Merge branch 'linus' into x86/bootmem
[pandora-kernel.git] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Goal-directed block allocation by Stephen Tweedie
16  *      (sct@redhat.com), 1993, 1998
17  *  Big-endian to little-endian byte-swapping/bitmaps by
18  *        David S. Miller (davem@caip.rutgers.edu), 1995
19  *  64-bit file support on 64-bit platforms by Jakub Jelinek
20  *      (jj@sunsite.ms.mff.cuni.cz)
21  *
22  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23  */
24
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/namei.h>
38 #include <linux/uio.h>
39 #include <linux/bio.h>
40 #include <linux/workqueue.h>
41 #include <linux/kernel.h>
42 #include <linux/printk.h>
43 #include <linux/slab.h>
44 #include <linux/ratelimit.h>
45
46 #include "ext4_jbd2.h"
47 #include "xattr.h"
48 #include "acl.h"
49 #include "ext4_extents.h"
50
51 #include <trace/events/ext4.h>
52
53 #define MPAGE_DA_EXTENT_TAIL 0x01
54
55 static inline int ext4_begin_ordered_truncate(struct inode *inode,
56                                               loff_t new_size)
57 {
58         trace_ext4_begin_ordered_truncate(inode, new_size);
59         /*
60          * If jinode is zero, then we never opened the file for
61          * writing, so there's no need to call
62          * jbd2_journal_begin_ordered_truncate() since there's no
63          * outstanding writes we need to flush.
64          */
65         if (!EXT4_I(inode)->jinode)
66                 return 0;
67         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
68                                                    EXT4_I(inode)->jinode,
69                                                    new_size);
70 }
71
72 static void ext4_invalidatepage(struct page *page, unsigned long offset);
73 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
74                                    struct buffer_head *bh_result, int create);
75 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
76 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
77 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
78 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
79
80 /*
81  * Test whether an inode is a fast symlink.
82  */
83 static int ext4_inode_is_fast_symlink(struct inode *inode)
84 {
85         int ea_blocks = EXT4_I(inode)->i_file_acl ?
86                 (inode->i_sb->s_blocksize >> 9) : 0;
87
88         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
89 }
90
91 /*
92  * Work out how many blocks we need to proceed with the next chunk of a
93  * truncate transaction.
94  */
95 static unsigned long blocks_for_truncate(struct inode *inode)
96 {
97         ext4_lblk_t needed;
98
99         needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
100
101         /* Give ourselves just enough room to cope with inodes in which
102          * i_blocks is corrupt: we've seen disk corruptions in the past
103          * which resulted in random data in an inode which looked enough
104          * like a regular file for ext4 to try to delete it.  Things
105          * will go a bit crazy if that happens, but at least we should
106          * try not to panic the whole kernel. */
107         if (needed < 2)
108                 needed = 2;
109
110         /* But we need to bound the transaction so we don't overflow the
111          * journal. */
112         if (needed > EXT4_MAX_TRANS_DATA)
113                 needed = EXT4_MAX_TRANS_DATA;
114
115         return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
116 }
117
118 /*
119  * Truncate transactions can be complex and absolutely huge.  So we need to
120  * be able to restart the transaction at a conventient checkpoint to make
121  * sure we don't overflow the journal.
122  *
123  * start_transaction gets us a new handle for a truncate transaction,
124  * and extend_transaction tries to extend the existing one a bit.  If
125  * extend fails, we need to propagate the failure up and restart the
126  * transaction in the top-level truncate loop. --sct
127  */
128 static handle_t *start_transaction(struct inode *inode)
129 {
130         handle_t *result;
131
132         result = ext4_journal_start(inode, blocks_for_truncate(inode));
133         if (!IS_ERR(result))
134                 return result;
135
136         ext4_std_error(inode->i_sb, PTR_ERR(result));
137         return result;
138 }
139
140 /*
141  * Try to extend this transaction for the purposes of truncation.
142  *
143  * Returns 0 if we managed to create more room.  If we can't create more
144  * room, and the transaction must be restarted we return 1.
145  */
146 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
147 {
148         if (!ext4_handle_valid(handle))
149                 return 0;
150         if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
151                 return 0;
152         if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
153                 return 0;
154         return 1;
155 }
156
157 /*
158  * Restart the transaction associated with *handle.  This does a commit,
159  * so before we call here everything must be consistently dirtied against
160  * this transaction.
161  */
162 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
163                                  int nblocks)
164 {
165         int ret;
166
167         /*
168          * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
169          * moment, get_block can be called only for blocks inside i_size since
170          * page cache has been already dropped and writes are blocked by
171          * i_mutex. So we can safely drop the i_data_sem here.
172          */
173         BUG_ON(EXT4_JOURNAL(inode) == NULL);
174         jbd_debug(2, "restarting handle %p\n", handle);
175         up_write(&EXT4_I(inode)->i_data_sem);
176         ret = ext4_journal_restart(handle, blocks_for_truncate(inode));
177         down_write(&EXT4_I(inode)->i_data_sem);
178         ext4_discard_preallocations(inode);
179
180         return ret;
181 }
182
183 /*
184  * Called at the last iput() if i_nlink is zero.
185  */
186 void ext4_evict_inode(struct inode *inode)
187 {
188         handle_t *handle;
189         int err;
190
191         trace_ext4_evict_inode(inode);
192         if (inode->i_nlink) {
193                 truncate_inode_pages(&inode->i_data, 0);
194                 goto no_delete;
195         }
196
197         if (!is_bad_inode(inode))
198                 dquot_initialize(inode);
199
200         if (ext4_should_order_data(inode))
201                 ext4_begin_ordered_truncate(inode, 0);
202         truncate_inode_pages(&inode->i_data, 0);
203
204         if (is_bad_inode(inode))
205                 goto no_delete;
206
207         handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
208         if (IS_ERR(handle)) {
209                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
210                 /*
211                  * If we're going to skip the normal cleanup, we still need to
212                  * make sure that the in-core orphan linked list is properly
213                  * cleaned up.
214                  */
215                 ext4_orphan_del(NULL, inode);
216                 goto no_delete;
217         }
218
219         if (IS_SYNC(inode))
220                 ext4_handle_sync(handle);
221         inode->i_size = 0;
222         err = ext4_mark_inode_dirty(handle, inode);
223         if (err) {
224                 ext4_warning(inode->i_sb,
225                              "couldn't mark inode dirty (err %d)", err);
226                 goto stop_handle;
227         }
228         if (inode->i_blocks)
229                 ext4_truncate(inode);
230
231         /*
232          * ext4_ext_truncate() doesn't reserve any slop when it
233          * restarts journal transactions; therefore there may not be
234          * enough credits left in the handle to remove the inode from
235          * the orphan list and set the dtime field.
236          */
237         if (!ext4_handle_has_enough_credits(handle, 3)) {
238                 err = ext4_journal_extend(handle, 3);
239                 if (err > 0)
240                         err = ext4_journal_restart(handle, 3);
241                 if (err != 0) {
242                         ext4_warning(inode->i_sb,
243                                      "couldn't extend journal (err %d)", err);
244                 stop_handle:
245                         ext4_journal_stop(handle);
246                         ext4_orphan_del(NULL, inode);
247                         goto no_delete;
248                 }
249         }
250
251         /*
252          * Kill off the orphan record which ext4_truncate created.
253          * AKPM: I think this can be inside the above `if'.
254          * Note that ext4_orphan_del() has to be able to cope with the
255          * deletion of a non-existent orphan - this is because we don't
256          * know if ext4_truncate() actually created an orphan record.
257          * (Well, we could do this if we need to, but heck - it works)
258          */
259         ext4_orphan_del(handle, inode);
260         EXT4_I(inode)->i_dtime  = get_seconds();
261
262         /*
263          * One subtle ordering requirement: if anything has gone wrong
264          * (transaction abort, IO errors, whatever), then we can still
265          * do these next steps (the fs will already have been marked as
266          * having errors), but we can't free the inode if the mark_dirty
267          * fails.
268          */
269         if (ext4_mark_inode_dirty(handle, inode))
270                 /* If that failed, just do the required in-core inode clear. */
271                 ext4_clear_inode(inode);
272         else
273                 ext4_free_inode(handle, inode);
274         ext4_journal_stop(handle);
275         return;
276 no_delete:
277         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
278 }
279
280 typedef struct {
281         __le32  *p;
282         __le32  key;
283         struct buffer_head *bh;
284 } Indirect;
285
286 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
287 {
288         p->key = *(p->p = v);
289         p->bh = bh;
290 }
291
292 /**
293  *      ext4_block_to_path - parse the block number into array of offsets
294  *      @inode: inode in question (we are only interested in its superblock)
295  *      @i_block: block number to be parsed
296  *      @offsets: array to store the offsets in
297  *      @boundary: set this non-zero if the referred-to block is likely to be
298  *             followed (on disk) by an indirect block.
299  *
300  *      To store the locations of file's data ext4 uses a data structure common
301  *      for UNIX filesystems - tree of pointers anchored in the inode, with
302  *      data blocks at leaves and indirect blocks in intermediate nodes.
303  *      This function translates the block number into path in that tree -
304  *      return value is the path length and @offsets[n] is the offset of
305  *      pointer to (n+1)th node in the nth one. If @block is out of range
306  *      (negative or too large) warning is printed and zero returned.
307  *
308  *      Note: function doesn't find node addresses, so no IO is needed. All
309  *      we need to know is the capacity of indirect blocks (taken from the
310  *      inode->i_sb).
311  */
312
313 /*
314  * Portability note: the last comparison (check that we fit into triple
315  * indirect block) is spelled differently, because otherwise on an
316  * architecture with 32-bit longs and 8Kb pages we might get into trouble
317  * if our filesystem had 8Kb blocks. We might use long long, but that would
318  * kill us on x86. Oh, well, at least the sign propagation does not matter -
319  * i_block would have to be negative in the very beginning, so we would not
320  * get there at all.
321  */
322
323 static int ext4_block_to_path(struct inode *inode,
324                               ext4_lblk_t i_block,
325                               ext4_lblk_t offsets[4], int *boundary)
326 {
327         int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
328         int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
329         const long direct_blocks = EXT4_NDIR_BLOCKS,
330                 indirect_blocks = ptrs,
331                 double_blocks = (1 << (ptrs_bits * 2));
332         int n = 0;
333         int final = 0;
334
335         if (i_block < direct_blocks) {
336                 offsets[n++] = i_block;
337                 final = direct_blocks;
338         } else if ((i_block -= direct_blocks) < indirect_blocks) {
339                 offsets[n++] = EXT4_IND_BLOCK;
340                 offsets[n++] = i_block;
341                 final = ptrs;
342         } else if ((i_block -= indirect_blocks) < double_blocks) {
343                 offsets[n++] = EXT4_DIND_BLOCK;
344                 offsets[n++] = i_block >> ptrs_bits;
345                 offsets[n++] = i_block & (ptrs - 1);
346                 final = ptrs;
347         } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
348                 offsets[n++] = EXT4_TIND_BLOCK;
349                 offsets[n++] = i_block >> (ptrs_bits * 2);
350                 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
351                 offsets[n++] = i_block & (ptrs - 1);
352                 final = ptrs;
353         } else {
354                 ext4_warning(inode->i_sb, "block %lu > max in inode %lu",
355                              i_block + direct_blocks +
356                              indirect_blocks + double_blocks, inode->i_ino);
357         }
358         if (boundary)
359                 *boundary = final - 1 - (i_block & (ptrs - 1));
360         return n;
361 }
362
363 static int __ext4_check_blockref(const char *function, unsigned int line,
364                                  struct inode *inode,
365                                  __le32 *p, unsigned int max)
366 {
367         struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
368         __le32 *bref = p;
369         unsigned int blk;
370
371         while (bref < p+max) {
372                 blk = le32_to_cpu(*bref++);
373                 if (blk &&
374                     unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb),
375                                                     blk, 1))) {
376                         es->s_last_error_block = cpu_to_le64(blk);
377                         ext4_error_inode(inode, function, line, blk,
378                                          "invalid block");
379                         return -EIO;
380                 }
381         }
382         return 0;
383 }
384
385
386 #define ext4_check_indirect_blockref(inode, bh)                         \
387         __ext4_check_blockref(__func__, __LINE__, inode,                \
388                               (__le32 *)(bh)->b_data,                   \
389                               EXT4_ADDR_PER_BLOCK((inode)->i_sb))
390
391 #define ext4_check_inode_blockref(inode)                                \
392         __ext4_check_blockref(__func__, __LINE__, inode,                \
393                               EXT4_I(inode)->i_data,                    \
394                               EXT4_NDIR_BLOCKS)
395
396 /**
397  *      ext4_get_branch - read the chain of indirect blocks leading to data
398  *      @inode: inode in question
399  *      @depth: depth of the chain (1 - direct pointer, etc.)
400  *      @offsets: offsets of pointers in inode/indirect blocks
401  *      @chain: place to store the result
402  *      @err: here we store the error value
403  *
404  *      Function fills the array of triples <key, p, bh> and returns %NULL
405  *      if everything went OK or the pointer to the last filled triple
406  *      (incomplete one) otherwise. Upon the return chain[i].key contains
407  *      the number of (i+1)-th block in the chain (as it is stored in memory,
408  *      i.e. little-endian 32-bit), chain[i].p contains the address of that
409  *      number (it points into struct inode for i==0 and into the bh->b_data
410  *      for i>0) and chain[i].bh points to the buffer_head of i-th indirect
411  *      block for i>0 and NULL for i==0. In other words, it holds the block
412  *      numbers of the chain, addresses they were taken from (and where we can
413  *      verify that chain did not change) and buffer_heads hosting these
414  *      numbers.
415  *
416  *      Function stops when it stumbles upon zero pointer (absent block)
417  *              (pointer to last triple returned, *@err == 0)
418  *      or when it gets an IO error reading an indirect block
419  *              (ditto, *@err == -EIO)
420  *      or when it reads all @depth-1 indirect blocks successfully and finds
421  *      the whole chain, all way to the data (returns %NULL, *err == 0).
422  *
423  *      Need to be called with
424  *      down_read(&EXT4_I(inode)->i_data_sem)
425  */
426 static Indirect *ext4_get_branch(struct inode *inode, int depth,
427                                  ext4_lblk_t  *offsets,
428                                  Indirect chain[4], int *err)
429 {
430         struct super_block *sb = inode->i_sb;
431         Indirect *p = chain;
432         struct buffer_head *bh;
433
434         *err = 0;
435         /* i_data is not going away, no lock needed */
436         add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
437         if (!p->key)
438                 goto no_block;
439         while (--depth) {
440                 bh = sb_getblk(sb, le32_to_cpu(p->key));
441                 if (unlikely(!bh))
442                         goto failure;
443
444                 if (!bh_uptodate_or_lock(bh)) {
445                         if (bh_submit_read(bh) < 0) {
446                                 put_bh(bh);
447                                 goto failure;
448                         }
449                         /* validate block references */
450                         if (ext4_check_indirect_blockref(inode, bh)) {
451                                 put_bh(bh);
452                                 goto failure;
453                         }
454                 }
455
456                 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
457                 /* Reader: end */
458                 if (!p->key)
459                         goto no_block;
460         }
461         return NULL;
462
463 failure:
464         *err = -EIO;
465 no_block:
466         return p;
467 }
468
469 /**
470  *      ext4_find_near - find a place for allocation with sufficient locality
471  *      @inode: owner
472  *      @ind: descriptor of indirect block.
473  *
474  *      This function returns the preferred place for block allocation.
475  *      It is used when heuristic for sequential allocation fails.
476  *      Rules are:
477  *        + if there is a block to the left of our position - allocate near it.
478  *        + if pointer will live in indirect block - allocate near that block.
479  *        + if pointer will live in inode - allocate in the same
480  *          cylinder group.
481  *
482  * In the latter case we colour the starting block by the callers PID to
483  * prevent it from clashing with concurrent allocations for a different inode
484  * in the same block group.   The PID is used here so that functionally related
485  * files will be close-by on-disk.
486  *
487  *      Caller must make sure that @ind is valid and will stay that way.
488  */
489 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
490 {
491         struct ext4_inode_info *ei = EXT4_I(inode);
492         __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
493         __le32 *p;
494         ext4_fsblk_t bg_start;
495         ext4_fsblk_t last_block;
496         ext4_grpblk_t colour;
497         ext4_group_t block_group;
498         int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
499
500         /* Try to find previous block */
501         for (p = ind->p - 1; p >= start; p--) {
502                 if (*p)
503                         return le32_to_cpu(*p);
504         }
505
506         /* No such thing, so let's try location of indirect block */
507         if (ind->bh)
508                 return ind->bh->b_blocknr;
509
510         /*
511          * It is going to be referred to from the inode itself? OK, just put it
512          * into the same cylinder group then.
513          */
514         block_group = ei->i_block_group;
515         if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
516                 block_group &= ~(flex_size-1);
517                 if (S_ISREG(inode->i_mode))
518                         block_group++;
519         }
520         bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
521         last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
522
523         /*
524          * If we are doing delayed allocation, we don't need take
525          * colour into account.
526          */
527         if (test_opt(inode->i_sb, DELALLOC))
528                 return bg_start;
529
530         if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
531                 colour = (current->pid % 16) *
532                         (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
533         else
534                 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
535         return bg_start + colour;
536 }
537
538 /**
539  *      ext4_find_goal - find a preferred place for allocation.
540  *      @inode: owner
541  *      @block:  block we want
542  *      @partial: pointer to the last triple within a chain
543  *
544  *      Normally this function find the preferred place for block allocation,
545  *      returns it.
546  *      Because this is only used for non-extent files, we limit the block nr
547  *      to 32 bits.
548  */
549 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
550                                    Indirect *partial)
551 {
552         ext4_fsblk_t goal;
553
554         /*
555          * XXX need to get goal block from mballoc's data structures
556          */
557
558         goal = ext4_find_near(inode, partial);
559         goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
560         return goal;
561 }
562
563 /**
564  *      ext4_blks_to_allocate - Look up the block map and count the number
565  *      of direct blocks need to be allocated for the given branch.
566  *
567  *      @branch: chain of indirect blocks
568  *      @k: number of blocks need for indirect blocks
569  *      @blks: number of data blocks to be mapped.
570  *      @blocks_to_boundary:  the offset in the indirect block
571  *
572  *      return the total number of blocks to be allocate, including the
573  *      direct and indirect blocks.
574  */
575 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
576                                  int blocks_to_boundary)
577 {
578         unsigned int count = 0;
579
580         /*
581          * Simple case, [t,d]Indirect block(s) has not allocated yet
582          * then it's clear blocks on that path have not allocated
583          */
584         if (k > 0) {
585                 /* right now we don't handle cross boundary allocation */
586                 if (blks < blocks_to_boundary + 1)
587                         count += blks;
588                 else
589                         count += blocks_to_boundary + 1;
590                 return count;
591         }
592
593         count++;
594         while (count < blks && count <= blocks_to_boundary &&
595                 le32_to_cpu(*(branch[0].p + count)) == 0) {
596                 count++;
597         }
598         return count;
599 }
600
601 /**
602  *      ext4_alloc_blocks: multiple allocate blocks needed for a branch
603  *      @handle: handle for this transaction
604  *      @inode: inode which needs allocated blocks
605  *      @iblock: the logical block to start allocated at
606  *      @goal: preferred physical block of allocation
607  *      @indirect_blks: the number of blocks need to allocate for indirect
608  *                      blocks
609  *      @blks: number of desired blocks
610  *      @new_blocks: on return it will store the new block numbers for
611  *      the indirect blocks(if needed) and the first direct block,
612  *      @err: on return it will store the error code
613  *
614  *      This function will return the number of blocks allocated as
615  *      requested by the passed-in parameters.
616  */
617 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
618                              ext4_lblk_t iblock, ext4_fsblk_t goal,
619                              int indirect_blks, int blks,
620                              ext4_fsblk_t new_blocks[4], int *err)
621 {
622         struct ext4_allocation_request ar;
623         int target, i;
624         unsigned long count = 0, blk_allocated = 0;
625         int index = 0;
626         ext4_fsblk_t current_block = 0;
627         int ret = 0;
628
629         /*
630          * Here we try to allocate the requested multiple blocks at once,
631          * on a best-effort basis.
632          * To build a branch, we should allocate blocks for
633          * the indirect blocks(if not allocated yet), and at least
634          * the first direct block of this branch.  That's the
635          * minimum number of blocks need to allocate(required)
636          */
637         /* first we try to allocate the indirect blocks */
638         target = indirect_blks;
639         while (target > 0) {
640                 count = target;
641                 /* allocating blocks for indirect blocks and direct blocks */
642                 current_block = ext4_new_meta_blocks(handle, inode,
643                                                         goal, &count, err);
644                 if (*err)
645                         goto failed_out;
646
647                 if (unlikely(current_block + count > EXT4_MAX_BLOCK_FILE_PHYS)) {
648                         EXT4_ERROR_INODE(inode,
649                                          "current_block %llu + count %lu > %d!",
650                                          current_block, count,
651                                          EXT4_MAX_BLOCK_FILE_PHYS);
652                         *err = -EIO;
653                         goto failed_out;
654                 }
655
656                 target -= count;
657                 /* allocate blocks for indirect blocks */
658                 while (index < indirect_blks && count) {
659                         new_blocks[index++] = current_block++;
660                         count--;
661                 }
662                 if (count > 0) {
663                         /*
664                          * save the new block number
665                          * for the first direct block
666                          */
667                         new_blocks[index] = current_block;
668                         printk(KERN_INFO "%s returned more blocks than "
669                                                 "requested\n", __func__);
670                         WARN_ON(1);
671                         break;
672                 }
673         }
674
675         target = blks - count ;
676         blk_allocated = count;
677         if (!target)
678                 goto allocated;
679         /* Now allocate data blocks */
680         memset(&ar, 0, sizeof(ar));
681         ar.inode = inode;
682         ar.goal = goal;
683         ar.len = target;
684         ar.logical = iblock;
685         if (S_ISREG(inode->i_mode))
686                 /* enable in-core preallocation only for regular files */
687                 ar.flags = EXT4_MB_HINT_DATA;
688
689         current_block = ext4_mb_new_blocks(handle, &ar, err);
690         if (unlikely(current_block + ar.len > EXT4_MAX_BLOCK_FILE_PHYS)) {
691                 EXT4_ERROR_INODE(inode,
692                                  "current_block %llu + ar.len %d > %d!",
693                                  current_block, ar.len,
694                                  EXT4_MAX_BLOCK_FILE_PHYS);
695                 *err = -EIO;
696                 goto failed_out;
697         }
698
699         if (*err && (target == blks)) {
700                 /*
701                  * if the allocation failed and we didn't allocate
702                  * any blocks before
703                  */
704                 goto failed_out;
705         }
706         if (!*err) {
707                 if (target == blks) {
708                         /*
709                          * save the new block number
710                          * for the first direct block
711                          */
712                         new_blocks[index] = current_block;
713                 }
714                 blk_allocated += ar.len;
715         }
716 allocated:
717         /* total number of blocks allocated for direct blocks */
718         ret = blk_allocated;
719         *err = 0;
720         return ret;
721 failed_out:
722         for (i = 0; i < index; i++)
723                 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
724         return ret;
725 }
726
727 /**
728  *      ext4_alloc_branch - allocate and set up a chain of blocks.
729  *      @handle: handle for this transaction
730  *      @inode: owner
731  *      @indirect_blks: number of allocated indirect blocks
732  *      @blks: number of allocated direct blocks
733  *      @goal: preferred place for allocation
734  *      @offsets: offsets (in the blocks) to store the pointers to next.
735  *      @branch: place to store the chain in.
736  *
737  *      This function allocates blocks, zeroes out all but the last one,
738  *      links them into chain and (if we are synchronous) writes them to disk.
739  *      In other words, it prepares a branch that can be spliced onto the
740  *      inode. It stores the information about that chain in the branch[], in
741  *      the same format as ext4_get_branch() would do. We are calling it after
742  *      we had read the existing part of chain and partial points to the last
743  *      triple of that (one with zero ->key). Upon the exit we have the same
744  *      picture as after the successful ext4_get_block(), except that in one
745  *      place chain is disconnected - *branch->p is still zero (we did not
746  *      set the last link), but branch->key contains the number that should
747  *      be placed into *branch->p to fill that gap.
748  *
749  *      If allocation fails we free all blocks we've allocated (and forget
750  *      their buffer_heads) and return the error value the from failed
751  *      ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
752  *      as described above and return 0.
753  */
754 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
755                              ext4_lblk_t iblock, int indirect_blks,
756                              int *blks, ext4_fsblk_t goal,
757                              ext4_lblk_t *offsets, Indirect *branch)
758 {
759         int blocksize = inode->i_sb->s_blocksize;
760         int i, n = 0;
761         int err = 0;
762         struct buffer_head *bh;
763         int num;
764         ext4_fsblk_t new_blocks[4];
765         ext4_fsblk_t current_block;
766
767         num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
768                                 *blks, new_blocks, &err);
769         if (err)
770                 return err;
771
772         branch[0].key = cpu_to_le32(new_blocks[0]);
773         /*
774          * metadata blocks and data blocks are allocated.
