ext4: Use ext4 file system driver for ext2/ext3 file system mounts
[pandora-kernel.git] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Goal-directed block allocation by Stephen Tweedie
16  *      (sct@redhat.com), 1993, 1998
17  *  Big-endian to little-endian byte-swapping/bitmaps by
18  *        David S. Miller (davem@caip.rutgers.edu), 1995
19  *  64-bit file support on 64-bit platforms by Jakub Jelinek
20  *      (jj@sunsite.ms.mff.cuni.cz)
21  *
22  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23  */
24
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/namei.h>
38 #include <linux/uio.h>
39 #include <linux/bio.h>
40 #include <linux/workqueue.h>
41
42 #include "ext4_jbd2.h"
43 #include "xattr.h"
44 #include "acl.h"
45 #include "ext4_extents.h"
46
47 #include <trace/events/ext4.h>
48
49 #define MPAGE_DA_EXTENT_TAIL 0x01
50
51 static inline int ext4_begin_ordered_truncate(struct inode *inode,
52                                               loff_t new_size)
53 {
54         return jbd2_journal_begin_ordered_truncate(
55                                         EXT4_SB(inode->i_sb)->s_journal,
56                                         &EXT4_I(inode)->jinode,
57                                         new_size);
58 }
59
60 static void ext4_invalidatepage(struct page *page, unsigned long offset);
61
62 /*
63  * Test whether an inode is a fast symlink.
64  */
65 static int ext4_inode_is_fast_symlink(struct inode *inode)
66 {
67         int ea_blocks = EXT4_I(inode)->i_file_acl ?
68                 (inode->i_sb->s_blocksize >> 9) : 0;
69
70         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
71 }
72
73 /*
74  * Work out how many blocks we need to proceed with the next chunk of a
75  * truncate transaction.
76  */
77 static unsigned long blocks_for_truncate(struct inode *inode)
78 {
79         ext4_lblk_t needed;
80
81         needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
82
83         /* Give ourselves just enough room to cope with inodes in which
84          * i_blocks is corrupt: we've seen disk corruptions in the past
85          * which resulted in random data in an inode which looked enough
86          * like a regular file for ext4 to try to delete it.  Things
87          * will go a bit crazy if that happens, but at least we should
88          * try not to panic the whole kernel. */
89         if (needed < 2)
90                 needed = 2;
91
92         /* But we need to bound the transaction so we don't overflow the
93          * journal. */
94         if (needed > EXT4_MAX_TRANS_DATA)
95                 needed = EXT4_MAX_TRANS_DATA;
96
97         return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
98 }
99
100 /*
101  * Truncate transactions can be complex and absolutely huge.  So we need to
102  * be able to restart the transaction at a conventient checkpoint to make
103  * sure we don't overflow the journal.
104  *
105  * start_transaction gets us a new handle for a truncate transaction,
106  * and extend_transaction tries to extend the existing one a bit.  If
107  * extend fails, we need to propagate the failure up and restart the
108  * transaction in the top-level truncate loop. --sct
109  */
110 static handle_t *start_transaction(struct inode *inode)
111 {
112         handle_t *result;
113
114         result = ext4_journal_start(inode, blocks_for_truncate(inode));
115         if (!IS_ERR(result))
116                 return result;
117
118         ext4_std_error(inode->i_sb, PTR_ERR(result));
119         return result;
120 }
121
122 /*
123  * Try to extend this transaction for the purposes of truncation.
124  *
125  * Returns 0 if we managed to create more room.  If we can't create more
126  * room, and the transaction must be restarted we return 1.
127  */
128 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
129 {
130         if (!ext4_handle_valid(handle))
131                 return 0;
132         if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
133                 return 0;
134         if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
135                 return 0;
136         return 1;
137 }
138
139 /*
140  * Restart the transaction associated with *handle.  This does a commit,
141  * so before we call here everything must be consistently dirtied against
142  * this transaction.
143  */
144 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
145                                  int nblocks)
146 {
147         int ret;
148
149         /*
150          * Drop i_data_sem to avoid deadlock with ext4_get_blocks At this
151          * moment, get_block can be called only for blocks inside i_size since
152          * page cache has been already dropped and writes are blocked by
153          * i_mutex. So we can safely drop the i_data_sem here.
154          */
155         BUG_ON(EXT4_JOURNAL(inode) == NULL);
156         jbd_debug(2, "restarting handle %p\n", handle);
157         up_write(&EXT4_I(inode)->i_data_sem);
158         ret = ext4_journal_restart(handle, blocks_for_truncate(inode));
159         down_write(&EXT4_I(inode)->i_data_sem);
160         ext4_discard_preallocations(inode);
161
162         return ret;
163 }
164
165 /*
166  * Called at the last iput() if i_nlink is zero.
167  */
168 void ext4_delete_inode(struct inode *inode)
169 {
170         handle_t *handle;
171         int err;
172
173         if (ext4_should_order_data(inode))
174                 ext4_begin_ordered_truncate(inode, 0);
175         truncate_inode_pages(&inode->i_data, 0);
176
177         if (is_bad_inode(inode))
178                 goto no_delete;
179
180         handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
181         if (IS_ERR(handle)) {
182                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
183                 /*
184                  * If we're going to skip the normal cleanup, we still need to
185                  * make sure that the in-core orphan linked list is properly
186                  * cleaned up.
187                  */
188                 ext4_orphan_del(NULL, inode);
189                 goto no_delete;
190         }
191
192         if (IS_SYNC(inode))
193                 ext4_handle_sync(handle);
194         inode->i_size = 0;
195         err = ext4_mark_inode_dirty(handle, inode);
196         if (err) {
197                 ext4_warning(inode->i_sb, __func__,
198                              "couldn't mark inode dirty (err %d)", err);
199                 goto stop_handle;
200         }
201         if (inode->i_blocks)
202                 ext4_truncate(inode);
203
204         /*
205          * ext4_ext_truncate() doesn't reserve any slop when it
206          * restarts journal transactions; therefore there may not be
207          * enough credits left in the handle to remove the inode from
208          * the orphan list and set the dtime field.
209          */
210         if (!ext4_handle_has_enough_credits(handle, 3)) {
211                 err = ext4_journal_extend(handle, 3);
212                 if (err > 0)
213                         err = ext4_journal_restart(handle, 3);
214                 if (err != 0) {
215                         ext4_warning(inode->i_sb, __func__,
216                                      "couldn't extend journal (err %d)", err);
217                 stop_handle:
218                         ext4_journal_stop(handle);
219                         goto no_delete;
220                 }
221         }
222
223         /*
224          * Kill off the orphan record which ext4_truncate created.
225          * AKPM: I think this can be inside the above `if'.
226          * Note that ext4_orphan_del() has to be able to cope with the
227          * deletion of a non-existent orphan - this is because we don't
228          * know if ext4_truncate() actually created an orphan record.
229          * (Well, we could do this if we need to, but heck - it works)
230          */
231         ext4_orphan_del(handle, inode);
232         EXT4_I(inode)->i_dtime  = get_seconds();
233
234         /*
235          * One subtle ordering requirement: if anything has gone wrong
236          * (transaction abort, IO errors, whatever), then we can still
237          * do these next steps (the fs will already have been marked as
238          * having errors), but we can't free the inode if the mark_dirty
239          * fails.
240          */
241         if (ext4_mark_inode_dirty(handle, inode))
242                 /* If that failed, just do the required in-core inode clear. */
243                 clear_inode(inode);
244         else
245                 ext4_free_inode(handle, inode);
246         ext4_journal_stop(handle);
247         return;
248 no_delete:
249         clear_inode(inode);     /* We must guarantee clearing of inode... */
250 }
251
252 typedef struct {
253         __le32  *p;
254         __le32  key;
255         struct buffer_head *bh;
256 } Indirect;
257
258 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
259 {
260         p->key = *(p->p = v);
261         p->bh = bh;
262 }
263
264 /**
265  *      ext4_block_to_path - parse the block number into array of offsets
266  *      @inode: inode in question (we are only interested in its superblock)
267  *      @i_block: block number to be parsed
268  *      @offsets: array to store the offsets in
269  *      @boundary: set this non-zero if the referred-to block is likely to be
270  *             followed (on disk) by an indirect block.
271  *
272  *      To store the locations of file's data ext4 uses a data structure common
273  *      for UNIX filesystems - tree of pointers anchored in the inode, with
274  *      data blocks at leaves and indirect blocks in intermediate nodes.
275  *      This function translates the block number into path in that tree -
276  *      return value is the path length and @offsets[n] is the offset of
277  *      pointer to (n+1)th node in the nth one. If @block is out of range
278  *      (negative or too large) warning is printed and zero returned.
279  *
280  *      Note: function doesn't find node addresses, so no IO is needed. All
281  *      we need to know is the capacity of indirect blocks (taken from the
282  *      inode->i_sb).
283  */
284
285 /*
286  * Portability note: the last comparison (check that we fit into triple
287  * indirect block) is spelled differently, because otherwise on an
288  * architecture with 32-bit longs and 8Kb pages we might get into trouble
289  * if our filesystem had 8Kb blocks. We might use long long, but that would
290  * kill us on x86. Oh, well, at least the sign propagation does not matter -
291  * i_block would have to be negative in the very beginning, so we would not
292  * get there at all.
293  */
294
295 static int ext4_block_to_path(struct inode *inode,
296                               ext4_lblk_t i_block,
297                               ext4_lblk_t offsets[4], int *boundary)
298 {
299         int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
300         int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
301         const long direct_blocks = EXT4_NDIR_BLOCKS,
302                 indirect_blocks = ptrs,
303                 double_blocks = (1 << (ptrs_bits * 2));
304         int n = 0;
305         int final = 0;
306
307         if (i_block < direct_blocks) {
308                 offsets[n++] = i_block;
309                 final = direct_blocks;
310         } else if ((i_block -= direct_blocks) < indirect_blocks) {
311                 offsets[n++] = EXT4_IND_BLOCK;
312                 offsets[n++] = i_block;
313                 final = ptrs;
314         } else if ((i_block -= indirect_blocks) < double_blocks) {
315                 offsets[n++] = EXT4_DIND_BLOCK;
316                 offsets[n++] = i_block >> ptrs_bits;
317                 offsets[n++] = i_block & (ptrs - 1);
318                 final = ptrs;
319         } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
320                 offsets[n++] = EXT4_TIND_BLOCK;
321                 offsets[n++] = i_block >> (ptrs_bits * 2);
322                 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
323                 offsets[n++] = i_block & (ptrs - 1);
324                 final = ptrs;
325         } else {
326                 ext4_warning(inode->i_sb, "ext4_block_to_path",
327                              "block %lu > max in inode %lu",
328                              i_block + direct_blocks +
329                              indirect_blocks + double_blocks, inode->i_ino);
330         }
331         if (boundary)
332                 *boundary = final - 1 - (i_block & (ptrs - 1));
333         return n;
334 }
335
336 static int __ext4_check_blockref(const char *function, struct inode *inode,
337                                  __le32 *p, unsigned int max)
338 {
339         __le32 *bref = p;
340         unsigned int blk;
341
342         while (bref < p+max) {
343                 blk = le32_to_cpu(*bref++);
344                 if (blk &&
345                     unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb),
346                                                     blk, 1))) {
347                         ext4_error(inode->i_sb, function,
348                                    "invalid block reference %u "
349                                    "in inode #%lu", blk, inode->i_ino);
350                         return -EIO;
351                 }
352         }
353         return 0;
354 }
355
356
357 #define ext4_check_indirect_blockref(inode, bh)                         \
358         __ext4_check_blockref(__func__, inode, (__le32 *)(bh)->b_data,  \
359                               EXT4_ADDR_PER_BLOCK((inode)->i_sb))
360
361 #define ext4_check_inode_blockref(inode)                                \
362         __ext4_check_blockref(__func__, inode, EXT4_I(inode)->i_data,   \
363                               EXT4_NDIR_BLOCKS)
364
365 /**
366  *      ext4_get_branch - read the chain of indirect blocks leading to data
367  *      @inode: inode in question
368  *      @depth: depth of the chain (1 - direct pointer, etc.)
369  *      @offsets: offsets of pointers in inode/indirect blocks
370  *      @chain: place to store the result
371  *      @err: here we store the error value
372  *
373  *      Function fills the array of triples <key, p, bh> and returns %NULL
374  *      if everything went OK or the pointer to the last filled triple
375  *      (incomplete one) otherwise. Upon the return chain[i].key contains
376  *      the number of (i+1)-th block in the chain (as it is stored in memory,
377  *      i.e. little-endian 32-bit), chain[i].p contains the address of that
378  *      number (it points into struct inode for i==0 and into the bh->b_data
379  *      for i>0) and chain[i].bh points to the buffer_head of i-th indirect
380  *      block for i>0 and NULL for i==0. In other words, it holds the block
381  *      numbers of the chain, addresses they were taken from (and where we can
382  *      verify that chain did not change) and buffer_heads hosting these
383  *      numbers.
384  *
385  *      Function stops when it stumbles upon zero pointer (absent block)
386  *              (pointer to last triple returned, *@err == 0)
387  *      or when it gets an IO error reading an indirect block
388  *              (ditto, *@err == -EIO)
389  *      or when it reads all @depth-1 indirect blocks successfully and finds
390  *      the whole chain, all way to the data (returns %NULL, *err == 0).
391  *
392  *      Need to be called with
393  *      down_read(&EXT4_I(inode)->i_data_sem)
394  */
395 static Indirect *ext4_get_branch(struct inode *inode, int depth,
396                                  ext4_lblk_t  *offsets,
397                                  Indirect chain[4], int *err)
398 {
399         struct super_block *sb = inode->i_sb;
400         Indirect *p = chain;
401         struct buffer_head *bh;
402
403         *err = 0;
404         /* i_data is not going away, no lock needed */
405         add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
406         if (!p->key)
407                 goto no_block;
408         while (--depth) {
409                 bh = sb_getblk(sb, le32_to_cpu(p->key));
410                 if (unlikely(!bh))
411                         goto failure;
412
413                 if (!bh_uptodate_or_lock(bh)) {
414                         if (bh_submit_read(bh) < 0) {
415                                 put_bh(bh);
416                                 goto failure;
417                         }
418                         /* validate block references */
419                         if (ext4_check_indirect_blockref(inode, bh)) {
420                                 put_bh(bh);
421                                 goto failure;
422                         }
423                 }
424
425                 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
426                 /* Reader: end */
427                 if (!p->key)
428                         goto no_block;
429         }
430         return NULL;
431
432 failure:
433         *err = -EIO;
434 no_block:
435         return p;
436 }
437
438 /**
439  *      ext4_find_near - find a place for allocation with sufficient locality
440  *      @inode: owner
441  *      @ind: descriptor of indirect block.
442  *
443  *      This function returns the preferred place for block allocation.
444  *      It is used when heuristic for sequential allocation fails.
445  *      Rules are:
446  *        + if there is a block to the left of our position - allocate near it.
447  *        + if pointer will live in indirect block - allocate near that block.
448  *        + if pointer will live in inode - allocate in the same
449  *          cylinder group.
450  *
451  * In the latter case we colour the starting block by the callers PID to
452  * prevent it from clashing with concurrent allocations for a different inode
453  * in the same block group.   The PID is used here so that functionally related
454  * files will be close-by on-disk.
455  *
456  *      Caller must make sure that @ind is valid and will stay that way.
457  */
458 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
459 {
460         struct ext4_inode_info *ei = EXT4_I(inode);
461         __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
462         __le32 *p;
463         ext4_fsblk_t bg_start;
464         ext4_fsblk_t last_block;
465         ext4_grpblk_t colour;
466         ext4_group_t block_group;
467         int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
468
469         /* Try to find previous block */
470         for (p = ind->p - 1; p >= start; p--) {
471                 if (*p)
472                         return le32_to_cpu(*p);
473         }
474
475         /* No such thing, so let's try location of indirect block */
476         if (ind->bh)
477                 return ind->bh->b_blocknr;
478
479         /*
480          * It is going to be referred to from the inode itself? OK, just put it
481          * into the same cylinder group then.
482          */
483         block_group = ei->i_block_group;
484         if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
485                 block_group &= ~(flex_size-1);
486                 if (S_ISREG(inode->i_mode))
487                         block_group++;
488         }
489         bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
490         last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
491
492         /*
493          * If we are doing delayed allocation, we don't need take
494          * colour into account.
495          */
496         if (test_opt(inode->i_sb, DELALLOC))
497                 return bg_start;
498
499         if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
500                 colour = (current->pid % 16) *
501                         (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
502         else
503                 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
504         return bg_start + colour;
505 }
506
507 /**
508  *      ext4_find_goal - find a preferred place for allocation.
509  *      @inode: owner
510  *      @block:  block we want
511  *      @partial: pointer to the last triple within a chain
512  *
513  *      Normally this function find the preferred place for block allocation,
514  *      returns it.
515  *      Because this is only used for non-extent files, we limit the block nr
516  *      to 32 bits.
517  */
518 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
519                                    Indirect *partial)
520 {
521         ext4_fsblk_t goal;
522
523         /*
524          * XXX need to get goal block from mballoc's data structures
525          */
526
527         goal = ext4_find_near(inode, partial);
528         goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
529         return goal;
530 }
531
532 /**
533  *      ext4_blks_to_allocate: Look up the block map and count the number
534  *      of direct blocks need to be allocated for the given branch.
535  *
536  *      @branch: chain of indirect blocks
537  *      @k: number of blocks need for indirect blocks
538  *      @blks: number of data blocks to be mapped.
539  *      @blocks_to_boundary:  the offset in the indirect block
540  *
541  *      return the total number of blocks to be allocate, including the
542  *      direct and indirect blocks.
543  */
544 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
545                                  int blocks_to_boundary)
546 {
547         unsigned int count = 0;
548
549         /*
550          * Simple case, [t,d]Indirect block(s) has not allocated yet
551          * then it's clear blocks on that path have not allocated
552          */
553         if (k > 0) {
554                 /* right now we don't handle cross boundary allocation */
555                 if (blks < blocks_to_boundary + 1)
556                         count += blks;
557                 else
558                         count += blocks_to_boundary + 1;
559                 return count;
560         }
561
562         count++;
563         while (count < blks && count <= blocks_to_boundary &&
564                 le32_to_cpu(*(branch[0].p + count)) == 0) {
565                 count++;
566         }
567         return count;
568 }
569
570 /**
571  *      ext4_alloc_blocks: multiple allocate blocks needed for a branch
572  *      @indirect_blks: the number of blocks need to allocate for indirect
573  *                      blocks
574  *
575  *      @new_blocks: on return it will store the new block numbers for
576  *      the indirect blocks(if needed) and the first direct block,
577  *      @blks:  on return it will store the total number of allocated
578  *              direct blocks
579  */
580 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
581                              ext4_lblk_t iblock, ext4_fsblk_t goal,
582                              int indirect_blks, int blks,
583                              ext4_fsblk_t new_blocks[4], int *err)
584 {
585         struct ext4_allocation_request ar;
586         int target, i;
587         unsigned long count = 0, blk_allocated = 0;
588         int index = 0;
589         ext4_fsblk_t current_block = 0;
590         int ret = 0;
591
592         /*
593          * Here we try to allocate the requested multiple blocks at once,
594          * on a best-effort basis.
595          * To build a branch, we should allocate blocks for
596          * the indirect blocks(if not allocated yet), and at least
597          * the first direct block of this branch.  That's the
598          * minimum number of blocks need to allocate(required)
599          */
600         /* first we try to allocate the indirect blocks */
601         target = indirect_blks;
602         while (target > 0) {
603                 count = target;
604                 /* allocating blocks for indirect blocks and direct blocks */
605                 current_block = ext4_new_meta_blocks(handle, inode,
606                                                         goal, &count, err);
607                 if (*err)
608                         goto failed_out;
609
610                 BUG_ON(current_block + count > EXT4_MAX_BLOCK_FILE_PHYS);
611
612                 target -= count;
613                 /* allocate blocks for indirect blocks */
614                 while (index < indirect_blks && count) {
615                         new_blocks[index++] = current_block++;
616                         count--;
617                 }
618                 if (count > 0) {
619                         /*
620                          * save the new block number
621                          * for the first direct block
622                          */
623                         new_blocks[index] = current_block;
624                         printk(KERN_INFO "%s returned more blocks than "
625                                                 "requested\n", __func__);
626                         WARN_ON(1);
627                         break;
628                 }
629         }
630
631         target = blks - count ;
632         blk_allocated = count;
633         if (!target)
634                 goto allocated;
635         /* Now allocate data blocks */
636         memset(&ar, 0, sizeof(ar));
637         ar.inode = inode;
638         ar.goal = goal;
639         ar.len = target;
640         ar.logical = iblock;
641         if (S_ISREG(inode->i_mode))
642                 /* enable in-core preallocation only for regular files */
643                 ar.flags = EXT4_MB_HINT_DATA;
644
645         current_block = ext4_mb_new_blocks(handle, &ar, err);
646         BUG_ON(current_block + ar.len > EXT4_MAX_BLOCK_FILE_PHYS);
647
648         if (*err && (target == blks)) {
649                 /*
650                  * if the allocation failed and we didn't allocate
651                  * any blocks before
652                  */
653                 goto failed_out;
654         }
655         if (!*err) {
656                 if (target == blks) {
657                         /*
658                          * save the new block number
659                          * for the first direct block
660                          */
661                         new_blocks[index] = current_block;
662                 }
663                 blk_allocated += ar.len;
664         }
665 allocated:
666         /* total number of blocks allocated for direct blocks */
667         ret = blk_allocated;
668         *err = 0;
669         return ret;
670 failed_out:
671         for (i = 0; i < index; i++)
672                 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
673         return ret;
674 }
675
676 /**
677  *      ext4_alloc_branch - allocate and set up a chain of blocks.
678  *      @inode: owner
679  *      @indirect_blks: number of allocated indirect blocks
680  *      @blks: number of allocated direct blocks
681  *      @offsets: offsets (in the blocks) to store the pointers to next.
682  *      @branch: place to store the chain in.
683  *
684  *      This function allocates blocks, zeroes out all but the last one,
685  *      links them into chain and (if we are synchronous) writes them to disk.
686  *      In other words, it prepares a branch that can be spliced onto the
687  *      inode. It stores the information about that chain in the branch[], in
688  *      the same format as ext4_get_branch() would do. We are calling it after
689  *      we had read the existing part of chain and partial points to the last
690  *      triple of that (one with zero ->key). Upon the exit we have the same
691  *      picture as after the successful ext4_get_block(), except that in one
692  *      place chain is disconnected - *branch->p is still zero (we did not
693  *      set the last link), but branch->key contains the number that should
694  *      be placed into *branch->p to fill that gap.
695  *
696  *      If allocation fails we free all blocks we've allocated (and forget
697  *      their buffer_heads) and return the error value the from failed
698  *      ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
699  *      as described above and return 0.
700  */
701 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
702                              ext4_lblk_t iblock, int indirect_blks,
703                              int *blks, ext4_fsblk_t goal,
704                              ext4_lblk_t *offsets, Indirect *branch)
705 {
706         int blocksize = inode->i_sb->s_blocksize;
707         int i, n = 0;
708         int err = 0;
709         struct buffer_head *bh;
710         int num;
711         ext4_fsblk_t new_blocks[4];
712         ext4_fsblk_t current_block;
713
714         num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
715                                 *blks, new_blocks, &err);
716         if (err)
717                 return err;
718
719         branch[0].key = cpu_to_le32(new_blocks[0]);
720         /*
721          * metadata blocks and data blocks are allocated.
722          */
723         for (n = 1; n <= indirect_blks;  n++) {
724                 /*
725                  * Get buffer_head for parent block, zero it out
726                  * and set the pointer to new one, then send
727                  * parent to disk.
