Merge tag 'asm-generic' of git://git.kernel.org/pub/scm/linux/kernel/git/arnd/asm...
[pandora-kernel.git] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *      (jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/jbd2.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
40
41 #include "ext4_jbd2.h"
42 #include "xattr.h"
43 #include "acl.h"
44 #include "truncate.h"
45
46 #include <trace/events/ext4.h>
47
48 #define MPAGE_DA_EXTENT_TAIL 0x01
49
50 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
51                               struct ext4_inode_info *ei)
52 {
53         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
54         __u16 csum_lo;
55         __u16 csum_hi = 0;
56         __u32 csum;
57
58         csum_lo = raw->i_checksum_lo;
59         raw->i_checksum_lo = 0;
60         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
61             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
62                 csum_hi = raw->i_checksum_hi;
63                 raw->i_checksum_hi = 0;
64         }
65
66         csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
67                            EXT4_INODE_SIZE(inode->i_sb));
68
69         raw->i_checksum_lo = csum_lo;
70         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
71             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
72                 raw->i_checksum_hi = csum_hi;
73
74         return csum;
75 }
76
77 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
78                                   struct ext4_inode_info *ei)
79 {
80         __u32 provided, calculated;
81
82         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
83             cpu_to_le32(EXT4_OS_LINUX) ||
84             !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
85                 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
86                 return 1;
87
88         provided = le16_to_cpu(raw->i_checksum_lo);
89         calculated = ext4_inode_csum(inode, raw, ei);
90         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
91             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
92                 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
93         else
94                 calculated &= 0xFFFF;
95
96         return provided == calculated;
97 }
98
99 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
100                                 struct ext4_inode_info *ei)
101 {
102         __u32 csum;
103
104         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
105             cpu_to_le32(EXT4_OS_LINUX) ||
106             !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
107                 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
108                 return;
109
110         csum = ext4_inode_csum(inode, raw, ei);
111         raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
112         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
113             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
114                 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
115 }
116
117 static inline int ext4_begin_ordered_truncate(struct inode *inode,
118                                               loff_t new_size)
119 {
120         trace_ext4_begin_ordered_truncate(inode, new_size);
121         /*
122          * If jinode is zero, then we never opened the file for
123          * writing, so there's no need to call
124          * jbd2_journal_begin_ordered_truncate() since there's no
125          * outstanding writes we need to flush.
126          */
127         if (!EXT4_I(inode)->jinode)
128                 return 0;
129         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
130                                                    EXT4_I(inode)->jinode,
131                                                    new_size);
132 }
133
134 static void ext4_invalidatepage(struct page *page, unsigned long offset);
135 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
136                                    struct buffer_head *bh_result, int create);
137 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
138 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
139 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
140 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
141 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
142                 struct inode *inode, struct page *page, loff_t from,
143                 loff_t length, int flags);
144
145 /*
146  * Test whether an inode is a fast symlink.
147  */
148 static int ext4_inode_is_fast_symlink(struct inode *inode)
149 {
150         int ea_blocks = EXT4_I(inode)->i_file_acl ?
151                 (inode->i_sb->s_blocksize >> 9) : 0;
152
153         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
154 }
155
156 /*
157  * Restart the transaction associated with *handle.  This does a commit,
158  * so before we call here everything must be consistently dirtied against
159  * this transaction.
160  */
161 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
162                                  int nblocks)
163 {
164         int ret;
165
166         /*
167          * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
168          * moment, get_block can be called only for blocks inside i_size since
169          * page cache has been already dropped and writes are blocked by
170          * i_mutex. So we can safely drop the i_data_sem here.
171          */
172         BUG_ON(EXT4_JOURNAL(inode) == NULL);
173         jbd_debug(2, "restarting handle %p\n", handle);
174         up_write(&EXT4_I(inode)->i_data_sem);
175         ret = ext4_journal_restart(handle, nblocks);
176         down_write(&EXT4_I(inode)->i_data_sem);
177         ext4_discard_preallocations(inode);
178
179         return ret;
180 }
181
182 /*
183  * Called at the last iput() if i_nlink is zero.
184  */
185 void ext4_evict_inode(struct inode *inode)
186 {
187         handle_t *handle;
188         int err;
189
190         trace_ext4_evict_inode(inode);
191
192         ext4_ioend_wait(inode);
193
194         if (inode->i_nlink) {
195                 /*
196                  * When journalling data dirty buffers are tracked only in the
197                  * journal. So although mm thinks everything is clean and
198                  * ready for reaping the inode might still have some pages to
199                  * write in the running transaction or waiting to be
200                  * checkpointed. Thus calling jbd2_journal_invalidatepage()
201                  * (via truncate_inode_pages()) to discard these buffers can
202                  * cause data loss. Also even if we did not discard these
203                  * buffers, we would have no way to find them after the inode
204                  * is reaped and thus user could see stale data if he tries to
205                  * read them before the transaction is checkpointed. So be
206                  * careful and force everything to disk here... We use
207                  * ei->i_datasync_tid to store the newest transaction
208                  * containing inode's data.
209                  *
210                  * Note that directories do not have this problem because they
211                  * don't use page cache.
212                  */
213                 if (ext4_should_journal_data(inode) &&
214                     (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
215                         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
216                         tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
217
218                         jbd2_log_start_commit(journal, commit_tid);
219                         jbd2_log_wait_commit(journal, commit_tid);
220                         filemap_write_and_wait(&inode->i_data);
221                 }
222                 truncate_inode_pages(&inode->i_data, 0);
223                 goto no_delete;
224         }
225
226         if (!is_bad_inode(inode))
227                 dquot_initialize(inode);
228
229         if (ext4_should_order_data(inode))
230                 ext4_begin_ordered_truncate(inode, 0);
231         truncate_inode_pages(&inode->i_data, 0);
232
233         if (is_bad_inode(inode))
234                 goto no_delete;
235
236         /*
237          * Protect us against freezing - iput() caller didn't have to have any
238          * protection against it
239          */
240         sb_start_intwrite(inode->i_sb);
241         handle = ext4_journal_start(inode, ext4_blocks_for_truncate(inode)+3);
242         if (IS_ERR(handle)) {
243                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
244                 /*
245                  * If we're going to skip the normal cleanup, we still need to
246                  * make sure that the in-core orphan linked list is properly
247                  * cleaned up.
248                  */
249                 ext4_orphan_del(NULL, inode);
250                 sb_end_intwrite(inode->i_sb);
251                 goto no_delete;
252         }
253
254         if (IS_SYNC(inode))
255                 ext4_handle_sync(handle);
256         inode->i_size = 0;
257         err = ext4_mark_inode_dirty(handle, inode);
258         if (err) {
259                 ext4_warning(inode->i_sb,
260                              "couldn't mark inode dirty (err %d)", err);
261                 goto stop_handle;
262         }
263         if (inode->i_blocks)
264                 ext4_truncate(inode);
265
266         /*
267          * ext4_ext_truncate() doesn't reserve any slop when it
268          * restarts journal transactions; therefore there may not be
269          * enough credits left in the handle to remove the inode from
270          * the orphan list and set the dtime field.
271          */
272         if (!ext4_handle_has_enough_credits(handle, 3)) {
273                 err = ext4_journal_extend(handle, 3);
274                 if (err > 0)
275                         err = ext4_journal_restart(handle, 3);
276                 if (err != 0) {
277                         ext4_warning(inode->i_sb,
278                                      "couldn't extend journal (err %d)", err);
279                 stop_handle:
280                         ext4_journal_stop(handle);
281                         ext4_orphan_del(NULL, inode);
282                         sb_end_intwrite(inode->i_sb);
283                         goto no_delete;
284                 }
285         }
286
287         /*
288          * Kill off the orphan record which ext4_truncate created.
289          * AKPM: I think this can be inside the above `if'.
290          * Note that ext4_orphan_del() has to be able to cope with the
291          * deletion of a non-existent orphan - this is because we don't
292          * know if ext4_truncate() actually created an orphan record.
293          * (Well, we could do this if we need to, but heck - it works)
294          */
295         ext4_orphan_del(handle, inode);
296         EXT4_I(inode)->i_dtime  = get_seconds();
297
298         /*
299          * One subtle ordering requirement: if anything has gone wrong
300          * (transaction abort, IO errors, whatever), then we can still
301          * do these next steps (the fs will already have been marked as
302          * having errors), but we can't free the inode if the mark_dirty
303          * fails.
304          */
305         if (ext4_mark_inode_dirty(handle, inode))
306                 /* If that failed, just do the required in-core inode clear. */
307                 ext4_clear_inode(inode);
308         else
309                 ext4_free_inode(handle, inode);
310         ext4_journal_stop(handle);
311         sb_end_intwrite(inode->i_sb);
312         return;
313 no_delete:
314         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
315 }
316
317 #ifdef CONFIG_QUOTA
318 qsize_t *ext4_get_reserved_space(struct inode *inode)
319 {
320         return &EXT4_I(inode)->i_reserved_quota;
321 }
322 #endif
323
324 /*
325  * Calculate the number of metadata blocks need to reserve
326  * to allocate a block located at @lblock
327  */
328 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
329 {
330         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
331                 return ext4_ext_calc_metadata_amount(inode, lblock);
332
333         return ext4_ind_calc_metadata_amount(inode, lblock);
334 }
335
336 /*
337  * Called with i_data_sem down, which is important since we can call
338  * ext4_discard_preallocations() from here.
339  */
340 void ext4_da_update_reserve_space(struct inode *inode,
341                                         int used, int quota_claim)
342 {
343         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
344         struct ext4_inode_info *ei = EXT4_I(inode);
345
346         spin_lock(&ei->i_block_reservation_lock);
347         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
348         if (unlikely(used > ei->i_reserved_data_blocks)) {
349                 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
350                          "with only %d reserved data blocks",
351                          __func__, inode->i_ino, used,
352                          ei->i_reserved_data_blocks);
353                 WARN_ON(1);
354                 used = ei->i_reserved_data_blocks;
355         }
356
357         if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
358                 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, allocated %d "
359                          "with only %d reserved metadata blocks\n", __func__,
360                          inode->i_ino, ei->i_allocated_meta_blocks,
361                          ei->i_reserved_meta_blocks);
362                 WARN_ON(1);
363                 ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
364         }
365
366         /* Update per-inode reservations */
367         ei->i_reserved_data_blocks -= used;
368         ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
369         percpu_counter_sub(&sbi->s_dirtyclusters_counter,
370                            used + ei->i_allocated_meta_blocks);
371         ei->i_allocated_meta_blocks = 0;
372
373         if (ei->i_reserved_data_blocks == 0) {
374                 /*
375                  * We can release all of the reserved metadata blocks
376                  * only when we have written all of the delayed
377                  * allocation blocks.
378                  */
379                 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
380                                    ei->i_reserved_meta_blocks);
381                 ei->i_reserved_meta_blocks = 0;
382                 ei->i_da_metadata_calc_len = 0;
383         }
384         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
385
386         /* Update quota subsystem for data blocks */
387         if (quota_claim)
388                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
389         else {
390                 /*
391                  * We did fallocate with an offset that is already delayed
392                  * allocated. So on delayed allocated writeback we should
393                  * not re-claim the quota for fallocated blocks.
394                  */
395                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
396         }
397
398         /*
399          * If we have done all the pending block allocations and if
400          * there aren't any writers on the inode, we can discard the
401          * inode's preallocations.
402          */
403         if ((ei->i_reserved_data_blocks == 0) &&
404             (atomic_read(&inode->i_writecount) == 0))
405                 ext4_discard_preallocations(inode);
406 }
407
408 static int __check_block_validity(struct inode *inode, const char *func,
409                                 unsigned int line,
410                                 struct ext4_map_blocks *map)
411 {
412         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
413                                    map->m_len)) {
414                 ext4_error_inode(inode, func, line, map->m_pblk,
415                                  "lblock %lu mapped to illegal pblock "
416                                  "(length %d)", (unsigned long) map->m_lblk,
417                                  map->m_len);
418                 return -EIO;
419         }
420         return 0;
421 }
422
423 #define check_block_validity(inode, map)        \
424         __check_block_validity((inode), __func__, __LINE__, (map))
425
426 /*
427  * Return the number of contiguous dirty pages in a given inode
428  * starting at page frame idx.
429  */
430 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
431                                     unsigned int max_pages)
432 {
433         struct address_space *mapping = inode->i_mapping;
434         pgoff_t index;
435         struct pagevec pvec;
436         pgoff_t num = 0;
437         int i, nr_pages, done = 0;
438
439         if (max_pages == 0)
440                 return 0;
441         pagevec_init(&pvec, 0);
442         while (!done) {
443                 index = idx;
444                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
445                                               PAGECACHE_TAG_DIRTY,
446                                               (pgoff_t)PAGEVEC_SIZE);
447                 if (nr_pages == 0)
448                         break;
449                 for (i = 0; i < nr_pages; i++) {
450                         struct page *page = pvec.pages[i];
451                         struct buffer_head *bh, *head;
452
453                         lock_page(page);
454                         if (unlikely(page->mapping != mapping) ||
455                             !PageDirty(page) ||
456                             PageWriteback(page) ||
457                             page->index != idx) {
458                                 done = 1;
459                                 unlock_page(page);
460                                 break;
461                         }
462                         if (page_has_buffers(page)) {
463                                 bh = head = page_buffers(page);
464                                 do {
465                                         if (!buffer_delay(bh) &&
466                                             !buffer_unwritten(bh))
467                                                 done = 1;
468                                         bh = bh->b_this_page;
469                                 } while (!done && (bh != head));
470                         }
471                         unlock_page(page);
472                         if (done)
473                                 break;
474                         idx++;
475                         num++;
476                         if (num >= max_pages) {
477                                 done = 1;
478                                 break;
479                         }
480                 }
481                 pagevec_release(&pvec);
482         }
483         return num;
484 }
485
486 /*
487  * The ext4_map_blocks() function tries to look up the requested blocks,
488  * and returns if the blocks are already mapped.
489  *
490  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
491  * and store the allocated blocks in the result buffer head and mark it
492  * mapped.
493  *
494  * If file type is extents based, it will call ext4_ext_map_blocks(),
495  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
496  * based files
497  *
498  * On success, it returns the number of blocks being mapped or allocate.
499  * if create==0 and the blocks are pre-allocated and uninitialized block,
500  * the result buffer head is unmapped. If the create ==1, it will make sure
501  * the buffer head is mapped.
502  *
503  * It returns 0 if plain look up failed (blocks have not been allocated), in
504  * that case, buffer head is unmapped
505  *
506  * It returns the error in case of allocation failure.
507  */
508 int ext4_map_blocks(handle_t *handle, struct inode *inode,
509                     struct ext4_map_blocks *map, int flags)
510 {
511         int retval;
512
513         map->m_flags = 0;
514         ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
515                   "logical block %lu\n", inode->i_ino, flags, map->m_len,
516                   (unsigned long) map->m_lblk);
517         /*
518          * Try to see if we can get the block without requesting a new
519          * file system block.
520          */
521         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
522                 down_read((&EXT4_I(inode)->i_data_sem));
523         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
524                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
525                                              EXT4_GET_BLOCKS_KEEP_SIZE);
526         } else {
527                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
528                                              EXT4_GET_BLOCKS_KEEP_SIZE);
529         }
530         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
531                 up_read((&EXT4_I(inode)->i_data_sem));
532
533         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
534                 int ret;
535                 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
536                         /* delayed alloc may be allocated by fallocate and
537                          * coverted to initialized by directIO.
538                          * we need to handle delayed extent here.
539                          */
540                         down_write((&EXT4_I(inode)->i_data_sem));
541                         goto delayed_mapped;
542                 }
543                 ret = check_block_validity(inode, map);
544                 if (ret != 0)
545                         return ret;
546         }
547
548         /* If it is only a block(s) look up */
549         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
550                 return retval;
551
552         /*
553          * Returns if the blocks have already allocated
554          *
555          * Note that if blocks have been preallocated
556          * ext4_ext_get_block() returns the create = 0
557          * with buffer head unmapped.
558          */
559         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
560                 return retval;
561
562         /*
563          * When we call get_blocks without the create flag, the
564          * BH_Unwritten flag could have gotten set if the blocks
565          * requested were part of a uninitialized extent.  We need to
566          * clear this flag now that we are committed to convert all or
567          * part of the uninitialized extent to be an initialized
568          * extent.  This is because we need to avoid the combination
569          * of BH_Unwritten and BH_Mapped flags being simultaneously
570          * set on the buffer_head.
571          */
572         map->m_flags &= ~EXT4_MAP_UNWRITTEN;
573
574         /*
575          * New blocks allocate and/or writing to uninitialized extent
576          * will possibly result in updating i_data, so we take
577          * the write lock of i_data_sem, and call get_blocks()
578          * with create == 1 flag.
579          */
580         down_write((&EXT4_I(inode)->i_data_sem));
581
582         /*
583          * if the caller is from delayed allocation writeout path
584          * we have already reserved fs blocks for allocation
585          * let the underlying get_block() function know to
586          * avoid double accounting
587          */
588         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
589                 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
590         /*
591          * We need to check for EXT4 here because migrate
592          * could have changed the inode type in between
593          */
594         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
595                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
596         } else {
597                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
598
599                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
600                         /*
601                          * We allocated new blocks which will result in
602                          * i_data's format changing.  Force the migrate
603                          * to fail by clearing migrate flags
604                          */
605                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
606                 }
607
608                 /*
609                  * Update reserved blocks/metadata blocks after successful
610                  * block allocation which had been deferred till now. We don't
611                  * support fallocate for non extent files. So we can update
612                  * reserve space here.
613                  */
614                 if ((retval > 0) &&
615                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
616                         ext4_da_update_reserve_space(inode, retval, 1);
617         }
618         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
619                 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
620
621                 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
622                         int ret;
623 delayed_mapped:
624                         /* delayed allocation blocks has been allocated */
625                         ret = ext4_es_remove_extent(inode, map->m_lblk,
626                                                     map->m_len);
627                         if (ret < 0)
628                                 retval = ret;
629                 }
630         }
631
632         up_write((&EXT4_I(inode)->i_data_sem));
633         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
634                 int ret = check_block_validity(inode, map);
635                 if (ret != 0)
636                         return ret;
637         }
638         return retval;
639 }
640
641 /* Maximum number of blocks we map for direct IO at once. */
642 #define DIO_MAX_BLOCKS 4096
643
644 static int _ext4_get_block(struct inode *inode, sector_t iblock,
645                            struct buffer_head *bh, int flags)
646 {
647         handle_t *handle = ext4_journal_current_handle();
648         struct ext4_map_blocks map;
649         int ret = 0, started = 0;
650         int dio_credits;
651
652         if (ext4_has_inline_data(inode))
653                 return -ERANGE;
654
655         map.m_lblk = iblock;
656         map.m_len = bh->b_size >> inode->i_blkbits;
657
658         if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
659                 /* Direct IO write... */
660                 if (map.m_len > DIO_MAX_BLOCKS)
661                         map.m_len = DIO_MAX_BLOCKS;
662                 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
663                 handle = ext4_journal_start(inode, dio_credits);
664                 if (IS_ERR(handle)) {
665                         ret = PTR_ERR(handle);
666                         return ret;
667                 }
668                 started = 1;
669         }
670
671         ret = ext4_map_blocks(handle, inode, &map, flags);
672         if (ret > 0) {
673                 map_bh(bh, inode->i_sb, map.m_pblk);
674                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
675                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
676                 ret = 0;
677         }
678         if (started)
679                 ext4_journal_stop(handle);
680         return ret;
681 }
682
683 int ext4_get_block(struct inode *inode, sector_t iblock,
684                    struct buffer_head *bh, int create)
685 {
686         return _ext4_get_block(inode, iblock, bh,
687                                create ? EXT4_GET_BLOCKS_CREATE : 0);
688 }
689
690 /*
691  * `handle' can be NULL if create is zero
692  */
693 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
694                                 ext4_lblk_t block, int create, int *errp)
695 {
696         struct ext4_map_blocks map;
697         struct buffer_head *bh;
698         int fatal = 0, err;
699
700         J_ASSERT(handle != NULL || create == 0);
701
702         map.m_lblk = block;
703         map.m_len = 1;
704         err = ext4_map_blocks(handle, inode, &map,
705                               create ? EXT4_GET_BLOCKS_CREATE : 0);
706
707         /* ensure we send some value back into *errp */
708         *errp = 0;
709
710         if (err < 0)
711                 *errp = err;
712         if (err <= 0)
713                 return NULL;
714
715         bh = sb_getblk(inode->i_sb, map.m_pblk);
716         if (!bh) {
717                 *errp = -EIO;
718                 return NULL;
719         }
720         if (map.m_flags & EXT4_MAP_NEW) {
721                 J_ASSERT(create != 0);
722                 J_ASSERT(handle != NULL);
723
724                 /*
725                  * Now that we do not always journal data, we should
726                  * keep in mind whether this should always journal the
727                  * new buffer as metadata.  For now, regular file
728                  * writes use ext4_get_block instead, so it's not a
729                  * problem.