775          */
776         for (n = 1; n <= indirect_blks;  n++) {
777                 /*
778                  * Get buffer_head for parent block, zero it out
779                  * and set the pointer to new one, then send
780                  * parent to disk.
781                  */
782                 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
783                 if (unlikely(!bh)) {
784                         err = -EIO;
785                         goto failed;
786                 }
787
788                 branch[n].bh = bh;
789                 lock_buffer(bh);
790                 BUFFER_TRACE(bh, "call get_create_access");
791                 err = ext4_journal_get_create_access(handle, bh);
792                 if (err) {
793                         /* Don't brelse(bh) here; it's done in
794                          * ext4_journal_forget() below */
795                         unlock_buffer(bh);
796                         goto failed;
797                 }
798
799                 memset(bh->b_data, 0, blocksize);
800                 branch[n].p = (__le32 *) bh->b_data + offsets[n];
801                 branch[n].key = cpu_to_le32(new_blocks[n]);
802                 *branch[n].p = branch[n].key;
803                 if (n == indirect_blks) {
804                         current_block = new_blocks[n];
805                         /*
806                          * End of chain, update the last new metablock of
807                          * the chain to point to the new allocated
808                          * data blocks numbers
809                          */
810                         for (i = 1; i < num; i++)
811                                 *(branch[n].p + i) = cpu_to_le32(++current_block);
812                 }
813                 BUFFER_TRACE(bh, "marking uptodate");
814                 set_buffer_uptodate(bh);
815                 unlock_buffer(bh);
816
817                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
818                 err = ext4_handle_dirty_metadata(handle, inode, bh);
819                 if (err)
820                         goto failed;
821         }
822         *blks = num;
823         return err;
824 failed:
825         /* Allocation failed, free what we already allocated */
826         ext4_free_blocks(handle, inode, 0, new_blocks[0], 1, 0);
827         for (i = 1; i <= n ; i++) {
828                 /*
829                  * branch[i].bh is newly allocated, so there is no
830                  * need to revoke the block, which is why we don't
831                  * need to set EXT4_FREE_BLOCKS_METADATA.
832                  */
833                 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1,
834                                  EXT4_FREE_BLOCKS_FORGET);
835         }
836         for (i = n+1; i < indirect_blks; i++)
837                 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
838
839         ext4_free_blocks(handle, inode, 0, new_blocks[i], num, 0);
840
841         return err;
842 }
843
844 /**
845  * ext4_splice_branch - splice the allocated branch onto inode.
846  * @handle: handle for this transaction
847  * @inode: owner
848  * @block: (logical) number of block we are adding
849  * @chain: chain of indirect blocks (with a missing link - see
850  *      ext4_alloc_branch)
851  * @where: location of missing link
852  * @num:   number of indirect blocks we are adding
853  * @blks:  number of direct blocks we are adding
854  *
855  * This function fills the missing link and does all housekeeping needed in
856  * inode (->i_blocks, etc.). In case of success we end up with the full
857  * chain to new block and return 0.
858  */
859 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
860                               ext4_lblk_t block, Indirect *where, int num,
861                               int blks)
862 {
863         int i;
864         int err = 0;
865         ext4_fsblk_t current_block;
866
867         /*
868          * If we're splicing into a [td]indirect block (as opposed to the
869          * inode) then we need to get write access to the [td]indirect block
870          * before the splice.
871          */
872         if (where->bh) {
873                 BUFFER_TRACE(where->bh, "get_write_access");
874                 err = ext4_journal_get_write_access(handle, where->bh);
875                 if (err)
876                         goto err_out;
877         }
878         /* That's it */
879
880         *where->p = where->key;
881
882         /*
883          * Update the host buffer_head or inode to point to more just allocated
884          * direct blocks blocks
885          */
886         if (num == 0 && blks > 1) {
887                 current_block = le32_to_cpu(where->key) + 1;
888                 for (i = 1; i < blks; i++)
889                         *(where->p + i) = cpu_to_le32(current_block++);
890         }
891
892         /* We are done with atomic stuff, now do the rest of housekeeping */
893         /* had we spliced it onto indirect block? */
894         if (where->bh) {
895                 /*
896                  * If we spliced it onto an indirect block, we haven't
897                  * altered the inode.  Note however that if it is being spliced
898                  * onto an indirect block at the very end of the file (the
899                  * file is growing) then we *will* alter the inode to reflect
900                  * the new i_size.  But that is not done here - it is done in
901                  * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
902                  */
903                 jbd_debug(5, "splicing indirect only\n");
904                 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
905                 err = ext4_handle_dirty_metadata(handle, inode, where->bh);
906                 if (err)
907                         goto err_out;
908         } else {
909                 /*
910                  * OK, we spliced it into the inode itself on a direct block.
911                  */
912                 ext4_mark_inode_dirty(handle, inode);
913                 jbd_debug(5, "splicing direct\n");
914         }
915         return err;
916
917 err_out:
918         for (i = 1; i <= num; i++) {
919                 /*
920                  * branch[i].bh is newly allocated, so there is no
921                  * need to revoke the block, which is why we don't
922                  * need to set EXT4_FREE_BLOCKS_METADATA.
923                  */
924                 ext4_free_blocks(handle, inode, where[i].bh, 0, 1,
925                                  EXT4_FREE_BLOCKS_FORGET);
926         }
927         ext4_free_blocks(handle, inode, 0, le32_to_cpu(where[num].key),
928                          blks, 0);
929
930         return err;
931 }
932
933 /*
934  * The ext4_ind_map_blocks() function handles non-extents inodes
935  * (i.e., using the traditional indirect/double-indirect i_blocks
936  * scheme) for ext4_map_blocks().
937  *
938  * Allocation strategy is simple: if we have to allocate something, we will
939  * have to go the whole way to leaf. So let's do it before attaching anything
940  * to tree, set linkage between the newborn blocks, write them if sync is
941  * required, recheck the path, free and repeat if check fails, otherwise
942  * set the last missing link (that will protect us from any truncate-generated
943  * removals - all blocks on the path are immune now) and possibly force the
944  * write on the parent block.
945  * That has a nice additional property: no special recovery from the failed
946  * allocations is needed - we simply release blocks and do not touch anything
947  * reachable from inode.
948  *
949  * `handle' can be NULL if create == 0.
950  *
951  * return > 0, # of blocks mapped or allocated.
952  * return = 0, if plain lookup failed.
953  * return < 0, error case.
954  *
955  * The ext4_ind_get_blocks() function should be called with
956  * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
957  * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
958  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
959  * blocks.
960  */
961 static int ext4_ind_map_blocks(handle_t *handle, struct inode *inode,
962                                struct ext4_map_blocks *map,
963                                int flags)
964 {
965         int err = -EIO;
966         ext4_lblk_t offsets[4];
967         Indirect chain[4];
968         Indirect *partial;
969         ext4_fsblk_t goal;
970         int indirect_blks;
971         int blocks_to_boundary = 0;
972         int depth;
973         int count = 0;
974         ext4_fsblk_t first_block = 0;
975
976         J_ASSERT(!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)));
977         J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
978         depth = ext4_block_to_path(inode, map->m_lblk, offsets,
979                                    &blocks_to_boundary);
980
981         if (depth == 0)
982                 goto out;
983
984         partial = ext4_get_branch(inode, depth, offsets, chain, &err);
985
986         /* Simplest case - block found, no allocation needed */
987         if (!partial) {
988                 first_block = le32_to_cpu(chain[depth - 1].key);
989                 count++;
990                 /*map more blocks*/
991                 while (count < map->m_len && count <= blocks_to_boundary) {
992                         ext4_fsblk_t blk;
993
994                         blk = le32_to_cpu(*(chain[depth-1].p + count));
995
996                         if (blk == first_block + count)
997                                 count++;
998                         else
999                                 break;
1000                 }
1001                 goto got_it;
1002         }
1003
1004         /* Next simple case - plain lookup or failed read of indirect block */
1005         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
1006                 goto cleanup;
1007
1008         /*
1009          * Okay, we need to do block allocation.
1010         */
1011         goal = ext4_find_goal(inode, map->m_lblk, partial);
1012
1013         /* the number of blocks need to allocate for [d,t]indirect blocks */
1014         indirect_blks = (chain + depth) - partial - 1;
1015
1016         /*
1017          * Next look up the indirect map to count the totoal number of
1018          * direct blocks to allocate for this branch.
1019          */
1020         count = ext4_blks_to_allocate(partial, indirect_blks,
1021                                       map->m_len, blocks_to_boundary);
1022         /*
1023          * Block out ext4_truncate while we alter the tree
1024          */
1025         err = ext4_alloc_branch(handle, inode, map->m_lblk, indirect_blks,
1026                                 &count, goal,
1027                                 offsets + (partial - chain), partial);
1028
1029         /*
1030          * The ext4_splice_branch call will free and forget any buffers
1031          * on the new chain if there is a failure, but that risks using
1032          * up transaction credits, especially for bitmaps where the
1033          * credits cannot be returned.  Can we handle this somehow?  We
1034          * may need to return -EAGAIN upwards in the worst case.  --sct
1035          */
1036         if (!err)
1037                 err = ext4_splice_branch(handle, inode, map->m_lblk,
1038                                          partial, indirect_blks, count);
1039         if (err)
1040                 goto cleanup;
1041
1042         map->m_flags |= EXT4_MAP_NEW;
1043
1044         ext4_update_inode_fsync_trans(handle, inode, 1);
1045 got_it:
1046         map->m_flags |= EXT4_MAP_MAPPED;
1047         map->m_pblk = le32_to_cpu(chain[depth-1].key);
1048         map->m_len = count;
1049         if (count > blocks_to_boundary)
1050                 map->m_flags |= EXT4_MAP_BOUNDARY;
1051         err = count;
1052         /* Clean up and exit */
1053         partial = chain + depth - 1;    /* the whole chain */
1054 cleanup:
1055         while (partial > chain) {
1056                 BUFFER_TRACE(partial->bh, "call brelse");
1057                 brelse(partial->bh);
1058                 partial--;
1059         }
1060 out:
1061         return err;
1062 }
1063
1064 #ifdef CONFIG_QUOTA
1065 qsize_t *ext4_get_reserved_space(struct inode *inode)
1066 {
1067         return &EXT4_I(inode)->i_reserved_quota;
1068 }
1069 #endif
1070
1071 /*
1072  * Calculate the number of metadata blocks need to reserve
1073  * to allocate a new block at @lblocks for non extent file based file
1074  */
1075 static int ext4_indirect_calc_metadata_amount(struct inode *inode,
1076                                               sector_t lblock)
1077 {
1078         struct ext4_inode_info *ei = EXT4_I(inode);
1079         sector_t dind_mask = ~((sector_t)EXT4_ADDR_PER_BLOCK(inode->i_sb) - 1);
1080         int blk_bits;
1081
1082         if (lblock < EXT4_NDIR_BLOCKS)
1083                 return 0;
1084
1085         lblock -= EXT4_NDIR_BLOCKS;
1086
1087         if (ei->i_da_metadata_calc_len &&
1088             (lblock & dind_mask) == ei->i_da_metadata_calc_last_lblock) {
1089                 ei->i_da_metadata_calc_len++;
1090                 return 0;
1091         }
1092         ei->i_da_metadata_calc_last_lblock = lblock & dind_mask;
1093         ei->i_da_metadata_calc_len = 1;
1094         blk_bits = order_base_2(lblock);
1095         return (blk_bits / EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb)) + 1;
1096 }
1097
1098 /*
1099  * Calculate the number of metadata blocks need to reserve
1100  * to allocate a block located at @lblock
1101  */
1102 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
1103 {
1104         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1105                 return ext4_ext_calc_metadata_amount(inode, lblock);
1106
1107         return ext4_indirect_calc_metadata_amount(inode, lblock);
1108 }
1109
1110 /*
1111  * Called with i_data_sem down, which is important since we can call
1112  * ext4_discard_preallocations() from here.
1113  */
1114 void ext4_da_update_reserve_space(struct inode *inode,
1115                                         int used, int quota_claim)
1116 {
1117         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1118         struct ext4_inode_info *ei = EXT4_I(inode);
1119
1120         spin_lock(&ei->i_block_reservation_lock);
1121         trace_ext4_da_update_reserve_space(inode, used);
1122         if (unlikely(used > ei->i_reserved_data_blocks)) {
1123                 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
1124                          "with only %d reserved data blocks\n",
1125                          __func__, inode->i_ino, used,
1126                          ei->i_reserved_data_blocks);
1127                 WARN_ON(1);
1128                 used = ei->i_reserved_data_blocks;
1129         }
1130
1131         /* Update per-inode reservations */
1132         ei->i_reserved_data_blocks -= used;
1133         ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
1134         percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1135                            used + ei->i_allocated_meta_blocks);
1136         ei->i_allocated_meta_blocks = 0;
1137
1138         if (ei->i_reserved_data_blocks == 0) {
1139                 /*
1140                  * We can release all of the reserved metadata blocks
1141                  * only when we have written all of the delayed
1142                  * allocation blocks.
1143                  */
1144                 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1145                                    ei->i_reserved_meta_blocks);
1146                 ei->i_reserved_meta_blocks = 0;
1147                 ei->i_da_metadata_calc_len = 0;
1148         }
1149         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1150
1151         /* Update quota subsystem for data blocks */
1152         if (quota_claim)
1153                 dquot_claim_block(inode, used);
1154         else {
1155                 /*
1156                  * We did fallocate with an offset that is already delayed
1157                  * allocated. So on delayed allocated writeback we should
1158                  * not re-claim the quota for fallocated blocks.
1159                  */
1160                 dquot_release_reservation_block(inode, used);
1161         }
1162
1163         /*
1164          * If we have done all the pending block allocations and if
1165          * there aren't any writers on the inode, we can discard the
1166          * inode's preallocations.
1167          */
1168         if ((ei->i_reserved_data_blocks == 0) &&
1169             (atomic_read(&inode->i_writecount) == 0))
1170                 ext4_discard_preallocations(inode);
1171 }
1172
1173 static int __check_block_validity(struct inode *inode, const char *func,
1174                                 unsigned int line,
1175                                 struct ext4_map_blocks *map)
1176 {
1177         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
1178                                    map->m_len)) {
1179                 ext4_error_inode(inode, func, line, map->m_pblk,
1180                                  "lblock %lu mapped to illegal pblock "
1181                                  "(length %d)", (unsigned long) map->m_lblk,
1182                                  map->m_len);
1183                 return -EIO;
1184         }
1185         return 0;
1186 }
1187
1188 #define check_block_validity(inode, map)        \
1189         __check_block_validity((inode), __func__, __LINE__, (map))
1190
1191 /*
1192  * Return the number of contiguous dirty pages in a given inode
1193  * starting at page frame idx.
1194  */
1195 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
1196                                     unsigned int max_pages)
1197 {
1198         struct address_space *mapping = inode->i_mapping;
1199         pgoff_t index;
1200         struct pagevec pvec;
1201         pgoff_t num = 0;
1202         int i, nr_pages, done = 0;
1203
1204         if (max_pages == 0)
1205                 return 0;
1206         pagevec_init(&pvec, 0);
1207         while (!done) {
1208                 index = idx;
1209                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
1210                                               PAGECACHE_TAG_DIRTY,
1211                                               (pgoff_t)PAGEVEC_SIZE);
1212                 if (nr_pages == 0)
1213                         break;
1214                 for (i = 0; i < nr_pages; i++) {
1215                         struct page *page = pvec.pages[i];
1216                         struct buffer_head *bh, *head;
1217
1218                         lock_page(page);
1219                         if (unlikely(page->mapping != mapping) ||
1220                             !PageDirty(page) ||
1221                             PageWriteback(page) ||
1222                             page->index != idx) {
1223                                 done = 1;
1224                                 unlock_page(page);
1225                                 break;
1226                         }
1227                         if (page_has_buffers(page)) {
1228                                 bh = head = page_buffers(page);
1229                                 do {
1230                                         if (!buffer_delay(bh) &&
1231                                             !buffer_unwritten(bh))
1232                                                 done = 1;
1233                                         bh = bh->b_this_page;
1234                                 } while (!done && (bh != head));
1235                         }
1236                         unlock_page(page);
1237                         if (done)
1238                                 break;
1239                         idx++;
1240                         num++;
1241                         if (num >= max_pages) {
1242                                 done = 1;
1243                                 break;
1244                         }
1245                 }
1246                 pagevec_release(&pvec);
1247         }
1248         return num;
1249 }
1250
1251 /*
1252  * The ext4_map_blocks() function tries to look up the requested blocks,
1253  * and returns if the blocks are already mapped.
1254  *
1255  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1256  * and store the allocated blocks in the result buffer head and mark it
1257  * mapped.
1258  *
1259  * If file type is extents based, it will call ext4_ext_map_blocks(),
1260  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
1261  * based files
1262  *
1263  * On success, it returns the number of blocks being mapped or allocate.
1264  * if create==0 and the blocks are pre-allocated and uninitialized block,
1265  * the result buffer head is unmapped. If the create ==1, it will make sure
1266  * the buffer head is mapped.
1267  *
1268  * It returns 0 if plain look up failed (blocks have not been allocated), in
1269  * that casem, buffer head is unmapped
1270  *
1271  * It returns the error in case of allocation failure.
1272  */
1273 int ext4_map_blocks(handle_t *handle, struct inode *inode,
1274                     struct ext4_map_blocks *map, int flags)
1275 {
1276         int retval;
1277
1278         map->m_flags = 0;
1279         ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
1280                   "logical block %lu\n", inode->i_ino, flags, map->m_len,
1281                   (unsigned long) map->m_lblk);
1282         /*
1283          * Try to see if we can get the block without requesting a new
1284          * file system block.
1285          */
1286         down_read((&EXT4_I(inode)->i_data_sem));
1287         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
1288                 retval = ext4_ext_map_blocks(handle, inode, map, 0);
1289         } else {
1290                 retval = ext4_ind_map_blocks(handle, inode, map, 0);
1291         }
1292         up_read((&EXT4_I(inode)->i_data_sem));
1293
1294         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
1295                 int ret = check_block_validity(inode, map);
1296                 if (ret != 0)
1297                         return ret;
1298         }
1299
1300         /* If it is only a block(s) look up */
1301         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
1302                 return retval;
1303
1304         /*
1305          * Returns if the blocks have already allocated
1306          *
1307          * Note that if blocks have been preallocated
1308          * ext4_ext_get_block() returns th create = 0
1309          * with buffer head unmapped.
1310          */
1311         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
1312                 return retval;
1313
1314         /*
1315          * When we call get_blocks without the create flag, the
1316          * BH_Unwritten flag could have gotten set if the blocks
1317          * requested were part of a uninitialized extent.  We need to
1318          * clear this flag now that we are committed to convert all or
1319          * part of the uninitialized extent to be an initialized
1320          * extent.  This is because we need to avoid the combination
1321          * of BH_Unwritten and BH_Mapped flags being simultaneously
1322          * set on the buffer_head.
1323          */
1324         map->m_flags &= ~EXT4_MAP_UNWRITTEN;
1325
1326         /*
1327          * New blocks allocate and/or writing to uninitialized extent
1328          * will possibly result in updating i_data, so we take
1329          * the write lock of i_data_sem, and call get_blocks()
1330          * with create == 1 flag.
1331          */
1332         down_write((&EXT4_I(inode)->i_data_sem));
1333
1334         /*
1335          * if the caller is from delayed allocation writeout path
1336          * we have already reserved fs blocks for allocation
1337          * let the underlying get_block() function know to
1338          * avoid double accounting
1339          */
1340         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1341                 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
1342         /*
1343          * We need to check for EXT4 here because migrate
1344          * could have changed the inode type in between
1345          */
1346         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
1347                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
1348         } else {
1349                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
1350
1351                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
1352                         /*
1353                          * We allocated new blocks which will result in
1354                          * i_data's format changing.  Force the migrate
1355                          * to fail by clearing migrate flags
1356                          */
1357                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
1358                 }
1359
1360                 /*
1361                  * Update reserved blocks/metadata blocks after successful
1362                  * block allocation which had been deferred till now. We don't
1363                  * support fallocate for non extent files. So we can update
1364                  * reserve space here.
1365                  */
1366                 if ((retval > 0) &&
1367                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
1368                         ext4_da_update_reserve_space(inode, retval, 1);
1369         }
1370         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1371                 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
1372
1373         up_write((&EXT4_I(inode)->i_data_sem));
1374         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
1375                 int ret = check_block_validity(inode, map);
1376                 if (ret != 0)
1377                         return ret;
1378         }
1379         return retval;
1380 }
1381
1382 /* Maximum number of blocks we map for direct IO at once. */
1383 #define DIO_MAX_BLOCKS 4096
1384
1385 static int _ext4_get_block(struct inode *inode, sector_t iblock,
1386                            struct buffer_head *bh, int flags)
1387 {
1388         handle_t *handle = ext4_journal_current_handle();
1389         struct ext4_map_blocks map;
1390         int ret = 0, started = 0;
1391         int dio_credits;
1392
1393         map.m_lblk = iblock;
1394         map.m_len = bh->b_size >> inode->i_blkbits;
1395
1396         if (flags && !handle) {
1397                 /* Direct IO write... */
1398                 if (map.m_len > DIO_MAX_BLOCKS)
1399                         map.m_len = DIO_MAX_BLOCKS;
1400                 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
1401                 handle = ext4_journal_start(inode, dio_credits);
1402                 if (IS_ERR(handle)) {
1403                         ret = PTR_ERR(handle);
1404                         return ret;
1405                 }
1406                 started = 1;
1407         }
1408
1409         ret = ext4_map_blocks(handle, inode, &map, flags);
1410         if (ret > 0) {
1411                 map_bh(bh, inode->i_sb, map.m_pblk);
1412                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1413                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
1414                 ret = 0;
1415         }
1416         if (started)
1417                 ext4_journal_stop(handle);
1418         return ret;
1419 }
1420
1421 int ext4_get_block(struct inode *inode, sector_t iblock,
1422                    struct buffer_head *bh, int create)
1423 {
1424         return _ext4_get_block(inode, iblock, bh,
1425                                create ? EXT4_GET_BLOCKS_CREATE : 0);
1426 }
1427
1428 /*
1429  * `handle' can be NULL if create is zero
1430  */
1431 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1432                                 ext4_lblk_t block, int create, int *errp)
1433 {
1434         struct ext4_map_blocks map;
1435         struct buffer_head *bh;
1436         int fatal = 0, err;
1437
1438         J_ASSERT(handle != NULL || create == 0);
1439
1440         map.m_lblk = block;
1441         map.m_len = 1;
1442         err = ext4_map_blocks(handle, inode, &map,
1443                               create ? EXT4_GET_BLOCKS_CREATE : 0);
1444
1445         if (err < 0)
1446                 *errp = err;
1447         if (err <= 0)
1448                 return NULL;
1449         *errp = 0;
1450
1451         bh = sb_getblk(inode->i_sb, map.m_pblk);
1452         if (!bh) {
1453                 *errp = -EIO;
1454                 return NULL;
1455         }
1456         if (map.m_flags & EXT4_MAP_NEW) {
1457                 J_ASSERT(create != 0);
1458                 J_ASSERT(handle != NULL);
1459
1460                 /*
1461                  * Now that we do not always journal data, we should
1462                  * keep in mind whether this should always journal the
1463                  * new buffer as metadata.  For now, regular file
1464                  * writes use ext4_get_block instead, so it's not a
1465                  * problem.
1466                  */
1467                 lock_buffer(bh);
1468                 BUFFER_TRACE(bh, "call get_create_access");
1469                 fatal = ext4_journal_get_create_access(handle, bh);
1470                 if (!fatal && !buffer_uptodate(bh)) {
1471                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1472                         set_buffer_uptodate(bh);
1473                 }
1474                 unlock_buffer(bh);
1475                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1476                 err = ext4_handle_dirty_metadata(handle, inode, bh);
1477                 if (!fatal)
1478                         fatal = err;
1479         } else {
1480                 BUFFER_TRACE(bh, "not a new buffer");
1481         }
1482         if (fatal) {
1483                 *errp = fatal;
1484                 brelse(bh);
1485                 bh = NULL;
1486         }
1487         return bh;
1488 }
1489
1490 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1491                                ext4_lblk_t block, int create, int *err)
1492 {
1493         struct buffer_head *bh;
1494
1495         bh = ext4_getblk(handle, inode, block, create, err);
1496         if (!bh)
1497                 return bh;
1498         if (buffer_uptodate(bh))
1499                 return bh;
1500         ll_rw_block(READ_META, 1, &bh);
1501         wait_on_buffer(bh);
1502         if (buffer_uptodate(bh))
1503                 return bh;
1504         put_bh(bh);
1505         *err = -EIO;
1506         return NULL;
1507 }
1508
1509 static int walk_page_buffers(handle_t *handle,
1510                              struct buffer_head *head,
1511                              unsigned from,
1512                              unsigned to,
1513                              int *partial,
1514                              int (*fn)(handle_t *handle,
1515                                        struct buffer_head *bh))
1516 {
1517         struct buffer_head *bh;
1518         unsigned block_start, block_end;
1519         unsigned blocksize = head->b_size;
1520         int err, ret = 0;
1521         struct buffer_head *next;
1522
1523         for (bh = head, block_start = 0;
1524              ret == 0 && (bh != head || !block_start);
1525              block_start = block_end, bh = next) {
1526                 next = bh->b_this_page;
1527                 block_end = block_start + blocksize;
1528                 if (block_end <= from || block_start >= to) {
1529                         if (partial && !buffer_uptodate(bh))
1530                                 *partial = 1;
1531                         continue;
1532                 }
1533                 err = (*fn)(handle, bh);
1534                 if (!ret)
1535                         ret = err;
1536         }
1537         return ret;
1538 }
1539
1540 /*
1541  * To preserve ordering, it is essential that the hole instantiation and
1542  * the data write be encapsulated in a single transaction.  We cannot
1543  * close off a transaction and start a new one between the ext4_get_block()
1544  * and the commit_write().  So doing the jbd2_journal_start at the start of
1545  * prepare_write() is the right place.
