2 * linux/fs/ext4/inode.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
11 * linux/fs/minix/inode.c
13 * Copyright (C) 1991, 1992 Linus Torvalds
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
25 #include <linux/module.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/namei.h>
38 #include <linux/uio.h>
39 #include <linux/bio.h>
40 #include <linux/workqueue.h>
41 #include <linux/kernel.h>
42 #include <linux/slab.h>
44 #include "ext4_jbd2.h"
47 #include "ext4_extents.h"
49 #include <trace/events/ext4.h>
51 #define MPAGE_DA_EXTENT_TAIL 0x01
53 static inline int ext4_begin_ordered_truncate(struct inode *inode,
56 return jbd2_journal_begin_ordered_truncate(
57 EXT4_SB(inode->i_sb)->s_journal,
58 &EXT4_I(inode)->jinode,
62 static void ext4_invalidatepage(struct page *page, unsigned long offset);
63 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
64 struct buffer_head *bh_result, int create);
65 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
66 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
67 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
68 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
71 * Test whether an inode is a fast symlink.
73 static int ext4_inode_is_fast_symlink(struct inode *inode)
75 int ea_blocks = EXT4_I(inode)->i_file_acl ?
76 (inode->i_sb->s_blocksize >> 9) : 0;
78 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
82 * Work out how many blocks we need to proceed with the next chunk of a
83 * truncate transaction.
85 static unsigned long blocks_for_truncate(struct inode *inode)
89 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
91 /* Give ourselves just enough room to cope with inodes in which
92 * i_blocks is corrupt: we've seen disk corruptions in the past
93 * which resulted in random data in an inode which looked enough
94 * like a regular file for ext4 to try to delete it. Things
95 * will go a bit crazy if that happens, but at least we should
96 * try not to panic the whole kernel. */
100 /* But we need to bound the transaction so we don't overflow the
102 if (needed > EXT4_MAX_TRANS_DATA)
103 needed = EXT4_MAX_TRANS_DATA;
105 return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
109 * Truncate transactions can be complex and absolutely huge. So we need to
110 * be able to restart the transaction at a conventient checkpoint to make
111 * sure we don't overflow the journal.
113 * start_transaction gets us a new handle for a truncate transaction,
114 * and extend_transaction tries to extend the existing one a bit. If
115 * extend fails, we need to propagate the failure up and restart the
116 * transaction in the top-level truncate loop. --sct
118 static handle_t *start_transaction(struct inode *inode)
122 result = ext4_journal_start(inode, blocks_for_truncate(inode));
126 ext4_std_error(inode->i_sb, PTR_ERR(result));
131 * Try to extend this transaction for the purposes of truncation.
133 * Returns 0 if we managed to create more room. If we can't create more
134 * room, and the transaction must be restarted we return 1.
136 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
138 if (!ext4_handle_valid(handle))
140 if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
142 if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
148 * Restart the transaction associated with *handle. This does a commit,
149 * so before we call here everything must be consistently dirtied against
152 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
158 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
159 * moment, get_block can be called only for blocks inside i_size since
160 * page cache has been already dropped and writes are blocked by
161 * i_mutex. So we can safely drop the i_data_sem here.
163 BUG_ON(EXT4_JOURNAL(inode) == NULL);
164 jbd_debug(2, "restarting handle %p\n", handle);
165 up_write(&EXT4_I(inode)->i_data_sem);
166 ret = ext4_journal_restart(handle, blocks_for_truncate(inode));
167 down_write(&EXT4_I(inode)->i_data_sem);
168 ext4_discard_preallocations(inode);
174 * Called at the last iput() if i_nlink is zero.
176 void ext4_evict_inode(struct inode *inode)
181 if (inode->i_nlink) {
182 truncate_inode_pages(&inode->i_data, 0);
186 if (!is_bad_inode(inode))
187 dquot_initialize(inode);
189 if (ext4_should_order_data(inode))
190 ext4_begin_ordered_truncate(inode, 0);
191 truncate_inode_pages(&inode->i_data, 0);
193 if (is_bad_inode(inode))
196 handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
197 if (IS_ERR(handle)) {
198 ext4_std_error(inode->i_sb, PTR_ERR(handle));
200 * If we're going to skip the normal cleanup, we still need to
201 * make sure that the in-core orphan linked list is properly
204 ext4_orphan_del(NULL, inode);
209 ext4_handle_sync(handle);
211 err = ext4_mark_inode_dirty(handle, inode);
213 ext4_warning(inode->i_sb,
214 "couldn't mark inode dirty (err %d)", err);
218 ext4_truncate(inode);
221 * ext4_ext_truncate() doesn't reserve any slop when it
222 * restarts journal transactions; therefore there may not be
223 * enough credits left in the handle to remove the inode from
224 * the orphan list and set the dtime field.
