_TEST
1528                 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1529 #endif
1530                 return retval;
1531         }
1532
1533         /*
1534          * Try to see if we can get the block without requesting a new
1535          * file system block.
1536          */
1537         down_read(&EXT4_I(inode)->i_data_sem);
1538         if (ext4_has_inline_data(inode))
1539                 retval = 0;
1540         else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1541                 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1542         else
1543                 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1544
1545 add_delayed:
1546         if (retval == 0) {
1547                 int ret;
1548                 /*
1549                  * XXX: __block_prepare_write() unmaps passed block,
1550                  * is it OK?
1551                  */
1552                 /*
1553                  * If the block was allocated from previously allocated cluster,
1554                  * then we don't need to reserve it again. However we still need
1555                  * to reserve metadata for every block we're going to write.
1556                  */
1557                 if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 ||
1558                     !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
1559                         ret = ext4_da_reserve_space(inode);
1560                         if (ret) {
1561                                 /* not enough space to reserve */
1562                                 retval = ret;
1563                                 goto out_unlock;
1564                         }
1565                 }
1566
1567                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1568                                             ~0, EXTENT_STATUS_DELAYED);
1569                 if (ret) {
1570                         retval = ret;
1571                         goto out_unlock;
1572                 }
1573
1574                 map_bh(bh, inode->i_sb, invalid_block);
1575                 set_buffer_new(bh);
1576                 set_buffer_delay(bh);
1577         } else if (retval > 0) {
1578                 int ret;
1579                 unsigned int status;
1580
1581                 if (unlikely(retval != map->m_len)) {
1582                         ext4_warning(inode->i_sb,
1583                                      "ES len assertion failed for inode "
1584                                      "%lu: retval %d != map->m_len %d",
1585                                      inode->i_ino, retval, map->m_len);
1586                         WARN_ON(1);
1587                 }
1588
1589                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1590                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1591                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1592                                             map->m_pblk, status);
1593                 if (ret != 0)
1594                         retval = ret;
1595         }
1596
1597 out_unlock:
1598         up_read((&EXT4_I(inode)->i_data_sem));
1599
1600         return retval;
1601 }
1602
1603 /*
1604  * This is a special get_block_t callback which is used by
1605  * ext4_da_write_begin().  It will either return mapped block or
1606  * reserve space for a single block.
1607  *
1608  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1609  * We also have b_blocknr = -1 and b_bdev initialized properly
1610  *
1611  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1612  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1613  * initialized properly.
1614  */
1615 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1616                            struct buffer_head *bh, int create)
1617 {
1618         struct ext4_map_blocks map;
1619         int ret = 0;
1620
1621         BUG_ON(create == 0);
1622         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1623
1624         map.m_lblk = iblock;
1625         map.m_len = 1;
1626
1627         /*
1628          * first, we need to know whether the block is allocated already
1629          * preallocated blocks are unmapped but should treated
1630          * the same as allocated blocks.
1631          */
1632         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1633         if (ret <= 0)
1634                 return ret;
1635
1636         map_bh(bh, inode->i_sb, map.m_pblk);
1637         bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1638
1639         if (buffer_unwritten(bh)) {
1640                 /* A delayed write to unwritten bh should be marked
1641                  * new and mapped.  Mapped ensures that we don't do
1642                  * get_block multiple times when we write to the same
1643                  * offset and new ensures that we do proper zero out
1644                  * for partial write.
1645                  */
1646                 set_buffer_new(bh);
1647                 set_buffer_mapped(bh);
1648         }
1649         return 0;
1650 }
1651
1652 static int bget_one(handle_t *handle, struct buffer_head *bh)
1653 {
1654         get_bh(bh);
1655         return 0;
1656 }
1657
1658 static int bput_one(handle_t *handle, struct buffer_head *bh)
1659 {
1660         put_bh(bh);
1661         return 0;
1662 }
1663
1664 static int __ext4_journalled_writepage(struct page *page,
1665                                        unsigned int len)
1666 {
1667         struct address_space *mapping = page->mapping;
1668         struct inode *inode = mapping->host;
1669         struct buffer_head *page_bufs = NULL;
1670         handle_t *handle = NULL;
1671         int ret = 0, err = 0;
1672         int inline_data = ext4_has_inline_data(inode);
1673         struct buffer_head *inode_bh = NULL;
1674
1675         ClearPageChecked(page);
1676
1677         if (inline_data) {
1678                 BUG_ON(page->index != 0);
1679                 BUG_ON(len > ext4_get_max_inline_size(inode));
1680                 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1681                 if (inode_bh == NULL)
1682                         goto out;
1683         } else {
1684                 page_bufs = page_buffers(page);
1685                 if (!page_bufs) {
1686                         BUG();
1687                         goto out;
1688                 }
1689                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1690                                        NULL, bget_one);
1691         }
1692         /*
1693          * We need to release the page lock before we start the
1694          * journal, so grab a reference so the page won't disappear
1695          * out from under us.
1696          */
1697         get_page(page);
1698         unlock_page(page);
1699
1700         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1701                                     ext4_writepage_trans_blocks(inode));
1702         if (IS_ERR(handle)) {
1703                 ret = PTR_ERR(handle);
1704                 put_page(page);
1705                 goto out_no_pagelock;
1706         }
1707         BUG_ON(!ext4_handle_valid(handle));
1708
1709         lock_page(page);
1710         put_page(page);
1711         if (page->mapping != mapping) {
1712                 /* The page got truncated from under us */
1713                 ext4_journal_stop(handle);
1714                 ret = 0;
1715                 goto out;
1716         }
1717
1718         if (inline_data) {
1719                 BUFFER_TRACE(inode_bh, "get write access");
1720                 ret = ext4_journal_get_write_access(handle, inode_bh);
1721
1722                 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1723
1724         } else {
1725                 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1726                                              do_journal_get_write_access);
1727
1728                 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1729                                              write_end_fn);
1730         }
1731         if (ret == 0)
1732                 ret = err;
1733         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1734         err = ext4_journal_stop(handle);
1735         if (!ret)
1736                 ret = err;
1737
1738         if (!ext4_has_inline_data(inode))
1739                 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1740                                        NULL, bput_one);
1741         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1742 out:
1743         unlock_page(page);
1744 out_no_pagelock:
1745         brelse(inode_bh);
1746         return ret;
1747 }
1748
1749 /*
1750  * Note that we don't need to start a transaction unless we're journaling data
1751  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1752  * need to file the inode to the transaction's list in ordered mode because if
1753  * we are writing back data added by write(), the inode is already there and if
1754  * we are writing back data modified via mmap(), no one guarantees in which
1755  * transaction the data will hit the disk. In case we are journaling data, we
1756  * cannot start transaction directly because transaction start ranks above page
1757  * lock so we have to do some magic.
1758  *
1759  * This function can get called via...
1760  *   - ext4_writepages after taking page lock (have journal handle)
1761  *   - journal_submit_inode_data_buffers (no journal handle)
1762  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1763  *   - grab_page_cache when doing write_begin (have journal handle)
1764  *
1765  * We don't do any block allocation in this function. If we have page with
1766  * multiple blocks we need to write those buffer_heads that are mapped. This
1767  * is important for mmaped based write. So if we do with blocksize 1K
1768  * truncate(f, 1024);
1769  * a = mmap(f, 0, 4096);
1770  * a[0] = 'a';
1771  * truncate(f, 4096);
1772  * we have in the page first buffer_head mapped via page_mkwrite call back
1773  * but other buffer_heads would be unmapped but dirty (dirty done via the
1774  * do_wp_page). So writepage should write the first block. If we modify
1775  * the mmap area beyond 1024 we will again get a page_fault and the
1776  * page_mkwrite callback will do the block allocation and mark the
1777  * buffer_heads mapped.
1778  *
1779  * We redirty the page if we have any buffer_heads that is either delay or
1780  * unwritten in the page.
1781  *
1782  * We can get recursively called as show below.
1783  *
1784  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1785  *              ext4_writepage()
1786  *
1787  * But since we don't do any block allocation we should not deadlock.
1788  * Page also have the dirty flag cleared so we don't get recurive page_lock.
1789  */
1790 static int ext4_writepage(struct page *page,
1791                           struct writeback_control *wbc)
1792 {
1793         int ret = 0;
1794         loff_t size;
1795         unsigned int len;
1796         struct buffer_head *page_bufs = NULL;
1797         struct inode *inode = page->mapping->host;
1798         struct ext4_io_submit io_submit;
1799         bool keep_towrite = false;
1800
1801         trace_ext4_writepage(page);
1802         size = i_size_read(inode);
1803         if (page->index == size >> PAGE_CACHE_SHIFT)
1804                 len = size & ~PAGE_CACHE_MASK;
1805         else
1806                 len = PAGE_CACHE_SIZE;
1807
1808         page_bufs = page_buffers(page);
1809         /*
1810          * We cannot do block allocation or other extent handling in this
1811          * function. If there are buffers needing that, we have to redirty
1812          * the page. But we may reach here when we do a journal commit via
1813          * journal_submit_inode_data_buffers() and in that case we must write
1814          * allocated buffers to achieve data=ordered mode guarantees.
1815          */
1816         if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1817                                    ext4_bh_delay_or_unwritten)) {
1818                 redirty_page_for_writepage(wbc, page);
1819                 if (current->flags & PF_MEMALLOC) {
1820                         /*
1821                          * For memory cleaning there's no point in writing only
1822                          * some buffers. So just bail out. Warn if we came here
1823                          * from direct reclaim.
1824                          */
1825                         WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
1826                                                         == PF_MEMALLOC);
1827                         unlock_page(page);
1828                         return 0;
1829                 }
1830                 keep_towrite = true;
1831         }
1832
1833         if (PageChecked(page) && ext4_should_journal_data(inode))
1834                 /*
1835                  * It's mmapped pagecache.  Add buffers and journal it.  There
1836                  * doesn't seem much point in redirtying the page here.
1837                  */
1838                 return __ext4_journalled_writepage(page, len);
1839
1840         ext4_io_submit_init(&io_submit, wbc);
1841         io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
1842         if (!io_submit.io_end) {
1843                 redirty_page_for_writepage(wbc, page);
1844                 unlock_page(page);
1845                 return -ENOMEM;
1846         }
1847         ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
1848         ext4_io_submit(&io_submit);
1849         /* Drop io_end reference we got from init */
1850         ext4_put_io_end_defer(io_submit.io_end);
1851         return ret;
1852 }
1853
1854 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
1855 {
1856         int len;
1857         loff_t size = i_size_read(mpd->inode);
1858         int err;
1859
1860         BUG_ON(page->index != mpd->first_page);
1861         if (page->index == size >> PAGE_CACHE_SHIFT)
1862                 len = size & ~PAGE_CACHE_MASK;
1863         else
1864                 len = PAGE_CACHE_SIZE;
1865         clear_page_dirty_for_io(page);
1866         err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
1867         if (!err)
1868                 mpd->wbc->nr_to_write--;
1869         mpd->first_page++;
1870
1871         return err;
1872 }
1873
1874 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
1875
1876 /*
1877  * mballoc gives us at most this number of blocks...
1878  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
1879  * The rest of mballoc seems to handle chunks up to full group size.
1880  */
1881 #define MAX_WRITEPAGES_EXTENT_LEN 2048
1882
1883 /*
1884  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1885  *
1886  * @mpd - extent of blocks
1887  * @lblk - logical number of the block in the file
1888  * @bh - buffer head we want to add to the extent
1889  *
1890  * The function is used to collect contig. blocks in the same state. If the
1891  * buffer doesn't require mapping for writeback and we haven't started the
1892  * extent of buffers to map yet, the function returns 'true' immediately - the
1893  * caller can write the buffer right away. Otherwise the function returns true
1894  * if the block has been added to the extent, false if the block couldn't be
1895  * added.
1896  */
1897 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1898                                    struct buffer_head *bh)
1899 {
1900         struct ext4_map_blocks *map = &mpd->map;
1901
1902         /* Buffer that doesn't need mapping for writeback? */
1903         if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1904             (!buffer_delay(bh) && !buffer_unwritten(bh))) {
1905                 /* So far no extent to map => we write the buffer right away */
1906                 if (map->m_len == 0)
1907                         return true;
1908                 return false;
1909         }
1910
1911         /* First block in the extent? */
1912         if (map->m_len == 0) {
1913                 map->m_lblk = lblk;
1914                 map->m_len = 1;
1915                 map->m_flags = bh->b_state & BH_FLAGS;
1916                 return true;
1917         }
1918
1919         /* Don't go larger than mballoc is willing to allocate */
1920         if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1921                 return false;
1922
1923         /* Can we merge the block to our big extent? */
1924         if (lblk == map->m_lblk + map->m_len &&
1925             (bh->b_state & BH_FLAGS) == map->m_flags) {
1926                 map->m_len++;
1927                 return true;
1928         }
1929         return false;
1930 }
1931
1932 /*
1933  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
1934  *
1935  * @mpd - extent of blocks for mapping
1936  * @head - the first buffer in the page
1937  * @bh - buffer we should start processing from
1938  * @lblk - logical number of the block in the file corresponding to @bh
1939  *
1940  * Walk through page buffers from @bh upto @head (exclusive) and either submit
1941  * the page for IO if all buffers in this page were mapped and there's no
1942  * accumulated extent of buffers to map or add buffers in the page to the
1943  * extent of buffers to map. The function returns 1 if the caller can continue
1944  * by processing the next page, 0 if it should stop adding buffers to the
1945  * extent to map because we cannot extend it anymore. It can also return value
1946  * < 0 in case of error during IO submission.
1947  */
1948 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
1949                                    struct buffer_head *head,
1950                                    struct buffer_head *bh,
1951                                    ext4_lblk_t lblk)
1952 {
1953         struct inode *inode = mpd->inode;
1954         int err;
1955         ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
1956                                                         >> inode->i_blkbits;
1957
1958         do {
1959                 BUG_ON(buffer_locked(bh));
1960
1961                 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
1962                         /* Found extent to map? */
1963                         if (mpd->map.m_len)
1964                                 return 0;
1965                         /* Everything mapped so far and we hit EOF */
1966                         break;
1967                 }
1968         } while (lblk++, (bh = bh->b_this_page) != head);
1969         /* So far everything mapped? Submit the page for IO. */
1970         if (mpd->map.m_len == 0) {
1971                 err = mpage_submit_page(mpd, head->b_page);
1972                 if (err < 0)
1973                         return err;
1974         }
1975         return lblk < blocks;
1976 }
1977
1978 /*
1979  * mpage_map_buffers - update buffers corresponding to changed extent and
1980  *                     submit fully mapped pages for IO
1981  *
1982  * @mpd - description of extent to map, on return next extent to map
1983  *
1984  * Scan buffers corresponding to changed extent (we expect corresponding pages
1985  * to be already locked) and update buffer state according to new extent state.
1986  * We map delalloc buffers to their physical location, clear unwritten bits,
1987  * and mark buffers as uninit when we perform writes to unwritten extents
1988  * and do extent conversion after IO is finished. If the last page is not fully
1989  * mapped, we update @map to the next extent in the last page that needs
1990  * mapping. Otherwise we submit the page for IO.
1991  */
1992 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
1993 {
1994         struct pagevec pvec;
1995         int nr_pages, i;
1996         struct inode *inode = mpd->inode;
1997         struct buffer_head *head, *bh;
1998         int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits;
1999         pgoff_t start, end;
2000         ext4_lblk_t lblk;
2001         sector_t pblock;
2002         int err;
2003
2004         start = mpd->map.m_lblk >> bpp_bits;
2005         end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2006         lblk = start << bpp_bits;
2007         pblock = mpd->map.m_pblk;
2008
2009         pagevec_init(&pvec, 0);
2010         while (start <= end) {
2011                 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2012                                           PAGEVEC_SIZE);
2013                 if (nr_pages == 0)
2014                         break;
2015                 for (i = 0; i < nr_pages; i++) {
2016                         struct page *page = pvec.pages[i];
2017
2018                         if (page->index > end)
2019                                 break;
2020                         /* Up to 'end' pages must be contiguous */
2021                         BUG_ON(page->index != start);
2022                         bh = head = page_buffers(page);
2023                         do {
2024                                 if (lblk < mpd->map.m_lblk)
2025                                         continue;
2026                                 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2027                                         /*
2028                                          * Buffer after end of mapped extent.