1546  *
1547  * Also, this function can nest inside ext4_writepage() ->
1548  * block_write_full_page(). In that case, we *know* that ext4_writepage()
1549  * has generated enough buffer credits to do the whole page.  So we won't
1550  * block on the journal in that case, which is good, because the caller may
1551  * be PF_MEMALLOC.
1552  *
1553  * By accident, ext4 can be reentered when a transaction is open via
1554  * quota file writes.  If we were to commit the transaction while thus
1555  * reentered, there can be a deadlock - we would be holding a quota
1556  * lock, and the commit would never complete if another thread had a
1557  * transaction open and was blocking on the quota lock - a ranking
1558  * violation.
1559  *
1560  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1561  * will _not_ run commit under these circumstances because handle->h_ref
1562  * is elevated.  We'll still have enough credits for the tiny quotafile
1563  * write.
1564  */
1565 static int do_journal_get_write_access(handle_t *handle,
1566                                        struct buffer_head *bh)
1567 {
1568         int dirty = buffer_dirty(bh);
1569         int ret;
1570
1571         if (!buffer_mapped(bh) || buffer_freed(bh))
1572                 return 0;
1573         /*
1574          * __block_write_begin() could have dirtied some buffers. Clean
1575          * the dirty bit as jbd2_journal_get_write_access() could complain
1576          * otherwise about fs integrity issues. Setting of the dirty bit
1577          * by __block_write_begin() isn't a real problem here as we clear
1578          * the bit before releasing a page lock and thus writeback cannot
1579          * ever write the buffer.
1580          */
1581         if (dirty)
1582                 clear_buffer_dirty(bh);
1583         ret = ext4_journal_get_write_access(handle, bh);
1584         if (!ret && dirty)
1585                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1586         return ret;
1587 }
1588
1589 /*
1590  * Truncate blocks that were not used by write. We have to truncate the
1591  * pagecache as well so that corresponding buffers get properly unmapped.
1592  */
1593 static void ext4_truncate_failed_write(struct inode *inode)
1594 {
1595         truncate_inode_pages(inode->i_mapping, inode->i_size);
1596         ext4_truncate(inode);
1597 }
1598
1599 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
1600                    struct buffer_head *bh_result, int create);
1601 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1602                             loff_t pos, unsigned len, unsigned flags,
1603                             struct page **pagep, void **fsdata)
1604 {
1605         struct inode *inode = mapping->host;
1606         int ret, needed_blocks;
1607         handle_t *handle;
1608         int retries = 0;
1609         struct page *page;
1610         pgoff_t index;
1611         unsigned from, to;
1612
1613         trace_ext4_write_begin(inode, pos, len, flags);
1614         /*
1615          * Reserve one block more for addition to orphan list in case
1616          * we allocate blocks but write fails for some reason
1617          */
1618         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1619         index = pos >> PAGE_CACHE_SHIFT;
1620         from = pos & (PAGE_CACHE_SIZE - 1);
1621         to = from + len;
1622
1623 retry:
1624         handle = ext4_journal_start(inode, needed_blocks);
1625         if (IS_ERR(handle)) {
1626                 ret = PTR_ERR(handle);
1627                 goto out;
1628         }
1629
1630         /* We cannot recurse into the filesystem as the transaction is already
1631          * started */
1632         flags |= AOP_FLAG_NOFS;
1633
1634         page = grab_cache_page_write_begin(mapping, index, flags);
1635         if (!page) {
1636                 ext4_journal_stop(handle);
1637                 ret = -ENOMEM;
1638                 goto out;
1639         }
1640         *pagep = page;
1641
1642         if (ext4_should_dioread_nolock(inode))
1643                 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
1644         else
1645                 ret = __block_write_begin(page, pos, len, ext4_get_block);
1646
1647         if (!ret && ext4_should_journal_data(inode)) {
1648                 ret = walk_page_buffers(handle, page_buffers(page),
1649                                 from, to, NULL, do_journal_get_write_access);
1650         }
1651
1652         if (ret) {
1653                 unlock_page(page);
1654                 page_cache_release(page);
1655                 /*
1656                  * __block_write_begin may have instantiated a few blocks
1657                  * outside i_size.  Trim these off again. Don't need
1658                  * i_size_read because we hold i_mutex.
1659                  *
1660                  * Add inode to orphan list in case we crash before
1661                  * truncate finishes
1662                  */
1663                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1664                         ext4_orphan_add(handle, inode);
1665
1666                 ext4_journal_stop(handle);
1667                 if (pos + len > inode->i_size) {
1668                         ext4_truncate_failed_write(inode);
1669                         /*
1670                          * If truncate failed early the inode might
1671                          * still be on the orphan list; we need to
1672                          * make sure the inode is removed from the
1673                          * orphan list in that case.
1674                          */
1675                         if (inode->i_nlink)
1676                                 ext4_orphan_del(NULL, inode);
1677                 }
1678         }
1679
1680         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1681                 goto retry;
1682 out:
1683         return ret;
1684 }
1685
1686 /* For write_end() in data=journal mode */
1687 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1688 {
1689         if (!buffer_mapped(bh) || buffer_freed(bh))
1690                 return 0;
1691         set_buffer_uptodate(bh);
1692         return ext4_handle_dirty_metadata(handle, NULL, bh);
1693 }
1694
1695 static int ext4_generic_write_end(struct file *file,
1696                                   struct address_space *mapping,
1697                                   loff_t pos, unsigned len, unsigned copied,
1698                                   struct page *page, void *fsdata)
1699 {
1700         int i_size_changed = 0;
1701         struct inode *inode = mapping->host;
1702         handle_t *handle = ext4_journal_current_handle();
1703
1704         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1705
1706         /*
1707          * No need to use i_size_read() here, the i_size
1708          * cannot change under us because we hold i_mutex.
1709          *
1710          * But it's important to update i_size while still holding page lock:
1711          * page writeout could otherwise come in and zero beyond i_size.
1712          */
1713         if (pos + copied > inode->i_size) {
1714                 i_size_write(inode, pos + copied);
1715                 i_size_changed = 1;
1716         }
1717
1718         if (pos + copied >  EXT4_I(inode)->i_disksize) {
1719                 /* We need to mark inode dirty even if
1720                  * new_i_size is less that inode->i_size
1721                  * bu greater than i_disksize.(hint delalloc)
1722                  */
1723                 ext4_update_i_disksize(inode, (pos + copied));
1724                 i_size_changed = 1;
1725         }
1726         unlock_page(page);
1727         page_cache_release(page);
1728
1729         /*
1730          * Don't mark the inode dirty under page lock. First, it unnecessarily
1731          * makes the holding time of page lock longer. Second, it forces lock
1732          * ordering of page lock and transaction start for journaling
1733          * filesystems.
1734          */
1735         if (i_size_changed)
1736                 ext4_mark_inode_dirty(handle, inode);
1737
1738         return copied;
1739 }
1740
1741 /*
1742  * We need to pick up the new inode size which generic_commit_write gave us
1743  * `file' can be NULL - eg, when called from page_symlink().
1744  *
1745  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1746  * buffers are managed internally.
1747  */
1748 static int ext4_ordered_write_end(struct file *file,
1749                                   struct address_space *mapping,
1750                                   loff_t pos, unsigned len, unsigned copied,
1751                                   struct page *page, void *fsdata)
1752 {
1753         handle_t *handle = ext4_journal_current_handle();
1754         struct inode *inode = mapping->host;
1755         int ret = 0, ret2;
1756
1757         trace_ext4_ordered_write_end(inode, pos, len, copied);
1758         ret = ext4_jbd2_file_inode(handle, inode);
1759
1760         if (ret == 0) {
1761                 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1762                                                         page, fsdata);
1763                 copied = ret2;
1764                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1765                         /* if we have allocated more blocks and copied
1766                          * less. We will have blocks allocated outside
1767                          * inode->i_size. So truncate them
1768                          */
1769                         ext4_orphan_add(handle, inode);
1770                 if (ret2 < 0)
1771                         ret = ret2;
1772         }
1773         ret2 = ext4_journal_stop(handle);
1774         if (!ret)
1775                 ret = ret2;
1776
1777         if (pos + len > inode->i_size) {
1778                 ext4_truncate_failed_write(inode);
1779                 /*
1780                  * If truncate failed early the inode might still be
1781                  * on the orphan list; we need to make sure the inode
1782                  * is removed from the orphan list in that case.
1783                  */
1784                 if (inode->i_nlink)
1785                         ext4_orphan_del(NULL, inode);
1786         }
1787
1788
1789         return ret ? ret : copied;
1790 }
1791
1792 static int ext4_writeback_write_end(struct file *file,
1793                                     struct address_space *mapping,
1794                                     loff_t pos, unsigned len, unsigned copied,
1795                                     struct page *page, void *fsdata)
1796 {
1797         handle_t *handle = ext4_journal_current_handle();
1798         struct inode *inode = mapping->host;
1799         int ret = 0, ret2;
1800
1801         trace_ext4_writeback_write_end(inode, pos, len, copied);
1802         ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1803                                                         page, fsdata);
1804         copied = ret2;
1805         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1806                 /* if we have allocated more blocks and copied
1807                  * less. We will have blocks allocated outside
1808                  * inode->i_size. So truncate them
1809                  */
1810                 ext4_orphan_add(handle, inode);
1811
1812         if (ret2 < 0)
1813                 ret = ret2;
1814
1815         ret2 = ext4_journal_stop(handle);
1816         if (!ret)
1817                 ret = ret2;
1818
1819         if (pos + len > inode->i_size) {
1820                 ext4_truncate_failed_write(inode);
1821                 /*
1822                  * If truncate failed early the inode might still be
1823                  * on the orphan list; we need to make sure the inode
1824                  * is removed from the orphan list in that case.
1825                  */
1826                 if (inode->i_nlink)
1827                         ext4_orphan_del(NULL, inode);
1828         }
1829
1830         return ret ? ret : copied;
1831 }
1832
1833 static int ext4_journalled_write_end(struct file *file,
1834                                      struct address_space *mapping,
1835                                      loff_t pos, unsigned len, unsigned copied,
1836                                      struct page *page, void *fsdata)
1837 {
1838         handle_t *handle = ext4_journal_current_handle();
1839         struct inode *inode = mapping->host;
1840         int ret = 0, ret2;
1841         int partial = 0;
1842         unsigned from, to;
1843         loff_t new_i_size;
1844
1845         trace_ext4_journalled_write_end(inode, pos, len, copied);
1846         from = pos & (PAGE_CACHE_SIZE - 1);
1847         to = from + len;
1848
1849         if (copied < len) {
1850                 if (!PageUptodate(page))
1851                         copied = 0;
1852                 page_zero_new_buffers(page, from+copied, to);
1853         }
1854
1855         ret = walk_page_buffers(handle, page_buffers(page), from,
1856                                 to, &partial, write_end_fn);
1857         if (!partial)
1858                 SetPageUptodate(page);
1859         new_i_size = pos + copied;
1860         if (new_i_size > inode->i_size)
1861                 i_size_write(inode, pos+copied);
1862         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1863         if (new_i_size > EXT4_I(inode)->i_disksize) {
1864                 ext4_update_i_disksize(inode, new_i_size);
1865                 ret2 = ext4_mark_inode_dirty(handle, inode);
1866                 if (!ret)
1867                         ret = ret2;
1868         }
1869
1870         unlock_page(page);
1871         page_cache_release(page);
1872         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1873                 /* if we have allocated more blocks and copied
1874                  * less. We will have blocks allocated outside
1875                  * inode->i_size. So truncate them
1876                  */
1877                 ext4_orphan_add(handle, inode);
1878
1879         ret2 = ext4_journal_stop(handle);
1880         if (!ret)
1881                 ret = ret2;
1882         if (pos + len > inode->i_size) {
1883                 ext4_truncate_failed_write(inode);
1884                 /*
1885                  * If truncate failed early the inode might still be
1886                  * on the orphan list; we need to make sure the inode
1887                  * is removed from the orphan list in that case.
1888                  */
1889                 if (inode->i_nlink)
1890                         ext4_orphan_del(NULL, inode);
1891         }
1892
1893         return ret ? ret : copied;
1894 }
1895
1896 /*
1897  * Reserve a single block located at lblock
1898  */
1899 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1900 {
1901         int retries = 0;
1902         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1903         struct ext4_inode_info *ei = EXT4_I(inode);
1904         unsigned long md_needed;
1905         int ret;
1906
1907         /*
1908          * recalculate the amount of metadata blocks to reserve
1909          * in order to allocate nrblocks
1910          * worse case is one extent per block
1911          */
1912 repeat:
1913         spin_lock(&ei->i_block_reservation_lock);
1914         md_needed = ext4_calc_metadata_amount(inode, lblock);
1915         trace_ext4_da_reserve_space(inode, md_needed);
1916         spin_unlock(&ei->i_block_reservation_lock);
1917
1918         /*
1919          * We will charge metadata quota at writeout time; this saves
1920          * us from metadata over-estimation, though we may go over by
1921          * a small amount in the end.  Here we just reserve for data.
1922          */
1923         ret = dquot_reserve_block(inode, 1);
1924         if (ret)
1925                 return ret;
1926         /*
1927          * We do still charge estimated metadata to the sb though;
1928          * we cannot afford to run out of free blocks.
1929          */
1930         if (ext4_claim_free_blocks(sbi, md_needed + 1)) {
1931                 dquot_release_reservation_block(inode, 1);
1932                 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1933                         yield();
1934                         goto repeat;
1935                 }
1936                 return -ENOSPC;
1937         }
1938         spin_lock(&ei->i_block_reservation_lock);
1939         ei->i_reserved_data_blocks++;
1940         ei->i_reserved_meta_blocks += md_needed;
1941         spin_unlock(&ei->i_block_reservation_lock);
1942
1943         return 0;       /* success */
1944 }
1945
1946 static void ext4_da_release_space(struct inode *inode, int to_free)
1947 {
1948         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1949         struct ext4_inode_info *ei = EXT4_I(inode);
1950
1951         if (!to_free)
1952                 return;         /* Nothing to release, exit */
1953
1954         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1955
1956         trace_ext4_da_release_space(inode, to_free);
1957         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1958                 /*
1959                  * if there aren't enough reserved blocks, then the
1960                  * counter is messed up somewhere.  Since this
1961                  * function is called from invalidate page, it's
1962                  * harmless to return without any action.
1963                  */
1964                 ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
1965                          "ino %lu, to_free %d with only %d reserved "
1966                          "data blocks\n", inode->i_ino, to_free,
1967                          ei->i_reserved_data_blocks);
1968                 WARN_ON(1);
1969                 to_free = ei->i_reserved_data_blocks;
1970         }
1971         ei->i_reserved_data_blocks -= to_free;
1972
1973         if (ei->i_reserved_data_blocks == 0) {
1974                 /*
1975                  * We can release all of the reserved metadata blocks
1976                  * only when we have written all of the delayed
1977                  * allocation blocks.
1978                  */
1979                 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1980                                    ei->i_reserved_meta_blocks);
1981                 ei->i_reserved_meta_blocks = 0;
1982                 ei->i_da_metadata_calc_len = 0;
1983         }
1984
1985         /* update fs dirty data blocks counter */
1986         percpu_counter_sub(&sbi->s_dirtyblocks_counter, to_free);
1987
1988         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1989
1990         dquot_release_reservation_block(inode, to_free);
1991 }
1992
1993 static void ext4_da_page_release_reservation(struct page *page,
1994                                              unsigned long offset)
1995 {
1996         int to_release = 0;
1997         struct buffer_head *head, *bh;
1998         unsigned int curr_off = 0;
1999
2000         head = page_buffers(page);
2001         bh = head;
2002         do {
2003                 unsigned int next_off = curr_off + bh->b_size;
2004
2005                 if ((offset <= curr_off) && (buffer_delay(bh))) {
2006                         to_release++;
2007                         clear_buffer_delay(bh);
2008                 }
2009                 curr_off = next_off;
2010         } while ((bh = bh->b_this_page) != head);
2011         ext4_da_release_space(page->mapping->host, to_release);
2012 }
2013
2014 /*
2015  * Delayed allocation stuff
2016  */
2017
2018 /*
2019  * mpage_da_submit_io - walks through extent of pages and try to write
2020  * them with writepage() call back
2021  *
2022  * @mpd->inode: inode
2023  * @mpd->first_page: first page of the extent
2024  * @mpd->next_page: page after the last page of the extent
2025  *
2026  * By the time mpage_da_submit_io() is called we expect all blocks
2027  * to be allocated. this may be wrong if allocation failed.
2028  *
2029  * As pages are already locked by write_cache_pages(), we can't use it
2030  */
2031 static int mpage_da_submit_io(struct mpage_da_data *mpd,
2032                               struct ext4_map_blocks *map)
2033 {
2034         struct pagevec pvec;
2035         unsigned long index, end;
2036         int ret = 0, err, nr_pages, i;
2037         struct inode *inode = mpd->inode;
2038         struct address_space *mapping = inode->i_mapping;
2039         loff_t size = i_size_read(inode);
2040         unsigned int len, block_start;
2041         struct buffer_head *bh, *page_bufs = NULL;
2042         int journal_data = ext4_should_journal_data(inode);
2043         sector_t pblock = 0, cur_logical = 0;
2044         struct ext4_io_submit io_submit;
2045
2046         BUG_ON(mpd->next_page <= mpd->first_page);
2047         memset(&io_submit, 0, sizeof(io_submit));
2048         /*
2049          * We need to start from the first_page to the next_page - 1
2050          * to make sure we also write the mapped dirty buffer_heads.
2051          * If we look at mpd->b_blocknr we would only be looking
2052          * at the currently mapped buffer_heads.
2053          */
2054         index = mpd->first_page;
2055         end = mpd->next_page - 1;
2056
2057         pagevec_init(&pvec, 0);
2058         while (index <= end) {
2059                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2060                 if (nr_pages == 0)
2061                         break;
2062                 for (i = 0; i < nr_pages; i++) {
2063                         int commit_write = 0, redirty_page = 0;
2064                         struct page *page = pvec.pages[i];
2065
2066                         index = page->index;
2067                         if (index > end)
2068                                 break;
2069
2070                         if (index == size >> PAGE_CACHE_SHIFT)
2071                                 len = size & ~PAGE_CACHE_MASK;
2072                         else
2073                                 len = PAGE_CACHE_SIZE;
2074                         if (map) {
2075                                 cur_logical = index << (PAGE_CACHE_SHIFT -
2076                                                         inode->i_blkbits);
2077                                 pblock = map->m_pblk + (cur_logical -
2078                                                         map->m_lblk);
2079                         }
2080                         index++;
2081
2082                         BUG_ON(!PageLocked(page));
2083                         BUG_ON(PageWriteback(page));
2084
2085                         /*
2086                          * If the page does not have buffers (for
2087                          * whatever reason), try to create them using
2088                          * __block_write_begin.  If this fails,
2089                          * redirty the page and move on.
2090                          */
2091                         if (!page_has_buffers(page)) {
2092                                 if (__block_write_begin(page, 0, len,
2093                                                 noalloc_get_block_write)) {
2094                                 redirty_page:
2095                                         redirty_page_for_writepage(mpd->wbc,
2096                                                                    page);
2097                                         unlock_page(page);
2098                                         continue;
2099                                 }
2100                                 commit_write = 1;
2101                         }
2102
2103                         bh = page_bufs = page_buffers(page);
2104                         block_start = 0;
2105                         do {
2106                                 if (!bh)
2107                                         goto redirty_page;
2108                                 if (map && (cur_logical >= map->m_lblk) &&
2109                                     (cur_logical <= (map->m_lblk +
2110                                                      (map->m_len - 1)))) {
2111                                         if (buffer_delay(bh)) {
2112                                                 clear_buffer_delay(bh);
2113                                                 bh->b_blocknr = pblock;
2114                                         }
2115                                         if (buffer_unwritten(bh) ||
2116                                             buffer_mapped(bh))
2117                                                 BUG_ON(bh->b_blocknr != pblock);
2118                                         if (map->m_flags & EXT4_MAP_UNINIT)
2119                                                 set_buffer_uninit(bh);
2120                                         clear_buffer_unwritten(bh);
2121                                 }
2122
2123                                 /* redirty page if block allocation undone */
2124                                 if (buffer_delay(bh) || buffer_unwritten(bh))
2125                                         redirty_page = 1;
2126                                 bh = bh->b_this_page;
2127                                 block_start += bh->b_size;
2128                                 cur_logical++;
2129                                 pblock++;
2130                         } while (bh != page_bufs);
2131
2132                         if (redirty_page)
2133                                 goto redirty_page;
2134
2135                         if (commit_write)
2136                                 /* mark the buffer_heads as dirty & uptodate */
2137                                 block_commit_write(page, 0, len);
2138
2139                         /*
2140                          * Delalloc doesn't support data journalling,
2141                          * but eventually maybe we'll lift this
2142                          * restriction.
2143                          */
2144                         if (unlikely(journal_data && PageChecked(page)))
2145                                 err = __ext4_journalled_writepage(page, len);
2146                         else if (test_opt(inode->i_sb, MBLK_IO_SUBMIT))
2147                                 err = ext4_bio_write_page(&io_submit, page,
2148                                                           len, mpd->wbc);
2149                         else
2150                                 err = block_write_full_page(page,
2151                                         noalloc_get_block_write, mpd->wbc);
2152
2153                         if (!err)
2154                                 mpd->pages_written++;
2155                         /*
2156                          * In error case, we have to continue because
2157                          * remaining pages are still locked
2158                          */
2159                         if (ret == 0)
2160                                 ret = err;
2161                 }
2162                 pagevec_release(&pvec);
2163         }
2164         ext4_io_submit(&io_submit);
2165         return ret;
2166 }
2167
2168 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
2169                                         sector_t logical, long blk_cnt)
2170 {
2171         int nr_pages, i;
2172         pgoff_t index, end;
2173         struct pagevec pvec;
2174         struct inode *inode = mpd->inode;
2175         struct address_space *mapping = inode->i_mapping;
2176
2177         index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2178         end   = (logical + blk_cnt - 1) >>
2179                                 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2180         while (index <= end) {
2181                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2182                 if (nr_pages == 0)
2183                         break;
2184                 for (i = 0; i < nr_pages; i++) {
2185                         struct page *page = pvec.pages[i];
2186                         if (page->index > end)
2187                                 break;
2188                         BUG_ON(!PageLocked(page));
2189                         BUG_ON(PageWriteback(page));
2190                         block_invalidatepage(page, 0);
2191                         ClearPageUptodate(page);
2192                         unlock_page(page);
2193                 }
2194                 index = pvec.pages[nr_pages - 1]->index + 1;
2195                 pagevec_release(&pvec);
2196         }
2197         return;
2198 }
2199
2200 static void ext4_print_free_blocks(struct inode *inode)
2201 {
2202         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2203         printk(KERN_CRIT "Total free blocks count %lld\n",
2204                ext4_count_free_blocks(inode->i_sb));
2205         printk(KERN_CRIT "Free/Dirty block details\n");
2206         printk(KERN_CRIT "free_blocks=%lld\n",
2207                (long long) percpu_counter_sum(&sbi->s_freeblocks_counter));
2208         printk(KERN_CRIT "dirty_blocks=%lld\n",
2209                (long long) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
2210         printk(KERN_CRIT "Block reservation details\n");
2211         printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
2212                EXT4_I(inode)->i_reserved_data_blocks);
2213         printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
2214                EXT4_I(inode)->i_reserved_meta_blocks);
2215         return;
2216 }
2217
2218 /*
2219  * mpage_da_map_and_submit - go through given space, map them
2220  *       if necessary, and then submit them for I/O
2221  *
2222  * @mpd - bh describing space
2223  *
2224  * The function skips space we know is already mapped to disk blocks.
2225  *
2226  */
2227 static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
2228 {
2229         int err, blks, get_blocks_flags;
2230         struct ext4_map_blocks map, *mapp = NULL;
2231         sector_t next = mpd->b_blocknr;
2232         unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
2233         loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
2234         handle_t *handle = NULL;
2235
2236         /*
2237          * If the blocks are mapped already, or we couldn't accumulate
2238          * any blocks, then proceed immediately to the submission stage.