226 if (!ext4_handle_has_enough_credits(handle, 3)) {
227 err = ext4_journal_extend(handle, 3);
229 err = ext4_journal_restart(handle, 3);
231 ext4_warning(inode->i_sb,
232 "couldn't extend journal (err %d)", err);
234 ext4_journal_stop(handle);
235 ext4_orphan_del(NULL, inode);
241 * Kill off the orphan record which ext4_truncate created.
242 * AKPM: I think this can be inside the above `if'.
243 * Note that ext4_orphan_del() has to be able to cope with the
244 * deletion of a non-existent orphan - this is because we don't
245 * know if ext4_truncate() actually created an orphan record.
246 * (Well, we could do this if we need to, but heck - it works)
248 ext4_orphan_del(handle, inode);
249 EXT4_I(inode)->i_dtime = get_seconds();
252 * One subtle ordering requirement: if anything has gone wrong
253 * (transaction abort, IO errors, whatever), then we can still
254 * do these next steps (the fs will already have been marked as
255 * having errors), but we can't free the inode if the mark_dirty
258 if (ext4_mark_inode_dirty(handle, inode))
259 /* If that failed, just do the required in-core inode clear. */
260 ext4_clear_inode(inode);
262 ext4_free_inode(handle, inode);
263 ext4_journal_stop(handle);
266 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
272 struct buffer_head *bh;
275 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
277 p->key = *(p->p = v);
282 * ext4_block_to_path - parse the block number into array of offsets
283 * @inode: inode in question (we are only interested in its superblock)
284 * @i_block: block number to be parsed
285 * @offsets: array to store the offsets in
286 * @boundary: set this non-zero if the referred-to block is likely to be
287 * followed (on disk) by an indirect block.
289 * To store the locations of file's data ext4 uses a data structure common
290 * for UNIX filesystems - tree of pointers anchored in the inode, with
291 * data blocks at leaves and indirect blocks in intermediate nodes.
292 * This function translates the block number into path in that tree -
293 * return value is the path length and @offsets[n] is the offset of
294 * pointer to (n+1)th node in the nth one. If @block is out of range
295 * (negative or too large) warning is printed and zero returned.
297 * Note: function doesn't find node addresses, so no IO is needed. All
298 * we need to know is the capacity of indirect blocks (taken from the
303 * Portability note: the last comparison (check that we fit into triple
304 * indirect block) is spelled differently, because otherwise on an
305 * architecture with 32-bit longs and 8Kb pages we might get into trouble
306 * if our filesystem had 8Kb blocks. We might use long long, but that would
307 * kill us on x86. Oh, well, at least the sign propagation does not matter -
308 * i_block would have to be negative in the very beginning, so we would not
312 static int ext4_block_to_path(struct inode *inode,
314 ext4_lblk_t offsets[4], int *boundary)
316 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
317 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
318 const long direct_blocks = EXT4_NDIR_BLOCKS,
319 indirect_blocks = ptrs,
320 double_blocks = (1 << (ptrs_bits * 2));
324 if (i_block < direct_blocks) {
325 offsets[n++] = i_block;
326 final = direct_blocks;
327 } else if ((i_block -= direct_blocks) < indirect_blocks) {
328 offsets[n++] = EXT4_IND_BLOCK;
329 offsets[n++] = i_block;
331 } else if ((i_block -= indirect_blocks) < double_blocks) {
332 offsets[n++] = EXT4_DIND_BLOCK;
333 offsets[n++] = i_block >> ptrs_bits;
334 offsets[n++] = i_block & (ptrs - 1);
336 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
337 offsets[n++] = EXT4_TIND_BLOCK;
338 offsets[n++] = i_block >> (ptrs_bits * 2);
339 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
340 offsets[n++] = i_block & (ptrs - 1);
343 ext4_warning(inode->i_sb, "block %lu > max in inode %lu",
344 i_block + direct_blocks +
345 indirect_blocks + double_blocks, inode->i_ino);
348 *boundary = final - 1 - (i_block & (ptrs - 1));
352 static int __ext4_check_blockref(const char *function, unsigned int line,