2029                                          * Find next buffer in the page to map.
2030                                          */
2031                                         mpd->map.m_len = 0;
2032                                         mpd->map.m_flags = 0;
2033                                         /*
2034                                          * FIXME: If dioread_nolock supports
2035                                          * blocksize < pagesize, we need to make
2036                                          * sure we add size mapped so far to
2037                                          * io_end->size as the following call
2038                                          * can submit the page for IO.
2039                                          */
2040                                         err = mpage_process_page_bufs(mpd, head,
2041                                                                       bh, lblk);
2042                                         pagevec_release(&pvec);
2043                                         if (err > 0)
2044                                                 err = 0;
2045                                         return err;
2046                                 }
2047                                 if (buffer_delay(bh)) {
2048                                         clear_buffer_delay(bh);
2049                                         bh->b_blocknr = pblock++;
2050                                 }
2051                                 clear_buffer_unwritten(bh);
2052                         } while (lblk++, (bh = bh->b_this_page) != head);
2053
2054                         /*
2055                          * FIXME: This is going to break if dioread_nolock
2056                          * supports blocksize < pagesize as we will try to
2057                          * convert potentially unmapped parts of inode.
2058                          */
2059                         mpd->io_submit.io_end->size += PAGE_CACHE_SIZE;
2060                         /* Page fully mapped - let IO run! */
2061                         err = mpage_submit_page(mpd, page);
2062                         if (err < 0) {
2063                                 pagevec_release(&pvec);
2064                                 return err;
2065                         }
2066                         start++;
2067                 }
2068                 pagevec_release(&pvec);
2069         }
2070         /* Extent fully mapped and matches with page boundary. We are done. */
2071         mpd->map.m_len = 0;
2072         mpd->map.m_flags = 0;
2073         return 0;
2074 }
2075
2076 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2077 {
2078         struct inode *inode = mpd->inode;
2079         struct ext4_map_blocks *map = &mpd->map;
2080         int get_blocks_flags;
2081         int err, dioread_nolock;
2082
2083         trace_ext4_da_write_pages_extent(inode, map);
2084         /*
2085          * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2086          * to convert an unwritten extent to be initialized (in the case
2087          * where we have written into one or more preallocated blocks).  It is
2088          * possible that we're going to need more metadata blocks than
2089          * previously reserved. However we must not fail because we're in
2090          * writeback and there is nothing we can do about it so it might result
2091          * in data loss.  So use reserved blocks to allocate metadata if
2092          * possible.
2093          *
2094          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2095          * the blocks in question are delalloc blocks.  This indicates
2096          * that the blocks and quotas has already been checked when
2097          * the data was copied into the page cache.
2098          */
2099         get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2100                            EXT4_GET_BLOCKS_METADATA_NOFAIL;
2101         dioread_nolock = ext4_should_dioread_nolock(inode);
2102         if (dioread_nolock)
2103                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2104         if (map->m_flags & (1 << BH_Delay))
2105                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2106
2107         err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2108         if (err < 0)
2109                 return err;
2110         if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2111                 if (!mpd->io_submit.io_end->handle &&
2112                     ext4_handle_valid(handle)) {
2113                         mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2114                         handle->h_rsv_handle = NULL;
2115                 }
2116                 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2117         }
2118
2119         BUG_ON(map->m_len == 0);
2120         if (map->m_flags & EXT4_MAP_NEW) {
2121                 struct block_device *bdev = inode->i_sb->s_bdev;
2122                 int i;
2123
2124                 for (i = 0; i < map->m_len; i++)
2125                         unmap_underlying_metadata(bdev, map->m_pblk + i);
2126         }
2127         return 0;
2128 }
2129
2130 /*
2131  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2132  *                               mpd->len and submit pages underlying it for IO
2133  *
2134  * @handle - handle for journal operations
2135  * @mpd - extent to map
2136  * @give_up_on_write - we set this to true iff there is a fatal error and there
2137  *                     is no hope of writing the data. The caller should discard
2138  *                     dirty pages to avoid infinite loops.
2139  *
2140  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2141  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2142  * them to initialized or split the described range from larger unwritten
2143  * extent. Note that we need not map all the described range since allocation
2144  * can return less blocks or the range is covered by more unwritten extents. We
2145  * cannot map more because we are limited by reserved transaction credits. On
2146  * the other hand we always make sure that the last touched page is fully
2147  * mapped so that it can be written out (and thus forward progress is
2148  * guaranteed). After mapping we submit all mapped pages for IO.
2149  */
2150 static int mpage_map_and_submit_extent(handle_t *handle,
2151                                        struct mpage_da_data *mpd,
2152                                        bool *give_up_on_write)
2153 {
2154         struct inode *inode = mpd->inode;
2155         struct ext4_map_blocks *map = &mpd->map;
2156         int err;
2157         loff_t disksize;
2158         int progress = 0;
2159
2160         mpd->io_submit.io_end->offset =
2161                                 ((loff_t)map->m_lblk) << inode->i_blkbits;
2162         do {
2163                 err = mpage_map_one_extent(handle, mpd);
2164                 if (err < 0) {
2165                         struct super_block *sb = inode->i_sb;
2166
2167                         if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2168                                 goto invalidate_dirty_pages;
2169                         /*
2170                          * Let the uper layers retry transient errors.
2171                          * In the case of ENOSPC, if ext4_count_free_blocks()
2172                          * is non-zero, a commit should free up blocks.
2173                          */
2174                         if ((err == -ENOMEM) ||
2175                             (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2176                                 if (progress)
2177                                         goto update_disksize;
2178                                 return err;
2179                         }
2180                         ext4_msg(sb, KERN_CRIT,
2181                                  "Delayed block allocation failed for "
2182                                  "inode %lu at logical offset %llu with"
2183                                  " max blocks %u with error %d",
2184                                  inode->i_ino,
2185                                  (unsigned long long)map->m_lblk,
2186                                  (unsigned)map->m_len, -err);
2187                         ext4_msg(sb, KERN_CRIT,
2188                                  "This should not happen!! Data will "
2189                                  "be lost\n");
2190                         if (err == -ENOSPC)
2191                                 ext4_print_free_blocks(inode);
2192                 invalidate_dirty_pages:
2193                         *give_up_on_write = true;
2194                         return err;
2195                 }
2196                 progress = 1;
2197                 /*
2198                  * Update buffer state, submit mapped pages, and get us new
2199                  * extent to map
2200                  */
2201                 err = mpage_map_and_submit_buffers(mpd);
2202                 if (err < 0)
2203                         goto update_disksize;
2204         } while (map->m_len);
2205
2206 update_disksize:
2207         /*
2208          * Update on-disk size after IO is submitted.  Races with
2209          * truncate are avoided by checking i_size under i_data_sem.
2210          */
2211         disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT;
2212         if (disksize > EXT4_I(inode)->i_disksize) {
2213                 int err2;
2214                 loff_t i_size;
2215
2216                 down_write(&EXT4_I(inode)->i_data_sem);
2217                 i_size = i_size_read(inode);
2218                 if (disksize > i_size)
2219                         disksize = i_size;
2220                 if (disksize > EXT4_I(inode)->i_disksize)
2221                         EXT4_I(inode)->i_disksize = disksize;
2222                 err2 = ext4_mark_inode_dirty(handle, inode);
2223                 up_write(&EXT4_I(inode)->i_data_sem);
2224                 if (err2)
2225                         ext4_error(inode->i_sb,
2226                                    "Failed to mark inode %lu dirty",
2227                                    inode->i_ino);
2228                 if (!err)
2229                         err = err2;
2230         }
2231         return err;
2232 }
2233
2234 /*
2235  * Calculate the total number of credits to reserve for one writepages
2236  * iteration. This is called from ext4_writepages(). We map an extent of
2237  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2238  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2239  * bpp - 1 blocks in bpp different extents.
2240  */
2241 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2242 {
2243         int bpp = ext4_journal_blocks_per_page(inode);
2244
2245         return ext4_meta_trans_blocks(inode,
2246                                 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2247 }
2248
2249 /*
2250  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2251  *                               and underlying extent to map
2252  *
2253  * @mpd - where to look for pages
2254  *
2255  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2256  * IO immediately. When we find a page which isn't mapped we start accumulating
2257  * extent of buffers underlying these pages that needs mapping (formed by
2258  * either delayed or unwritten buffers). We also lock the pages containing
2259  * these buffers. The extent found is returned in @mpd structure (starting at
2260  * mpd->lblk with length mpd->len blocks).
2261  *
2262  * Note that this function can attach bios to one io_end structure which are
2263  * neither logically nor physically contiguous. Although it may seem as an
2264  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2265  * case as we need to track IO to all buffers underlying a page in one io_end.
2266  */
2267 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2268 {
2269         struct address_space *mapping = mpd->inode->i_mapping;
2270         struct pagevec pvec;
2271         unsigned int nr_pages;
2272         long left = mpd->wbc->nr_to_write;
2273         pgoff_t index = mpd->first_page;
2274         pgoff_t end = mpd->last_page;
2275         int tag;
2276         int i, err = 0;
2277         int blkbits = mpd->inode->i_blkbits;
2278         ext4_lblk_t lblk;
2279         struct buffer_head *head;
2280
2281         if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2282                 tag = PAGECACHE_TAG_TOWRITE;
2283         else
2284                 tag = PAGECACHE_TAG_DIRTY;
2285
2286         pagevec_init(&pvec, 0);
2287         mpd->map.m_len = 0;
2288         mpd->next_page = index;
2289         while (index <= end) {
2290                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2291                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2292                 if (nr_pages == 0)
2293                         goto out;
2294
2295                 for (i = 0; i < nr_pages; i++) {
2296                         struct page *page = pvec.pages[i];
2297
2298                         /*
2299                          * At this point, the page may be truncated or
2300                          * invalidated (changing page->mapping to NULL), or
2301                          * even swizzled back from swapper_space to tmpfs file
2302                          * mapping. However, page->index will not change
2303                          * because we have a reference on the page.
2304                          */
2305                         if (page->index > end)
2306                                 goto out;
2307
2308                         /*
2309                          * Accumulated enough dirty pages? This doesn't apply
2310                          * to WB_SYNC_ALL mode. For integrity sync we have to
2311                          * keep going because someone may be concurrently
2312                          * dirtying pages, and we might have synced a lot of
2313                          * newly appeared dirty pages, but have not synced all
2314                          * of the old dirty pages.
2315                          */
2316                         if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2317                                 goto out;
2318
2319                         /* If we can't merge this page, we are done. */
2320                         if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2321                                 goto out;
2322
2323                         lock_page(page);
2324                         /*
2325                          * If the page is no longer dirty, or its mapping no
2326                          * longer corresponds to inode we are writing (which
2327                          * means it has been truncated or invalidated), or the
2328                          * page is already under writeback and we are not doing
2329                          * a data integrity writeback, skip the page
2330                          */
2331                         if (!PageDirty(page) ||
2332                             (PageWriteback(page) &&
2333                              (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2334                             unlikely(page->mapping != mapping)) {
2335                                 unlock_page(page);
2336                                 continue;
2337                         }
2338
2339                         wait_on_page_writeback(page);
2340                         BUG_ON(PageWriteback(page));
2341
2342                         if (mpd->map.m_len == 0)
2343                                 mpd->first_page = page->index;
2344                         mpd->next_page = page->index + 1;
2345                         /* Add all dirty buffers to mpd */
2346                         lblk = ((ext4_lblk_t)page->index) <<
2347                                 (PAGE_CACHE_SHIFT - blkbits);
2348                         head = page_buffers(page);
2349                         err = mpage_process_page_bufs(mpd, head, head, lblk);
2350                         if (err <= 0)
2351                                 goto out;
2352                         err = 0;
2353                         left--;
2354                 }
2355                 pagevec_release(&pvec);
2356                 cond_resched();
2357         }
2358         return 0;
2359 out:
2360         pagevec_release(&pvec);
2361         return err;
2362 }
2363
2364 static int __writepage(struct page *page, struct writeback_control *wbc,
2365                        void *data)
2366 {
2367         struct address_space *mapping = data;
2368         int ret = ext4_writepage(page, wbc);
2369         mapping_set_error(mapping, ret);
2370         return ret;
2371 }
2372
2373 static int ext4_writepages(struct address_space *mapping,
2374                            struct writeback_control *wbc)
2375 {
2376         pgoff_t writeback_index = 0;
2377         long nr_to_write = wbc->nr_to_write;
2378         int range_whole = 0;
2379         int cycled = 1;
2380         handle_t *handle = NULL;
2381         struct mpage_da_data mpd;
2382         struct inode *inode = mapping->host;
2383         int needed_blocks, rsv_blocks = 0, ret = 0;
2384         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2385         bool done;
2386         struct blk_plug plug;
2387         bool give_up_on_write = false;
2388
2389         trace_ext4_writepages(inode, wbc);
2390
2391         /*
2392          * No pages to write? This is mainly a kludge to avoid starting
2393          * a transaction for special inodes like journal inode on last iput()
2394          * because that could violate lock ordering on umount
2395          */
2396         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2397                 goto out_writepages;
2398
2399         if (ext4_should_journal_data(inode)) {
2400                 struct blk_plug plug;
2401
2402                 blk_start_plug(&plug);
2403                 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2404                 blk_finish_plug(&plug);
2405                 goto out_writepages;
2406         }
2407
2408         /*
2409          * If the filesystem has aborted, it is read-only, so return
2410          * right away instead of dumping stack traces later on that
2411          * will obscure the real source of the problem.  We test
2412          * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2413          * the latter could be true if the filesystem is mounted
2414          * read-only, and in that case, ext4_writepages should
2415          * *never* be called, so if that ever happens, we would want
2416          * the stack trace.
2417          */
2418         if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2419                 ret = -EROFS;
2420                 goto out_writepages;
2421         }
2422
2423         if (ext4_should_dioread_nolock(inode)) {
2424                 /*
2425                  * We may need to convert up to one extent per block in
2426                  * the page and we may dirty the inode.
2427                  */
2428                 rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits);
2429         }
2430
2431         /*
2432          * If we have inline data and arrive here, it means that
2433          * we will soon create the block for the 1st page, so
2434          * we'd better clear the inline data here.
2435          */
2436         if (ext4_has_inline_data(inode)) {
2437                 /* Just inode will be modified... */
2438                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2439                 if (IS_ERR(handle)) {
2440                         ret = PTR_ERR(handle);
2441                         goto out_writepages;
2442                 }
2443                 BUG_ON(ext4_test_inode_state(inode,
2444                                 EXT4_STATE_MAY_INLINE_DATA));
2445                 ext4_destroy_inline_data(handle, inode);
2446                 ext4_journal_stop(handle);
2447         }
2448
2449         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2450                 range_whole = 1;
2451
2452         if (wbc->range_cyclic) {
2453                 writeback_index = mapping->writeback_index;
2454                 if (writeback_index)
2455                         cycled = 0;
2456                 mpd.first_page = writeback_index;
2457                 mpd.last_page = -1;
2458         } else {
2459                 mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT;
2460                 mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT;
2461         }
2462
2463         mpd.inode = inode;
2464         mpd.wbc = wbc;
2465         ext4_io_submit_init(&mpd.io_submit, wbc);
2466 retry:
2467         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2468                 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2469         done = false;
2470         blk_start_plug(&plug);
2471         while (!done && mpd.first_page <= mpd.last_page) {
2472                 /* For each extent of pages we use new io_end */
2473                 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2474                 if (!mpd.io_submit.io_end) {
2475                         ret = -ENOMEM;
2476                         break;
2477                 }
2478
2479                 /*
2480                  * We have two constraints: We find one extent to map and we
2481                  * must always write out whole page (makes a difference when
2482                  * blocksize < pagesize) so that we don't block on IO when we
2483                  * try to write out the rest of the page. Journalled mode is
2484                  * not supported by delalloc.