2239          */
2240         if ((mpd->b_size == 0) ||
2241             ((mpd->b_state  & (1 << BH_Mapped)) &&
2242              !(mpd->b_state & (1 << BH_Delay)) &&
2243              !(mpd->b_state & (1 << BH_Unwritten))))
2244                 goto submit_io;
2245
2246         handle = ext4_journal_current_handle();
2247         BUG_ON(!handle);
2248
2249         /*
2250          * Call ext4_map_blocks() to allocate any delayed allocation
2251          * blocks, or to convert an uninitialized extent to be
2252          * initialized (in the case where we have written into
2253          * one or more preallocated blocks).
2254          *
2255          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
2256          * indicate that we are on the delayed allocation path.  This
2257          * affects functions in many different parts of the allocation
2258          * call path.  This flag exists primarily because we don't
2259          * want to change *many* call functions, so ext4_map_blocks()
2260          * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
2261          * inode's allocation semaphore is taken.
2262          *
2263          * If the blocks in questions were delalloc blocks, set
2264          * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
2265          * variables are updated after the blocks have been allocated.
2266          */
2267         map.m_lblk = next;
2268         map.m_len = max_blocks;
2269         get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
2270         if (ext4_should_dioread_nolock(mpd->inode))
2271                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2272         if (mpd->b_state & (1 << BH_Delay))
2273                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2274
2275         blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
2276         if (blks < 0) {
2277                 struct super_block *sb = mpd->inode->i_sb;
2278
2279                 err = blks;
2280                 /*
2281                  * If get block returns EAGAIN or ENOSPC and there
2282                  * appears to be free blocks we will call
2283                  * ext4_writepage() for all of the pages which will
2284                  * just redirty the pages.
2285                  */
2286                 if (err == -EAGAIN)
2287                         goto submit_io;
2288
2289                 if (err == -ENOSPC &&
2290                     ext4_count_free_blocks(sb)) {
2291                         mpd->retval = err;
2292                         goto submit_io;
2293                 }
2294
2295                 /*
2296                  * get block failure will cause us to loop in
2297                  * writepages, because a_ops->writepage won't be able
2298                  * to make progress. The page will be redirtied by
2299                  * writepage and writepages will again try to write
2300                  * the same.
2301                  */
2302                 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2303                         ext4_msg(sb, KERN_CRIT,
2304                                  "delayed block allocation failed for inode %lu "
2305                                  "at logical offset %llu with max blocks %zd "
2306                                  "with error %d", mpd->inode->i_ino,
2307                                  (unsigned long long) next,
2308                                  mpd->b_size >> mpd->inode->i_blkbits, err);
2309                         ext4_msg(sb, KERN_CRIT,
2310                                 "This should not happen!! Data will be lost\n");
2311                         if (err == -ENOSPC)
2312                                 ext4_print_free_blocks(mpd->inode);
2313                 }
2314                 /* invalidate all the pages */
2315                 ext4_da_block_invalidatepages(mpd, next,
2316                                 mpd->b_size >> mpd->inode->i_blkbits);
2317                 return;
2318         }
2319         BUG_ON(blks == 0);
2320
2321         mapp = &map;
2322         if (map.m_flags & EXT4_MAP_NEW) {
2323                 struct block_device *bdev = mpd->inode->i_sb->s_bdev;
2324                 int i;
2325
2326                 for (i = 0; i < map.m_len; i++)
2327                         unmap_underlying_metadata(bdev, map.m_pblk + i);
2328         }
2329
2330         if (ext4_should_order_data(mpd->inode)) {
2331                 err = ext4_jbd2_file_inode(handle, mpd->inode);
2332                 if (err)
2333                         /* This only happens if the journal is aborted */
2334                         return;
2335         }
2336
2337         /*
2338          * Update on-disk size along with block allocation.
2339          */
2340         disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
2341         if (disksize > i_size_read(mpd->inode))
2342                 disksize = i_size_read(mpd->inode);
2343         if (disksize > EXT4_I(mpd->inode)->i_disksize) {
2344                 ext4_update_i_disksize(mpd->inode, disksize);
2345                 err = ext4_mark_inode_dirty(handle, mpd->inode);
2346                 if (err)
2347                         ext4_error(mpd->inode->i_sb,
2348                                    "Failed to mark inode %lu dirty",
2349                                    mpd->inode->i_ino);
2350         }
2351
2352 submit_io:
2353         mpage_da_submit_io(mpd, mapp);
2354         mpd->io_done = 1;
2355 }
2356
2357 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
2358                 (1 << BH_Delay) | (1 << BH_Unwritten))
2359
2360 /*
2361  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
2362  *
2363  * @mpd->lbh - extent of blocks
2364  * @logical - logical number of the block in the file
2365  * @bh - bh of the block (used to access block's state)
2366  *
2367  * the function is used to collect contig. blocks in same state
2368  */
2369 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
2370                                    sector_t logical, size_t b_size,
2371                                    unsigned long b_state)
2372 {
2373         sector_t next;
2374         int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
2375
2376         /*
2377          * XXX Don't go larger than mballoc is willing to allocate
2378          * This is a stopgap solution.  We eventually need to fold
2379          * mpage_da_submit_io() into this function and then call
2380          * ext4_map_blocks() multiple times in a loop
2381          */
2382         if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
2383                 goto flush_it;
2384
2385         /* check if thereserved journal credits might overflow */
2386         if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
2387                 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
2388                         /*
2389                          * With non-extent format we are limited by the journal
2390                          * credit available.  Total credit needed to insert
2391                          * nrblocks contiguous blocks is dependent on the
2392                          * nrblocks.  So limit nrblocks.
2393                          */
2394                         goto flush_it;
2395                 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
2396                                 EXT4_MAX_TRANS_DATA) {
2397                         /*
2398                          * Adding the new buffer_head would make it cross the
2399                          * allowed limit for which we have journal credit
2400                          * reserved. So limit the new bh->b_size
2401                          */
2402                         b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
2403                                                 mpd->inode->i_blkbits;
2404                         /* we will do mpage_da_submit_io in the next loop */
2405                 }
2406         }
2407         /*
2408          * First block in the extent
2409          */
2410         if (mpd->b_size == 0) {
2411                 mpd->b_blocknr = logical;
2412                 mpd->b_size = b_size;
2413                 mpd->b_state = b_state & BH_FLAGS;
2414                 return;
2415         }
2416
2417         next = mpd->b_blocknr + nrblocks;
2418         /*
2419          * Can we merge the block to our big extent?
2420          */
2421         if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
2422                 mpd->b_size += b_size;
2423                 return;
2424         }
2425
2426 flush_it:
2427         /*
2428          * We couldn't merge the block to our extent, so we
2429          * need to flush current  extent and start new one
2430          */
2431         mpage_da_map_and_submit(mpd);
2432         return;
2433 }
2434
2435 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
2436 {
2437         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
2438 }
2439
2440 /*
2441  * __mpage_da_writepage - finds extent of pages and blocks
2442  *
2443  * @page: page to consider
2444  * @wbc: not used, we just follow rules
2445  * @data: context
2446  *
2447  * The function finds extents of pages and scan them for all blocks.
2448  */
2449 static int __mpage_da_writepage(struct page *page,
2450                                 struct writeback_control *wbc,
2451                                 struct mpage_da_data *mpd)
2452 {
2453         struct inode *inode = mpd->inode;
2454         struct buffer_head *bh, *head;
2455         sector_t logical;
2456
2457         /*
2458          * Can we merge this page to current extent?
2459          */
2460         if (mpd->next_page != page->index) {
2461                 /*
2462                  * Nope, we can't. So, we map non-allocated blocks
2463                  * and start IO on them
2464                  */
2465                 if (mpd->next_page != mpd->first_page) {
2466                         mpage_da_map_and_submit(mpd);
2467                         /*
2468                          * skip rest of the page in the page_vec
2469                          */
2470                         redirty_page_for_writepage(wbc, page);
2471                         unlock_page(page);
2472                         return MPAGE_DA_EXTENT_TAIL;
2473                 }
2474
2475                 /*
2476                  * Start next extent of pages ...
2477                  */
2478                 mpd->first_page = page->index;
2479
2480                 /*
2481                  * ... and blocks
2482                  */
2483                 mpd->b_size = 0;
2484                 mpd->b_state = 0;
2485                 mpd->b_blocknr = 0;
2486         }
2487
2488         mpd->next_page = page->index + 1;
2489         logical = (sector_t) page->index <<
2490                   (PAGE_CACHE_SHIFT - inode->i_blkbits);
2491
2492         if (!page_has_buffers(page)) {
2493                 mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
2494                                        (1 << BH_Dirty) | (1 << BH_Uptodate));
2495                 if (mpd->io_done)
2496                         return MPAGE_DA_EXTENT_TAIL;
2497         } else {
2498                 /*
2499                  * Page with regular buffer heads, just add all dirty ones
2500                  */
2501                 head = page_buffers(page);
2502                 bh = head;
2503                 do {
2504                         BUG_ON(buffer_locked(bh));
2505                         /*
2506                          * We need to try to allocate
2507                          * unmapped blocks in the same page.
2508                          * Otherwise we won't make progress
2509                          * with the page in ext4_writepage
2510                          */
2511                         if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2512                                 mpage_add_bh_to_extent(mpd, logical,
2513                                                        bh->b_size,
2514                                                        bh->b_state);
2515                                 if (mpd->io_done)
2516                                         return MPAGE_DA_EXTENT_TAIL;
2517                         } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2518                                 /*
2519                                  * mapped dirty buffer. We need to update
2520                                  * the b_state because we look at
2521                                  * b_state in mpage_da_map_blocks. We don't
2522                                  * update b_size because if we find an
2523                                  * unmapped buffer_head later we need to
2524                                  * use the b_state flag of that buffer_head.
2525                                  */
2526                                 if (mpd->b_size == 0)
2527                                         mpd->b_state = bh->b_state & BH_FLAGS;
2528                         }
2529                         logical++;
2530                 } while ((bh = bh->b_this_page) != head);
2531         }
2532
2533         return 0;
2534 }
2535
2536 /*
2537  * This is a special get_blocks_t callback which is used by
2538  * ext4_da_write_begin().  It will either return mapped block or
2539  * reserve space for a single block.
2540  *
2541  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2542  * We also have b_blocknr = -1 and b_bdev initialized properly
2543  *
2544  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2545  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2546  * initialized properly.
2547  */
2548 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2549                                   struct buffer_head *bh, int create)
2550 {
2551         struct ext4_map_blocks map;
2552         int ret = 0;
2553         sector_t invalid_block = ~((sector_t) 0xffff);
2554
2555         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
2556                 invalid_block = ~0;
2557
2558         BUG_ON(create == 0);
2559         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
2560
2561         map.m_lblk = iblock;
2562         map.m_len = 1;
2563
2564         /*
2565          * first, we need to know whether the block is allocated already
2566          * preallocated blocks are unmapped but should treated
2567          * the same as allocated blocks.
2568          */
2569         ret = ext4_map_blocks(NULL, inode, &map, 0);
2570         if (ret < 0)
2571                 return ret;
2572         if (ret == 0) {
2573                 if (buffer_delay(bh))
2574                         return 0; /* Not sure this could or should happen */
2575                 /*
2576                  * XXX: __block_write_begin() unmaps passed block, is it OK?
2577                  */
2578                 ret = ext4_da_reserve_space(inode, iblock);
2579                 if (ret)
2580                         /* not enough space to reserve */
2581                         return ret;
2582
2583                 map_bh(bh, inode->i_sb, invalid_block);
2584                 set_buffer_new(bh);
2585                 set_buffer_delay(bh);
2586                 return 0;
2587         }
2588
2589         map_bh(bh, inode->i_sb, map.m_pblk);
2590         bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
2591
2592         if (buffer_unwritten(bh)) {
2593                 /* A delayed write to unwritten bh should be marked
2594                  * new and mapped.  Mapped ensures that we don't do
2595                  * get_block multiple times when we write to the same
2596                  * offset and new ensures that we do proper zero out
2597                  * for partial write.
2598                  */
2599                 set_buffer_new(bh);
2600                 set_buffer_mapped(bh);
2601         }
2602         return 0;
2603 }
2604
2605 /*
2606  * This function is used as a standard get_block_t calback function
2607  * when there is no desire to allocate any blocks.  It is used as a
2608  * callback function for block_write_begin() and block_write_full_page().
2609  * These functions should only try to map a single block at a time.
2610  *
2611  * Since this function doesn't do block allocations even if the caller
2612  * requests it by passing in create=1, it is critically important that
2613  * any caller checks to make sure that any buffer heads are returned
2614  * by this function are either all already mapped or marked for
2615  * delayed allocation before calling  block_write_full_page().  Otherwise,
2616  * b_blocknr could be left unitialized, and the page write functions will
2617  * be taken by surprise.
2618  */
2619 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
2620                                    struct buffer_head *bh_result, int create)
2621 {
2622         BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2623         return _ext4_get_block(inode, iblock, bh_result, 0);
2624 }
2625
2626 static int bget_one(handle_t *handle, struct buffer_head *bh)
2627 {
2628         get_bh(bh);
2629         return 0;
2630 }
2631
2632 static int bput_one(handle_t *handle, struct buffer_head *bh)
2633 {
2634         put_bh(bh);
2635         return 0;
2636 }
2637
2638 static int __ext4_journalled_writepage(struct page *page,
2639                                        unsigned int len)
2640 {
2641         struct address_space *mapping = page->mapping;
2642         struct inode *inode = mapping->host;
2643         struct buffer_head *page_bufs;
2644         handle_t *handle = NULL;
2645         int ret = 0;
2646         int err;
2647
2648         ClearPageChecked(page);
2649         page_bufs = page_buffers(page);
2650         BUG_ON(!page_bufs);
2651         walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
2652         /* As soon as we unlock the page, it can go away, but we have
2653          * references to buffers so we are safe */
2654         unlock_page(page);
2655
2656         handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
2657         if (IS_ERR(handle)) {
2658                 ret = PTR_ERR(handle);
2659                 goto out;
2660         }
2661
2662         ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2663                                 do_journal_get_write_access);
2664
2665         err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2666                                 write_end_fn);
2667         if (ret == 0)
2668                 ret = err;
2669         err = ext4_journal_stop(handle);
2670         if (!ret)
2671                 ret = err;
2672
2673         walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
2674         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2675 out:
2676         return ret;
2677 }
2678
2679 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
2680 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
2681
2682 /*
2683  * Note that we don't need to start a transaction unless we're journaling data
2684  * because we should have holes filled from ext4_page_mkwrite(). We even don't
2685  * need to file the inode to the transaction's list in ordered mode because if
2686  * we are writing back data added by write(), the inode is already there and if
2687  * we are writing back data modified via mmap(), noone guarantees in which
2688  * transaction the data will hit the disk. In case we are journaling data, we
2689  * cannot start transaction directly because transaction start ranks above page
2690  * lock so we have to do some magic.
2691  *
2692  * This function can get called via...
2693  *   - ext4_da_writepages after taking page lock (have journal handle)
2694  *   - journal_submit_inode_data_buffers (no journal handle)
2695  *   - shrink_page_list via pdflush (no journal handle)
2696  *   - grab_page_cache when doing write_begin (have journal handle)
2697  *
2698  * We don't do any block allocation in this function. If we have page with
2699  * multiple blocks we need to write those buffer_heads that are mapped. This
2700  * is important for mmaped based write. So if we do with blocksize 1K
2701  * truncate(f, 1024);
2702  * a = mmap(f, 0, 4096);
2703  * a[0] = 'a';
2704  * truncate(f, 4096);
2705  * we have in the page first buffer_head mapped via page_mkwrite call back
2706  * but other bufer_heads would be unmapped but dirty(dirty done via the
2707  * do_wp_page). So writepage should write the first block. If we modify
2708  * the mmap area beyond 1024 we will again get a page_fault and the
2709  * page_mkwrite callback will do the block allocation and mark the
2710  * buffer_heads mapped.
2711  *
2712  * We redirty the page if we have any buffer_heads that is either delay or
2713  * unwritten in the page.
2714  *
2715  * We can get recursively called as show below.
2716  *
2717  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2718  *              ext4_writepage()
2719  *
2720  * But since we don't do any block allocation we should not deadlock.
2721  * Page also have the dirty flag cleared so we don't get recurive page_lock.
2722  */
2723 static int ext4_writepage(struct page *page,
2724                           struct writeback_control *wbc)
2725 {
2726         int ret = 0, commit_write = 0;
2727         loff_t size;
2728         unsigned int len;
2729         struct buffer_head *page_bufs = NULL;
2730         struct inode *inode = page->mapping->host;
2731
2732         trace_ext4_writepage(inode, page);
2733         size = i_size_read(inode);
2734         if (page->index == size >> PAGE_CACHE_SHIFT)
2735                 len = size & ~PAGE_CACHE_MASK;
2736         else
2737                 len = PAGE_CACHE_SIZE;
2738
2739         /*
2740          * If the page does not have buffers (for whatever reason),
2741          * try to create them using __block_write_begin.  If this
2742          * fails, redirty the page and move on.
2743          */
2744         if (!page_has_buffers(page)) {
2745                 if (__block_write_begin(page, 0, len,
2746                                         noalloc_get_block_write)) {
2747                 redirty_page:
2748                         redirty_page_for_writepage(wbc, page);
2749                         unlock_page(page);
2750                         return 0;
2751                 }
2752                 commit_write = 1;
2753         }
2754         page_bufs = page_buffers(page);
2755         if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2756                               ext4_bh_delay_or_unwritten)) {
2757                 /*
2758                  * We don't want to do block allocation, so redirty
2759                  * the page and return.  We may reach here when we do
2760                  * a journal commit via journal_submit_inode_data_buffers.
2761                  * We can also reach here via shrink_page_list
2762                  */
2763                 goto redirty_page;
2764         }
2765         if (commit_write)
2766                 /* now mark the buffer_heads as dirty and uptodate */
2767                 block_commit_write(page, 0, len);
2768
2769         if (PageChecked(page) && ext4_should_journal_data(inode))
2770                 /*
2771                  * It's mmapped pagecache.  Add buffers and journal it.  There
2772                  * doesn't seem much point in redirtying the page here.
2773                  */
2774                 return __ext4_journalled_writepage(page, len);
2775
2776         if (buffer_uninit(page_bufs)) {
2777                 ext4_set_bh_endio(page_bufs, inode);
2778                 ret = block_write_full_page_endio(page, noalloc_get_block_write,
2779                                             wbc, ext4_end_io_buffer_write);
2780         } else
2781                 ret = block_write_full_page(page, noalloc_get_block_write,
2782                                             wbc);
2783
2784         return ret;
2785 }
2786
2787 /*
2788  * This is called via ext4_da_writepages() to
2789  * calulate the total number of credits to reserve to fit
2790  * a single extent allocation into a single transaction,
2791  * ext4_da_writpeages() will loop calling this before
2792  * the block allocation.
2793  */
2794
2795 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2796 {
2797         int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2798
2799         /*
2800          * With non-extent format the journal credit needed to
2801          * insert nrblocks contiguous block is dependent on
2802          * number of contiguous block. So we will limit
2803          * number of contiguous block to a sane value
2804          */
2805         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
2806             (max_blocks > EXT4_MAX_TRANS_DATA))
2807                 max_blocks = EXT4_MAX_TRANS_DATA;
2808
2809         return ext4_chunk_trans_blocks(inode, max_blocks);
2810 }
2811
2812 /*
2813  * write_cache_pages_da - walk the list of dirty pages of the given
2814  * address space and call the callback function (which usually writes
2815  * the pages).
2816  *
2817  * This is a forked version of write_cache_pages().  Differences:
2818  *      Range cyclic is ignored.
2819  *      no_nrwrite_index_update is always presumed true
2820  */
2821 static int write_cache_pages_da(struct address_space *mapping,
2822                                 struct writeback_control *wbc,
2823                                 struct mpage_da_data *mpd,
2824                                 pgoff_t *done_index)
2825 {
2826         int ret = 0;
2827         int done = 0;
2828         struct pagevec pvec;
2829         unsigned nr_pages;
2830         pgoff_t index;
2831         pgoff_t end;            /* Inclusive */
2832         long nr_to_write = wbc->nr_to_write;
2833         int tag;
2834
2835         pagevec_init(&pvec, 0);
2836         index = wbc->range_start >> PAGE_CACHE_SHIFT;
2837         end = wbc->range_end >> PAGE_CACHE_SHIFT;
2838
2839         if (wbc->sync_mode == WB_SYNC_ALL)
2840                 tag = PAGECACHE_TAG_TOWRITE;
2841         else
2842                 tag = PAGECACHE_TAG_DIRTY;
2843
2844         *done_index = index;
2845         while (!done && (index <= end)) {
2846                 int i;
2847
2848                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2849                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2850                 if (nr_pages == 0)
2851                         break;
2852
2853                 for (i = 0; i < nr_pages; i++) {
2854                         struct page *page = pvec.pages[i];
2855
2856                         /*
2857                          * At this point, the page may be truncated or
2858                          * invalidated (changing page->mapping to NULL), or
2859                          * even swizzled back from swapper_space to tmpfs file
2860                          * mapping. However, page->index will not change
2861                          * because we have a reference on the page.
2862                          */
2863                         if (page->index > end) {
2864                                 done = 1;
2865                                 break;
2866                         }
2867
2868                         *done_index = page->index + 1;
2869
2870                         lock_page(page);
2871
2872                         /*
2873                          * Page truncated or invalidated. We can freely skip it
2874                          * then, even for data integrity operations: the page
2875                          * has disappeared concurrently, so there could be no
2876                          * real expectation of this data interity operation
2877                          * even if there is now a new, dirty page at the same
2878                          * pagecache address.
2879                          */
2880                         if (unlikely(page->mapping != mapping)) {
2881 continue_unlock:
2882                                 unlock_page(page);
2883                                 continue;
2884                         }
2885
2886                         if (!PageDirty(page)) {
2887                                 /* someone wrote it for us */
2888                                 goto continue_unlock;
2889                         }
2890
2891                         if (PageWriteback(page)) {
2892                                 if (wbc->sync_mode != WB_SYNC_NONE)
2893                                         wait_on_page_writeback(page);
2894                                 else
2895                                         goto continue_unlock;
2896                         }
2897
2898                         BUG_ON(PageWriteback(page));
2899                         if (!clear_page_dirty_for_io(page))
2900                                 goto continue_unlock;
2901
2902                         ret = __mpage_da_writepage(page, wbc, mpd);
2903                         if (unlikely(ret)) {
2904                                 if (ret == AOP_WRITEPAGE_ACTIVATE) {
2905                                         unlock_page(page);
2906                                         ret = 0;
2907                                 } else {
2908                                         done = 1;
2909                                         break;
2910                                 }
2911                         }
2912
2913                         if (nr_to_write > 0) {
2914                                 nr_to_write--;
2915                                 if (nr_to_write == 0 &&
2916                                     wbc->sync_mode == WB_SYNC_NONE) {
2917                                         /*
2918                                          * We stop writing back only if we are
2919                                          * not doing integrity sync. In case of
2920                                          * integrity sync we have to keep going
2921                                          * because someone may be concurrently
2922                                          * dirtying pages, and we might have
2923                                          * synced a lot of newly appeared dirty
2924                                          * pages, but have not synced all of the
2925                                          * old dirty pages.
2926                                          */
2927                                         done = 1;
2928                                         break;
2929                                 }
2930                         }
2931                 }
2932                 pagevec_release(&pvec);
2933                 cond_resched();
2934         }
2935         return ret;
2936 }
2937
2938
2939 static int ext4_da_writepages(struct address_space *mapping,
2940                               struct writeback_control *wbc)
2941 {
2942         pgoff_t index;
2943         int range_whole = 0;
2944         handle_t *handle = NULL;
2945         struct mpage_da_data mpd;
2946         struct inode *inode = mapping->host;
2947         int pages_written = 0;
2948         long pages_skipped;
2949         unsigned int max_pages;
2950         int range_cyclic, cycled = 1, io_done = 0;
2951         int needed_blocks, ret = 0;
2952         long desired_nr_to_write, nr_to_writebump = 0;
2953         loff_t range_start = wbc->range_start;
2954         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2955         pgoff_t done_index = 0;
2956         pgoff_t end;
2957
2958         trace_ext4_da_writepages(inode, wbc);
2959
2960         /*
2961          * No pages to write? This is mainly a kludge to avoid starting
2962          * a transaction for special inodes like journal inode on last iput()
2963          * because that could violate lock ordering on umount
2964          */
2965         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2966                 return 0;
2967
2968         /*
2969          * If the filesystem has aborted, it is read-only, so return
2970          * right away instead of dumping stack traces later on that
2971          * will obscure the real source of the problem.  We test
2972          * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2973          * the latter could be true if the filesystem is mounted
2974          * read-only, and in that case, ext4_da_writepages should
2975          * *never* be called, so if that ever happens, we would want
2976          * the stack trace.