728                  */
729                 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
730                 branch[n].bh = bh;
731                 lock_buffer(bh);
732                 BUFFER_TRACE(bh, "call get_create_access");
733                 err = ext4_journal_get_create_access(handle, bh);
734                 if (err) {
735                         /* Don't brelse(bh) here; it's done in
736                          * ext4_journal_forget() below */
737                         unlock_buffer(bh);
738                         goto failed;
739                 }
740
741                 memset(bh->b_data, 0, blocksize);
742                 branch[n].p = (__le32 *) bh->b_data + offsets[n];
743                 branch[n].key = cpu_to_le32(new_blocks[n]);
744                 *branch[n].p = branch[n].key;
745                 if (n == indirect_blks) {
746                         current_block = new_blocks[n];
747                         /*
748                          * End of chain, update the last new metablock of
749                          * the chain to point to the new allocated
750                          * data blocks numbers
751                          */
752                         for (i = 1; i < num; i++)
753                                 *(branch[n].p + i) = cpu_to_le32(++current_block);
754                 }
755                 BUFFER_TRACE(bh, "marking uptodate");
756                 set_buffer_uptodate(bh);
757                 unlock_buffer(bh);
758
759                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
760                 err = ext4_handle_dirty_metadata(handle, inode, bh);
761                 if (err)
762                         goto failed;
763         }
764         *blks = num;
765         return err;
766 failed:
767         /* Allocation failed, free what we already allocated */
768         ext4_free_blocks(handle, inode, 0, new_blocks[0], 1, 0);
769         for (i = 1; i <= n ; i++) {
770                 /* 
771                  * branch[i].bh is newly allocated, so there is no
772                  * need to revoke the block, which is why we don't
773                  * need to set EXT4_FREE_BLOCKS_METADATA.
774                  */
775                 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1,
776                                  EXT4_FREE_BLOCKS_FORGET);
777         }
778         for (i = n+1; i < indirect_blks; i++)
779                 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
780
781         ext4_free_blocks(handle, inode, 0, new_blocks[i], num, 0);
782
783         return err;
784 }
785
786 /**
787  * ext4_splice_branch - splice the allocated branch onto inode.
788  * @inode: owner
789  * @block: (logical) number of block we are adding
790  * @chain: chain of indirect blocks (with a missing link - see
791  *      ext4_alloc_branch)
792  * @where: location of missing link
793  * @num:   number of indirect blocks we are adding
794  * @blks:  number of direct blocks we are adding
795  *
796  * This function fills the missing link and does all housekeeping needed in
797  * inode (->i_blocks, etc.). In case of success we end up with the full
798  * chain to new block and return 0.
799  */
800 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
801                               ext4_lblk_t block, Indirect *where, int num,
802                               int blks)
803 {
804         int i;
805         int err = 0;
806         ext4_fsblk_t current_block;
807
808         /*
809          * If we're splicing into a [td]indirect block (as opposed to the
810          * inode) then we need to get write access to the [td]indirect block
811          * before the splice.
812          */
813         if (where->bh) {
814                 BUFFER_TRACE(where->bh, "get_write_access");
815                 err = ext4_journal_get_write_access(handle, where->bh);
816                 if (err)
817                         goto err_out;
818         }
819         /* That's it */
820
821         *where->p = where->key;
822
823         /*
824          * Update the host buffer_head or inode to point to more just allocated
825          * direct blocks blocks
826          */
827         if (num == 0 && blks > 1) {
828                 current_block = le32_to_cpu(where->key) + 1;
829                 for (i = 1; i < blks; i++)
830                         *(where->p + i) = cpu_to_le32(current_block++);
831         }
832
833         /* We are done with atomic stuff, now do the rest of housekeeping */
834         /* had we spliced it onto indirect block? */
835         if (where->bh) {
836                 /*
837                  * If we spliced it onto an indirect block, we haven't
838                  * altered the inode.  Note however that if it is being spliced
839                  * onto an indirect block at the very end of the file (the
840                  * file is growing) then we *will* alter the inode to reflect
841                  * the new i_size.  But that is not done here - it is done in
842                  * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
843                  */
844                 jbd_debug(5, "splicing indirect only\n");
845                 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
846                 err = ext4_handle_dirty_metadata(handle, inode, where->bh);
847                 if (err)
848                         goto err_out;
849         } else {
850                 /*
851                  * OK, we spliced it into the inode itself on a direct block.
852                  */
853                 ext4_mark_inode_dirty(handle, inode);
854                 jbd_debug(5, "splicing direct\n");
855         }
856         return err;
857
858 err_out:
859         for (i = 1; i <= num; i++) {
860                 /* 
861                  * branch[i].bh is newly allocated, so there is no
862                  * need to revoke the block, which is why we don't
863                  * need to set EXT4_FREE_BLOCKS_METADATA.
864                  */
865                 ext4_free_blocks(handle, inode, where[i].bh, 0, 1,
866                                  EXT4_FREE_BLOCKS_FORGET);
867         }
868         ext4_free_blocks(handle, inode, 0, le32_to_cpu(where[num].key),
869                          blks, 0);
870
871         return err;
872 }
873
874 /*
875  * The ext4_ind_get_blocks() function handles non-extents inodes
876  * (i.e., using the traditional indirect/double-indirect i_blocks
877  * scheme) for ext4_get_blocks().
878  *
879  * Allocation strategy is simple: if we have to allocate something, we will
880  * have to go the whole way to leaf. So let's do it before attaching anything
881  * to tree, set linkage between the newborn blocks, write them if sync is
882  * required, recheck the path, free and repeat if check fails, otherwise
883  * set the last missing link (that will protect us from any truncate-generated
884  * removals - all blocks on the path are immune now) and possibly force the
885  * write on the parent block.
886  * That has a nice additional property: no special recovery from the failed
887  * allocations is needed - we simply release blocks and do not touch anything
888  * reachable from inode.
889  *
890  * `handle' can be NULL if create == 0.
891  *
892  * return > 0, # of blocks mapped or allocated.
893  * return = 0, if plain lookup failed.
894  * return < 0, error case.
895  *
896  * The ext4_ind_get_blocks() function should be called with
897  * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
898  * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
899  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
900  * blocks.
901  */
902 static int ext4_ind_get_blocks(handle_t *handle, struct inode *inode,
903                                ext4_lblk_t iblock, unsigned int maxblocks,
904                                struct buffer_head *bh_result,
905                                int flags)
906 {
907         int err = -EIO;
908         ext4_lblk_t offsets[4];
909         Indirect chain[4];
910         Indirect *partial;
911         ext4_fsblk_t goal;
912         int indirect_blks;
913         int blocks_to_boundary = 0;
914         int depth;
915         int count = 0;
916         ext4_fsblk_t first_block = 0;
917
918         J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
919         J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
920         depth = ext4_block_to_path(inode, iblock, offsets,
921                                    &blocks_to_boundary);
922
923         if (depth == 0)
924                 goto out;
925
926         partial = ext4_get_branch(inode, depth, offsets, chain, &err);
927
928         /* Simplest case - block found, no allocation needed */
929         if (!partial) {
930                 first_block = le32_to_cpu(chain[depth - 1].key);
931                 clear_buffer_new(bh_result);
932                 count++;
933                 /*map more blocks*/
934                 while (count < maxblocks && count <= blocks_to_boundary) {
935                         ext4_fsblk_t blk;
936
937                         blk = le32_to_cpu(*(chain[depth-1].p + count));
938
939                         if (blk == first_block + count)
940                                 count++;
941                         else
942                                 break;
943                 }
944                 goto got_it;
945         }
946
947         /* Next simple case - plain lookup or failed read of indirect block */
948         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
949                 goto cleanup;
950
951         /*
952          * Okay, we need to do block allocation.
953         */
954         goal = ext4_find_goal(inode, iblock, partial);
955
956         /* the number of blocks need to allocate for [d,t]indirect blocks */
957         indirect_blks = (chain + depth) - partial - 1;
958
959         /*
960          * Next look up the indirect map to count the totoal number of
961          * direct blocks to allocate for this branch.
962          */
963         count = ext4_blks_to_allocate(partial, indirect_blks,
964                                         maxblocks, blocks_to_boundary);
965         /*
966          * Block out ext4_truncate while we alter the tree
967          */
968         err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
969                                 &count, goal,
970                                 offsets + (partial - chain), partial);
971
972         /*
973          * The ext4_splice_branch call will free and forget any buffers
974          * on the new chain if there is a failure, but that risks using
975          * up transaction credits, especially for bitmaps where the
976          * credits cannot be returned.  Can we handle this somehow?  We
977          * may need to return -EAGAIN upwards in the worst case.  --sct
978          */
979         if (!err)
980                 err = ext4_splice_branch(handle, inode, iblock,
981                                          partial, indirect_blks, count);
982         if (err)
983                 goto cleanup;
984
985         set_buffer_new(bh_result);
986 got_it:
987         map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
988         if (count > blocks_to_boundary)
989                 set_buffer_boundary(bh_result);
990         err = count;
991         /* Clean up and exit */
992         partial = chain + depth - 1;    /* the whole chain */
993 cleanup:
994         while (partial > chain) {
995                 BUFFER_TRACE(partial->bh, "call brelse");
996                 brelse(partial->bh);
997                 partial--;
998         }
999         BUFFER_TRACE(bh_result, "returned");
1000 out:
1001         return err;
1002 }
1003
1004 qsize_t ext4_get_reserved_space(struct inode *inode)
1005 {
1006         unsigned long long total;
1007
1008         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1009         total = EXT4_I(inode)->i_reserved_data_blocks +
1010                 EXT4_I(inode)->i_reserved_meta_blocks;
1011         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1012
1013         return total;
1014 }
1015 /*
1016  * Calculate the number of metadata blocks need to reserve
1017  * to allocate @blocks for non extent file based file
1018  */
1019 static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks)
1020 {
1021         int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1022         int ind_blks, dind_blks, tind_blks;
1023
1024         /* number of new indirect blocks needed */
1025         ind_blks = (blocks + icap - 1) / icap;
1026
1027         dind_blks = (ind_blks + icap - 1) / icap;
1028
1029         tind_blks = 1;
1030
1031         return ind_blks + dind_blks + tind_blks;
1032 }
1033
1034 /*
1035  * Calculate the number of metadata blocks need to reserve
1036  * to allocate given number of blocks
1037  */
1038 static int ext4_calc_metadata_amount(struct inode *inode, int blocks)
1039 {
1040         if (!blocks)
1041                 return 0;
1042
1043         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
1044                 return ext4_ext_calc_metadata_amount(inode, blocks);
1045
1046         return ext4_indirect_calc_metadata_amount(inode, blocks);
1047 }
1048
1049 static void ext4_da_update_reserve_space(struct inode *inode, int used)
1050 {
1051         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1052         int total, mdb, mdb_free;
1053
1054         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1055         /* recalculate the number of metablocks still need to be reserved */
1056         total = EXT4_I(inode)->i_reserved_data_blocks - used;
1057         mdb = ext4_calc_metadata_amount(inode, total);
1058
1059         /* figure out how many metablocks to release */
1060         BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1061         mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1062
1063         if (mdb_free) {
1064                 /* Account for allocated meta_blocks */
1065                 mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks;
1066
1067                 /* update fs dirty blocks counter */
1068                 percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free);
1069                 EXT4_I(inode)->i_allocated_meta_blocks = 0;
1070                 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1071         }
1072
1073         /* update per-inode reservations */
1074         BUG_ON(used  > EXT4_I(inode)->i_reserved_data_blocks);
1075         EXT4_I(inode)->i_reserved_data_blocks -= used;
1076         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1077
1078         /*
1079          * free those over-booking quota for metadata blocks
1080          */
1081         if (mdb_free)
1082                 vfs_dq_release_reservation_block(inode, mdb_free);
1083
1084         /*
1085          * If we have done all the pending block allocations and if
1086          * there aren't any writers on the inode, we can discard the
1087          * inode's preallocations.
1088          */
1089         if (!total && (atomic_read(&inode->i_writecount) == 0))
1090                 ext4_discard_preallocations(inode);
1091 }
1092
1093 static int check_block_validity(struct inode *inode, const char *msg,
1094                                 sector_t logical, sector_t phys, int len)
1095 {
1096         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), phys, len)) {
1097                 ext4_error(inode->i_sb, msg,
1098                            "inode #%lu logical block %llu mapped to %llu "
1099                            "(size %d)", inode->i_ino,
1100                            (unsigned long long) logical,
1101                            (unsigned long long) phys, len);
1102                 return -EIO;
1103         }
1104         return 0;
1105 }
1106
1107 /*
1108  * Return the number of contiguous dirty pages in a given inode
1109  * starting at page frame idx.
1110  */
1111 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
1112                                     unsigned int max_pages)
1113 {
1114         struct address_space *mapping = inode->i_mapping;
1115         pgoff_t index;
1116         struct pagevec pvec;
1117         pgoff_t num = 0;
1118         int i, nr_pages, done = 0;
1119
1120         if (max_pages == 0)
1121                 return 0;
1122         pagevec_init(&pvec, 0);
1123         while (!done) {
1124                 index = idx;
1125                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
1126                                               PAGECACHE_TAG_DIRTY,
1127                                               (pgoff_t)PAGEVEC_SIZE);
1128                 if (nr_pages == 0)
1129                         break;
1130                 for (i = 0; i < nr_pages; i++) {
1131                         struct page *page = pvec.pages[i];
1132                         struct buffer_head *bh, *head;
1133
1134                         lock_page(page);
1135                         if (unlikely(page->mapping != mapping) ||
1136                             !PageDirty(page) ||
1137                             PageWriteback(page) ||
1138                             page->index != idx) {
1139                                 done = 1;
1140                                 unlock_page(page);
1141                                 break;
1142                         }
1143                         if (page_has_buffers(page)) {
1144                                 bh = head = page_buffers(page);
1145                                 do {
1146                                         if (!buffer_delay(bh) &&
1147                                             !buffer_unwritten(bh))
1148                                                 done = 1;
1149                                         bh = bh->b_this_page;
1150                                 } while (!done && (bh != head));
1151                         }
1152                         unlock_page(page);
1153                         if (done)
1154                                 break;
1155                         idx++;
1156                         num++;
1157                         if (num >= max_pages)
1158                                 break;
1159                 }
1160                 pagevec_release(&pvec);
1161         }
1162         return num;
1163 }
1164
1165 /*
1166  * The ext4_get_blocks() function tries to look up the requested blocks,
1167  * and returns if the blocks are already mapped.
1168  *
1169  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1170  * and store the allocated blocks in the result buffer head and mark it
1171  * mapped.
1172  *
1173  * If file type is extents based, it will call ext4_ext_get_blocks(),
1174  * Otherwise, call with ext4_ind_get_blocks() to handle indirect mapping
1175  * based files
1176  *
1177  * On success, it returns the number of blocks being mapped or allocate.
1178  * if create==0 and the blocks are pre-allocated and uninitialized block,
1179  * the result buffer head is unmapped. If the create ==1, it will make sure
1180  * the buffer head is mapped.
1181  *
1182  * It returns 0 if plain look up failed (blocks have not been allocated), in
1183  * that casem, buffer head is unmapped
1184  *
1185  * It returns the error in case of allocation failure.
1186  */
1187 int ext4_get_blocks(handle_t *handle, struct inode *inode, sector_t block,
1188                     unsigned int max_blocks, struct buffer_head *bh,
1189                     int flags)
1190 {
1191         int retval;
1192
1193         clear_buffer_mapped(bh);
1194         clear_buffer_unwritten(bh);
1195
1196         ext_debug("ext4_get_blocks(): inode %lu, flag %d, max_blocks %u,"
1197                   "logical block %lu\n", inode->i_ino, flags, max_blocks,
1198                   (unsigned long)block);
1199         /*
1200          * Try to see if we can get the block without requesting a new
1201          * file system block.
1202          */
1203         down_read((&EXT4_I(inode)->i_data_sem));
1204         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1205                 retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1206                                 bh, 0);
1207         } else {
1208                 retval = ext4_ind_get_blocks(handle, inode, block, max_blocks,
1209                                              bh, 0);
1210         }
1211         up_read((&EXT4_I(inode)->i_data_sem));
1212
1213         if (retval > 0 && buffer_mapped(bh)) {
1214                 int ret = check_block_validity(inode, "file system corruption",
1215                                                block, bh->b_blocknr, retval);
1216                 if (ret != 0)
1217                         return ret;
1218         }
1219
1220         /* If it is only a block(s) look up */
1221         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
1222                 return retval;
1223
1224         /*
1225          * Returns if the blocks have already allocated
1226          *
1227          * Note that if blocks have been preallocated
1228          * ext4_ext_get_block() returns th create = 0
1229          * with buffer head unmapped.
1230          */
1231         if (retval > 0 && buffer_mapped(bh))
1232                 return retval;
1233
1234         /*
1235          * When we call get_blocks without the create flag, the
1236          * BH_Unwritten flag could have gotten set if the blocks
1237          * requested were part of a uninitialized extent.  We need to
1238          * clear this flag now that we are committed to convert all or
1239          * part of the uninitialized extent to be an initialized
1240          * extent.  This is because we need to avoid the combination
1241          * of BH_Unwritten and BH_Mapped flags being simultaneously
1242          * set on the buffer_head.
1243          */
1244         clear_buffer_unwritten(bh);
1245
1246         /*
1247          * New blocks allocate and/or writing to uninitialized extent
1248          * will possibly result in updating i_data, so we take
1249          * the write lock of i_data_sem, and call get_blocks()
1250          * with create == 1 flag.
1251          */
1252         down_write((&EXT4_I(inode)->i_data_sem));
1253
1254         /*
1255          * if the caller is from delayed allocation writeout path
1256          * we have already reserved fs blocks for allocation
1257          * let the underlying get_block() function know to
1258          * avoid double accounting
1259          */
1260         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1261                 EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1262         /*
1263          * We need to check for EXT4 here because migrate
1264          * could have changed the inode type in between
1265          */
1266         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1267                 retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1268                                               bh, flags);
1269         } else {
1270                 retval = ext4_ind_get_blocks(handle, inode, block,
1271                                              max_blocks, bh, flags);
1272
1273                 if (retval > 0 && buffer_new(bh)) {
1274                         /*
1275                          * We allocated new blocks which will result in
1276                          * i_data's format changing.  Force the migrate
1277                          * to fail by clearing migrate flags
1278                          */
1279                         EXT4_I(inode)->i_state &= ~EXT4_STATE_EXT_MIGRATE;
1280                 }
1281         }
1282
1283         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1284                 EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1285
1286         /*
1287          * Update reserved blocks/metadata blocks after successful
1288          * block allocation which had been deferred till now.
1289          */
1290         if ((retval > 0) && (flags & EXT4_GET_BLOCKS_UPDATE_RESERVE_SPACE))
1291                 ext4_da_update_reserve_space(inode, retval);
1292
1293         up_write((&EXT4_I(inode)->i_data_sem));
1294         if (retval > 0 && buffer_mapped(bh)) {
1295                 int ret = check_block_validity(inode, "file system "
1296                                                "corruption after allocation",
1297                                                block, bh->b_blocknr, retval);
1298                 if (ret != 0)
1299                         return ret;
1300         }
1301         return retval;
1302 }
1303
1304 /* Maximum number of blocks we map for direct IO at once. */
1305 #define DIO_MAX_BLOCKS 4096
1306
1307 int ext4_get_block(struct inode *inode, sector_t iblock,
1308                    struct buffer_head *bh_result, int create)
1309 {
1310         handle_t *handle = ext4_journal_current_handle();
1311         int ret = 0, started = 0;
1312         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1313         int dio_credits;
1314
1315         if (create && !handle) {
1316                 /* Direct IO write... */
1317                 if (max_blocks > DIO_MAX_BLOCKS)
1318                         max_blocks = DIO_MAX_BLOCKS;
1319                 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
1320                 handle = ext4_journal_start(inode, dio_credits);
1321                 if (IS_ERR(handle)) {
1322                         ret = PTR_ERR(handle);
1323                         goto out;
1324                 }
1325                 started = 1;
1326         }
1327
1328         ret = ext4_get_blocks(handle, inode, iblock, max_blocks, bh_result,
1329                               create ? EXT4_GET_BLOCKS_CREATE : 0);
1330         if (ret > 0) {
1331                 bh_result->b_size = (ret << inode->i_blkbits);
1332                 ret = 0;
1333         }
1334         if (started)
1335                 ext4_journal_stop(handle);
1336 out:
1337         return ret;
1338 }
1339
1340 /*
1341  * `handle' can be NULL if create is zero
1342  */
1343 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1344                                 ext4_lblk_t block, int create, int *errp)
1345 {
1346         struct buffer_head dummy;
1347         int fatal = 0, err;
1348         int flags = 0;
1349
1350         J_ASSERT(handle != NULL || create == 0);
1351
1352         dummy.b_state = 0;
1353         dummy.b_blocknr = -1000;
1354         buffer_trace_init(&dummy.b_history);
1355         if (create)
1356                 flags |= EXT4_GET_BLOCKS_CREATE;
1357         err = ext4_get_blocks(handle, inode, block, 1, &dummy, flags);
1358         /*
1359          * ext4_get_blocks() returns number of blocks mapped. 0 in
1360          * case of a HOLE.
1361          */
1362         if (err > 0) {
1363                 if (err > 1)
1364                         WARN_ON(1);
1365                 err = 0;
1366         }
1367         *errp = err;
1368         if (!err && buffer_mapped(&dummy)) {
1369                 struct buffer_head *bh;
1370                 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1371                 if (!bh) {
1372                         *errp = -EIO;
1373                         goto err;
1374                 }
1375                 if (buffer_new(&dummy)) {
1376                         J_ASSERT(create != 0);
1377                         J_ASSERT(handle != NULL);
1378
1379                         /*
1380                          * Now that we do not always journal data, we should
1381                          * keep in mind whether this should always journal the
1382                          * new buffer as metadata.  For now, regular file
1383                          * writes use ext4_get_block instead, so it's not a
1384                          * problem.
1385                          */
1386                         lock_buffer(bh);
1387                         BUFFER_TRACE(bh, "call get_create_access");
1388                         fatal = ext4_journal_get_create_access(handle, bh);
1389                         if (!fatal && !buffer_uptodate(bh)) {
1390                                 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1391                                 set_buffer_uptodate(bh);
1392                         }
1393                         unlock_buffer(bh);
1394                         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1395                         err = ext4_handle_dirty_metadata(handle, inode, bh);
1396                         if (!fatal)
1397                                 fatal = err;
1398                 } else {
1399                         BUFFER_TRACE(bh, "not a new buffer");
1400                 }
1401                 if (fatal) {
1402                         *errp = fatal;
1403                         brelse(bh);
1404                         bh = NULL;
1405                 }
1406                 return bh;
1407         }
1408 err:
1409         return NULL;
1410 }
1411
1412 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1413                                ext4_lblk_t block, int create, int *err)
1414 {
1415         struct buffer_head *bh;
1416
1417         bh = ext4_getblk(handle, inode, block, create, err);
1418         if (!bh)
1419                 return bh;
1420         if (buffer_uptodate(bh))
1421                 return bh;
1422         ll_rw_block(READ_META, 1, &bh);
1423         wait_on_buffer(bh);
1424         if (buffer_uptodate(bh))
1425                 return bh;
1426         put_bh(bh);
1427         *err = -EIO;
1428         return NULL;
1429 }
1430
1431 static int walk_page_buffers(handle_t *handle,
1432                              struct buffer_head *head,
1433                              unsigned from,
1434                              unsigned to,
1435                              int *partial,
1436                              int (*fn)(handle_t *handle,
1437                                        struct buffer_head *bh))
1438 {
1439         struct buffer_head *bh;
1440         unsigned block_start, block_end;
1441         unsigned blocksize = head->b_size;
1442         int err, ret = 0;
1443         struct buffer_head *next;
1444
1445         for (bh = head, block_start = 0;
1446              ret == 0 && (bh != head || !block_start);
1447              block_start = block_end, bh = next) {
1448                 next = bh->b_this_page;
1449                 block_end = block_start + blocksize;
1450                 if (block_end <= from || block_start >= to) {
1451                         if (partial && !buffer_uptodate(bh))
1452                                 *partial = 1;
1453                         continue;
1454                 }
1455                 err = (*fn)(handle, bh);
1456                 if (!ret)
1457                         ret = err;
1458         }
1459         return ret;
1460 }
1461
1462 /*
1463  * To preserve ordering, it is essential that the hole instantiation and
1464  * the data write be encapsulated in a single transaction.  We cannot
1465  * close off a transaction and start a new one between the ext4_get_block()
1466  * and the commit_write().  So doing the jbd2_journal_start at the start of
1467  * prepare_write() is the right place.
1468  *
1469  * Also, this function can nest inside ext4_writepage() ->
1470  * block_write_full_page(). In that case, we *know* that ext4_writepage()
1471  * has generated enough buffer credits to do the whole page.  So we won't
1472  * block on the journal in that case, which is good, because the caller may
1473  * be PF_MEMALLOC.
1474  *
1475  * By accident, ext4 can be reentered when a transaction is open via
1476  * quota file writes.  If we were to commit the transaction while thus
1477  * reentered, there can be a deadlock - we would be holding a quota
1478  * lock, and the commit would never complete if another thread had a
1479  * transaction open and was blocking on the quota lock - a ranking
1480  * violation.