354 __le32 *p, unsigned int max)
356 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
360 while (bref < p+max) {
361 blk = le32_to_cpu(*bref++);
363 unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb),
365 es->s_last_error_block = cpu_to_le64(blk);
366 ext4_error_inode(inode, function, line, blk,
375 #define ext4_check_indirect_blockref(inode, bh) \
376 __ext4_check_blockref(__func__, __LINE__, inode, \
377 (__le32 *)(bh)->b_data, \
378 EXT4_ADDR_PER_BLOCK((inode)->i_sb))
380 #define ext4_check_inode_blockref(inode) \
381 __ext4_check_blockref(__func__, __LINE__, inode, \
382 EXT4_I(inode)->i_data, \
386 * ext4_get_branch - read the chain of indirect blocks leading to data
387 * @inode: inode in question
388 * @depth: depth of the chain (1 - direct pointer, etc.)
389 * @offsets: offsets of pointers in inode/indirect blocks
390 * @chain: place to store the result
391 * @err: here we store the error value
393 * Function fills the array of triples <key, p, bh> and returns %NULL
394 * if everything went OK or the pointer to the last filled triple
395 * (incomplete one) otherwise. Upon the return chain[i].key contains
396 * the number of (i+1)-th block in the chain (as it is stored in memory,
397 * i.e. little-endian 32-bit), chain[i].p contains the address of that
398 * number (it points into struct inode for i==0 and into the bh->b_data
399 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
400 * block for i>0 and NULL for i==0. In other words, it holds the block
401 * numbers of the chain, addresses they were taken from (and where we can
402 * verify that chain did not change) and buffer_heads hosting these
405 * Function stops when it stumbles upon zero pointer (absent block)
406 * (pointer to last triple returned, *@err == 0)
407 * or when it gets an IO error reading an indirect block
408 * (ditto, *@err == -EIO)
409 * or when it reads all @depth-1 indirect blocks successfully and finds
410 * the whole chain, all way to the data (returns %NULL, *err == 0).
412 * Need to be called with
413 * down_read(&EXT4_I(inode)->i_data_sem)
415 static Indirect *ext4_get_branch(struct inode *inode, int depth,
416 ext4_lblk_t *offsets,
417 Indirect chain[4], int *err)
419 struct super_block *sb = inode->i_sb;
421 struct buffer_head *bh;
424 /* i_data is not going away, no lock needed */
425 add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
429 bh = sb_getblk(sb, le32_to_cpu(p->key));
433 if (!bh_uptodate_or_lock(bh)) {
434 if (bh_submit_read(bh) < 0) {
438 /* validate block references */
439 if (ext4_check_indirect_blockref(inode, bh)) {
445 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
459 * ext4_find_near - find a place for allocation with sufficient locality
461 * @ind: descriptor of indirect block.
463 * This function returns the preferred place for block allocation.
464 * It is used when heuristic for sequential allocation fails.
466 * + if there is a block to the left of our position - allocate near it.
467 * + if pointer will live in indirect block - allocate near that block.
468 * + if pointer will live in inode - allocate in the same
471 * In the latter case we colour the starting block by the callers PID to
472 * prevent it from clashing with concurrent allocations for a different inode
473 * in the same block group. The PID is used here so that functionally related
474 * files will be close-by on-disk.
476 * Caller must make sure that @ind is valid and will stay that way.
478 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
480 struct ext4_inode_info *ei = EXT4_I(inode);
481 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
483 ext4_fsblk_t bg_start;
484 ext4_fsblk_t last_block;
485 ext4_grpblk_t colour;
486 ext4_group_t block_group;
487 int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
489 /* Try to find previous block */
490 for (p = ind->p - 1; p >= start; p--) {
492 return le32_to_cpu(*p);
495 /* No such thing, so let's try location of indirect block */
497 return ind->bh->b_blocknr;
500 * It is going to be referred to from the inode itself? OK, just put it
501 * into the same cylinder group then.