2977          */
2978         if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2979                 return -EROFS;
2980
2981         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2982                 range_whole = 1;
2983
2984         range_cyclic = wbc->range_cyclic;
2985         if (wbc->range_cyclic) {
2986                 index = mapping->writeback_index;
2987                 if (index)
2988                         cycled = 0;
2989                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2990                 wbc->range_end  = LLONG_MAX;
2991                 wbc->range_cyclic = 0;
2992                 end = -1;
2993         } else {
2994                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2995                 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2996         }
2997
2998         /*
2999          * This works around two forms of stupidity.  The first is in
3000          * the writeback code, which caps the maximum number of pages
3001          * written to be 1024 pages.  This is wrong on multiple
3002          * levels; different architectues have a different page size,
3003          * which changes the maximum amount of data which gets
3004          * written.  Secondly, 4 megabytes is way too small.  XFS
3005          * forces this value to be 16 megabytes by multiplying
3006          * nr_to_write parameter by four, and then relies on its
3007          * allocator to allocate larger extents to make them
3008          * contiguous.  Unfortunately this brings us to the second
3009          * stupidity, which is that ext4's mballoc code only allocates
3010          * at most 2048 blocks.  So we force contiguous writes up to
3011          * the number of dirty blocks in the inode, or
3012          * sbi->max_writeback_mb_bump whichever is smaller.
3013          */
3014         max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
3015         if (!range_cyclic && range_whole) {
3016                 if (wbc->nr_to_write == LONG_MAX)
3017                         desired_nr_to_write = wbc->nr_to_write;
3018                 else
3019                         desired_nr_to_write = wbc->nr_to_write * 8;
3020         } else
3021                 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
3022                                                            max_pages);
3023         if (desired_nr_to_write > max_pages)
3024                 desired_nr_to_write = max_pages;
3025
3026         if (wbc->nr_to_write < desired_nr_to_write) {
3027                 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
3028                 wbc->nr_to_write = desired_nr_to_write;
3029         }
3030
3031         mpd.wbc = wbc;
3032         mpd.inode = mapping->host;
3033
3034         pages_skipped = wbc->pages_skipped;
3035
3036 retry:
3037         if (wbc->sync_mode == WB_SYNC_ALL)
3038                 tag_pages_for_writeback(mapping, index, end);
3039
3040         while (!ret && wbc->nr_to_write > 0) {
3041
3042                 /*
3043                  * we  insert one extent at a time. So we need
3044                  * credit needed for single extent allocation.
3045                  * journalled mode is currently not supported
3046                  * by delalloc
3047                  */
3048                 BUG_ON(ext4_should_journal_data(inode));
3049                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
3050
3051                 /* start a new transaction*/
3052                 handle = ext4_journal_start(inode, needed_blocks);
3053                 if (IS_ERR(handle)) {
3054                         ret = PTR_ERR(handle);
3055                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
3056                                "%ld pages, ino %lu; err %d", __func__,
3057                                 wbc->nr_to_write, inode->i_ino, ret);
3058                         goto out_writepages;
3059                 }
3060
3061                 /*
3062                  * Now call __mpage_da_writepage to find the next
3063                  * contiguous region of logical blocks that need
3064                  * blocks to be allocated by ext4.  We don't actually
3065                  * submit the blocks for I/O here, even though
3066                  * write_cache_pages thinks it will, and will set the
3067                  * pages as clean for write before calling
3068                  * __mpage_da_writepage().
3069                  */
3070                 mpd.b_size = 0;
3071                 mpd.b_state = 0;
3072                 mpd.b_blocknr = 0;
3073                 mpd.first_page = 0;
3074                 mpd.next_page = 0;
3075                 mpd.io_done = 0;
3076                 mpd.pages_written = 0;
3077                 mpd.retval = 0;
3078                 ret = write_cache_pages_da(mapping, wbc, &mpd, &done_index);
3079                 /*
3080                  * If we have a contiguous extent of pages and we
3081                  * haven't done the I/O yet, map the blocks and submit
3082                  * them for I/O.
3083                  */
3084                 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
3085                         mpage_da_map_and_submit(&mpd);
3086                         ret = MPAGE_DA_EXTENT_TAIL;
3087                 }
3088                 trace_ext4_da_write_pages(inode, &mpd);
3089                 wbc->nr_to_write -= mpd.pages_written;
3090
3091                 ext4_journal_stop(handle);
3092
3093                 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
3094                         /* commit the transaction which would
3095                          * free blocks released in the transaction
3096                          * and try again
3097                          */
3098                         jbd2_journal_force_commit_nested(sbi->s_journal);
3099                         wbc->pages_skipped = pages_skipped;
3100                         ret = 0;
3101                 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
3102                         /*
3103                          * got one extent now try with
3104                          * rest of the pages
3105                          */
3106                         pages_written += mpd.pages_written;
3107                         wbc->pages_skipped = pages_skipped;
3108                         ret = 0;
3109                         io_done = 1;
3110                 } else if (wbc->nr_to_write)
3111                         /*
3112                          * There is no more writeout needed
3113                          * or we requested for a noblocking writeout
3114                          * and we found the device congested
3115                          */
3116                         break;
3117         }
3118         if (!io_done && !cycled) {
3119                 cycled = 1;
3120                 index = 0;
3121                 wbc->range_start = index << PAGE_CACHE_SHIFT;
3122                 wbc->range_end  = mapping->writeback_index - 1;
3123                 goto retry;
3124         }
3125         if (pages_skipped != wbc->pages_skipped)
3126                 ext4_msg(inode->i_sb, KERN_CRIT,
3127                          "This should not happen leaving %s "
3128                          "with nr_to_write = %ld ret = %d",
3129                          __func__, wbc->nr_to_write, ret);
3130
3131         /* Update index */
3132         wbc->range_cyclic = range_cyclic;
3133         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
3134                 /*
3135                  * set the writeback_index so that range_cyclic
3136                  * mode will write it back later
3137                  */
3138                 mapping->writeback_index = done_index;
3139
3140 out_writepages:
3141         wbc->nr_to_write -= nr_to_writebump;
3142         wbc->range_start = range_start;
3143         trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
3144         return ret;
3145 }
3146
3147 #define FALL_BACK_TO_NONDELALLOC 1
3148 static int ext4_nonda_switch(struct super_block *sb)
3149 {
3150         s64 free_blocks, dirty_blocks;
3151         struct ext4_sb_info *sbi = EXT4_SB(sb);
3152
3153         /*
3154          * switch to non delalloc mode if we are running low
3155          * on free block. The free block accounting via percpu
3156          * counters can get slightly wrong with percpu_counter_batch getting
3157          * accumulated on each CPU without updating global counters
3158          * Delalloc need an accurate free block accounting. So switch
3159          * to non delalloc when we are near to error range.
3160          */
3161         free_blocks  = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
3162         dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
3163         if (2 * free_blocks < 3 * dirty_blocks ||
3164                 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
3165                 /*
3166                  * free block count is less than 150% of dirty blocks
3167                  * or free blocks is less than watermark
3168                  */
3169                 return 1;
3170         }
3171         /*
3172          * Even if we don't switch but are nearing capacity,
3173          * start pushing delalloc when 1/2 of free blocks are dirty.
3174          */
3175         if (free_blocks < 2 * dirty_blocks)
3176                 writeback_inodes_sb_if_idle(sb);
3177
3178         return 0;
3179 }
3180
3181 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
3182                                loff_t pos, unsigned len, unsigned flags,
3183                                struct page **pagep, void **fsdata)
3184 {
3185         int ret, retries = 0;
3186         struct page *page;
3187         pgoff_t index;
3188         struct inode *inode = mapping->host;
3189         handle_t *handle;
3190
3191         index = pos >> PAGE_CACHE_SHIFT;
3192
3193         if (ext4_nonda_switch(inode->i_sb)) {
3194                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3195                 return ext4_write_begin(file, mapping, pos,
3196                                         len, flags, pagep, fsdata);
3197         }
3198         *fsdata = (void *)0;
3199         trace_ext4_da_write_begin(inode, pos, len, flags);
3200 retry:
3201         /*
3202          * With delayed allocation, we don't log the i_disksize update
3203          * if there is delayed block allocation. But we still need
3204          * to journalling the i_disksize update if writes to the end
3205          * of file which has an already mapped buffer.
3206          */
3207         handle = ext4_journal_start(inode, 1);
3208         if (IS_ERR(handle)) {
3209                 ret = PTR_ERR(handle);
3210                 goto out;
3211         }
3212         /* We cannot recurse into the filesystem as the transaction is already
3213          * started */
3214         flags |= AOP_FLAG_NOFS;
3215
3216         page = grab_cache_page_write_begin(mapping, index, flags);
3217         if (!page) {
3218                 ext4_journal_stop(handle);
3219                 ret = -ENOMEM;
3220                 goto out;
3221         }
3222         *pagep = page;
3223
3224         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3225         if (ret < 0) {
3226                 unlock_page(page);
3227                 ext4_journal_stop(handle);
3228                 page_cache_release(page);
3229                 /*
3230                  * block_write_begin may have instantiated a few blocks
3231                  * outside i_size.  Trim these off again. Don't need
3232                  * i_size_read because we hold i_mutex.
3233                  */
3234                 if (pos + len > inode->i_size)
3235                         ext4_truncate_failed_write(inode);
3236         }
3237
3238         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3239                 goto retry;
3240 out:
3241         return ret;
3242 }
3243
3244 /*
3245  * Check if we should update i_disksize
3246  * when write to the end of file but not require block allocation
3247  */
3248 static int ext4_da_should_update_i_disksize(struct page *page,
3249                                             unsigned long offset)
3250 {
3251         struct buffer_head *bh;
3252         struct inode *inode = page->mapping->host;
3253         unsigned int idx;
3254         int i;
3255
3256         bh = page_buffers(page);
3257         idx = offset >> inode->i_blkbits;
3258
3259         for (i = 0; i < idx; i++)
3260                 bh = bh->b_this_page;
3261
3262         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3263                 return 0;
3264         return 1;
3265 }
3266
3267 static int ext4_da_write_end(struct file *file,
3268                              struct address_space *mapping,
3269                              loff_t pos, unsigned len, unsigned copied,
3270                              struct page *page, void *fsdata)
3271 {
3272         struct inode *inode = mapping->host;
3273         int ret = 0, ret2;
3274         handle_t *handle = ext4_journal_current_handle();
3275         loff_t new_i_size;
3276         unsigned long start, end;
3277         int write_mode = (int)(unsigned long)fsdata;
3278
3279         if (write_mode == FALL_BACK_TO_NONDELALLOC) {
3280                 if (ext4_should_order_data(inode)) {
3281                         return ext4_ordered_write_end(file, mapping, pos,
3282                                         len, copied, page, fsdata);
3283                 } else if (ext4_should_writeback_data(inode)) {
3284                         return ext4_writeback_write_end(file, mapping, pos,
3285                                         len, copied, page, fsdata);
3286                 } else {
3287                         BUG();
3288                 }
3289         }
3290
3291         trace_ext4_da_write_end(inode, pos, len, copied);
3292         start = pos & (PAGE_CACHE_SIZE - 1);
3293         end = start + copied - 1;
3294
3295         /*
3296          * generic_write_end() will run mark_inode_dirty() if i_size
3297          * changes.  So let's piggyback the i_disksize mark_inode_dirty
3298          * into that.
3299          */
3300
3301         new_i_size = pos + copied;
3302         if (new_i_size > EXT4_I(inode)->i_disksize) {
3303                 if (ext4_da_should_update_i_disksize(page, end)) {
3304                         down_write(&EXT4_I(inode)->i_data_sem);
3305                         if (new_i_size > EXT4_I(inode)->i_disksize) {
3306                                 /*
3307                                  * Updating i_disksize when extending file
3308                                  * without needing block allocation
3309                                  */
3310                                 if (ext4_should_order_data(inode))
3311                                         ret = ext4_jbd2_file_inode(handle,
3312                                                                    inode);
3313
3314                                 EXT4_I(inode)->i_disksize = new_i_size;
3315                         }
3316                         up_write(&EXT4_I(inode)->i_data_sem);
3317                         /* We need to mark inode dirty even if
3318                          * new_i_size is less that inode->i_size
3319                          * bu greater than i_disksize.(hint delalloc)
3320                          */
3321                         ext4_mark_inode_dirty(handle, inode);
3322                 }
3323         }
3324         ret2 = generic_write_end(file, mapping, pos, len, copied,
3325                                                         page, fsdata);
3326         copied = ret2;
3327         if (ret2 < 0)
3328                 ret = ret2;
3329         ret2 = ext4_journal_stop(handle);
3330         if (!ret)
3331                 ret = ret2;
3332
3333         return ret ? ret : copied;
3334 }
3335
3336 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
3337 {
3338         /*
3339          * Drop reserved blocks
3340          */
3341         BUG_ON(!PageLocked(page));
3342         if (!page_has_buffers(page))
3343                 goto out;
3344
3345         ext4_da_page_release_reservation(page, offset);
3346
3347 out:
3348         ext4_invalidatepage(page, offset);
3349
3350         return;
3351 }
3352
3353 /*
3354  * Force all delayed allocation blocks to be allocated for a given inode.
3355  */
3356 int ext4_alloc_da_blocks(struct inode *inode)
3357 {
3358         trace_ext4_alloc_da_blocks(inode);
3359
3360         if (!EXT4_I(inode)->i_reserved_data_blocks &&
3361             !EXT4_I(inode)->i_reserved_meta_blocks)
3362                 return 0;
3363
3364         /*
3365          * We do something simple for now.  The filemap_flush() will
3366          * also start triggering a write of the data blocks, which is
3367          * not strictly speaking necessary (and for users of
3368          * laptop_mode, not even desirable).  However, to do otherwise
3369          * would require replicating code paths in:
3370          *
3371          * ext4_da_writepages() ->
3372          *    write_cache_pages() ---> (via passed in callback function)
3373          *        __mpage_da_writepage() -->
3374          *           mpage_add_bh_to_extent()
3375          *           mpage_da_map_blocks()
3376          *
3377          * The problem is that write_cache_pages(), located in
3378          * mm/page-writeback.c, marks pages clean in preparation for
3379          * doing I/O, which is not desirable if we're not planning on
3380          * doing I/O at all.
3381          *
3382          * We could call write_cache_pages(), and then redirty all of
3383          * the pages by calling redirty_page_for_writepage() but that
3384          * would be ugly in the extreme.  So instead we would need to
3385          * replicate parts of the code in the above functions,
3386          * simplifying them becuase we wouldn't actually intend to
3387          * write out the pages, but rather only collect contiguous
3388          * logical block extents, call the multi-block allocator, and
3389          * then update the buffer heads with the block allocations.
3390          *
3391          * For now, though, we'll cheat by calling filemap_flush(),
3392          * which will map the blocks, and start the I/O, but not
3393          * actually wait for the I/O to complete.
3394          */
3395         return filemap_flush(inode->i_mapping);
3396 }
3397
3398 /*
3399  * bmap() is special.  It gets used by applications such as lilo and by
3400  * the swapper to find the on-disk block of a specific piece of data.
3401  *
3402  * Naturally, this is dangerous if the block concerned is still in the
3403  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3404  * filesystem and enables swap, then they may get a nasty shock when the
3405  * data getting swapped to that swapfile suddenly gets overwritten by
3406  * the original zero's written out previously to the journal and
3407  * awaiting writeback in the kernel's buffer cache.
3408  *
3409  * So, if we see any bmap calls here on a modified, data-journaled file,
3410  * take extra steps to flush any blocks which might be in the cache.
3411  */
3412 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3413 {
3414         struct inode *inode = mapping->host;
3415         journal_t *journal;
3416         int err;
3417
3418         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3419                         test_opt(inode->i_sb, DELALLOC)) {
3420                 /*
3421                  * With delalloc we want to sync the file
3422                  * so that we can make sure we allocate
3423                  * blocks for file
3424                  */
3425                 filemap_write_and_wait(mapping);
3426         }
3427
3428         if (EXT4_JOURNAL(inode) &&
3429             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3430                 /*
3431                  * This is a REALLY heavyweight approach, but the use of
3432                  * bmap on dirty files is expected to be extremely rare:
3433                  * only if we run lilo or swapon on a freshly made file
3434                  * do we expect this to happen.
3435                  *
3436                  * (bmap requires CAP_SYS_RAWIO so this does not
3437                  * represent an unprivileged user DOS attack --- we'd be
3438                  * in trouble if mortal users could trigger this path at
3439                  * will.)
3440                  *
3441                  * NB. EXT4_STATE_JDATA is not set on files other than
3442                  * regular files.  If somebody wants to bmap a directory
3443                  * or symlink and gets confused because the buffer
3444                  * hasn't yet been flushed to disk, they deserve
3445                  * everything they get.
3446                  */
3447
3448                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3449                 journal = EXT4_JOURNAL(inode);
3450                 jbd2_journal_lock_updates(journal);
3451                 err = jbd2_journal_flush(journal);
3452                 jbd2_journal_unlock_updates(journal);
3453
3454                 if (err)
3455                         return 0;
3456         }
3457
3458         return generic_block_bmap(mapping, block, ext4_get_block);
3459 }
3460
3461 static int ext4_readpage(struct file *file, struct page *page)
3462 {
3463         return mpage_readpage(page, ext4_get_block);
3464 }
3465
3466 static int
3467 ext4_readpages(struct file *file, struct address_space *mapping,
3468                 struct list_head *pages, unsigned nr_pages)
3469 {
3470         return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3471 }
3472
3473 static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
3474 {
3475         struct buffer_head *head, *bh;
3476         unsigned int curr_off = 0;
3477
3478         if (!page_has_buffers(page))
3479                 return;
3480         head = bh = page_buffers(page);
3481         do {
3482                 if (offset <= curr_off && test_clear_buffer_uninit(bh)
3483                                         && bh->b_private) {
3484                         ext4_free_io_end(bh->b_private);
3485                         bh->b_private = NULL;
3486                         bh->b_end_io = NULL;
3487                 }
3488                 curr_off = curr_off + bh->b_size;
3489                 bh = bh->b_this_page;
3490         } while (bh != head);
3491 }
3492
3493 static void ext4_invalidatepage(struct page *page, unsigned long offset)
3494 {
3495         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3496
3497         /*
3498          * free any io_end structure allocated for buffers to be discarded
3499          */
3500         if (ext4_should_dioread_nolock(page->mapping->host))
3501                 ext4_invalidatepage_free_endio(page, offset);
3502         /*
3503          * If it's a full truncate we just forget about the pending dirtying
3504          */
3505         if (offset == 0)
3506                 ClearPageChecked(page);
3507
3508         if (journal)
3509                 jbd2_journal_invalidatepage(journal, page, offset);
3510         else
3511                 block_invalidatepage(page, offset);
3512 }
3513
3514 static int ext4_releasepage(struct page *page, gfp_t wait)
3515 {
3516         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3517
3518         WARN_ON(PageChecked(page));
3519         if (!page_has_buffers(page))
3520                 return 0;
3521         if (journal)
3522                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3523         else
3524                 return try_to_free_buffers(page);
3525 }
3526
3527 /*
3528  * O_DIRECT for ext3 (or indirect map) based files
3529  *
3530  * If the O_DIRECT write will extend the file then add this inode to the
3531  * orphan list.  So recovery will truncate it back to the original size
3532  * if the machine crashes during the write.
3533  *
3534  * If the O_DIRECT write is intantiating holes inside i_size and the machine
3535  * crashes then stale disk data _may_ be exposed inside the file. But current
3536  * VFS code falls back into buffered path in that case so we are safe.
3537  */
3538 static ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb,
3539                               const struct iovec *iov, loff_t offset,
3540                               unsigned long nr_segs)
3541 {
3542         struct file *file = iocb->ki_filp;
3543         struct inode *inode = file->f_mapping->host;
3544         struct ext4_inode_info *ei = EXT4_I(inode);
3545         handle_t *handle;
3546         ssize_t ret;
3547         int orphan = 0;
3548         size_t count = iov_length(iov, nr_segs);
3549         int retries = 0;
3550
3551         if (rw == WRITE) {
3552                 loff_t final_size = offset + count;
3553
3554                 if (final_size > inode->i_size) {
3555                         /* Credits for sb + inode write */
3556                         handle = ext4_journal_start(inode, 2);
3557                         if (IS_ERR(handle)) {
3558                                 ret = PTR_ERR(handle);
3559                                 goto out;
3560                         }
3561                         ret = ext4_orphan_add(handle, inode);
3562                         if (ret) {
3563                                 ext4_journal_stop(handle);
3564                                 goto out;
3565                         }
3566                         orphan = 1;
3567                         ei->i_disksize = inode->i_size;
3568                         ext4_journal_stop(handle);
3569                 }
3570         }
3571
3572 retry:
3573         if (rw == READ && ext4_should_dioread_nolock(inode))
3574                 ret = __blockdev_direct_IO(rw, iocb, inode,
3575                                  inode->i_sb->s_bdev, iov,
3576                                  offset, nr_segs,
3577                                  ext4_get_block, NULL, NULL, 0);
3578         else {
3579                 ret = blockdev_direct_IO(rw, iocb, inode,
3580                                  inode->i_sb->s_bdev, iov,
3581                                  offset, nr_segs,
3582                                  ext4_get_block, NULL);
3583
3584                 if (unlikely((rw & WRITE) && ret < 0)) {
3585                         loff_t isize = i_size_read(inode);
3586                         loff_t end = offset + iov_length(iov, nr_segs);
3587
3588                         if (end > isize)
3589                                 vmtruncate(inode, isize);
3590                 }
3591         }
3592         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3593                 goto retry;
3594
3595         if (orphan) {
3596                 int err;
3597
3598                 /* Credits for sb + inode write */
3599                 handle = ext4_journal_start(inode, 2);
3600                 if (IS_ERR(handle)) {
3601                         /* This is really bad luck. We've written the data
3602                          * but cannot extend i_size. Bail out and pretend
3603                          * the write failed... */
3604                         ret = PTR_ERR(handle);
3605                         if (inode->i_nlink)
3606                                 ext4_orphan_del(NULL, inode);
3607
3608                         goto out;
3609                 }
3610                 if (inode->i_nlink)
3611                         ext4_orphan_del(handle, inode);
3612                 if (ret > 0) {
3613                         loff_t end = offset + ret;
3614                         if (end > inode->i_size) {
3615                                 ei->i_disksize = end;
3616                                 i_size_write(inode, end);
3617                                 /*
3618                                  * We're going to return a positive `ret'
3619                                  * here due to non-zero-length I/O, so there's
3620                                  * no way of reporting error returns from
3621                                  * ext4_mark_inode_dirty() to userspace.  So
3622                                  * ignore it.
3623                                  */
3624                                 ext4_mark_inode_dirty(handle, inode);
3625                         }
3626                 }
3627                 err = ext4_journal_stop(handle);
3628                 if (ret == 0)
3629                         ret = err;
3630         }
3631 out:
3632         return ret;
3633 }
3634
3635 /*
3636  * ext4_get_block used when preparing for a DIO write or buffer write.
3637  * We allocate an uinitialized extent if blocks haven't been allocated.
3638  * The extent will be converted to initialized after the IO is complete.
3639  */
3640 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
3641                    struct buffer_head *bh_result, int create)
3642 {
3643         ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3644                    inode->i_ino, create);
3645         return _ext4_get_block(inode, iblock, bh_result,
3646                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
3647 }
3648
3649 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3650                             ssize_t size, void *private, int ret,
3651                             bool is_async)
3652 {
3653         ext4_io_end_t *io_end = iocb->private;
3654         struct workqueue_struct *wq;
3655         unsigned long flags;
3656         struct ext4_inode_info *ei;
3657
3658         /* if not async direct IO or dio with 0 bytes write, just return */
3659         if (!io_end || !size)
3660                 goto out;
3661
3662         ext_debug("ext4_end_io_dio(): io_end 0x%p"
3663                   "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
3664                   iocb->private, io_end->inode->i_ino, iocb, offset,
3665                   size);
3666
3667         /* if not aio dio with unwritten extents, just free io and return */
3668         if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
3669                 ext4_free_io_end(io_end);
3670                 iocb->private = NULL;
3671 out:
3672                 if (is_async)
3673                         aio_complete(iocb, ret, 0);
3674                 return;
3675         }
3676
3677         io_end->offset = offset;
3678         io_end->size = size;
3679         if (is_async) {
3680                 io_end->iocb = iocb;
3681                 io_end->result = ret;
3682         }
3683         wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
3684
3685         /* Add the io_end to per-inode completed aio dio list*/
3686         ei = EXT4_I(io_end->inode);
3687         spin_lock_irqsave(&ei->i_completed_io_lock, flags);
3688         list_add_tail(&io_end->list, &ei->i_completed_io_list);
3689         spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
3690
3691         /* queue the work to convert unwritten extents to written */
3692         queue_work(wq, &io_end->work);
3693         iocb->private = NULL;
3694 }
3695
3696 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
3697 {
3698         ext4_io_end_t *io_end = bh->b_private;
3699         struct workqueue_struct *wq;
3700         struct inode *inode;
3701         unsigned long flags;
3702
3703         if (!test_clear_buffer_uninit(bh) || !io_end)
3704                 goto out;
3705
3706         if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
3707                 printk("sb umounted, discard end_io request for inode %lu\n",
3708                         io_end->inode->i_ino);
3709                 ext4_free_io_end(io_end);
3710                 goto out;
3711         }
3712
3713         io_end->flag = EXT4_IO_END_UNWRITTEN;
3714         inode = io_end->inode;
3715
3716         /* Add the io_end to per-inode completed io list*/
3717         spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
3718         list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
3719         spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
3720
3721         wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
3722         /* queue the work to convert unwritten extents to written */
3723         queue_work(wq, &io_end->work);
3724 out:
3725         bh->b_private = NULL;
3726         bh->b_end_io = NULL;
3727         clear_buffer_uninit(bh);
3728         end_buffer_async_write(bh, uptodate);
3729 }
3730
3731 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
3732 {
3733         ext4_io_end_t *io_end;
3734         struct page *page = bh->b_page;
3735         loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
3736         size_t size = bh->b_size;
3737
3738 retry:
3739         io_end = ext4_init_io_end(inode, GFP_ATOMIC);
3740         if (!io_end) {
3741                 pr_warn_ratelimited("%s: allocation fail\n", __func__);
3742                 schedule();
3743                 goto retry;
3744         }
3745         io_end->offset = offset;
3746         io_end->size = size;
3747         /*
3748          * We need to hold a reference to the page to make sure it
3749          * doesn't get evicted before ext4_end_io_work() has a chance
3750          * to convert the extent from written to unwritten.