730                  */
731                 lock_buffer(bh);
732                 BUFFER_TRACE(bh, "call get_create_access");
733                 fatal = ext4_journal_get_create_access(handle, bh);
734                 if (!fatal && !buffer_uptodate(bh)) {
735                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
736                         set_buffer_uptodate(bh);
737                 }
738                 unlock_buffer(bh);
739                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
740                 err = ext4_handle_dirty_metadata(handle, inode, bh);
741                 if (!fatal)
742                         fatal = err;
743         } else {
744                 BUFFER_TRACE(bh, "not a new buffer");
745         }
746         if (fatal) {
747                 *errp = fatal;
748                 brelse(bh);
749                 bh = NULL;
750         }
751         return bh;
752 }
753
754 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
755                                ext4_lblk_t block, int create, int *err)
756 {
757         struct buffer_head *bh;
758
759         bh = ext4_getblk(handle, inode, block, create, err);
760         if (!bh)
761                 return bh;
762         if (buffer_uptodate(bh))
763                 return bh;
764         ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
765         wait_on_buffer(bh);
766         if (buffer_uptodate(bh))
767                 return bh;
768         put_bh(bh);
769         *err = -EIO;
770         return NULL;
771 }
772
773 int ext4_walk_page_buffers(handle_t *handle,
774                            struct buffer_head *head,
775                            unsigned from,
776                            unsigned to,
777                            int *partial,
778                            int (*fn)(handle_t *handle,
779                                      struct buffer_head *bh))
780 {
781         struct buffer_head *bh;
782         unsigned block_start, block_end;
783         unsigned blocksize = head->b_size;
784         int err, ret = 0;
785         struct buffer_head *next;
786
787         for (bh = head, block_start = 0;
788              ret == 0 && (bh != head || !block_start);
789              block_start = block_end, bh = next) {
790                 next = bh->b_this_page;
791                 block_end = block_start + blocksize;
792                 if (block_end <= from || block_start >= to) {
793                         if (partial && !buffer_uptodate(bh))
794                                 *partial = 1;
795                         continue;
796                 }
797                 err = (*fn)(handle, bh);
798                 if (!ret)
799                         ret = err;
800         }
801         return ret;
802 }
803
804 /*
805  * To preserve ordering, it is essential that the hole instantiation and
806  * the data write be encapsulated in a single transaction.  We cannot
807  * close off a transaction and start a new one between the ext4_get_block()
808  * and the commit_write().  So doing the jbd2_journal_start at the start of
809  * prepare_write() is the right place.
810  *
811  * Also, this function can nest inside ext4_writepage() ->
812  * block_write_full_page(). In that case, we *know* that ext4_writepage()
813  * has generated enough buffer credits to do the whole page.  So we won't
814  * block on the journal in that case, which is good, because the caller may
815  * be PF_MEMALLOC.
816  *
817  * By accident, ext4 can be reentered when a transaction is open via
818  * quota file writes.  If we were to commit the transaction while thus
819  * reentered, there can be a deadlock - we would be holding a quota
820  * lock, and the commit would never complete if another thread had a
821  * transaction open and was blocking on the quota lock - a ranking
822  * violation.
823  *
824  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
825  * will _not_ run commit under these circumstances because handle->h_ref
826  * is elevated.  We'll still have enough credits for the tiny quotafile
827  * write.
828  */
829 int do_journal_get_write_access(handle_t *handle,
830                                 struct buffer_head *bh)
831 {
832         int dirty = buffer_dirty(bh);
833         int ret;
834
835         if (!buffer_mapped(bh) || buffer_freed(bh))
836                 return 0;
837         /*
838          * __block_write_begin() could have dirtied some buffers. Clean
839          * the dirty bit as jbd2_journal_get_write_access() could complain
840          * otherwise about fs integrity issues. Setting of the dirty bit
841          * by __block_write_begin() isn't a real problem here as we clear
842          * the bit before releasing a page lock and thus writeback cannot
843          * ever write the buffer.
844          */
845         if (dirty)
846                 clear_buffer_dirty(bh);
847         ret = ext4_journal_get_write_access(handle, bh);
848         if (!ret && dirty)
849                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
850         return ret;
851 }
852
853 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
854                    struct buffer_head *bh_result, int create);
855 static int ext4_write_begin(struct file *file, struct address_space *mapping,
856                             loff_t pos, unsigned len, unsigned flags,
857                             struct page **pagep, void **fsdata)
858 {
859         struct inode *inode = mapping->host;
860         int ret, needed_blocks;
861         handle_t *handle;
862         int retries = 0;
863         struct page *page;
864         pgoff_t index;
865         unsigned from, to;
866
867         trace_ext4_write_begin(inode, pos, len, flags);
868         /*
869          * Reserve one block more for addition to orphan list in case
870          * we allocate blocks but write fails for some reason
871          */
872         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
873         index = pos >> PAGE_CACHE_SHIFT;
874         from = pos & (PAGE_CACHE_SIZE - 1);
875         to = from + len;
876
877         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
878                 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
879                                                     flags, pagep);
880                 if (ret < 0)
881                         goto out;
882                 if (ret == 1) {
883                         ret = 0;
884                         goto out;
885                 }
886         }
887
888 retry:
889         handle = ext4_journal_start(inode, needed_blocks);
890         if (IS_ERR(handle)) {
891                 ret = PTR_ERR(handle);
892                 goto out;
893         }
894
895         /* We cannot recurse into the filesystem as the transaction is already
896          * started */
897         flags |= AOP_FLAG_NOFS;
898
899         page = grab_cache_page_write_begin(mapping, index, flags);
900         if (!page) {
901                 ext4_journal_stop(handle);
902                 ret = -ENOMEM;
903                 goto out;
904         }
905
906         *pagep = page;
907
908         if (ext4_should_dioread_nolock(inode))
909                 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
910         else
911                 ret = __block_write_begin(page, pos, len, ext4_get_block);
912
913         if (!ret && ext4_should_journal_data(inode)) {
914                 ret = ext4_walk_page_buffers(handle, page_buffers(page),
915                                              from, to, NULL,
916                                              do_journal_get_write_access);
917         }
918
919         if (ret) {
920                 unlock_page(page);
921                 page_cache_release(page);
922                 /*
923                  * __block_write_begin may have instantiated a few blocks
924                  * outside i_size.  Trim these off again. Don't need
925                  * i_size_read because we hold i_mutex.
926                  *
927                  * Add inode to orphan list in case we crash before
928                  * truncate finishes
929                  */
930                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
931                         ext4_orphan_add(handle, inode);
932
933                 ext4_journal_stop(handle);
934                 if (pos + len > inode->i_size) {
935                         ext4_truncate_failed_write(inode);
936                         /*
937                          * If truncate failed early the inode might
938                          * still be on the orphan list; we need to
939                          * make sure the inode is removed from the
940                          * orphan list in that case.
941                          */
942                         if (inode->i_nlink)
943                                 ext4_orphan_del(NULL, inode);
944                 }
945         }
946
947         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
948                 goto retry;
949 out:
950         return ret;
951 }
952
953 /* For write_end() in data=journal mode */
954 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
955 {
956         if (!buffer_mapped(bh) || buffer_freed(bh))
957                 return 0;
958         set_buffer_uptodate(bh);
959         return ext4_handle_dirty_metadata(handle, NULL, bh);
960 }
961
962 static int ext4_generic_write_end(struct file *file,
963                                   struct address_space *mapping,
964                                   loff_t pos, unsigned len, unsigned copied,
965                                   struct page *page, void *fsdata)
966 {
967         int i_size_changed = 0;
968         struct inode *inode = mapping->host;
969         handle_t *handle = ext4_journal_current_handle();
970
971         if (ext4_has_inline_data(inode))
972                 copied = ext4_write_inline_data_end(inode, pos, len,
973                                                     copied, page);
974         else
975                 copied = block_write_end(file, mapping, pos,
976                                          len, copied, page, fsdata);
977
978         /*
979          * No need to use i_size_read() here, the i_size
980          * cannot change under us because we hold i_mutex.
981          *
982          * But it's important to update i_size while still holding page lock:
983          * page writeout could otherwise come in and zero beyond i_size.
984          */
985         if (pos + copied > inode->i_size) {
986                 i_size_write(inode, pos + copied);
987                 i_size_changed = 1;
988         }
989
990         if (pos + copied >  EXT4_I(inode)->i_disksize) {
991                 /* We need to mark inode dirty even if
992                  * new_i_size is less that inode->i_size
993                  * bu greater than i_disksize.(hint delalloc)
994                  */
995                 ext4_update_i_disksize(inode, (pos + copied));
996                 i_size_changed = 1;
997         }
998         unlock_page(page);
999         page_cache_release(page);
1000
1001         /*
1002          * Don't mark the inode dirty under page lock. First, it unnecessarily
1003          * makes the holding time of page lock longer. Second, it forces lock
1004          * ordering of page lock and transaction start for journaling
1005          * filesystems.
1006          */
1007         if (i_size_changed)
1008                 ext4_mark_inode_dirty(handle, inode);
1009
1010         return copied;
1011 }
1012
1013 /*
1014  * We need to pick up the new inode size which generic_commit_write gave us
1015  * `file' can be NULL - eg, when called from page_symlink().
1016  *
1017  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1018  * buffers are managed internally.
1019  */
1020 static int ext4_ordered_write_end(struct file *file,
1021                                   struct address_space *mapping,
1022                                   loff_t pos, unsigned len, unsigned copied,
1023                                   struct page *page, void *fsdata)
1024 {
1025         handle_t *handle = ext4_journal_current_handle();
1026         struct inode *inode = mapping->host;
1027         int ret = 0, ret2;
1028
1029         trace_ext4_ordered_write_end(inode, pos, len, copied);
1030         ret = ext4_jbd2_file_inode(handle, inode);
1031
1032         if (ret == 0) {
1033                 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1034                                                         page, fsdata);
1035                 copied = ret2;
1036                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1037                         /* if we have allocated more blocks and copied
1038                          * less. We will have blocks allocated outside
1039                          * inode->i_size. So truncate them
1040                          */
1041                         ext4_orphan_add(handle, inode);
1042                 if (ret2 < 0)
1043                         ret = ret2;
1044         } else {
1045                 unlock_page(page);
1046                 page_cache_release(page);
1047         }
1048
1049         ret2 = ext4_journal_stop(handle);
1050         if (!ret)
1051                 ret = ret2;
1052
1053         if (pos + len > inode->i_size) {
1054                 ext4_truncate_failed_write(inode);
1055                 /*
1056                  * If truncate failed early the inode might still be
1057                  * on the orphan list; we need to make sure the inode
1058                  * is removed from the orphan list in that case.
1059                  */
1060                 if (inode->i_nlink)
1061                         ext4_orphan_del(NULL, inode);
1062         }
1063
1064
1065         return ret ? ret : copied;
1066 }
1067
1068 static int ext4_writeback_write_end(struct file *file,
1069                                     struct address_space *mapping,
1070                                     loff_t pos, unsigned len, unsigned copied,
1071                                     struct page *page, void *fsdata)
1072 {
1073         handle_t *handle = ext4_journal_current_handle();
1074         struct inode *inode = mapping->host;
1075         int ret = 0, ret2;
1076
1077         trace_ext4_writeback_write_end(inode, pos, len, copied);
1078         ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1079                                                         page, fsdata);
1080         copied = ret2;
1081         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1082                 /* if we have allocated more blocks and copied
1083                  * less. We will have blocks allocated outside
1084                  * inode->i_size. So truncate them
1085                  */
1086                 ext4_orphan_add(handle, inode);
1087
1088         if (ret2 < 0)
1089                 ret = ret2;
1090
1091         ret2 = ext4_journal_stop(handle);
1092         if (!ret)
1093                 ret = ret2;
1094
1095         if (pos + len > inode->i_size) {
1096                 ext4_truncate_failed_write(inode);
1097                 /*
1098                  * If truncate failed early the inode might still be
1099                  * on the orphan list; we need to make sure the inode
1100                  * is removed from the orphan list in that case.
1101                  */
1102                 if (inode->i_nlink)
1103                         ext4_orphan_del(NULL, inode);
1104         }
1105
1106         return ret ? ret : copied;
1107 }
1108
1109 static int ext4_journalled_write_end(struct file *file,
1110                                      struct address_space *mapping,
1111                                      loff_t pos, unsigned len, unsigned copied,
1112                                      struct page *page, void *fsdata)
1113 {
1114         handle_t *handle = ext4_journal_current_handle();
1115         struct inode *inode = mapping->host;
1116         int ret = 0, ret2;
1117         int partial = 0;
1118         unsigned from, to;
1119         loff_t new_i_size;
1120
1121         trace_ext4_journalled_write_end(inode, pos, len, copied);
1122         from = pos & (PAGE_CACHE_SIZE - 1);
1123         to = from + len;
1124
1125         BUG_ON(!ext4_handle_valid(handle));
1126
1127         if (ext4_has_inline_data(inode))
1128                 copied = ext4_write_inline_data_end(inode, pos, len,
1129                                                     copied, page);
1130         else {
1131                 if (copied < len) {
1132                         if (!PageUptodate(page))
1133                                 copied = 0;
1134                         page_zero_new_buffers(page, from+copied, to);
1135                 }
1136
1137                 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1138                                              to, &partial, write_end_fn);
1139                 if (!partial)
1140                         SetPageUptodate(page);
1141         }
1142         new_i_size = pos + copied;
1143         if (new_i_size > inode->i_size)
1144                 i_size_write(inode, pos+copied);
1145         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1146         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1147         if (new_i_size > EXT4_I(inode)->i_disksize) {
1148                 ext4_update_i_disksize(inode, new_i_size);
1149                 ret2 = ext4_mark_inode_dirty(handle, inode);
1150                 if (!ret)
1151                         ret = ret2;
1152         }
1153
1154         unlock_page(page);
1155         page_cache_release(page);
1156         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1157                 /* if we have allocated more blocks and copied
1158                  * less. We will have blocks allocated outside
1159                  * inode->i_size. So truncate them
1160                  */
1161                 ext4_orphan_add(handle, inode);
1162
1163         ret2 = ext4_journal_stop(handle);
1164         if (!ret)
1165                 ret = ret2;
1166         if (pos + len > inode->i_size) {
1167                 ext4_truncate_failed_write(inode);
1168                 /*
1169                  * If truncate failed early the inode might still be
1170                  * on the orphan list; we need to make sure the inode
1171                  * is removed from the orphan list in that case.
1172                  */
1173                 if (inode->i_nlink)
1174                         ext4_orphan_del(NULL, inode);
1175         }
1176
1177         return ret ? ret : copied;
1178 }
1179
1180 /*
1181  * Reserve a single cluster located at lblock
1182  */
1183 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1184 {
1185         int retries = 0;
1186         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1187         struct ext4_inode_info *ei = EXT4_I(inode);
1188         unsigned int md_needed;
1189         int ret;
1190         ext4_lblk_t save_last_lblock;
1191         int save_len;
1192
1193         /*
1194          * We will charge metadata quota at writeout time; this saves
1195          * us from metadata over-estimation, though we may go over by
1196          * a small amount in the end.  Here we just reserve for data.
1197          */
1198         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1199         if (ret)
1200                 return ret;
1201
1202         /*
1203          * recalculate the amount of metadata blocks to reserve
1204          * in order to allocate nrblocks
1205          * worse case is one extent per block
1206          */
1207 repeat:
1208         spin_lock(&ei->i_block_reservation_lock);
1209         /*
1210          * ext4_calc_metadata_amount() has side effects, which we have
1211          * to be prepared undo if we fail to claim space.
1212          */
1213         save_len = ei->i_da_metadata_calc_len;
1214         save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1215         md_needed = EXT4_NUM_B2C(sbi,
1216                                  ext4_calc_metadata_amount(inode, lblock));
1217         trace_ext4_da_reserve_space(inode, md_needed);
1218
1219         /*
1220          * We do still charge estimated metadata to the sb though;
1221          * we cannot afford to run out of free blocks.
1222          */
1223         if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1224                 ei->i_da_metadata_calc_len = save_len;
1225                 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1226                 spin_unlock(&ei->i_block_reservation_lock);
1227                 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1228                         yield();
1229                         goto repeat;
1230                 }
1231                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1232                 return -ENOSPC;
1233         }
1234         ei->i_reserved_data_blocks++;
1235         ei->i_reserved_meta_blocks += md_needed;
1236         spin_unlock(&ei->i_block_reservation_lock);
1237
1238         return 0;       /* success */
1239 }
1240
1241 static void ext4_da_release_space(struct inode *inode, int to_free)
1242 {
1243         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1244         struct ext4_inode_info *ei = EXT4_I(inode);
1245
1246         if (!to_free)
1247                 return;         /* Nothing to release, exit */
1248
1249         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1250
1251         trace_ext4_da_release_space(inode, to_free);
1252         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1253                 /*
1254                  * if there aren't enough reserved blocks, then the
1255                  * counter is messed up somewhere.  Since this
1256                  * function is called from invalidate page, it's
1257                  * harmless to return without any action.
1258                  */
1259                 ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
1260                          "ino %lu, to_free %d with only %d reserved "
1261                          "data blocks", inode->i_ino, to_free,
1262                          ei->i_reserved_data_blocks);
1263                 WARN_ON(1);
1264                 to_free = ei->i_reserved_data_blocks;
1265         }
1266         ei->i_reserved_data_blocks -= to_free;
1267
1268         if (ei->i_reserved_data_blocks == 0) {
1269                 /*
1270                  * We can release all of the reserved metadata blocks
1271                  * only when we have written all of the delayed
1272                  * allocation blocks.
1273                  * Note that in case of bigalloc, i_reserved_meta_blocks,
1274                  * i_reserved_data_blocks, etc. refer to number of clusters.
1275                  */
1276                 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1277                                    ei->i_reserved_meta_blocks);
1278                 ei->i_reserved_meta_blocks = 0;
1279                 ei->i_da_metadata_calc_len = 0;
1280         }
1281
1282         /* update fs dirty data blocks counter */
1283         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1284
1285         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1286
1287         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1288 }
1289
1290 static void ext4_da_page_release_reservation(struct page *page,
1291                                              unsigned long offset)
1292 {
1293         int to_release = 0;
1294         struct buffer_head *head, *bh;
1295         unsigned int curr_off = 0;
1296         struct inode *inode = page->mapping->host;
1297         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1298         int num_clusters;
1299         ext4_fsblk_t lblk;
1300
1301         head = page_buffers(page);
1302         bh = head;
1303         do {
1304                 unsigned int next_off = curr_off + bh->b_size;
1305
1306                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1307                         to_release++;
1308                         clear_buffer_delay(bh);
1309                 }
1310                 curr_off = next_off;
1311         } while ((bh = bh->b_this_page) != head);
1312
1313         if (to_release) {
1314                 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1315                 ext4_es_remove_extent(inode, lblk, to_release);
1316         }
1317
1318         /* If we have released all the blocks belonging to a cluster, then we
1319          * need to release the reserved space for that cluster. */
1320         num_clusters = EXT4_NUM_B2C(sbi, to_release);
1321         while (num_clusters > 0) {
1322                 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1323                         ((num_clusters - 1) << sbi->s_cluster_bits);
1324                 if (sbi->s_cluster_ratio == 1 ||
1325                     !ext4_find_delalloc_cluster(inode, lblk))
1326                         ext4_da_release_space(inode, 1);
1327
1328                 num_clusters--;
1329         }
1330 }
1331
1332 /*
1333  * Delayed allocation stuff
1334  */
1335
1336 /*
1337  * mpage_da_submit_io - walks through extent of pages and try to write
1338  * them with writepage() call back
1339  *
1340  * @mpd->inode: inode
1341  * @mpd->first_page: first page of the extent
1342  * @mpd->next_page: page after the last page of the extent
1343  *
1344  * By the time mpage_da_submit_io() is called we expect all blocks
1345  * to be allocated. this may be wrong if allocation failed.