503 block_group = ei->i_block_group;
504 if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
505 block_group &= ~(flex_size-1);
506 if (S_ISREG(inode->i_mode))
509 bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
510 last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
513 * If we are doing delayed allocation, we don't need take
514 * colour into account.
516 if (test_opt(inode->i_sb, DELALLOC))
519 if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
520 colour = (current->pid % 16) *
521 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
523 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
524 return bg_start + colour;
528 * ext4_find_goal - find a preferred place for allocation.
530 * @block: block we want
531 * @partial: pointer to the last triple within a chain
533 * Normally this function find the preferred place for block allocation,
535 * Because this is only used for non-extent files, we limit the block nr
538 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
544 * XXX need to get goal block from mballoc's data structures
547 goal = ext4_find_near(inode, partial);
548 goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
553 * ext4_blks_to_allocate: Look up the block map and count the number
554 * of direct blocks need to be allocated for the given branch.
556 * @branch: chain of indirect blocks
557 * @k: number of blocks need for indirect blocks
558 * @blks: number of data blocks to be mapped.
559 * @blocks_to_boundary: the offset in the indirect block
561 * return the total number of blocks to be allocate, including the
562 * direct and indirect blocks.
564 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
565 int blocks_to_boundary)
567 unsigned int count = 0;
570 * Simple case, [t,d]Indirect block(s) has not allocated yet
571 * then it's clear blocks on that path have not allocated
574 /* right now we don't handle cross boundary allocation */
575 if (blks < blocks_to_boundary + 1)
578 count += blocks_to_boundary + 1;
583 while (count < blks && count <= blocks_to_boundary &&
584 le32_to_cpu(*(branch[0].p + count)) == 0) {
591 * ext4_alloc_blocks: multiple allocate blocks needed for a branch
592 * @indirect_blks: the number of blocks need to allocate for indirect
595 * @new_blocks: on return it will store the new block numbers for
596 * the indirect blocks(if needed) and the first direct block,
597 * @blks: on return it will store the total number of allocated
600 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
601 ext4_lblk_t iblock, ext4_fsblk_t goal,
602 int indirect_blks, int blks,
603 ext4_fsblk_t new_blocks[4], int *err)
605 struct ext4_allocation_request ar;
607 unsigned long count = 0, blk_allocated = 0;
609 ext4_fsblk_t current_block = 0;
613 * Here we try to allocate the requested multiple blocks at once,
614 * on a best-effort basis.
615 * To build a branch, we should allocate blocks for
616 * the indirect blocks(if not allocated yet), and at least
617 * the first direct block of this branch. That's the
618 * minimum number of blocks need to allocate(required)
620 /* first we try to allocate the indirect blocks */
621 target = indirect_blks;
624 /* allocating blocks for indirect blocks and direct blocks */
625 current_block = ext4_new_meta_blocks(handle, inode,
630 if (unlikely(current_block + count > EXT4_MAX_BLOCK_FILE_PHYS)) {
631 EXT4_ERROR_INODE(inode,
632 "current_block %llu + count %lu > %d!",
633 current_block, count,
634 EXT4_MAX_BLOCK_FILE_PHYS);
640 /* allocate blocks for indirect blocks */
641 while (index < indirect_blks && count) {
642 new_blocks[index++] = current_block++;
647 * save the new block number
648 * for the first direct block
650 new_blocks[index] = current_block;
651 printk(KERN_INFO "%s returned more blocks than "
652 "requested\n", __func__);
658 target = blks - count ;
659 blk_allocated = count;
662 /* Now allocate data blocks */
663 memset(&ar, 0, sizeof(ar));
668 if (S_ISREG(inode->i_mode))
669 /* enable in-core preallocation only for regular files */
670 ar.flags = EXT4_MB_HINT_DATA;
672 current_block = ext4_mb_new_blocks(handle, &ar, err);
673 if (unlikely(current_block + ar.len > EXT4_MAX_BLOCK_FILE_PHYS)) {
674 EXT4_ERROR_INODE(inode,
675 "current_block %llu + ar.len %d > %d!",
676 current_block, ar.len,
677 EXT4_MAX_BLOCK_FILE_PHYS);
682 if (*err && (target == blks)) {
684 * if the allocation failed and we didn't allocate
690 if (target == blks) {
692 * save the new block number
693 * for the first direct block
695 new_blocks[index] = current_block;
697 blk_allocated += ar.len;
700 /* total number of blocks allocated for direct blocks */
705 for (i = 0; i < index; i++)
706 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
711 * ext4_alloc_branch - allocate and set up a chain of blocks.