3751          */
3752         io_end->page = page;
3753         get_page(io_end->page);
3754
3755         bh->b_private = io_end;
3756         bh->b_end_io = ext4_end_io_buffer_write;
3757         return 0;
3758 }
3759
3760 /*
3761  * For ext4 extent files, ext4 will do direct-io write to holes,
3762  * preallocated extents, and those write extend the file, no need to
3763  * fall back to buffered IO.
3764  *
3765  * For holes, we fallocate those blocks, mark them as uninitialized
3766  * If those blocks were preallocated, we mark sure they are splited, but
3767  * still keep the range to write as uninitialized.
3768  *
3769  * The unwrritten extents will be converted to written when DIO is completed.
3770  * For async direct IO, since the IO may still pending when return, we
3771  * set up an end_io call back function, which will do the convertion
3772  * when async direct IO completed.
3773  *
3774  * If the O_DIRECT write will extend the file then add this inode to the
3775  * orphan list.  So recovery will truncate it back to the original size
3776  * if the machine crashes during the write.
3777  *
3778  */
3779 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3780                               const struct iovec *iov, loff_t offset,
3781                               unsigned long nr_segs)
3782 {
3783         struct file *file = iocb->ki_filp;
3784         struct inode *inode = file->f_mapping->host;
3785         ssize_t ret;
3786         size_t count = iov_length(iov, nr_segs);
3787
3788         loff_t final_size = offset + count;
3789         if (rw == WRITE && final_size <= inode->i_size) {
3790                 /*
3791                  * We could direct write to holes and fallocate.
3792                  *
3793                  * Allocated blocks to fill the hole are marked as uninitialized
3794                  * to prevent paralel buffered read to expose the stale data
3795                  * before DIO complete the data IO.
3796                  *
3797                  * As to previously fallocated extents, ext4 get_block
3798                  * will just simply mark the buffer mapped but still
3799                  * keep the extents uninitialized.
3800                  *
3801                  * for non AIO case, we will convert those unwritten extents
3802                  * to written after return back from blockdev_direct_IO.
3803                  *
3804                  * for async DIO, the conversion needs to be defered when
3805                  * the IO is completed. The ext4 end_io callback function
3806                  * will be called to take care of the conversion work.
3807                  * Here for async case, we allocate an io_end structure to
3808                  * hook to the iocb.
3809                  */
3810                 iocb->private = NULL;
3811                 EXT4_I(inode)->cur_aio_dio = NULL;
3812                 if (!is_sync_kiocb(iocb)) {
3813                         iocb->private = ext4_init_io_end(inode, GFP_NOFS);
3814                         if (!iocb->private)
3815                                 return -ENOMEM;
3816                         /*
3817                          * we save the io structure for current async
3818                          * direct IO, so that later ext4_map_blocks()
3819                          * could flag the io structure whether there
3820                          * is a unwritten extents needs to be converted
3821                          * when IO is completed.
3822                          */
3823                         EXT4_I(inode)->cur_aio_dio = iocb->private;
3824                 }
3825
3826                 ret = blockdev_direct_IO(rw, iocb, inode,
3827                                          inode->i_sb->s_bdev, iov,
3828                                          offset, nr_segs,
3829                                          ext4_get_block_write,
3830                                          ext4_end_io_dio);
3831                 if (iocb->private)
3832                         EXT4_I(inode)->cur_aio_dio = NULL;
3833                 /*
3834                  * The io_end structure takes a reference to the inode,
3835                  * that structure needs to be destroyed and the
3836                  * reference to the inode need to be dropped, when IO is
3837                  * complete, even with 0 byte write, or failed.
3838                  *
3839                  * In the successful AIO DIO case, the io_end structure will be
3840                  * desctroyed and the reference to the inode will be dropped
3841                  * after the end_io call back function is called.
3842                  *
3843                  * In the case there is 0 byte write, or error case, since
3844                  * VFS direct IO won't invoke the end_io call back function,
3845                  * we need to free the end_io structure here.
3846                  */
3847                 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3848                         ext4_free_io_end(iocb->private);
3849                         iocb->private = NULL;
3850                 } else if (ret > 0 && ext4_test_inode_state(inode,
3851                                                 EXT4_STATE_DIO_UNWRITTEN)) {
3852                         int err;
3853                         /*
3854                          * for non AIO case, since the IO is already
3855                          * completed, we could do the convertion right here
3856                          */
3857                         err = ext4_convert_unwritten_extents(inode,
3858                                                              offset, ret);
3859                         if (err < 0)
3860                                 ret = err;
3861                         ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3862                 }
3863                 return ret;
3864         }
3865
3866         /* for write the the end of file case, we fall back to old way */
3867         return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3868 }
3869
3870 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3871                               const struct iovec *iov, loff_t offset,
3872                               unsigned long nr_segs)
3873 {
3874         struct file *file = iocb->ki_filp;
3875         struct inode *inode = file->f_mapping->host;
3876
3877         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3878                 return ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3879
3880         return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3881 }
3882
3883 /*
3884  * Pages can be marked dirty completely asynchronously from ext4's journalling
3885  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3886  * much here because ->set_page_dirty is called under VFS locks.  The page is
3887  * not necessarily locked.
3888  *
3889  * We cannot just dirty the page and leave attached buffers clean, because the
3890  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3891  * or jbddirty because all the journalling code will explode.
3892  *
3893  * So what we do is to mark the page "pending dirty" and next time writepage
3894  * is called, propagate that into the buffers appropriately.
3895  */
3896 static int ext4_journalled_set_page_dirty(struct page *page)
3897 {
3898         SetPageChecked(page);
3899         return __set_page_dirty_nobuffers(page);
3900 }
3901
3902 static const struct address_space_operations ext4_ordered_aops = {
3903         .readpage               = ext4_readpage,
3904         .readpages              = ext4_readpages,
3905         .writepage              = ext4_writepage,
3906         .sync_page              = block_sync_page,
3907         .write_begin            = ext4_write_begin,
3908         .write_end              = ext4_ordered_write_end,
3909         .bmap                   = ext4_bmap,
3910         .invalidatepage         = ext4_invalidatepage,
3911         .releasepage            = ext4_releasepage,
3912         .direct_IO              = ext4_direct_IO,
3913         .migratepage            = buffer_migrate_page,
3914         .is_partially_uptodate  = block_is_partially_uptodate,
3915         .error_remove_page      = generic_error_remove_page,
3916 };
3917
3918 static const struct address_space_operations ext4_writeback_aops = {
3919         .readpage               = ext4_readpage,
3920         .readpages              = ext4_readpages,
3921         .writepage              = ext4_writepage,
3922         .sync_page              = block_sync_page,
3923         .write_begin            = ext4_write_begin,
3924         .write_end              = ext4_writeback_write_end,
3925         .bmap                   = ext4_bmap,
3926         .invalidatepage         = ext4_invalidatepage,
3927         .releasepage            = ext4_releasepage,
3928         .direct_IO              = ext4_direct_IO,
3929         .migratepage            = buffer_migrate_page,
3930         .is_partially_uptodate  = block_is_partially_uptodate,
3931         .error_remove_page      = generic_error_remove_page,
3932 };
3933
3934 static const struct address_space_operations ext4_journalled_aops = {
3935         .readpage               = ext4_readpage,
3936         .readpages              = ext4_readpages,
3937         .writepage              = ext4_writepage,
3938         .sync_page              = block_sync_page,
3939         .write_begin            = ext4_write_begin,
3940         .write_end              = ext4_journalled_write_end,
3941         .set_page_dirty         = ext4_journalled_set_page_dirty,
3942         .bmap                   = ext4_bmap,
3943         .invalidatepage         = ext4_invalidatepage,
3944         .releasepage            = ext4_releasepage,
3945         .is_partially_uptodate  = block_is_partially_uptodate,
3946         .error_remove_page      = generic_error_remove_page,
3947 };
3948
3949 static const struct address_space_operations ext4_da_aops = {
3950         .readpage               = ext4_readpage,
3951         .readpages              = ext4_readpages,
3952         .writepage              = ext4_writepage,
3953         .writepages             = ext4_da_writepages,
3954         .sync_page              = block_sync_page,
3955         .write_begin            = ext4_da_write_begin,
3956         .write_end              = ext4_da_write_end,
3957         .bmap                   = ext4_bmap,
3958         .invalidatepage         = ext4_da_invalidatepage,
3959         .releasepage            = ext4_releasepage,
3960         .direct_IO              = ext4_direct_IO,
3961         .migratepage            = buffer_migrate_page,
3962         .is_partially_uptodate  = block_is_partially_uptodate,
3963         .error_remove_page      = generic_error_remove_page,
3964 };
3965
3966 void ext4_set_aops(struct inode *inode)
3967 {
3968         if (ext4_should_order_data(inode) &&
3969                 test_opt(inode->i_sb, DELALLOC))
3970                 inode->i_mapping->a_ops = &ext4_da_aops;
3971         else if (ext4_should_order_data(inode))
3972                 inode->i_mapping->a_ops = &ext4_ordered_aops;
3973         else if (ext4_should_writeback_data(inode) &&
3974                  test_opt(inode->i_sb, DELALLOC))
3975                 inode->i_mapping->a_ops = &ext4_da_aops;
3976         else if (ext4_should_writeback_data(inode))
3977                 inode->i_mapping->a_ops = &ext4_writeback_aops;
3978         else
3979                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3980 }
3981
3982 /*
3983  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3984  * up to the end of the block which corresponds to `from'.
3985  * This required during truncate. We need to physically zero the tail end
3986  * of that block so it doesn't yield old data if the file is later grown.
3987  */
3988 int ext4_block_truncate_page(handle_t *handle,
3989                 struct address_space *mapping, loff_t from)
3990 {
3991         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3992         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3993         unsigned blocksize, length, pos;
3994         ext4_lblk_t iblock;
3995         struct inode *inode = mapping->host;
3996         struct buffer_head *bh;
3997         struct page *page;
3998         int err = 0;
3999
4000         page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
4001                                    mapping_gfp_mask(mapping) & ~__GFP_FS);
4002         if (!page)
4003                 return -EINVAL;
4004
4005         blocksize = inode->i_sb->s_blocksize;
4006         length = blocksize - (offset & (blocksize - 1));
4007         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
4008
4009         if (!page_has_buffers(page))
4010                 create_empty_buffers(page, blocksize, 0);
4011
4012         /* Find the buffer that contains "offset" */
4013         bh = page_buffers(page);
4014         pos = blocksize;
4015         while (offset >= pos) {
4016                 bh = bh->b_this_page;
4017                 iblock++;
4018                 pos += blocksize;
4019         }
4020
4021         err = 0;
4022         if (buffer_freed(bh)) {
4023                 BUFFER_TRACE(bh, "freed: skip");
4024                 goto unlock;
4025         }
4026
4027         if (!buffer_mapped(bh)) {
4028                 BUFFER_TRACE(bh, "unmapped");
4029                 ext4_get_block(inode, iblock, bh, 0);
4030                 /* unmapped? It's a hole - nothing to do */
4031                 if (!buffer_mapped(bh)) {
4032                         BUFFER_TRACE(bh, "still unmapped");
4033                         goto unlock;
4034                 }
4035         }
4036
4037         /* Ok, it's mapped. Make sure it's up-to-date */
4038         if (PageUptodate(page))
4039                 set_buffer_uptodate(bh);
4040
4041         if (!buffer_uptodate(bh)) {
4042                 err = -EIO;
4043                 ll_rw_block(READ, 1, &bh);
4044                 wait_on_buffer(bh);
4045                 /* Uhhuh. Read error. Complain and punt. */
4046                 if (!buffer_uptodate(bh))
4047                         goto unlock;
4048         }
4049
4050         if (ext4_should_journal_data(inode)) {
4051                 BUFFER_TRACE(bh, "get write access");
4052                 err = ext4_journal_get_write_access(handle, bh);
4053                 if (err)
4054                         goto unlock;
4055         }
4056
4057         zero_user(page, offset, length);
4058
4059         BUFFER_TRACE(bh, "zeroed end of block");
4060
4061         err = 0;
4062         if (ext4_should_journal_data(inode)) {
4063                 err = ext4_handle_dirty_metadata(handle, inode, bh);
4064         } else {
4065                 if (ext4_should_order_data(inode) && EXT4_I(inode)->jinode)
4066                         err = ext4_jbd2_file_inode(handle, inode);
4067                 mark_buffer_dirty(bh);
4068         }
4069
4070 unlock:
4071         unlock_page(page);
4072         page_cache_release(page);
4073         return err;
4074 }
4075
4076 /*
4077  * Probably it should be a library function... search for first non-zero word
4078  * or memcmp with zero_page, whatever is better for particular architecture.
4079  * Linus?
4080  */
4081 static inline int all_zeroes(__le32 *p, __le32 *q)
4082 {
4083         while (p < q)
4084                 if (*p++)
4085                         return 0;
4086         return 1;
4087 }
4088
4089 /**
4090  *      ext4_find_shared - find the indirect blocks for partial truncation.
4091  *      @inode:   inode in question
4092  *      @depth:   depth of the affected branch
4093  *      @offsets: offsets of pointers in that branch (see ext4_block_to_path)
4094  *      @chain:   place to store the pointers to partial indirect blocks
4095  *      @top:     place to the (detached) top of branch
4096  *
4097  *      This is a helper function used by ext4_truncate().
4098  *
4099  *      When we do truncate() we may have to clean the ends of several
4100  *      indirect blocks but leave the blocks themselves alive. Block is
4101  *      partially truncated if some data below the new i_size is refered
4102  *      from it (and it is on the path to the first completely truncated
4103  *      data block, indeed).  We have to free the top of that path along
4104  *      with everything to the right of the path. Since no allocation
4105  *      past the truncation point is possible until ext4_truncate()
4106  *      finishes, we may safely do the latter, but top of branch may
4107  *      require special attention - pageout below the truncation point
4108  *      might try to populate it.
4109  *
4110  *      We atomically detach the top of branch from the tree, store the
4111  *      block number of its root in *@top, pointers to buffer_heads of
4112  *      partially truncated blocks - in @chain[].bh and pointers to
4113  *      their last elements that should not be removed - in
4114  *      @chain[].p. Return value is the pointer to last filled element
4115  *      of @chain.
4116  *
4117  *      The work left to caller to do the actual freeing of subtrees:
4118  *              a) free the subtree starting from *@top
4119  *              b) free the subtrees whose roots are stored in
4120  *                      (@chain[i].p+1 .. end of @chain[i].bh->b_data)
4121  *              c) free the subtrees growing from the inode past the @chain[0].
4122  *                      (no partially truncated stuff there).  */
4123
4124 static Indirect *ext4_find_shared(struct inode *inode, int depth,
4125                                   ext4_lblk_t offsets[4], Indirect chain[4],
4126                                   __le32 *top)
4127 {
4128         Indirect *partial, *p;
4129         int k, err;
4130
4131         *top = 0;
4132         /* Make k index the deepest non-null offset + 1 */
4133         for (k = depth; k > 1 && !offsets[k-1]; k--)
4134                 ;
4135         partial = ext4_get_branch(inode, k, offsets, chain, &err);
4136         /* Writer: pointers */
4137         if (!partial)
4138                 partial = chain + k-1;
4139         /*
4140          * If the branch acquired continuation since we've looked at it -
4141          * fine, it should all survive and (new) top doesn't belong to us.
4142          */
4143         if (!partial->key && *partial->p)
4144                 /* Writer: end */
4145                 goto no_top;
4146         for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
4147                 ;
4148         /*
4149          * OK, we've found the last block that must survive. The rest of our
4150          * branch should be detached before unlocking. However, if that rest
4151          * of branch is all ours and does not grow immediately from the inode
4152          * it's easier to cheat and just decrement partial->p.
4153          */
4154         if (p == chain + k - 1 && p > chain) {
4155                 p->p--;
4156         } else {
4157                 *top = *p->p;
4158                 /* Nope, don't do this in ext4.  Must leave the tree intact */
4159 #if 0
4160                 *p->p = 0;
4161 #endif
4162         }
4163         /* Writer: end */
4164
4165         while (partial > p) {
4166                 brelse(partial->bh);
4167                 partial--;
4168         }
4169 no_top:
4170         return partial;
4171 }
4172
4173 /*
4174  * Zero a number of block pointers in either an inode or an indirect block.
4175  * If we restart the transaction we must again get write access to the
4176  * indirect block for further modification.
4177  *
4178  * We release `count' blocks on disk, but (last - first) may be greater
4179  * than `count' because there can be holes in there.
4180  */
4181 static int ext4_clear_blocks(handle_t *handle, struct inode *inode,
4182                              struct buffer_head *bh,
4183                              ext4_fsblk_t block_to_free,
4184                              unsigned long count, __le32 *first,
4185                              __le32 *last)
4186 {
4187         __le32 *p;
4188         int     flags = EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_VALIDATED;
4189         int     err;
4190
4191         if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
4192                 flags |= EXT4_FREE_BLOCKS_METADATA;
4193
4194         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), block_to_free,
4195                                    count)) {
4196                 EXT4_ERROR_INODE(inode, "attempt to clear invalid "
4197                                  "blocks %llu len %lu",
4198                                  (unsigned long long) block_to_free, count);
4199                 return 1;
4200         }
4201
4202         if (try_to_extend_transaction(handle, inode)) {
4203                 if (bh) {
4204                         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4205                         err = ext4_handle_dirty_metadata(handle, inode, bh);
4206                         if (unlikely(err)) {
4207                                 ext4_std_error(inode->i_sb, err);
4208                                 return 1;
4209                         }
4210                 }
4211                 err = ext4_mark_inode_dirty(handle, inode);
4212                 if (unlikely(err)) {
4213                         ext4_std_error(inode->i_sb, err);
4214                         return 1;
4215                 }
4216                 err = ext4_truncate_restart_trans(handle, inode,
4217                                                   blocks_for_truncate(inode));
4218                 if (unlikely(err)) {
4219                         ext4_std_error(inode->i_sb, err);
4220                         return 1;
4221                 }
4222                 if (bh) {
4223                         BUFFER_TRACE(bh, "retaking write access");
4224                         ext4_journal_get_write_access(handle, bh);
4225                 }
4226         }
4227
4228         for (p = first; p < last; p++)
4229                 *p = 0;
4230
4231         ext4_free_blocks(handle, inode, 0, block_to_free, count, flags);
4232         return 0;
4233 }
4234
4235 /**
4236  * ext4_free_data - free a list of data blocks
4237  * @handle:     handle for this transaction
4238  * @inode:      inode we are dealing with
4239  * @this_bh:    indirect buffer_head which contains *@first and *@last
4240  * @first:      array of block numbers
4241  * @last:       points immediately past the end of array
4242  *
4243  * We are freeing all blocks refered from that array (numbers are stored as
4244  * little-endian 32-bit) and updating @inode->i_blocks appropriately.
4245  *
4246  * We accumulate contiguous runs of blocks to free.  Conveniently, if these
4247  * blocks are contiguous then releasing them at one time will only affect one
4248  * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
4249  * actually use a lot of journal space.
4250  *
4251  * @this_bh will be %NULL if @first and @last point into the inode's direct
4252  * block pointers.
4253  */
4254 static void ext4_free_data(handle_t *handle, struct inode *inode,
4255                            struct buffer_head *this_bh,
4256                            __le32 *first, __le32 *last)
4257 {
4258         ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
4259         unsigned long count = 0;            /* Number of blocks in the run */
4260         __le32 *block_to_free_p = NULL;     /* Pointer into inode/ind
4261                                                corresponding to
4262                                                block_to_free */
4263         ext4_fsblk_t nr;                    /* Current block # */
4264         __le32 *p;                          /* Pointer into inode/ind
4265                                                for current block */
4266         int err;
4267
4268         if (this_bh) {                          /* For indirect block */
4269                 BUFFER_TRACE(this_bh, "get_write_access");
4270                 err = ext4_journal_get_write_access(handle, this_bh);
4271                 /* Important: if we can't update the indirect pointers
4272                  * to the blocks, we can't free them. */
4273                 if (err)
4274                         return;
4275         }
4276
4277         for (p = first; p < last; p++) {
4278                 nr = le32_to_cpu(*p);
4279                 if (nr) {
4280                         /* accumulate blocks to free if they're contiguous */
4281                         if (count == 0) {
4282                                 block_to_free = nr;
4283                                 block_to_free_p = p;
4284                                 count = 1;
4285                         } else if (nr == block_to_free + count) {
4286                                 count++;
4287                         } else {
4288                                 if (ext4_clear_blocks(handle, inode, this_bh,
4289                                                       block_to_free, count,
4290                                                       block_to_free_p, p))
4291                                         break;
4292                                 block_to_free = nr;
4293                                 block_to_free_p = p;
4294                                 count = 1;
4295                         }
4296                 }
4297         }
4298
4299         if (count > 0)
4300                 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
4301                                   count, block_to_free_p, p);
4302
4303         if (this_bh) {
4304                 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
4305
4306                 /*
4307                  * The buffer head should have an attached journal head at this
4308                  * point. However, if the data is corrupted and an indirect
4309                  * block pointed to itself, it would have been detached when
4310                  * the block was cleared. Check for this instead of OOPSing.
4311                  */
4312                 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
4313                         ext4_handle_dirty_metadata(handle, inode, this_bh);
4314                 else
4315                         EXT4_ERROR_INODE(inode,
4316                                          "circular indirect block detected at "
4317                                          "block %llu",
4318                                 (unsigned long long) this_bh->b_blocknr);
4319         }
4320 }
4321
4322 /**
4323  *      ext4_free_branches - free an array of branches
4324  *      @handle: JBD handle for this transaction
4325  *      @inode: inode we are dealing with
4326  *      @parent_bh: the buffer_head which contains *@first and *@last
4327  *      @first: array of block numbers
4328  *      @last:  pointer immediately past the end of array
4329  *      @depth: depth of the branches to free
4330  *
4331  *      We are freeing all blocks refered from these branches (numbers are
4332  *      stored as little-endian 32-bit) and updating @inode->i_blocks
4333  *      appropriately.
4334  */
4335 static void ext4_free_branches(handle_t *handle, struct inode *inode,
4336                                struct buffer_head *parent_bh,
4337                                __le32 *first, __le32 *last, int depth)
4338 {
4339         ext4_fsblk_t nr;
4340         __le32 *p;
4341
4342         if (ext4_handle_is_aborted(handle))
4343                 return;
4344
4345         if (depth--) {
4346                 struct buffer_head *bh;
4347                 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4348                 p = last;
4349                 while (--p >= first) {
4350                         nr = le32_to_cpu(*p);
4351                         if (!nr)
4352                                 continue;               /* A hole */
4353
4354                         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb),
4355                                                    nr, 1)) {
4356                                 EXT4_ERROR_INODE(inode,
4357                                                  "invalid indirect mapped "
4358                                                  "block %lu (level %d)",
4359                                                  (unsigned long) nr, depth);
4360                                 break;
4361                         }
4362
4363                         /* Go read the buffer for the next level down */
4364                         bh = sb_bread(inode->i_sb, nr);
4365
4366                         /*
4367                          * A read failure? Report error and clear slot
4368                          * (should be rare).
4369                          */
4370                         if (!bh) {
4371                                 EXT4_ERROR_INODE_BLOCK(inode, nr,
4372                                                        "Read failure");
4373                                 continue;
4374                         }
4375
4376                         /* This zaps the entire block.  Bottom up. */
4377                         BUFFER_TRACE(bh, "free child branches");
4378                         ext4_free_branches(handle, inode, bh,
4379                                         (__le32 *) bh->b_data,
4380                                         (__le32 *) bh->b_data + addr_per_block,
4381                                         depth);
4382                         brelse(bh);
4383
4384                         /*
4385                          * Everything below this this pointer has been
4386                          * released.  Now let this top-of-subtree go.
4387                          *
4388                          * We want the freeing of this indirect block to be
4389                          * atomic in the journal with the updating of the
4390                          * bitmap block which owns it.  So make some room in
4391                          * the journal.