2485                  */
2486                 BUG_ON(ext4_should_journal_data(inode));
2487                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2488
2489                 /* start a new transaction */
2490                 handle = ext4_journal_start_with_reserve(inode,
2491                                 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2492                 if (IS_ERR(handle)) {
2493                         ret = PTR_ERR(handle);
2494                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2495                                "%ld pages, ino %lu; err %d", __func__,
2496                                 wbc->nr_to_write, inode->i_ino, ret);
2497                         /* Release allocated io_end */
2498                         ext4_put_io_end(mpd.io_submit.io_end);
2499                         break;
2500                 }
2501
2502                 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2503                 ret = mpage_prepare_extent_to_map(&mpd);
2504                 if (!ret) {
2505                         if (mpd.map.m_len)
2506                                 ret = mpage_map_and_submit_extent(handle, &mpd,
2507                                         &give_up_on_write);
2508                         else {
2509                                 /*
2510                                  * We scanned the whole range (or exhausted
2511                                  * nr_to_write), submitted what was mapped and
2512                                  * didn't find anything needing mapping. We are
2513                                  * done.
2514                                  */
2515                                 done = true;
2516                         }
2517                 }
2518                 ext4_journal_stop(handle);
2519                 /* Submit prepared bio */
2520                 ext4_io_submit(&mpd.io_submit);
2521                 /* Unlock pages we didn't use */
2522                 mpage_release_unused_pages(&mpd, give_up_on_write);
2523                 /* Drop our io_end reference we got from init */
2524                 ext4_put_io_end(mpd.io_submit.io_end);
2525
2526                 if (ret == -ENOSPC && sbi->s_journal) {
2527                         /*
2528                          * Commit the transaction which would
2529                          * free blocks released in the transaction
2530                          * and try again
2531                          */
2532                         jbd2_journal_force_commit_nested(sbi->s_journal);
2533                         ret = 0;
2534                         continue;
2535                 }
2536                 /* Fatal error - ENOMEM, EIO... */
2537                 if (ret)
2538                         break;
2539         }
2540         blk_finish_plug(&plug);
2541         if (!ret && !cycled && wbc->nr_to_write > 0) {
2542                 cycled = 1;
2543                 mpd.last_page = writeback_index - 1;
2544                 mpd.first_page = 0;
2545                 goto retry;
2546         }
2547
2548         /* Update index */
2549         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2550                 /*
2551                  * Set the writeback_index so that range_cyclic
2552                  * mode will write it back later
2553                  */
2554                 mapping->writeback_index = mpd.first_page;
2555
2556 out_writepages:
2557         trace_ext4_writepages_result(inode, wbc, ret,
2558                                      nr_to_write - wbc->nr_to_write);
2559         return ret;
2560 }
2561
2562 static int ext4_nonda_switch(struct super_block *sb)
2563 {
2564         s64 free_clusters, dirty_clusters;
2565         struct ext4_sb_info *sbi = EXT4_SB(sb);
2566
2567         /*
2568          * switch to non delalloc mode if we are running low
2569          * on free block. The free block accounting via percpu
2570          * counters can get slightly wrong with percpu_counter_batch getting
2571          * accumulated on each CPU without updating global counters
2572          * Delalloc need an accurate free block accounting. So switch
2573          * to non delalloc when we are near to error range.
2574          */
2575         free_clusters =
2576                 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2577         dirty_clusters =
2578                 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2579         /*
2580          * Start pushing delalloc when 1/2 of free blocks are dirty.
2581          */
2582         if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2583                 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2584
2585         if (2 * free_clusters < 3 * dirty_clusters ||
2586             free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2587                 /*
2588                  * free block count is less than 150% of dirty blocks
2589                  * or free blocks is less than watermark
2590                  */
2591                 return 1;
2592         }
2593         return 0;
2594 }
2595
2596 /* We always reserve for an inode update; the superblock could be there too */
2597 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2598 {
2599         if (likely(EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
2600                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE)))
2601                 return 1;
2602
2603         if (pos + len <= 0x7fffffffULL)
2604                 return 1;
2605
2606         /* We might need to update the superblock to set LARGE_FILE */
2607         return 2;
2608 }
2609
2610 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2611                                loff_t pos, unsigned len, unsigned flags,
2612                                struct page **pagep, void **fsdata)
2613 {
2614         int ret, retries = 0;
2615         struct page *page;
2616         pgoff_t index;
2617         struct inode *inode = mapping->host;
2618         handle_t *handle;
2619
2620         index = pos >> PAGE_CACHE_SHIFT;
2621
2622         if (ext4_nonda_switch(inode->i_sb)) {
2623                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2624                 return ext4_write_begin(file, mapping, pos,
2625                                         len, flags, pagep, fsdata);
2626         }
2627         *fsdata = (void *)0;
2628         trace_ext4_da_write_begin(inode, pos, len, flags);
2629
2630         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2631                 ret = ext4_da_write_inline_data_begin(mapping, inode,
2632                                                       pos, len, flags,
2633                                                       pagep, fsdata);
2634                 if (ret < 0)
2635                         return ret;
2636                 if (ret == 1)
2637                         return 0;
2638         }
2639
2640         /*
2641          * grab_cache_page_write_begin() can take a long time if the
2642          * system is thrashing due to memory pressure, or if the page
2643          * is being written back.  So grab it first before we start
2644          * the transaction handle.  This also allows us to allocate
2645          * the page (if needed) without using GFP_NOFS.
2646          */
2647 retry_grab:
2648         page = grab_cache_page_write_begin(mapping, index, flags);
2649         if (!page)
2650                 return -ENOMEM;
2651         unlock_page(page);
2652
2653         /*
2654          * With delayed allocation, we don't log the i_disksize update
2655          * if there is delayed block allocation. But we still need
2656          * to journalling the i_disksize update if writes to the end
2657          * of file which has an already mapped buffer.
2658          */
2659 retry_journal:
2660         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2661                                 ext4_da_write_credits(inode, pos, len));
2662         if (IS_ERR(handle)) {
2663                 page_cache_release(page);
2664                 return PTR_ERR(handle);
2665         }
2666
2667         lock_page(page);
2668         if (page->mapping != mapping) {
2669                 /* The page got truncated from under us */
2670                 unlock_page(page);
2671                 page_cache_release(page);
2672                 ext4_journal_stop(handle);
2673                 goto retry_grab;
2674         }
2675         /* In case writeback began while the page was unlocked */
2676         wait_for_stable_page(page);
2677
2678 #ifdef CONFIG_EXT4_FS_ENCRYPTION
2679         ret = ext4_block_write_begin(page, pos, len,
2680                                      ext4_da_get_block_prep);
2681 #else
2682         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2683 #endif
2684         if (ret < 0) {
2685                 unlock_page(page);
2686                 ext4_journal_stop(handle);
2687                 /*
2688                  * block_write_begin may have instantiated a few blocks
2689                  * outside i_size.  Trim these off again. Don't need
2690                  * i_size_read because we hold i_mutex.
2691                  */
2692                 if (pos + len > inode->i_size)
2693                         ext4_truncate_failed_write(inode);
2694
2695                 if (ret == -ENOSPC &&
2696                     ext4_should_retry_alloc(inode->i_sb, &retries))
2697                         goto retry_journal;
2698
2699                 page_cache_release(page);
2700                 return ret;
2701         }
2702
2703         *pagep = page;
2704         return ret;
2705 }
2706
2707 /*
2708  * Check if we should update i_disksize
2709  * when write to the end of file but not require block allocation
2710  */
2711 static int ext4_da_should_update_i_disksize(struct page *page,
2712                                             unsigned long offset)
2713 {
2714         struct buffer_head *bh;
2715         struct inode *inode = page->mapping->host;
2716         unsigned int idx;
2717         int i;
2718
2719         bh = page_buffers(page);
2720         idx = offset >> inode->i_blkbits;
2721
2722         for (i = 0; i < idx; i++)
2723                 bh = bh->b_this_page;
2724
2725         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2726                 return 0;
2727         return 1;
2728 }
2729
2730 static int ext4_da_write_end(struct file *file,
2731                              struct address_space *mapping,
2732                              loff_t pos, unsigned len, unsigned copied,
2733                              struct page *page, void *fsdata)
2734 {
2735         struct inode *inode = mapping->host;
2736         int ret = 0, ret2;
2737         handle_t *handle = ext4_journal_current_handle();
2738         loff_t new_i_size;
2739         unsigned long start, end;
2740         int write_mode = (int)(unsigned long)fsdata;
2741
2742         if (write_mode == FALL_BACK_TO_NONDELALLOC)
2743                 return ext4_write_end(file, mapping, pos,
2744                                       len, copied, page, fsdata);
2745
2746         trace_ext4_da_write_end(inode, pos, len, copied);
2747         start = pos & (PAGE_CACHE_SIZE - 1);
2748         end = start + copied - 1;
2749
2750         /*
2751          * generic_write_end() will run mark_inode_dirty() if i_size
2752          * changes.  So let's piggyback the i_disksize mark_inode_dirty
2753          * into that.
2754          */
2755         new_i_size = pos + copied;
2756         if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2757                 if (ext4_has_inline_data(inode) ||
2758                     ext4_da_should_update_i_disksize(page, end)) {
2759                         ext4_update_i_disksize(inode, new_i_size);
2760                         /* We need to mark inode dirty even if
2761                          * new_i_size is less that inode->i_size
2762                          * bu greater than i_disksize.(hint delalloc)
2763                          */
2764                         ext4_mark_inode_dirty(handle, inode);
2765                 }
2766         }
2767
2768         if (write_mode != CONVERT_INLINE_DATA &&
2769             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2770             ext4_has_inline_data(inode))
2771                 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2772                                                      page);
2773         else
2774                 ret2 = generic_write_end(file, mapping, pos, len, copied,
2775                                                         page, fsdata);
2776
2777         copied = ret2;
2778         if (ret2 < 0)
2779                 ret = ret2;
2780         ret2 = ext4_journal_stop(handle);
2781         if (!ret)
2782                 ret = ret2;
2783
2784         return ret ? ret : copied;
2785 }
2786
2787 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
2788                                    unsigned int length)
2789 {
2790         /*
2791          * Drop reserved blocks
2792          */
2793         BUG_ON(!PageLocked(page));
2794         if (!page_has_buffers(page))
2795                 goto out;
2796
2797         ext4_da_page_release_reservation(page, offset, length);
2798
2799 out:
2800         ext4_invalidatepage(page, offset, length);
2801
2802         return;
2803 }
2804
2805 /*
2806  * Force all delayed allocation blocks to be allocated for a given inode.
2807  */
2808 int ext4_alloc_da_blocks(struct inode *inode)
2809 {
2810         trace_ext4_alloc_da_blocks(inode);
2811
2812         if (!EXT4_I(inode)->i_reserved_data_blocks)
2813                 return 0;
2814
2815         /*
2816          * We do something simple for now.  The filemap_flush() will
2817          * also start triggering a write of the data blocks, which is
2818          * not strictly speaking necessary (and for users of
2819          * laptop_mode, not even desirable).  However, to do otherwise
2820          * would require replicating code paths in:
2821          *
2822          * ext4_writepages() ->
2823          *    write_cache_pages() ---> (via passed in callback function)
2824          *        __mpage_da_writepage() -->
2825          *           mpage_add_bh_to_extent()
2826          *           mpage_da_map_blocks()
2827          *
2828          * The problem is that write_cache_pages(), located in
2829          * mm/page-writeback.c, marks pages clean in preparation for
2830          * doing I/O, which is not desirable if we're not planning on
2831          * doing I/O at all.
2832          *
2833          * We could call write_cache_pages(), and then redirty all of
2834          * the pages by calling redirty_page_for_writepage() but that
2835          * would be ugly in the extreme.  So instead we would need to
2836          * replicate parts of the code in the above functions,
2837          * simplifying them because we wouldn't actually intend to
2838          * write out the pages, but rather only collect contiguous
2839          * logical block extents, call the multi-block allocator, and
2840          * then update the buffer heads with the block allocations.
2841          *
2842          * For now, though, we'll cheat by calling filemap_flush(),
2843          * which will map the blocks, and start the I/O, but not
2844          * actually wait for the I/O to complete.
2845          */
2846         return filemap_flush(inode->i_mapping);
2847 }
2848
2849 /*
2850  * bmap() is special.  It gets used by applications such as lilo and by
2851  * the swapper to find the on-disk block of a specific piece of data.
2852  *
2853  * Naturally, this is dangerous if the block concerned is still in the
2854  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2855  * filesystem and enables swap, then they may get a nasty shock when the
2856  * data getting swapped to that swapfile suddenly gets overwritten by
2857  * the original zero's written out previously to the journal and
2858  * awaiting writeback in the kernel's buffer cache.
2859  *
2860  * So, if we see any bmap calls here on a modified, data-journaled file,
2861  * take extra steps to flush any blocks which might be in the cache.
2862  */
2863 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2864 {
2865         struct inode *inode = mapping->host;
2866         journal_t *journal;
2867         int err;
2868
2869         /*
2870          * We can get here for an inline file via the FIBMAP ioctl
2871          */
2872         if (ext4_has_inline_data(inode))
2873                 return 0;
2874
2875         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2876                         test_opt(inode->i_sb, DELALLOC)) {
2877                 /*
2878                  * With delalloc we want to sync the file
2879                  * so that we can make sure we allocate
2880                  * blocks for file
2881                  */
2882                 filemap_write_and_wait(mapping);
2883         }
2884
2885         if (EXT4_JOURNAL(inode) &&
2886             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2887                 /*
2888                  * This is a REALLY heavyweight approach, but the use of
2889                  * bmap on dirty files is expected to be extremely rare:
2890                  * only if we run lilo or swapon on a freshly made file
2891                  * do we expect this to happen.
2892                  *
2893                  * (bmap requires CAP_SYS_RAWIO so this does not
2894                  * represent an unprivileged user DOS attack --- we'd be
2895                  * in trouble if mortal users could trigger this path at
2896                  * will.)
2897                  *
2898                  * NB. EXT4_STATE_JDATA is not set on files other than
2899                  * regular files.  If somebody wants to bmap a directory
2900                  * or symlink and gets confused because the buffer
2901                  * hasn't yet been flushed to disk, they deserve
2902                  * everything they get.