1481  *
1482  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1483  * will _not_ run commit under these circumstances because handle->h_ref
1484  * is elevated.  We'll still have enough credits for the tiny quotafile
1485  * write.
1486  */
1487 static int do_journal_get_write_access(handle_t *handle,
1488                                        struct buffer_head *bh)
1489 {
1490         if (!buffer_mapped(bh) || buffer_freed(bh))
1491                 return 0;
1492         return ext4_journal_get_write_access(handle, bh);
1493 }
1494
1495 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1496                             loff_t pos, unsigned len, unsigned flags,
1497                             struct page **pagep, void **fsdata)
1498 {
1499         struct inode *inode = mapping->host;
1500         int ret, needed_blocks;
1501         handle_t *handle;
1502         int retries = 0;
1503         struct page *page;
1504         pgoff_t index;
1505         unsigned from, to;
1506
1507         trace_ext4_write_begin(inode, pos, len, flags);
1508         /*
1509          * Reserve one block more for addition to orphan list in case
1510          * we allocate blocks but write fails for some reason
1511          */
1512         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1513         index = pos >> PAGE_CACHE_SHIFT;
1514         from = pos & (PAGE_CACHE_SIZE - 1);
1515         to = from + len;
1516
1517 retry:
1518         handle = ext4_journal_start(inode, needed_blocks);
1519         if (IS_ERR(handle)) {
1520                 ret = PTR_ERR(handle);
1521                 goto out;
1522         }
1523
1524         /* We cannot recurse into the filesystem as the transaction is already
1525          * started */
1526         flags |= AOP_FLAG_NOFS;
1527
1528         page = grab_cache_page_write_begin(mapping, index, flags);
1529         if (!page) {
1530                 ext4_journal_stop(handle);
1531                 ret = -ENOMEM;
1532                 goto out;
1533         }
1534         *pagep = page;
1535
1536         ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1537                                 ext4_get_block);
1538
1539         if (!ret && ext4_should_journal_data(inode)) {
1540                 ret = walk_page_buffers(handle, page_buffers(page),
1541                                 from, to, NULL, do_journal_get_write_access);
1542         }
1543
1544         if (ret) {
1545                 unlock_page(page);
1546                 page_cache_release(page);
1547                 /*
1548                  * block_write_begin may have instantiated a few blocks
1549                  * outside i_size.  Trim these off again. Don't need
1550                  * i_size_read because we hold i_mutex.
1551                  *
1552                  * Add inode to orphan list in case we crash before
1553                  * truncate finishes
1554                  */
1555                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1556                         ext4_orphan_add(handle, inode);
1557
1558                 ext4_journal_stop(handle);
1559                 if (pos + len > inode->i_size) {
1560                         ext4_truncate(inode);
1561                         /*
1562                          * If truncate failed early the inode might
1563                          * still be on the orphan list; we need to
1564                          * make sure the inode is removed from the
1565                          * orphan list in that case.
1566                          */
1567                         if (inode->i_nlink)
1568                                 ext4_orphan_del(NULL, inode);
1569                 }
1570         }
1571
1572         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1573                 goto retry;
1574 out:
1575         return ret;
1576 }
1577
1578 /* For write_end() in data=journal mode */
1579 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1580 {
1581         if (!buffer_mapped(bh) || buffer_freed(bh))
1582                 return 0;
1583         set_buffer_uptodate(bh);
1584         return ext4_handle_dirty_metadata(handle, NULL, bh);
1585 }
1586
1587 static int ext4_generic_write_end(struct file *file,
1588                                   struct address_space *mapping,
1589                                   loff_t pos, unsigned len, unsigned copied,
1590                                   struct page *page, void *fsdata)
1591 {
1592         int i_size_changed = 0;
1593         struct inode *inode = mapping->host;
1594         handle_t *handle = ext4_journal_current_handle();
1595
1596         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1597
1598         /*
1599          * No need to use i_size_read() here, the i_size
1600          * cannot change under us because we hold i_mutex.
1601          *
1602          * But it's important to update i_size while still holding page lock:
1603          * page writeout could otherwise come in and zero beyond i_size.
1604          */
1605         if (pos + copied > inode->i_size) {
1606                 i_size_write(inode, pos + copied);
1607                 i_size_changed = 1;
1608         }
1609
1610         if (pos + copied >  EXT4_I(inode)->i_disksize) {
1611                 /* We need to mark inode dirty even if
1612                  * new_i_size is less that inode->i_size
1613                  * bu greater than i_disksize.(hint delalloc)
1614                  */
1615                 ext4_update_i_disksize(inode, (pos + copied));
1616                 i_size_changed = 1;
1617         }
1618         unlock_page(page);
1619         page_cache_release(page);
1620
1621         /*
1622          * Don't mark the inode dirty under page lock. First, it unnecessarily
1623          * makes the holding time of page lock longer. Second, it forces lock
1624          * ordering of page lock and transaction start for journaling
1625          * filesystems.
1626          */
1627         if (i_size_changed)
1628                 ext4_mark_inode_dirty(handle, inode);
1629
1630         return copied;
1631 }
1632
1633 /*
1634  * We need to pick up the new inode size which generic_commit_write gave us
1635  * `file' can be NULL - eg, when called from page_symlink().
1636  *
1637  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1638  * buffers are managed internally.
1639  */
1640 static int ext4_ordered_write_end(struct file *file,
1641                                   struct address_space *mapping,
1642                                   loff_t pos, unsigned len, unsigned copied,
1643                                   struct page *page, void *fsdata)
1644 {
1645         handle_t *handle = ext4_journal_current_handle();
1646         struct inode *inode = mapping->host;
1647         int ret = 0, ret2;
1648
1649         trace_ext4_ordered_write_end(inode, pos, len, copied);
1650         ret = ext4_jbd2_file_inode(handle, inode);
1651
1652         if (ret == 0) {
1653                 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1654                                                         page, fsdata);
1655                 copied = ret2;
1656                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1657                         /* if we have allocated more blocks and copied
1658                          * less. We will have blocks allocated outside
1659                          * inode->i_size. So truncate them
1660                          */
1661                         ext4_orphan_add(handle, inode);
1662                 if (ret2 < 0)
1663                         ret = ret2;
1664         }
1665         ret2 = ext4_journal_stop(handle);
1666         if (!ret)
1667                 ret = ret2;
1668
1669         if (pos + len > inode->i_size) {
1670                 ext4_truncate(inode);
1671                 /*
1672                  * If truncate failed early the inode might still be
1673                  * on the orphan list; we need to make sure the inode
1674                  * is removed from the orphan list in that case.
1675                  */
1676                 if (inode->i_nlink)
1677                         ext4_orphan_del(NULL, inode);
1678         }
1679
1680
1681         return ret ? ret : copied;
1682 }
1683
1684 static int ext4_writeback_write_end(struct file *file,
1685                                     struct address_space *mapping,
1686                                     loff_t pos, unsigned len, unsigned copied,
1687                                     struct page *page, void *fsdata)
1688 {
1689         handle_t *handle = ext4_journal_current_handle();
1690         struct inode *inode = mapping->host;
1691         int ret = 0, ret2;
1692
1693         trace_ext4_writeback_write_end(inode, pos, len, copied);
1694         ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1695                                                         page, fsdata);
1696         copied = ret2;
1697         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1698                 /* if we have allocated more blocks and copied
1699                  * less. We will have blocks allocated outside
1700                  * inode->i_size. So truncate them
1701                  */
1702                 ext4_orphan_add(handle, inode);
1703
1704         if (ret2 < 0)
1705                 ret = ret2;
1706
1707         ret2 = ext4_journal_stop(handle);
1708         if (!ret)
1709                 ret = ret2;
1710
1711         if (pos + len > inode->i_size) {
1712                 ext4_truncate(inode);
1713                 /*
1714                  * If truncate failed early the inode might still be
1715                  * on the orphan list; we need to make sure the inode
1716                  * is removed from the orphan list in that case.
1717                  */
1718                 if (inode->i_nlink)
1719                         ext4_orphan_del(NULL, inode);
1720         }
1721
1722         return ret ? ret : copied;
1723 }
1724
1725 static int ext4_journalled_write_end(struct file *file,
1726                                      struct address_space *mapping,
1727                                      loff_t pos, unsigned len, unsigned copied,
1728                                      struct page *page, void *fsdata)
1729 {
1730         handle_t *handle = ext4_journal_current_handle();
1731         struct inode *inode = mapping->host;
1732         int ret = 0, ret2;
1733         int partial = 0;
1734         unsigned from, to;
1735         loff_t new_i_size;
1736
1737         trace_ext4_journalled_write_end(inode, pos, len, copied);
1738         from = pos & (PAGE_CACHE_SIZE - 1);
1739         to = from + len;
1740
1741         if (copied < len) {
1742                 if (!PageUptodate(page))
1743                         copied = 0;
1744                 page_zero_new_buffers(page, from+copied, to);
1745         }
1746
1747         ret = walk_page_buffers(handle, page_buffers(page), from,
1748                                 to, &partial, write_end_fn);
1749         if (!partial)
1750                 SetPageUptodate(page);
1751         new_i_size = pos + copied;
1752         if (new_i_size > inode->i_size)
1753                 i_size_write(inode, pos+copied);
1754         EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1755         if (new_i_size > EXT4_I(inode)->i_disksize) {
1756                 ext4_update_i_disksize(inode, new_i_size);
1757                 ret2 = ext4_mark_inode_dirty(handle, inode);
1758                 if (!ret)
1759                         ret = ret2;
1760         }
1761
1762         unlock_page(page);
1763         page_cache_release(page);
1764         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1765                 /* if we have allocated more blocks and copied
1766                  * less. We will have blocks allocated outside
1767                  * inode->i_size. So truncate them
1768                  */
1769                 ext4_orphan_add(handle, inode);
1770
1771         ret2 = ext4_journal_stop(handle);
1772         if (!ret)
1773                 ret = ret2;
1774         if (pos + len > inode->i_size) {
1775                 ext4_truncate(inode);
1776                 /*
1777                  * If truncate failed early the inode might still be
1778                  * on the orphan list; we need to make sure the inode
1779                  * is removed from the orphan list in that case.
1780                  */
1781                 if (inode->i_nlink)
1782                         ext4_orphan_del(NULL, inode);
1783         }
1784
1785         return ret ? ret : copied;
1786 }
1787
1788 static int ext4_da_reserve_space(struct inode *inode, int nrblocks)
1789 {
1790         int retries = 0;
1791         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1792         unsigned long md_needed, mdblocks, total = 0;
1793
1794         /*
1795          * recalculate the amount of metadata blocks to reserve
1796          * in order to allocate nrblocks
1797          * worse case is one extent per block
1798          */
1799 repeat:
1800         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1801         total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks;
1802         mdblocks = ext4_calc_metadata_amount(inode, total);
1803         BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks);
1804
1805         md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks;
1806         total = md_needed + nrblocks;
1807
1808         /*
1809          * Make quota reservation here to prevent quota overflow
1810          * later. Real quota accounting is done at pages writeout
1811          * time.
1812          */
1813         if (vfs_dq_reserve_block(inode, total)) {
1814                 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1815                 return -EDQUOT;
1816         }
1817
1818         if (ext4_claim_free_blocks(sbi, total)) {
1819                 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1820                 vfs_dq_release_reservation_block(inode, total);
1821                 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1822                         yield();
1823                         goto repeat;
1824                 }
1825                 return -ENOSPC;
1826         }
1827         EXT4_I(inode)->i_reserved_data_blocks += nrblocks;
1828         EXT4_I(inode)->i_reserved_meta_blocks = mdblocks;
1829
1830         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1831         return 0;       /* success */
1832 }
1833
1834 static void ext4_da_release_space(struct inode *inode, int to_free)
1835 {
1836         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1837         int total, mdb, mdb_free, release;
1838
1839         if (!to_free)
1840                 return;         /* Nothing to release, exit */
1841
1842         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1843
1844         if (!EXT4_I(inode)->i_reserved_data_blocks) {
1845                 /*
1846                  * if there is no reserved blocks, but we try to free some
1847                  * then the counter is messed up somewhere.
1848                  * but since this function is called from invalidate
1849                  * page, it's harmless to return without any action
1850                  */
1851                 printk(KERN_INFO "ext4 delalloc try to release %d reserved "
1852                             "blocks for inode %lu, but there is no reserved "
1853                             "data blocks\n", to_free, inode->i_ino);
1854                 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1855                 return;
1856         }
1857
1858         /* recalculate the number of metablocks still need to be reserved */
1859         total = EXT4_I(inode)->i_reserved_data_blocks - to_free;
1860         mdb = ext4_calc_metadata_amount(inode, total);
1861
1862         /* figure out how many metablocks to release */
1863         BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1864         mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1865
1866         release = to_free + mdb_free;
1867
1868         /* update fs dirty blocks counter for truncate case */
1869         percpu_counter_sub(&sbi->s_dirtyblocks_counter, release);
1870
1871         /* update per-inode reservations */
1872         BUG_ON(to_free > EXT4_I(inode)->i_reserved_data_blocks);
1873         EXT4_I(inode)->i_reserved_data_blocks -= to_free;
1874
1875         BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1876         EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1877         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1878
1879         vfs_dq_release_reservation_block(inode, release);
1880 }
1881
1882 static void ext4_da_page_release_reservation(struct page *page,
1883                                              unsigned long offset)
1884 {
1885         int to_release = 0;
1886         struct buffer_head *head, *bh;
1887         unsigned int curr_off = 0;
1888
1889         head = page_buffers(page);
1890         bh = head;
1891         do {
1892                 unsigned int next_off = curr_off + bh->b_size;
1893
1894                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1895                         to_release++;
1896                         clear_buffer_delay(bh);
1897                 }
1898                 curr_off = next_off;
1899         } while ((bh = bh->b_this_page) != head);
1900         ext4_da_release_space(page->mapping->host, to_release);
1901 }
1902
1903 /*
1904  * Delayed allocation stuff
1905  */
1906
1907 /*
1908  * mpage_da_submit_io - walks through extent of pages and try to write
1909  * them with writepage() call back
1910  *
1911  * @mpd->inode: inode
1912  * @mpd->first_page: first page of the extent
1913  * @mpd->next_page: page after the last page of the extent
1914  *
1915  * By the time mpage_da_submit_io() is called we expect all blocks
1916  * to be allocated. this may be wrong if allocation failed.
1917  *
1918  * As pages are already locked by write_cache_pages(), we can't use it
1919  */
1920 static int mpage_da_submit_io(struct mpage_da_data *mpd)
1921 {
1922         long pages_skipped;
1923         struct pagevec pvec;
1924         unsigned long index, end;
1925         int ret = 0, err, nr_pages, i;
1926         struct inode *inode = mpd->inode;
1927         struct address_space *mapping = inode->i_mapping;
1928
1929         BUG_ON(mpd->next_page <= mpd->first_page);
1930         /*
1931          * We need to start from the first_page to the next_page - 1
1932          * to make sure we also write the mapped dirty buffer_heads.
1933          * If we look at mpd->b_blocknr we would only be looking
1934          * at the currently mapped buffer_heads.
1935          */
1936         index = mpd->first_page;
1937         end = mpd->next_page - 1;
1938
1939         pagevec_init(&pvec, 0);
1940         while (index <= end) {
1941                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1942                 if (nr_pages == 0)
1943                         break;
1944                 for (i = 0; i < nr_pages; i++) {
1945                         struct page *page = pvec.pages[i];
1946
1947                         index = page->index;
1948                         if (index > end)
1949                                 break;
1950                         index++;
1951
1952                         BUG_ON(!PageLocked(page));
1953                         BUG_ON(PageWriteback(page));
1954
1955                         pages_skipped = mpd->wbc->pages_skipped;
1956                         err = mapping->a_ops->writepage(page, mpd->wbc);
1957                         if (!err && (pages_skipped == mpd->wbc->pages_skipped))
1958                                 /*
1959                                  * have successfully written the page
1960                                  * without skipping the same
1961                                  */
1962                                 mpd->pages_written++;
1963                         /*
1964                          * In error case, we have to continue because
1965                          * remaining pages are still locked
1966                          * XXX: unlock and re-dirty them?
1967                          */
1968                         if (ret == 0)
1969                                 ret = err;
1970                 }
1971                 pagevec_release(&pvec);
1972         }
1973         return ret;
1974 }
1975
1976 /*
1977  * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
1978  *
1979  * @mpd->inode - inode to walk through
1980  * @exbh->b_blocknr - first block on a disk
1981  * @exbh->b_size - amount of space in bytes
1982  * @logical - first logical block to start assignment with
1983  *
1984  * the function goes through all passed space and put actual disk
1985  * block numbers into buffer heads, dropping BH_Delay and BH_Unwritten
1986  */
1987 static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
1988                                  struct buffer_head *exbh)
1989 {
1990         struct inode *inode = mpd->inode;
1991         struct address_space *mapping = inode->i_mapping;
1992         int blocks = exbh->b_size >> inode->i_blkbits;
1993         sector_t pblock = exbh->b_blocknr, cur_logical;
1994         struct buffer_head *head, *bh;
1995         pgoff_t index, end;
1996         struct pagevec pvec;
1997         int nr_pages, i;
1998
1999         index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2000         end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2001         cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2002
2003         pagevec_init(&pvec, 0);
2004
2005         while (index <= end) {
2006                 /* XXX: optimize tail */
2007                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2008                 if (nr_pages == 0)
2009                         break;
2010                 for (i = 0; i < nr_pages; i++) {
2011                         struct page *page = pvec.pages[i];
2012
2013                         index = page->index;
2014                         if (index > end)
2015                                 break;
2016                         index++;
2017
2018                         BUG_ON(!PageLocked(page));
2019                         BUG_ON(PageWriteback(page));
2020                         BUG_ON(!page_has_buffers(page));
2021
2022                         bh = page_buffers(page);
2023                         head = bh;
2024
2025                         /* skip blocks out of the range */
2026                         do {
2027                                 if (cur_logical >= logical)
2028                                         break;
2029                                 cur_logical++;
2030                         } while ((bh = bh->b_this_page) != head);
2031
2032                         do {
2033                                 if (cur_logical >= logical + blocks)
2034                                         break;
2035
2036                                 if (buffer_delay(bh) ||
2037                                                 buffer_unwritten(bh)) {
2038
2039                                         BUG_ON(bh->b_bdev != inode->i_sb->s_bdev);
2040
2041                                         if (buffer_delay(bh)) {
2042                                                 clear_buffer_delay(bh);
2043                                                 bh->b_blocknr = pblock;
2044                                         } else {
2045                                                 /*
2046                                                  * unwritten already should have
2047                                                  * blocknr assigned. Verify that
2048                                                  */
2049                                                 clear_buffer_unwritten(bh);
2050                                                 BUG_ON(bh->b_blocknr != pblock);
2051                                         }
2052
2053                                 } else if (buffer_mapped(bh))
2054                                         BUG_ON(bh->b_blocknr != pblock);
2055
2056                                 cur_logical++;
2057                                 pblock++;
2058                         } while ((bh = bh->b_this_page) != head);
2059                 }
2060                 pagevec_release(&pvec);
2061         }
2062 }
2063
2064
2065 /*
2066  * __unmap_underlying_blocks - just a helper function to unmap
2067  * set of blocks described by @bh
2068  */
2069 static inline void __unmap_underlying_blocks(struct inode *inode,
2070                                              struct buffer_head *bh)
2071 {
2072         struct block_device *bdev = inode->i_sb->s_bdev;
2073         int blocks, i;
2074
2075         blocks = bh->b_size >> inode->i_blkbits;
2076         for (i = 0; i < blocks; i++)
2077                 unmap_underlying_metadata(bdev, bh->b_blocknr + i);
2078 }
2079
2080 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
2081                                         sector_t logical, long blk_cnt)
2082 {
2083         int nr_pages, i;
2084         pgoff_t index, end;
2085         struct pagevec pvec;
2086         struct inode *inode = mpd->inode;
2087         struct address_space *mapping = inode->i_mapping;
2088
2089         index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2090         end   = (logical + blk_cnt - 1) >>
2091                                 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2092         while (index <= end) {
2093                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2094                 if (nr_pages == 0)
2095                         break;
2096                 for (i = 0; i < nr_pages; i++) {
2097                         struct page *page = pvec.pages[i];
2098                         index = page->index;
2099                         if (index > end)
2100                                 break;
2101                         index++;
2102
2103                         BUG_ON(!PageLocked(page));
2104                         BUG_ON(PageWriteback(page));
2105                         block_invalidatepage(page, 0);
2106                         ClearPageUptodate(page);
2107                         unlock_page(page);
2108                 }
2109         }
2110         return;
2111 }
2112
2113 static void ext4_print_free_blocks(struct inode *inode)
2114 {
2115         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2116         printk(KERN_CRIT "Total free blocks count %lld\n",
2117                ext4_count_free_blocks(inode->i_sb));
2118         printk(KERN_CRIT "Free/Dirty block details\n");
2119         printk(KERN_CRIT "free_blocks=%lld\n",
2120                (long long) percpu_counter_sum(&sbi->s_freeblocks_counter));
2121         printk(KERN_CRIT "dirty_blocks=%lld\n",
2122                (long long) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
2123         printk(KERN_CRIT "Block reservation details\n");
2124         printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
2125                EXT4_I(inode)->i_reserved_data_blocks);
2126         printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
2127                EXT4_I(inode)->i_reserved_meta_blocks);
2128         return;
2129 }
2130
2131 /*
2132  * mpage_da_map_blocks - go through given space
2133  *
2134  * @mpd - bh describing space
2135  *
2136  * The function skips space we know is already mapped to disk blocks.
2137  *
2138  */
2139 static int mpage_da_map_blocks(struct mpage_da_data *mpd)
2140 {
2141         int err, blks, get_blocks_flags;
2142         struct buffer_head new;
2143         sector_t next = mpd->b_blocknr;
2144         unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
2145         loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
2146         handle_t *handle = NULL;
2147
2148         /*
2149          * We consider only non-mapped and non-allocated blocks
2150          */
2151         if ((mpd->b_state  & (1 << BH_Mapped)) &&
2152                 !(mpd->b_state & (1 << BH_Delay)) &&
2153                 !(mpd->b_state & (1 << BH_Unwritten)))
2154                 return 0;
2155
2156         /*
2157          * If we didn't accumulate anything to write simply return
2158          */
2159         if (!mpd->b_size)
2160                 return 0;
2161
2162         handle = ext4_journal_current_handle();
2163         BUG_ON(!handle);
2164
2165         /*
2166          * Call ext4_get_blocks() to allocate any delayed allocation
2167          * blocks, or to convert an uninitialized extent to be
2168          * initialized (in the case where we have written into
2169          * one or more preallocated blocks).
2170          *
2171          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
2172          * indicate that we are on the delayed allocation path.  This
2173          * affects functions in many different parts of the allocation
2174          * call path.  This flag exists primarily because we don't
2175          * want to change *many* call functions, so ext4_get_blocks()
2176          * will set the magic i_delalloc_reserved_flag once the
2177          * inode's allocation semaphore is taken.
2178          *
2179          * If the blocks in questions were delalloc blocks, set
2180          * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
2181          * variables are updated after the blocks have been allocated.
2182          */
2183         new.b_state = 0;
2184         get_blocks_flags = (EXT4_GET_BLOCKS_CREATE |
2185                             EXT4_GET_BLOCKS_DELALLOC_RESERVE);
2186         if (mpd->b_state & (1 << BH_Delay))
2187                 get_blocks_flags |= EXT4_GET_BLOCKS_UPDATE_RESERVE_SPACE;
2188         blks = ext4_get_blocks(handle, mpd->inode, next, max_blocks,
2189                                &new, get_blocks_flags);
2190         if (blks < 0) {
2191                 err = blks;
2192                 /*
2193                  * If get block returns with error we simply
2194                  * return. Later writepage will redirty the page and
2195                  * writepages will find the dirty page again
2196                  */
2197                 if (err == -EAGAIN)
2198                         return 0;
2199
2200                 if (err == -ENOSPC &&
2201                     ext4_count_free_blocks(mpd->inode->i_sb)) {
2202                         mpd->retval = err;
2203                         return 0;
2204                 }
2205
2206                 /*
2207                  * get block failure will cause us to loop in
2208                  * writepages, because a_ops->writepage won't be able
2209                  * to make progress. The page will be redirtied by
2210                  * writepage and writepages will again try to write
2211                  * the same.