4392                          *
4393                          * We zero the parent pointer *after* freeing its
4394                          * pointee in the bitmaps, so if extend_transaction()
4395                          * for some reason fails to put the bitmap changes and
4396                          * the release into the same transaction, recovery
4397                          * will merely complain about releasing a free block,
4398                          * rather than leaking blocks.
4399                          */
4400                         if (ext4_handle_is_aborted(handle))
4401                                 return;
4402                         if (try_to_extend_transaction(handle, inode)) {
4403                                 ext4_mark_inode_dirty(handle, inode);
4404                                 ext4_truncate_restart_trans(handle, inode,
4405                                             blocks_for_truncate(inode));
4406                         }
4407
4408                         /*
4409                          * The forget flag here is critical because if
4410                          * we are journaling (and not doing data
4411                          * journaling), we have to make sure a revoke
4412                          * record is written to prevent the journal
4413                          * replay from overwriting the (former)
4414                          * indirect block if it gets reallocated as a
4415                          * data block.  This must happen in the same
4416                          * transaction where the data blocks are
4417                          * actually freed.
4418                          */
4419                         ext4_free_blocks(handle, inode, 0, nr, 1,
4420                                          EXT4_FREE_BLOCKS_METADATA|
4421                                          EXT4_FREE_BLOCKS_FORGET);
4422
4423                         if (parent_bh) {
4424                                 /*
4425                                  * The block which we have just freed is
4426                                  * pointed to by an indirect block: journal it
4427                                  */
4428                                 BUFFER_TRACE(parent_bh, "get_write_access");
4429                                 if (!ext4_journal_get_write_access(handle,
4430                                                                    parent_bh)){
4431                                         *p = 0;
4432                                         BUFFER_TRACE(parent_bh,
4433                                         "call ext4_handle_dirty_metadata");
4434                                         ext4_handle_dirty_metadata(handle,
4435                                                                    inode,
4436                                                                    parent_bh);
4437                                 }
4438                         }
4439                 }
4440         } else {
4441                 /* We have reached the bottom of the tree. */
4442                 BUFFER_TRACE(parent_bh, "free data blocks");
4443                 ext4_free_data(handle, inode, parent_bh, first, last);
4444         }
4445 }
4446
4447 int ext4_can_truncate(struct inode *inode)
4448 {
4449         if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4450                 return 0;
4451         if (S_ISREG(inode->i_mode))
4452                 return 1;
4453         if (S_ISDIR(inode->i_mode))
4454                 return 1;
4455         if (S_ISLNK(inode->i_mode))
4456                 return !ext4_inode_is_fast_symlink(inode);
4457         return 0;
4458 }
4459
4460 /*
4461  * ext4_truncate()
4462  *
4463  * We block out ext4_get_block() block instantiations across the entire
4464  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4465  * simultaneously on behalf of the same inode.
4466  *
4467  * As we work through the truncate and commmit bits of it to the journal there
4468  * is one core, guiding principle: the file's tree must always be consistent on
4469  * disk.  We must be able to restart the truncate after a crash.
4470  *
4471  * The file's tree may be transiently inconsistent in memory (although it
4472  * probably isn't), but whenever we close off and commit a journal transaction,
4473  * the contents of (the filesystem + the journal) must be consistent and
4474  * restartable.  It's pretty simple, really: bottom up, right to left (although
4475  * left-to-right works OK too).
4476  *
4477  * Note that at recovery time, journal replay occurs *before* the restart of
4478  * truncate against the orphan inode list.
4479  *
4480  * The committed inode has the new, desired i_size (which is the same as
4481  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4482  * that this inode's truncate did not complete and it will again call
4483  * ext4_truncate() to have another go.  So there will be instantiated blocks
4484  * to the right of the truncation point in a crashed ext4 filesystem.  But
4485  * that's fine - as long as they are linked from the inode, the post-crash
4486  * ext4_truncate() run will find them and release them.
4487  */
4488 void ext4_truncate(struct inode *inode)
4489 {
4490         handle_t *handle;
4491         struct ext4_inode_info *ei = EXT4_I(inode);
4492         __le32 *i_data = ei->i_data;
4493         int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4494         struct address_space *mapping = inode->i_mapping;
4495         ext4_lblk_t offsets[4];
4496         Indirect chain[4];
4497         Indirect *partial;
4498         __le32 nr = 0;
4499         int n;
4500         ext4_lblk_t last_block;
4501         unsigned blocksize = inode->i_sb->s_blocksize;
4502
4503         if (!ext4_can_truncate(inode))
4504                 return;
4505
4506         ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4507
4508         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4509                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4510
4511         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4512                 ext4_ext_truncate(inode);
4513                 return;
4514         }
4515
4516         handle = start_transaction(inode);
4517         if (IS_ERR(handle))
4518                 return;         /* AKPM: return what? */
4519
4520         last_block = (inode->i_size + blocksize-1)
4521                                         >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
4522
4523         if (inode->i_size & (blocksize - 1))
4524                 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
4525                         goto out_stop;
4526
4527         n = ext4_block_to_path(inode, last_block, offsets, NULL);
4528         if (n == 0)
4529                 goto out_stop;  /* error */
4530
4531         /*
4532          * OK.  This truncate is going to happen.  We add the inode to the
4533          * orphan list, so that if this truncate spans multiple transactions,
4534          * and we crash, we will resume the truncate when the filesystem
4535          * recovers.  It also marks the inode dirty, to catch the new size.
4536          *
4537          * Implication: the file must always be in a sane, consistent
4538          * truncatable state while each transaction commits.
4539          */
4540         if (ext4_orphan_add(handle, inode))
4541                 goto out_stop;
4542
4543         /*
4544          * From here we block out all ext4_get_block() callers who want to
4545          * modify the block allocation tree.
4546          */
4547         down_write(&ei->i_data_sem);
4548
4549         ext4_discard_preallocations(inode);
4550
4551         /*
4552          * The orphan list entry will now protect us from any crash which
4553          * occurs before the truncate completes, so it is now safe to propagate
4554          * the new, shorter inode size (held for now in i_size) into the
4555          * on-disk inode. We do this via i_disksize, which is the value which
4556          * ext4 *really* writes onto the disk inode.
4557          */
4558         ei->i_disksize = inode->i_size;
4559
4560         if (n == 1) {           /* direct blocks */
4561                 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
4562                                i_data + EXT4_NDIR_BLOCKS);
4563                 goto do_indirects;
4564         }
4565
4566         partial = ext4_find_shared(inode, n, offsets, chain, &nr);
4567         /* Kill the top of shared branch (not detached) */
4568         if (nr) {
4569                 if (partial == chain) {
4570                         /* Shared branch grows from the inode */
4571                         ext4_free_branches(handle, inode, NULL,
4572                                            &nr, &nr+1, (chain+n-1) - partial);
4573                         *partial->p = 0;
4574                         /*
4575                          * We mark the inode dirty prior to restart,
4576                          * and prior to stop.  No need for it here.
4577                          */
4578                 } else {
4579                         /* Shared branch grows from an indirect block */
4580                         BUFFER_TRACE(partial->bh, "get_write_access");
4581                         ext4_free_branches(handle, inode, partial->bh,
4582                                         partial->p,
4583                                         partial->p+1, (chain+n-1) - partial);
4584                 }
4585         }
4586         /* Clear the ends of indirect blocks on the shared branch */
4587         while (partial > chain) {
4588                 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
4589                                    (__le32*)partial->bh->b_data+addr_per_block,
4590                                    (chain+n-1) - partial);
4591                 BUFFER_TRACE(partial->bh, "call brelse");
4592                 brelse(partial->bh);
4593                 partial--;
4594         }
4595 do_indirects:
4596         /* Kill the remaining (whole) subtrees */
4597         switch (offsets[0]) {
4598         default:
4599                 nr = i_data[EXT4_IND_BLOCK];
4600                 if (nr) {
4601                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
4602                         i_data[EXT4_IND_BLOCK] = 0;
4603                 }
4604         case EXT4_IND_BLOCK:
4605                 nr = i_data[EXT4_DIND_BLOCK];
4606                 if (nr) {
4607                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
4608                         i_data[EXT4_DIND_BLOCK] = 0;
4609                 }
4610         case EXT4_DIND_BLOCK:
4611                 nr = i_data[EXT4_TIND_BLOCK];
4612                 if (nr) {
4613                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
4614                         i_data[EXT4_TIND_BLOCK] = 0;
4615                 }
4616         case EXT4_TIND_BLOCK:
4617                 ;
4618         }
4619
4620         up_write(&ei->i_data_sem);
4621         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4622         ext4_mark_inode_dirty(handle, inode);
4623
4624         /*
4625          * In a multi-transaction truncate, we only make the final transaction
4626          * synchronous
4627          */
4628         if (IS_SYNC(inode))
4629                 ext4_handle_sync(handle);
4630 out_stop:
4631         /*
4632          * If this was a simple ftruncate(), and the file will remain alive
4633          * then we need to clear up the orphan record which we created above.
4634          * However, if this was a real unlink then we were called by
4635          * ext4_delete_inode(), and we allow that function to clean up the
4636          * orphan info for us.
4637          */
4638         if (inode->i_nlink)
4639                 ext4_orphan_del(handle, inode);
4640
4641         ext4_journal_stop(handle);
4642 }
4643
4644 /*
4645  * ext4_get_inode_loc returns with an extra refcount against the inode's
4646  * underlying buffer_head on success. If 'in_mem' is true, we have all
4647  * data in memory that is needed to recreate the on-disk version of this
4648  * inode.
4649  */
4650 static int __ext4_get_inode_loc(struct inode *inode,
4651                                 struct ext4_iloc *iloc, int in_mem)
4652 {
4653         struct ext4_group_desc  *gdp;
4654         struct buffer_head      *bh;
4655         struct super_block      *sb = inode->i_sb;
4656         ext4_fsblk_t            block;
4657         int                     inodes_per_block, inode_offset;
4658
4659         iloc->bh = NULL;
4660         if (!ext4_valid_inum(sb, inode->i_ino))
4661                 return -EIO;
4662
4663         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4664         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4665         if (!gdp)
4666                 return -EIO;
4667
4668         /*
4669          * Figure out the offset within the block group inode table
4670          */
4671         inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
4672         inode_offset = ((inode->i_ino - 1) %
4673                         EXT4_INODES_PER_GROUP(sb));
4674         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4675         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4676
4677         bh = sb_getblk(sb, block);
4678         if (!bh) {
4679                 EXT4_ERROR_INODE_BLOCK(inode, block,
4680                                        "unable to read itable block");
4681                 return -EIO;
4682         }
4683         if (!buffer_uptodate(bh)) {
4684                 lock_buffer(bh);
4685
4686                 /*
4687                  * If the buffer has the write error flag, we have failed
4688                  * to write out another inode in the same block.  In this
4689                  * case, we don't have to read the block because we may
4690                  * read the old inode data successfully.
4691                  */
4692                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4693                         set_buffer_uptodate(bh);
4694
4695                 if (buffer_uptodate(bh)) {
4696                         /* someone brought it uptodate while we waited */
4697                         unlock_buffer(bh);
4698                         goto has_buffer;
4699                 }
4700
4701                 /*
4702                  * If we have all information of the inode in memory and this
4703                  * is the only valid inode in the block, we need not read the
4704                  * block.
4705                  */
4706                 if (in_mem) {
4707                         struct buffer_head *bitmap_bh;
4708                         int i, start;
4709
4710                         start = inode_offset & ~(inodes_per_block - 1);
4711
4712                         /* Is the inode bitmap in cache? */
4713                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4714                         if (!bitmap_bh)
4715                                 goto make_io;
4716
4717                         /*
4718                          * If the inode bitmap isn't in cache then the
4719                          * optimisation may end up performing two reads instead
4720                          * of one, so skip it.
4721                          */
4722                         if (!buffer_uptodate(bitmap_bh)) {
4723                                 brelse(bitmap_bh);
4724                                 goto make_io;
4725                         }
4726                         for (i = start; i < start + inodes_per_block; i++) {
4727                                 if (i == inode_offset)
4728                                         continue;
4729                                 if (ext4_test_bit(i, bitmap_bh->b_data))
4730                                         break;
4731                         }
4732                         brelse(bitmap_bh);
4733                         if (i == start + inodes_per_block) {
4734                                 /* all other inodes are free, so skip I/O */
4735                                 memset(bh->b_data, 0, bh->b_size);
4736                                 set_buffer_uptodate(bh);
4737                                 unlock_buffer(bh);
4738                                 goto has_buffer;
4739                         }
4740                 }
4741
4742 make_io:
4743                 /*
4744                  * If we need to do any I/O, try to pre-readahead extra
4745                  * blocks from the inode table.
4746                  */
4747                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4748                         ext4_fsblk_t b, end, table;
4749                         unsigned num;
4750
4751                         table = ext4_inode_table(sb, gdp);
4752                         /* s_inode_readahead_blks is always a power of 2 */
4753                         b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
4754                         if (table > b)
4755                                 b = table;
4756                         end = b + EXT4_SB(sb)->s_inode_readahead_blks;
4757                         num = EXT4_INODES_PER_GROUP(sb);
4758                         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4759                                        EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
4760                                 num -= ext4_itable_unused_count(sb, gdp);
4761                         table += num / inodes_per_block;
4762                         if (end > table)
4763                                 end = table;
4764                         while (b <= end)
4765                                 sb_breadahead(sb, b++);
4766                 }
4767
4768                 /*
4769                  * There are other valid inodes in the buffer, this inode
4770                  * has in-inode xattrs, or we don't have this inode in memory.
4771                  * Read the block from disk.
4772                  */
4773                 get_bh(bh);
4774                 bh->b_end_io = end_buffer_read_sync;
4775                 submit_bh(READ_META, bh);
4776                 wait_on_buffer(bh);
4777                 if (!buffer_uptodate(bh)) {
4778                         EXT4_ERROR_INODE_BLOCK(inode, block,
4779                                                "unable to read itable block");
4780                         brelse(bh);
4781                         return -EIO;
4782                 }
4783         }
4784 has_buffer:
4785         iloc->bh = bh;
4786         return 0;
4787 }
4788
4789 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4790 {
4791         /* We have all inode data except xattrs in memory here. */
4792         return __ext4_get_inode_loc(inode, iloc,
4793                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4794 }
4795
4796 void ext4_set_inode_flags(struct inode *inode)
4797 {
4798         unsigned int flags = EXT4_I(inode)->i_flags;
4799
4800         inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4801         if (flags & EXT4_SYNC_FL)
4802                 inode->i_flags |= S_SYNC;
4803         if (flags & EXT4_APPEND_FL)
4804                 inode->i_flags |= S_APPEND;
4805         if (flags & EXT4_IMMUTABLE_FL)
4806                 inode->i_flags |= S_IMMUTABLE;
4807         if (flags & EXT4_NOATIME_FL)
4808                 inode->i_flags |= S_NOATIME;
4809         if (flags & EXT4_DIRSYNC_FL)
4810                 inode->i_flags |= S_DIRSYNC;
4811 }
4812
4813 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4814 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4815 {
4816         unsigned int vfs_fl;
4817         unsigned long old_fl, new_fl;
4818
4819         do {
4820                 vfs_fl = ei->vfs_inode.i_flags;
4821                 old_fl = ei->i_flags;
4822                 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4823                                 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
4824                                 EXT4_DIRSYNC_FL);
4825                 if (vfs_fl & S_SYNC)
4826                         new_fl |= EXT4_SYNC_FL;
4827                 if (vfs_fl & S_APPEND)
4828                         new_fl |= EXT4_APPEND_FL;
4829                 if (vfs_fl & S_IMMUTABLE)
4830                         new_fl |= EXT4_IMMUTABLE_FL;
4831                 if (vfs_fl & S_NOATIME)
4832                         new_fl |= EXT4_NOATIME_FL;
4833                 if (vfs_fl & S_DIRSYNC)
4834                         new_fl |= EXT4_DIRSYNC_FL;
4835         } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
4836 }
4837
4838 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4839                                   struct ext4_inode_info *ei)
4840 {
4841         blkcnt_t i_blocks ;
4842         struct inode *inode = &(ei->vfs_inode);
4843         struct super_block *sb = inode->i_sb;
4844
4845         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4846                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4847                 /* we are using combined 48 bit field */
4848                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4849                                         le32_to_cpu(raw_inode->i_blocks_lo);
4850                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4851                         /* i_blocks represent file system block size */
4852                         return i_blocks  << (inode->i_blkbits - 9);
4853                 } else {
4854                         return i_blocks;
4855                 }
4856         } else {
4857                 return le32_to_cpu(raw_inode->i_blocks_lo);
4858         }
4859 }
4860
4861 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4862 {
4863         struct ext4_iloc iloc;
4864         struct ext4_inode *raw_inode;
4865         struct ext4_inode_info *ei;
4866         struct inode *inode;
4867         journal_t *journal = EXT4_SB(sb)->s_journal;
4868         long ret;
4869         int block;
4870
4871         inode = iget_locked(sb, ino);
4872         if (!inode)
4873                 return ERR_PTR(-ENOMEM);
4874         if (!(inode->i_state & I_NEW))
4875                 return inode;
4876
4877         ei = EXT4_I(inode);
4878         iloc.bh = 0;
4879
4880         ret = __ext4_get_inode_loc(inode, &iloc, 0);
4881         if (ret < 0)
4882                 goto bad_inode;
4883         raw_inode = ext4_raw_inode(&iloc);
4884         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4885         inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4886         inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4887         if (!(test_opt(inode->i_sb, NO_UID32))) {
4888                 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4889                 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4890         }
4891         inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
4892
4893         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
4894         ei->i_dir_start_lookup = 0;
4895         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4896         /* We now have enough fields to check if the inode was active or not.
4897          * This is needed because nfsd might try to access dead inodes
4898          * the test is that same one that e2fsck uses
4899          * NeilBrown 1999oct15
4900          */
4901         if (inode->i_nlink == 0) {
4902                 if (inode->i_mode == 0 ||
4903                     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
4904                         /* this inode is deleted */
4905                         ret = -ESTALE;
4906                         goto bad_inode;
4907                 }
4908                 /* The only unlinked inodes we let through here have
4909                  * valid i_mode and are being read by the orphan
4910                  * recovery code: that's fine, we're about to complete
4911                  * the process of deleting those. */
4912         }
4913         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4914         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4915         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4916         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4917                 ei->i_file_acl |=
4918                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4919         inode->i_size = ext4_isize(raw_inode);
4920         ei->i_disksize = inode->i_size;
4921 #ifdef CONFIG_QUOTA
4922         ei->i_reserved_quota = 0;
4923 #endif
4924         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4925         ei->i_block_group = iloc.block_group;
4926         ei->i_last_alloc_group = ~0;
4927         /*
4928          * NOTE! The in-memory inode i_data array is in little-endian order
4929          * even on big-endian machines: we do NOT byteswap the block numbers!
4930          */
4931         for (block = 0; block < EXT4_N_BLOCKS; block++)
4932                 ei->i_data[block] = raw_inode->i_block[block];
4933         INIT_LIST_HEAD(&ei->i_orphan);
4934
4935         /*
4936          * Set transaction id's of transactions that have to be committed
4937          * to finish f[data]sync. We set them to currently running transaction
4938          * as we cannot be sure that the inode or some of its metadata isn't
4939          * part of the transaction - the inode could have been reclaimed and
4940          * now it is reread from disk.
4941          */
4942         if (journal) {
4943                 transaction_t *transaction;
4944                 tid_t tid;
4945
4946                 read_lock(&journal->j_state_lock);
4947                 if (journal->j_running_transaction)
4948                         transaction = journal->j_running_transaction;
4949                 else
4950                         transaction = journal->j_committing_transaction;
4951                 if (transaction)
4952                         tid = transaction->t_tid;
4953                 else
4954                         tid = journal->j_commit_sequence;
4955                 read_unlock(&journal->j_state_lock);
4956                 ei->i_sync_tid = tid;
4957                 ei->i_datasync_tid = tid;
4958         }
4959
4960         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4961                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4962                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4963                     EXT4_INODE_SIZE(inode->i_sb)) {
4964                         ret = -EIO;
4965                         goto bad_inode;
4966                 }
4967                 if (ei->i_extra_isize == 0) {
4968                         /* The extra space is currently unused. Use it. */
4969                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4970                                             EXT4_GOOD_OLD_INODE_SIZE;
4971                 } else {
4972                         __le32 *magic = (void *)raw_inode +
4973                                         EXT4_GOOD_OLD_INODE_SIZE +
4974                                         ei->i_extra_isize;
4975                         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
4976                                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4977                 }
4978         } else
4979                 ei->i_extra_isize = 0;
4980
4981         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4982         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4983         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4984         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4985
4986         inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4987         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4988                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4989                         inode->i_version |=
4990                         (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4991         }
4992
4993         ret = 0;
4994         if (ei->i_file_acl &&
4995             !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4996                 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4997                                  ei->i_file_acl);
4998                 ret = -EIO;
4999                 goto bad_inode;
5000         } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
5001                 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
5002                     (S_ISLNK(inode->i_mode) &&
5003                      !ext4_inode_is_fast_symlink(inode)))
5004                         /* Validate extent which is part of inode */
5005                         ret = ext4_ext_check_inode(inode);
5006         } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
5007                    (S_ISLNK(inode->i_mode) &&
5008                     !ext4_inode_is_fast_symlink(inode))) {
5009                 /* Validate block references which are part of inode */
5010                 ret = ext4_check_inode_blockref(inode);
5011         }
5012         if (ret)
5013                 goto bad_inode;
5014
5015         if (S_ISREG(inode->i_mode)) {
5016                 inode->i_op = &ext4_file_inode_operations;
5017                 inode->i_fop = &ext4_file_operations;
5018                 ext4_set_aops(inode);
5019         } else if (S_ISDIR(inode->i_mode)) {
5020                 inode->i_op = &ext4_dir_inode_operations;
5021                 inode->i_fop = &ext4_dir_operations;
5022         } else if (S_ISLNK(inode->i_mode)) {
5023                 if (ext4_inode_is_fast_symlink(inode)) {
5024                         inode->i_op = &ext4_fast_symlink_inode_operations;
5025                         nd_terminate_link(ei->i_data, inode->i_size,
5026                                 sizeof(ei->i_data) - 1);
5027                 } else {
5028                         inode->i_op = &ext4_symlink_inode_operations;
5029                         ext4_set_aops(inode);
5030                 }
5031         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
5032               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
5033                 inode->i_op = &ext4_special_inode_operations;
5034                 if (raw_inode->i_block[0])
5035                         init_special_inode(inode, inode->i_mode,
5036                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
5037                 else
5038                         init_special_inode(inode, inode->i_mode,
5039                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
5040         } else {
5041                 ret = -EIO;
5042                 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
5043                 goto bad_inode;
5044         }
5045         brelse(iloc.bh);
5046         ext4_set_inode_flags(inode);
5047         unlock_new_inode(inode);
5048         return inode;
5049
5050 bad_inode:
5051         brelse(iloc.bh);
5052         iget_failed(inode);
5053         return ERR_PTR(ret);
5054 }
5055
5056 static int ext4_inode_blocks_set(handle_t *handle,
5057                                 struct ext4_inode *raw_inode,
5058                                 struct ext4_inode_info *ei)
5059 {
5060         struct inode *inode = &(ei->vfs_inode);
5061         u64 i_blocks = inode->i_blocks;
5062         struct super_block *sb = inode->i_sb;
5063
5064         if (i_blocks <= ~0U) {
5065                 /*
5066                  * i_blocks can be represnted in a 32 bit variable
5067                  * as multiple of 512 bytes
5068                  */
5069                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5070                 raw_inode->i_blocks_high = 0;
5071                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5072                 return 0;
5073         }
5074         if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
5075                 return -EFBIG;
5076
5077         if (i_blocks <= 0xffffffffffffULL) {
5078                 /*
5079                  * i_blocks can be represented in a 48 bit variable
5080                  * as multiple of 512 bytes
5081                  */
5082                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5083                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5084                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5085         } else {
5086                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5087                 /* i_block is stored in file system block size */
5088                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
5089                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5090                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5091         }
5092         return 0;
5093 }
5094
5095 /*
5096  * Post the struct inode info into an on-disk inode location in the
5097  * buffer-cache.  This gobbles the caller's reference to the
5098  * buffer_head in the inode location struct.
5099  *
5100  * The caller must have write access to iloc->bh.