2903                  */
2904
2905                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2906                 journal = EXT4_JOURNAL(inode);
2907                 jbd2_journal_lock_updates(journal);
2908                 err = jbd2_journal_flush(journal);
2909                 jbd2_journal_unlock_updates(journal);
2910
2911                 if (err)
2912                         return 0;
2913         }
2914
2915         return generic_block_bmap(mapping, block, ext4_get_block);
2916 }
2917
2918 static int ext4_readpage(struct file *file, struct page *page)
2919 {
2920         int ret = -EAGAIN;
2921         struct inode *inode = page->mapping->host;
2922
2923         trace_ext4_readpage(page);
2924
2925         if (ext4_has_inline_data(inode))
2926                 ret = ext4_readpage_inline(inode, page);
2927
2928         if (ret == -EAGAIN)
2929                 return ext4_mpage_readpages(page->mapping, NULL, page, 1);
2930
2931         return ret;
2932 }
2933
2934 static int
2935 ext4_readpages(struct file *file, struct address_space *mapping,
2936                 struct list_head *pages, unsigned nr_pages)
2937 {
2938         struct inode *inode = mapping->host;
2939
2940         /* If the file has inline data, no need to do readpages. */
2941         if (ext4_has_inline_data(inode))
2942                 return 0;
2943
2944         return ext4_mpage_readpages(mapping, pages, NULL, nr_pages);
2945 }
2946
2947 static void ext4_invalidatepage(struct page *page, unsigned int offset,
2948                                 unsigned int length)
2949 {
2950         trace_ext4_invalidatepage(page, offset, length);
2951
2952         /* No journalling happens on data buffers when this function is used */
2953         WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
2954
2955         block_invalidatepage(page, offset, length);
2956 }
2957
2958 static int __ext4_journalled_invalidatepage(struct page *page,
2959                                             unsigned int offset,
2960                                             unsigned int length)
2961 {
2962         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2963
2964         trace_ext4_journalled_invalidatepage(page, offset, length);
2965
2966         /*
2967          * If it's a full truncate we just forget about the pending dirtying
2968          */
2969         if (offset == 0 && length == PAGE_CACHE_SIZE)
2970                 ClearPageChecked(page);
2971
2972         return jbd2_journal_invalidatepage(journal, page, offset, length);
2973 }
2974
2975 /* Wrapper for aops... */
2976 static void ext4_journalled_invalidatepage(struct page *page,
2977                                            unsigned int offset,
2978                                            unsigned int length)
2979 {
2980         WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
2981 }
2982
2983 static int ext4_releasepage(struct page *page, gfp_t wait)
2984 {
2985         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2986
2987         trace_ext4_releasepage(page);
2988
2989         /* Page has dirty journalled data -> cannot release */
2990         if (PageChecked(page))
2991                 return 0;
2992         if (journal)
2993                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
2994         else
2995                 return try_to_free_buffers(page);
2996 }
2997
2998 /*
2999  * ext4_get_block used when preparing for a DIO write or buffer write.
3000  * We allocate an uinitialized extent if blocks haven't been allocated.
3001  * The extent will be converted to initialized after the IO is complete.
3002  */
3003 int ext4_get_block_write(struct inode *inode, sector_t iblock,
3004                    struct buffer_head *bh_result, int create)
3005 {
3006         ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3007                    inode->i_ino, create);
3008         return _ext4_get_block(inode, iblock, bh_result,
3009                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
3010 }
3011
3012 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
3013                    struct buffer_head *bh_result, int create)
3014 {
3015         ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
3016                    inode->i_ino, create);
3017         return _ext4_get_block(inode, iblock, bh_result,
3018                                EXT4_GET_BLOCKS_NO_LOCK);
3019 }
3020
3021 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3022                             ssize_t size, void *private)
3023 {
3024         ext4_io_end_t *io_end = iocb->private;
3025
3026         /* if not async direct IO just return */
3027         if (!io_end)
3028                 return;
3029
3030         ext_debug("ext4_end_io_dio(): io_end 0x%p "
3031                   "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3032                   iocb->private, io_end->inode->i_ino, iocb, offset,
3033                   size);
3034
3035         iocb->private = NULL;
3036         io_end->offset = offset;
3037         io_end->size = size;
3038         ext4_put_io_end(io_end);
3039 }
3040
3041 /*
3042  * For ext4 extent files, ext4 will do direct-io write to holes,
3043  * preallocated extents, and those write extend the file, no need to
3044  * fall back to buffered IO.
3045  *
3046  * For holes, we fallocate those blocks, mark them as unwritten
3047  * If those blocks were preallocated, we mark sure they are split, but
3048  * still keep the range to write as unwritten.
3049  *
3050  * The unwritten extents will be converted to written when DIO is completed.
3051  * For async direct IO, since the IO may still pending when return, we
3052  * set up an end_io call back function, which will do the conversion
3053  * when async direct IO completed.
3054  *
3055  * If the O_DIRECT write will extend the file then add this inode to the
3056  * orphan list.  So recovery will truncate it back to the original size
3057  * if the machine crashes during the write.
3058  *
3059  */
3060 static ssize_t ext4_ext_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
3061                                   loff_t offset)
3062 {
3063         struct file *file = iocb->ki_filp;
3064         struct inode *inode = file->f_mapping->host;
3065         ssize_t ret;
3066         size_t count = iov_iter_count(iter);
3067         int overwrite = 0;
3068         get_block_t *get_block_func = NULL;
3069         int dio_flags = 0;
3070         loff_t final_size = offset + count;
3071         ext4_io_end_t *io_end = NULL;
3072
3073         /* Use the old path for reads and writes beyond i_size. */
3074         if (iov_iter_rw(iter) != WRITE || final_size > inode->i_size)
3075                 return ext4_ind_direct_IO(iocb, iter, offset);
3076
3077         BUG_ON(iocb->private == NULL);
3078
3079         /*
3080          * Make all waiters for direct IO properly wait also for extent
3081          * conversion. This also disallows race between truncate() and
3082          * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3083          */
3084         if (iov_iter_rw(iter) == WRITE)
3085                 inode_dio_begin(inode);
3086
3087         /* If we do a overwrite dio, i_mutex locking can be released */
3088         overwrite = *((int *)iocb->private);
3089
3090         if (overwrite) {
3091                 down_read(&EXT4_I(inode)->i_data_sem);
3092                 mutex_unlock(&inode->i_mutex);
3093         }
3094
3095         /*
3096          * We could direct write to holes and fallocate.
3097          *
3098          * Allocated blocks to fill the hole are marked as
3099          * unwritten to prevent parallel buffered read to expose
3100          * the stale data before DIO complete the data IO.
3101          *
3102          * As to previously fallocated extents, ext4 get_block will
3103          * just simply mark the buffer mapped but still keep the
3104          * extents unwritten.
3105          *
3106          * For non AIO case, we will convert those unwritten extents
3107          * to written after return back from blockdev_direct_IO.
3108          *
3109          * For async DIO, the conversion needs to be deferred when the
3110          * IO is completed. The ext4 end_io callback function will be
3111          * called to take care of the conversion work.  Here for async
3112          * case, we allocate an io_end structure to hook to the iocb.
3113          */
3114         iocb->private = NULL;
3115         ext4_inode_aio_set(inode, NULL);
3116         if (!is_sync_kiocb(iocb)) {
3117                 io_end = ext4_init_io_end(inode, GFP_NOFS);
3118                 if (!io_end) {
3119                         ret = -ENOMEM;
3120                         goto retake_lock;
3121                 }
3122                 /*
3123                  * Grab reference for DIO. Will be dropped in ext4_end_io_dio()
3124                  */
3125                 iocb->private = ext4_get_io_end(io_end);
3126                 /*
3127                  * we save the io structure for current async direct
3128                  * IO, so that later ext4_map_blocks() could flag the
3129                  * io structure whether there is a unwritten extents
3130                  * needs to be converted when IO is completed.
3131                  */
3132                 ext4_inode_aio_set(inode, io_end);
3133         }
3134
3135         if (overwrite) {
3136                 get_block_func = ext4_get_block_write_nolock;
3137         } else {
3138                 get_block_func = ext4_get_block_write;
3139                 dio_flags = DIO_LOCKING;
3140         }
3141 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3142         BUG_ON(ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode));
3143 #endif
3144         if (IS_DAX(inode))
3145                 ret = dax_do_io(iocb, inode, iter, offset, get_block_func,
3146                                 ext4_end_io_dio, dio_flags);
3147         else
3148                 ret = __blockdev_direct_IO(iocb, inode,
3149                                            inode->i_sb->s_bdev, iter, offset,
3150                                            get_block_func,
3151                                            ext4_end_io_dio, NULL, dio_flags);
3152
3153         /*
3154          * Put our reference to io_end. This can free the io_end structure e.g.
3155          * in sync IO case or in case of error. It can even perform extent
3156          * conversion if all bios we submitted finished before we got here.
3157          * Note that in that case iocb->private can be already set to NULL
3158          * here.
3159          */
3160         if (io_end) {
3161                 ext4_inode_aio_set(inode, NULL);
3162                 ext4_put_io_end(io_end);
3163                 /*
3164                  * When no IO was submitted ext4_end_io_dio() was not
3165                  * called so we have to put iocb's reference.
3166                  */
3167                 if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) {
3168                         WARN_ON(iocb->private != io_end);
3169                         WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
3170                         ext4_put_io_end(io_end);
3171                         iocb->private = NULL;
3172                 }
3173         }
3174         if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3175                                                 EXT4_STATE_DIO_UNWRITTEN)) {
3176                 int err;
3177                 /*
3178                  * for non AIO case, since the IO is already
3179                  * completed, we could do the conversion right here
3180                  */
3181                 err = ext4_convert_unwritten_extents(NULL, inode,
3182                                                      offset, ret);
3183                 if (err < 0)
3184                         ret = err;
3185                 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3186         }
3187
3188 retake_lock:
3189         if (iov_iter_rw(iter) == WRITE)
3190                 inode_dio_end(inode);
3191         /* take i_mutex locking again if we do a ovewrite dio */
3192         if (overwrite) {
3193                 up_read(&EXT4_I(inode)->i_data_sem);
3194                 mutex_lock(&inode->i_mutex);
3195         }
3196
3197         return ret;
3198 }
3199
3200 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
3201                               loff_t offset)
3202 {
3203         struct file *file = iocb->ki_filp;
3204         struct inode *inode = file->f_mapping->host;
3205         size_t count = iov_iter_count(iter);
3206         ssize_t ret;
3207
3208 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3209         if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3210                 return 0;
3211 #endif
3212
3213         /*
3214          * If we are doing data journalling we don't support O_DIRECT
3215          */
3216         if (ext4_should_journal_data(inode))
3217                 return 0;
3218
3219         /* Let buffer I/O handle the inline data case. */
3220         if (ext4_has_inline_data(inode))
3221                 return 0;
3222
3223         trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
3224         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3225                 ret = ext4_ext_direct_IO(iocb, iter, offset);
3226         else
3227                 ret = ext4_ind_direct_IO(iocb, iter, offset);
3228         trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
3229         return ret;
3230 }
3231
3232 /*
3233  * Pages can be marked dirty completely asynchronously from ext4's journalling
3234  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3235  * much here because ->set_page_dirty is called under VFS locks.  The page is
3236  * not necessarily locked.
3237  *
3238  * We cannot just dirty the page and leave attached buffers clean, because the
3239  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3240  * or jbddirty because all the journalling code will explode.
3241  *
3242  * So what we do is to mark the page "pending dirty" and next time writepage
3243  * is called, propagate that into the buffers appropriately.
3244  */
3245 static int ext4_journalled_set_page_dirty(struct page *page)
3246 {
3247         SetPageChecked(page);
3248         return __set_page_dirty_nobuffers(page);
3249 }
3250
3251 static const struct address_space_operations ext4_aops = {
3252         .readpage               = ext4_readpage,
3253         .readpages              = ext4_readpages,
3254         .writepage              = ext4_writepage,
3255         .writepages             = ext4_writepages,
3256         .write_begin            = ext4_write_begin,
3257         .write_end              = ext4_write_end,
3258         .bmap                   = ext4_bmap,
3259         .invalidatepage         = ext4_invalidatepage,
3260         .releasepage            = ext4_releasepage,
3261         .direct_IO              = ext4_direct_IO,
3262         .migratepage            = buffer_migrate_page,
3263         .is_partially_uptodate  = block_is_partially_uptodate,
3264         .error_remove_page      = generic_error_remove_page,
3265 };
3266
3267 static const struct address_space_operations ext4_journalled_aops = {
3268         .readpage               = ext4_readpage,
3269         .readpages              = ext4_readpages,
3270         .writepage              = ext4_writepage,
3271         .writepages             = ext4_writepages,
3272         .write_begin            = ext4_write_begin,
3273         .write_end              = ext4_journalled_write_end,
3274         .set_page_dirty         = ext4_journalled_set_page_dirty,
3275         .bmap                   = ext4_bmap,
3276         .invalidatepage         = ext4_journalled_invalidatepage,
3277         .releasepage            = ext4_releasepage,
3278         .direct_IO              = ext4_direct_IO,
3279         .is_partially_uptodate  = block_is_partially_uptodate,
3280         .error_remove_page      = generic_error_remove_page,
3281 };
3282
3283 static const struct address_space_operations ext4_da_aops = {
3284         .readpage               = ext4_readpage,
3285         .readpages              = ext4_readpages,
3286         .writepage              = ext4_writepage,
3287         .writepages             = ext4_writepages,
3288         .write_begin            = ext4_da_write_begin,
3289         .write_end              = ext4_da_write_end,
3290         .bmap                   = ext4_bmap,
3291         .invalidatepage         = ext4_da_invalidatepage,
3292         .releasepage            = ext4_releasepage,
3293         .direct_IO              = ext4_direct_IO,
3294         .migratepage            = buffer_migrate_page,
3295         .is_partially_uptodate  = block_is_partially_uptodate,
3296         .error_remove_page      = generic_error_remove_page,
3297 };
3298
3299 void ext4_set_aops(struct inode *inode)
3300 {
3301         switch (ext4_inode_journal_mode(inode)) {
3302         case EXT4_INODE_ORDERED_DATA_MODE:
3303                 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3304                 break;
3305         case EXT4_INODE_WRITEBACK_DATA_MODE:
3306                 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3307                 break;
3308         case EXT4_INODE_JOURNAL_DATA_MODE:
3309                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3310                 return;
3311         default:
3312                 BUG();
3313         }
3314         if (test_opt(inode->i_sb, DELALLOC))
3315                 inode->i_mapping->a_ops = &ext4_da_aops;
3316         else
3317                 inode->i_mapping->a_ops = &ext4_aops;
3318 }
3319
3320 static int __ext4_block_zero_page_range(handle_t *handle,
3321                 struct address_space *mapping, loff_t from, loff_t length)
3322 {
3323         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3324         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3325         unsigned blocksize, pos;
3326         ext4_lblk_t iblock;
3327         struct inode *inode = mapping->host;
3328         struct buffer_head *bh;
3329         struct page *page;
3330         int err = 0;
3331
3332         page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3333                                    mapping_gfp_mask(mapping) & ~__GFP_FS);
3334         if (!page)
3335                 return -ENOMEM;
3336
3337         blocksize = inode->i_sb->s_blocksize;
3338
3339         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3340
3341         if (!page_has_buffers(page))
3342                 create_empty_buffers(page, blocksize, 0);
3343
3344         /* Find the buffer that contains "offset" */
3345         bh = page_buffers(page);
3346         pos = blocksize;
3347         while (offset >= pos) {
3348                 bh = bh->b_this_page;
3349                 iblock++;
3350                 pos += blocksize;
3351         }
3352         if (buffer_freed(bh)) {
3353                 BUFFER_TRACE(bh, "freed: skip");
3354                 goto unlock;
3355         }
3356         if (!buffer_mapped(bh)) {
3357                 BUFFER_TRACE(bh, "unmapped");
3358                 ext4_get_block(inode, iblock, bh, 0);
3359                 /* unmapped? It's a hole - nothing to do */
3360                 if (!buffer_mapped(bh)) {
3361                         BUFFER_TRACE(bh, "still unmapped");
3362                         goto unlock;
3363                 }
3364         }
3365
3366         /* Ok, it's mapped. Make sure it's up-to-date */
3367         if (PageUptodate(page))
3368                 set_buffer_uptodate(bh);
3369
3370         if (!buffer_uptodate(bh)) {
3371                 err = -EIO;
3372                 ll_rw_block(READ, 1, &bh);
3373                 wait_on_buffer(bh);
3374                 /* Uhhuh. Read error. Complain and punt. */
3375                 if (!buffer_uptodate(bh))
3376                         goto unlock;
3377                 if (S_ISREG(inode->i_mode) &&
3378                     ext4_encrypted_inode(inode)) {
3379                         /* We expect the key to be set. */
3380                         BUG_ON(!ext4_has_encryption_key(inode));
3381                         BUG_ON(blocksize != PAGE_CACHE_SIZE);
3382                         WARN_ON_ONCE(ext4_decrypt_one(inode, page));
3383                 }
3384         }
3385         if (ext4_should_journal_data(inode)) {
3386                 BUFFER_TRACE(bh, "get write access");
3387                 err = ext4_journal_get_write_access(handle, bh);
3388                 if (err)
3389                         goto unlock;
3390         }
3391         zero_user(page, offset, length);
3392         BUFFER_TRACE(bh, "zeroed end of block");
3393
3394         if (ext4_should_journal_data(inode)) {
3395                 err = ext4_handle_dirty_metadata(handle, inode, bh);
3396         } else {
3397                 err = 0;
3398                 mark_buffer_dirty(bh);
3399                 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE))
3400                         err = ext4_jbd2_file_inode(handle, inode);
3401         }
3402
3403 unlock:
3404         unlock_page(page);
3405         page_cache_release(page);
3406         return err;
3407 }
3408
3409 /*
3410  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3411  * starting from file offset 'from'.  The range to be zero'd must
3412  * be contained with in one block.  If the specified range exceeds
3413  * the end of the block it will be shortened to end of the block
3414  * that cooresponds to 'from'
3415  */
3416 static int ext4_block_zero_page_range(handle_t *handle,
3417                 struct address_space *mapping, loff_t from, loff_t length)
3418 {
3419         struct inode *inode = mapping->host;
3420         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3421         unsigned blocksize = inode->i_sb->s_blocksize;
3422         unsigned max = blocksize - (offset & (blocksize - 1));
3423
3424         /*
3425          * correct length if it does not fall between
3426          * 'from' and the end of the block
3427          */
3428         if (length > max || length < 0)
3429                 length = max;
3430
3431         if (IS_DAX(inode))
3432                 return dax_zero_page_range(inode, from, length, ext4_get_block);
3433         return __ext4_block_zero_page_range(handle, mapping, from, length);
3434 }
3435
3436 /*
3437  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3438  * up to the end of the block which corresponds to `from'.