1346  *
1347  * As pages are already locked by write_cache_pages(), we can't use it
1348  */
1349 static int mpage_da_submit_io(struct mpage_da_data *mpd,
1350                               struct ext4_map_blocks *map)
1351 {
1352         struct pagevec pvec;
1353         unsigned long index, end;
1354         int ret = 0, err, nr_pages, i;
1355         struct inode *inode = mpd->inode;
1356         struct address_space *mapping = inode->i_mapping;
1357         loff_t size = i_size_read(inode);
1358         unsigned int len, block_start;
1359         struct buffer_head *bh, *page_bufs = NULL;
1360         int journal_data = ext4_should_journal_data(inode);
1361         sector_t pblock = 0, cur_logical = 0;
1362         struct ext4_io_submit io_submit;
1363
1364         BUG_ON(mpd->next_page <= mpd->first_page);
1365         memset(&io_submit, 0, sizeof(io_submit));
1366         /*
1367          * We need to start from the first_page to the next_page - 1
1368          * to make sure we also write the mapped dirty buffer_heads.
1369          * If we look at mpd->b_blocknr we would only be looking
1370          * at the currently mapped buffer_heads.
1371          */
1372         index = mpd->first_page;
1373         end = mpd->next_page - 1;
1374
1375         pagevec_init(&pvec, 0);
1376         while (index <= end) {
1377                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1378                 if (nr_pages == 0)
1379                         break;
1380                 for (i = 0; i < nr_pages; i++) {
1381                         int commit_write = 0, skip_page = 0;
1382                         struct page *page = pvec.pages[i];
1383
1384                         index = page->index;
1385                         if (index > end)
1386                                 break;
1387
1388                         if (index == size >> PAGE_CACHE_SHIFT)
1389                                 len = size & ~PAGE_CACHE_MASK;
1390                         else
1391                                 len = PAGE_CACHE_SIZE;
1392                         if (map) {
1393                                 cur_logical = index << (PAGE_CACHE_SHIFT -
1394                                                         inode->i_blkbits);
1395                                 pblock = map->m_pblk + (cur_logical -
1396                                                         map->m_lblk);
1397                         }
1398                         index++;
1399
1400                         BUG_ON(!PageLocked(page));
1401                         BUG_ON(PageWriteback(page));
1402
1403                         /*
1404                          * If the page does not have buffers (for
1405                          * whatever reason), try to create them using
1406                          * __block_write_begin.  If this fails,
1407                          * skip the page and move on.
1408                          */
1409                         if (!page_has_buffers(page)) {
1410                                 if (__block_write_begin(page, 0, len,
1411                                                 noalloc_get_block_write)) {
1412                                 skip_page:
1413                                         unlock_page(page);
1414                                         continue;
1415                                 }
1416                                 commit_write = 1;
1417                         }
1418
1419                         bh = page_bufs = page_buffers(page);
1420                         block_start = 0;
1421                         do {
1422                                 if (!bh)
1423                                         goto skip_page;
1424                                 if (map && (cur_logical >= map->m_lblk) &&
1425                                     (cur_logical <= (map->m_lblk +
1426                                                      (map->m_len - 1)))) {
1427                                         if (buffer_delay(bh)) {
1428                                                 clear_buffer_delay(bh);
1429                                                 bh->b_blocknr = pblock;
1430                                         }
1431                                         if (buffer_unwritten(bh) ||
1432                                             buffer_mapped(bh))
1433                                                 BUG_ON(bh->b_blocknr != pblock);
1434                                         if (map->m_flags & EXT4_MAP_UNINIT)
1435                                                 set_buffer_uninit(bh);
1436                                         clear_buffer_unwritten(bh);
1437                                 }
1438
1439                                 /*
1440                                  * skip page if block allocation undone and
1441                                  * block is dirty
1442                                  */
1443                                 if (ext4_bh_delay_or_unwritten(NULL, bh))
1444                                         skip_page = 1;
1445                                 bh = bh->b_this_page;
1446                                 block_start += bh->b_size;
1447                                 cur_logical++;
1448                                 pblock++;
1449                         } while (bh != page_bufs);
1450
1451                         if (skip_page)
1452                                 goto skip_page;
1453
1454                         if (commit_write)
1455                                 /* mark the buffer_heads as dirty & uptodate */
1456                                 block_commit_write(page, 0, len);
1457
1458                         clear_page_dirty_for_io(page);
1459                         /*
1460                          * Delalloc doesn't support data journalling,
1461                          * but eventually maybe we'll lift this
1462                          * restriction.
1463                          */
1464                         if (unlikely(journal_data && PageChecked(page)))
1465                                 err = __ext4_journalled_writepage(page, len);
1466                         else if (test_opt(inode->i_sb, MBLK_IO_SUBMIT))
1467                                 err = ext4_bio_write_page(&io_submit, page,
1468                                                           len, mpd->wbc);
1469                         else if (buffer_uninit(page_bufs)) {
1470                                 ext4_set_bh_endio(page_bufs, inode);
1471                                 err = block_write_full_page_endio(page,
1472                                         noalloc_get_block_write,
1473                                         mpd->wbc, ext4_end_io_buffer_write);
1474                         } else
1475                                 err = block_write_full_page(page,
1476                                         noalloc_get_block_write, mpd->wbc);
1477
1478                         if (!err)
1479                                 mpd->pages_written++;
1480                         /*
1481                          * In error case, we have to continue because
1482                          * remaining pages are still locked
1483                          */
1484                         if (ret == 0)
1485                                 ret = err;
1486                 }
1487                 pagevec_release(&pvec);
1488         }
1489         ext4_io_submit(&io_submit);
1490         return ret;
1491 }
1492
1493 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
1494 {
1495         int nr_pages, i;
1496         pgoff_t index, end;
1497         struct pagevec pvec;
1498         struct inode *inode = mpd->inode;
1499         struct address_space *mapping = inode->i_mapping;
1500         ext4_lblk_t start, last;
1501
1502         index = mpd->first_page;
1503         end   = mpd->next_page - 1;
1504
1505         start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1506         last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1507         ext4_es_remove_extent(inode, start, last - start + 1);
1508
1509         pagevec_init(&pvec, 0);
1510         while (index <= end) {
1511                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1512                 if (nr_pages == 0)
1513                         break;
1514                 for (i = 0; i < nr_pages; i++) {
1515                         struct page *page = pvec.pages[i];
1516                         if (page->index > end)
1517                                 break;
1518                         BUG_ON(!PageLocked(page));
1519                         BUG_ON(PageWriteback(page));
1520                         block_invalidatepage(page, 0);
1521                         ClearPageUptodate(page);
1522                         unlock_page(page);
1523                 }
1524                 index = pvec.pages[nr_pages - 1]->index + 1;
1525                 pagevec_release(&pvec);
1526         }
1527         return;
1528 }
1529
1530 static void ext4_print_free_blocks(struct inode *inode)
1531 {
1532         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1533         struct super_block *sb = inode->i_sb;
1534
1535         ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1536                EXT4_C2B(EXT4_SB(inode->i_sb),
1537                         ext4_count_free_clusters(inode->i_sb)));
1538         ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1539         ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1540                (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1541                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1542         ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1543                (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1544                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1545         ext4_msg(sb, KERN_CRIT, "Block reservation details");
1546         ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1547                  EXT4_I(inode)->i_reserved_data_blocks);
1548         ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
1549                EXT4_I(inode)->i_reserved_meta_blocks);
1550         return;
1551 }
1552
1553 /*
1554  * mpage_da_map_and_submit - go through given space, map them
1555  *       if necessary, and then submit them for I/O
1556  *
1557  * @mpd - bh describing space
1558  *
1559  * The function skips space we know is already mapped to disk blocks.
1560  *
1561  */
1562 static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
1563 {
1564         int err, blks, get_blocks_flags;
1565         struct ext4_map_blocks map, *mapp = NULL;
1566         sector_t next = mpd->b_blocknr;
1567         unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
1568         loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
1569         handle_t *handle = NULL;
1570
1571         /*
1572          * If the blocks are mapped already, or we couldn't accumulate
1573          * any blocks, then proceed immediately to the submission stage.
1574          */
1575         if ((mpd->b_size == 0) ||
1576             ((mpd->b_state  & (1 << BH_Mapped)) &&
1577              !(mpd->b_state & (1 << BH_Delay)) &&
1578              !(mpd->b_state & (1 << BH_Unwritten))))
1579                 goto submit_io;
1580
1581         handle = ext4_journal_current_handle();
1582         BUG_ON(!handle);
1583
1584         /*
1585          * Call ext4_map_blocks() to allocate any delayed allocation
1586          * blocks, or to convert an uninitialized extent to be
1587          * initialized (in the case where we have written into
1588          * one or more preallocated blocks).
1589          *
1590          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
1591          * indicate that we are on the delayed allocation path.  This
1592          * affects functions in many different parts of the allocation
1593          * call path.  This flag exists primarily because we don't
1594          * want to change *many* call functions, so ext4_map_blocks()
1595          * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
1596          * inode's allocation semaphore is taken.
1597          *
1598          * If the blocks in questions were delalloc blocks, set
1599          * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
1600          * variables are updated after the blocks have been allocated.
1601          */
1602         map.m_lblk = next;
1603         map.m_len = max_blocks;
1604         get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
1605         if (ext4_should_dioread_nolock(mpd->inode))
1606                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
1607         if (mpd->b_state & (1 << BH_Delay))
1608                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
1609
1610         blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
1611         if (blks < 0) {
1612                 struct super_block *sb = mpd->inode->i_sb;
1613
1614                 err = blks;
1615                 /*
1616                  * If get block returns EAGAIN or ENOSPC and there
1617                  * appears to be free blocks we will just let
1618                  * mpage_da_submit_io() unlock all of the pages.
1619                  */
1620                 if (err == -EAGAIN)
1621                         goto submit_io;
1622
1623                 if (err == -ENOSPC && ext4_count_free_clusters(sb)) {
1624                         mpd->retval = err;
1625                         goto submit_io;
1626                 }
1627
1628                 /*
1629                  * get block failure will cause us to loop in
1630                  * writepages, because a_ops->writepage won't be able
1631                  * to make progress. The page will be redirtied by
1632                  * writepage and writepages will again try to write
1633                  * the same.
1634                  */
1635                 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
1636                         ext4_msg(sb, KERN_CRIT,
1637                                  "delayed block allocation failed for inode %lu "
1638                                  "at logical offset %llu with max blocks %zd "
1639                                  "with error %d", mpd->inode->i_ino,
1640                                  (unsigned long long) next,
1641                                  mpd->b_size >> mpd->inode->i_blkbits, err);
1642                         ext4_msg(sb, KERN_CRIT,
1643                                 "This should not happen!! Data will be lost\n");
1644                         if (err == -ENOSPC)
1645                                 ext4_print_free_blocks(mpd->inode);
1646                 }
1647                 /* invalidate all the pages */
1648                 ext4_da_block_invalidatepages(mpd);
1649
1650                 /* Mark this page range as having been completed */
1651                 mpd->io_done = 1;
1652                 return;
1653         }
1654         BUG_ON(blks == 0);
1655
1656         mapp = &map;
1657         if (map.m_flags & EXT4_MAP_NEW) {
1658                 struct block_device *bdev = mpd->inode->i_sb->s_bdev;
1659                 int i;
1660
1661                 for (i = 0; i < map.m_len; i++)
1662                         unmap_underlying_metadata(bdev, map.m_pblk + i);
1663         }
1664
1665         /*
1666          * Update on-disk size along with block allocation.
1667          */
1668         disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
1669         if (disksize > i_size_read(mpd->inode))
1670                 disksize = i_size_read(mpd->inode);
1671         if (disksize > EXT4_I(mpd->inode)->i_disksize) {
1672                 ext4_update_i_disksize(mpd->inode, disksize);
1673                 err = ext4_mark_inode_dirty(handle, mpd->inode);
1674                 if (err)
1675                         ext4_error(mpd->inode->i_sb,
1676                                    "Failed to mark inode %lu dirty",
1677                                    mpd->inode->i_ino);
1678         }
1679
1680 submit_io:
1681         mpage_da_submit_io(mpd, mapp);
1682         mpd->io_done = 1;
1683 }
1684
1685 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1686                 (1 << BH_Delay) | (1 << BH_Unwritten))
1687
1688 /*
1689  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1690  *
1691  * @mpd->lbh - extent of blocks
1692  * @logical - logical number of the block in the file
1693  * @bh - bh of the block (used to access block's state)
1694  *
1695  * the function is used to collect contig. blocks in same state
1696  */
1697 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
1698                                    sector_t logical, size_t b_size,
1699                                    unsigned long b_state)
1700 {
1701         sector_t next;
1702         int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
1703
1704         /*
1705          * XXX Don't go larger than mballoc is willing to allocate
1706          * This is a stopgap solution.  We eventually need to fold
1707          * mpage_da_submit_io() into this function and then call
1708          * ext4_map_blocks() multiple times in a loop
1709          */
1710         if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
1711                 goto flush_it;
1712
1713         /* check if thereserved journal credits might overflow */
1714         if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
1715                 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1716                         /*
1717                          * With non-extent format we are limited by the journal
1718                          * credit available.  Total credit needed to insert
1719                          * nrblocks contiguous blocks is dependent on the
1720                          * nrblocks.  So limit nrblocks.
1721                          */
1722                         goto flush_it;
1723                 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
1724                                 EXT4_MAX_TRANS_DATA) {
1725                         /*
1726                          * Adding the new buffer_head would make it cross the
1727                          * allowed limit for which we have journal credit
1728                          * reserved. So limit the new bh->b_size
1729                          */
1730                         b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
1731                                                 mpd->inode->i_blkbits;
1732                         /* we will do mpage_da_submit_io in the next loop */
1733                 }
1734         }
1735         /*
1736          * First block in the extent
1737          */
1738         if (mpd->b_size == 0) {
1739                 mpd->b_blocknr = logical;
1740                 mpd->b_size = b_size;
1741                 mpd->b_state = b_state & BH_FLAGS;
1742                 return;
1743         }
1744
1745         next = mpd->b_blocknr + nrblocks;
1746         /*
1747          * Can we merge the block to our big extent?
1748          */
1749         if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
1750                 mpd->b_size += b_size;
1751                 return;
1752         }
1753
1754 flush_it:
1755         /*
1756          * We couldn't merge the block to our extent, so we
1757          * need to flush current  extent and start new one
1758          */
1759         mpage_da_map_and_submit(mpd);
1760         return;
1761 }
1762
1763 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1764 {
1765         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1766 }
1767
1768 /*
1769  * This function is grabs code from the very beginning of
1770  * ext4_map_blocks, but assumes that the caller is from delayed write
1771  * time. This function looks up the requested blocks and sets the
1772  * buffer delay bit under the protection of i_data_sem.
1773  */
1774 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1775                               struct ext4_map_blocks *map,
1776                               struct buffer_head *bh)
1777 {
1778         int retval;
1779         sector_t invalid_block = ~((sector_t) 0xffff);
1780
1781         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1782                 invalid_block = ~0;
1783
1784         map->m_flags = 0;
1785         ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1786                   "logical block %lu\n", inode->i_ino, map->m_len,
1787                   (unsigned long) map->m_lblk);
1788         /*
1789          * Try to see if we can get the block without requesting a new
1790          * file system block.
1791          */
1792         down_read((&EXT4_I(inode)->i_data_sem));
1793         if (ext4_has_inline_data(inode)) {
1794                 /*
1795                  * We will soon create blocks for this page, and let
1796                  * us pretend as if the blocks aren't allocated yet.
1797                  * In case of clusters, we have to handle the work
1798                  * of mapping from cluster so that the reserved space
1799                  * is calculated properly.
1800                  */
1801                 if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) &&
1802                     ext4_find_delalloc_cluster(inode, map->m_lblk))
1803                         map->m_flags |= EXT4_MAP_FROM_CLUSTER;
1804                 retval = 0;
1805         } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1806                 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1807         else
1808                 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1809
1810         if (retval == 0) {
1811                 /*
1812                  * XXX: __block_prepare_write() unmaps passed block,
1813                  * is it OK?
1814                  */
1815                 /* If the block was allocated from previously allocated cluster,
1816                  * then we dont need to reserve it again. */
1817                 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1818                         retval = ext4_da_reserve_space(inode, iblock);
1819                         if (retval)
1820                                 /* not enough space to reserve */
1821                                 goto out_unlock;
1822                 }
1823
1824                 retval = ext4_es_insert_extent(inode, map->m_lblk, map->m_len);
1825                 if (retval)
1826                         goto out_unlock;
1827
1828                 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1829                  * and it should not appear on the bh->b_state.
1830                  */
1831                 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1832
1833                 map_bh(bh, inode->i_sb, invalid_block);
1834                 set_buffer_new(bh);
1835                 set_buffer_delay(bh);
1836         }
1837
1838 out_unlock:
1839         up_read((&EXT4_I(inode)->i_data_sem));
1840
1841         return retval;
1842 }
1843
1844 /*
1845  * This is a special get_blocks_t callback which is used by
1846  * ext4_da_write_begin().  It will either return mapped block or
1847  * reserve space for a single block.
1848  *
1849  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1850  * We also have b_blocknr = -1 and b_bdev initialized properly
1851  *
1852  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1853  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1854  * initialized properly.
1855  */
1856 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1857                            struct buffer_head *bh, int create)
1858 {
1859         struct ext4_map_blocks map;
1860         int ret = 0;
1861
1862         BUG_ON(create == 0);
1863         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1864
1865         map.m_lblk = iblock;
1866         map.m_len = 1;
1867
1868         /*
1869          * first, we need to know whether the block is allocated already
1870          * preallocated blocks are unmapped but should treated
1871          * the same as allocated blocks.
1872          */
1873         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1874         if (ret <= 0)
1875                 return ret;
1876
1877         map_bh(bh, inode->i_sb, map.m_pblk);
1878         bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1879
1880         if (buffer_unwritten(bh)) {
1881                 /* A delayed write to unwritten bh should be marked
1882                  * new and mapped.  Mapped ensures that we don't do
1883                  * get_block multiple times when we write to the same
1884                  * offset and new ensures that we do proper zero out
1885                  * for partial write.
1886                  */
1887                 set_buffer_new(bh);
1888                 set_buffer_mapped(bh);
1889         }
1890         return 0;
1891 }
1892
1893 /*
1894  * This function is used as a standard get_block_t calback function
1895  * when there is no desire to allocate any blocks.  It is used as a
1896  * callback function for block_write_begin() and block_write_full_page().
1897  * These functions should only try to map a single block at a time.
1898  *
1899  * Since this function doesn't do block allocations even if the caller
1900  * requests it by passing in create=1, it is critically important that
1901  * any caller checks to make sure that any buffer heads are returned
1902  * by this function are either all already mapped or marked for
1903  * delayed allocation before calling  block_write_full_page().  Otherwise,
1904  * b_blocknr could be left unitialized, and the page write functions will
1905  * be taken by surprise.