713 * @indirect_blks: number of allocated indirect blocks
714 * @blks: number of allocated direct blocks
715 * @offsets: offsets (in the blocks) to store the pointers to next.
716 * @branch: place to store the chain in.
718 * This function allocates blocks, zeroes out all but the last one,
719 * links them into chain and (if we are synchronous) writes them to disk.
720 * In other words, it prepares a branch that can be spliced onto the
721 * inode. It stores the information about that chain in the branch[], in
722 * the same format as ext4_get_branch() would do. We are calling it after
723 * we had read the existing part of chain and partial points to the last
724 * triple of that (one with zero ->key). Upon the exit we have the same
725 * picture as after the successful ext4_get_block(), except that in one
726 * place chain is disconnected - *branch->p is still zero (we did not
727 * set the last link), but branch->key contains the number that should
728 * be placed into *branch->p to fill that gap.
730 * If allocation fails we free all blocks we've allocated (and forget
731 * their buffer_heads) and return the error value the from failed
732 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
733 * as described above and return 0.
735 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
736 ext4_lblk_t iblock, int indirect_blks,
737 int *blks, ext4_fsblk_t goal,
738 ext4_lblk_t *offsets, Indirect *branch)
740 int blocksize = inode->i_sb->s_blocksize;
743 struct buffer_head *bh;
745 ext4_fsblk_t new_blocks[4];
746 ext4_fsblk_t current_block;
748 num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
749 *blks, new_blocks, &err);
753 branch[0].key = cpu_to_le32(new_blocks[0]);
755 * metadata blocks and data blocks are allocated.
757 for (n = 1; n <= indirect_blks; n++) {
759 * Get buffer_head for parent block, zero it out
760 * and set the pointer to new one, then send
763 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
766 BUFFER_TRACE(bh, "call get_create_access");
767 err = ext4_journal_get_create_access(handle, bh);
769 /* Don't brelse(bh) here; it's done in
770 * ext4_journal_forget() below */
775 memset(bh->b_data, 0, blocksize);
776 branch[n].p = (__le32 *) bh->b_data + offsets[n];
777 branch[n].key = cpu_to_le32(new_blocks[n]);
778 *branch[n].p = branch[n].key;
779 if (n == indirect_blks) {
780 current_block = new_blocks[n];
782 * End of chain, update the last new metablock of
783 * the chain to point to the new allocated
784 * data blocks numbers
786 for (i = 1; i < num; i++)
787 *(branch[n].p + i) = cpu_to_le32(++current_block);
789 BUFFER_TRACE(bh, "marking uptodate");
790 set_buffer_uptodate(bh);
793 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
794 err = ext4_handle_dirty_metadata(handle, inode, bh);
801 /* Allocation failed, free what we already allocated */
802 ext4_free_blocks(handle, inode, 0, new_blocks[0], 1, 0);
803 for (i = 1; i <= n ; i++) {
805 * branch[i].bh is newly allocated, so there is no
806 * need to revoke the block, which is why we don't
807 * need to set EXT4_FREE_BLOCKS_METADATA.
809 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1,
810 EXT4_FREE_BLOCKS_FORGET);
812 for (i = n+1; i < indirect_blks; i++)
813 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
815 ext4_free_blocks(handle, inode, 0, new_blocks[i], num, 0);
821 * ext4_splice_branch - splice the allocated branch onto inode.
823 * @block: (logical) number of block we are adding
824 * @chain: chain of indirect blocks (with a missing link - see
826 * @where: location of missing link
827 * @num: number of indirect blocks we are adding
828 * @blks: number of direct blocks we are adding
830 * This function fills the missing link and does all housekeeping needed in
831 * inode (->i_blocks, etc.). In case of success we end up with the full
832 * chain to new block and return 0.