2212                  */
2213                 ext4_msg(mpd->inode->i_sb, KERN_CRIT,
2214                          "delayed block allocation failed for inode %lu at "
2215                          "logical offset %llu with max blocks %zd with "
2216                          "error %d\n", mpd->inode->i_ino,
2217                          (unsigned long long) next,
2218                          mpd->b_size >> mpd->inode->i_blkbits, err);
2219                 printk(KERN_CRIT "This should not happen!!  "
2220                        "Data will be lost\n");
2221                 if (err == -ENOSPC) {
2222                         ext4_print_free_blocks(mpd->inode);
2223                 }
2224                 /* invalidate all the pages */
2225                 ext4_da_block_invalidatepages(mpd, next,
2226                                 mpd->b_size >> mpd->inode->i_blkbits);
2227                 return err;
2228         }
2229         BUG_ON(blks == 0);
2230
2231         new.b_size = (blks << mpd->inode->i_blkbits);
2232
2233         if (buffer_new(&new))
2234                 __unmap_underlying_blocks(mpd->inode, &new);
2235
2236         /*
2237          * If blocks are delayed marked, we need to
2238          * put actual blocknr and drop delayed bit
2239          */
2240         if ((mpd->b_state & (1 << BH_Delay)) ||
2241             (mpd->b_state & (1 << BH_Unwritten)))
2242                 mpage_put_bnr_to_bhs(mpd, next, &new);
2243
2244         if (ext4_should_order_data(mpd->inode)) {
2245                 err = ext4_jbd2_file_inode(handle, mpd->inode);
2246                 if (err)
2247                         return err;
2248         }
2249
2250         /*
2251          * Update on-disk size along with block allocation.
2252          */
2253         disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
2254         if (disksize > i_size_read(mpd->inode))
2255                 disksize = i_size_read(mpd->inode);
2256         if (disksize > EXT4_I(mpd->inode)->i_disksize) {
2257                 ext4_update_i_disksize(mpd->inode, disksize);
2258                 return ext4_mark_inode_dirty(handle, mpd->inode);
2259         }
2260
2261         return 0;
2262 }
2263
2264 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
2265                 (1 << BH_Delay) | (1 << BH_Unwritten))
2266
2267 /*
2268  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
2269  *
2270  * @mpd->lbh - extent of blocks
2271  * @logical - logical number of the block in the file
2272  * @bh - bh of the block (used to access block's state)
2273  *
2274  * the function is used to collect contig. blocks in same state
2275  */
2276 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
2277                                    sector_t logical, size_t b_size,
2278                                    unsigned long b_state)
2279 {
2280         sector_t next;
2281         int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
2282
2283         /* check if thereserved journal credits might overflow */
2284         if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
2285                 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
2286                         /*
2287                          * With non-extent format we are limited by the journal
2288                          * credit available.  Total credit needed to insert
2289                          * nrblocks contiguous blocks is dependent on the
2290                          * nrblocks.  So limit nrblocks.
2291                          */
2292                         goto flush_it;
2293                 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
2294                                 EXT4_MAX_TRANS_DATA) {
2295                         /*
2296                          * Adding the new buffer_head would make it cross the
2297                          * allowed limit for which we have journal credit
2298                          * reserved. So limit the new bh->b_size
2299                          */
2300                         b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
2301                                                 mpd->inode->i_blkbits;
2302                         /* we will do mpage_da_submit_io in the next loop */
2303                 }
2304         }
2305         /*
2306          * First block in the extent
2307          */
2308         if (mpd->b_size == 0) {
2309                 mpd->b_blocknr = logical;
2310                 mpd->b_size = b_size;
2311                 mpd->b_state = b_state & BH_FLAGS;
2312                 return;
2313         }
2314
2315         next = mpd->b_blocknr + nrblocks;
2316         /*
2317          * Can we merge the block to our big extent?
2318          */
2319         if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
2320                 mpd->b_size += b_size;
2321                 return;
2322         }
2323
2324 flush_it:
2325         /*
2326          * We couldn't merge the block to our extent, so we
2327          * need to flush current  extent and start new one
2328          */
2329         if (mpage_da_map_blocks(mpd) == 0)
2330                 mpage_da_submit_io(mpd);
2331         mpd->io_done = 1;
2332         return;
2333 }
2334
2335 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
2336 {
2337         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
2338 }
2339
2340 /*
2341  * __mpage_da_writepage - finds extent of pages and blocks
2342  *
2343  * @page: page to consider
2344  * @wbc: not used, we just follow rules
2345  * @data: context
2346  *
2347  * The function finds extents of pages and scan them for all blocks.
2348  */
2349 static int __mpage_da_writepage(struct page *page,
2350                                 struct writeback_control *wbc, void *data)
2351 {
2352         struct mpage_da_data *mpd = data;
2353         struct inode *inode = mpd->inode;
2354         struct buffer_head *bh, *head;
2355         sector_t logical;
2356
2357         if (mpd->io_done) {
2358                 /*
2359                  * Rest of the page in the page_vec
2360                  * redirty then and skip then. We will
2361                  * try to write them again after
2362                  * starting a new transaction
2363                  */
2364                 redirty_page_for_writepage(wbc, page);
2365                 unlock_page(page);
2366                 return MPAGE_DA_EXTENT_TAIL;
2367         }
2368         /*
2369          * Can we merge this page to current extent?
2370          */
2371         if (mpd->next_page != page->index) {
2372                 /*
2373                  * Nope, we can't. So, we map non-allocated blocks
2374                  * and start IO on them using writepage()
2375                  */
2376                 if (mpd->next_page != mpd->first_page) {
2377                         if (mpage_da_map_blocks(mpd) == 0)
2378                                 mpage_da_submit_io(mpd);
2379                         /*
2380                          * skip rest of the page in the page_vec
2381                          */
2382                         mpd->io_done = 1;
2383                         redirty_page_for_writepage(wbc, page);
2384                         unlock_page(page);
2385                         return MPAGE_DA_EXTENT_TAIL;
2386                 }
2387
2388                 /*
2389                  * Start next extent of pages ...
2390                  */
2391                 mpd->first_page = page->index;
2392
2393                 /*
2394                  * ... and blocks
2395                  */
2396                 mpd->b_size = 0;
2397                 mpd->b_state = 0;
2398                 mpd->b_blocknr = 0;
2399         }
2400
2401         mpd->next_page = page->index + 1;
2402         logical = (sector_t) page->index <<
2403                   (PAGE_CACHE_SHIFT - inode->i_blkbits);
2404
2405         if (!page_has_buffers(page)) {
2406                 mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
2407                                        (1 << BH_Dirty) | (1 << BH_Uptodate));
2408                 if (mpd->io_done)
2409                         return MPAGE_DA_EXTENT_TAIL;
2410         } else {
2411                 /*
2412                  * Page with regular buffer heads, just add all dirty ones
2413                  */
2414                 head = page_buffers(page);
2415                 bh = head;
2416                 do {
2417                         BUG_ON(buffer_locked(bh));
2418                         /*
2419                          * We need to try to allocate
2420                          * unmapped blocks in the same page.
2421                          * Otherwise we won't make progress
2422                          * with the page in ext4_writepage
2423                          */
2424                         if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2425                                 mpage_add_bh_to_extent(mpd, logical,
2426                                                        bh->b_size,
2427                                                        bh->b_state);
2428                                 if (mpd->io_done)
2429                                         return MPAGE_DA_EXTENT_TAIL;
2430                         } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2431                                 /*
2432                                  * mapped dirty buffer. We need to update
2433                                  * the b_state because we look at
2434                                  * b_state in mpage_da_map_blocks. We don't
2435                                  * update b_size because if we find an
2436                                  * unmapped buffer_head later we need to
2437                                  * use the b_state flag of that buffer_head.
2438                                  */
2439                                 if (mpd->b_size == 0)
2440                                         mpd->b_state = bh->b_state & BH_FLAGS;
2441                         }
2442                         logical++;
2443                 } while ((bh = bh->b_this_page) != head);
2444         }
2445
2446         return 0;
2447 }
2448
2449 /*
2450  * This is a special get_blocks_t callback which is used by
2451  * ext4_da_write_begin().  It will either return mapped block or
2452  * reserve space for a single block.
2453  *
2454  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2455  * We also have b_blocknr = -1 and b_bdev initialized properly
2456  *
2457  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2458  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2459  * initialized properly.
2460  */
2461 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2462                                   struct buffer_head *bh_result, int create)
2463 {
2464         int ret = 0;
2465         sector_t invalid_block = ~((sector_t) 0xffff);
2466
2467         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
2468                 invalid_block = ~0;
2469
2470         BUG_ON(create == 0);
2471         BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2472
2473         /*
2474          * first, we need to know whether the block is allocated already
2475          * preallocated blocks are unmapped but should treated
2476          * the same as allocated blocks.
2477          */
2478         ret = ext4_get_blocks(NULL, inode, iblock, 1,  bh_result, 0);
2479         if ((ret == 0) && !buffer_delay(bh_result)) {
2480                 /* the block isn't (pre)allocated yet, let's reserve space */
2481                 /*
2482                  * XXX: __block_prepare_write() unmaps passed block,
2483                  * is it OK?
2484                  */
2485                 ret = ext4_da_reserve_space(inode, 1);
2486                 if (ret)
2487                         /* not enough space to reserve */
2488                         return ret;
2489
2490                 map_bh(bh_result, inode->i_sb, invalid_block);
2491                 set_buffer_new(bh_result);
2492                 set_buffer_delay(bh_result);
2493         } else if (ret > 0) {
2494                 bh_result->b_size = (ret << inode->i_blkbits);
2495                 if (buffer_unwritten(bh_result)) {
2496                         /* A delayed write to unwritten bh should
2497                          * be marked new and mapped.  Mapped ensures
2498                          * that we don't do get_block multiple times
2499                          * when we write to the same offset and new
2500                          * ensures that we do proper zero out for
2501                          * partial write.
2502                          */
2503                         set_buffer_new(bh_result);
2504                         set_buffer_mapped(bh_result);
2505                 }
2506                 ret = 0;
2507         }
2508
2509         return ret;
2510 }
2511
2512 /*
2513  * This function is used as a standard get_block_t calback function
2514  * when there is no desire to allocate any blocks.  It is used as a
2515  * callback function for block_prepare_write(), nobh_writepage(), and
2516  * block_write_full_page().  These functions should only try to map a
2517  * single block at a time.
2518  *
2519  * Since this function doesn't do block allocations even if the caller
2520  * requests it by passing in create=1, it is critically important that
2521  * any caller checks to make sure that any buffer heads are returned
2522  * by this function are either all already mapped or marked for
2523  * delayed allocation before calling nobh_writepage() or
2524  * block_write_full_page().  Otherwise, b_blocknr could be left
2525  * unitialized, and the page write functions will be taken by
2526  * surprise.
2527  */
2528 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
2529                                    struct buffer_head *bh_result, int create)
2530 {
2531         int ret = 0;
2532         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2533
2534         BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2535
2536         /*
2537          * we don't want to do block allocation in writepage
2538          * so call get_block_wrap with create = 0
2539          */
2540         ret = ext4_get_blocks(NULL, inode, iblock, max_blocks, bh_result, 0);
2541         if (ret > 0) {
2542                 bh_result->b_size = (ret << inode->i_blkbits);
2543                 ret = 0;
2544         }
2545         return ret;
2546 }
2547
2548 static int bget_one(handle_t *handle, struct buffer_head *bh)
2549 {
2550         get_bh(bh);
2551         return 0;
2552 }
2553
2554 static int bput_one(handle_t *handle, struct buffer_head *bh)
2555 {
2556         put_bh(bh);
2557         return 0;
2558 }
2559
2560 static int __ext4_journalled_writepage(struct page *page,
2561                                        unsigned int len)
2562 {
2563         struct address_space *mapping = page->mapping;
2564         struct inode *inode = mapping->host;
2565         struct buffer_head *page_bufs;
2566         handle_t *handle = NULL;
2567         int ret = 0;
2568         int err;
2569
2570         page_bufs = page_buffers(page);
2571         BUG_ON(!page_bufs);
2572         walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
2573         /* As soon as we unlock the page, it can go away, but we have
2574          * references to buffers so we are safe */
2575         unlock_page(page);
2576
2577         handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
2578         if (IS_ERR(handle)) {
2579                 ret = PTR_ERR(handle);
2580                 goto out;
2581         }
2582
2583         ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2584                                 do_journal_get_write_access);
2585
2586         err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2587                                 write_end_fn);
2588         if (ret == 0)
2589                 ret = err;
2590         err = ext4_journal_stop(handle);
2591         if (!ret)
2592                 ret = err;
2593
2594         walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
2595         EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
2596 out:
2597         return ret;
2598 }
2599
2600 /*
2601  * Note that we don't need to start a transaction unless we're journaling data
2602  * because we should have holes filled from ext4_page_mkwrite(). We even don't
2603  * need to file the inode to the transaction's list in ordered mode because if
2604  * we are writing back data added by write(), the inode is already there and if
2605  * we are writing back data modified via mmap(), noone guarantees in which
2606  * transaction the data will hit the disk. In case we are journaling data, we
2607  * cannot start transaction directly because transaction start ranks above page
2608  * lock so we have to do some magic.
2609  *
2610  * This function can get called via...
2611  *   - ext4_da_writepages after taking page lock (have journal handle)
2612  *   - journal_submit_inode_data_buffers (no journal handle)
2613  *   - shrink_page_list via pdflush (no journal handle)
2614  *   - grab_page_cache when doing write_begin (have journal handle)
2615  *
2616  * We don't do any block allocation in this function. If we have page with
2617  * multiple blocks we need to write those buffer_heads that are mapped. This
2618  * is important for mmaped based write. So if we do with blocksize 1K
2619  * truncate(f, 1024);
2620  * a = mmap(f, 0, 4096);
2621  * a[0] = 'a';
2622  * truncate(f, 4096);
2623  * we have in the page first buffer_head mapped via page_mkwrite call back
2624  * but other bufer_heads would be unmapped but dirty(dirty done via the
2625  * do_wp_page). So writepage should write the first block. If we modify
2626  * the mmap area beyond 1024 we will again get a page_fault and the
2627  * page_mkwrite callback will do the block allocation and mark the
2628  * buffer_heads mapped.
2629  *
2630  * We redirty the page if we have any buffer_heads that is either delay or
2631  * unwritten in the page.
2632  *
2633  * We can get recursively called as show below.
2634  *
2635  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2636  *              ext4_writepage()
2637  *
2638  * But since we don't do any block allocation we should not deadlock.
2639  * Page also have the dirty flag cleared so we don't get recurive page_lock.
2640  */
2641 static int ext4_writepage(struct page *page,
2642                           struct writeback_control *wbc)
2643 {
2644         int ret = 0;
2645         loff_t size;
2646         unsigned int len;
2647         struct buffer_head *page_bufs;
2648         struct inode *inode = page->mapping->host;
2649
2650         trace_ext4_writepage(inode, page);
2651         size = i_size_read(inode);
2652         if (page->index == size >> PAGE_CACHE_SHIFT)
2653                 len = size & ~PAGE_CACHE_MASK;
2654         else
2655                 len = PAGE_CACHE_SIZE;
2656
2657         if (page_has_buffers(page)) {
2658                 page_bufs = page_buffers(page);
2659                 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2660                                         ext4_bh_delay_or_unwritten)) {
2661                         /*
2662                          * We don't want to do  block allocation
2663                          * So redirty the page and return
2664                          * We may reach here when we do a journal commit
2665                          * via journal_submit_inode_data_buffers.
2666                          * If we don't have mapping block we just ignore
2667                          * them. We can also reach here via shrink_page_list
2668                          */
2669                         redirty_page_for_writepage(wbc, page);
2670                         unlock_page(page);
2671                         return 0;
2672                 }
2673         } else {
2674                 /*
2675                  * The test for page_has_buffers() is subtle:
2676                  * We know the page is dirty but it lost buffers. That means
2677                  * that at some moment in time after write_begin()/write_end()
2678                  * has been called all buffers have been clean and thus they
2679                  * must have been written at least once. So they are all
2680                  * mapped and we can happily proceed with mapping them
2681                  * and writing the page.
2682                  *
2683                  * Try to initialize the buffer_heads and check whether
2684                  * all are mapped and non delay. We don't want to
2685                  * do block allocation here.
2686                  */
2687                 ret = block_prepare_write(page, 0, len,
2688                                           noalloc_get_block_write);
2689                 if (!ret) {
2690                         page_bufs = page_buffers(page);
2691                         /* check whether all are mapped and non delay */
2692                         if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2693                                                 ext4_bh_delay_or_unwritten)) {
2694                                 redirty_page_for_writepage(wbc, page);
2695                                 unlock_page(page);
2696                                 return 0;
2697                         }
2698                 } else {
2699                         /*
2700                          * We can't do block allocation here
2701                          * so just redity the page and unlock
2702                          * and return
2703                          */
2704                         redirty_page_for_writepage(wbc, page);
2705                         unlock_page(page);
2706                         return 0;
2707                 }
2708                 /* now mark the buffer_heads as dirty and uptodate */
2709                 block_commit_write(page, 0, len);
2710         }
2711
2712         if (PageChecked(page) && ext4_should_journal_data(inode)) {
2713                 /*
2714                  * It's mmapped pagecache.  Add buffers and journal it.  There
2715                  * doesn't seem much point in redirtying the page here.
2716                  */
2717                 ClearPageChecked(page);
2718                 return __ext4_journalled_writepage(page, len);
2719         }
2720
2721         if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
2722                 ret = nobh_writepage(page, noalloc_get_block_write, wbc);
2723         else
2724                 ret = block_write_full_page(page, noalloc_get_block_write,
2725                                             wbc);
2726
2727         return ret;
2728 }
2729
2730 /*
2731  * This is called via ext4_da_writepages() to
2732  * calulate the total number of credits to reserve to fit
2733  * a single extent allocation into a single transaction,
2734  * ext4_da_writpeages() will loop calling this before
2735  * the block allocation.
2736  */
2737
2738 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2739 {
2740         int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2741
2742         /*
2743          * With non-extent format the journal credit needed to
2744          * insert nrblocks contiguous block is dependent on
2745          * number of contiguous block. So we will limit
2746          * number of contiguous block to a sane value
2747          */
2748         if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) &&
2749             (max_blocks > EXT4_MAX_TRANS_DATA))
2750                 max_blocks = EXT4_MAX_TRANS_DATA;
2751
2752         return ext4_chunk_trans_blocks(inode, max_blocks);
2753 }
2754
2755 static int ext4_da_writepages(struct address_space *mapping,
2756                               struct writeback_control *wbc)
2757 {
2758         pgoff_t index;
2759         int range_whole = 0;
2760         handle_t *handle = NULL;
2761         struct mpage_da_data mpd;
2762         struct inode *inode = mapping->host;
2763         int no_nrwrite_index_update;
2764         int pages_written = 0;
2765         long pages_skipped;
2766         unsigned int max_pages;
2767         int range_cyclic, cycled = 1, io_done = 0;
2768         int needed_blocks, ret = 0;
2769         long desired_nr_to_write, nr_to_writebump = 0;
2770         loff_t range_start = wbc->range_start;
2771         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2772
2773         trace_ext4_da_writepages(inode, wbc);
2774
2775         /*
2776          * No pages to write? This is mainly a kludge to avoid starting
2777          * a transaction for special inodes like journal inode on last iput()
2778          * because that could violate lock ordering on umount
2779          */
2780         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2781                 return 0;
2782
2783         /*
2784          * If the filesystem has aborted, it is read-only, so return
2785          * right away instead of dumping stack traces later on that
2786          * will obscure the real source of the problem.  We test
2787          * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2788          * the latter could be true if the filesystem is mounted
2789          * read-only, and in that case, ext4_da_writepages should
2790          * *never* be called, so if that ever happens, we would want
2791          * the stack trace.
2792          */
2793         if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2794                 return -EROFS;
2795
2796         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2797                 range_whole = 1;
2798
2799         range_cyclic = wbc->range_cyclic;
2800         if (wbc->range_cyclic) {
2801                 index = mapping->writeback_index;
2802                 if (index)
2803                         cycled = 0;
2804                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2805                 wbc->range_end  = LLONG_MAX;
2806                 wbc->range_cyclic = 0;
2807         } else
2808                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2809
2810         /*
2811          * This works around two forms of stupidity.  The first is in
2812          * the writeback code, which caps the maximum number of pages
2813          * written to be 1024 pages.  This is wrong on multiple
2814          * levels; different architectues have a different page size,
2815          * which changes the maximum amount of data which gets
2816          * written.  Secondly, 4 megabytes is way too small.  XFS
2817          * forces this value to be 16 megabytes by multiplying
2818          * nr_to_write parameter by four, and then relies on its
2819          * allocator to allocate larger extents to make them
2820          * contiguous.  Unfortunately this brings us to the second
2821          * stupidity, which is that ext4's mballoc code only allocates
2822          * at most 2048 blocks.  So we force contiguous writes up to
2823          * the number of dirty blocks in the inode, or
2824          * sbi->max_writeback_mb_bump whichever is smaller.
2825          */
2826         max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2827         if (!range_cyclic && range_whole)
2828                 desired_nr_to_write = wbc->nr_to_write * 8;
2829         else
2830                 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2831                                                            max_pages);
2832         if (desired_nr_to_write > max_pages)
2833                 desired_nr_to_write = max_pages;
2834
2835         if (wbc->nr_to_write < desired_nr_to_write) {
2836                 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2837                 wbc->nr_to_write = desired_nr_to_write;
2838         }
2839
2840         mpd.wbc = wbc;
2841         mpd.inode = mapping->host;
2842
2843         /*
2844          * we don't want write_cache_pages to update
2845          * nr_to_write and writeback_index
2846          */
2847         no_nrwrite_index_update = wbc->no_nrwrite_index_update;
2848         wbc->no_nrwrite_index_update = 1;
2849         pages_skipped = wbc->pages_skipped;
2850
2851 retry:
2852         while (!ret && wbc->nr_to_write > 0) {
2853
2854                 /*
2855                  * we  insert one extent at a time. So we need
2856                  * credit needed for single extent allocation.
2857                  * journalled mode is currently not supported
2858                  * by delalloc
2859                  */
2860                 BUG_ON(ext4_should_journal_data(inode));
2861                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2862
2863                 /* start a new transaction*/
2864                 handle = ext4_journal_start(inode, needed_blocks);
2865                 if (IS_ERR(handle)) {
2866                         ret = PTR_ERR(handle);
2867                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2868                                "%ld pages, ino %lu; err %d\n", __func__,
2869                                 wbc->nr_to_write, inode->i_ino, ret);
2870                         goto out_writepages;
2871                 }
2872
2873                 /*
2874                  * Now call __mpage_da_writepage to find the next
2875                  * contiguous region of logical blocks that need
2876                  * blocks to be allocated by ext4.  We don't actually
2877                  * submit the blocks for I/O here, even though
2878                  * write_cache_pages thinks it will, and will set the
2879                  * pages as clean for write before calling
2880                  * __mpage_da_writepage().
2881                  */
2882                 mpd.b_size = 0;
2883                 mpd.b_state = 0;
2884                 mpd.b_blocknr = 0;
2885                 mpd.first_page = 0;
2886                 mpd.next_page = 0;
2887                 mpd.io_done = 0;
2888                 mpd.pages_written = 0;
2889                 mpd.retval = 0;
2890                 ret = write_cache_pages(mapping, wbc, __mpage_da_writepage,
2891                                         &mpd);
2892                 /*
2893                  * If we have a contigous extent of pages and we
2894                  * haven't done the I/O yet, map the blocks and submit
2895                  * them for I/O.