1906  */
1907 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
1908                                    struct buffer_head *bh_result, int create)
1909 {
1910         BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
1911         return _ext4_get_block(inode, iblock, bh_result, 0);
1912 }
1913
1914 static int bget_one(handle_t *handle, struct buffer_head *bh)
1915 {
1916         get_bh(bh);
1917         return 0;
1918 }
1919
1920 static int bput_one(handle_t *handle, struct buffer_head *bh)
1921 {
1922         put_bh(bh);
1923         return 0;
1924 }
1925
1926 static int __ext4_journalled_writepage(struct page *page,
1927                                        unsigned int len)
1928 {
1929         struct address_space *mapping = page->mapping;
1930         struct inode *inode = mapping->host;
1931         struct buffer_head *page_bufs = NULL;
1932         handle_t *handle = NULL;
1933         int ret = 0, err = 0;
1934         int inline_data = ext4_has_inline_data(inode);
1935         struct buffer_head *inode_bh = NULL;
1936
1937         ClearPageChecked(page);
1938
1939         if (inline_data) {
1940                 BUG_ON(page->index != 0);
1941                 BUG_ON(len > ext4_get_max_inline_size(inode));
1942                 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1943                 if (inode_bh == NULL)
1944                         goto out;
1945         } else {
1946                 page_bufs = page_buffers(page);
1947                 if (!page_bufs) {
1948                         BUG();
1949                         goto out;
1950                 }
1951                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1952                                        NULL, bget_one);
1953         }
1954         /* As soon as we unlock the page, it can go away, but we have
1955          * references to buffers so we are safe */
1956         unlock_page(page);
1957
1958         handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1959         if (IS_ERR(handle)) {
1960                 ret = PTR_ERR(handle);
1961                 goto out;
1962         }
1963
1964         BUG_ON(!ext4_handle_valid(handle));
1965
1966         if (inline_data) {
1967                 ret = ext4_journal_get_write_access(handle, inode_bh);
1968
1969                 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1970
1971         } else {
1972                 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1973                                              do_journal_get_write_access);
1974
1975                 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1976                                              write_end_fn);
1977         }
1978         if (ret == 0)
1979                 ret = err;
1980         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1981         err = ext4_journal_stop(handle);
1982         if (!ret)
1983                 ret = err;
1984
1985         if (!ext4_has_inline_data(inode))
1986                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1987                                        NULL, bput_one);
1988         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1989 out:
1990         brelse(inode_bh);
1991         return ret;
1992 }
1993
1994 /*
1995  * Note that we don't need to start a transaction unless we're journaling data
1996  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1997  * need to file the inode to the transaction's list in ordered mode because if
1998  * we are writing back data added by write(), the inode is already there and if
1999  * we are writing back data modified via mmap(), no one guarantees in which
2000  * transaction the data will hit the disk. In case we are journaling data, we
2001  * cannot start transaction directly because transaction start ranks above page
2002  * lock so we have to do some magic.
2003  *
2004  * This function can get called via...
2005  *   - ext4_da_writepages after taking page lock (have journal handle)
2006  *   - journal_submit_inode_data_buffers (no journal handle)
2007  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
2008  *   - grab_page_cache when doing write_begin (have journal handle)
2009  *
2010  * We don't do any block allocation in this function. If we have page with
2011  * multiple blocks we need to write those buffer_heads that are mapped. This
2012  * is important for mmaped based write. So if we do with blocksize 1K
2013  * truncate(f, 1024);
2014  * a = mmap(f, 0, 4096);
2015  * a[0] = 'a';
2016  * truncate(f, 4096);
2017  * we have in the page first buffer_head mapped via page_mkwrite call back
2018  * but other buffer_heads would be unmapped but dirty (dirty done via the
2019  * do_wp_page). So writepage should write the first block. If we modify
2020  * the mmap area beyond 1024 we will again get a page_fault and the
2021  * page_mkwrite callback will do the block allocation and mark the
2022  * buffer_heads mapped.
2023  *
2024  * We redirty the page if we have any buffer_heads that is either delay or
2025  * unwritten in the page.
2026  *
2027  * We can get recursively called as show below.
2028  *
2029  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2030  *              ext4_writepage()
2031  *
2032  * But since we don't do any block allocation we should not deadlock.
2033  * Page also have the dirty flag cleared so we don't get recurive page_lock.
2034  */
2035 static int ext4_writepage(struct page *page,
2036                           struct writeback_control *wbc)
2037 {
2038         int ret = 0, commit_write = 0;
2039         loff_t size;
2040         unsigned int len;
2041         struct buffer_head *page_bufs = NULL;
2042         struct inode *inode = page->mapping->host;
2043
2044         trace_ext4_writepage(page);
2045         size = i_size_read(inode);
2046         if (page->index == size >> PAGE_CACHE_SHIFT)
2047                 len = size & ~PAGE_CACHE_MASK;
2048         else
2049                 len = PAGE_CACHE_SIZE;
2050
2051         /*
2052          * If the page does not have buffers (for whatever reason),
2053          * try to create them using __block_write_begin.  If this
2054          * fails, redirty the page and move on.
2055          */
2056         if (!page_has_buffers(page)) {
2057                 if (__block_write_begin(page, 0, len,
2058                                         noalloc_get_block_write)) {
2059                 redirty_page:
2060                         redirty_page_for_writepage(wbc, page);
2061                         unlock_page(page);
2062                         return 0;
2063                 }
2064                 commit_write = 1;
2065         }
2066         page_bufs = page_buffers(page);
2067         if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2068                                    ext4_bh_delay_or_unwritten)) {
2069                 /*
2070                  * We don't want to do block allocation, so redirty
2071                  * the page and return.  We may reach here when we do
2072                  * a journal commit via journal_submit_inode_data_buffers.
2073                  * We can also reach here via shrink_page_list but it
2074                  * should never be for direct reclaim so warn if that
2075                  * happens
2076                  */
2077                 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
2078                                                                 PF_MEMALLOC);
2079                 goto redirty_page;
2080         }
2081         if (commit_write)
2082                 /* now mark the buffer_heads as dirty and uptodate */
2083                 block_commit_write(page, 0, len);
2084
2085         if (PageChecked(page) && ext4_should_journal_data(inode))
2086                 /*
2087                  * It's mmapped pagecache.  Add buffers and journal it.  There
2088                  * doesn't seem much point in redirtying the page here.
2089                  */
2090                 return __ext4_journalled_writepage(page, len);
2091
2092         if (buffer_uninit(page_bufs)) {
2093                 ext4_set_bh_endio(page_bufs, inode);
2094                 ret = block_write_full_page_endio(page, noalloc_get_block_write,
2095                                             wbc, ext4_end_io_buffer_write);
2096         } else
2097                 ret = block_write_full_page(page, noalloc_get_block_write,
2098                                             wbc);
2099
2100         return ret;
2101 }
2102
2103 /*
2104  * This is called via ext4_da_writepages() to
2105  * calculate the total number of credits to reserve to fit
2106  * a single extent allocation into a single transaction,
2107  * ext4_da_writpeages() will loop calling this before
2108  * the block allocation.
2109  */
2110
2111 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2112 {
2113         int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2114
2115         /*
2116          * With non-extent format the journal credit needed to
2117          * insert nrblocks contiguous block is dependent on
2118          * number of contiguous block. So we will limit
2119          * number of contiguous block to a sane value
2120          */
2121         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
2122             (max_blocks > EXT4_MAX_TRANS_DATA))
2123                 max_blocks = EXT4_MAX_TRANS_DATA;
2124
2125         return ext4_chunk_trans_blocks(inode, max_blocks);
2126 }
2127
2128 /*
2129  * write_cache_pages_da - walk the list of dirty pages of the given
2130  * address space and accumulate pages that need writing, and call
2131  * mpage_da_map_and_submit to map a single contiguous memory region
2132  * and then write them.
2133  */
2134 static int write_cache_pages_da(handle_t *handle,
2135                                 struct address_space *mapping,
2136                                 struct writeback_control *wbc,
2137                                 struct mpage_da_data *mpd,
2138                                 pgoff_t *done_index)
2139 {
2140         struct buffer_head      *bh, *head;
2141         struct inode            *inode = mapping->host;
2142         struct pagevec          pvec;
2143         unsigned int            nr_pages;
2144         sector_t                logical;
2145         pgoff_t                 index, end;
2146         long                    nr_to_write = wbc->nr_to_write;
2147         int                     i, tag, ret = 0;
2148
2149         memset(mpd, 0, sizeof(struct mpage_da_data));
2150         mpd->wbc = wbc;
2151         mpd->inode = inode;
2152         pagevec_init(&pvec, 0);
2153         index = wbc->range_start >> PAGE_CACHE_SHIFT;
2154         end = wbc->range_end >> PAGE_CACHE_SHIFT;
2155
2156         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2157                 tag = PAGECACHE_TAG_TOWRITE;
2158         else
2159                 tag = PAGECACHE_TAG_DIRTY;
2160
2161         *done_index = index;
2162         while (index <= end) {
2163                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2164                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2165                 if (nr_pages == 0)
2166                         return 0;
2167
2168                 for (i = 0; i < nr_pages; i++) {
2169                         struct page *page = pvec.pages[i];
2170
2171                         /*
2172                          * At this point, the page may be truncated or
2173                          * invalidated (changing page->mapping to NULL), or
2174                          * even swizzled back from swapper_space to tmpfs file
2175                          * mapping. However, page->index will not change
2176                          * because we have a reference on the page.
2177                          */
2178                         if (page->index > end)
2179                                 goto out;
2180
2181                         *done_index = page->index + 1;
2182
2183                         /*
2184                          * If we can't merge this page, and we have
2185                          * accumulated an contiguous region, write it
2186                          */
2187                         if ((mpd->next_page != page->index) &&
2188                             (mpd->next_page != mpd->first_page)) {
2189                                 mpage_da_map_and_submit(mpd);
2190                                 goto ret_extent_tail;
2191                         }
2192
2193                         lock_page(page);
2194
2195                         /*
2196                          * If the page is no longer dirty, or its
2197                          * mapping no longer corresponds to inode we
2198                          * are writing (which means it has been
2199                          * truncated or invalidated), or the page is
2200                          * already under writeback and we are not
2201                          * doing a data integrity writeback, skip the page
2202                          */
2203                         if (!PageDirty(page) ||
2204                             (PageWriteback(page) &&
2205                              (wbc->sync_mode == WB_SYNC_NONE)) ||
2206                             unlikely(page->mapping != mapping)) {
2207                                 unlock_page(page);
2208                                 continue;
2209                         }
2210
2211                         wait_on_page_writeback(page);
2212                         BUG_ON(PageWriteback(page));
2213
2214                         /*
2215                          * If we have inline data and arrive here, it means that
2216                          * we will soon create the block for the 1st page, so
2217                          * we'd better clear the inline data here.
2218                          */
2219                         if (ext4_has_inline_data(inode)) {
2220                                 BUG_ON(ext4_test_inode_state(inode,
2221                                                 EXT4_STATE_MAY_INLINE_DATA));
2222                                 ext4_destroy_inline_data(handle, inode);
2223                         }
2224
2225                         if (mpd->next_page != page->index)
2226                                 mpd->first_page = page->index;
2227                         mpd->next_page = page->index + 1;
2228                         logical = (sector_t) page->index <<
2229                                 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2230
2231                         if (!page_has_buffers(page)) {
2232                                 mpage_add_bh_to_extent(mpd, logical,
2233                                                        PAGE_CACHE_SIZE,
2234                                                        (1 << BH_Dirty) | (1 << BH_Uptodate));
2235                                 if (mpd->io_done)
2236                                         goto ret_extent_tail;
2237                         } else {
2238                                 /*
2239                                  * Page with regular buffer heads,
2240                                  * just add all dirty ones
2241                                  */
2242                                 head = page_buffers(page);
2243                                 bh = head;
2244                                 do {
2245                                         BUG_ON(buffer_locked(bh));
2246                                         /*
2247                                          * We need to try to allocate
2248                                          * unmapped blocks in the same page.
2249                                          * Otherwise we won't make progress
2250                                          * with the page in ext4_writepage
2251                                          */
2252                                         if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2253                                                 mpage_add_bh_to_extent(mpd, logical,
2254                                                                        bh->b_size,
2255                                                                        bh->b_state);
2256                                                 if (mpd->io_done)
2257                                                         goto ret_extent_tail;
2258                                         } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2259                                                 /*
2260                                                  * mapped dirty buffer. We need
2261                                                  * to update the b_state
2262                                                  * because we look at b_state
2263                                                  * in mpage_da_map_blocks.  We
2264                                                  * don't update b_size because
2265                                                  * if we find an unmapped
2266                                                  * buffer_head later we need to
2267                                                  * use the b_state flag of that
2268                                                  * buffer_head.
2269                                                  */
2270                                                 if (mpd->b_size == 0)
2271                                                         mpd->b_state = bh->b_state & BH_FLAGS;
2272                                         }
2273                                         logical++;
2274                                 } while ((bh = bh->b_this_page) != head);
2275                         }
2276
2277                         if (nr_to_write > 0) {
2278                                 nr_to_write--;
2279                                 if (nr_to_write == 0 &&
2280                                     wbc->sync_mode == WB_SYNC_NONE)
2281                                         /*
2282                                          * We stop writing back only if we are
2283                                          * not doing integrity sync. In case of
2284                                          * integrity sync we have to keep going
2285                                          * because someone may be concurrently
2286                                          * dirtying pages, and we might have
2287                                          * synced a lot of newly appeared dirty
2288                                          * pages, but have not synced all of the
2289                                          * old dirty pages.
2290                                          */
2291                                         goto out;
2292                         }
2293                 }
2294                 pagevec_release(&pvec);
2295                 cond_resched();
2296         }
2297         return 0;
2298 ret_extent_tail:
2299         ret = MPAGE_DA_EXTENT_TAIL;
2300 out:
2301         pagevec_release(&pvec);
2302         cond_resched();
2303         return ret;
2304 }
2305
2306
2307 static int ext4_da_writepages(struct address_space *mapping,
2308                               struct writeback_control *wbc)
2309 {
2310         pgoff_t index;
2311         int range_whole = 0;
2312         handle_t *handle = NULL;
2313         struct mpage_da_data mpd;
2314         struct inode *inode = mapping->host;
2315         int pages_written = 0;
2316         unsigned int max_pages;
2317         int range_cyclic, cycled = 1, io_done = 0;
2318         int needed_blocks, ret = 0;
2319         long desired_nr_to_write, nr_to_writebump = 0;
2320         loff_t range_start = wbc->range_start;
2321         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2322         pgoff_t done_index = 0;
2323         pgoff_t end;
2324         struct blk_plug plug;
2325
2326         trace_ext4_da_writepages(inode, wbc);
2327
2328         /*
2329          * No pages to write? This is mainly a kludge to avoid starting
2330          * a transaction for special inodes like journal inode on last iput()
2331          * because that could violate lock ordering on umount
2332          */
2333         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2334                 return 0;
2335
2336         /*
2337          * If the filesystem has aborted, it is read-only, so return
2338          * right away instead of dumping stack traces later on that
2339          * will obscure the real source of the problem.  We test
2340          * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2341          * the latter could be true if the filesystem is mounted
2342          * read-only, and in that case, ext4_da_writepages should
2343          * *never* be called, so if that ever happens, we would want
2344          * the stack trace.
2345          */
2346         if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2347                 return -EROFS;
2348
2349         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2350                 range_whole = 1;
2351
2352         range_cyclic = wbc->range_cyclic;
2353         if (wbc->range_cyclic) {
2354                 index = mapping->writeback_index;
2355                 if (index)
2356                         cycled = 0;
2357                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2358                 wbc->range_end  = LLONG_MAX;
2359                 wbc->range_cyclic = 0;
2360                 end = -1;
2361         } else {
2362                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2363                 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2364         }
2365
2366         /*
2367          * This works around two forms of stupidity.  The first is in
2368          * the writeback code, which caps the maximum number of pages
2369          * written to be 1024 pages.  This is wrong on multiple
2370          * levels; different architectues have a different page size,
2371          * which changes the maximum amount of data which gets
2372          * written.  Secondly, 4 megabytes is way too small.  XFS
2373          * forces this value to be 16 megabytes by multiplying
2374          * nr_to_write parameter by four, and then relies on its
2375          * allocator to allocate larger extents to make them
2376          * contiguous.  Unfortunately this brings us to the second
2377          * stupidity, which is that ext4's mballoc code only allocates
2378          * at most 2048 blocks.  So we force contiguous writes up to
2379          * the number of dirty blocks in the inode, or
2380          * sbi->max_writeback_mb_bump whichever is smaller.
2381          */
2382         max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2383         if (!range_cyclic && range_whole) {
2384                 if (wbc->nr_to_write == LONG_MAX)
2385                         desired_nr_to_write = wbc->nr_to_write;
2386                 else
2387                         desired_nr_to_write = wbc->nr_to_write * 8;
2388         } else
2389                 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2390                                                            max_pages);
2391         if (desired_nr_to_write > max_pages)
2392                 desired_nr_to_write = max_pages;
2393
2394         if (wbc->nr_to_write < desired_nr_to_write) {
2395                 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2396                 wbc->nr_to_write = desired_nr_to_write;
2397         }
2398
2399 retry:
2400         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2401                 tag_pages_for_writeback(mapping, index, end);
2402
2403         blk_start_plug(&plug);
2404         while (!ret && wbc->nr_to_write > 0) {
2405
2406                 /*
2407                  * we  insert one extent at a time. So we need
2408                  * credit needed for single extent allocation.
2409                  * journalled mode is currently not supported
2410                  * by delalloc
2411                  */
2412                 BUG_ON(ext4_should_journal_data(inode));
2413                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2414
2415                 /* start a new transaction*/
2416                 handle = ext4_journal_start(inode, needed_blocks);
2417                 if (IS_ERR(handle)) {
2418                         ret = PTR_ERR(handle);
2419                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2420                                "%ld pages, ino %lu; err %d", __func__,
2421                                 wbc->nr_to_write, inode->i_ino, ret);
2422                         blk_finish_plug(&plug);
2423                         goto out_writepages;
2424                 }
2425
2426                 /*
2427                  * Now call write_cache_pages_da() to find the next
2428                  * contiguous region of logical blocks that need
2429                  * blocks to be allocated by ext4 and submit them.
2430                  */
2431                 ret = write_cache_pages_da(handle, mapping,
2432                                            wbc, &mpd, &done_index);
2433                 /*
2434                  * If we have a contiguous extent of pages and we
2435                  * haven't done the I/O yet, map the blocks and submit
2436                  * them for I/O.
2437                  */
2438                 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2439                         mpage_da_map_and_submit(&mpd);
2440                         ret = MPAGE_DA_EXTENT_TAIL;
2441                 }
2442                 trace_ext4_da_write_pages(inode, &mpd);
2443                 wbc->nr_to_write -= mpd.pages_written;
2444
2445                 ext4_journal_stop(handle);
2446
2447                 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2448                         /* commit the transaction which would
2449                          * free blocks released in the transaction
2450                          * and try again
2451                          */
2452                         jbd2_journal_force_commit_nested(sbi->s_journal);
2453                         ret = 0;
2454                 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
2455                         /*
2456                          * Got one extent now try with rest of the pages.
2457                          * If mpd.retval is set -EIO, journal is aborted.
2458                          * So we don't need to write any more.
2459                          */
2460                         pages_written += mpd.pages_written;
2461                         ret = mpd.retval;
2462                         io_done = 1;
2463                 } else if (wbc->nr_to_write)
2464                         /*
2465                          * There is no more writeout needed
2466                          * or we requested for a noblocking writeout
2467                          * and we found the device congested
2468                          */
2469                         break;
2470         }
2471         blk_finish_plug(&plug);
2472         if (!io_done && !cycled) {
2473                 cycled = 1;
2474                 index = 0;
2475                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2476                 wbc->range_end  = mapping->writeback_index - 1;
2477                 goto retry;
2478         }
2479
2480         /* Update index */
2481         wbc->range_cyclic = range_cyclic;
2482         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2483                 /*
2484                  * set the writeback_index so that range_cyclic
2485                  * mode will write it back later
2486                  */
2487                 mapping->writeback_index = done_index;
2488
2489 out_writepages:
2490         wbc->nr_to_write -= nr_to_writebump;
2491         wbc->range_start = range_start;
2492         trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2493         return ret;
2494 }
2495
2496 static int ext4_nonda_switch(struct super_block *sb)
2497 {
2498         s64 free_blocks, dirty_blocks;
2499         struct ext4_sb_info *sbi = EXT4_SB(sb);
2500
2501         /*
2502          * switch to non delalloc mode if we are running low
2503          * on free block. The free block accounting via percpu
2504          * counters can get slightly wrong with percpu_counter_batch getting
2505          * accumulated on each CPU without updating global counters
2506          * Delalloc need an accurate free block accounting. So switch
2507          * to non delalloc when we are near to error range.
2508          */
2509         free_blocks  = EXT4_C2B(sbi,
2510                 percpu_counter_read_positive(&sbi->s_freeclusters_counter));
2511         dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2512         /*
2513          * Start pushing delalloc when 1/2 of free blocks are dirty.