3439  * This required during truncate. We need to physically zero the tail end
3440  * of that block so it doesn't yield old data if the file is later grown.
3441  */
3442 static int ext4_block_truncate_page(handle_t *handle,
3443                 struct address_space *mapping, loff_t from)
3444 {
3445         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3446         unsigned length;
3447         unsigned blocksize;
3448         struct inode *inode = mapping->host;
3449
3450         blocksize = inode->i_sb->s_blocksize;
3451         length = blocksize - (offset & (blocksize - 1));
3452
3453         return ext4_block_zero_page_range(handle, mapping, from, length);
3454 }
3455
3456 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3457                              loff_t lstart, loff_t length)
3458 {
3459         struct super_block *sb = inode->i_sb;
3460         struct address_space *mapping = inode->i_mapping;
3461         unsigned partial_start, partial_end;
3462         ext4_fsblk_t start, end;
3463         loff_t byte_end = (lstart + length - 1);
3464         int err = 0;
3465
3466         partial_start = lstart & (sb->s_blocksize - 1);
3467         partial_end = byte_end & (sb->s_blocksize - 1);
3468
3469         start = lstart >> sb->s_blocksize_bits;
3470         end = byte_end >> sb->s_blocksize_bits;
3471
3472         /* Handle partial zero within the single block */
3473         if (start == end &&
3474             (partial_start || (partial_end != sb->s_blocksize - 1))) {
3475                 err = ext4_block_zero_page_range(handle, mapping,
3476                                                  lstart, length);
3477                 return err;
3478         }
3479         /* Handle partial zero out on the start of the range */
3480         if (partial_start) {
3481                 err = ext4_block_zero_page_range(handle, mapping,
3482                                                  lstart, sb->s_blocksize);
3483                 if (err)
3484                         return err;
3485         }
3486         /* Handle partial zero out on the end of the range */
3487         if (partial_end != sb->s_blocksize - 1)
3488                 err = ext4_block_zero_page_range(handle, mapping,
3489                                                  byte_end - partial_end,
3490                                                  partial_end + 1);
3491         return err;
3492 }
3493
3494 int ext4_can_truncate(struct inode *inode)
3495 {
3496         if (S_ISREG(inode->i_mode))
3497                 return 1;
3498         if (S_ISDIR(inode->i_mode))
3499                 return 1;
3500         if (S_ISLNK(inode->i_mode))
3501                 return !ext4_inode_is_fast_symlink(inode);
3502         return 0;
3503 }
3504
3505 /*
3506  * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3507  * associated with the given offset and length
3508  *
3509  * @inode:  File inode
3510  * @offset: The offset where the hole will begin
3511  * @len:    The length of the hole
3512  *
3513  * Returns: 0 on success or negative on failure
3514  */
3515
3516 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3517 {
3518         struct super_block *sb = inode->i_sb;
3519         ext4_lblk_t first_block, stop_block;
3520         struct address_space *mapping = inode->i_mapping;
3521         loff_t first_block_offset, last_block_offset;
3522         handle_t *handle;
3523         unsigned int credits;
3524         int ret = 0;
3525
3526         if (!S_ISREG(inode->i_mode))
3527                 return -EOPNOTSUPP;
3528
3529         trace_ext4_punch_hole(inode, offset, length, 0);
3530
3531         /*
3532          * Write out all dirty pages to avoid race conditions
3533          * Then release them.
3534          */
3535         if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3536                 ret = filemap_write_and_wait_range(mapping, offset,
3537                                                    offset + length - 1);
3538                 if (ret)
3539                         return ret;
3540         }
3541
3542         mutex_lock(&inode->i_mutex);
3543
3544         /* No need to punch hole beyond i_size */
3545         if (offset >= inode->i_size)
3546                 goto out_mutex;
3547
3548         /*
3549          * If the hole extends beyond i_size, set the hole
3550          * to end after the page that contains i_size
3551          */
3552         if (offset + length > inode->i_size) {
3553                 length = inode->i_size +
3554                    PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3555                    offset;
3556         }
3557
3558         if (offset & (sb->s_blocksize - 1) ||
3559             (offset + length) & (sb->s_blocksize - 1)) {
3560                 /*
3561                  * Attach jinode to inode for jbd2 if we do any zeroing of
3562                  * partial block
3563                  */
3564                 ret = ext4_inode_attach_jinode(inode);
3565                 if (ret < 0)
3566                         goto out_mutex;
3567
3568         }
3569
3570         first_block_offset = round_up(offset, sb->s_blocksize);
3571         last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3572
3573         /* Now release the pages and zero block aligned part of pages*/
3574         if (last_block_offset > first_block_offset)
3575                 truncate_pagecache_range(inode, first_block_offset,
3576                                          last_block_offset);
3577
3578         /* Wait all existing dio workers, newcomers will block on i_mutex */
3579         ext4_inode_block_unlocked_dio(inode);
3580         inode_dio_wait(inode);
3581
3582         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3583                 credits = ext4_writepage_trans_blocks(inode);
3584         else
3585                 credits = ext4_blocks_for_truncate(inode);
3586         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3587         if (IS_ERR(handle)) {
3588                 ret = PTR_ERR(handle);
3589                 ext4_std_error(sb, ret);
3590                 goto out_dio;
3591         }
3592
3593         ret = ext4_zero_partial_blocks(handle, inode, offset,
3594                                        length);
3595         if (ret)
3596                 goto out_stop;
3597
3598         first_block = (offset + sb->s_blocksize - 1) >>
3599                 EXT4_BLOCK_SIZE_BITS(sb);
3600         stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3601
3602         /* If there are no blocks to remove, return now */
3603         if (first_block >= stop_block)
3604                 goto out_stop;
3605
3606         down_write(&EXT4_I(inode)->i_data_sem);
3607         ext4_discard_preallocations(inode);
3608
3609         ret = ext4_es_remove_extent(inode, first_block,
3610                                     stop_block - first_block);
3611         if (ret) {
3612                 up_write(&EXT4_I(inode)->i_data_sem);
3613                 goto out_stop;
3614         }
3615
3616         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3617                 ret = ext4_ext_remove_space(inode, first_block,
3618                                             stop_block - 1);
3619         else
3620                 ret = ext4_ind_remove_space(handle, inode, first_block,
3621                                             stop_block);
3622
3623         up_write(&EXT4_I(inode)->i_data_sem);
3624         if (IS_SYNC(inode))
3625                 ext4_handle_sync(handle);
3626
3627         /* Now release the pages again to reduce race window */
3628         if (last_block_offset > first_block_offset)
3629                 truncate_pagecache_range(inode, first_block_offset,
3630                                          last_block_offset);
3631
3632         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3633         ext4_mark_inode_dirty(handle, inode);
3634 out_stop:
3635         ext4_journal_stop(handle);
3636 out_dio:
3637         ext4_inode_resume_unlocked_dio(inode);
3638 out_mutex:
3639         mutex_unlock(&inode->i_mutex);
3640         return ret;
3641 }
3642
3643 int ext4_inode_attach_jinode(struct inode *inode)
3644 {
3645         struct ext4_inode_info *ei = EXT4_I(inode);
3646         struct jbd2_inode *jinode;
3647
3648         if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
3649                 return 0;
3650
3651         jinode = jbd2_alloc_inode(GFP_KERNEL);
3652         spin_lock(&inode->i_lock);
3653         if (!ei->jinode) {
3654                 if (!jinode) {
3655                         spin_unlock(&inode->i_lock);
3656                         return -ENOMEM;
3657                 }
3658                 ei->jinode = jinode;
3659                 jbd2_journal_init_jbd_inode(ei->jinode, inode);
3660                 jinode = NULL;
3661         }
3662         spin_unlock(&inode->i_lock);
3663         if (unlikely(jinode != NULL))
3664                 jbd2_free_inode(jinode);
3665         return 0;
3666 }
3667
3668 /*
3669  * ext4_truncate()
3670  *
3671  * We block out ext4_get_block() block instantiations across the entire
3672  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3673  * simultaneously on behalf of the same inode.
3674  *
3675  * As we work through the truncate and commit bits of it to the journal there
3676  * is one core, guiding principle: the file's tree must always be consistent on
3677  * disk.  We must be able to restart the truncate after a crash.
3678  *
3679  * The file's tree may be transiently inconsistent in memory (although it
3680  * probably isn't), but whenever we close off and commit a journal transaction,
3681  * the contents of (the filesystem + the journal) must be consistent and
3682  * restartable.  It's pretty simple, really: bottom up, right to left (although
3683  * left-to-right works OK too).
3684  *
3685  * Note that at recovery time, journal replay occurs *before* the restart of
3686  * truncate against the orphan inode list.
3687  *
3688  * The committed inode has the new, desired i_size (which is the same as
3689  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3690  * that this inode's truncate did not complete and it will again call
3691  * ext4_truncate() to have another go.  So there will be instantiated blocks
3692  * to the right of the truncation point in a crashed ext4 filesystem.  But
3693  * that's fine - as long as they are linked from the inode, the post-crash
3694  * ext4_truncate() run will find them and release them.
3695  */
3696 void ext4_truncate(struct inode *inode)
3697 {
3698         struct ext4_inode_info *ei = EXT4_I(inode);
3699         unsigned int credits;
3700         handle_t *handle;
3701         struct address_space *mapping = inode->i_mapping;
3702
3703         /*
3704          * There is a possibility that we're either freeing the inode
3705          * or it's a completely new inode. In those cases we might not
3706          * have i_mutex locked because it's not necessary.
3707          */
3708         if (!(inode->i_state & (I_NEW|I_FREEING)))
3709                 WARN_ON(!mutex_is_locked(&inode->i_mutex));
3710         trace_ext4_truncate_enter(inode);
3711
3712         if (!ext4_can_truncate(inode))
3713                 return;
3714
3715         ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3716
3717         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3718                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3719
3720         if (ext4_has_inline_data(inode)) {
3721                 int has_inline = 1;
3722
3723                 ext4_inline_data_truncate(inode, &has_inline);
3724                 if (has_inline)
3725                         return;
3726         }
3727
3728         /* If we zero-out tail of the page, we have to create jinode for jbd2 */
3729         if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
3730                 if (ext4_inode_attach_jinode(inode) < 0)
3731                         return;
3732         }
3733
3734         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3735                 credits = ext4_writepage_trans_blocks(inode);
3736         else
3737                 credits = ext4_blocks_for_truncate(inode);
3738
3739         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3740         if (IS_ERR(handle)) {
3741                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
3742                 return;
3743         }
3744
3745         if (inode->i_size & (inode->i_sb->s_blocksize - 1))
3746                 ext4_block_truncate_page(handle, mapping, inode->i_size);
3747
3748         /*
3749          * We add the inode to the orphan list, so that if this
3750          * truncate spans multiple transactions, and we crash, we will
3751          * resume the truncate when the filesystem recovers.  It also
3752          * marks the inode dirty, to catch the new size.
3753          *
3754          * Implication: the file must always be in a sane, consistent
3755          * truncatable state while each transaction commits.
3756          */
3757         if (ext4_orphan_add(handle, inode))
3758                 goto out_stop;
3759
3760         down_write(&EXT4_I(inode)->i_data_sem);
3761
3762         ext4_discard_preallocations(inode);
3763
3764         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3765                 ext4_ext_truncate(handle, inode);
3766         else
3767                 ext4_ind_truncate(handle, inode);
3768
3769         up_write(&ei->i_data_sem);
3770
3771         if (IS_SYNC(inode))
3772                 ext4_handle_sync(handle);
3773
3774 out_stop:
3775         /*
3776          * If this was a simple ftruncate() and the file will remain alive,
3777          * then we need to clear up the orphan record which we created above.
3778          * However, if this was a real unlink then we were called by
3779          * ext4_evict_inode(), and we allow that function to clean up the
3780          * orphan info for us.
3781          */
3782         if (inode->i_nlink)
3783                 ext4_orphan_del(handle, inode);
3784
3785         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3786         ext4_mark_inode_dirty(handle, inode);
3787         ext4_journal_stop(handle);
3788
3789         trace_ext4_truncate_exit(inode);
3790 }
3791
3792 /*
3793  * ext4_get_inode_loc returns with an extra refcount against the inode's
3794  * underlying buffer_head on success. If 'in_mem' is true, we have all
3795  * data in memory that is needed to recreate the on-disk version of this
3796  * inode.
3797  */
3798 static int __ext4_get_inode_loc(struct inode *inode,
3799                                 struct ext4_iloc *iloc, int in_mem)
3800 {
3801         struct ext4_group_desc  *gdp;
3802         struct buffer_head      *bh;
3803         struct super_block      *sb = inode->i_sb;
3804         ext4_fsblk_t            block;
3805         int                     inodes_per_block, inode_offset;
3806
3807         iloc->bh = NULL;
3808         if (!ext4_valid_inum(sb, inode->i_ino))
3809                 return -EIO;
3810
3811         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3812         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3813         if (!gdp)
3814                 return -EIO;
3815
3816         /*
3817          * Figure out the offset within the block group inode table
3818          */
3819         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3820         inode_offset = ((inode->i_ino - 1) %
3821                         EXT4_INODES_PER_GROUP(sb));
3822         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3823         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3824
3825         bh = sb_getblk(sb, block);
3826         if (unlikely(!bh))
3827                 return -ENOMEM;
3828         if (!buffer_uptodate(bh)) {
3829                 lock_buffer(bh);
3830
3831                 /*
3832                  * If the buffer has the write error flag, we have failed
3833                  * to write out another inode in the same block.  In this
3834                  * case, we don't have to read the block because we may
3835                  * read the old inode data successfully.
3836                  */
3837                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3838                         set_buffer_uptodate(bh);
3839
3840                 if (buffer_uptodate(bh)) {
3841                         /* someone brought it uptodate while we waited */
3842                         unlock_buffer(bh);
3843                         goto has_buffer;
3844                 }
3845
3846                 /*
3847                  * If we have all information of the inode in memory and this
3848                  * is the only valid inode in the block, we need not read the
3849                  * block.