2896                  */
2897                 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2898                         if (mpage_da_map_blocks(&mpd) == 0)
2899                                 mpage_da_submit_io(&mpd);
2900                         mpd.io_done = 1;
2901                         ret = MPAGE_DA_EXTENT_TAIL;
2902                 }
2903                 trace_ext4_da_write_pages(inode, &mpd);
2904                 wbc->nr_to_write -= mpd.pages_written;
2905
2906                 ext4_journal_stop(handle);
2907
2908                 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2909                         /* commit the transaction which would
2910                          * free blocks released in the transaction
2911                          * and try again
2912                          */
2913                         jbd2_journal_force_commit_nested(sbi->s_journal);
2914                         wbc->pages_skipped = pages_skipped;
2915                         ret = 0;
2916                 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
2917                         /*
2918                          * got one extent now try with
2919                          * rest of the pages
2920                          */
2921                         pages_written += mpd.pages_written;
2922                         wbc->pages_skipped = pages_skipped;
2923                         ret = 0;
2924                         io_done = 1;
2925                 } else if (wbc->nr_to_write)
2926                         /*
2927                          * There is no more writeout needed
2928                          * or we requested for a noblocking writeout
2929                          * and we found the device congested
2930                          */
2931                         break;
2932         }
2933         if (!io_done && !cycled) {
2934                 cycled = 1;
2935                 index = 0;
2936                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2937                 wbc->range_end  = mapping->writeback_index - 1;
2938                 goto retry;
2939         }
2940         if (pages_skipped != wbc->pages_skipped)
2941                 ext4_msg(inode->i_sb, KERN_CRIT,
2942                          "This should not happen leaving %s "
2943                          "with nr_to_write = %ld ret = %d\n",
2944                          __func__, wbc->nr_to_write, ret);
2945
2946         /* Update index */
2947         index += pages_written;
2948         wbc->range_cyclic = range_cyclic;
2949         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2950                 /*
2951                  * set the writeback_index so that range_cyclic
2952                  * mode will write it back later
2953                  */
2954                 mapping->writeback_index = index;
2955
2956 out_writepages:
2957         if (!no_nrwrite_index_update)
2958                 wbc->no_nrwrite_index_update = 0;
2959         if (wbc->nr_to_write > nr_to_writebump)
2960                 wbc->nr_to_write -= nr_to_writebump;
2961         wbc->range_start = range_start;
2962         trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2963         return ret;
2964 }
2965
2966 #define FALL_BACK_TO_NONDELALLOC 1
2967 static int ext4_nonda_switch(struct super_block *sb)
2968 {
2969         s64 free_blocks, dirty_blocks;
2970         struct ext4_sb_info *sbi = EXT4_SB(sb);
2971
2972         /*
2973          * switch to non delalloc mode if we are running low
2974          * on free block. The free block accounting via percpu
2975          * counters can get slightly wrong with percpu_counter_batch getting
2976          * accumulated on each CPU without updating global counters
2977          * Delalloc need an accurate free block accounting. So switch
2978          * to non delalloc when we are near to error range.
2979          */
2980         free_blocks  = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
2981         dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
2982         if (2 * free_blocks < 3 * dirty_blocks ||
2983                 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
2984                 /*
2985                  * free block count is less that 150% of dirty blocks
2986                  * or free blocks is less that watermark
2987                  */
2988                 return 1;
2989         }
2990         return 0;
2991 }
2992
2993 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2994                                loff_t pos, unsigned len, unsigned flags,
2995                                struct page **pagep, void **fsdata)
2996 {
2997         int ret, retries = 0;
2998         struct page *page;
2999         pgoff_t index;
3000         unsigned from, to;
3001         struct inode *inode = mapping->host;
3002         handle_t *handle;
3003
3004         index = pos >> PAGE_CACHE_SHIFT;
3005         from = pos & (PAGE_CACHE_SIZE - 1);
3006         to = from + len;
3007
3008         if (ext4_nonda_switch(inode->i_sb)) {
3009                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3010                 return ext4_write_begin(file, mapping, pos,
3011                                         len, flags, pagep, fsdata);
3012         }
3013         *fsdata = (void *)0;
3014         trace_ext4_da_write_begin(inode, pos, len, flags);
3015 retry:
3016         /*
3017          * With delayed allocation, we don't log the i_disksize update
3018          * if there is delayed block allocation. But we still need
3019          * to journalling the i_disksize update if writes to the end
3020          * of file which has an already mapped buffer.
3021          */
3022         handle = ext4_journal_start(inode, 1);
3023         if (IS_ERR(handle)) {
3024                 ret = PTR_ERR(handle);
3025                 goto out;
3026         }
3027         /* We cannot recurse into the filesystem as the transaction is already
3028          * started */
3029         flags |= AOP_FLAG_NOFS;
3030
3031         page = grab_cache_page_write_begin(mapping, index, flags);
3032         if (!page) {
3033                 ext4_journal_stop(handle);
3034                 ret = -ENOMEM;
3035                 goto out;
3036         }
3037         *pagep = page;
3038
3039         ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
3040                                 ext4_da_get_block_prep);
3041         if (ret < 0) {
3042                 unlock_page(page);
3043                 ext4_journal_stop(handle);
3044                 page_cache_release(page);
3045                 /*
3046                  * block_write_begin may have instantiated a few blocks
3047                  * outside i_size.  Trim these off again. Don't need
3048                  * i_size_read because we hold i_mutex.
3049                  */
3050                 if (pos + len > inode->i_size)
3051                         ext4_truncate(inode);
3052         }
3053
3054         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3055                 goto retry;
3056 out:
3057         return ret;
3058 }
3059
3060 /*
3061  * Check if we should update i_disksize
3062  * when write to the end of file but not require block allocation
3063  */
3064 static int ext4_da_should_update_i_disksize(struct page *page,
3065                                             unsigned long offset)
3066 {
3067         struct buffer_head *bh;
3068         struct inode *inode = page->mapping->host;
3069         unsigned int idx;
3070         int i;
3071
3072         bh = page_buffers(page);
3073         idx = offset >> inode->i_blkbits;
3074
3075         for (i = 0; i < idx; i++)
3076                 bh = bh->b_this_page;
3077
3078         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3079                 return 0;
3080         return 1;
3081 }
3082
3083 static int ext4_da_write_end(struct file *file,
3084                              struct address_space *mapping,
3085                              loff_t pos, unsigned len, unsigned copied,
3086                              struct page *page, void *fsdata)
3087 {
3088         struct inode *inode = mapping->host;
3089         int ret = 0, ret2;
3090         handle_t *handle = ext4_journal_current_handle();
3091         loff_t new_i_size;
3092         unsigned long start, end;
3093         int write_mode = (int)(unsigned long)fsdata;
3094
3095         if (write_mode == FALL_BACK_TO_NONDELALLOC) {
3096                 if (ext4_should_order_data(inode)) {
3097                         return ext4_ordered_write_end(file, mapping, pos,
3098                                         len, copied, page, fsdata);
3099                 } else if (ext4_should_writeback_data(inode)) {
3100                         return ext4_writeback_write_end(file, mapping, pos,
3101                                         len, copied, page, fsdata);
3102                 } else {
3103                         BUG();
3104                 }
3105         }
3106
3107         trace_ext4_da_write_end(inode, pos, len, copied);
3108         start = pos & (PAGE_CACHE_SIZE - 1);
3109         end = start + copied - 1;
3110
3111         /*
3112          * generic_write_end() will run mark_inode_dirty() if i_size
3113          * changes.  So let's piggyback the i_disksize mark_inode_dirty
3114          * into that.
3115          */
3116
3117         new_i_size = pos + copied;
3118         if (new_i_size > EXT4_I(inode)->i_disksize) {
3119                 if (ext4_da_should_update_i_disksize(page, end)) {
3120                         down_write(&EXT4_I(inode)->i_data_sem);
3121                         if (new_i_size > EXT4_I(inode)->i_disksize) {
3122                                 /*
3123                                  * Updating i_disksize when extending file
3124                                  * without needing block allocation
3125                                  */
3126                                 if (ext4_should_order_data(inode))
3127                                         ret = ext4_jbd2_file_inode(handle,
3128                                                                    inode);
3129
3130                                 EXT4_I(inode)->i_disksize = new_i_size;
3131                         }
3132                         up_write(&EXT4_I(inode)->i_data_sem);
3133                         /* We need to mark inode dirty even if
3134                          * new_i_size is less that inode->i_size
3135                          * bu greater than i_disksize.(hint delalloc)
3136                          */
3137                         ext4_mark_inode_dirty(handle, inode);
3138                 }
3139         }
3140         ret2 = generic_write_end(file, mapping, pos, len, copied,
3141                                                         page, fsdata);
3142         copied = ret2;
3143         if (ret2 < 0)
3144                 ret = ret2;
3145         ret2 = ext4_journal_stop(handle);
3146         if (!ret)
3147                 ret = ret2;
3148
3149         return ret ? ret : copied;
3150 }
3151
3152 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
3153 {
3154         /*
3155          * Drop reserved blocks
3156          */
3157         BUG_ON(!PageLocked(page));
3158         if (!page_has_buffers(page))
3159                 goto out;
3160
3161         ext4_da_page_release_reservation(page, offset);
3162
3163 out:
3164         ext4_invalidatepage(page, offset);
3165
3166         return;
3167 }
3168
3169 /*
3170  * Force all delayed allocation blocks to be allocated for a given inode.
3171  */
3172 int ext4_alloc_da_blocks(struct inode *inode)
3173 {
3174         trace_ext4_alloc_da_blocks(inode);
3175
3176         if (!EXT4_I(inode)->i_reserved_data_blocks &&
3177             !EXT4_I(inode)->i_reserved_meta_blocks)
3178                 return 0;
3179
3180         /*
3181          * We do something simple for now.  The filemap_flush() will
3182          * also start triggering a write of the data blocks, which is
3183          * not strictly speaking necessary (and for users of
3184          * laptop_mode, not even desirable).  However, to do otherwise
3185          * would require replicating code paths in:
3186          *
3187          * ext4_da_writepages() ->
3188          *    write_cache_pages() ---> (via passed in callback function)
3189          *        __mpage_da_writepage() -->
3190          *           mpage_add_bh_to_extent()
3191          *           mpage_da_map_blocks()
3192          *
3193          * The problem is that write_cache_pages(), located in
3194          * mm/page-writeback.c, marks pages clean in preparation for
3195          * doing I/O, which is not desirable if we're not planning on
3196          * doing I/O at all.
3197          *
3198          * We could call write_cache_pages(), and then redirty all of
3199          * the pages by calling redirty_page_for_writeback() but that
3200          * would be ugly in the extreme.  So instead we would need to
3201          * replicate parts of the code in the above functions,
3202          * simplifying them becuase we wouldn't actually intend to
3203          * write out the pages, but rather only collect contiguous
3204          * logical block extents, call the multi-block allocator, and
3205          * then update the buffer heads with the block allocations.
3206          *
3207          * For now, though, we'll cheat by calling filemap_flush(),
3208          * which will map the blocks, and start the I/O, but not
3209          * actually wait for the I/O to complete.
3210          */
3211         return filemap_flush(inode->i_mapping);
3212 }
3213
3214 /*
3215  * bmap() is special.  It gets used by applications such as lilo and by
3216  * the swapper to find the on-disk block of a specific piece of data.
3217  *
3218  * Naturally, this is dangerous if the block concerned is still in the
3219  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3220  * filesystem and enables swap, then they may get a nasty shock when the
3221  * data getting swapped to that swapfile suddenly gets overwritten by
3222  * the original zero's written out previously to the journal and
3223  * awaiting writeback in the kernel's buffer cache.
3224  *
3225  * So, if we see any bmap calls here on a modified, data-journaled file,
3226  * take extra steps to flush any blocks which might be in the cache.
3227  */
3228 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3229 {
3230         struct inode *inode = mapping->host;
3231         journal_t *journal;
3232         int err;
3233
3234         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3235                         test_opt(inode->i_sb, DELALLOC)) {
3236                 /*
3237                  * With delalloc we want to sync the file
3238                  * so that we can make sure we allocate
3239                  * blocks for file
3240                  */
3241                 filemap_write_and_wait(mapping);
3242         }
3243
3244         if (EXT4_JOURNAL(inode) && EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
3245                 /*
3246                  * This is a REALLY heavyweight approach, but the use of
3247                  * bmap on dirty files is expected to be extremely rare:
3248                  * only if we run lilo or swapon on a freshly made file
3249                  * do we expect this to happen.
3250                  *
3251                  * (bmap requires CAP_SYS_RAWIO so this does not
3252                  * represent an unprivileged user DOS attack --- we'd be
3253                  * in trouble if mortal users could trigger this path at
3254                  * will.)
3255                  *
3256                  * NB. EXT4_STATE_JDATA is not set on files other than
3257                  * regular files.  If somebody wants to bmap a directory
3258                  * or symlink and gets confused because the buffer
3259                  * hasn't yet been flushed to disk, they deserve
3260                  * everything they get.
3261                  */
3262
3263                 EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
3264                 journal = EXT4_JOURNAL(inode);
3265                 jbd2_journal_lock_updates(journal);
3266                 err = jbd2_journal_flush(journal);
3267                 jbd2_journal_unlock_updates(journal);
3268
3269                 if (err)
3270                         return 0;
3271         }
3272
3273         return generic_block_bmap(mapping, block, ext4_get_block);
3274 }
3275
3276 static int ext4_readpage(struct file *file, struct page *page)
3277 {
3278         return mpage_readpage(page, ext4_get_block);
3279 }
3280
3281 static int
3282 ext4_readpages(struct file *file, struct address_space *mapping,
3283                 struct list_head *pages, unsigned nr_pages)
3284 {
3285         return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3286 }
3287
3288 static void ext4_invalidatepage(struct page *page, unsigned long offset)
3289 {
3290         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3291
3292         /*
3293          * If it's a full truncate we just forget about the pending dirtying
3294          */
3295         if (offset == 0)
3296                 ClearPageChecked(page);
3297
3298         if (journal)
3299                 jbd2_journal_invalidatepage(journal, page, offset);
3300         else
3301                 block_invalidatepage(page, offset);
3302 }
3303
3304 static int ext4_releasepage(struct page *page, gfp_t wait)
3305 {
3306         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3307
3308         WARN_ON(PageChecked(page));
3309         if (!page_has_buffers(page))
3310                 return 0;
3311         if (journal)
3312                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3313         else
3314                 return try_to_free_buffers(page);
3315 }
3316
3317 /*
3318  * O_DIRECT for ext3 (or indirect map) based files
3319  *
3320  * If the O_DIRECT write will extend the file then add this inode to the
3321  * orphan list.  So recovery will truncate it back to the original size
3322  * if the machine crashes during the write.
3323  *
3324  * If the O_DIRECT write is intantiating holes inside i_size and the machine
3325  * crashes then stale disk data _may_ be exposed inside the file. But current
3326  * VFS code falls back into buffered path in that case so we are safe.
3327  */
3328 static ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb,
3329                               const struct iovec *iov, loff_t offset,
3330                               unsigned long nr_segs)
3331 {
3332         struct file *file = iocb->ki_filp;
3333         struct inode *inode = file->f_mapping->host;
3334         struct ext4_inode_info *ei = EXT4_I(inode);
3335         handle_t *handle;
3336         ssize_t ret;
3337         int orphan = 0;
3338         size_t count = iov_length(iov, nr_segs);
3339         int retries = 0;
3340
3341         if (rw == WRITE) {
3342                 loff_t final_size = offset + count;
3343
3344                 if (final_size > inode->i_size) {
3345                         /* Credits for sb + inode write */
3346                         handle = ext4_journal_start(inode, 2);
3347                         if (IS_ERR(handle)) {
3348                                 ret = PTR_ERR(handle);
3349                                 goto out;
3350                         }
3351                         ret = ext4_orphan_add(handle, inode);
3352                         if (ret) {
3353                                 ext4_journal_stop(handle);
3354                                 goto out;
3355                         }
3356                         orphan = 1;
3357                         ei->i_disksize = inode->i_size;
3358                         ext4_journal_stop(handle);
3359                 }
3360         }
3361
3362 retry:
3363         ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
3364                                  offset, nr_segs,
3365                                  ext4_get_block, NULL);
3366         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3367                 goto retry;
3368
3369         if (orphan) {
3370                 int err;
3371
3372                 /* Credits for sb + inode write */
3373                 handle = ext4_journal_start(inode, 2);
3374                 if (IS_ERR(handle)) {
3375                         /* This is really bad luck. We've written the data
3376                          * but cannot extend i_size. Bail out and pretend
3377                          * the write failed... */
3378                         ret = PTR_ERR(handle);
3379                         goto out;
3380                 }
3381                 if (inode->i_nlink)
3382                         ext4_orphan_del(handle, inode);
3383                 if (ret > 0) {
3384                         loff_t end = offset + ret;
3385                         if (end > inode->i_size) {
3386                                 ei->i_disksize = end;
3387                                 i_size_write(inode, end);
3388                                 /*
3389                                  * We're going to return a positive `ret'
3390                                  * here due to non-zero-length I/O, so there's
3391                                  * no way of reporting error returns from
3392                                  * ext4_mark_inode_dirty() to userspace.  So
3393                                  * ignore it.
3394                                  */
3395                                 ext4_mark_inode_dirty(handle, inode);
3396                         }
3397                 }
3398                 err = ext4_journal_stop(handle);
3399                 if (ret == 0)
3400                         ret = err;
3401         }
3402 out:
3403         return ret;
3404 }
3405
3406 static int ext4_get_block_dio_write(struct inode *inode, sector_t iblock,
3407                    struct buffer_head *bh_result, int create)
3408 {
3409         handle_t *handle = NULL;
3410         int ret = 0;
3411         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
3412         int dio_credits;
3413
3414         ext4_debug("ext4_get_block_dio_write: inode %lu, create flag %d\n",
3415                    inode->i_ino, create);
3416         /*
3417          * DIO VFS code passes create = 0 flag for write to
3418          * the middle of file. It does this to avoid block
3419          * allocation for holes, to prevent expose stale data
3420          * out when there is parallel buffered read (which does
3421          * not hold the i_mutex lock) while direct IO write has
3422          * not completed. DIO request on holes finally falls back
3423          * to buffered IO for this reason.
3424          *
3425          * For ext4 extent based file, since we support fallocate,
3426          * new allocated extent as uninitialized, for holes, we
3427          * could fallocate blocks for holes, thus parallel
3428          * buffered IO read will zero out the page when read on
3429          * a hole while parallel DIO write to the hole has not completed.
3430          *
3431          * when we come here, we know it's a direct IO write to
3432          * to the middle of file (<i_size)
3433          * so it's safe to override the create flag from VFS.
3434          */
3435         create = EXT4_GET_BLOCKS_DIO_CREATE_EXT;
3436
3437         if (max_blocks > DIO_MAX_BLOCKS)
3438                 max_blocks = DIO_MAX_BLOCKS;
3439         dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
3440         handle = ext4_journal_start(inode, dio_credits);
3441         if (IS_ERR(handle)) {
3442                 ret = PTR_ERR(handle);
3443                 goto out;
3444         }
3445         ret = ext4_get_blocks(handle, inode, iblock, max_blocks, bh_result,
3446                               create);
3447         if (ret > 0) {
3448                 bh_result->b_size = (ret << inode->i_blkbits);
3449                 ret = 0;
3450         }
3451         ext4_journal_stop(handle);
3452 out:
3453         return ret;
3454 }
3455
3456 static void ext4_free_io_end(ext4_io_end_t *io)
3457 {
3458         BUG_ON(!io);
3459         iput(io->inode);
3460         kfree(io);
3461 }
3462 static void dump_aio_dio_list(struct inode * inode)
3463 {
3464 #ifdef  EXT4_DEBUG
3465         struct list_head *cur, *before, *after;
3466         ext4_io_end_t *io, *io0, *io1;
3467
3468         if (list_empty(&EXT4_I(inode)->i_aio_dio_complete_list)){
3469                 ext4_debug("inode %lu aio dio list is empty\n", inode->i_ino);
3470                 return;
3471         }
3472
3473         ext4_debug("Dump inode %lu aio_dio_completed_IO list \n", inode->i_ino);
3474         list_for_each_entry(io, &EXT4_I(inode)->i_aio_dio_complete_list, list){
3475                 cur = &io->list;
3476                 before = cur->prev;
3477                 io0 = container_of(before, ext4_io_end_t, list);
3478                 after = cur->next;
3479                 io1 = container_of(after, ext4_io_end_t, list);
3480
3481                 ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n",
3482                             io, inode->i_ino, io0, io1);
3483         }
3484 #endif
3485 }
3486
3487 /*
3488  * check a range of space and convert unwritten extents to written.
3489  */
3490 static int ext4_end_aio_dio_nolock(ext4_io_end_t *io)
3491 {
3492         struct inode *inode = io->inode;
3493         loff_t offset = io->offset;
3494         size_t size = io->size;
3495         int ret = 0;
3496
3497         ext4_debug("end_aio_dio_onlock: io 0x%p from inode %lu,list->next 0x%p,"
3498                    "list->prev 0x%p\n",
3499                    io, inode->i_ino, io->list.next, io->list.prev);
3500
3501         if (list_empty(&io->list))
3502                 return ret;
3503
3504         if (io->flag != DIO_AIO_UNWRITTEN)
3505                 return ret;
3506
3507         if (offset + size <= i_size_read(inode))
3508                 ret = ext4_convert_unwritten_extents(inode, offset, size);
3509
3510         if (ret < 0) {
3511                 printk(KERN_EMERG "%s: failed to convert unwritten"
3512                         "extents to written extents, error is %d"
3513                         " io is still on inode %lu aio dio list\n",
3514                        __func__, ret, inode->i_ino);
3515                 return ret;
3516         }
3517
3518         /* clear the DIO AIO unwritten flag */
3519         io->flag = 0;
3520         return ret;
3521 }
3522 /*
3523  * work on completed aio dio IO, to convert unwritten extents to extents
3524  */
3525 static void ext4_end_aio_dio_work(struct work_struct *work)
3526 {
3527         ext4_io_end_t *io  = container_of(work, ext4_io_end_t, work);
3528         struct inode *inode = io->inode;
3529         int ret = 0;
3530
3531         mutex_lock(&inode->i_mutex);
3532         ret = ext4_end_aio_dio_nolock(io);
3533         if (ret >= 0) {
3534                 if (!list_empty(&io->list))
3535                         list_del_init(&io->list);
3536                 ext4_free_io_end(io);
3537         }
3538         mutex_unlock(&inode->i_mutex);
3539 }
3540 /*
3541  * This function is called from ext4_sync_file().
3542  *
3543  * When AIO DIO IO is completed, the work to convert unwritten
3544  * extents to written is queued on workqueue but may not get immediately
3545  * scheduled. When fsync is called, we need to ensure the
3546  * conversion is complete before fsync returns.
3547  * The inode keeps track of a list of completed AIO from DIO path
3548  * that might needs to do the conversion. This function walks through
3549  * the list and convert the related unwritten extents to written.
3550  */
3551 int flush_aio_dio_completed_IO(struct inode *inode)
3552 {
3553         ext4_io_end_t *io;
3554         int ret = 0;
3555         int ret2 = 0;
3556
3557         if (list_empty(&EXT4_I(inode)->i_aio_dio_complete_list))
3558                 return ret;
3559
3560         dump_aio_dio_list(inode);
3561         while (!list_empty(&EXT4_I(inode)->i_aio_dio_complete_list)){
3562                 io = list_entry(EXT4_I(inode)->i_aio_dio_complete_list.next,
3563                                 ext4_io_end_t, list);
3564                 /*
3565                  * Calling ext4_end_aio_dio_nolock() to convert completed
3566                  * IO to written.
3567                  *
3568                  * When ext4_sync_file() is called, run_queue() may already
3569                  * about to flush the work corresponding to this io structure.
3570                  * It will be upset if it founds the io structure related
3571                  * to the work-to-be schedule is freed.
3572                  *
3573                  * Thus we need to keep the io structure still valid here after
3574                  * convertion finished. The io structure has a flag to
3575                  * avoid double converting from both fsync and background work
3576                  * queue work.
3577                  */
3578                 ret = ext4_end_aio_dio_nolock(io);
3579                 if (ret < 0)
3580                         ret2 = ret;
3581                 else
3582                         list_del_init(&io->list);
3583         }
3584         return (ret2 < 0) ? ret2 : 0;
3585 }
3586
3587 static ext4_io_end_t *ext4_init_io_end (struct inode *inode)
3588 {
3589         ext4_io_end_t *io = NULL;
3590
3591         io = kmalloc(sizeof(*io), GFP_NOFS);
3592
3593         if (io) {
3594                 igrab(inode);
3595                 io->inode = inode;
3596                 io->flag = 0;
3597                 io->offset = 0;
3598                 io->size = 0;
3599                 io->error = 0;
3600                 INIT_WORK(&io->work, ext4_end_aio_dio_work);
3601                 INIT_LIST_HEAD(&io->list);
3602         }
3603
3604         return io;
3605 }
3606
3607 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3608                             ssize_t size, void *private)
3609 {
3610         ext4_io_end_t *io_end = iocb->private;
3611         struct workqueue_struct *wq;
3612
3613         /* if not async direct IO or dio with 0 bytes write, just return */
3614         if (!io_end || !size)
3615                 return;
3616
3617         ext_debug("ext4_end_io_dio(): io_end 0x%p"
3618                   "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
3619                   iocb->private, io_end->inode->i_ino, iocb, offset,
3620                   size);
3621
3622         /* if not aio dio with unwritten extents, just free io and return */
3623         if (io_end->flag != DIO_AIO_UNWRITTEN){
3624                 ext4_free_io_end(io_end);
3625                 iocb->private = NULL;
3626                 return;
3627         }
3628
3629         io_end->offset = offset;
3630         io_end->size = size;
3631         wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
3632
3633         /* queue the work to convert unwritten extents to written */
3634         queue_work(wq, &io_end->work);
3635
3636         /* Add the io_end to per-inode completed aio dio list*/
3637         list_add_tail(&io_end->list,
3638                  &EXT4_I(io_end->inode)->i_aio_dio_complete_list);
3639         iocb->private = NULL;
3640 }
3641 /*
3642  * For ext4 extent files, ext4 will do direct-io write to holes,
3643  * preallocated extents, and those write extend the file, no need to
3644  * fall back to buffered IO.