2514          */
2515         if (dirty_blocks && (free_blocks < 2 * dirty_blocks) &&
2516             !writeback_in_progress(sb->s_bdi) &&
2517             down_read_trylock(&sb->s_umount)) {
2518                 writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2519                 up_read(&sb->s_umount);
2520         }
2521
2522         if (2 * free_blocks < 3 * dirty_blocks ||
2523                 free_blocks < (dirty_blocks + EXT4_FREECLUSTERS_WATERMARK)) {
2524                 /*
2525                  * free block count is less than 150% of dirty blocks
2526                  * or free blocks is less than watermark
2527                  */
2528                 return 1;
2529         }
2530         return 0;
2531 }
2532
2533 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2534                                loff_t pos, unsigned len, unsigned flags,
2535                                struct page **pagep, void **fsdata)
2536 {
2537         int ret, retries = 0;
2538         struct page *page;
2539         pgoff_t index;
2540         struct inode *inode = mapping->host;
2541         handle_t *handle;
2542
2543         index = pos >> PAGE_CACHE_SHIFT;
2544
2545         if (ext4_nonda_switch(inode->i_sb)) {
2546                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2547                 return ext4_write_begin(file, mapping, pos,
2548                                         len, flags, pagep, fsdata);
2549         }
2550         *fsdata = (void *)0;
2551         trace_ext4_da_write_begin(inode, pos, len, flags);
2552
2553         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2554                 ret = ext4_da_write_inline_data_begin(mapping, inode,
2555                                                       pos, len, flags,
2556                                                       pagep, fsdata);
2557                 if (ret < 0)
2558                         goto out;
2559                 if (ret == 1) {
2560                         ret = 0;
2561                         goto out;
2562                 }
2563         }
2564
2565 retry:
2566         /*
2567          * With delayed allocation, we don't log the i_disksize update
2568          * if there is delayed block allocation. But we still need
2569          * to journalling the i_disksize update if writes to the end
2570          * of file which has an already mapped buffer.
2571          */
2572         handle = ext4_journal_start(inode, 1);
2573         if (IS_ERR(handle)) {
2574                 ret = PTR_ERR(handle);
2575                 goto out;
2576         }
2577         /* We cannot recurse into the filesystem as the transaction is already
2578          * started */
2579         flags |= AOP_FLAG_NOFS;
2580
2581         page = grab_cache_page_write_begin(mapping, index, flags);
2582         if (!page) {
2583                 ext4_journal_stop(handle);
2584                 ret = -ENOMEM;
2585                 goto out;
2586         }
2587         *pagep = page;
2588
2589         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2590         if (ret < 0) {
2591                 unlock_page(page);
2592                 ext4_journal_stop(handle);
2593                 page_cache_release(page);
2594                 /*
2595                  * block_write_begin may have instantiated a few blocks
2596                  * outside i_size.  Trim these off again. Don't need
2597                  * i_size_read because we hold i_mutex.
2598                  */
2599                 if (pos + len > inode->i_size)
2600                         ext4_truncate_failed_write(inode);
2601         }
2602
2603         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2604                 goto retry;
2605 out:
2606         return ret;
2607 }
2608
2609 /*
2610  * Check if we should update i_disksize
2611  * when write to the end of file but not require block allocation
2612  */
2613 static int ext4_da_should_update_i_disksize(struct page *page,
2614                                             unsigned long offset)
2615 {
2616         struct buffer_head *bh;
2617         struct inode *inode = page->mapping->host;
2618         unsigned int idx;
2619         int i;
2620
2621         bh = page_buffers(page);
2622         idx = offset >> inode->i_blkbits;
2623
2624         for (i = 0; i < idx; i++)
2625                 bh = bh->b_this_page;
2626
2627         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2628                 return 0;
2629         return 1;
2630 }
2631
2632 static int ext4_da_write_end(struct file *file,
2633                              struct address_space *mapping,
2634                              loff_t pos, unsigned len, unsigned copied,
2635                              struct page *page, void *fsdata)
2636 {
2637         struct inode *inode = mapping->host;
2638         int ret = 0, ret2;
2639         handle_t *handle = ext4_journal_current_handle();
2640         loff_t new_i_size;
2641         unsigned long start, end;
2642         int write_mode = (int)(unsigned long)fsdata;
2643
2644         if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2645                 switch (ext4_inode_journal_mode(inode)) {
2646                 case EXT4_INODE_ORDERED_DATA_MODE:
2647                         return ext4_ordered_write_end(file, mapping, pos,
2648                                         len, copied, page, fsdata);
2649                 case EXT4_INODE_WRITEBACK_DATA_MODE:
2650                         return ext4_writeback_write_end(file, mapping, pos,
2651                                         len, copied, page, fsdata);
2652                 default:
2653                         BUG();
2654                 }
2655         }
2656
2657         trace_ext4_da_write_end(inode, pos, len, copied);
2658         start = pos & (PAGE_CACHE_SIZE - 1);
2659         end = start + copied - 1;
2660
2661         /*
2662          * generic_write_end() will run mark_inode_dirty() if i_size
2663          * changes.  So let's piggyback the i_disksize mark_inode_dirty
2664          * into that.
2665          */
2666         new_i_size = pos + copied;
2667         if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2668                 if (ext4_has_inline_data(inode) ||
2669                     ext4_da_should_update_i_disksize(page, end)) {
2670                         down_write(&EXT4_I(inode)->i_data_sem);
2671                         if (new_i_size > EXT4_I(inode)->i_disksize)
2672                                 EXT4_I(inode)->i_disksize = new_i_size;
2673                         up_write(&EXT4_I(inode)->i_data_sem);
2674                         /* We need to mark inode dirty even if
2675                          * new_i_size is less that inode->i_size
2676                          * bu greater than i_disksize.(hint delalloc)
2677                          */
2678                         ext4_mark_inode_dirty(handle, inode);
2679                 }
2680         }
2681
2682         if (write_mode != CONVERT_INLINE_DATA &&
2683             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2684             ext4_has_inline_data(inode))
2685                 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2686                                                      page);
2687         else
2688                 ret2 = generic_write_end(file, mapping, pos, len, copied,
2689                                                         page, fsdata);
2690
2691         copied = ret2;
2692         if (ret2 < 0)
2693                 ret = ret2;
2694         ret2 = ext4_journal_stop(handle);
2695         if (!ret)
2696                 ret = ret2;
2697
2698         return ret ? ret : copied;
2699 }
2700
2701 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2702 {
2703         /*
2704          * Drop reserved blocks
2705          */
2706         BUG_ON(!PageLocked(page));
2707         if (!page_has_buffers(page))
2708                 goto out;
2709
2710         ext4_da_page_release_reservation(page, offset);
2711
2712 out:
2713         ext4_invalidatepage(page, offset);
2714
2715         return;
2716 }
2717
2718 /*
2719  * Force all delayed allocation blocks to be allocated for a given inode.
2720  */
2721 int ext4_alloc_da_blocks(struct inode *inode)
2722 {
2723         trace_ext4_alloc_da_blocks(inode);
2724
2725         if (!EXT4_I(inode)->i_reserved_data_blocks &&
2726             !EXT4_I(inode)->i_reserved_meta_blocks)
2727                 return 0;
2728
2729         /*
2730          * We do something simple for now.  The filemap_flush() will
2731          * also start triggering a write of the data blocks, which is
2732          * not strictly speaking necessary (and for users of
2733          * laptop_mode, not even desirable).  However, to do otherwise
2734          * would require replicating code paths in:
2735          *
2736          * ext4_da_writepages() ->
2737          *    write_cache_pages() ---> (via passed in callback function)
2738          *        __mpage_da_writepage() -->
2739          *           mpage_add_bh_to_extent()
2740          *           mpage_da_map_blocks()
2741          *
2742          * The problem is that write_cache_pages(), located in
2743          * mm/page-writeback.c, marks pages clean in preparation for
2744          * doing I/O, which is not desirable if we're not planning on
2745          * doing I/O at all.
2746          *
2747          * We could call write_cache_pages(), and then redirty all of
2748          * the pages by calling redirty_page_for_writepage() but that
2749          * would be ugly in the extreme.  So instead we would need to
2750          * replicate parts of the code in the above functions,
2751          * simplifying them because we wouldn't actually intend to
2752          * write out the pages, but rather only collect contiguous
2753          * logical block extents, call the multi-block allocator, and
2754          * then update the buffer heads with the block allocations.
2755          *
2756          * For now, though, we'll cheat by calling filemap_flush(),
2757          * which will map the blocks, and start the I/O, but not
2758          * actually wait for the I/O to complete.
2759          */
2760         return filemap_flush(inode->i_mapping);
2761 }
2762
2763 /*
2764  * bmap() is special.  It gets used by applications such as lilo and by
2765  * the swapper to find the on-disk block of a specific piece of data.
2766  *
2767  * Naturally, this is dangerous if the block concerned is still in the
2768  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2769  * filesystem and enables swap, then they may get a nasty shock when the
2770  * data getting swapped to that swapfile suddenly gets overwritten by
2771  * the original zero's written out previously to the journal and
2772  * awaiting writeback in the kernel's buffer cache.
2773  *
2774  * So, if we see any bmap calls here on a modified, data-journaled file,
2775  * take extra steps to flush any blocks which might be in the cache.
2776  */
2777 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2778 {
2779         struct inode *inode = mapping->host;
2780         journal_t *journal;
2781         int err;
2782
2783         /*
2784          * We can get here for an inline file via the FIBMAP ioctl
2785          */
2786         if (ext4_has_inline_data(inode))
2787                 return 0;
2788
2789         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2790                         test_opt(inode->i_sb, DELALLOC)) {
2791                 /*
2792                  * With delalloc we want to sync the file
2793                  * so that we can make sure we allocate
2794                  * blocks for file
2795                  */
2796                 filemap_write_and_wait(mapping);
2797         }
2798
2799         if (EXT4_JOURNAL(inode) &&
2800             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2801                 /*
2802                  * This is a REALLY heavyweight approach, but the use of
2803                  * bmap on dirty files is expected to be extremely rare:
2804                  * only if we run lilo or swapon on a freshly made file
2805                  * do we expect this to happen.
2806                  *
2807                  * (bmap requires CAP_SYS_RAWIO so this does not
2808                  * represent an unprivileged user DOS attack --- we'd be
2809                  * in trouble if mortal users could trigger this path at
2810                  * will.)
2811                  *
2812                  * NB. EXT4_STATE_JDATA is not set on files other than
2813                  * regular files.  If somebody wants to bmap a directory
2814                  * or symlink and gets confused because the buffer
2815                  * hasn't yet been flushed to disk, they deserve
2816                  * everything they get.
2817                  */
2818
2819                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2820                 journal = EXT4_JOURNAL(inode);
2821                 jbd2_journal_lock_updates(journal);
2822                 err = jbd2_journal_flush(journal);
2823                 jbd2_journal_unlock_updates(journal);
2824
2825                 if (err)
2826                         return 0;
2827         }
2828
2829         return generic_block_bmap(mapping, block, ext4_get_block);
2830 }
2831
2832 static int ext4_readpage(struct file *file, struct page *page)
2833 {
2834         int ret = -EAGAIN;
2835         struct inode *inode = page->mapping->host;
2836
2837         trace_ext4_readpage(page);
2838
2839         if (ext4_has_inline_data(inode))
2840                 ret = ext4_readpage_inline(inode, page);
2841
2842         if (ret == -EAGAIN)
2843                 return mpage_readpage(page, ext4_get_block);
2844
2845         return ret;
2846 }
2847
2848 static int
2849 ext4_readpages(struct file *file, struct address_space *mapping,
2850                 struct list_head *pages, unsigned nr_pages)
2851 {
2852         struct inode *inode = mapping->host;
2853
2854         /* If the file has inline data, no need to do readpages. */
2855         if (ext4_has_inline_data(inode))
2856                 return 0;
2857
2858         return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2859 }
2860
2861 static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
2862 {
2863         struct buffer_head *head, *bh;
2864         unsigned int curr_off = 0;
2865
2866         if (!page_has_buffers(page))
2867                 return;
2868         head = bh = page_buffers(page);
2869         do {
2870                 if (offset <= curr_off && test_clear_buffer_uninit(bh)
2871                                         && bh->b_private) {
2872                         ext4_free_io_end(bh->b_private);
2873                         bh->b_private = NULL;
2874                         bh->b_end_io = NULL;
2875                 }
2876                 curr_off = curr_off + bh->b_size;
2877                 bh = bh->b_this_page;
2878         } while (bh != head);
2879 }
2880
2881 static void ext4_invalidatepage(struct page *page, unsigned long offset)
2882 {
2883         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2884
2885         trace_ext4_invalidatepage(page, offset);
2886
2887         /*
2888          * free any io_end structure allocated for buffers to be discarded
2889          */
2890         if (ext4_should_dioread_nolock(page->mapping->host))
2891                 ext4_invalidatepage_free_endio(page, offset);
2892         /*
2893          * If it's a full truncate we just forget about the pending dirtying
2894          */
2895         if (offset == 0)
2896                 ClearPageChecked(page);
2897
2898         if (journal)
2899                 jbd2_journal_invalidatepage(journal, page, offset);
2900         else
2901                 block_invalidatepage(page, offset);
2902 }
2903
2904 static int ext4_releasepage(struct page *page, gfp_t wait)
2905 {
2906         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2907
2908         trace_ext4_releasepage(page);
2909
2910         WARN_ON(PageChecked(page));
2911         if (!page_has_buffers(page))
2912                 return 0;
2913         if (journal)
2914                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
2915         else
2916                 return try_to_free_buffers(page);
2917 }
2918
2919 /*
2920  * ext4_get_block used when preparing for a DIO write or buffer write.
2921  * We allocate an uinitialized extent if blocks haven't been allocated.
2922  * The extent will be converted to initialized after the IO is complete.
2923  */
2924 int ext4_get_block_write(struct inode *inode, sector_t iblock,
2925                    struct buffer_head *bh_result, int create)
2926 {
2927         ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
2928                    inode->i_ino, create);
2929         return _ext4_get_block(inode, iblock, bh_result,
2930                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
2931 }
2932
2933 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
2934                    struct buffer_head *bh_result, int create)
2935 {
2936         ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
2937                    inode->i_ino, create);
2938         return _ext4_get_block(inode, iblock, bh_result,
2939                                EXT4_GET_BLOCKS_NO_LOCK);
2940 }
2941
2942 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
2943                             ssize_t size, void *private, int ret,
2944                             bool is_async)
2945 {
2946         struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
2947         ext4_io_end_t *io_end = iocb->private;
2948
2949         /* if not async direct IO or dio with 0 bytes write, just return */
2950         if (!io_end || !size)
2951                 goto out;
2952
2953         ext_debug("ext4_end_io_dio(): io_end 0x%p "
2954                   "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
2955                   iocb->private, io_end->inode->i_ino, iocb, offset,
2956                   size);
2957
2958         iocb->private = NULL;
2959
2960         /* if not aio dio with unwritten extents, just free io and return */
2961         if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
2962                 ext4_free_io_end(io_end);
2963 out:
2964                 if (is_async)
2965                         aio_complete(iocb, ret, 0);
2966                 inode_dio_done(inode);
2967                 return;
2968         }
2969
2970         io_end->offset = offset;
2971         io_end->size = size;
2972         if (is_async) {
2973                 io_end->iocb = iocb;
2974                 io_end->result = ret;
2975         }
2976
2977         ext4_add_complete_io(io_end);
2978 }
2979
2980 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
2981 {
2982         ext4_io_end_t *io_end = bh->b_private;
2983         struct inode *inode;
2984
2985         if (!test_clear_buffer_uninit(bh) || !io_end)
2986                 goto out;
2987
2988         if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
2989                 ext4_msg(io_end->inode->i_sb, KERN_INFO,
2990                          "sb umounted, discard end_io request for inode %lu",
2991                          io_end->inode->i_ino);
2992                 ext4_free_io_end(io_end);
2993                 goto out;
2994         }
2995
2996         /*
2997          * It may be over-defensive here to check EXT4_IO_END_UNWRITTEN now,
2998          * but being more careful is always safe for the future change.
2999          */
3000         inode = io_end->inode;
3001         ext4_set_io_unwritten_flag(inode, io_end);
3002         ext4_add_complete_io(io_end);
3003 out:
3004         bh->b_private = NULL;
3005         bh->b_end_io = NULL;
3006         clear_buffer_uninit(bh);
3007         end_buffer_async_write(bh, uptodate);
3008 }
3009
3010 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
3011 {
3012         ext4_io_end_t *io_end;
3013         struct page *page = bh->b_page;
3014         loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
3015         size_t size = bh->b_size;
3016
3017 retry:
3018         io_end = ext4_init_io_end(inode, GFP_ATOMIC);
3019         if (!io_end) {
3020                 pr_warn_ratelimited("%s: allocation fail\n", __func__);
3021                 schedule();
3022                 goto retry;
3023         }
3024         io_end->offset = offset;
3025         io_end->size = size;
3026         /*
3027          * We need to hold a reference to the page to make sure it
3028          * doesn't get evicted before ext4_end_io_work() has a chance
3029          * to convert the extent from written to unwritten.
3030          */
3031         io_end->page = page;
3032         get_page(io_end->page);
3033
3034         bh->b_private = io_end;
3035         bh->b_end_io = ext4_end_io_buffer_write;
3036         return 0;
3037 }
3038
3039 /*
3040  * For ext4 extent files, ext4 will do direct-io write to holes,
3041  * preallocated extents, and those write extend the file, no need to
3042  * fall back to buffered IO.
3043  *
3044  * For holes, we fallocate those blocks, mark them as uninitialized
3045  * If those blocks were preallocated, we mark sure they are split, but
3046  * still keep the range to write as uninitialized.
3047  *
3048  * The unwritten extents will be converted to written when DIO is completed.
3049  * For async direct IO, since the IO may still pending when return, we
3050  * set up an end_io call back function, which will do the conversion
3051  * when async direct IO completed.
3052  *
3053  * If the O_DIRECT write will extend the file then add this inode to the
3054  * orphan list.  So recovery will truncate it back to the original size
3055  * if the machine crashes during the write.
3056  *
3057  */
3058 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3059                               const struct iovec *iov, loff_t offset,
3060                               unsigned long nr_segs)
3061 {
3062         struct file *file = iocb->ki_filp;
3063         struct inode *inode = file->f_mapping->host;
3064         ssize_t ret;
3065         size_t count = iov_length(iov, nr_segs);
3066         int overwrite = 0;
3067         get_block_t *get_block_func = NULL;
3068         int dio_flags = 0;
3069         loff_t final_size = offset + count;
3070
3071         /* Use the old path for reads and writes beyond i_size. */
3072         if (rw != WRITE || final_size > inode->i_size)
3073                 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3074
3075         BUG_ON(iocb->private == NULL);
3076
3077         /* If we do a overwrite dio, i_mutex locking can be released */
3078         overwrite = *((int *)iocb->private);
3079
3080         if (overwrite) {
3081                 atomic_inc(&inode->i_dio_count);
3082                 down_read(&EXT4_I(inode)->i_data_sem);
3083                 mutex_unlock(&inode->i_mutex);
3084         }
3085
3086         /*
3087          * We could direct write to holes and fallocate.
3088          *
3089          * Allocated blocks to fill the hole are marked as
3090          * uninitialized to prevent parallel buffered read to expose
3091          * the stale data before DIO complete the data IO.
3092          *
3093          * As to previously fallocated extents, ext4 get_block will
3094          * just simply mark the buffer mapped but still keep the
3095          * extents uninitialized.
3096          *
3097          * For non AIO case, we will convert those unwritten extents
3098          * to written after return back from blockdev_direct_IO.
3099          *
3100          * For async DIO, the conversion needs to be deferred when the
3101          * IO is completed. The ext4 end_io callback function will be
3102          * called to take care of the conversion work.  Here for async
3103          * case, we allocate an io_end structure to hook to the iocb.
3104          */
3105         iocb->private = NULL;
3106         ext4_inode_aio_set(inode, NULL);
3107         if (!is_sync_kiocb(iocb)) {
3108                 ext4_io_end_t *io_end = ext4_init_io_end(inode, GFP_NOFS);
3109                 if (!io_end) {
3110                         ret = -ENOMEM;
3111                         goto retake_lock;
3112                 }
3113                 io_end->flag |= EXT4_IO_END_DIRECT;
3114                 iocb->private = io_end;
3115                 /*
3116                  * we save the io structure for current async direct
3117                  * IO, so that later ext4_map_blocks() could flag the
3118                  * io structure whether there is a unwritten extents
3119                  * needs to be converted when IO is completed.