3850                  */
3851                 if (in_mem) {
3852                         struct buffer_head *bitmap_bh;
3853                         int i, start;
3854
3855                         start = inode_offset & ~(inodes_per_block - 1);
3856
3857                         /* Is the inode bitmap in cache? */
3858                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3859                         if (unlikely(!bitmap_bh))
3860                                 goto make_io;
3861
3862                         /*
3863                          * If the inode bitmap isn't in cache then the
3864                          * optimisation may end up performing two reads instead
3865                          * of one, so skip it.
3866                          */
3867                         if (!buffer_uptodate(bitmap_bh)) {
3868                                 brelse(bitmap_bh);
3869                                 goto make_io;
3870                         }
3871                         for (i = start; i < start + inodes_per_block; i++) {
3872                                 if (i == inode_offset)
3873                                         continue;
3874                                 if (ext4_test_bit(i, bitmap_bh->b_data))
3875                                         break;
3876                         }
3877                         brelse(bitmap_bh);
3878                         if (i == start + inodes_per_block) {
3879                                 /* all other inodes are free, so skip I/O */
3880                                 memset(bh->b_data, 0, bh->b_size);
3881                                 set_buffer_uptodate(bh);
3882                                 unlock_buffer(bh);
3883                                 goto has_buffer;
3884                         }
3885                 }
3886
3887 make_io:
3888                 /*
3889                  * If we need to do any I/O, try to pre-readahead extra
3890                  * blocks from the inode table.
3891                  */
3892                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3893                         ext4_fsblk_t b, end, table;
3894                         unsigned num;
3895                         __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
3896
3897                         table = ext4_inode_table(sb, gdp);
3898                         /* s_inode_readahead_blks is always a power of 2 */
3899                         b = block & ~((ext4_fsblk_t) ra_blks - 1);
3900                         if (table > b)
3901                                 b = table;
3902                         end = b + ra_blks;
3903                         num = EXT4_INODES_PER_GROUP(sb);
3904                         if (ext4_has_group_desc_csum(sb))
3905                                 num -= ext4_itable_unused_count(sb, gdp);
3906                         table += num / inodes_per_block;
3907                         if (end > table)
3908                                 end = table;
3909                         while (b <= end)
3910                                 sb_breadahead(sb, b++);
3911                 }
3912
3913                 /*
3914                  * There are other valid inodes in the buffer, this inode
3915                  * has in-inode xattrs, or we don't have this inode in memory.
3916                  * Read the block from disk.
3917                  */
3918                 trace_ext4_load_inode(inode);
3919                 get_bh(bh);
3920                 bh->b_end_io = end_buffer_read_sync;
3921                 submit_bh(READ | REQ_META | REQ_PRIO, bh);
3922                 wait_on_buffer(bh);
3923                 if (!buffer_uptodate(bh)) {
3924                         EXT4_ERROR_INODE_BLOCK(inode, block,
3925                                                "unable to read itable block");
3926                         brelse(bh);
3927                         return -EIO;
3928                 }
3929         }
3930 has_buffer:
3931         iloc->bh = bh;
3932         return 0;
3933 }
3934
3935 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3936 {
3937         /* We have all inode data except xattrs in memory here. */
3938         return __ext4_get_inode_loc(inode, iloc,
3939                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3940 }
3941
3942 void ext4_set_inode_flags(struct inode *inode)
3943 {
3944         unsigned int flags = EXT4_I(inode)->i_flags;
3945         unsigned int new_fl = 0;
3946
3947         if (flags & EXT4_SYNC_FL)
3948                 new_fl |= S_SYNC;
3949         if (flags & EXT4_APPEND_FL)
3950                 new_fl |= S_APPEND;
3951         if (flags & EXT4_IMMUTABLE_FL)
3952                 new_fl |= S_IMMUTABLE;
3953         if (flags & EXT4_NOATIME_FL)
3954                 new_fl |= S_NOATIME;
3955         if (flags & EXT4_DIRSYNC_FL)
3956                 new_fl |= S_DIRSYNC;
3957         if (test_opt(inode->i_sb, DAX))
3958                 new_fl |= S_DAX;
3959         inode_set_flags(inode, new_fl,
3960                         S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX);
3961 }
3962
3963 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3964 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3965 {
3966         unsigned int vfs_fl;
3967         unsigned long old_fl, new_fl;
3968
3969         do {
3970                 vfs_fl = ei->vfs_inode.i_flags;
3971                 old_fl = ei->i_flags;
3972                 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3973                                 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3974                                 EXT4_DIRSYNC_FL);
3975                 if (vfs_fl & S_SYNC)
3976                         new_fl |= EXT4_SYNC_FL;
3977                 if (vfs_fl & S_APPEND)
3978                         new_fl |= EXT4_APPEND_FL;
3979                 if (vfs_fl & S_IMMUTABLE)
3980                         new_fl |= EXT4_IMMUTABLE_FL;
3981                 if (vfs_fl & S_NOATIME)
3982                         new_fl |= EXT4_NOATIME_FL;
3983                 if (vfs_fl & S_DIRSYNC)
3984                         new_fl |= EXT4_DIRSYNC_FL;
3985         } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3986 }
3987
3988 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3989                                   struct ext4_inode_info *ei)
3990 {
3991         blkcnt_t i_blocks ;
3992         struct inode *inode = &(ei->vfs_inode);
3993         struct super_block *sb = inode->i_sb;
3994
3995         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3996                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3997                 /* we are using combined 48 bit field */
3998                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3999                                         le32_to_cpu(raw_inode->i_blocks_lo);
4000                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4001                         /* i_blocks represent file system block size */
4002                         return i_blocks  << (inode->i_blkbits - 9);
4003                 } else {
4004                         return i_blocks;
4005                 }
4006         } else {
4007                 return le32_to_cpu(raw_inode->i_blocks_lo);
4008         }
4009 }
4010
4011 static inline void ext4_iget_extra_inode(struct inode *inode,
4012                                          struct ext4_inode *raw_inode,
4013                                          struct ext4_inode_info *ei)
4014 {
4015         __le32 *magic = (void *)raw_inode +
4016                         EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4017         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4018                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4019                 ext4_find_inline_data_nolock(inode);
4020         } else
4021                 EXT4_I(inode)->i_inline_off = 0;
4022 }
4023
4024 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4025 {
4026         struct ext4_iloc iloc;
4027         struct ext4_inode *raw_inode;
4028         struct ext4_inode_info *ei;
4029         struct inode *inode;
4030         journal_t *journal = EXT4_SB(sb)->s_journal;
4031         long ret;
4032         int block;
4033         uid_t i_uid;
4034         gid_t i_gid;
4035
4036         inode = iget_locked(sb, ino);
4037         if (!inode)
4038                 return ERR_PTR(-ENOMEM);
4039         if (!(inode->i_state & I_NEW))
4040                 return inode;
4041
4042         ei = EXT4_I(inode);
4043         iloc.bh = NULL;
4044
4045         ret = __ext4_get_inode_loc(inode, &iloc, 0);
4046         if (ret < 0)
4047                 goto bad_inode;
4048         raw_inode = ext4_raw_inode(&iloc);
4049
4050         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4051                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4052                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4053                     EXT4_INODE_SIZE(inode->i_sb)) {
4054                         EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
4055                                 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
4056                                 EXT4_INODE_SIZE(inode->i_sb));
4057                         ret = -EIO;
4058                         goto bad_inode;
4059                 }
4060         } else
4061                 ei->i_extra_isize = 0;
4062
4063         /* Precompute checksum seed for inode metadata */
4064         if (ext4_has_metadata_csum(sb)) {
4065                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4066                 __u32 csum;
4067                 __le32 inum = cpu_to_le32(inode->i_ino);
4068                 __le32 gen = raw_inode->i_generation;
4069                 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4070                                    sizeof(inum));
4071                 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4072                                               sizeof(gen));
4073         }
4074
4075         if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4076                 EXT4_ERROR_INODE(inode, "checksum invalid");
4077                 ret = -EIO;
4078                 goto bad_inode;
4079         }
4080
4081         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4082         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4083         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4084         if (!(test_opt(inode->i_sb, NO_UID32))) {
4085                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4086                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4087         }
4088         i_uid_write(inode, i_uid);
4089         i_gid_write(inode, i_gid);
4090         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4091
4092         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
4093         ei->i_inline_off = 0;
4094         ei->i_dir_start_lookup = 0;
4095         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4096         /* We now have enough fields to check if the inode was active or not.
4097          * This is needed because nfsd might try to access dead inodes
4098          * the test is that same one that e2fsck uses
4099          * NeilBrown 1999oct15
4100          */
4101         if (inode->i_nlink == 0) {
4102                 if ((inode->i_mode == 0 ||
4103                      !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4104                     ino != EXT4_BOOT_LOADER_INO) {
4105                         /* this inode is deleted */
4106                         ret = -ESTALE;
4107                         goto bad_inode;
4108                 }
4109                 /* The only unlinked inodes we let through here have
4110                  * valid i_mode and are being read by the orphan
4111                  * recovery code: that's fine, we're about to complete
4112                  * the process of deleting those.
4113                  * OR it is the EXT4_BOOT_LOADER_INO which is
4114                  * not initialized on a new filesystem. */
4115         }
4116         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4117         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4118         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4119         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4120                 ei->i_file_acl |=
4121                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4122         inode->i_size = ext4_isize(raw_inode);
4123         ei->i_disksize = inode->i_size;
4124 #ifdef CONFIG_QUOTA
4125         ei->i_reserved_quota = 0;
4126 #endif
4127         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4128         ei->i_block_group = iloc.block_group;
4129         ei->i_last_alloc_group = ~0;
4130         /*
4131          * NOTE! The in-memory inode i_data array is in little-endian order
4132          * even on big-endian machines: we do NOT byteswap the block numbers!
4133          */
4134         for (block = 0; block < EXT4_N_BLOCKS; block++)
4135                 ei->i_data[block] = raw_inode->i_block[block];
4136         INIT_LIST_HEAD(&ei->i_orphan);
4137
4138         /*
4139          * Set transaction id's of transactions that have to be committed
4140          * to finish f[data]sync. We set them to currently running transaction
4141          * as we cannot be sure that the inode or some of its metadata isn't
4142          * part of the transaction - the inode could have been reclaimed and
4143          * now it is reread from disk.
4144          */
4145         if (journal) {
4146                 transaction_t *transaction;
4147                 tid_t tid;
4148
4149                 read_lock(&journal->j_state_lock);
4150                 if (journal->j_running_transaction)
4151                         transaction = journal->j_running_transaction;
4152                 else
4153                         transaction = journal->j_committing_transaction;
4154                 if (transaction)
4155                         tid = transaction->t_tid;
4156                 else
4157                         tid = journal->j_commit_sequence;
4158                 read_unlock(&journal->j_state_lock);
4159                 ei->i_sync_tid = tid;
4160                 ei->i_datasync_tid = tid;
4161         }
4162
4163         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4164                 if (ei->i_extra_isize == 0) {
4165                         /* The extra space is currently unused. Use it. */
4166                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4167                                             EXT4_GOOD_OLD_INODE_SIZE;
4168                 } else {
4169                         ext4_iget_extra_inode(inode, raw_inode, ei);
4170                 }
4171         }
4172
4173         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4174         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4175         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4176         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4177
4178         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4179                 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4180                 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4181                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4182                                 inode->i_version |=
4183                     (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4184                 }
4185         }
4186
4187         ret = 0;
4188         if (ei->i_file_acl &&
4189             !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4190                 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4191                                  ei->i_file_acl);
4192                 ret = -EIO;
4193                 goto bad_inode;
4194         } else if (!ext4_has_inline_data(inode)) {
4195                 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4196                         if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4197                             (S_ISLNK(inode->i_mode) &&
4198                              !ext4_inode_is_fast_symlink(inode))))
4199                                 /* Validate extent which is part of inode */
4200                                 ret = ext4_ext_check_inode(inode);
4201                 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4202                            (S_ISLNK(inode->i_mode) &&
4203                             !ext4_inode_is_fast_symlink(inode))) {
4204                         /* Validate block references which are part of inode */
4205                         ret = ext4_ind_check_inode(inode);
4206                 }
4207         }
4208         if (ret)
4209                 goto bad_inode;
4210
4211         if (S_ISREG(inode->i_mode)) {
4212                 inode->i_op = &ext4_file_inode_operations;
4213                 inode->i_fop = &ext4_file_operations;
4214                 ext4_set_aops(inode);
4215         } else if (S_ISDIR(inode->i_mode)) {
4216                 inode->i_op = &ext4_dir_inode_operations;
4217                 inode->i_fop = &ext4_dir_operations;
4218         } else if (S_ISLNK(inode->i_mode)) {
4219                 if (ext4_encrypted_inode(inode)) {
4220                         inode->i_op = &ext4_encrypted_symlink_inode_operations;
4221                         ext4_set_aops(inode);
4222                 } else if (ext4_inode_is_fast_symlink(inode)) {
4223                         inode->i_link = (char *)ei->i_data;
4224                         inode->i_op = &ext4_fast_symlink_inode_operations;
4225                         nd_terminate_link(ei->i_data, inode->i_size,
4226                                 sizeof(ei->i_data) - 1);
4227                 } else {
4228                         inode->i_op = &ext4_symlink_inode_operations;
4229                         ext4_set_aops(inode);
4230                 }
4231         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4232               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4233                 inode->i_op = &ext4_special_inode_operations;
4234                 if (raw_inode->i_block[0])
4235                         init_special_inode(inode, inode->i_mode,
4236                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4237                 else
4238                         init_special_inode(inode, inode->i_mode,
4239                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4240         } else if (ino == EXT4_BOOT_LOADER_INO) {
4241                 make_bad_inode(inode);
4242         } else {
4243                 ret = -EIO;
4244                 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4245                 goto bad_inode;
4246         }
4247         brelse(iloc.bh);
4248         ext4_set_inode_flags(inode);
4249         unlock_new_inode(inode);
4250         return inode;
4251
4252 bad_inode:
4253         brelse(iloc.bh);
4254         iget_failed(inode);
4255         return ERR_PTR(ret);
4256 }
4257
4258 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4259 {
4260         if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
4261                 return ERR_PTR(-EIO);
4262         return ext4_iget(sb, ino);
4263 }
4264
4265 static int ext4_inode_blocks_set(handle_t *handle,
4266                                 struct ext4_inode *raw_inode,
4267                                 struct ext4_inode_info *ei)
4268 {
4269         struct inode *inode = &(ei->vfs_inode);
4270         u64 i_blocks = inode->i_blocks;
4271         struct super_block *sb = inode->i_sb;
4272
4273         if (i_blocks <= ~0U) {
4274                 /*
4275                  * i_blocks can be represented in a 32 bit variable
4276                  * as multiple of 512 bytes
4277                  */
4278                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4279                 raw_inode->i_blocks_high = 0;
4280                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4281                 return 0;
4282         }
4283         if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4284                 return -EFBIG;
4285
4286         if (i_blocks <= 0xffffffffffffULL) {
4287                 /*
4288                  * i_blocks can be represented in a 48 bit variable
4289                  * as multiple of 512 bytes
4290                  */
4291                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4292                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4293                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4294         } else {
4295                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4296                 /* i_block is stored in file system block size */
4297                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4298                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4299                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4300         }
4301         return 0;
4302 }
4303
4304 struct other_inode {
4305         unsigned long           orig_ino;
4306         struct ext4_inode       *raw_inode;
4307 };
4308
4309 static int other_inode_match(struct inode * inode, unsigned long ino,
4310                              void *data)
4311 {
4312         struct other_inode *oi = (struct other_inode *) data;
4313
4314         if ((inode->i_ino != ino) ||
4315             (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4316                                I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
4317             ((inode->i_state & I_DIRTY_TIME) == 0))
4318                 return 0;
4319         spin_lock(&inode->i_lock);
4320         if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4321                                 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) &&
4322             (inode->i_state & I_DIRTY_TIME)) {
4323                 struct ext4_inode_info  *ei = EXT4_I(inode);
4324
4325                 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
4326                 spin_unlock(&inode->i_lock);
4327
4328                 spin_lock(&ei->i_raw_lock);
4329                 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
4330                 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
4331                 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
4332                 ext4_inode_csum_set(inode, oi->raw_inode, ei);
4333                 spin_unlock(&ei->i_raw_lock);
4334                 trace_ext4_other_inode_update_time(inode, oi->orig_ino);
4335                 return -1;
4336         }
4337         spin_unlock(&inode->i_lock);
4338         return -1;
4339 }
4340
4341 /*
4342  * Opportunistically update the other time fields for other inodes in
4343  * the same inode table block.