834 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
835 ext4_lblk_t block, Indirect *where, int num,
840 ext4_fsblk_t current_block;
843 * If we're splicing into a [td]indirect block (as opposed to the
844 * inode) then we need to get write access to the [td]indirect block
848 BUFFER_TRACE(where->bh, "get_write_access");
849 err = ext4_journal_get_write_access(handle, where->bh);
855 *where->p = where->key;
858 * Update the host buffer_head or inode to point to more just allocated
859 * direct blocks blocks
861 if (num == 0 && blks > 1) {
862 current_block = le32_to_cpu(where->key) + 1;
863 for (i = 1; i < blks; i++)
864 *(where->p + i) = cpu_to_le32(current_block++);
867 /* We are done with atomic stuff, now do the rest of housekeeping */
868 /* had we spliced it onto indirect block? */
871 * If we spliced it onto an indirect block, we haven't
872 * altered the inode. Note however that if it is being spliced
873 * onto an indirect block at the very end of the file (the
874 * file is growing) then we *will* alter the inode to reflect
875 * the new i_size. But that is not done here - it is done in
876 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
878 jbd_debug(5, "splicing indirect only\n");
879 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
880 err = ext4_handle_dirty_metadata(handle, inode, where->bh);
885 * OK, we spliced it into the inode itself on a direct block.
887 ext4_mark_inode_dirty(handle, inode);
888 jbd_debug(5, "splicing direct\n");
893 for (i = 1; i <= num; i++) {
895 * branch[i].bh is newly allocated, so there is no
896 * need to revoke the block, which is why we don't
897 * need to set EXT4_FREE_BLOCKS_METADATA.
899 ext4_free_blocks(handle, inode, where[i].bh, 0, 1,
900 EXT4_FREE_BLOCKS_FORGET);
902 ext4_free_blocks(handle, inode, 0, le32_to_cpu(where[num].key),
909 * The ext4_ind_map_blocks() function handles non-extents inodes
910 * (i.e., using the traditional indirect/double-indirect i_blocks
911 * scheme) for ext4_map_blocks().
913 * Allocation strategy is simple: if we have to allocate something, we will
914 * have to go the whole way to leaf. So let's do it before attaching anything
915 * to tree, set linkage between the newborn blocks, write them if sync is
916 * required, recheck the path, free and repeat if check fails, otherwise
917 * set the last missing link (that will protect us from any truncate-generated
918 * removals - all blocks on the path are immune now) and possibly force the
919 * write on the parent block.
920 * That has a nice additional property: no special recovery from the failed
921 * allocations is needed - we simply release blocks and do not touch anything
922 * reachable from inode.
924 * `handle' can be NULL if create == 0.
926 * return > 0, # of blocks mapped or allocated.
927 * return = 0, if plain lookup failed.
928 * return < 0, error case.
930 * The ext4_ind_get_blocks() function should be called with
931 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
932 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
933 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
936 static int ext4_ind_map_blocks(handle_t *handle, struct inode *inode,
937 struct ext4_map_blocks *map,
941 ext4_lblk_t offsets[4];
946 int blocks_to_boundary = 0;
949 ext4_fsblk_t first_block = 0;
951 J_ASSERT(!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)));
952 J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
953 depth = ext4_block_to_path(inode, map->m_lblk, offsets,
954 &blocks_to_boundary);
959 partial = ext4_get_branch(inode, depth, offsets, chain, &err);
961 /* Simplest case - block found, no allocation needed */
963 first_block = le32_to_cpu(chain[depth - 1].key);
966 while (count < map->m_len && count <= blocks_to_boundary) {
969 blk = le32_to_cpu(*(chain[depth-1].p + count));
971 if (blk == first_block + count)
979 /* Next simple case - plain lookup or failed read of indirect block */
980 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
984 * Okay, we need to do block allocation.
986 goal = ext4_find_goal(inode, map->m_lblk, partial);
988 /* the number of blocks need to allocate for [d,t]indirect blocks */
989 indirect_blks = (chain + depth) - partial - 1;
992 * Next look up the indirect map to count the totoal number of
993 * direct blocks to allocate for this branch.