3645  *
3646  * For holes, we fallocate those blocks, mark them as unintialized
3647  * If those blocks were preallocated, we mark sure they are splited, but
3648  * still keep the range to write as unintialized.
3649  *
3650  * The unwrritten extents will be converted to written when DIO is completed.
3651  * For async direct IO, since the IO may still pending when return, we
3652  * set up an end_io call back function, which will do the convertion
3653  * when async direct IO completed.
3654  *
3655  * If the O_DIRECT write will extend the file then add this inode to the
3656  * orphan list.  So recovery will truncate it back to the original size
3657  * if the machine crashes during the write.
3658  *
3659  */
3660 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3661                               const struct iovec *iov, loff_t offset,
3662                               unsigned long nr_segs)
3663 {
3664         struct file *file = iocb->ki_filp;
3665         struct inode *inode = file->f_mapping->host;
3666         ssize_t ret;
3667         size_t count = iov_length(iov, nr_segs);
3668
3669         loff_t final_size = offset + count;
3670         if (rw == WRITE && final_size <= inode->i_size) {
3671                 /*
3672                  * We could direct write to holes and fallocate.
3673                  *
3674                  * Allocated blocks to fill the hole are marked as uninitialized
3675                  * to prevent paralel buffered read to expose the stale data
3676                  * before DIO complete the data IO.
3677                  *
3678                  * As to previously fallocated extents, ext4 get_block
3679                  * will just simply mark the buffer mapped but still
3680                  * keep the extents uninitialized.
3681                  *
3682                  * for non AIO case, we will convert those unwritten extents
3683                  * to written after return back from blockdev_direct_IO.
3684                  *
3685                  * for async DIO, the conversion needs to be defered when
3686                  * the IO is completed. The ext4 end_io callback function
3687                  * will be called to take care of the conversion work.
3688                  * Here for async case, we allocate an io_end structure to
3689                  * hook to the iocb.
3690                  */
3691                 iocb->private = NULL;
3692                 EXT4_I(inode)->cur_aio_dio = NULL;
3693                 if (!is_sync_kiocb(iocb)) {
3694                         iocb->private = ext4_init_io_end(inode);
3695                         if (!iocb->private)
3696                                 return -ENOMEM;
3697                         /*
3698                          * we save the io structure for current async
3699                          * direct IO, so that later ext4_get_blocks()
3700                          * could flag the io structure whether there
3701                          * is a unwritten extents needs to be converted
3702                          * when IO is completed.
3703                          */
3704                         EXT4_I(inode)->cur_aio_dio = iocb->private;
3705                 }
3706
3707                 ret = blockdev_direct_IO(rw, iocb, inode,
3708                                          inode->i_sb->s_bdev, iov,
3709                                          offset, nr_segs,
3710                                          ext4_get_block_dio_write,
3711                                          ext4_end_io_dio);
3712                 if (iocb->private)
3713                         EXT4_I(inode)->cur_aio_dio = NULL;
3714                 /*
3715                  * The io_end structure takes a reference to the inode,
3716                  * that structure needs to be destroyed and the
3717                  * reference to the inode need to be dropped, when IO is
3718                  * complete, even with 0 byte write, or failed.
3719                  *
3720                  * In the successful AIO DIO case, the io_end structure will be
3721                  * desctroyed and the reference to the inode will be dropped
3722                  * after the end_io call back function is called.
3723                  *
3724                  * In the case there is 0 byte write, or error case, since
3725                  * VFS direct IO won't invoke the end_io call back function,
3726                  * we need to free the end_io structure here.
3727                  */
3728                 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3729                         ext4_free_io_end(iocb->private);
3730                         iocb->private = NULL;
3731                 } else if (ret > 0 && (EXT4_I(inode)->i_state &
3732                                        EXT4_STATE_DIO_UNWRITTEN)) {
3733                         int err;
3734                         /*
3735                          * for non AIO case, since the IO is already
3736                          * completed, we could do the convertion right here
3737                          */
3738                         err = ext4_convert_unwritten_extents(inode,
3739                                                              offset, ret);
3740                         if (err < 0)
3741                                 ret = err;
3742                         EXT4_I(inode)->i_state &= ~EXT4_STATE_DIO_UNWRITTEN;
3743                 }
3744                 return ret;
3745         }
3746
3747         /* for write the the end of file case, we fall back to old way */
3748         return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3749 }
3750
3751 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3752                               const struct iovec *iov, loff_t offset,
3753                               unsigned long nr_segs)
3754 {
3755         struct file *file = iocb->ki_filp;
3756         struct inode *inode = file->f_mapping->host;
3757
3758         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
3759                 return ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3760
3761         return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3762 }
3763
3764 /*
3765  * Pages can be marked dirty completely asynchronously from ext4's journalling
3766  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3767  * much here because ->set_page_dirty is called under VFS locks.  The page is
3768  * not necessarily locked.
3769  *
3770  * We cannot just dirty the page and leave attached buffers clean, because the
3771  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3772  * or jbddirty because all the journalling code will explode.
3773  *
3774  * So what we do is to mark the page "pending dirty" and next time writepage
3775  * is called, propagate that into the buffers appropriately.
3776  */
3777 static int ext4_journalled_set_page_dirty(struct page *page)
3778 {
3779         SetPageChecked(page);
3780         return __set_page_dirty_nobuffers(page);
3781 }
3782
3783 static const struct address_space_operations ext4_ordered_aops = {
3784         .readpage               = ext4_readpage,
3785         .readpages              = ext4_readpages,
3786         .writepage              = ext4_writepage,
3787         .sync_page              = block_sync_page,
3788         .write_begin            = ext4_write_begin,
3789         .write_end              = ext4_ordered_write_end,
3790         .bmap                   = ext4_bmap,
3791         .invalidatepage         = ext4_invalidatepage,
3792         .releasepage            = ext4_releasepage,
3793         .direct_IO              = ext4_direct_IO,
3794         .migratepage            = buffer_migrate_page,
3795         .is_partially_uptodate  = block_is_partially_uptodate,
3796         .error_remove_page      = generic_error_remove_page,
3797 };
3798
3799 static const struct address_space_operations ext4_writeback_aops = {
3800         .readpage               = ext4_readpage,
3801         .readpages              = ext4_readpages,
3802         .writepage              = ext4_writepage,
3803         .sync_page              = block_sync_page,
3804         .write_begin            = ext4_write_begin,
3805         .write_end              = ext4_writeback_write_end,
3806         .bmap                   = ext4_bmap,
3807         .invalidatepage         = ext4_invalidatepage,
3808         .releasepage            = ext4_releasepage,
3809         .direct_IO              = ext4_direct_IO,
3810         .migratepage            = buffer_migrate_page,
3811         .is_partially_uptodate  = block_is_partially_uptodate,
3812         .error_remove_page      = generic_error_remove_page,
3813 };
3814
3815 static const struct address_space_operations ext4_journalled_aops = {
3816         .readpage               = ext4_readpage,
3817         .readpages              = ext4_readpages,
3818         .writepage              = ext4_writepage,
3819         .sync_page              = block_sync_page,
3820         .write_begin            = ext4_write_begin,
3821         .write_end              = ext4_journalled_write_end,
3822         .set_page_dirty         = ext4_journalled_set_page_dirty,
3823         .bmap                   = ext4_bmap,
3824         .invalidatepage         = ext4_invalidatepage,
3825         .releasepage            = ext4_releasepage,
3826         .is_partially_uptodate  = block_is_partially_uptodate,
3827         .error_remove_page      = generic_error_remove_page,
3828 };
3829
3830 static const struct address_space_operations ext4_da_aops = {
3831         .readpage               = ext4_readpage,
3832         .readpages              = ext4_readpages,
3833         .writepage              = ext4_writepage,
3834         .writepages             = ext4_da_writepages,
3835         .sync_page              = block_sync_page,
3836         .write_begin            = ext4_da_write_begin,
3837         .write_end              = ext4_da_write_end,
3838         .bmap                   = ext4_bmap,
3839         .invalidatepage         = ext4_da_invalidatepage,
3840         .releasepage            = ext4_releasepage,
3841         .direct_IO              = ext4_direct_IO,
3842         .migratepage            = buffer_migrate_page,
3843         .is_partially_uptodate  = block_is_partially_uptodate,
3844         .error_remove_page      = generic_error_remove_page,
3845 };
3846
3847 void ext4_set_aops(struct inode *inode)
3848 {
3849         if (ext4_should_order_data(inode) &&
3850                 test_opt(inode->i_sb, DELALLOC))
3851                 inode->i_mapping->a_ops = &ext4_da_aops;
3852         else if (ext4_should_order_data(inode))
3853                 inode->i_mapping->a_ops = &ext4_ordered_aops;
3854         else if (ext4_should_writeback_data(inode) &&
3855                  test_opt(inode->i_sb, DELALLOC))
3856                 inode->i_mapping->a_ops = &ext4_da_aops;
3857         else if (ext4_should_writeback_data(inode))
3858                 inode->i_mapping->a_ops = &ext4_writeback_aops;
3859         else
3860                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3861 }
3862
3863 /*
3864  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3865  * up to the end of the block which corresponds to `from'.
3866  * This required during truncate. We need to physically zero the tail end
3867  * of that block so it doesn't yield old data if the file is later grown.
3868  */
3869 int ext4_block_truncate_page(handle_t *handle,
3870                 struct address_space *mapping, loff_t from)
3871 {
3872         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3873         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3874         unsigned blocksize, length, pos;
3875         ext4_lblk_t iblock;
3876         struct inode *inode = mapping->host;
3877         struct buffer_head *bh;
3878         struct page *page;
3879         int err = 0;
3880
3881         page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3882                                    mapping_gfp_mask(mapping) & ~__GFP_FS);
3883         if (!page)
3884                 return -EINVAL;
3885
3886         blocksize = inode->i_sb->s_blocksize;
3887         length = blocksize - (offset & (blocksize - 1));
3888         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3889
3890         /*
3891          * For "nobh" option,  we can only work if we don't need to
3892          * read-in the page - otherwise we create buffers to do the IO.
3893          */
3894         if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
3895              ext4_should_writeback_data(inode) && PageUptodate(page)) {
3896                 zero_user(page, offset, length);
3897                 set_page_dirty(page);
3898                 goto unlock;
3899         }
3900
3901         if (!page_has_buffers(page))
3902                 create_empty_buffers(page, blocksize, 0);
3903
3904         /* Find the buffer that contains "offset" */
3905         bh = page_buffers(page);
3906         pos = blocksize;
3907         while (offset >= pos) {
3908                 bh = bh->b_this_page;
3909                 iblock++;
3910                 pos += blocksize;
3911         }
3912
3913         err = 0;
3914         if (buffer_freed(bh)) {
3915                 BUFFER_TRACE(bh, "freed: skip");
3916                 goto unlock;
3917         }
3918
3919         if (!buffer_mapped(bh)) {
3920                 BUFFER_TRACE(bh, "unmapped");
3921                 ext4_get_block(inode, iblock, bh, 0);
3922                 /* unmapped? It's a hole - nothing to do */
3923                 if (!buffer_mapped(bh)) {
3924                         BUFFER_TRACE(bh, "still unmapped");
3925                         goto unlock;
3926                 }
3927         }
3928
3929         /* Ok, it's mapped. Make sure it's up-to-date */
3930         if (PageUptodate(page))
3931                 set_buffer_uptodate(bh);
3932
3933         if (!buffer_uptodate(bh)) {
3934                 err = -EIO;
3935                 ll_rw_block(READ, 1, &bh);
3936                 wait_on_buffer(bh);
3937                 /* Uhhuh. Read error. Complain and punt. */
3938                 if (!buffer_uptodate(bh))
3939                         goto unlock;
3940         }
3941
3942         if (ext4_should_journal_data(inode)) {
3943                 BUFFER_TRACE(bh, "get write access");
3944                 err = ext4_journal_get_write_access(handle, bh);
3945                 if (err)
3946                         goto unlock;
3947         }
3948
3949         zero_user(page, offset, length);
3950
3951         BUFFER_TRACE(bh, "zeroed end of block");
3952
3953         err = 0;
3954         if (ext4_should_journal_data(inode)) {
3955                 err = ext4_handle_dirty_metadata(handle, inode, bh);
3956         } else {
3957                 if (ext4_should_order_data(inode))
3958                         err = ext4_jbd2_file_inode(handle, inode);
3959                 mark_buffer_dirty(bh);
3960         }
3961
3962 unlock:
3963         unlock_page(page);
3964         page_cache_release(page);
3965         return err;
3966 }
3967
3968 /*
3969  * Probably it should be a library function... search for first non-zero word
3970  * or memcmp with zero_page, whatever is better for particular architecture.
3971  * Linus?
3972  */
3973 static inline int all_zeroes(__le32 *p, __le32 *q)
3974 {
3975         while (p < q)
3976                 if (*p++)
3977                         return 0;
3978         return 1;
3979 }
3980
3981 /**
3982  *      ext4_find_shared - find the indirect blocks for partial truncation.
3983  *      @inode:   inode in question
3984  *      @depth:   depth of the affected branch
3985  *      @offsets: offsets of pointers in that branch (see ext4_block_to_path)
3986  *      @chain:   place to store the pointers to partial indirect blocks
3987  *      @top:     place to the (detached) top of branch
3988  *
3989  *      This is a helper function used by ext4_truncate().
3990  *
3991  *      When we do truncate() we may have to clean the ends of several
3992  *      indirect blocks but leave the blocks themselves alive. Block is
3993  *      partially truncated if some data below the new i_size is refered
3994  *      from it (and it is on the path to the first completely truncated
3995  *      data block, indeed).  We have to free the top of that path along
3996  *      with everything to the right of the path. Since no allocation
3997  *      past the truncation point is possible until ext4_truncate()
3998  *      finishes, we may safely do the latter, but top of branch may
3999  *      require special attention - pageout below the truncation point
4000  *      might try to populate it.
4001  *
4002  *      We atomically detach the top of branch from the tree, store the
4003  *      block number of its root in *@top, pointers to buffer_heads of
4004  *      partially truncated blocks - in @chain[].bh and pointers to
4005  *      their last elements that should not be removed - in
4006  *      @chain[].p. Return value is the pointer to last filled element
4007  *      of @chain.
4008  *
4009  *      The work left to caller to do the actual freeing of subtrees:
4010  *              a) free the subtree starting from *@top
4011  *              b) free the subtrees whose roots are stored in
4012  *                      (@chain[i].p+1 .. end of @chain[i].bh->b_data)
4013  *              c) free the subtrees growing from the inode past the @chain[0].
4014  *                      (no partially truncated stuff there).  */
4015
4016 static Indirect *ext4_find_shared(struct inode *inode, int depth,
4017                                   ext4_lblk_t offsets[4], Indirect chain[4],
4018                                   __le32 *top)
4019 {
4020         Indirect *partial, *p;
4021         int k, err;
4022
4023         *top = 0;
4024         /* Make k index the deepest non-null offest + 1 */
4025         for (k = depth; k > 1 && !offsets[k-1]; k--)
4026                 ;
4027         partial = ext4_get_branch(inode, k, offsets, chain, &err);
4028         /* Writer: pointers */
4029         if (!partial)
4030                 partial = chain + k-1;
4031         /*
4032          * If the branch acquired continuation since we've looked at it -
4033          * fine, it should all survive and (new) top doesn't belong to us.
4034          */
4035         if (!partial->key && *partial->p)
4036                 /* Writer: end */
4037                 goto no_top;
4038         for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
4039                 ;
4040         /*
4041          * OK, we've found the last block that must survive. The rest of our
4042          * branch should be detached before unlocking. However, if that rest
4043          * of branch is all ours and does not grow immediately from the inode
4044          * it's easier to cheat and just decrement partial->p.
4045          */
4046         if (p == chain + k - 1 && p > chain) {
4047                 p->p--;
4048         } else {
4049                 *top = *p->p;
4050                 /* Nope, don't do this in ext4.  Must leave the tree intact */
4051 #if 0
4052                 *p->p = 0;
4053 #endif
4054         }
4055         /* Writer: end */
4056
4057         while (partial > p) {
4058                 brelse(partial->bh);
4059                 partial--;
4060         }
4061 no_top:
4062         return partial;
4063 }
4064
4065 /*
4066  * Zero a number of block pointers in either an inode or an indirect block.
4067  * If we restart the transaction we must again get write access to the
4068  * indirect block for further modification.
4069  *
4070  * We release `count' blocks on disk, but (last - first) may be greater
4071  * than `count' because there can be holes in there.
4072  */
4073 static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
4074                               struct buffer_head *bh,
4075                               ext4_fsblk_t block_to_free,
4076                               unsigned long count, __le32 *first,
4077                               __le32 *last)
4078 {
4079         __le32 *p;
4080         int     flags = EXT4_FREE_BLOCKS_FORGET;
4081
4082         if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
4083                 flags |= EXT4_FREE_BLOCKS_METADATA;
4084
4085         if (try_to_extend_transaction(handle, inode)) {
4086                 if (bh) {
4087                         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4088                         ext4_handle_dirty_metadata(handle, inode, bh);
4089                 }
4090                 ext4_mark_inode_dirty(handle, inode);
4091                 ext4_truncate_restart_trans(handle, inode,
4092                                             blocks_for_truncate(inode));
4093                 if (bh) {
4094                         BUFFER_TRACE(bh, "retaking write access");
4095                         ext4_journal_get_write_access(handle, bh);
4096                 }
4097         }
4098
4099         for (p = first; p < last; p++)
4100                 *p = 0;
4101
4102         ext4_free_blocks(handle, inode, 0, block_to_free, count, flags);
4103 }
4104
4105 /**
4106  * ext4_free_data - free a list of data blocks
4107  * @handle:     handle for this transaction
4108  * @inode:      inode we are dealing with
4109  * @this_bh:    indirect buffer_head which contains *@first and *@last
4110  * @first:      array of block numbers
4111  * @last:       points immediately past the end of array
4112  *
4113  * We are freeing all blocks refered from that array (numbers are stored as
4114  * little-endian 32-bit) and updating @inode->i_blocks appropriately.
4115  *
4116  * We accumulate contiguous runs of blocks to free.  Conveniently, if these
4117  * blocks are contiguous then releasing them at one time will only affect one
4118  * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
4119  * actually use a lot of journal space.
4120  *
4121  * @this_bh will be %NULL if @first and @last point into the inode's direct
4122  * block pointers.
4123  */
4124 static void ext4_free_data(handle_t *handle, struct inode *inode,
4125                            struct buffer_head *this_bh,
4126                            __le32 *first, __le32 *last)
4127 {
4128         ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
4129         unsigned long count = 0;            /* Number of blocks in the run */
4130         __le32 *block_to_free_p = NULL;     /* Pointer into inode/ind
4131                                                corresponding to
4132                                                block_to_free */
4133         ext4_fsblk_t nr;                    /* Current block # */
4134         __le32 *p;                          /* Pointer into inode/ind
4135                                                for current block */
4136         int err;
4137
4138         if (this_bh) {                          /* For indirect block */
4139                 BUFFER_TRACE(this_bh, "get_write_access");
4140                 err = ext4_journal_get_write_access(handle, this_bh);
4141                 /* Important: if we can't update the indirect pointers
4142                  * to the blocks, we can't free them. */
4143                 if (err)
4144                         return;
4145         }
4146
4147         for (p = first; p < last; p++) {
4148                 nr = le32_to_cpu(*p);
4149                 if (nr) {
4150                         /* accumulate blocks to free if they're contiguous */
4151                         if (count == 0) {
4152                                 block_to_free = nr;
4153                                 block_to_free_p = p;
4154                                 count = 1;
4155                         } else if (nr == block_to_free + count) {
4156                                 count++;
4157                         } else {
4158                                 ext4_clear_blocks(handle, inode, this_bh,
4159                                                   block_to_free,
4160                                                   count, block_to_free_p, p);
4161                                 block_to_free = nr;
4162                                 block_to_free_p = p;
4163                                 count = 1;
4164                         }
4165                 }
4166         }
4167
4168         if (count > 0)
4169                 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
4170                                   count, block_to_free_p, p);
4171
4172         if (this_bh) {
4173                 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
4174
4175                 /*
4176                  * The buffer head should have an attached journal head at this
4177                  * point. However, if the data is corrupted and an indirect
4178                  * block pointed to itself, it would have been detached when
4179                  * the block was cleared. Check for this instead of OOPSing.
4180                  */
4181                 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
4182                         ext4_handle_dirty_metadata(handle, inode, this_bh);
4183                 else
4184                         ext4_error(inode->i_sb, __func__,
4185                                    "circular indirect block detected, "
4186                                    "inode=%lu, block=%llu",
4187                                    inode->i_ino,
4188                                    (unsigned long long) this_bh->b_blocknr);
4189         }
4190 }
4191
4192 /**
4193  *      ext4_free_branches - free an array of branches
4194  *      @handle: JBD handle for this transaction
4195  *      @inode: inode we are dealing with
4196  *      @parent_bh: the buffer_head which contains *@first and *@last
4197  *      @first: array of block numbers
4198  *      @last:  pointer immediately past the end of array
4199  *      @depth: depth of the branches to free
4200  *
4201  *      We are freeing all blocks refered from these branches (numbers are
4202  *      stored as little-endian 32-bit) and updating @inode->i_blocks
4203  *      appropriately.
4204  */
4205 static void ext4_free_branches(handle_t *handle, struct inode *inode,
4206                                struct buffer_head *parent_bh,
4207                                __le32 *first, __le32 *last, int depth)
4208 {
4209         ext4_fsblk_t nr;
4210         __le32 *p;
4211
4212         if (ext4_handle_is_aborted(handle))
4213                 return;
4214
4215         if (depth--) {
4216                 struct buffer_head *bh;
4217                 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4218                 p = last;
4219                 while (--p >= first) {
4220                         nr = le32_to_cpu(*p);
4221                         if (!nr)
4222                                 continue;               /* A hole */
4223
4224                         /* Go read the buffer for the next level down */
4225                         bh = sb_bread(inode->i_sb, nr);
4226
4227                         /*
4228                          * A read failure? Report error and clear slot
4229                          * (should be rare).
4230                          */
4231                         if (!bh) {
4232                                 ext4_error(inode->i_sb, "ext4_free_branches",
4233                                            "Read failure, inode=%lu, block=%llu",
4234                                            inode->i_ino, nr);
4235                                 continue;
4236                         }
4237
4238                         /* This zaps the entire block.  Bottom up. */
4239                         BUFFER_TRACE(bh, "free child branches");
4240                         ext4_free_branches(handle, inode, bh,
4241                                         (__le32 *) bh->b_data,
4242                                         (__le32 *) bh->b_data + addr_per_block,
4243                                         depth);
4244
4245                         /*
4246                          * We've probably journalled the indirect block several
4247                          * times during the truncate.  But it's no longer
4248                          * needed and we now drop it from the transaction via
4249                          * jbd2_journal_revoke().
4250                          *
4251                          * That's easy if it's exclusively part of this
4252                          * transaction.  But if it's part of the committing
4253                          * transaction then jbd2_journal_forget() will simply
4254                          * brelse() it.  That means that if the underlying
4255                          * block is reallocated in ext4_get_block(),
4256                          * unmap_underlying_metadata() will find this block
4257                          * and will try to get rid of it.  damn, damn.
4258                          *
4259                          * If this block has already been committed to the
4260                          * journal, a revoke record will be written.  And
4261                          * revoke records must be emitted *before* clearing
4262                          * this block's bit in the bitmaps.
4263                          */
4264                         ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
4265
4266                         /*
4267                          * Everything below this this pointer has been
4268                          * released.  Now let this top-of-subtree go.
4269                          *
4270                          * We want the freeing of this indirect block to be
4271                          * atomic in the journal with the updating of the
4272                          * bitmap block which owns it.  So make some room in
4273                          * the journal.