4344  */
4345 static void ext4_update_other_inodes_time(struct super_block *sb,
4346                                           unsigned long orig_ino, char *buf)
4347 {
4348         struct other_inode oi;
4349         unsigned long ino;
4350         int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4351         int inode_size = EXT4_INODE_SIZE(sb);
4352
4353         oi.orig_ino = orig_ino;
4354         ino = (orig_ino & ~(inodes_per_block - 1)) + 1;
4355         for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
4356                 if (ino == orig_ino)
4357                         continue;
4358                 oi.raw_inode = (struct ext4_inode *) buf;
4359                 (void) find_inode_nowait(sb, ino, other_inode_match, &oi);
4360         }
4361 }
4362
4363 /*
4364  * Post the struct inode info into an on-disk inode location in the
4365  * buffer-cache.  This gobbles the caller's reference to the
4366  * buffer_head in the inode location struct.
4367  *
4368  * The caller must have write access to iloc->bh.
4369  */
4370 static int ext4_do_update_inode(handle_t *handle,
4371                                 struct inode *inode,
4372                                 struct ext4_iloc *iloc)
4373 {
4374         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4375         struct ext4_inode_info *ei = EXT4_I(inode);
4376         struct buffer_head *bh = iloc->bh;
4377         struct super_block *sb = inode->i_sb;
4378         int err = 0, rc, block;
4379         int need_datasync = 0, set_large_file = 0;
4380         uid_t i_uid;
4381         gid_t i_gid;
4382
4383         spin_lock(&ei->i_raw_lock);
4384
4385         /* For fields not tracked in the in-memory inode,
4386          * initialise them to zero for new inodes. */
4387         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4388                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4389
4390         ext4_get_inode_flags(ei);
4391         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4392         i_uid = i_uid_read(inode);
4393         i_gid = i_gid_read(inode);
4394         if (!(test_opt(inode->i_sb, NO_UID32))) {
4395                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4396                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4397 /*
4398  * Fix up interoperability with old kernels. Otherwise, old inodes get
4399  * re-used with the upper 16 bits of the uid/gid intact
4400  */
4401                 if (!ei->i_dtime) {
4402                         raw_inode->i_uid_high =
4403                                 cpu_to_le16(high_16_bits(i_uid));
4404                         raw_inode->i_gid_high =
4405                                 cpu_to_le16(high_16_bits(i_gid));
4406                 } else {
4407                         raw_inode->i_uid_high = 0;
4408                         raw_inode->i_gid_high = 0;
4409                 }
4410         } else {
4411                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4412                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4413                 raw_inode->i_uid_high = 0;
4414                 raw_inode->i_gid_high = 0;
4415         }
4416         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4417
4418         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4419         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4420         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4421         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4422
4423         err = ext4_inode_blocks_set(handle, raw_inode, ei);
4424         if (err) {
4425                 spin_unlock(&ei->i_raw_lock);
4426                 goto out_brelse;
4427         }
4428         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4429         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4430         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4431                 raw_inode->i_file_acl_high =
4432                         cpu_to_le16(ei->i_file_acl >> 32);
4433         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4434         if (ei->i_disksize != ext4_isize(raw_inode)) {
4435                 ext4_isize_set(raw_inode, ei->i_disksize);
4436                 need_datasync = 1;
4437         }
4438         if (ei->i_disksize > 0x7fffffffULL) {
4439                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4440                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4441                                 EXT4_SB(sb)->s_es->s_rev_level ==
4442                     cpu_to_le32(EXT4_GOOD_OLD_REV))
4443                         set_large_file = 1;
4444         }
4445         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4446         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4447                 if (old_valid_dev(inode->i_rdev)) {
4448                         raw_inode->i_block[0] =
4449                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4450                         raw_inode->i_block[1] = 0;
4451                 } else {
4452                         raw_inode->i_block[0] = 0;
4453                         raw_inode->i_block[1] =
4454                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4455                         raw_inode->i_block[2] = 0;
4456                 }
4457         } else if (!ext4_has_inline_data(inode)) {
4458                 for (block = 0; block < EXT4_N_BLOCKS; block++)
4459                         raw_inode->i_block[block] = ei->i_data[block];
4460         }
4461
4462         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4463                 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4464                 if (ei->i_extra_isize) {
4465                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4466                                 raw_inode->i_version_hi =
4467                                         cpu_to_le32(inode->i_version >> 32);
4468                         raw_inode->i_extra_isize =
4469                                 cpu_to_le16(ei->i_extra_isize);
4470                 }
4471         }
4472         ext4_inode_csum_set(inode, raw_inode, ei);
4473         spin_unlock(&ei->i_raw_lock);
4474         if (inode->i_sb->s_flags & MS_LAZYTIME)
4475                 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
4476                                               bh->b_data);
4477
4478         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4479         rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4480         if (!err)
4481                 err = rc;
4482         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4483         if (set_large_file) {
4484                 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
4485                 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
4486                 if (err)
4487                         goto out_brelse;
4488                 ext4_update_dynamic_rev(sb);
4489                 EXT4_SET_RO_COMPAT_FEATURE(sb,
4490                                            EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4491                 ext4_handle_sync(handle);
4492                 err = ext4_handle_dirty_super(handle, sb);
4493         }
4494         ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4495 out_brelse:
4496         brelse(bh);
4497         ext4_std_error(inode->i_sb, err);
4498         return err;
4499 }
4500
4501 /*
4502  * ext4_write_inode()
4503  *
4504  * We are called from a few places:
4505  *
4506  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
4507  *   Here, there will be no transaction running. We wait for any running
4508  *   transaction to commit.
4509  *
4510  * - Within flush work (sys_sync(), kupdate and such).
4511  *   We wait on commit, if told to.
4512  *
4513  * - Within iput_final() -> write_inode_now()
4514  *   We wait on commit, if told to.
4515  *
4516  * In all cases it is actually safe for us to return without doing anything,
4517  * because the inode has been copied into a raw inode buffer in
4518  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
4519  * writeback.
4520  *
4521  * Note that we are absolutely dependent upon all inode dirtiers doing the
4522  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4523  * which we are interested.
4524  *
4525  * It would be a bug for them to not do this.  The code:
4526  *
4527  *      mark_inode_dirty(inode)
4528  *      stuff();
4529  *      inode->i_size = expr;
4530  *
4531  * is in error because write_inode() could occur while `stuff()' is running,
4532  * and the new i_size will be lost.  Plus the inode will no longer be on the
4533  * superblock's dirty inode list.
4534  */
4535 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4536 {
4537         int err;
4538
4539         if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
4540                 return 0;
4541
4542         if (EXT4_SB(inode->i_sb)->s_journal) {
4543                 if (ext4_journal_current_handle()) {
4544                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4545                         dump_stack();
4546                         return -EIO;
4547                 }
4548
4549                 /*
4550                  * No need to force transaction in WB_SYNC_NONE mode. Also
4551                  * ext4_sync_fs() will force the commit after everything is
4552                  * written.
4553                  */
4554                 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
4555                         return 0;
4556
4557                 err = ext4_force_commit(inode->i_sb);
4558         } else {
4559                 struct ext4_iloc iloc;
4560
4561                 err = __ext4_get_inode_loc(inode, &iloc, 0);
4562                 if (err)
4563                         return err;
4564                 /*
4565                  * sync(2) will flush the whole buffer cache. No need to do
4566                  * it here separately for each inode.
4567                  */
4568                 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
4569                         sync_dirty_buffer(iloc.bh);
4570                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4571                         EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4572                                          "IO error syncing inode");
4573                         err = -EIO;
4574                 }
4575                 brelse(iloc.bh);
4576         }
4577         return err;
4578 }
4579
4580 /*
4581  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4582  * buffers that are attached to a page stradding i_size and are undergoing
4583  * commit. In that case we have to wait for commit to finish and try again.
4584  */
4585 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4586 {
4587         struct page *page;
4588         unsigned offset;
4589         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4590         tid_t commit_tid = 0;
4591         int ret;
4592
4593         offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4594         /*
4595          * All buffers in the last page remain valid? Then there's nothing to
4596          * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4597          * blocksize case
4598          */
4599         if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4600                 return;
4601         while (1) {
4602                 page = find_lock_page(inode->i_mapping,
4603                                       inode->i_size >> PAGE_CACHE_SHIFT);
4604                 if (!page)
4605                         return;
4606                 ret = __ext4_journalled_invalidatepage(page, offset,
4607                                                 PAGE_CACHE_SIZE - offset);
4608                 unlock_page(page);
4609                 page_cache_release(page);
4610                 if (ret != -EBUSY)
4611                         return;
4612                 commit_tid = 0;
4613                 read_lock(&journal->j_state_lock);
4614                 if (journal->j_committing_transaction)
4615                         commit_tid = journal->j_committing_transaction->t_tid;
4616                 read_unlock(&journal->j_state_lock);
4617                 if (commit_tid)
4618                         jbd2_log_wait_commit(journal, commit_tid);
4619         }
4620 }
4621
4622 /*
4623  * ext4_setattr()
4624  *
4625  * Called from notify_change.
4626  *
4627  * We want to trap VFS attempts to truncate the file as soon as
4628  * possible.  In particular, we want to make sure that when the VFS
4629  * shrinks i_size, we put the inode on the orphan list and modify
4630  * i_disksize immediately, so that during the subsequent flushing of
4631  * dirty pages and freeing of disk blocks, we can guarantee that any
4632  * commit will leave the blocks being flushed in an unused state on
4633  * disk.  (On recovery, the inode will get truncated and the blocks will
4634  * be freed, so we have a strong guarantee that no future commit will
4635  * leave these blocks visible to the user.)
4636  *
4637  * Another thing we have to assure is that if we are in ordered mode
4638  * and inode is still attached to the committing transaction, we must
4639  * we start writeout of all the dirty pages which are being truncated.
4640  * This way we are sure that all the data written in the previous
4641  * transaction are already on disk (truncate waits for pages under
4642  * writeback).
4643  *
4644  * Called with inode->i_mutex down.
4645  */
4646 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4647 {
4648         struct inode *inode = d_inode(dentry);
4649         int error, rc = 0;
4650         int orphan = 0;
4651         const unsigned int ia_valid = attr->ia_valid;
4652
4653         error = inode_change_ok(inode, attr);
4654         if (error)
4655                 return error;
4656
4657         if (is_quota_modification(inode, attr))
4658                 dquot_initialize(inode);
4659         if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4660             (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4661                 handle_t *handle;
4662
4663                 /* (user+group)*(old+new) structure, inode write (sb,
4664                  * inode block, ? - but truncate inode update has it) */
4665                 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4666                         (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4667                          EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4668                 if (IS_ERR(handle)) {
4669                         error = PTR_ERR(handle);
4670                         goto err_out;
4671                 }
4672                 error = dquot_transfer(inode, attr);
4673                 if (error) {
4674                         ext4_journal_stop(handle);
4675                         return error;
4676                 }
4677                 /* Update corresponding info in inode so that everything is in
4678                  * one transaction */
4679                 if (attr->ia_valid & ATTR_UID)
4680                         inode->i_uid = attr->ia_uid;
4681                 if (attr->ia_valid & ATTR_GID)
4682                         inode->i_gid = attr->ia_gid;
4683                 error = ext4_mark_inode_dirty(handle, inode);
4684                 ext4_journal_stop(handle);
4685         }
4686
4687         if (attr->ia_valid & ATTR_SIZE) {
4688                 handle_t *handle;
4689                 loff_t oldsize = inode->i_size;
4690                 int shrink = (attr->ia_size <= inode->i_size);
4691
4692                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4693                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4694
4695                         if (attr->ia_size > sbi->s_bitmap_maxbytes)
4696                                 return -EFBIG;
4697                 }
4698                 if (!S_ISREG(inode->i_mode))
4699                         return -EINVAL;
4700
4701                 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
4702                         inode_inc_iversion(inode);
4703
4704                 if (ext4_should_order_data(inode) &&
4705                     (attr->ia_size < inode->i_size)) {
4706                         error = ext4_begin_ordered_truncate(inode,
4707                                                             attr->ia_size);
4708                         if (error)
4709                                 goto err_out;
4710                 }
4711                 if (attr->ia_size != inode->i_size) {
4712                         handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4713                         if (IS_ERR(handle)) {
4714                                 error = PTR_ERR(handle);
4715                                 goto err_out;
4716                         }
4717                         if (ext4_handle_valid(handle) && shrink) {
4718                                 error = ext4_orphan_add(handle, inode);
4719                                 orphan = 1;
4720                         }
4721                         down_write(&EXT4_I(inode)->i_data_sem);
4722                         EXT4_I(inode)->i_disksize = attr->ia_size;
4723                         rc = ext4_mark_inode_dirty(handle, inode);
4724                         if (!error)
4725                                 error = rc;
4726                         /*
4727                          * We have to update i_size under i_data_sem together
4728                          * with i_disksize to avoid races with writeback code
4729                          * running ext4_wb_update_i_disksize().
4730                          */
4731                         if (!error)
4732                                 i_size_write(inode, attr->ia_size);
4733                         up_write(&EXT4_I(inode)->i_data_sem);
4734                         ext4_journal_stop(handle);
4735                         if (error) {
4736                                 if (orphan)
4737                                         ext4_orphan_del(NULL, inode);
4738                                 goto err_out;
4739                         }
4740                 }
4741                 if (!shrink)
4742                         pagecache_isize_extended(inode, oldsize, inode->i_size);
4743
4744                 /*
4745                  * Blocks are going to be removed from the inode. Wait
4746                  * for dio in flight.  Temporarily disable
4747                  * dioread_nolock to prevent livelock.
4748                  */
4749                 if (orphan) {
4750                         if (!ext4_should_journal_data(inode)) {
4751                                 ext4_inode_block_unlocked_dio(inode);
4752                                 inode_dio_wait(inode);
4753                                 ext4_inode_resume_unlocked_dio(inode);
4754                         } else
4755                                 ext4_wait_for_tail_page_commit(inode);
4756                 }
4757                 /*
4758                  * Truncate pagecache after we've waited for commit
4759                  * in data=journal mode to make pages freeable.
4760                  */
4761                 truncate_pagecache(inode, inode->i_size);
4762                 if (shrink)
4763                         ext4_truncate(inode);
4764         }
4765
4766         if (!rc) {
4767                 setattr_copy(inode, attr);
4768                 mark_inode_dirty(inode);
4769         }
4770
4771         /*
4772          * If the call to ext4_truncate failed to get a transaction handle at
4773          * all, we need to clean up the in-core orphan list manually.
4774          */
4775         if (orphan && inode->i_nlink)
4776                 ext4_orphan_del(NULL, inode);
4777
4778         if (!rc && (ia_valid & ATTR_MODE))
4779                 rc = posix_acl_chmod(inode, inode->i_mode);
4780
4781 err_out:
4782         ext4_std_error(inode->i_sb, error);
4783         if (!error)
4784                 error = rc;
4785         return error;
4786 }
4787
4788 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4789                  struct kstat *stat)
4790 {
4791         struct inode *inode;
4792         unsigned long long delalloc_blocks;
4793
4794         inode = d_inode(dentry);
4795         generic_fillattr(inode, stat);
4796
4797         /*
4798          * If there is inline data in the inode, the inode will normally not
4799          * have data blocks allocated (it may have an external xattr block).