3120                  */
3121                 ext4_inode_aio_set(inode, io_end);
3122         }
3123
3124         if (overwrite) {
3125                 get_block_func = ext4_get_block_write_nolock;
3126         } else {
3127                 get_block_func = ext4_get_block_write;
3128                 dio_flags = DIO_LOCKING;
3129         }
3130         ret = __blockdev_direct_IO(rw, iocb, inode,
3131                                    inode->i_sb->s_bdev, iov,
3132                                    offset, nr_segs,
3133                                    get_block_func,
3134                                    ext4_end_io_dio,
3135                                    NULL,
3136                                    dio_flags);
3137
3138         if (iocb->private)
3139                 ext4_inode_aio_set(inode, NULL);
3140         /*
3141          * The io_end structure takes a reference to the inode, that
3142          * structure needs to be destroyed and the reference to the
3143          * inode need to be dropped, when IO is complete, even with 0
3144          * byte write, or failed.
3145          *
3146          * In the successful AIO DIO case, the io_end structure will
3147          * be destroyed and the reference to the inode will be dropped
3148          * after the end_io call back function is called.
3149          *
3150          * In the case there is 0 byte write, or error case, since VFS
3151          * direct IO won't invoke the end_io call back function, we
3152          * need to free the end_io structure here.
3153          */
3154         if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3155                 ext4_free_io_end(iocb->private);
3156                 iocb->private = NULL;
3157         } else if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3158                                                 EXT4_STATE_DIO_UNWRITTEN)) {
3159                 int err;
3160                 /*
3161                  * for non AIO case, since the IO is already
3162                  * completed, we could do the conversion right here
3163                  */
3164                 err = ext4_convert_unwritten_extents(inode,
3165                                                      offset, ret);
3166                 if (err < 0)
3167                         ret = err;
3168                 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3169         }
3170
3171 retake_lock:
3172         /* take i_mutex locking again if we do a ovewrite dio */
3173         if (overwrite) {
3174                 inode_dio_done(inode);
3175                 up_read(&EXT4_I(inode)->i_data_sem);
3176                 mutex_lock(&inode->i_mutex);
3177         }
3178
3179         return ret;
3180 }
3181
3182 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3183                               const struct iovec *iov, loff_t offset,
3184                               unsigned long nr_segs)
3185 {
3186         struct file *file = iocb->ki_filp;
3187         struct inode *inode = file->f_mapping->host;
3188         ssize_t ret;
3189
3190         /*
3191          * If we are doing data journalling we don't support O_DIRECT
3192          */
3193         if (ext4_should_journal_data(inode))
3194                 return 0;
3195
3196         /* Let buffer I/O handle the inline data case. */
3197         if (ext4_has_inline_data(inode))
3198                 return 0;
3199
3200         trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3201         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3202                 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3203         else
3204                 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3205         trace_ext4_direct_IO_exit(inode, offset,
3206                                 iov_length(iov, nr_segs), rw, ret);
3207         return ret;
3208 }
3209
3210 /*
3211  * Pages can be marked dirty completely asynchronously from ext4's journalling
3212  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3213  * much here because ->set_page_dirty is called under VFS locks.  The page is
3214  * not necessarily locked.
3215  *
3216  * We cannot just dirty the page and leave attached buffers clean, because the
3217  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3218  * or jbddirty because all the journalling code will explode.
3219  *
3220  * So what we do is to mark the page "pending dirty" and next time writepage
3221  * is called, propagate that into the buffers appropriately.
3222  */
3223 static int ext4_journalled_set_page_dirty(struct page *page)
3224 {
3225         SetPageChecked(page);
3226         return __set_page_dirty_nobuffers(page);
3227 }
3228
3229 static const struct address_space_operations ext4_ordered_aops = {
3230         .readpage               = ext4_readpage,
3231         .readpages              = ext4_readpages,
3232         .writepage              = ext4_writepage,
3233         .write_begin            = ext4_write_begin,
3234         .write_end              = ext4_ordered_write_end,
3235         .bmap                   = ext4_bmap,
3236         .invalidatepage         = ext4_invalidatepage,
3237         .releasepage            = ext4_releasepage,
3238         .direct_IO              = ext4_direct_IO,
3239         .migratepage            = buffer_migrate_page,
3240         .is_partially_uptodate  = block_is_partially_uptodate,
3241         .error_remove_page      = generic_error_remove_page,
3242 };
3243
3244 static const struct address_space_operations ext4_writeback_aops = {
3245         .readpage               = ext4_readpage,
3246         .readpages              = ext4_readpages,
3247         .writepage              = ext4_writepage,
3248         .write_begin            = ext4_write_begin,
3249         .write_end              = ext4_writeback_write_end,
3250         .bmap                   = ext4_bmap,
3251         .invalidatepage         = ext4_invalidatepage,
3252         .releasepage            = ext4_releasepage,
3253         .direct_IO              = ext4_direct_IO,
3254         .migratepage            = buffer_migrate_page,
3255         .is_partially_uptodate  = block_is_partially_uptodate,
3256         .error_remove_page      = generic_error_remove_page,
3257 };
3258
3259 static const struct address_space_operations ext4_journalled_aops = {
3260         .readpage               = ext4_readpage,
3261         .readpages              = ext4_readpages,
3262         .writepage              = ext4_writepage,
3263         .write_begin            = ext4_write_begin,
3264         .write_end              = ext4_journalled_write_end,
3265         .set_page_dirty         = ext4_journalled_set_page_dirty,
3266         .bmap                   = ext4_bmap,
3267         .invalidatepage         = ext4_invalidatepage,
3268         .releasepage            = ext4_releasepage,
3269         .direct_IO              = ext4_direct_IO,
3270         .is_partially_uptodate  = block_is_partially_uptodate,
3271         .error_remove_page      = generic_error_remove_page,
3272 };
3273
3274 static const struct address_space_operations ext4_da_aops = {
3275         .readpage               = ext4_readpage,
3276         .readpages              = ext4_readpages,
3277         .writepage              = ext4_writepage,
3278         .writepages             = ext4_da_writepages,
3279         .write_begin            = ext4_da_write_begin,
3280         .write_end              = ext4_da_write_end,
3281         .bmap                   = ext4_bmap,
3282         .invalidatepage         = ext4_da_invalidatepage,
3283         .releasepage            = ext4_releasepage,
3284         .direct_IO              = ext4_direct_IO,
3285         .migratepage            = buffer_migrate_page,
3286         .is_partially_uptodate  = block_is_partially_uptodate,
3287         .error_remove_page      = generic_error_remove_page,
3288 };
3289
3290 void ext4_set_aops(struct inode *inode)
3291 {
3292         switch (ext4_inode_journal_mode(inode)) {
3293         case EXT4_INODE_ORDERED_DATA_MODE:
3294                 if (test_opt(inode->i_sb, DELALLOC))
3295                         inode->i_mapping->a_ops = &ext4_da_aops;
3296                 else
3297                         inode->i_mapping->a_ops = &ext4_ordered_aops;
3298                 break;
3299         case EXT4_INODE_WRITEBACK_DATA_MODE:
3300                 if (test_opt(inode->i_sb, DELALLOC))
3301                         inode->i_mapping->a_ops = &ext4_da_aops;
3302                 else
3303                         inode->i_mapping->a_ops = &ext4_writeback_aops;
3304                 break;
3305         case EXT4_INODE_JOURNAL_DATA_MODE:
3306                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3307                 break;
3308         default:
3309                 BUG();
3310         }
3311 }
3312
3313
3314 /*
3315  * ext4_discard_partial_page_buffers()
3316  * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
3317  * This function finds and locks the page containing the offset
3318  * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
3319  * Calling functions that already have the page locked should call
3320  * ext4_discard_partial_page_buffers_no_lock directly.
3321  */
3322 int ext4_discard_partial_page_buffers(handle_t *handle,
3323                 struct address_space *mapping, loff_t from,
3324                 loff_t length, int flags)
3325 {
3326         struct inode *inode = mapping->host;
3327         struct page *page;
3328         int err = 0;
3329
3330         page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3331                                    mapping_gfp_mask(mapping) & ~__GFP_FS);
3332         if (!page)
3333                 return -ENOMEM;
3334
3335         err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page,
3336                 from, length, flags);
3337
3338         unlock_page(page);
3339         page_cache_release(page);
3340         return err;
3341 }
3342
3343 /*
3344  * ext4_discard_partial_page_buffers_no_lock()
3345  * Zeros a page range of length 'length' starting from offset 'from'.
3346  * Buffer heads that correspond to the block aligned regions of the
3347  * zeroed range will be unmapped.  Unblock aligned regions
3348  * will have the corresponding buffer head mapped if needed so that
3349  * that region of the page can be updated with the partial zero out.
3350  *
3351  * This function assumes that the page has already been  locked.  The
3352  * The range to be discarded must be contained with in the given page.
3353  * If the specified range exceeds the end of the page it will be shortened
3354  * to the end of the page that corresponds to 'from'.  This function is
3355  * appropriate for updating a page and it buffer heads to be unmapped and
3356  * zeroed for blocks that have been either released, or are going to be
3357  * released.
3358  *
3359  * handle: The journal handle
3360  * inode:  The files inode
3361  * page:   A locked page that contains the offset "from"
3362  * from:   The starting byte offset (from the beginning of the file)
3363  *         to begin discarding
3364  * len:    The length of bytes to discard
3365  * flags:  Optional flags that may be used:
3366  *
3367  *         EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
3368  *         Only zero the regions of the page whose buffer heads
3369  *         have already been unmapped.  This flag is appropriate
3370  *         for updating the contents of a page whose blocks may
3371  *         have already been released, and we only want to zero
3372  *         out the regions that correspond to those released blocks.
3373  *
3374  * Returns zero on success or negative on failure.
3375  */
3376 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
3377                 struct inode *inode, struct page *page, loff_t from,
3378                 loff_t length, int flags)
3379 {
3380         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3381         unsigned int offset = from & (PAGE_CACHE_SIZE-1);
3382         unsigned int blocksize, max, pos;
3383         ext4_lblk_t iblock;
3384         struct buffer_head *bh;
3385         int err = 0;
3386
3387         blocksize = inode->i_sb->s_blocksize;
3388         max = PAGE_CACHE_SIZE - offset;
3389
3390         if (index != page->index)
3391                 return -EINVAL;
3392
3393         /*
3394          * correct length if it does not fall between
3395          * 'from' and the end of the page
3396          */
3397         if (length > max || length < 0)
3398                 length = max;
3399
3400         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3401
3402         if (!page_has_buffers(page))
3403                 create_empty_buffers(page, blocksize, 0);
3404
3405         /* Find the buffer that contains "offset" */
3406         bh = page_buffers(page);
3407         pos = blocksize;
3408         while (offset >= pos) {
3409                 bh = bh->b_this_page;
3410                 iblock++;
3411                 pos += blocksize;
3412         }
3413
3414         pos = offset;
3415         while (pos < offset + length) {
3416                 unsigned int end_of_block, range_to_discard;
3417
3418                 err = 0;
3419
3420                 /* The length of space left to zero and unmap */
3421                 range_to_discard = offset + length - pos;
3422
3423                 /* The length of space until the end of the block */
3424                 end_of_block = blocksize - (pos & (blocksize-1));
3425
3426                 /*
3427                  * Do not unmap or zero past end of block
3428                  * for this buffer head
3429                  */
3430                 if (range_to_discard > end_of_block)
3431                         range_to_discard = end_of_block;
3432
3433
3434                 /*
3435                  * Skip this buffer head if we are only zeroing unampped
3436                  * regions of the page
3437                  */
3438                 if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED &&
3439                         buffer_mapped(bh))
3440                                 goto next;
3441
3442                 /* If the range is block aligned, unmap */
3443                 if (range_to_discard == blocksize) {
3444                         clear_buffer_dirty(bh);
3445                         bh->b_bdev = NULL;
3446                         clear_buffer_mapped(bh);
3447                         clear_buffer_req(bh);
3448                         clear_buffer_new(bh);
3449                         clear_buffer_delay(bh);
3450                         clear_buffer_unwritten(bh);
3451                         clear_buffer_uptodate(bh);
3452                         zero_user(page, pos, range_to_discard);
3453                         BUFFER_TRACE(bh, "Buffer discarded");
3454                         goto next;
3455                 }
3456
3457                 /*
3458                  * If this block is not completely contained in the range
3459                  * to be discarded, then it is not going to be released. Because
3460                  * we need to keep this block, we need to make sure this part
3461                  * of the page is uptodate before we modify it by writeing
3462                  * partial zeros on it.
3463                  */
3464                 if (!buffer_mapped(bh)) {
3465                         /*
3466                          * Buffer head must be mapped before we can read
3467                          * from the block
3468                          */
3469                         BUFFER_TRACE(bh, "unmapped");
3470                         ext4_get_block(inode, iblock, bh, 0);
3471                         /* unmapped? It's a hole - nothing to do */
3472                         if (!buffer_mapped(bh)) {
3473                                 BUFFER_TRACE(bh, "still unmapped");
3474                                 goto next;
3475                         }
3476                 }
3477
3478                 /* Ok, it's mapped. Make sure it's up-to-date */
3479                 if (PageUptodate(page))
3480                         set_buffer_uptodate(bh);
3481
3482                 if (!buffer_uptodate(bh)) {
3483                         err = -EIO;
3484                         ll_rw_block(READ, 1, &bh);
3485                         wait_on_buffer(bh);
3486                         /* Uhhuh. Read error. Complain and punt.*/
3487                         if (!buffer_uptodate(bh))
3488                                 goto next;
3489                 }
3490
3491                 if (ext4_should_journal_data(inode)) {
3492                         BUFFER_TRACE(bh, "get write access");
3493                         err = ext4_journal_get_write_access(handle, bh);
3494                         if (err)
3495                                 goto next;
3496                 }
3497
3498                 zero_user(page, pos, range_to_discard);
3499
3500                 err = 0;
3501                 if (ext4_should_journal_data(inode)) {
3502                         err = ext4_handle_dirty_metadata(handle, inode, bh);
3503                 } else
3504                         mark_buffer_dirty(bh);
3505
3506                 BUFFER_TRACE(bh, "Partial buffer zeroed");
3507 next:
3508                 bh = bh->b_this_page;
3509                 iblock++;
3510                 pos += range_to_discard;
3511         }
3512
3513         return err;
3514 }
3515
3516 int ext4_can_truncate(struct inode *inode)
3517 {
3518         if (S_ISREG(inode->i_mode))
3519                 return 1;
3520         if (S_ISDIR(inode->i_mode))
3521                 return 1;
3522         if (S_ISLNK(inode->i_mode))
3523                 return !ext4_inode_is_fast_symlink(inode);
3524         return 0;
3525 }
3526
3527 /*
3528  * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3529  * associated with the given offset and length
3530  *
3531  * @inode:  File inode
3532  * @offset: The offset where the hole will begin
3533  * @len:    The length of the hole
3534  *
3535  * Returns: 0 on success or negative on failure
3536  */
3537
3538 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3539 {
3540         struct inode *inode = file->f_path.dentry->d_inode;
3541         if (!S_ISREG(inode->i_mode))
3542                 return -EOPNOTSUPP;
3543
3544         if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3545                 /* TODO: Add support for non extent hole punching */
3546                 return -EOPNOTSUPP;
3547         }
3548
3549         if (EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) {
3550                 /* TODO: Add support for bigalloc file systems */
3551                 return -EOPNOTSUPP;
3552         }
3553
3554         return ext4_ext_punch_hole(file, offset, length);
3555 }
3556
3557 /*
3558  * ext4_truncate()
3559  *
3560  * We block out ext4_get_block() block instantiations across the entire
3561  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3562  * simultaneously on behalf of the same inode.
3563  *
3564  * As we work through the truncate and commit bits of it to the journal there
3565  * is one core, guiding principle: the file's tree must always be consistent on
3566  * disk.  We must be able to restart the truncate after a crash.
3567  *
3568  * The file's tree may be transiently inconsistent in memory (although it
3569  * probably isn't), but whenever we close off and commit a journal transaction,
3570  * the contents of (the filesystem + the journal) must be consistent and
3571  * restartable.  It's pretty simple, really: bottom up, right to left (although
3572  * left-to-right works OK too).
3573  *
3574  * Note that at recovery time, journal replay occurs *before* the restart of
3575  * truncate against the orphan inode list.
3576  *
3577  * The committed inode has the new, desired i_size (which is the same as
3578  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3579  * that this inode's truncate did not complete and it will again call
3580  * ext4_truncate() to have another go.  So there will be instantiated blocks
3581  * to the right of the truncation point in a crashed ext4 filesystem.  But
3582  * that's fine - as long as they are linked from the inode, the post-crash
3583  * ext4_truncate() run will find them and release them.
3584  */
3585 void ext4_truncate(struct inode *inode)
3586 {
3587         trace_ext4_truncate_enter(inode);
3588
3589         if (!ext4_can_truncate(inode))
3590                 return;
3591
3592         ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3593
3594         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3595                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3596
3597         if (ext4_has_inline_data(inode)) {
3598                 int has_inline = 1;
3599
3600                 ext4_inline_data_truncate(inode, &has_inline);
3601                 if (has_inline)
3602                         return;
3603         }
3604
3605         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3606                 ext4_ext_truncate(inode);
3607         else
3608                 ext4_ind_truncate(inode);
3609
3610         trace_ext4_truncate_exit(inode);
3611 }
3612
3613 /*
3614  * ext4_get_inode_loc returns with an extra refcount against the inode's
3615  * underlying buffer_head on success. If 'in_mem' is true, we have all
3616  * data in memory that is needed to recreate the on-disk version of this
3617  * inode.
3618  */
3619 static int __ext4_get_inode_loc(struct inode *inode,
3620                                 struct ext4_iloc *iloc, int in_mem)
3621 {
3622         struct ext4_group_desc  *gdp;
3623         struct buffer_head      *bh;
3624         struct super_block      *sb = inode->i_sb;
3625         ext4_fsblk_t            block;
3626         int                     inodes_per_block, inode_offset;
3627
3628         iloc->bh = NULL;
3629         if (!ext4_valid_inum(sb, inode->i_ino))
3630                 return -EIO;
3631
3632         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3633         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3634         if (!gdp)
3635                 return -EIO;
3636
3637         /*
3638          * Figure out the offset within the block group inode table
3639          */
3640         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3641         inode_offset = ((inode->i_ino - 1) %
3642                         EXT4_INODES_PER_GROUP(sb));
3643         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3644         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3645
3646         bh = sb_getblk(sb, block);
3647         if (!bh) {
3648                 EXT4_ERROR_INODE_BLOCK(inode, block,
3649                                        "unable to read itable block");
3650                 return -EIO;
3651         }
3652         if (!buffer_uptodate(bh)) {
3653                 lock_buffer(bh);
3654
3655                 /*
3656                  * If the buffer has the write error flag, we have failed
3657                  * to write out another inode in the same block.  In this
3658                  * case, we don't have to read the block because we may
3659                  * read the old inode data successfully.
3660                  */
3661                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3662                         set_buffer_uptodate(bh);
3663
3664                 if (buffer_uptodate(bh)) {
3665                         /* someone brought it uptodate while we waited */
3666                         unlock_buffer(bh);
3667                         goto has_buffer;
3668                 }
3669
3670                 /*
3671                  * If we have all information of the inode in memory and this
3672                  * is the only valid inode in the block, we need not read the
3673                  * block.
3674                  */
3675                 if (in_mem) {
3676                         struct buffer_head *bitmap_bh;
3677                         int i, start;
3678
3679                         start = inode_offset & ~(inodes_per_block - 1);
3680
3681                         /* Is the inode bitmap in cache? */
3682                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3683                         if (!bitmap_bh)
3684                                 goto make_io;
3685
3686                         /*
3687                          * If the inode bitmap isn't in cache then the
3688                          * optimisation may end up performing two reads instead
3689                          * of one, so skip it.
3690                          */
3691                         if (!buffer_uptodate(bitmap_bh)) {
3692                                 brelse(bitmap_bh);
3693                                 goto make_io;
3694                         }
3695                         for (i = start; i < start + inodes_per_block; i++) {
3696                                 if (i == inode_offset)
3697                                         continue;
3698                                 if (ext4_test_bit(i, bitmap_bh->b_data))
3699                                         break;
3700                         }
3701                         brelse(bitmap_bh);
3702                         if (i == start + inodes_per_block) {
3703                                 /* all other inodes are free, so skip I/O */
3704                                 memset(bh->b_data, 0, bh->b_size);
3705                                 set_buffer_uptodate(bh);
3706                                 unlock_buffer(bh);
3707                                 goto has_buffer;
3708                         }
3709                 }
3710
3711 make_io:
3712                 /*
3713                  * If we need to do any I/O, try to pre-readahead extra
3714                  * blocks from the inode table.