5101  */
5102 static int ext4_do_update_inode(handle_t *handle,
5103                                 struct inode *inode,
5104                                 struct ext4_iloc *iloc)
5105 {
5106         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5107         struct ext4_inode_info *ei = EXT4_I(inode);
5108         struct buffer_head *bh = iloc->bh;
5109         int err = 0, rc, block;
5110
5111         /* For fields not not tracking in the in-memory inode,
5112          * initialise them to zero for new inodes. */
5113         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5114                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5115
5116         ext4_get_inode_flags(ei);
5117         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5118         if (!(test_opt(inode->i_sb, NO_UID32))) {
5119                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
5120                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
5121 /*
5122  * Fix up interoperability with old kernels. Otherwise, old inodes get
5123  * re-used with the upper 16 bits of the uid/gid intact
5124  */
5125                 if (!ei->i_dtime) {
5126                         raw_inode->i_uid_high =
5127                                 cpu_to_le16(high_16_bits(inode->i_uid));
5128                         raw_inode->i_gid_high =
5129                                 cpu_to_le16(high_16_bits(inode->i_gid));
5130                 } else {
5131                         raw_inode->i_uid_high = 0;
5132                         raw_inode->i_gid_high = 0;
5133                 }
5134         } else {
5135                 raw_inode->i_uid_low =
5136                         cpu_to_le16(fs_high2lowuid(inode->i_uid));
5137                 raw_inode->i_gid_low =
5138                         cpu_to_le16(fs_high2lowgid(inode->i_gid));
5139                 raw_inode->i_uid_high = 0;
5140                 raw_inode->i_gid_high = 0;
5141         }
5142         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5143
5144         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5145         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5146         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5147         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5148
5149         if (ext4_inode_blocks_set(handle, raw_inode, ei))
5150                 goto out_brelse;
5151         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5152         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
5153         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
5154             cpu_to_le32(EXT4_OS_HURD))
5155                 raw_inode->i_file_acl_high =
5156                         cpu_to_le16(ei->i_file_acl >> 32);
5157         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5158         ext4_isize_set(raw_inode, ei->i_disksize);
5159         if (ei->i_disksize > 0x7fffffffULL) {
5160                 struct super_block *sb = inode->i_sb;
5161                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
5162                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
5163                                 EXT4_SB(sb)->s_es->s_rev_level ==
5164                                 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
5165                         /* If this is the first large file
5166                          * created, add a flag to the superblock.
5167                          */
5168                         err = ext4_journal_get_write_access(handle,
5169                                         EXT4_SB(sb)->s_sbh);
5170                         if (err)
5171                                 goto out_brelse;
5172                         ext4_update_dynamic_rev(sb);
5173                         EXT4_SET_RO_COMPAT_FEATURE(sb,
5174                                         EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
5175                         sb->s_dirt = 1;
5176                         ext4_handle_sync(handle);
5177                         err = ext4_handle_dirty_metadata(handle, NULL,
5178                                         EXT4_SB(sb)->s_sbh);
5179                 }
5180         }
5181         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5182         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5183                 if (old_valid_dev(inode->i_rdev)) {
5184                         raw_inode->i_block[0] =
5185                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
5186                         raw_inode->i_block[1] = 0;
5187                 } else {
5188                         raw_inode->i_block[0] = 0;
5189                         raw_inode->i_block[1] =
5190                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
5191                         raw_inode->i_block[2] = 0;
5192                 }
5193         } else
5194                 for (block = 0; block < EXT4_N_BLOCKS; block++)
5195                         raw_inode->i_block[block] = ei->i_data[block];
5196
5197         raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
5198         if (ei->i_extra_isize) {
5199                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5200                         raw_inode->i_version_hi =
5201                         cpu_to_le32(inode->i_version >> 32);
5202                 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
5203         }
5204
5205         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5206         rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5207         if (!err)
5208                 err = rc;
5209         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5210
5211         ext4_update_inode_fsync_trans(handle, inode, 0);
5212 out_brelse:
5213         brelse(bh);
5214         ext4_std_error(inode->i_sb, err);
5215         return err;
5216 }
5217
5218 /*
5219  * ext4_write_inode()
5220  *
5221  * We are called from a few places:
5222  *
5223  * - Within generic_file_write() for O_SYNC files.
5224  *   Here, there will be no transaction running. We wait for any running
5225  *   trasnaction to commit.
5226  *
5227  * - Within sys_sync(), kupdate and such.
5228  *   We wait on commit, if tol to.
5229  *
5230  * - Within prune_icache() (PF_MEMALLOC == true)
5231  *   Here we simply return.  We can't afford to block kswapd on the
5232  *   journal commit.
5233  *
5234  * In all cases it is actually safe for us to return without doing anything,
5235  * because the inode has been copied into a raw inode buffer in
5236  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
5237  * knfsd.
5238  *
5239  * Note that we are absolutely dependent upon all inode dirtiers doing the
5240  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5241  * which we are interested.
5242  *
5243  * It would be a bug for them to not do this.  The code:
5244  *
5245  *      mark_inode_dirty(inode)
5246  *      stuff();
5247  *      inode->i_size = expr;
5248  *
5249  * is in error because a kswapd-driven write_inode() could occur while
5250  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
5251  * will no longer be on the superblock's dirty inode list.
5252  */
5253 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5254 {
5255         int err;
5256
5257         if (current->flags & PF_MEMALLOC)
5258                 return 0;
5259
5260         if (EXT4_SB(inode->i_sb)->s_journal) {
5261                 if (ext4_journal_current_handle()) {
5262                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5263                         dump_stack();
5264                         return -EIO;
5265                 }
5266
5267                 if (wbc->sync_mode != WB_SYNC_ALL)
5268                         return 0;
5269
5270                 err = ext4_force_commit(inode->i_sb);
5271         } else {
5272                 struct ext4_iloc iloc;
5273
5274                 err = __ext4_get_inode_loc(inode, &iloc, 0);
5275                 if (err)
5276                         return err;
5277                 if (wbc->sync_mode == WB_SYNC_ALL)
5278                         sync_dirty_buffer(iloc.bh);
5279                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5280                         EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5281                                          "IO error syncing inode");
5282                         err = -EIO;
5283                 }
5284                 brelse(iloc.bh);
5285         }
5286         return err;
5287 }
5288
5289 /*
5290  * ext4_setattr()
5291  *
5292  * Called from notify_change.
5293  *
5294  * We want to trap VFS attempts to truncate the file as soon as
5295  * possible.  In particular, we want to make sure that when the VFS
5296  * shrinks i_size, we put the inode on the orphan list and modify
5297  * i_disksize immediately, so that during the subsequent flushing of
5298  * dirty pages and freeing of disk blocks, we can guarantee that any
5299  * commit will leave the blocks being flushed in an unused state on
5300  * disk.  (On recovery, the inode will get truncated and the blocks will
5301  * be freed, so we have a strong guarantee that no future commit will
5302  * leave these blocks visible to the user.)
5303  *
5304  * Another thing we have to assure is that if we are in ordered mode
5305  * and inode is still attached to the committing transaction, we must
5306  * we start writeout of all the dirty pages which are being truncated.
5307  * This way we are sure that all the data written in the previous
5308  * transaction are already on disk (truncate waits for pages under
5309  * writeback).
5310  *
5311  * Called with inode->i_mutex down.
5312  */
5313 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5314 {
5315         struct inode *inode = dentry->d_inode;
5316         int error, rc = 0;
5317         int orphan = 0;
5318         const unsigned int ia_valid = attr->ia_valid;
5319
5320         error = inode_change_ok(inode, attr);
5321         if (error)
5322                 return error;
5323
5324         if (is_quota_modification(inode, attr))
5325                 dquot_initialize(inode);
5326         if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
5327                 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
5328                 handle_t *handle;
5329
5330                 /* (user+group)*(old+new) structure, inode write (sb,
5331                  * inode block, ? - but truncate inode update has it) */
5332                 handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
5333                                         EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
5334                 if (IS_ERR(handle)) {
5335                         error = PTR_ERR(handle);
5336                         goto err_out;
5337                 }
5338                 error = dquot_transfer(inode, attr);
5339                 if (error) {
5340                         ext4_journal_stop(handle);
5341                         return error;
5342                 }
5343                 /* Update corresponding info in inode so that everything is in
5344                  * one transaction */
5345                 if (attr->ia_valid & ATTR_UID)
5346                         inode->i_uid = attr->ia_uid;
5347                 if (attr->ia_valid & ATTR_GID)
5348                         inode->i_gid = attr->ia_gid;
5349                 error = ext4_mark_inode_dirty(handle, inode);
5350                 ext4_journal_stop(handle);
5351         }
5352
5353         if (attr->ia_valid & ATTR_SIZE) {
5354                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5355                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5356
5357                         if (attr->ia_size > sbi->s_bitmap_maxbytes)
5358                                 return -EFBIG;
5359                 }
5360         }
5361
5362         if (S_ISREG(inode->i_mode) &&
5363             attr->ia_valid & ATTR_SIZE &&
5364             (attr->ia_size < inode->i_size ||
5365              (ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS)))) {
5366                 handle_t *handle;
5367
5368                 handle = ext4_journal_start(inode, 3);
5369                 if (IS_ERR(handle)) {
5370                         error = PTR_ERR(handle);
5371                         goto err_out;
5372                 }
5373                 if (ext4_handle_valid(handle)) {
5374                         error = ext4_orphan_add(handle, inode);
5375                         orphan = 1;
5376                 }
5377                 EXT4_I(inode)->i_disksize = attr->ia_size;
5378                 rc = ext4_mark_inode_dirty(handle, inode);
5379                 if (!error)
5380                         error = rc;
5381                 ext4_journal_stop(handle);
5382
5383                 if (ext4_should_order_data(inode)) {
5384                         error = ext4_begin_ordered_truncate(inode,
5385                                                             attr->ia_size);
5386                         if (error) {
5387                                 /* Do as much error cleanup as possible */
5388                                 handle = ext4_journal_start(inode, 3);
5389                                 if (IS_ERR(handle)) {
5390                                         ext4_orphan_del(NULL, inode);
5391                                         goto err_out;
5392                                 }
5393                                 ext4_orphan_del(handle, inode);
5394                                 orphan = 0;
5395                                 ext4_journal_stop(handle);
5396                                 goto err_out;
5397                         }
5398                 }
5399                 /* ext4_truncate will clear the flag */
5400                 if ((ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS)))
5401                         ext4_truncate(inode);
5402         }
5403
5404         if ((attr->ia_valid & ATTR_SIZE) &&
5405             attr->ia_size != i_size_read(inode))
5406                 rc = vmtruncate(inode, attr->ia_size);
5407
5408         if (!rc) {
5409                 setattr_copy(inode, attr);
5410                 mark_inode_dirty(inode);
5411         }
5412
5413         /*
5414          * If the call to ext4_truncate failed to get a transaction handle at
5415          * all, we need to clean up the in-core orphan list manually.
5416          */
5417         if (orphan && inode->i_nlink)
5418                 ext4_orphan_del(NULL, inode);
5419
5420         if (!rc && (ia_valid & ATTR_MODE))
5421                 rc = ext4_acl_chmod(inode);
5422
5423 err_out:
5424         ext4_std_error(inode->i_sb, error);
5425         if (!error)
5426                 error = rc;
5427         return error;
5428 }
5429
5430 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
5431                  struct kstat *stat)
5432 {
5433         struct inode *inode;
5434         unsigned long delalloc_blocks;
5435
5436         inode = dentry->d_inode;
5437         generic_fillattr(inode, stat);
5438
5439         /*
5440          * We can't update i_blocks if the block allocation is delayed
5441          * otherwise in the case of system crash before the real block
5442          * allocation is done, we will have i_blocks inconsistent with
5443          * on-disk file blocks.
5444          * We always keep i_blocks updated together with real
5445          * allocation. But to not confuse with user, stat
5446          * will return the blocks that include the delayed allocation
5447          * blocks for this file.
5448          */
5449         delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
5450
5451         stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
5452         return 0;
5453 }
5454
5455 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
5456                                       int chunk)
5457 {
5458         int indirects;
5459
5460         /* if nrblocks are contiguous */
5461         if (chunk) {
5462                 /*
5463                  * With N contiguous data blocks, it need at most
5464                  * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
5465                  * 2 dindirect blocks
5466                  * 1 tindirect block
5467                  */
5468                 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
5469                 return indirects + 3;
5470         }
5471         /*
5472          * if nrblocks are not contiguous, worse case, each block touch
5473          * a indirect block, and each indirect block touch a double indirect
5474          * block, plus a triple indirect block
5475          */
5476         indirects = nrblocks * 2 + 1;
5477         return indirects;
5478 }
5479
5480 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5481 {
5482         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5483                 return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
5484         return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
5485 }
5486
5487 /*
5488  * Account for index blocks, block groups bitmaps and block group
5489  * descriptor blocks if modify datablocks and index blocks
5490  * worse case, the indexs blocks spread over different block groups
5491  *
5492  * If datablocks are discontiguous, they are possible to spread over
5493  * different block groups too. If they are contiuguous, with flexbg,
5494  * they could still across block group boundary.
5495  *
5496  * Also account for superblock, inode, quota and xattr blocks
5497  */
5498 static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5499 {
5500         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5501         int gdpblocks;
5502         int idxblocks;
5503         int ret = 0;
5504
5505         /*
5506          * How many index blocks need to touch to modify nrblocks?
5507          * The "Chunk" flag indicating whether the nrblocks is
5508          * physically contiguous on disk
5509          *
5510          * For Direct IO and fallocate, they calls get_block to allocate
5511          * one single extent at a time, so they could set the "Chunk" flag
5512          */
5513         idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
5514
5515         ret = idxblocks;
5516
5517         /*
5518          * Now let's see how many group bitmaps and group descriptors need
5519          * to account
5520          */
5521         groups = idxblocks;
5522         if (chunk)
5523                 groups += 1;
5524         else
5525                 groups += nrblocks;
5526
5527         gdpblocks = groups;
5528         if (groups > ngroups)
5529                 groups = ngroups;
5530         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5531                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5532
5533         /* bitmaps and block group descriptor blocks */
5534         ret += groups + gdpblocks;
5535
5536         /* Blocks for super block, inode, quota and xattr blocks */
5537         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5538
5539         return ret;
5540 }
5541
5542 /*
5543  * Calulate the total number of credits to reserve to fit
5544  * the modification of a single pages into a single transaction,
5545  * which may include multiple chunks of block allocations.
5546  *
5547  * This could be called via ext4_write_begin()
5548  *
5549  * We need to consider the worse case, when
5550  * one new block per extent.
5551  */
5552 int ext4_writepage_trans_blocks(struct inode *inode)
5553 {
5554         int bpp = ext4_journal_blocks_per_page(inode);
5555         int ret;
5556
5557         ret = ext4_meta_trans_blocks(inode, bpp, 0);
5558
5559         /* Account for data blocks for journalled mode */
5560         if (ext4_should_journal_data(inode))
5561                 ret += bpp;
5562         return ret;
5563 }
5564
5565 /*
5566  * Calculate the journal credits for a chunk of data modification.
5567  *
5568  * This is called from DIO, fallocate or whoever calling
5569  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5570  *
5571  * journal buffers for data blocks are not included here, as DIO
5572  * and fallocate do no need to journal data buffers.
5573  */
5574 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5575 {
5576         return ext4_meta_trans_blocks(inode, nrblocks, 1);
5577 }
5578
5579 /*
5580  * The caller must have previously called ext4_reserve_inode_write().
5581  * Give this, we know that the caller already has write access to iloc->bh.
5582  */
5583 int ext4_mark_iloc_dirty(handle_t *handle,
5584                          struct inode *inode, struct ext4_iloc *iloc)
5585 {
5586         int err = 0;
5587
5588         if (test_opt(inode->i_sb, I_VERSION))
5589                 inode_inc_iversion(inode);
5590
5591         /* the do_update_inode consumes one bh->b_count */
5592         get_bh(iloc->bh);
5593
5594         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5595         err = ext4_do_update_inode(handle, inode, iloc);
5596         put_bh(iloc->bh);
5597         return err;
5598 }
5599
5600 /*
5601  * On success, We end up with an outstanding reference count against
5602  * iloc->bh.  This _must_ be cleaned up later.
5603  */
5604
5605 int
5606 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5607                          struct ext4_iloc *iloc)
5608 {
5609         int err;
5610
5611         err = ext4_get_inode_loc(inode, iloc);
5612         if (!err) {
5613                 BUFFER_TRACE(iloc->bh, "get_write_access");
5614                 err = ext4_journal_get_write_access(handle, iloc->bh);
5615                 if (err) {
5616                         brelse(iloc->bh);
5617                         iloc->bh = NULL;
5618                 }
5619         }
5620         ext4_std_error(inode->i_sb, err);
5621         return err;
5622 }
5623
5624 /*
5625  * Expand an inode by new_extra_isize bytes.
5626  * Returns 0 on success or negative error number on failure.
5627  */
5628 static int ext4_expand_extra_isize(struct inode *inode,
5629                                    unsigned int new_extra_isize,
5630                                    struct ext4_iloc iloc,
5631                                    handle_t *handle)
5632 {
5633         struct ext4_inode *raw_inode;
5634         struct ext4_xattr_ibody_header *header;
5635
5636         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5637                 return 0;
5638
5639         raw_inode = ext4_raw_inode(&iloc);
5640
5641         header = IHDR(inode, raw_inode);
5642
5643         /* No extended attributes present */
5644         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5645             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5646                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5647                         new_extra_isize);
5648                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5649                 return 0;
5650         }
5651
5652         /* try to expand with EAs present */
5653         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5654                                           raw_inode, handle);
5655 }
5656
5657 /*
5658  * What we do here is to mark the in-core inode as clean with respect to inode
5659  * dirtiness (it may still be data-dirty).
5660  * This means that the in-core inode may be reaped by prune_icache
5661  * without having to perform any I/O.  This is a very good thing,
5662  * because *any* task may call prune_icache - even ones which
5663  * have a transaction open against a different journal.
5664  *
5665  * Is this cheating?  Not really.  Sure, we haven't written the
5666  * inode out, but prune_icache isn't a user-visible syncing function.
5667  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5668  * we start and wait on commits.
5669  *
5670  * Is this efficient/effective?  Well, we're being nice to the system
5671  * by cleaning up our inodes proactively so they can be reaped
5672  * without I/O.  But we are potentially leaving up to five seconds'
5673  * worth of inodes floating about which prune_icache wants us to
5674  * write out.  One way to fix that would be to get prune_icache()
5675  * to do a write_super() to free up some memory.  It has the desired
5676  * effect.
5677  */
5678 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5679 {
5680         struct ext4_iloc iloc;
5681         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5682         static unsigned int mnt_count;
5683         int err, ret;
5684
5685         might_sleep();
5686         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5687         err = ext4_reserve_inode_write(handle, inode, &iloc);
5688         if (ext4_handle_valid(handle) &&
5689             EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5690             !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5691                 /*
5692                  * We need extra buffer credits since we may write into EA block
5693                  * with this same handle. If journal_extend fails, then it will
5694                  * only result in a minor loss of functionality for that inode.
5695                  * If this is felt to be critical, then e2fsck should be run to
5696                  * force a large enough s_min_extra_isize.
5697                  */
5698                 if ((jbd2_journal_extend(handle,
5699                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5700                         ret = ext4_expand_extra_isize(inode,
5701                                                       sbi->s_want_extra_isize,
5702                                                       iloc, handle);
5703                         if (ret) {
5704                                 ext4_set_inode_state(inode,
5705                                                      EXT4_STATE_NO_EXPAND);
5706                                 if (mnt_count !=
5707                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
5708                                         ext4_warning(inode->i_sb,
5709                                         "Unable to expand inode %lu. Delete"
5710                                         " some EAs or run e2fsck.",
5711                                         inode->i_ino);
5712                                         mnt_count =
5713                                           le16_to_cpu(sbi->s_es->s_mnt_count);
5714                                 }
5715                         }
5716                 }
5717         }
5718         if (!err)
5719                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5720         return err;
5721 }
5722
5723 /*
5724  * ext4_dirty_inode() is called from __mark_inode_dirty()
5725  *
5726  * We're really interested in the case where a file is being extended.
5727  * i_size has been changed by generic_commit_write() and we thus need
5728  * to include the updated inode in the current transaction.
5729  *
5730  * Also, dquot_alloc_block() will always dirty the inode when blocks
5731  * are allocated to the file.
5732  *
5733  * If the inode is marked synchronous, we don't honour that here - doing
5734  * so would cause a commit on atime updates, which we don't bother doing.
5735  * We handle synchronous inodes at the highest possible level.
5736  */
5737 void ext4_dirty_inode(struct inode *inode)
5738 {
5739         handle_t *handle;
5740
5741         handle = ext4_journal_start(inode, 2);
5742         if (IS_ERR(handle))
5743                 goto out;
5744
5745         ext4_mark_inode_dirty(handle, inode);
5746
5747         ext4_journal_stop(handle);
5748 out:
5749         return;
5750 }
5751
5752 #if 0
5753 /*
5754  * Bind an inode's backing buffer_head into this transaction, to prevent
5755  * it from being flushed to disk early.  Unlike
5756  * ext4_reserve_inode_write, this leaves behind no bh reference and
5757  * returns no iloc structure, so the caller needs to repeat the iloc
5758  * lookup to mark the inode dirty later.
5759  */
5760 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5761 {
5762         struct ext4_iloc iloc;
5763
5764         int err = 0;
5765         if (handle) {
5766                 err = ext4_get_inode_loc(inode, &iloc);
5767                 if (!err) {
5768                         BUFFER_TRACE(iloc.bh, "get_write_access");
5769                         err = jbd2_journal_get_write_access(handle, iloc.bh);
5770                         if (!err)
5771                                 err = ext4_handle_dirty_metadata(handle,
5772                                                                  NULL,
5773                                                                  iloc.bh);
5774                         brelse(iloc.bh);
5775                 }
5776         }
5777         ext4_std_error(inode->i_sb, err);
5778         return err;
5779 }
5780 #endif
5781
5782 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5783 {
5784         journal_t *journal;
5785         handle_t *handle;
5786         int err;
5787
5788         /*
5789          * We have to be very careful here: changing a data block's
5790          * journaling status dynamically is dangerous.  If we write a
5791          * data block to the journal, change the status and then delete
5792          * that block, we risk forgetting to revoke the old log record
5793          * from the journal and so a subsequent replay can corrupt data.
5794          * So, first we make sure that the journal is empty and that
5795          * nobody is changing anything.
5796          */
5797
5798         journal = EXT4_JOURNAL(inode);
5799         if (!journal)
5800                 return 0;
5801         if (is_journal_aborted(journal))
5802                 return -EROFS;
5803
5804         jbd2_journal_lock_updates(journal);
5805         jbd2_journal_flush(journal);
5806
5807         /*
5808          * OK, there are no updates running now, and all cached data is
5809          * synced to disk.  We are now in a completely consistent state
5810          * which doesn't have anything in the journal, and we know that
5811          * no filesystem updates are running, so it is safe to modify
5812          * the inode's in-core data-journaling state flag now.
5813          */
5814
5815         if (val)
5816                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5817         else
5818                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5819         ext4_set_aops(inode);
5820
5821         jbd2_journal_unlock_updates(journal);
5822
5823         /* Finally we can mark the inode as dirty. */
5824
5825         handle = ext4_journal_start(inode, 1);
5826         if (IS_ERR(handle))
5827                 return PTR_ERR(handle);
5828
5829         err = ext4_mark_inode_dirty(handle, inode);
5830         ext4_handle_sync(handle);
5831         ext4_journal_stop(handle);
5832         ext4_std_error(inode->i_sb, err);
5833
5834         return err;
5835 }
5836
5837 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5838 {
5839         return !buffer_mapped(bh);
5840 }
5841
5842 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5843 {
5844         struct page *page = vmf->page;
5845         loff_t size;
5846         unsigned long len;
5847         int ret = -EINVAL;
5848         void *fsdata;
5849         struct file *file = vma->vm_file;
5850         struct inode *inode = file->f_path.dentry->d_inode;
5851         struct address_space *mapping = inode->i_mapping;
5852
5853         /*
5854          * Get i_alloc_sem to stop truncates messing with the inode. We cannot
5855          * get i_mutex because we are already holding mmap_sem.
5856          */
5857         down_read(&inode->i_alloc_sem);
5858         size = i_size_read(inode);
5859         if (page->mapping != mapping || size <= page_offset(page)
5860             || !PageUptodate(page)) {
5861                 /* page got truncated from under us? */
5862                 goto out_unlock;
5863         }
5864         ret = 0;
5865         if (PageMappedToDisk(page))
5866                 goto out_unlock;
5867
5868         if (page->index == size >> PAGE_CACHE_SHIFT)
5869                 len = size & ~PAGE_CACHE_MASK;
5870         else
5871                 len = PAGE_CACHE_SIZE;
5872
5873         lock_page(page);
5874         /*
5875          * return if we have all the buffers mapped. This avoid
5876          * the need to call write_begin/write_end which does a
5877          * journal_start/journal_stop which can block and take
5878          * long time
5879          */
5880         if (page_has_buffers(page)) {
5881                 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
5882                                         ext4_bh_unmapped)) {
5883                         unlock_page(page);
5884                         goto out_unlock;
5885                 }
5886         }
5887         unlock_page(page);
5888         /*
5889          * OK, we need to fill the hole... Do write_begin write_end
5890          * to do block allocation/reservation.We are not holding
5891          * inode.i__mutex here. That allow * parallel write_begin,
5892          * write_end call. lock_page prevent this from happening
5893          * on the same page though
5894          */
5895         ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
5896                         len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
5897         if (ret < 0)
5898                 goto out_unlock;
5899         ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
5900                         len, len, page, fsdata);
5901         if (ret < 0)
5902                 goto out_unlock;
5903         ret = 0;
5904 out_unlock:
5905         if (ret)
5906                 ret = VM_FAULT_SIGBUS;
5907         up_read(&inode->i_alloc_sem);
5908         return ret;
5909 }