4800          * Report at least one sector for such files, so tools like tar, rsync,
4801          * others doen't incorrectly think the file is completely sparse.
4802          */
4803         if (unlikely(ext4_has_inline_data(inode)))
4804                 stat->blocks += (stat->size + 511) >> 9;
4805
4806         /*
4807          * We can't update i_blocks if the block allocation is delayed
4808          * otherwise in the case of system crash before the real block
4809          * allocation is done, we will have i_blocks inconsistent with
4810          * on-disk file blocks.
4811          * We always keep i_blocks updated together with real
4812          * allocation. But to not confuse with user, stat
4813          * will return the blocks that include the delayed allocation
4814          * blocks for this file.
4815          */
4816         delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4817                                    EXT4_I(inode)->i_reserved_data_blocks);
4818         stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
4819         return 0;
4820 }
4821
4822 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
4823                                    int pextents)
4824 {
4825         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4826                 return ext4_ind_trans_blocks(inode, lblocks);
4827         return ext4_ext_index_trans_blocks(inode, pextents);
4828 }
4829
4830 /*
4831  * Account for index blocks, block groups bitmaps and block group
4832  * descriptor blocks if modify datablocks and index blocks
4833  * worse case, the indexs blocks spread over different block groups
4834  *
4835  * If datablocks are discontiguous, they are possible to spread over
4836  * different block groups too. If they are contiguous, with flexbg,
4837  * they could still across block group boundary.
4838  *
4839  * Also account for superblock, inode, quota and xattr blocks
4840  */
4841 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
4842                                   int pextents)
4843 {
4844         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4845         int gdpblocks;
4846         int idxblocks;
4847         int ret = 0;
4848
4849         /*
4850          * How many index blocks need to touch to map @lblocks logical blocks
4851          * to @pextents physical extents?
4852          */
4853         idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
4854
4855         ret = idxblocks;
4856
4857         /*
4858          * Now let's see how many group bitmaps and group descriptors need
4859          * to account
4860          */
4861         groups = idxblocks + pextents;
4862         gdpblocks = groups;
4863         if (groups > ngroups)
4864                 groups = ngroups;
4865         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4866                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4867
4868         /* bitmaps and block group descriptor blocks */
4869         ret += groups + gdpblocks;
4870
4871         /* Blocks for super block, inode, quota and xattr blocks */
4872         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4873
4874         return ret;
4875 }
4876
4877 /*
4878  * Calculate the total number of credits to reserve to fit
4879  * the modification of a single pages into a single transaction,
4880  * which may include multiple chunks of block allocations.
4881  *
4882  * This could be called via ext4_write_begin()
4883  *
4884  * We need to consider the worse case, when
4885  * one new block per extent.
4886  */
4887 int ext4_writepage_trans_blocks(struct inode *inode)
4888 {
4889         int bpp = ext4_journal_blocks_per_page(inode);
4890         int ret;
4891
4892         ret = ext4_meta_trans_blocks(inode, bpp, bpp);
4893
4894         /* Account for data blocks for journalled mode */
4895         if (ext4_should_journal_data(inode))
4896                 ret += bpp;
4897         return ret;
4898 }
4899
4900 /*
4901  * Calculate the journal credits for a chunk of data modification.
4902  *
4903  * This is called from DIO, fallocate or whoever calling
4904  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4905  *
4906  * journal buffers for data blocks are not included here, as DIO
4907  * and fallocate do no need to journal data buffers.
4908  */
4909 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4910 {
4911         return ext4_meta_trans_blocks(inode, nrblocks, 1);
4912 }
4913
4914 /*
4915  * The caller must have previously called ext4_reserve_inode_write().
4916  * Give this, we know that the caller already has write access to iloc->bh.
4917  */
4918 int ext4_mark_iloc_dirty(handle_t *handle,
4919                          struct inode *inode, struct ext4_iloc *iloc)
4920 {
4921         int err = 0;
4922
4923         if (IS_I_VERSION(inode))
4924                 inode_inc_iversion(inode);
4925
4926         /* the do_update_inode consumes one bh->b_count */
4927         get_bh(iloc->bh);
4928
4929         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4930         err = ext4_do_update_inode(handle, inode, iloc);
4931         put_bh(iloc->bh);
4932         return err;
4933 }
4934
4935 /*
4936  * On success, We end up with an outstanding reference count against
4937  * iloc->bh.  This _must_ be cleaned up later.
4938  */
4939
4940 int
4941 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4942                          struct ext4_iloc *iloc)
4943 {
4944         int err;
4945
4946         err = ext4_get_inode_loc(inode, iloc);
4947         if (!err) {
4948                 BUFFER_TRACE(iloc->bh, "get_write_access");
4949                 err = ext4_journal_get_write_access(handle, iloc->bh);
4950                 if (err) {
4951                         brelse(iloc->bh);
4952                         iloc->bh = NULL;
4953                 }
4954         }
4955         ext4_std_error(inode->i_sb, err);
4956         return err;
4957 }
4958
4959 /*
4960  * Expand an inode by new_extra_isize bytes.
4961  * Returns 0 on success or negative error number on failure.
4962  */
4963 static int ext4_expand_extra_isize(struct inode *inode,
4964                                    unsigned int new_extra_isize,
4965                                    struct ext4_iloc iloc,
4966                                    handle_t *handle)
4967 {
4968         struct ext4_inode *raw_inode;
4969         struct ext4_xattr_ibody_header *header;
4970
4971         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4972                 return 0;
4973
4974         raw_inode = ext4_raw_inode(&iloc);
4975
4976         header = IHDR(inode, raw_inode);
4977
4978         /* No extended attributes present */
4979         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4980             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4981                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4982                         new_extra_isize);
4983                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4984                 return 0;
4985         }
4986
4987         /* try to expand with EAs present */
4988         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4989                                           raw_inode, handle);
4990 }
4991
4992 /*
4993  * What we do here is to mark the in-core inode as clean with respect to inode
4994  * dirtiness (it may still be data-dirty).
4995  * This means that the in-core inode may be reaped by prune_icache
4996  * without having to perform any I/O.  This is a very good thing,
4997  * because *any* task may call prune_icache - even ones which
4998  * have a transaction open against a different journal.
4999  *
5000  * Is this cheating?  Not really.  Sure, we haven't written the
5001  * inode out, but prune_icache isn't a user-visible syncing function.
5002  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5003  * we start and wait on commits.
5004  */
5005 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5006 {
5007         struct ext4_iloc iloc;
5008         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5009         static unsigned int mnt_count;
5010         int err, ret;
5011
5012         might_sleep();
5013         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5014         err = ext4_reserve_inode_write(handle, inode, &iloc);
5015         if (ext4_handle_valid(handle) &&
5016             EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5017             !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5018                 /*
5019                  * We need extra buffer credits since we may write into EA block
5020                  * with this same handle. If journal_extend fails, then it will
5021                  * only result in a minor loss of functionality for that inode.
5022                  * If this is felt to be critical, then e2fsck should be run to
5023                  * force a large enough s_min_extra_isize.
5024                  */
5025                 if ((jbd2_journal_extend(handle,
5026                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5027                         ret = ext4_expand_extra_isize(inode,
5028                                                       sbi->s_want_extra_isize,
5029                                                       iloc, handle);
5030                         if (ret) {
5031                                 ext4_set_inode_state(inode,
5032                                                      EXT4_STATE_NO_EXPAND);
5033                                 if (mnt_count !=
5034                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
5035                                         ext4_warning(inode->i_sb,
5036                                         "Unable to expand inode %lu. Delete"
5037                                         " some EAs or run e2fsck.",
5038                                         inode->i_ino);
5039                                         mnt_count =
5040                                           le16_to_cpu(sbi->s_es->s_mnt_count);
5041                                 }
5042                         }
5043                 }
5044         }
5045         if (!err)
5046                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5047         return err;
5048 }
5049
5050 /*
5051  * ext4_dirty_inode() is called from __mark_inode_dirty()
5052  *
5053  * We're really interested in the case where a file is being extended.
5054  * i_size has been changed by generic_commit_write() and we thus need
5055  * to include the updated inode in the current transaction.
5056  *
5057  * Also, dquot_alloc_block() will always dirty the inode when blocks
5058  * are allocated to the file.
5059  *
5060  * If the inode is marked synchronous, we don't honour that here - doing
5061  * so would cause a commit on atime updates, which we don't bother doing.
5062  * We handle synchronous inodes at the highest possible level.
5063  *
5064  * If only the I_DIRTY_TIME flag is set, we can skip everything.  If
5065  * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5066  * to copy into the on-disk inode structure are the timestamp files.
5067  */
5068 void ext4_dirty_inode(struct inode *inode, int flags)
5069 {
5070         handle_t *handle;
5071
5072         if (flags == I_DIRTY_TIME)
5073                 return;
5074         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5075         if (IS_ERR(handle))
5076                 goto out;
5077
5078         ext4_mark_inode_dirty(handle, inode);
5079
5080         ext4_journal_stop(handle);
5081 out:
5082         return;
5083 }
5084
5085 #if 0
5086 /*
5087  * Bind an inode's backing buffer_head into this transaction, to prevent
5088  * it from being flushed to disk early.  Unlike
5089  * ext4_reserve_inode_write, this leaves behind no bh reference and
5090  * returns no iloc structure, so the caller needs to repeat the iloc
5091  * lookup to mark the inode dirty later.
5092  */
5093 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5094 {
5095         struct ext4_iloc iloc;
5096
5097         int err = 0;
5098         if (handle) {
5099                 err = ext4_get_inode_loc(inode, &iloc);
5100                 if (!err) {
5101                         BUFFER_TRACE(iloc.bh, "get_write_access");
5102                         err = jbd2_journal_get_write_access(handle, iloc.bh);
5103                         if (!err)
5104                                 err = ext4_handle_dirty_metadata(handle,
5105                                                                  NULL,
5106                                                                  iloc.bh);
5107                         brelse(iloc.bh);
5108                 }
5109         }
5110         ext4_std_error(inode->i_sb, err);
5111         return err;
5112 }
5113 #endif
5114
5115 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5116 {
5117         journal_t *journal;
5118         handle_t *handle;
5119         int err;
5120
5121         /*
5122          * We have to be very careful here: changing a data block's
5123          * journaling status dynamically is dangerous.  If we write a
5124          * data block to the journal, change the status and then delete
5125          * that block, we risk forgetting to revoke the old log record
5126          * from the journal and so a subsequent replay can corrupt data.
5127          * So, first we make sure that the journal is empty and that
5128          * nobody is changing anything.
5129          */
5130
5131         journal = EXT4_JOURNAL(inode);
5132         if (!journal)
5133                 return 0;
5134         if (is_journal_aborted(journal))
5135                 return -EROFS;
5136         /* We have to allocate physical blocks for delalloc blocks
5137          * before flushing journal. otherwise delalloc blocks can not
5138          * be allocated any more. even more truncate on delalloc blocks
5139          * could trigger BUG by flushing delalloc blocks in journal.
5140          * There is no delalloc block in non-journal data mode.
5141          */
5142         if (val && test_opt(inode->i_sb, DELALLOC)) {
5143                 err = ext4_alloc_da_blocks(inode);
5144                 if (err < 0)
5145                         return err;
5146         }
5147
5148         /* Wait for all existing dio workers */
5149         ext4_inode_block_unlocked_dio(inode);
5150         inode_dio_wait(inode);
5151
5152         jbd2_journal_lock_updates(journal);
5153
5154         /*
5155          * OK, there are no updates running now, and all cached data is
5156          * synced to disk.  We are now in a completely consistent state
5157          * which doesn't have anything in the journal, and we know that
5158          * no filesystem updates are running, so it is safe to modify
5159          * the inode's in-core data-journaling state flag now.
5160          */
5161
5162         if (val)
5163                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5164         else {
5165                 err = jbd2_journal_flush(journal);
5166                 if (err < 0) {
5167                         jbd2_journal_unlock_updates(journal);
5168                         ext4_inode_resume_unlocked_dio(inode);
5169                         return err;
5170                 }
5171                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5172         }
5173         ext4_set_aops(inode);
5174
5175         jbd2_journal_unlock_updates(journal);
5176         ext4_inode_resume_unlocked_dio(inode);
5177
5178         /* Finally we can mark the inode as dirty. */
5179
5180         handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5181         if (IS_ERR(handle))
5182                 return PTR_ERR(handle);
5183
5184         err = ext4_mark_inode_dirty(handle, inode);
5185         ext4_handle_sync(handle);
5186         ext4_journal_stop(handle);
5187         ext4_std_error(inode->i_sb, err);
5188
5189         return err;
5190 }
5191
5192 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5193 {
5194         return !buffer_mapped(bh);
5195 }
5196
5197 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5198 {
5199         struct page *page = vmf->page;
5200         loff_t size;
5201         unsigned long len;
5202         int ret;
5203         struct file *file = vma->vm_file;
5204         struct inode *inode = file_inode(file);
5205         struct address_space *mapping = inode->i_mapping;
5206         handle_t *handle;
5207         get_block_t *get_block;
5208         int retries = 0;
5209
5210         sb_start_pagefault(inode->i_sb);
5211         file_update_time(vma->vm_file);
5212         /* Delalloc case is easy... */
5213         if (test_opt(inode->i_sb, DELALLOC) &&
5214             !ext4_should_journal_data(inode) &&
5215             !ext4_nonda_switch(inode->i_sb)) {
5216                 do {
5217                         ret = __block_page_mkwrite(vma, vmf,
5218                                                    ext4_da_get_block_prep);
5219                 } while (ret == -ENOSPC &&
5220                        ext4_should_retry_alloc(inode->i_sb, &retries));
5221                 goto out_ret;
5222         }
5223
5224         lock_page(page);
5225         size = i_size_read(inode);
5226         /* Page got truncated from under us? */
5227         if (page->mapping != mapping || page_offset(page) > size) {
5228                 unlock_page(page);
5229                 ret = VM_FAULT_NOPAGE;
5230                 goto out;
5231         }
5232
5233         if (page->index == size >> PAGE_CACHE_SHIFT)
5234                 len = size & ~PAGE_CACHE_MASK;
5235         else
5236                 len = PAGE_CACHE_SIZE;
5237         /*
5238          * Return if we have all the buffers mapped. This avoids the need to do
5239          * journal_start/journal_stop which can block and take a long time
5240          */
5241         if (page_has_buffers(page)) {
5242                 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5243                                             0, len, NULL,
5244                                             ext4_bh_unmapped)) {
5245                         /* Wait so that we don't change page under IO */
5246                         wait_for_stable_page(page);
5247                         ret = VM_FAULT_LOCKED;
5248                         goto out;
5249                 }
5250         }
5251         unlock_page(page);
5252         /* OK, we need to fill the hole... */
5253         if (ext4_should_dioread_nolock(inode))
5254                 get_block = ext4_get_block_write;
5255         else
5256                 get_block = ext4_get_block;
5257 retry_alloc:
5258         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5259                                     ext4_writepage_trans_blocks(inode));
5260         if (IS_ERR(handle)) {
5261                 ret = VM_FAULT_SIGBUS;
5262                 goto out;
5263         }
5264         ret = __block_page_mkwrite(vma, vmf, get_block);
5265         if (!ret && ext4_should_journal_data(inode)) {
5266                 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5267                           PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5268                         unlock_page(page);
5269                         ret = VM_FAULT_SIGBUS;
5270                         ext4_journal_stop(handle);
5271                         goto out;
5272                 }
5273                 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5274         }
5275         ext4_journal_stop(handle);
5276         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5277                 goto retry_alloc;
5278 out_ret:
5279         ret = block_page_mkwrite_return(ret);
5280 out:
5281         sb_end_pagefault(inode->i_sb);
5282         return ret;
5283 }