3715                  */
3716                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3717                         ext4_fsblk_t b, end, table;
3718                         unsigned num;
3719
3720                         table = ext4_inode_table(sb, gdp);
3721                         /* s_inode_readahead_blks is always a power of 2 */
3722                         b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
3723                         if (table > b)
3724                                 b = table;
3725                         end = b + EXT4_SB(sb)->s_inode_readahead_blks;
3726                         num = EXT4_INODES_PER_GROUP(sb);
3727                         if (ext4_has_group_desc_csum(sb))
3728                                 num -= ext4_itable_unused_count(sb, gdp);
3729                         table += num / inodes_per_block;
3730                         if (end > table)
3731                                 end = table;
3732                         while (b <= end)
3733                                 sb_breadahead(sb, b++);
3734                 }
3735
3736                 /*
3737                  * There are other valid inodes in the buffer, this inode
3738                  * has in-inode xattrs, or we don't have this inode in memory.
3739                  * Read the block from disk.
3740                  */
3741                 trace_ext4_load_inode(inode);
3742                 get_bh(bh);
3743                 bh->b_end_io = end_buffer_read_sync;
3744                 submit_bh(READ | REQ_META | REQ_PRIO, bh);
3745                 wait_on_buffer(bh);
3746                 if (!buffer_uptodate(bh)) {
3747                         EXT4_ERROR_INODE_BLOCK(inode, block,
3748                                                "unable to read itable block");
3749                         brelse(bh);
3750                         return -EIO;
3751                 }
3752         }
3753 has_buffer:
3754         iloc->bh = bh;
3755         return 0;
3756 }
3757
3758 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3759 {
3760         /* We have all inode data except xattrs in memory here. */
3761         return __ext4_get_inode_loc(inode, iloc,
3762                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3763 }
3764
3765 void ext4_set_inode_flags(struct inode *inode)
3766 {
3767         unsigned int flags = EXT4_I(inode)->i_flags;
3768
3769         inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3770         if (flags & EXT4_SYNC_FL)
3771                 inode->i_flags |= S_SYNC;
3772         if (flags & EXT4_APPEND_FL)
3773                 inode->i_flags |= S_APPEND;
3774         if (flags & EXT4_IMMUTABLE_FL)
3775                 inode->i_flags |= S_IMMUTABLE;
3776         if (flags & EXT4_NOATIME_FL)
3777                 inode->i_flags |= S_NOATIME;
3778         if (flags & EXT4_DIRSYNC_FL)
3779                 inode->i_flags |= S_DIRSYNC;
3780 }
3781
3782 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3783 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3784 {
3785         unsigned int vfs_fl;
3786         unsigned long old_fl, new_fl;
3787
3788         do {
3789                 vfs_fl = ei->vfs_inode.i_flags;
3790                 old_fl = ei->i_flags;
3791                 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3792                                 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3793                                 EXT4_DIRSYNC_FL);
3794                 if (vfs_fl & S_SYNC)
3795                         new_fl |= EXT4_SYNC_FL;
3796                 if (vfs_fl & S_APPEND)
3797                         new_fl |= EXT4_APPEND_FL;
3798                 if (vfs_fl & S_IMMUTABLE)
3799                         new_fl |= EXT4_IMMUTABLE_FL;
3800                 if (vfs_fl & S_NOATIME)
3801                         new_fl |= EXT4_NOATIME_FL;
3802                 if (vfs_fl & S_DIRSYNC)
3803                         new_fl |= EXT4_DIRSYNC_FL;
3804         } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3805 }
3806
3807 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3808                                   struct ext4_inode_info *ei)
3809 {
3810         blkcnt_t i_blocks ;
3811         struct inode *inode = &(ei->vfs_inode);
3812         struct super_block *sb = inode->i_sb;
3813
3814         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3815                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3816                 /* we are using combined 48 bit field */
3817                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3818                                         le32_to_cpu(raw_inode->i_blocks_lo);
3819                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
3820                         /* i_blocks represent file system block size */
3821                         return i_blocks  << (inode->i_blkbits - 9);
3822                 } else {
3823                         return i_blocks;
3824                 }
3825         } else {
3826                 return le32_to_cpu(raw_inode->i_blocks_lo);
3827         }
3828 }
3829
3830 static inline void ext4_iget_extra_inode(struct inode *inode,
3831                                          struct ext4_inode *raw_inode,
3832                                          struct ext4_inode_info *ei)
3833 {
3834         __le32 *magic = (void *)raw_inode +
3835                         EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
3836         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
3837                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
3838                 ext4_find_inline_data_nolock(inode);
3839         } else
3840                 EXT4_I(inode)->i_inline_off = 0;
3841 }
3842
3843 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3844 {
3845         struct ext4_iloc iloc;
3846         struct ext4_inode *raw_inode;
3847         struct ext4_inode_info *ei;
3848         struct inode *inode;
3849         journal_t *journal = EXT4_SB(sb)->s_journal;
3850         long ret;
3851         int block;
3852         uid_t i_uid;
3853         gid_t i_gid;
3854
3855         inode = iget_locked(sb, ino);
3856         if (!inode)
3857                 return ERR_PTR(-ENOMEM);
3858         if (!(inode->i_state & I_NEW))
3859                 return inode;
3860
3861         ei = EXT4_I(inode);
3862         iloc.bh = NULL;
3863
3864         ret = __ext4_get_inode_loc(inode, &iloc, 0);
3865         if (ret < 0)
3866                 goto bad_inode;
3867         raw_inode = ext4_raw_inode(&iloc);
3868
3869         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3870                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3871                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3872                     EXT4_INODE_SIZE(inode->i_sb)) {
3873                         EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
3874                                 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
3875                                 EXT4_INODE_SIZE(inode->i_sb));
3876                         ret = -EIO;
3877                         goto bad_inode;
3878                 }
3879         } else
3880                 ei->i_extra_isize = 0;
3881
3882         /* Precompute checksum seed for inode metadata */
3883         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3884                         EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3885                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3886                 __u32 csum;
3887                 __le32 inum = cpu_to_le32(inode->i_ino);
3888                 __le32 gen = raw_inode->i_generation;
3889                 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
3890                                    sizeof(inum));
3891                 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
3892                                               sizeof(gen));
3893         }
3894
3895         if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
3896                 EXT4_ERROR_INODE(inode, "checksum invalid");
3897                 ret = -EIO;
3898                 goto bad_inode;
3899         }
3900
3901         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
3902         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
3903         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
3904         if (!(test_opt(inode->i_sb, NO_UID32))) {
3905                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
3906                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
3907         }
3908         i_uid_write(inode, i_uid);
3909         i_gid_write(inode, i_gid);
3910         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
3911
3912         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
3913         ei->i_inline_off = 0;
3914         ei->i_dir_start_lookup = 0;
3915         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
3916         /* We now have enough fields to check if the inode was active or not.
3917          * This is needed because nfsd might try to access dead inodes
3918          * the test is that same one that e2fsck uses
3919          * NeilBrown 1999oct15
3920          */
3921         if (inode->i_nlink == 0) {
3922                 if (inode->i_mode == 0 ||
3923                     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
3924                         /* this inode is deleted */
3925                         ret = -ESTALE;
3926                         goto bad_inode;
3927                 }
3928                 /* The only unlinked inodes we let through here have
3929                  * valid i_mode and are being read by the orphan
3930                  * recovery code: that's fine, we're about to complete
3931                  * the process of deleting those. */
3932         }
3933         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
3934         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
3935         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
3936         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
3937                 ei->i_file_acl |=
3938                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
3939         inode->i_size = ext4_isize(raw_inode);
3940         ei->i_disksize = inode->i_size;
3941 #ifdef CONFIG_QUOTA
3942         ei->i_reserved_quota = 0;
3943 #endif
3944         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
3945         ei->i_block_group = iloc.block_group;
3946         ei->i_last_alloc_group = ~0;
3947         /*
3948          * NOTE! The in-memory inode i_data array is in little-endian order
3949          * even on big-endian machines: we do NOT byteswap the block numbers!
3950          */
3951         for (block = 0; block < EXT4_N_BLOCKS; block++)
3952                 ei->i_data[block] = raw_inode->i_block[block];
3953         INIT_LIST_HEAD(&ei->i_orphan);
3954
3955         /*
3956          * Set transaction id's of transactions that have to be committed
3957          * to finish f[data]sync. We set them to currently running transaction
3958          * as we cannot be sure that the inode or some of its metadata isn't
3959          * part of the transaction - the inode could have been reclaimed and
3960          * now it is reread from disk.
3961          */
3962         if (journal) {
3963                 transaction_t *transaction;
3964                 tid_t tid;
3965
3966                 read_lock(&journal->j_state_lock);
3967                 if (journal->j_running_transaction)
3968                         transaction = journal->j_running_transaction;
3969                 else
3970                         transaction = journal->j_committing_transaction;
3971                 if (transaction)
3972                         tid = transaction->t_tid;
3973                 else
3974                         tid = journal->j_commit_sequence;
3975                 read_unlock(&journal->j_state_lock);
3976                 ei->i_sync_tid = tid;
3977                 ei->i_datasync_tid = tid;
3978         }
3979
3980         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3981                 if (ei->i_extra_isize == 0) {
3982                         /* The extra space is currently unused. Use it. */
3983                         ei->i_extra_isize = sizeof(struct ext4_inode) -
3984                                             EXT4_GOOD_OLD_INODE_SIZE;
3985                 } else {
3986                         ext4_iget_extra_inode(inode, raw_inode, ei);
3987                 }
3988         }
3989
3990         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
3991         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
3992         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
3993         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
3994
3995         inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
3996         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3997                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
3998                         inode->i_version |=
3999                         (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4000         }
4001
4002         ret = 0;
4003         if (ei->i_file_acl &&
4004             !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4005                 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4006                                  ei->i_file_acl);
4007                 ret = -EIO;
4008                 goto bad_inode;
4009         } else if (!ext4_has_inline_data(inode)) {
4010                 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4011                         if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4012                             (S_ISLNK(inode->i_mode) &&
4013                              !ext4_inode_is_fast_symlink(inode))))
4014                                 /* Validate extent which is part of inode */
4015                                 ret = ext4_ext_check_inode(inode);
4016                 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4017                            (S_ISLNK(inode->i_mode) &&
4018                             !ext4_inode_is_fast_symlink(inode))) {
4019                         /* Validate block references which are part of inode */
4020                         ret = ext4_ind_check_inode(inode);
4021                 }
4022         }
4023         if (ret)
4024                 goto bad_inode;
4025
4026         if (S_ISREG(inode->i_mode)) {
4027                 inode->i_op = &ext4_file_inode_operations;
4028                 inode->i_fop = &ext4_file_operations;
4029                 ext4_set_aops(inode);
4030         } else if (S_ISDIR(inode->i_mode)) {
4031                 inode->i_op = &ext4_dir_inode_operations;
4032                 inode->i_fop = &ext4_dir_operations;
4033         } else if (S_ISLNK(inode->i_mode)) {
4034                 if (ext4_inode_is_fast_symlink(inode)) {
4035                         inode->i_op = &ext4_fast_symlink_inode_operations;
4036                         nd_terminate_link(ei->i_data, inode->i_size,
4037                                 sizeof(ei->i_data) - 1);
4038                 } else {
4039                         inode->i_op = &ext4_symlink_inode_operations;
4040                         ext4_set_aops(inode);
4041                 }
4042         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4043               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4044                 inode->i_op = &ext4_special_inode_operations;
4045                 if (raw_inode->i_block[0])
4046                         init_special_inode(inode, inode->i_mode,
4047                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4048                 else
4049                         init_special_inode(inode, inode->i_mode,
4050                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4051         } else {
4052                 ret = -EIO;
4053                 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4054                 goto bad_inode;
4055         }
4056         brelse(iloc.bh);
4057         ext4_set_inode_flags(inode);
4058         unlock_new_inode(inode);
4059         return inode;
4060
4061 bad_inode:
4062         brelse(iloc.bh);
4063         iget_failed(inode);
4064         return ERR_PTR(ret);
4065 }
4066
4067 static int ext4_inode_blocks_set(handle_t *handle,
4068                                 struct ext4_inode *raw_inode,
4069                                 struct ext4_inode_info *ei)
4070 {
4071         struct inode *inode = &(ei->vfs_inode);
4072         u64 i_blocks = inode->i_blocks;
4073         struct super_block *sb = inode->i_sb;
4074
4075         if (i_blocks <= ~0U) {
4076                 /*
4077                  * i_blocks can be represented in a 32 bit variable
4078                  * as multiple of 512 bytes
4079                  */
4080                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4081                 raw_inode->i_blocks_high = 0;
4082                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4083                 return 0;
4084         }
4085         if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4086                 return -EFBIG;
4087
4088         if (i_blocks <= 0xffffffffffffULL) {
4089                 /*
4090                  * i_blocks can be represented in a 48 bit variable
4091                  * as multiple of 512 bytes
4092                  */
4093                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4094                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4095                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4096         } else {
4097                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4098                 /* i_block is stored in file system block size */
4099                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4100                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4101                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4102         }
4103         return 0;
4104 }
4105
4106 /*
4107  * Post the struct inode info into an on-disk inode location in the
4108  * buffer-cache.  This gobbles the caller's reference to the
4109  * buffer_head in the inode location struct.
4110  *
4111  * The caller must have write access to iloc->bh.
4112  */
4113 static int ext4_do_update_inode(handle_t *handle,
4114                                 struct inode *inode,
4115                                 struct ext4_iloc *iloc)
4116 {
4117         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4118         struct ext4_inode_info *ei = EXT4_I(inode);
4119         struct buffer_head *bh = iloc->bh;
4120         int err = 0, rc, block;
4121         int need_datasync = 0;
4122         uid_t i_uid;
4123         gid_t i_gid;
4124
4125         /* For fields not not tracking in the in-memory inode,
4126          * initialise them to zero for new inodes. */
4127         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4128                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4129
4130         ext4_get_inode_flags(ei);
4131         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4132         i_uid = i_uid_read(inode);
4133         i_gid = i_gid_read(inode);
4134         if (!(test_opt(inode->i_sb, NO_UID32))) {
4135                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4136                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4137 /*
4138  * Fix up interoperability with old kernels. Otherwise, old inodes get
4139  * re-used with the upper 16 bits of the uid/gid intact
4140  */
4141                 if (!ei->i_dtime) {
4142                         raw_inode->i_uid_high =
4143                                 cpu_to_le16(high_16_bits(i_uid));
4144                         raw_inode->i_gid_high =
4145                                 cpu_to_le16(high_16_bits(i_gid));
4146                 } else {
4147                         raw_inode->i_uid_high = 0;
4148                         raw_inode->i_gid_high = 0;
4149                 }
4150         } else {
4151                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4152                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4153                 raw_inode->i_uid_high = 0;
4154                 raw_inode->i_gid_high = 0;
4155         }
4156         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4157
4158         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4159         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4160         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4161         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4162
4163         if (ext4_inode_blocks_set(handle, raw_inode, ei))
4164                 goto out_brelse;
4165         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4166         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4167         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4168             cpu_to_le32(EXT4_OS_HURD))
4169                 raw_inode->i_file_acl_high =
4170                         cpu_to_le16(ei->i_file_acl >> 32);
4171         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4172         if (ei->i_disksize != ext4_isize(raw_inode)) {
4173                 ext4_isize_set(raw_inode, ei->i_disksize);
4174                 need_datasync = 1;
4175         }
4176         if (ei->i_disksize > 0x7fffffffULL) {
4177                 struct super_block *sb = inode->i_sb;
4178                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4179                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4180                                 EXT4_SB(sb)->s_es->s_rev_level ==
4181                                 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4182                         /* If this is the first large file
4183                          * created, add a flag to the superblock.
4184                          */
4185                         err = ext4_journal_get_write_access(handle,
4186                                         EXT4_SB(sb)->s_sbh);
4187                         if (err)
4188                                 goto out_brelse;
4189                         ext4_update_dynamic_rev(sb);
4190                         EXT4_SET_RO_COMPAT_FEATURE(sb,
4191                                         EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4192                         ext4_handle_sync(handle);
4193                         err = ext4_handle_dirty_super(handle, sb);
4194                 }
4195         }
4196         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4197         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4198                 if (old_valid_dev(inode->i_rdev)) {
4199                         raw_inode->i_block[0] =
4200                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4201                         raw_inode->i_block[1] = 0;
4202                 } else {
4203                         raw_inode->i_block[0] = 0;
4204                         raw_inode->i_block[1] =
4205                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4206                         raw_inode->i_block[2] = 0;
4207                 }
4208         } else if (!ext4_has_inline_data(inode)) {
4209                 for (block = 0; block < EXT4_N_BLOCKS; block++)
4210                         raw_inode->i_block[block] = ei->i_data[block];
4211         }
4212
4213         raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4214         if (ei->i_extra_isize) {
4215                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4216                         raw_inode->i_version_hi =
4217                         cpu_to_le32(inode->i_version >> 32);
4218                 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4219         }
4220
4221         ext4_inode_csum_set(inode, raw_inode, ei);
4222
4223         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4224         rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4225         if (!err)
4226                 err = rc;
4227         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4228
4229         ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4230 out_brelse:
4231         brelse(bh);
4232         ext4_std_error(inode->i_sb, err);
4233         return err;
4234 }
4235
4236 /*
4237  * ext4_write_inode()
4238  *
4239  * We are called from a few places:
4240  *
4241  * - Within generic_file_write() for O_SYNC files.
4242  *   Here, there will be no transaction running. We wait for any running
4243  *   transaction to commit.
4244  *
4245  * - Within sys_sync(), kupdate and such.
4246  *   We wait on commit, if tol to.
4247  *
4248  * - Within prune_icache() (PF_MEMALLOC == true)
4249  *   Here we simply return.  We can't afford to block kswapd on the
4250  *   journal commit.
4251  *
4252  * In all cases it is actually safe for us to return without doing anything,
4253  * because the inode has been copied into a raw inode buffer in
4254  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4255  * knfsd.
4256  *
4257  * Note that we are absolutely dependent upon all inode dirtiers doing the
4258  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4259  * which we are interested.
4260  *
4261  * It would be a bug for them to not do this.  The code:
4262  *
4263  *      mark_inode_dirty(inode)
4264  *      stuff();
4265  *      inode->i_size = expr;
4266  *
4267  * is in error because a kswapd-driven write_inode() could occur while
4268  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
4269  * will no longer be on the superblock's dirty inode list.
4270  */
4271 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4272 {
4273         int err;
4274
4275         if (current->flags & PF_MEMALLOC)
4276                 return 0;
4277
4278         if (EXT4_SB(inode->i_sb)->s_journal) {
4279                 if (ext4_journal_current_handle()) {
4280                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4281                         dump_stack();
4282                         return -EIO;
4283                 }
4284
4285                 if (wbc->sync_mode != WB_SYNC_ALL)
4286                         return 0;
4287
4288                 err = ext4_force_commit(inode->i_sb);
4289         } else {
4290                 struct ext4_iloc iloc;
4291
4292                 err = __ext4_get_inode_loc(inode, &iloc, 0);
4293                 if (err)
4294                         return err;
4295                 if (wbc->sync_mode == WB_SYNC_ALL)
4296                         sync_dirty_buffer(iloc.bh);
4297                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4298                         EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4299                                          "IO error syncing inode");
4300                         err = -EIO;
4301                 }
4302                 brelse(iloc.bh);
4303         }
4304         return err;
4305 }
4306
4307 /*
4308  * ext4_setattr()
4309  *
4310  * Called from notify_change.
4311  *
4312  * We want to trap VFS attempts to truncate the file as soon as
4313  * possible.  In particular, we want to make sure that when the VFS
4314  * shrinks i_size, we put the inode on the orphan list and modify
4315  * i_disksize immediately, so that during the subsequent flushing of
4316  * dirty pages and freeing of disk blocks, we can guarantee that any
4317  * commit will leave the blocks being flushed in an unused state on
4318  * disk.  (On recovery, the inode will get truncated and the blocks will
4319  * be freed, so we have a strong guarantee that no future commit will
4320  * leave these blocks visible to the user.)