4274                          *
4275                          * We zero the parent pointer *after* freeing its
4276                          * pointee in the bitmaps, so if extend_transaction()
4277                          * for some reason fails to put the bitmap changes and
4278                          * the release into the same transaction, recovery
4279                          * will merely complain about releasing a free block,
4280                          * rather than leaking blocks.
4281                          */
4282                         if (ext4_handle_is_aborted(handle))
4283                                 return;
4284                         if (try_to_extend_transaction(handle, inode)) {
4285                                 ext4_mark_inode_dirty(handle, inode);
4286                                 ext4_truncate_restart_trans(handle, inode,
4287                                             blocks_for_truncate(inode));
4288                         }
4289
4290                         ext4_free_blocks(handle, inode, 0, nr, 1,
4291                                          EXT4_FREE_BLOCKS_METADATA);
4292
4293                         if (parent_bh) {
4294                                 /*
4295                                  * The block which we have just freed is
4296                                  * pointed to by an indirect block: journal it
4297                                  */
4298                                 BUFFER_TRACE(parent_bh, "get_write_access");
4299                                 if (!ext4_journal_get_write_access(handle,
4300                                                                    parent_bh)){
4301                                         *p = 0;
4302                                         BUFFER_TRACE(parent_bh,
4303                                         "call ext4_handle_dirty_metadata");
4304                                         ext4_handle_dirty_metadata(handle,
4305                                                                    inode,
4306                                                                    parent_bh);
4307                                 }
4308                         }
4309                 }
4310         } else {
4311                 /* We have reached the bottom of the tree. */
4312                 BUFFER_TRACE(parent_bh, "free data blocks");
4313                 ext4_free_data(handle, inode, parent_bh, first, last);
4314         }
4315 }
4316
4317 int ext4_can_truncate(struct inode *inode)
4318 {
4319         if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4320                 return 0;
4321         if (S_ISREG(inode->i_mode))
4322                 return 1;
4323         if (S_ISDIR(inode->i_mode))
4324                 return 1;
4325         if (S_ISLNK(inode->i_mode))
4326                 return !ext4_inode_is_fast_symlink(inode);
4327         return 0;
4328 }
4329
4330 /*
4331  * ext4_truncate()
4332  *
4333  * We block out ext4_get_block() block instantiations across the entire
4334  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4335  * simultaneously on behalf of the same inode.
4336  *
4337  * As we work through the truncate and commmit bits of it to the journal there
4338  * is one core, guiding principle: the file's tree must always be consistent on
4339  * disk.  We must be able to restart the truncate after a crash.
4340  *
4341  * The file's tree may be transiently inconsistent in memory (although it
4342  * probably isn't), but whenever we close off and commit a journal transaction,
4343  * the contents of (the filesystem + the journal) must be consistent and
4344  * restartable.  It's pretty simple, really: bottom up, right to left (although
4345  * left-to-right works OK too).
4346  *
4347  * Note that at recovery time, journal replay occurs *before* the restart of
4348  * truncate against the orphan inode list.
4349  *
4350  * The committed inode has the new, desired i_size (which is the same as
4351  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4352  * that this inode's truncate did not complete and it will again call
4353  * ext4_truncate() to have another go.  So there will be instantiated blocks
4354  * to the right of the truncation point in a crashed ext4 filesystem.  But
4355  * that's fine - as long as they are linked from the inode, the post-crash
4356  * ext4_truncate() run will find them and release them.
4357  */
4358 void ext4_truncate(struct inode *inode)
4359 {
4360         handle_t *handle;
4361         struct ext4_inode_info *ei = EXT4_I(inode);
4362         __le32 *i_data = ei->i_data;
4363         int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4364         struct address_space *mapping = inode->i_mapping;
4365         ext4_lblk_t offsets[4];
4366         Indirect chain[4];
4367         Indirect *partial;
4368         __le32 nr = 0;
4369         int n;
4370         ext4_lblk_t last_block;
4371         unsigned blocksize = inode->i_sb->s_blocksize;
4372
4373         if (!ext4_can_truncate(inode))
4374                 return;
4375
4376         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4377                 ei->i_state |= EXT4_STATE_DA_ALLOC_CLOSE;
4378
4379         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
4380                 ext4_ext_truncate(inode);
4381                 return;
4382         }
4383
4384         handle = start_transaction(inode);
4385         if (IS_ERR(handle))
4386                 return;         /* AKPM: return what? */
4387
4388         last_block = (inode->i_size + blocksize-1)
4389                                         >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
4390
4391         if (inode->i_size & (blocksize - 1))
4392                 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
4393                         goto out_stop;
4394
4395         n = ext4_block_to_path(inode, last_block, offsets, NULL);
4396         if (n == 0)
4397                 goto out_stop;  /* error */
4398
4399         /*
4400          * OK.  This truncate is going to happen.  We add the inode to the
4401          * orphan list, so that if this truncate spans multiple transactions,
4402          * and we crash, we will resume the truncate when the filesystem
4403          * recovers.  It also marks the inode dirty, to catch the new size.
4404          *
4405          * Implication: the file must always be in a sane, consistent
4406          * truncatable state while each transaction commits.
4407          */
4408         if (ext4_orphan_add(handle, inode))
4409                 goto out_stop;
4410
4411         /*
4412          * From here we block out all ext4_get_block() callers who want to
4413          * modify the block allocation tree.
4414          */
4415         down_write(&ei->i_data_sem);
4416
4417         ext4_discard_preallocations(inode);
4418
4419         /*
4420          * The orphan list entry will now protect us from any crash which
4421          * occurs before the truncate completes, so it is now safe to propagate
4422          * the new, shorter inode size (held for now in i_size) into the
4423          * on-disk inode. We do this via i_disksize, which is the value which
4424          * ext4 *really* writes onto the disk inode.
4425          */
4426         ei->i_disksize = inode->i_size;
4427
4428         if (n == 1) {           /* direct blocks */
4429                 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
4430                                i_data + EXT4_NDIR_BLOCKS);
4431                 goto do_indirects;
4432         }
4433
4434         partial = ext4_find_shared(inode, n, offsets, chain, &nr);
4435         /* Kill the top of shared branch (not detached) */
4436         if (nr) {
4437                 if (partial == chain) {
4438                         /* Shared branch grows from the inode */
4439                         ext4_free_branches(handle, inode, NULL,
4440                                            &nr, &nr+1, (chain+n-1) - partial);
4441                         *partial->p = 0;
4442                         /*
4443                          * We mark the inode dirty prior to restart,
4444                          * and prior to stop.  No need for it here.
4445                          */
4446                 } else {
4447                         /* Shared branch grows from an indirect block */
4448                         BUFFER_TRACE(partial->bh, "get_write_access");
4449                         ext4_free_branches(handle, inode, partial->bh,
4450                                         partial->p,
4451                                         partial->p+1, (chain+n-1) - partial);
4452                 }
4453         }
4454         /* Clear the ends of indirect blocks on the shared branch */
4455         while (partial > chain) {
4456                 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
4457                                    (__le32*)partial->bh->b_data+addr_per_block,
4458                                    (chain+n-1) - partial);
4459                 BUFFER_TRACE(partial->bh, "call brelse");
4460                 brelse(partial->bh);
4461                 partial--;
4462         }
4463 do_indirects:
4464         /* Kill the remaining (whole) subtrees */
4465         switch (offsets[0]) {
4466         default:
4467                 nr = i_data[EXT4_IND_BLOCK];
4468                 if (nr) {
4469                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
4470                         i_data[EXT4_IND_BLOCK] = 0;
4471                 }
4472         case EXT4_IND_BLOCK:
4473                 nr = i_data[EXT4_DIND_BLOCK];
4474                 if (nr) {
4475                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
4476                         i_data[EXT4_DIND_BLOCK] = 0;
4477                 }
4478         case EXT4_DIND_BLOCK:
4479                 nr = i_data[EXT4_TIND_BLOCK];
4480                 if (nr) {
4481                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
4482                         i_data[EXT4_TIND_BLOCK] = 0;
4483                 }
4484         case EXT4_TIND_BLOCK:
4485                 ;
4486         }
4487
4488         up_write(&ei->i_data_sem);
4489         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4490         ext4_mark_inode_dirty(handle, inode);
4491
4492         /*
4493          * In a multi-transaction truncate, we only make the final transaction
4494          * synchronous
4495          */
4496         if (IS_SYNC(inode))
4497                 ext4_handle_sync(handle);
4498 out_stop:
4499         /*
4500          * If this was a simple ftruncate(), and the file will remain alive
4501          * then we need to clear up the orphan record which we created above.
4502          * However, if this was a real unlink then we were called by
4503          * ext4_delete_inode(), and we allow that function to clean up the
4504          * orphan info for us.
4505          */
4506         if (inode->i_nlink)
4507                 ext4_orphan_del(handle, inode);
4508
4509         ext4_journal_stop(handle);
4510 }
4511
4512 /*
4513  * ext4_get_inode_loc returns with an extra refcount against the inode's
4514  * underlying buffer_head on success. If 'in_mem' is true, we have all
4515  * data in memory that is needed to recreate the on-disk version of this
4516  * inode.
4517  */
4518 static int __ext4_get_inode_loc(struct inode *inode,
4519                                 struct ext4_iloc *iloc, int in_mem)
4520 {
4521         struct ext4_group_desc  *gdp;
4522         struct buffer_head      *bh;
4523         struct super_block      *sb = inode->i_sb;
4524         ext4_fsblk_t            block;
4525         int                     inodes_per_block, inode_offset;
4526
4527         iloc->bh = NULL;
4528         if (!ext4_valid_inum(sb, inode->i_ino))
4529                 return -EIO;
4530
4531         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4532         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4533         if (!gdp)
4534                 return -EIO;
4535
4536         /*
4537          * Figure out the offset within the block group inode table
4538          */
4539         inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
4540         inode_offset = ((inode->i_ino - 1) %
4541                         EXT4_INODES_PER_GROUP(sb));
4542         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4543         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4544
4545         bh = sb_getblk(sb, block);
4546         if (!bh) {
4547                 ext4_error(sb, "ext4_get_inode_loc", "unable to read "
4548                            "inode block - inode=%lu, block=%llu",
4549                            inode->i_ino, block);
4550                 return -EIO;
4551         }
4552         if (!buffer_uptodate(bh)) {
4553                 lock_buffer(bh);
4554
4555                 /*
4556                  * If the buffer has the write error flag, we have failed
4557                  * to write out another inode in the same block.  In this
4558                  * case, we don't have to read the block because we may
4559                  * read the old inode data successfully.
4560                  */
4561                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4562                         set_buffer_uptodate(bh);
4563
4564                 if (buffer_uptodate(bh)) {
4565                         /* someone brought it uptodate while we waited */
4566                         unlock_buffer(bh);
4567                         goto has_buffer;
4568                 }
4569
4570                 /*
4571                  * If we have all information of the inode in memory and this
4572                  * is the only valid inode in the block, we need not read the
4573                  * block.
4574                  */
4575                 if (in_mem) {
4576                         struct buffer_head *bitmap_bh;
4577                         int i, start;
4578
4579                         start = inode_offset & ~(inodes_per_block - 1);
4580
4581                         /* Is the inode bitmap in cache? */
4582                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4583                         if (!bitmap_bh)
4584                                 goto make_io;
4585
4586                         /*
4587                          * If the inode bitmap isn't in cache then the
4588                          * optimisation may end up performing two reads instead
4589                          * of one, so skip it.
4590                          */
4591                         if (!buffer_uptodate(bitmap_bh)) {
4592                                 brelse(bitmap_bh);
4593                                 goto make_io;
4594                         }
4595                         for (i = start; i < start + inodes_per_block; i++) {
4596                                 if (i == inode_offset)
4597                                         continue;
4598                                 if (ext4_test_bit(i, bitmap_bh->b_data))
4599                                         break;
4600                         }
4601                         brelse(bitmap_bh);
4602                         if (i == start + inodes_per_block) {
4603                                 /* all other inodes are free, so skip I/O */
4604                                 memset(bh->b_data, 0, bh->b_size);
4605                                 set_buffer_uptodate(bh);
4606                                 unlock_buffer(bh);
4607                                 goto has_buffer;
4608                         }
4609                 }
4610
4611 make_io:
4612                 /*
4613                  * If we need to do any I/O, try to pre-readahead extra
4614                  * blocks from the inode table.
4615                  */
4616                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4617                         ext4_fsblk_t b, end, table;
4618                         unsigned num;
4619
4620                         table = ext4_inode_table(sb, gdp);
4621                         /* s_inode_readahead_blks is always a power of 2 */
4622                         b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
4623                         if (table > b)
4624                                 b = table;
4625                         end = b + EXT4_SB(sb)->s_inode_readahead_blks;
4626                         num = EXT4_INODES_PER_GROUP(sb);
4627                         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4628                                        EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
4629                                 num -= ext4_itable_unused_count(sb, gdp);
4630                         table += num / inodes_per_block;
4631                         if (end > table)
4632                                 end = table;
4633                         while (b <= end)
4634                                 sb_breadahead(sb, b++);
4635                 }
4636
4637                 /*
4638                  * There are other valid inodes in the buffer, this inode
4639                  * has in-inode xattrs, or we don't have this inode in memory.
4640                  * Read the block from disk.
4641                  */
4642                 get_bh(bh);
4643                 bh->b_end_io = end_buffer_read_sync;
4644                 submit_bh(READ_META, bh);
4645                 wait_on_buffer(bh);
4646                 if (!buffer_uptodate(bh)) {
4647                         ext4_error(sb, __func__,
4648                                    "unable to read inode block - inode=%lu, "
4649                                    "block=%llu", inode->i_ino, block);
4650                         brelse(bh);
4651                         return -EIO;
4652                 }
4653         }
4654 has_buffer:
4655         iloc->bh = bh;
4656         return 0;
4657 }
4658
4659 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4660 {
4661         /* We have all inode data except xattrs in memory here. */
4662         return __ext4_get_inode_loc(inode, iloc,
4663                 !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
4664 }
4665
4666 void ext4_set_inode_flags(struct inode *inode)
4667 {
4668         unsigned int flags = EXT4_I(inode)->i_flags;
4669
4670         inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4671         if (flags & EXT4_SYNC_FL)
4672                 inode->i_flags |= S_SYNC;
4673         if (flags & EXT4_APPEND_FL)
4674                 inode->i_flags |= S_APPEND;
4675         if (flags & EXT4_IMMUTABLE_FL)
4676                 inode->i_flags |= S_IMMUTABLE;
4677         if (flags & EXT4_NOATIME_FL)
4678                 inode->i_flags |= S_NOATIME;
4679         if (flags & EXT4_DIRSYNC_FL)
4680                 inode->i_flags |= S_DIRSYNC;
4681 }
4682
4683 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4684 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4685 {
4686         unsigned int flags = ei->vfs_inode.i_flags;
4687
4688         ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4689                         EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
4690         if (flags & S_SYNC)
4691                 ei->i_flags |= EXT4_SYNC_FL;
4692         if (flags & S_APPEND)
4693                 ei->i_flags |= EXT4_APPEND_FL;
4694         if (flags & S_IMMUTABLE)
4695                 ei->i_flags |= EXT4_IMMUTABLE_FL;
4696         if (flags & S_NOATIME)
4697                 ei->i_flags |= EXT4_NOATIME_FL;
4698         if (flags & S_DIRSYNC)
4699                 ei->i_flags |= EXT4_DIRSYNC_FL;
4700 }
4701
4702 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4703                                   struct ext4_inode_info *ei)
4704 {
4705         blkcnt_t i_blocks ;
4706         struct inode *inode = &(ei->vfs_inode);
4707         struct super_block *sb = inode->i_sb;
4708
4709         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4710                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4711                 /* we are using combined 48 bit field */
4712                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4713                                         le32_to_cpu(raw_inode->i_blocks_lo);
4714                 if (ei->i_flags & EXT4_HUGE_FILE_FL) {
4715                         /* i_blocks represent file system block size */
4716                         return i_blocks  << (inode->i_blkbits - 9);
4717                 } else {
4718                         return i_blocks;
4719                 }
4720         } else {
4721                 return le32_to_cpu(raw_inode->i_blocks_lo);
4722         }
4723 }
4724
4725 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4726 {
4727         struct ext4_iloc iloc;
4728         struct ext4_inode *raw_inode;
4729         struct ext4_inode_info *ei;
4730         struct inode *inode;
4731         long ret;
4732         int block;
4733
4734         inode = iget_locked(sb, ino);
4735         if (!inode)
4736                 return ERR_PTR(-ENOMEM);
4737         if (!(inode->i_state & I_NEW))
4738                 return inode;
4739
4740         ei = EXT4_I(inode);
4741         iloc.bh = 0;
4742
4743         ret = __ext4_get_inode_loc(inode, &iloc, 0);
4744         if (ret < 0)
4745                 goto bad_inode;
4746         raw_inode = ext4_raw_inode(&iloc);
4747         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4748         inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4749         inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4750         if (!(test_opt(inode->i_sb, NO_UID32))) {
4751                 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4752                 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4753         }
4754         inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
4755
4756         ei->i_state = 0;
4757         ei->i_dir_start_lookup = 0;
4758         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4759         /* We now have enough fields to check if the inode was active or not.
4760          * This is needed because nfsd might try to access dead inodes
4761          * the test is that same one that e2fsck uses
4762          * NeilBrown 1999oct15
4763          */
4764         if (inode->i_nlink == 0) {
4765                 if (inode->i_mode == 0 ||
4766                     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
4767                         /* this inode is deleted */
4768                         ret = -ESTALE;
4769                         goto bad_inode;
4770                 }
4771                 /* The only unlinked inodes we let through here have
4772                  * valid i_mode and are being read by the orphan
4773                  * recovery code: that's fine, we're about to complete
4774                  * the process of deleting those. */
4775         }
4776         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4777         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4778         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4779         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4780                 ei->i_file_acl |=
4781                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4782         inode->i_size = ext4_isize(raw_inode);
4783         ei->i_disksize = inode->i_size;
4784         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4785         ei->i_block_group = iloc.block_group;
4786         ei->i_last_alloc_group = ~0;
4787         /*
4788          * NOTE! The in-memory inode i_data array is in little-endian order
4789          * even on big-endian machines: we do NOT byteswap the block numbers!
4790          */
4791         for (block = 0; block < EXT4_N_BLOCKS; block++)
4792                 ei->i_data[block] = raw_inode->i_block[block];
4793         INIT_LIST_HEAD(&ei->i_orphan);
4794
4795         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4796                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4797                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4798                     EXT4_INODE_SIZE(inode->i_sb)) {
4799                         ret = -EIO;
4800                         goto bad_inode;
4801                 }
4802                 if (ei->i_extra_isize == 0) {
4803                         /* The extra space is currently unused. Use it. */
4804                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4805                                             EXT4_GOOD_OLD_INODE_SIZE;
4806                 } else {
4807                         __le32 *magic = (void *)raw_inode +
4808                                         EXT4_GOOD_OLD_INODE_SIZE +
4809                                         ei->i_extra_isize;
4810                         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
4811                                 ei->i_state |= EXT4_STATE_XATTR;
4812                 }
4813         } else
4814                 ei->i_extra_isize = 0;
4815
4816         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4817         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4818         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4819         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4820
4821         inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4822         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4823                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4824                         inode->i_version |=
4825                         (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4826         }
4827
4828         ret = 0;
4829         if (ei->i_file_acl &&
4830             !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4831                 ext4_error(sb, __func__,
4832                            "bad extended attribute block %llu in inode #%lu",
4833                            ei->i_file_acl, inode->i_ino);
4834                 ret = -EIO;
4835                 goto bad_inode;
4836         } else if (ei->i_flags & EXT4_EXTENTS_FL) {
4837                 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4838                     (S_ISLNK(inode->i_mode) &&
4839                      !ext4_inode_is_fast_symlink(inode)))
4840                         /* Validate extent which is part of inode */
4841                         ret = ext4_ext_check_inode(inode);
4842         } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4843                    (S_ISLNK(inode->i_mode) &&
4844                     !ext4_inode_is_fast_symlink(inode))) {
4845                 /* Validate block references which are part of inode */
4846                 ret = ext4_check_inode_blockref(inode);
4847         }
4848         if (ret)
4849                 goto bad_inode;
4850
4851         if (S_ISREG(inode->i_mode)) {
4852                 inode->i_op = &ext4_file_inode_operations;
4853                 inode->i_fop = &ext4_file_operations;
4854                 ext4_set_aops(inode);
4855         } else if (S_ISDIR(inode->i_mode)) {
4856                 inode->i_op = &ext4_dir_inode_operations;
4857                 inode->i_fop = &ext4_dir_operations;
4858         } else if (S_ISLNK(inode->i_mode)) {
4859                 if (ext4_inode_is_fast_symlink(inode)) {
4860                         inode->i_op = &ext4_fast_symlink_inode_operations;
4861                         nd_terminate_link(ei->i_data, inode->i_size,
4862                                 sizeof(ei->i_data) - 1);
4863                 } else {
4864                         inode->i_op = &ext4_symlink_inode_operations;
4865                         ext4_set_aops(inode);
4866                 }
4867         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4868               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4869                 inode->i_op = &ext4_special_inode_operations;
4870                 if (raw_inode->i_block[0])
4871                         init_special_inode(inode, inode->i_mode,
4872                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4873                 else
4874                         init_special_inode(inode, inode->i_mode,
4875                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4876         } else {
4877                 ret = -EIO;
4878                 ext4_error(inode->i_sb, __func__,
4879                            "bogus i_mode (%o) for inode=%lu",
4880                            inode->i_mode, inode->i_ino);
4881                 goto bad_inode;
4882         }
4883         brelse(iloc.bh);
4884         ext4_set_inode_flags(inode);
4885         unlock_new_inode(inode);
4886         return inode;
4887
4888 bad_inode:
4889         brelse(iloc.bh);
4890         iget_failed(inode);
4891         return ERR_PTR(ret);
4892 }
4893
4894 static int ext4_inode_blocks_set(handle_t *handle,
4895                                 struct ext4_inode *raw_inode,
4896                                 struct ext4_inode_info *ei)
4897 {
4898         struct inode *inode = &(ei->vfs_inode);
4899         u64 i_blocks = inode->i_blocks;
4900         struct super_block *sb = inode->i_sb;
4901
4902         if (i_blocks <= ~0U) {
4903                 /*
4904                  * i_blocks can be represnted in a 32 bit variable
4905                  * as multiple of 512 bytes
4906                  */
4907                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4908                 raw_inode->i_blocks_high = 0;
4909                 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4910                 return 0;
4911         }
4912         if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4913                 return -EFBIG;
4914
4915         if (i_blocks <= 0xffffffffffffULL) {
4916                 /*
4917                  * i_blocks can be represented in a 48 bit variable
4918                  * as multiple of 512 bytes
4919                  */
4920                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4921                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4922                 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4923         } else {
4924                 ei->i_flags |= EXT4_HUGE_FILE_FL;
4925                 /* i_block is stored in file system block size */
4926                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4927                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4928                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4929         }
4930         return 0;
4931 }
4932
4933 /*
4934  * Post the struct inode info into an on-disk inode location in the
4935  * buffer-cache.  This gobbles the caller's reference to the
4936  * buffer_head in the inode location struct.
4937  *
4938  * The caller must have write access to iloc->bh.