4321  *
4322  * Another thing we have to assure is that if we are in ordered mode
4323  * and inode is still attached to the committing transaction, we must
4324  * we start writeout of all the dirty pages which are being truncated.
4325  * This way we are sure that all the data written in the previous
4326  * transaction are already on disk (truncate waits for pages under
4327  * writeback).
4328  *
4329  * Called with inode->i_mutex down.
4330  */
4331 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4332 {
4333         struct inode *inode = dentry->d_inode;
4334         int error, rc = 0;
4335         int orphan = 0;
4336         const unsigned int ia_valid = attr->ia_valid;
4337
4338         error = inode_change_ok(inode, attr);
4339         if (error)
4340                 return error;
4341
4342         if (is_quota_modification(inode, attr))
4343                 dquot_initialize(inode);
4344         if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4345             (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4346                 handle_t *handle;
4347
4348                 /* (user+group)*(old+new) structure, inode write (sb,
4349                  * inode block, ? - but truncate inode update has it) */
4350                 handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
4351                                         EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
4352                 if (IS_ERR(handle)) {
4353                         error = PTR_ERR(handle);
4354                         goto err_out;
4355                 }
4356                 error = dquot_transfer(inode, attr);
4357                 if (error) {
4358                         ext4_journal_stop(handle);
4359                         return error;
4360                 }
4361                 /* Update corresponding info in inode so that everything is in
4362                  * one transaction */
4363                 if (attr->ia_valid & ATTR_UID)
4364                         inode->i_uid = attr->ia_uid;
4365                 if (attr->ia_valid & ATTR_GID)
4366                         inode->i_gid = attr->ia_gid;
4367                 error = ext4_mark_inode_dirty(handle, inode);
4368                 ext4_journal_stop(handle);
4369         }
4370
4371         if (attr->ia_valid & ATTR_SIZE) {
4372
4373                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4374                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4375
4376                         if (attr->ia_size > sbi->s_bitmap_maxbytes)
4377                                 return -EFBIG;
4378                 }
4379         }
4380
4381         if (S_ISREG(inode->i_mode) &&
4382             attr->ia_valid & ATTR_SIZE &&
4383             (attr->ia_size < inode->i_size)) {
4384                 handle_t *handle;
4385
4386                 handle = ext4_journal_start(inode, 3);
4387                 if (IS_ERR(handle)) {
4388                         error = PTR_ERR(handle);
4389                         goto err_out;
4390                 }
4391                 if (ext4_handle_valid(handle)) {
4392                         error = ext4_orphan_add(handle, inode);
4393                         orphan = 1;
4394                 }
4395                 EXT4_I(inode)->i_disksize = attr->ia_size;
4396                 rc = ext4_mark_inode_dirty(handle, inode);
4397                 if (!error)
4398                         error = rc;
4399                 ext4_journal_stop(handle);
4400
4401                 if (ext4_should_order_data(inode)) {
4402                         error = ext4_begin_ordered_truncate(inode,
4403                                                             attr->ia_size);
4404                         if (error) {
4405                                 /* Do as much error cleanup as possible */
4406                                 handle = ext4_journal_start(inode, 3);
4407                                 if (IS_ERR(handle)) {
4408                                         ext4_orphan_del(NULL, inode);
4409                                         goto err_out;
4410                                 }
4411                                 ext4_orphan_del(handle, inode);
4412                                 orphan = 0;
4413                                 ext4_journal_stop(handle);
4414                                 goto err_out;
4415                         }
4416                 }
4417         }
4418
4419         if (attr->ia_valid & ATTR_SIZE) {
4420                 if (attr->ia_size != i_size_read(inode)) {
4421                         truncate_setsize(inode, attr->ia_size);
4422                         /* Inode size will be reduced, wait for dio in flight.
4423                          * Temporarily disable dioread_nolock to prevent
4424                          * livelock. */
4425                         if (orphan) {
4426                                 ext4_inode_block_unlocked_dio(inode);
4427                                 inode_dio_wait(inode);
4428                                 ext4_inode_resume_unlocked_dio(inode);
4429                         }
4430                 }
4431                 ext4_truncate(inode);
4432         }
4433
4434         if (!rc) {
4435                 setattr_copy(inode, attr);
4436                 mark_inode_dirty(inode);
4437         }
4438
4439         /*
4440          * If the call to ext4_truncate failed to get a transaction handle at
4441          * all, we need to clean up the in-core orphan list manually.
4442          */
4443         if (orphan && inode->i_nlink)
4444                 ext4_orphan_del(NULL, inode);
4445
4446         if (!rc && (ia_valid & ATTR_MODE))
4447                 rc = ext4_acl_chmod(inode);
4448
4449 err_out:
4450         ext4_std_error(inode->i_sb, error);
4451         if (!error)
4452                 error = rc;
4453         return error;
4454 }
4455
4456 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4457                  struct kstat *stat)
4458 {
4459         struct inode *inode;
4460         unsigned long delalloc_blocks;
4461
4462         inode = dentry->d_inode;
4463         generic_fillattr(inode, stat);
4464
4465         /*
4466          * We can't update i_blocks if the block allocation is delayed
4467          * otherwise in the case of system crash before the real block
4468          * allocation is done, we will have i_blocks inconsistent with
4469          * on-disk file blocks.
4470          * We always keep i_blocks updated together with real
4471          * allocation. But to not confuse with user, stat
4472          * will return the blocks that include the delayed allocation
4473          * blocks for this file.
4474          */
4475         delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4476                                 EXT4_I(inode)->i_reserved_data_blocks);
4477
4478         stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4479         return 0;
4480 }
4481
4482 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4483 {
4484         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4485                 return ext4_ind_trans_blocks(inode, nrblocks, chunk);
4486         return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4487 }
4488
4489 /*
4490  * Account for index blocks, block groups bitmaps and block group
4491  * descriptor blocks if modify datablocks and index blocks
4492  * worse case, the indexs blocks spread over different block groups
4493  *
4494  * If datablocks are discontiguous, they are possible to spread over
4495  * different block groups too. If they are contiguous, with flexbg,
4496  * they could still across block group boundary.
4497  *
4498  * Also account for superblock, inode, quota and xattr blocks
4499  */
4500 static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4501 {
4502         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4503         int gdpblocks;
4504         int idxblocks;
4505         int ret = 0;
4506
4507         /*
4508          * How many index blocks need to touch to modify nrblocks?
4509          * The "Chunk" flag indicating whether the nrblocks is
4510          * physically contiguous on disk
4511          *
4512          * For Direct IO and fallocate, they calls get_block to allocate
4513          * one single extent at a time, so they could set the "Chunk" flag
4514          */
4515         idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4516
4517         ret = idxblocks;
4518
4519         /*
4520          * Now let's see how many group bitmaps and group descriptors need
4521          * to account
4522          */
4523         groups = idxblocks;
4524         if (chunk)
4525                 groups += 1;
4526         else
4527                 groups += nrblocks;
4528
4529         gdpblocks = groups;
4530         if (groups > ngroups)
4531                 groups = ngroups;
4532         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4533                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4534
4535         /* bitmaps and block group descriptor blocks */
4536         ret += groups + gdpblocks;
4537
4538         /* Blocks for super block, inode, quota and xattr blocks */
4539         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4540
4541         return ret;
4542 }
4543
4544 /*
4545  * Calculate the total number of credits to reserve to fit
4546  * the modification of a single pages into a single transaction,
4547  * which may include multiple chunks of block allocations.
4548  *
4549  * This could be called via ext4_write_begin()
4550  *
4551  * We need to consider the worse case, when
4552  * one new block per extent.
4553  */
4554 int ext4_writepage_trans_blocks(struct inode *inode)
4555 {
4556         int bpp = ext4_journal_blocks_per_page(inode);
4557         int ret;
4558
4559         ret = ext4_meta_trans_blocks(inode, bpp, 0);
4560
4561         /* Account for data blocks for journalled mode */
4562         if (ext4_should_journal_data(inode))
4563                 ret += bpp;
4564         return ret;
4565 }
4566
4567 /*
4568  * Calculate the journal credits for a chunk of data modification.
4569  *
4570  * This is called from DIO, fallocate or whoever calling
4571  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4572  *
4573  * journal buffers for data blocks are not included here, as DIO
4574  * and fallocate do no need to journal data buffers.
4575  */
4576 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4577 {
4578         return ext4_meta_trans_blocks(inode, nrblocks, 1);
4579 }
4580
4581 /*
4582  * The caller must have previously called ext4_reserve_inode_write().
4583  * Give this, we know that the caller already has write access to iloc->bh.
4584  */
4585 int ext4_mark_iloc_dirty(handle_t *handle,
4586                          struct inode *inode, struct ext4_iloc *iloc)
4587 {
4588         int err = 0;
4589
4590         if (IS_I_VERSION(inode))
4591                 inode_inc_iversion(inode);
4592
4593         /* the do_update_inode consumes one bh->b_count */
4594         get_bh(iloc->bh);
4595
4596         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4597         err = ext4_do_update_inode(handle, inode, iloc);
4598         put_bh(iloc->bh);
4599         return err;
4600 }
4601
4602 /*
4603  * On success, We end up with an outstanding reference count against
4604  * iloc->bh.  This _must_ be cleaned up later.
4605  */
4606
4607 int
4608 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4609                          struct ext4_iloc *iloc)
4610 {
4611         int err;
4612
4613         err = ext4_get_inode_loc(inode, iloc);
4614         if (!err) {
4615                 BUFFER_TRACE(iloc->bh, "get_write_access");
4616                 err = ext4_journal_get_write_access(handle, iloc->bh);
4617                 if (err) {
4618                         brelse(iloc->bh);
4619                         iloc->bh = NULL;
4620                 }
4621         }
4622         ext4_std_error(inode->i_sb, err);
4623         return err;
4624 }
4625
4626 /*
4627  * Expand an inode by new_extra_isize bytes.
4628  * Returns 0 on success or negative error number on failure.
4629  */
4630 static int ext4_expand_extra_isize(struct inode *inode,
4631                                    unsigned int new_extra_isize,
4632                                    struct ext4_iloc iloc,
4633                                    handle_t *handle)
4634 {
4635         struct ext4_inode *raw_inode;
4636         struct ext4_xattr_ibody_header *header;
4637
4638         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4639                 return 0;
4640
4641         raw_inode = ext4_raw_inode(&iloc);
4642
4643         header = IHDR(inode, raw_inode);
4644
4645         /* No extended attributes present */
4646         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4647             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4648                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4649                         new_extra_isize);
4650                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4651                 return 0;
4652         }
4653
4654         /* try to expand with EAs present */
4655         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4656                                           raw_inode, handle);
4657 }
4658
4659 /*
4660  * What we do here is to mark the in-core inode as clean with respect to inode
4661  * dirtiness (it may still be data-dirty).
4662  * This means that the in-core inode may be reaped by prune_icache
4663  * without having to perform any I/O.  This is a very good thing,
4664  * because *any* task may call prune_icache - even ones which
4665  * have a transaction open against a different journal.
4666  *
4667  * Is this cheating?  Not really.  Sure, we haven't written the
4668  * inode out, but prune_icache isn't a user-visible syncing function.
4669  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4670  * we start and wait on commits.
4671  */
4672 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4673 {
4674         struct ext4_iloc iloc;
4675         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4676         static unsigned int mnt_count;
4677         int err, ret;
4678
4679         might_sleep();
4680         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4681         err = ext4_reserve_inode_write(handle, inode, &iloc);
4682         if (ext4_handle_valid(handle) &&
4683             EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4684             !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4685                 /*
4686                  * We need extra buffer credits since we may write into EA block
4687                  * with this same handle. If journal_extend fails, then it will
4688                  * only result in a minor loss of functionality for that inode.
4689                  * If this is felt to be critical, then e2fsck should be run to
4690                  * force a large enough s_min_extra_isize.
4691                  */
4692                 if ((jbd2_journal_extend(handle,
4693                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4694                         ret = ext4_expand_extra_isize(inode,
4695                                                       sbi->s_want_extra_isize,
4696                                                       iloc, handle);
4697                         if (ret) {
4698                                 ext4_set_inode_state(inode,
4699                                                      EXT4_STATE_NO_EXPAND);
4700                                 if (mnt_count !=
4701                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
4702                                         ext4_warning(inode->i_sb,
4703                                         "Unable to expand inode %lu. Delete"
4704                                         " some EAs or run e2fsck.",
4705                                         inode->i_ino);
4706                                         mnt_count =
4707                                           le16_to_cpu(sbi->s_es->s_mnt_count);
4708                                 }
4709                         }
4710                 }
4711         }
4712         if (!err)
4713                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4714         return err;
4715 }
4716
4717 /*
4718  * ext4_dirty_inode() is called from __mark_inode_dirty()
4719  *
4720  * We're really interested in the case where a file is being extended.
4721  * i_size has been changed by generic_commit_write() and we thus need
4722  * to include the updated inode in the current transaction.
4723  *
4724  * Also, dquot_alloc_block() will always dirty the inode when blocks
4725  * are allocated to the file.
4726  *
4727  * If the inode is marked synchronous, we don't honour that here - doing
4728  * so would cause a commit on atime updates, which we don't bother doing.
4729  * We handle synchronous inodes at the highest possible level.
4730  */
4731 void ext4_dirty_inode(struct inode *inode, int flags)
4732 {
4733         handle_t *handle;
4734
4735         handle = ext4_journal_start(inode, 2);
4736         if (IS_ERR(handle))
4737                 goto out;
4738
4739         ext4_mark_inode_dirty(handle, inode);
4740
4741         ext4_journal_stop(handle);
4742 out:
4743         return;
4744 }
4745
4746 #if 0
4747 /*
4748  * Bind an inode's backing buffer_head into this transaction, to prevent
4749  * it from being flushed to disk early.  Unlike
4750  * ext4_reserve_inode_write, this leaves behind no bh reference and
4751  * returns no iloc structure, so the caller needs to repeat the iloc
4752  * lookup to mark the inode dirty later.
4753  */
4754 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4755 {
4756         struct ext4_iloc iloc;
4757
4758         int err = 0;
4759         if (handle) {
4760                 err = ext4_get_inode_loc(inode, &iloc);
4761                 if (!err) {
4762                         BUFFER_TRACE(iloc.bh, "get_write_access");
4763                         err = jbd2_journal_get_write_access(handle, iloc.bh);
4764                         if (!err)
4765                                 err = ext4_handle_dirty_metadata(handle,
4766                                                                  NULL,
4767                                                                  iloc.bh);
4768                         brelse(iloc.bh);
4769                 }
4770         }
4771         ext4_std_error(inode->i_sb, err);
4772         return err;
4773 }
4774 #endif
4775
4776 int ext4_change_inode_journal_flag(struct inode *inode, int val)
4777 {
4778         journal_t *journal;
4779         handle_t *handle;
4780         int err;
4781
4782         /*
4783          * We have to be very careful here: changing a data block's
4784          * journaling status dynamically is dangerous.  If we write a
4785          * data block to the journal, change the status and then delete
4786          * that block, we risk forgetting to revoke the old log record
4787          * from the journal and so a subsequent replay can corrupt data.
4788          * So, first we make sure that the journal is empty and that
4789          * nobody is changing anything.
4790          */
4791
4792         journal = EXT4_JOURNAL(inode);
4793         if (!journal)
4794                 return 0;
4795         if (is_journal_aborted(journal))
4796                 return -EROFS;
4797         /* We have to allocate physical blocks for delalloc blocks
4798          * before flushing journal. otherwise delalloc blocks can not
4799          * be allocated any more. even more truncate on delalloc blocks
4800          * could trigger BUG by flushing delalloc blocks in journal.
4801          * There is no delalloc block in non-journal data mode.
4802          */
4803         if (val && test_opt(inode->i_sb, DELALLOC)) {
4804                 err = ext4_alloc_da_blocks(inode);
4805                 if (err < 0)
4806                         return err;
4807         }
4808
4809         /* Wait for all existing dio workers */
4810         ext4_inode_block_unlocked_dio(inode);
4811         inode_dio_wait(inode);
4812
4813         jbd2_journal_lock_updates(journal);
4814
4815         /*
4816          * OK, there are no updates running now, and all cached data is
4817          * synced to disk.  We are now in a completely consistent state
4818          * which doesn't have anything in the journal, and we know that
4819          * no filesystem updates are running, so it is safe to modify
4820          * the inode's in-core data-journaling state flag now.
4821          */
4822
4823         if (val)
4824                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4825         else {
4826                 jbd2_journal_flush(journal);
4827                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4828         }
4829         ext4_set_aops(inode);
4830
4831         jbd2_journal_unlock_updates(journal);
4832         ext4_inode_resume_unlocked_dio(inode);
4833
4834         /* Finally we can mark the inode as dirty. */
4835
4836         handle = ext4_journal_start(inode, 1);
4837         if (IS_ERR(handle))
4838                 return PTR_ERR(handle);
4839
4840         err = ext4_mark_inode_dirty(handle, inode);
4841         ext4_handle_sync(handle);
4842         ext4_journal_stop(handle);
4843         ext4_std_error(inode->i_sb, err);
4844
4845         return err;
4846 }
4847
4848 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4849 {
4850         return !buffer_mapped(bh);
4851 }
4852
4853 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
4854 {
4855         struct page *page = vmf->page;
4856         loff_t size;
4857         unsigned long len;
4858         int ret;
4859         struct file *file = vma->vm_file;
4860         struct inode *inode = file->f_path.dentry->d_inode;
4861         struct address_space *mapping = inode->i_mapping;
4862         handle_t *handle;
4863         get_block_t *get_block;
4864         int retries = 0;
4865
4866         sb_start_pagefault(inode->i_sb);
4867         file_update_time(vma->vm_file);
4868         /* Delalloc case is easy... */
4869         if (test_opt(inode->i_sb, DELALLOC) &&
4870             !ext4_should_journal_data(inode) &&
4871             !ext4_nonda_switch(inode->i_sb)) {
4872                 do {
4873                         ret = __block_page_mkwrite(vma, vmf,
4874                                                    ext4_da_get_block_prep);
4875                 } while (ret == -ENOSPC &&
4876                        ext4_should_retry_alloc(inode->i_sb, &retries));
4877                 goto out_ret;
4878         }
4879
4880         lock_page(page);
4881         size = i_size_read(inode);
4882         /* Page got truncated from under us? */
4883         if (page->mapping != mapping || page_offset(page) > size) {
4884                 unlock_page(page);
4885                 ret = VM_FAULT_NOPAGE;
4886                 goto out;
4887         }
4888
4889         if (page->index == size >> PAGE_CACHE_SHIFT)
4890                 len = size & ~PAGE_CACHE_MASK;
4891         else
4892                 len = PAGE_CACHE_SIZE;
4893         /*
4894          * Return if we have all the buffers mapped. This avoids the need to do
4895          * journal_start/journal_stop which can block and take a long time
4896          */
4897         if (page_has_buffers(page)) {
4898                 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
4899                                             0, len, NULL,
4900                                             ext4_bh_unmapped)) {
4901                         /* Wait so that we don't change page under IO */
4902                         wait_on_page_writeback(page);
4903                         ret = VM_FAULT_LOCKED;
4904                         goto out;
4905                 }
4906         }
4907         unlock_page(page);
4908         /* OK, we need to fill the hole... */
4909         if (ext4_should_dioread_nolock(inode))
4910                 get_block = ext4_get_block_write;
4911         else
4912                 get_block = ext4_get_block;
4913 retry_alloc:
4914         handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
4915         if (IS_ERR(handle)) {
4916                 ret = VM_FAULT_SIGBUS;
4917                 goto out;
4918         }
4919         ret = __block_page_mkwrite(vma, vmf, get_block);
4920         if (!ret && ext4_should_journal_data(inode)) {
4921                 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
4922                           PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
4923                         unlock_page(page);
4924                         ret = VM_FAULT_SIGBUS;
4925                         ext4_journal_stop(handle);
4926                         goto out;
4927                 }
4928                 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
4929         }
4930         ext4_journal_stop(handle);
4931         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
4932                 goto retry_alloc;
4933 out_ret:
4934         ret = block_page_mkwrite_return(ret);
4935 out:
4936         sb_end_pagefault(inode->i_sb);
4937         return ret;
4938 }