4939  */
4940 static int ext4_do_update_inode(handle_t *handle,
4941                                 struct inode *inode,
4942                                 struct ext4_iloc *iloc)
4943 {
4944         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4945         struct ext4_inode_info *ei = EXT4_I(inode);
4946         struct buffer_head *bh = iloc->bh;
4947         int err = 0, rc, block;
4948
4949         /* For fields not not tracking in the in-memory inode,
4950          * initialise them to zero for new inodes. */
4951         if (ei->i_state & EXT4_STATE_NEW)
4952                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4953
4954         ext4_get_inode_flags(ei);
4955         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4956         if (!(test_opt(inode->i_sb, NO_UID32))) {
4957                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
4958                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
4959 /*
4960  * Fix up interoperability with old kernels. Otherwise, old inodes get
4961  * re-used with the upper 16 bits of the uid/gid intact
4962  */
4963                 if (!ei->i_dtime) {
4964                         raw_inode->i_uid_high =
4965                                 cpu_to_le16(high_16_bits(inode->i_uid));
4966                         raw_inode->i_gid_high =
4967                                 cpu_to_le16(high_16_bits(inode->i_gid));
4968                 } else {
4969                         raw_inode->i_uid_high = 0;
4970                         raw_inode->i_gid_high = 0;
4971                 }
4972         } else {
4973                 raw_inode->i_uid_low =
4974                         cpu_to_le16(fs_high2lowuid(inode->i_uid));
4975                 raw_inode->i_gid_low =
4976                         cpu_to_le16(fs_high2lowgid(inode->i_gid));
4977                 raw_inode->i_uid_high = 0;
4978                 raw_inode->i_gid_high = 0;
4979         }
4980         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4981
4982         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4983         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4984         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4985         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4986
4987         if (ext4_inode_blocks_set(handle, raw_inode, ei))
4988                 goto out_brelse;
4989         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4990         raw_inode->i_flags = cpu_to_le32(ei->i_flags);
4991         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4992             cpu_to_le32(EXT4_OS_HURD))
4993                 raw_inode->i_file_acl_high =
4994                         cpu_to_le16(ei->i_file_acl >> 32);
4995         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4996         ext4_isize_set(raw_inode, ei->i_disksize);
4997         if (ei->i_disksize > 0x7fffffffULL) {
4998                 struct super_block *sb = inode->i_sb;
4999                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
5000                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
5001                                 EXT4_SB(sb)->s_es->s_rev_level ==
5002                                 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
5003                         /* If this is the first large file
5004                          * created, add a flag to the superblock.
5005                          */
5006                         err = ext4_journal_get_write_access(handle,
5007                                         EXT4_SB(sb)->s_sbh);
5008                         if (err)
5009                                 goto out_brelse;
5010                         ext4_update_dynamic_rev(sb);
5011                         EXT4_SET_RO_COMPAT_FEATURE(sb,
5012                                         EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
5013                         sb->s_dirt = 1;
5014                         ext4_handle_sync(handle);
5015                         err = ext4_handle_dirty_metadata(handle, inode,
5016                                         EXT4_SB(sb)->s_sbh);
5017                 }
5018         }
5019         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5020         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5021                 if (old_valid_dev(inode->i_rdev)) {
5022                         raw_inode->i_block[0] =
5023                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
5024                         raw_inode->i_block[1] = 0;
5025                 } else {
5026                         raw_inode->i_block[0] = 0;
5027                         raw_inode->i_block[1] =
5028                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
5029                         raw_inode->i_block[2] = 0;
5030                 }
5031         } else
5032                 for (block = 0; block < EXT4_N_BLOCKS; block++)
5033                         raw_inode->i_block[block] = ei->i_data[block];
5034
5035         raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
5036         if (ei->i_extra_isize) {
5037                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5038                         raw_inode->i_version_hi =
5039                         cpu_to_le32(inode->i_version >> 32);
5040                 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
5041         }
5042
5043         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5044         rc = ext4_handle_dirty_metadata(handle, inode, bh);
5045         if (!err)
5046                 err = rc;
5047         ei->i_state &= ~EXT4_STATE_NEW;
5048
5049 out_brelse:
5050         brelse(bh);
5051         ext4_std_error(inode->i_sb, err);
5052         return err;
5053 }
5054
5055 /*
5056  * ext4_write_inode()
5057  *
5058  * We are called from a few places:
5059  *
5060  * - Within generic_file_write() for O_SYNC files.
5061  *   Here, there will be no transaction running. We wait for any running
5062  *   trasnaction to commit.
5063  *
5064  * - Within sys_sync(), kupdate and such.
5065  *   We wait on commit, if tol to.
5066  *
5067  * - Within prune_icache() (PF_MEMALLOC == true)
5068  *   Here we simply return.  We can't afford to block kswapd on the
5069  *   journal commit.
5070  *
5071  * In all cases it is actually safe for us to return without doing anything,
5072  * because the inode has been copied into a raw inode buffer in
5073  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
5074  * knfsd.
5075  *
5076  * Note that we are absolutely dependent upon all inode dirtiers doing the
5077  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5078  * which we are interested.
5079  *
5080  * It would be a bug for them to not do this.  The code:
5081  *
5082  *      mark_inode_dirty(inode)
5083  *      stuff();
5084  *      inode->i_size = expr;
5085  *
5086  * is in error because a kswapd-driven write_inode() could occur while
5087  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
5088  * will no longer be on the superblock's dirty inode list.
5089  */
5090 int ext4_write_inode(struct inode *inode, int wait)
5091 {
5092         int err;
5093
5094         if (current->flags & PF_MEMALLOC)
5095                 return 0;
5096
5097         if (EXT4_SB(inode->i_sb)->s_journal) {
5098                 if (ext4_journal_current_handle()) {
5099                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5100                         dump_stack();
5101                         return -EIO;
5102                 }
5103
5104                 if (!wait)
5105                         return 0;
5106
5107                 err = ext4_force_commit(inode->i_sb);
5108         } else {
5109                 struct ext4_iloc iloc;
5110
5111                 err = ext4_get_inode_loc(inode, &iloc);
5112                 if (err)
5113                         return err;
5114                 if (wait)
5115                         sync_dirty_buffer(iloc.bh);
5116                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5117                         ext4_error(inode->i_sb, __func__,
5118                                    "IO error syncing inode, "
5119                                    "inode=%lu, block=%llu",
5120                                    inode->i_ino,
5121                                    (unsigned long long)iloc.bh->b_blocknr);
5122                         err = -EIO;
5123                 }
5124         }
5125         return err;
5126 }
5127
5128 /*
5129  * ext4_setattr()
5130  *
5131  * Called from notify_change.
5132  *
5133  * We want to trap VFS attempts to truncate the file as soon as
5134  * possible.  In particular, we want to make sure that when the VFS
5135  * shrinks i_size, we put the inode on the orphan list and modify
5136  * i_disksize immediately, so that during the subsequent flushing of
5137  * dirty pages and freeing of disk blocks, we can guarantee that any
5138  * commit will leave the blocks being flushed in an unused state on
5139  * disk.  (On recovery, the inode will get truncated and the blocks will
5140  * be freed, so we have a strong guarantee that no future commit will
5141  * leave these blocks visible to the user.)
5142  *
5143  * Another thing we have to assure is that if we are in ordered mode
5144  * and inode is still attached to the committing transaction, we must
5145  * we start writeout of all the dirty pages which are being truncated.
5146  * This way we are sure that all the data written in the previous
5147  * transaction are already on disk (truncate waits for pages under
5148  * writeback).
5149  *
5150  * Called with inode->i_mutex down.
5151  */
5152 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5153 {
5154         struct inode *inode = dentry->d_inode;
5155         int error, rc = 0;
5156         const unsigned int ia_valid = attr->ia_valid;
5157
5158         error = inode_change_ok(inode, attr);
5159         if (error)
5160                 return error;
5161
5162         if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
5163                 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
5164                 handle_t *handle;
5165
5166                 /* (user+group)*(old+new) structure, inode write (sb,
5167                  * inode block, ? - but truncate inode update has it) */
5168                 handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
5169                                         EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
5170                 if (IS_ERR(handle)) {
5171                         error = PTR_ERR(handle);
5172                         goto err_out;
5173                 }
5174                 error = vfs_dq_transfer(inode, attr) ? -EDQUOT : 0;
5175                 if (error) {
5176                         ext4_journal_stop(handle);
5177                         return error;
5178                 }
5179                 /* Update corresponding info in inode so that everything is in
5180                  * one transaction */
5181                 if (attr->ia_valid & ATTR_UID)
5182                         inode->i_uid = attr->ia_uid;
5183                 if (attr->ia_valid & ATTR_GID)
5184                         inode->i_gid = attr->ia_gid;
5185                 error = ext4_mark_inode_dirty(handle, inode);
5186                 ext4_journal_stop(handle);
5187         }
5188
5189         if (attr->ia_valid & ATTR_SIZE) {
5190                 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
5191                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5192
5193                         if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5194                                 error = -EFBIG;
5195                                 goto err_out;
5196                         }
5197                 }
5198         }
5199
5200         if (S_ISREG(inode->i_mode) &&
5201             attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
5202                 handle_t *handle;
5203
5204                 handle = ext4_journal_start(inode, 3);
5205                 if (IS_ERR(handle)) {
5206                         error = PTR_ERR(handle);
5207                         goto err_out;
5208                 }
5209
5210                 error = ext4_orphan_add(handle, inode);
5211                 EXT4_I(inode)->i_disksize = attr->ia_size;
5212                 rc = ext4_mark_inode_dirty(handle, inode);
5213                 if (!error)
5214                         error = rc;
5215                 ext4_journal_stop(handle);
5216
5217                 if (ext4_should_order_data(inode)) {
5218                         error = ext4_begin_ordered_truncate(inode,
5219                                                             attr->ia_size);
5220                         if (error) {
5221                                 /* Do as much error cleanup as possible */
5222                                 handle = ext4_journal_start(inode, 3);
5223                                 if (IS_ERR(handle)) {
5224                                         ext4_orphan_del(NULL, inode);
5225                                         goto err_out;
5226                                 }
5227                                 ext4_orphan_del(handle, inode);
5228                                 ext4_journal_stop(handle);
5229                                 goto err_out;
5230                         }
5231                 }
5232         }
5233
5234         rc = inode_setattr(inode, attr);
5235
5236         /* If inode_setattr's call to ext4_truncate failed to get a
5237          * transaction handle at all, we need to clean up the in-core
5238          * orphan list manually. */
5239         if (inode->i_nlink)
5240                 ext4_orphan_del(NULL, inode);
5241
5242         if (!rc && (ia_valid & ATTR_MODE))
5243                 rc = ext4_acl_chmod(inode);
5244
5245 err_out:
5246         ext4_std_error(inode->i_sb, error);
5247         if (!error)
5248                 error = rc;
5249         return error;
5250 }
5251
5252 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
5253                  struct kstat *stat)
5254 {
5255         struct inode *inode;
5256         unsigned long delalloc_blocks;
5257
5258         inode = dentry->d_inode;
5259         generic_fillattr(inode, stat);
5260
5261         /*
5262          * We can't update i_blocks if the block allocation is delayed
5263          * otherwise in the case of system crash before the real block
5264          * allocation is done, we will have i_blocks inconsistent with
5265          * on-disk file blocks.
5266          * We always keep i_blocks updated together with real
5267          * allocation. But to not confuse with user, stat
5268          * will return the blocks that include the delayed allocation
5269          * blocks for this file.
5270          */
5271         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
5272         delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
5273         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
5274
5275         stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
5276         return 0;
5277 }
5278
5279 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
5280                                       int chunk)
5281 {
5282         int indirects;
5283
5284         /* if nrblocks are contiguous */
5285         if (chunk) {
5286                 /*
5287                  * With N contiguous data blocks, it need at most
5288                  * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
5289                  * 2 dindirect blocks
5290                  * 1 tindirect block
5291                  */
5292                 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
5293                 return indirects + 3;
5294         }
5295         /*
5296          * if nrblocks are not contiguous, worse case, each block touch
5297          * a indirect block, and each indirect block touch a double indirect
5298          * block, plus a triple indirect block
5299          */
5300         indirects = nrblocks * 2 + 1;
5301         return indirects;
5302 }
5303
5304 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5305 {
5306         if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
5307                 return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
5308         return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
5309 }
5310
5311 /*
5312  * Account for index blocks, block groups bitmaps and block group
5313  * descriptor blocks if modify datablocks and index blocks
5314  * worse case, the indexs blocks spread over different block groups
5315  *
5316  * If datablocks are discontiguous, they are possible to spread over
5317  * different block groups too. If they are contiugous, with flexbg,
5318  * they could still across block group boundary.
5319  *
5320  * Also account for superblock, inode, quota and xattr blocks
5321  */
5322 int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5323 {
5324         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5325         int gdpblocks;
5326         int idxblocks;
5327         int ret = 0;
5328
5329         /*
5330          * How many index blocks need to touch to modify nrblocks?
5331          * The "Chunk" flag indicating whether the nrblocks is
5332          * physically contiguous on disk
5333          *
5334          * For Direct IO and fallocate, they calls get_block to allocate
5335          * one single extent at a time, so they could set the "Chunk" flag
5336          */
5337         idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
5338
5339         ret = idxblocks;
5340
5341         /*
5342          * Now let's see how many group bitmaps and group descriptors need
5343          * to account
5344          */
5345         groups = idxblocks;
5346         if (chunk)
5347                 groups += 1;
5348         else
5349                 groups += nrblocks;
5350
5351         gdpblocks = groups;
5352         if (groups > ngroups)
5353                 groups = ngroups;
5354         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5355                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5356
5357         /* bitmaps and block group descriptor blocks */
5358         ret += groups + gdpblocks;
5359
5360         /* Blocks for super block, inode, quota and xattr blocks */
5361         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5362
5363         return ret;
5364 }
5365
5366 /*
5367  * Calulate the total number of credits to reserve to fit
5368  * the modification of a single pages into a single transaction,
5369  * which may include multiple chunks of block allocations.
5370  *
5371  * This could be called via ext4_write_begin()
5372  *
5373  * We need to consider the worse case, when
5374  * one new block per extent.
5375  */
5376 int ext4_writepage_trans_blocks(struct inode *inode)
5377 {
5378         int bpp = ext4_journal_blocks_per_page(inode);
5379         int ret;
5380
5381         ret = ext4_meta_trans_blocks(inode, bpp, 0);
5382
5383         /* Account for data blocks for journalled mode */
5384         if (ext4_should_journal_data(inode))
5385                 ret += bpp;
5386         return ret;
5387 }
5388
5389 /*
5390  * Calculate the journal credits for a chunk of data modification.
5391  *
5392  * This is called from DIO, fallocate or whoever calling
5393  * ext4_get_blocks() to map/allocate a chunk of contigous disk blocks.
5394  *
5395  * journal buffers for data blocks are not included here, as DIO
5396  * and fallocate do no need to journal data buffers.
5397  */
5398 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5399 {
5400         return ext4_meta_trans_blocks(inode, nrblocks, 1);
5401 }
5402
5403 /*
5404  * The caller must have previously called ext4_reserve_inode_write().
5405  * Give this, we know that the caller already has write access to iloc->bh.
5406  */
5407 int ext4_mark_iloc_dirty(handle_t *handle,
5408                          struct inode *inode, struct ext4_iloc *iloc)
5409 {
5410         int err = 0;
5411
5412         if (test_opt(inode->i_sb, I_VERSION))
5413                 inode_inc_iversion(inode);
5414
5415         /* the do_update_inode consumes one bh->b_count */
5416         get_bh(iloc->bh);
5417
5418         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5419         err = ext4_do_update_inode(handle, inode, iloc);
5420         put_bh(iloc->bh);
5421         return err;
5422 }
5423
5424 /*
5425  * On success, We end up with an outstanding reference count against
5426  * iloc->bh.  This _must_ be cleaned up later.
5427  */
5428
5429 int
5430 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5431                          struct ext4_iloc *iloc)
5432 {
5433         int err;
5434
5435         err = ext4_get_inode_loc(inode, iloc);
5436         if (!err) {
5437                 BUFFER_TRACE(iloc->bh, "get_write_access");
5438                 err = ext4_journal_get_write_access(handle, iloc->bh);
5439                 if (err) {
5440                         brelse(iloc->bh);
5441                         iloc->bh = NULL;
5442                 }
5443         }
5444         ext4_std_error(inode->i_sb, err);
5445         return err;
5446 }
5447
5448 /*
5449  * Expand an inode by new_extra_isize bytes.
5450  * Returns 0 on success or negative error number on failure.
5451  */
5452 static int ext4_expand_extra_isize(struct inode *inode,
5453                                    unsigned int new_extra_isize,
5454                                    struct ext4_iloc iloc,
5455                                    handle_t *handle)
5456 {
5457         struct ext4_inode *raw_inode;
5458         struct ext4_xattr_ibody_header *header;
5459         struct ext4_xattr_entry *entry;
5460
5461         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5462                 return 0;
5463
5464         raw_inode = ext4_raw_inode(&iloc);
5465
5466         header = IHDR(inode, raw_inode);
5467         entry = IFIRST(header);
5468
5469         /* No extended attributes present */
5470         if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
5471                 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5472                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5473                         new_extra_isize);
5474                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5475                 return 0;
5476         }
5477
5478         /* try to expand with EAs present */
5479         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5480                                           raw_inode, handle);
5481 }
5482
5483 /*
5484  * What we do here is to mark the in-core inode as clean with respect to inode
5485  * dirtiness (it may still be data-dirty).
5486  * This means that the in-core inode may be reaped by prune_icache
5487  * without having to perform any I/O.  This is a very good thing,
5488  * because *any* task may call prune_icache - even ones which
5489  * have a transaction open against a different journal.
5490  *
5491  * Is this cheating?  Not really.  Sure, we haven't written the
5492  * inode out, but prune_icache isn't a user-visible syncing function.
5493  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5494  * we start and wait on commits.
5495  *
5496  * Is this efficient/effective?  Well, we're being nice to the system
5497  * by cleaning up our inodes proactively so they can be reaped
5498  * without I/O.  But we are potentially leaving up to five seconds'
5499  * worth of inodes floating about which prune_icache wants us to
5500  * write out.  One way to fix that would be to get prune_icache()
5501  * to do a write_super() to free up some memory.  It has the desired
5502  * effect.
5503  */
5504 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5505 {
5506         struct ext4_iloc iloc;
5507         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5508         static unsigned int mnt_count;
5509         int err, ret;
5510
5511         might_sleep();
5512         err = ext4_reserve_inode_write(handle, inode, &iloc);
5513         if (ext4_handle_valid(handle) &&
5514             EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5515             !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
5516                 /*
5517                  * We need extra buffer credits since we may write into EA block
5518                  * with this same handle. If journal_extend fails, then it will
5519                  * only result in a minor loss of functionality for that inode.
5520                  * If this is felt to be critical, then e2fsck should be run to
5521                  * force a large enough s_min_extra_isize.
5522                  */
5523                 if ((jbd2_journal_extend(handle,
5524                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5525                         ret = ext4_expand_extra_isize(inode,
5526                                                       sbi->s_want_extra_isize,
5527                                                       iloc, handle);
5528                         if (ret) {
5529                                 EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
5530                                 if (mnt_count !=
5531                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
5532                                         ext4_warning(inode->i_sb, __func__,
5533                                         "Unable to expand inode %lu. Delete"
5534                                         " some EAs or run e2fsck.",
5535                                         inode->i_ino);
5536                                         mnt_count =
5537                                           le16_to_cpu(sbi->s_es->s_mnt_count);
5538                                 }
5539                         }
5540                 }
5541         }
5542         if (!err)
5543                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5544         return err;
5545 }
5546
5547 /*
5548  * ext4_dirty_inode() is called from __mark_inode_dirty()
5549  *
5550  * We're really interested in the case where a file is being extended.
5551  * i_size has been changed by generic_commit_write() and we thus need
5552  * to include the updated inode in the current transaction.
5553  *
5554  * Also, vfs_dq_alloc_block() will always dirty the inode when blocks
5555  * are allocated to the file.
5556  *
5557  * If the inode is marked synchronous, we don't honour that here - doing
5558  * so would cause a commit on atime updates, which we don't bother doing.
5559  * We handle synchronous inodes at the highest possible level.
5560  */
5561 void ext4_dirty_inode(struct inode *inode)
5562 {
5563         handle_t *handle;
5564
5565         handle = ext4_journal_start(inode, 2);
5566         if (IS_ERR(handle))
5567                 goto out;
5568
5569         ext4_mark_inode_dirty(handle, inode);
5570
5571         ext4_journal_stop(handle);
5572 out:
5573         return;
5574 }
5575
5576 #if 0
5577 /*
5578  * Bind an inode's backing buffer_head into this transaction, to prevent
5579  * it from being flushed to disk early.  Unlike
5580  * ext4_reserve_inode_write, this leaves behind no bh reference and
5581  * returns no iloc structure, so the caller needs to repeat the iloc
5582  * lookup to mark the inode dirty later.
5583  */
5584 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5585 {
5586         struct ext4_iloc iloc;
5587
5588         int err = 0;
5589         if (handle) {
5590                 err = ext4_get_inode_loc(inode, &iloc);
5591                 if (!err) {
5592                         BUFFER_TRACE(iloc.bh, "get_write_access");
5593                         err = jbd2_journal_get_write_access(handle, iloc.bh);
5594                         if (!err)
5595                                 err = ext4_handle_dirty_metadata(handle,
5596                                                                  inode,
5597                                                                  iloc.bh);
5598                         brelse(iloc.bh);
5599                 }
5600         }
5601         ext4_std_error(inode->i_sb, err);
5602         return err;
5603 }
5604 #endif
5605
5606 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5607 {
5608         journal_t *journal;
5609         handle_t *handle;
5610         int err;
5611
5612         /*
5613          * We have to be very careful here: changing a data block's
5614          * journaling status dynamically is dangerous.  If we write a
5615          * data block to the journal, change the status and then delete
5616          * that block, we risk forgetting to revoke the old log record
5617          * from the journal and so a subsequent replay can corrupt data.
5618          * So, first we make sure that the journal is empty and that
5619          * nobody is changing anything.
5620          */
5621
5622         journal = EXT4_JOURNAL(inode);
5623         if (!journal)
5624                 return 0;
5625         if (is_journal_aborted(journal))
5626                 return -EROFS;
5627
5628         jbd2_journal_lock_updates(journal);
5629         jbd2_journal_flush(journal);
5630
5631         /*
5632          * OK, there are no updates running now, and all cached data is
5633          * synced to disk.  We are now in a completely consistent state
5634          * which doesn't have anything in the journal, and we know that
5635          * no filesystem updates are running, so it is safe to modify
5636          * the inode's in-core data-journaling state flag now.
5637          */
5638
5639         if (val)
5640                 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
5641         else
5642                 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
5643         ext4_set_aops(inode);
5644
5645         jbd2_journal_unlock_updates(journal);
5646
5647         /* Finally we can mark the inode as dirty. */
5648
5649         handle = ext4_journal_start(inode, 1);
5650         if (IS_ERR(handle))
5651                 return PTR_ERR(handle);
5652
5653         err = ext4_mark_inode_dirty(handle, inode);
5654         ext4_handle_sync(handle);
5655         ext4_journal_stop(handle);
5656         ext4_std_error(inode->i_sb, err);
5657
5658         return err;
5659 }
5660
5661 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5662 {
5663         return !buffer_mapped(bh);
5664 }
5665
5666 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5667 {
5668         struct page *page = vmf->page;
5669         loff_t size;
5670         unsigned long len;
5671         int ret = -EINVAL;
5672         void *fsdata;
5673         struct file *file = vma->vm_file;
5674         struct inode *inode = file->f_path.dentry->d_inode;
5675         struct address_space *mapping = inode->i_mapping;
5676
5677         /*
5678          * Get i_alloc_sem to stop truncates messing with the inode. We cannot
5679          * get i_mutex because we are already holding mmap_sem.
5680          */
5681         down_read(&inode->i_alloc_sem);
5682         size = i_size_read(inode);
5683         if (page->mapping != mapping || size <= page_offset(page)
5684             || !PageUptodate(page)) {
5685                 /* page got truncated from under us? */
5686                 goto out_unlock;
5687         }
5688         ret = 0;
5689         if (PageMappedToDisk(page))
5690                 goto out_unlock;
5691
5692         if (page->index == size >> PAGE_CACHE_SHIFT)
5693                 len = size & ~PAGE_CACHE_MASK;
5694         else
5695                 len = PAGE_CACHE_SIZE;
5696
5697         lock_page(page);
5698         /*
5699          * return if we have all the buffers mapped. This avoid
5700          * the need to call write_begin/write_end which does a
5701          * journal_start/journal_stop which can block and take
5702          * long time
5703          */
5704         if (page_has_buffers(page)) {
5705                 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
5706                                         ext4_bh_unmapped)) {
5707                         unlock_page(page);
5708                         goto out_unlock;
5709                 }
5710         }
5711         unlock_page(page);
5712         /*
5713          * OK, we need to fill the hole... Do write_begin write_end
5714          * to do block allocation/reservation.We are not holding
5715          * inode.i__mutex here. That allow * parallel write_begin,
5716          * write_end call. lock_page prevent this from happening
5717          * on the same page though
5718          */
5719         ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
5720                         len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
5721         if (ret < 0)
5722                 goto out_unlock;
5723         ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
5724                         len, len, page, fsdata);
5725         if (ret < 0)
5726                 goto out_unlock;
5727         ret = 0;
5728 out_unlock:
5729         if (ret)
5730                 ret = VM_FAULT_SIGBUS;
5731         up_read(&inode->i_alloc_sem);
5732         return ret;
5733 }