995 count = ext4_blks_to_allocate(partial, indirect_blks,
996 map->m_len, blocks_to_boundary);
998 * Block out ext4_truncate while we alter the tree
1000 err = ext4_alloc_branch(handle, inode, map->m_lblk, indirect_blks,
1002 offsets + (partial - chain), partial);
1005 * The ext4_splice_branch call will free and forget any buffers
1006 * on the new chain if there is a failure, but that risks using
1007 * up transaction credits, especially for bitmaps where the
1008 * credits cannot be returned. Can we handle this somehow? We
1009 * may need to return -EAGAIN upwards in the worst case. --sct
1012 err = ext4_splice_branch(handle, inode, map->m_lblk,
1013 partial, indirect_blks, count);
1017 map->m_flags |= EXT4_MAP_NEW;
1019 ext4_update_inode_fsync_trans(handle, inode, 1);
1021 map->m_flags |= EXT4_MAP_MAPPED;
1022 map->m_pblk = le32_to_cpu(chain[depth-1].key);
1024 if (count > blocks_to_boundary)
1025 map->m_flags |= EXT4_MAP_BOUNDARY;
1027 /* Clean up and exit */
1028 partial = chain + depth - 1; /* the whole chain */
1030 while (partial > chain) {
1031 BUFFER_TRACE(partial->bh, "call brelse");
1032 brelse(partial->bh);
1040 qsize_t *ext4_get_reserved_space(struct inode *inode)
1042 return &EXT4_I(inode)->i_reserved_quota;
1047 * Calculate the number of metadata blocks need to reserve
1048 * to allocate a new block at @lblocks for non extent file based file
1050 static int ext4_indirect_calc_metadata_amount(struct inode *inode,
1053 struct ext4_inode_info *ei = EXT4_I(inode);
1054 sector_t dind_mask = ~((sector_t)EXT4_ADDR_PER_BLOCK(inode->i_sb) - 1);
1057 if (lblock < EXT4_NDIR_BLOCKS)
1060 lblock -= EXT4_NDIR_BLOCKS;
1062 if (ei->i_da_metadata_calc_len &&
1063 (lblock & dind_mask) == ei->i_da_metadata_calc_last_lblock) {
1064 ei->i_da_metadata_calc_len++;
1067 ei->i_da_metadata_calc_last_lblock = lblock & dind_mask;
1068 ei->i_da_metadata_calc_len = 1;
1069 blk_bits = order_base_2(lblock);
1070 return (blk_bits / EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb)) + 1;
1074 * Calculate the number of metadata blocks need to reserve
1075 * to allocate a block located at @lblock
1077 static int ext4_calc_metadata_amount(struct inode *inode, sector_t lblock)
1079 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1080 return ext4_ext_calc_metadata_amount(inode, lblock);
1082 return ext4_indirect_calc_metadata_amount(inode, lblock);
1086 * Called with i_data_sem down, which is important since we can call
1087 * ext4_discard_preallocations() from here.
1089 void ext4_da_update_reserve_space(struct inode *inode,
1090 int used, int quota_claim)
1092 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1093 struct ext4_inode_info *ei = EXT4_I(inode);
1095 spin_lock(&ei->i_block_reservation_lock);
1096 trace_ext4_da_update_reserve_space(inode, used);
1097 if (unlikely(used > ei->i_reserved_data_blocks)) {
1098 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
1099 "with only %d reserved data blocks\n",
1100 __func__, inode->i_ino, used,
1101 ei->i_reserved_data_blocks);
1103 used = ei->i_reserved_data_blocks;
1106 /* Update per-inode reservations */
1107 ei->i_reserved_data_blocks -= used;
1108 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
1109 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1110 used + ei->i_allocated_meta_blocks);
1111 ei->i_allocated_meta_blocks = 0;
1113 if (ei->i_reserved_data_blocks == 0) {
1115 * We can release all of the reserved metadata blocks
1116 * only when we have written all of the delayed
1117 * allocation blocks.
1119 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1120 ei->i_reserved_meta_blocks);
1121 ei->i_reserved_meta_blocks = 0;
1122 ei->i_da_metadata_calc_len = 0;
1124 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1126 /* Update quota subsystem for data blocks */
1128 dquot_claim_block(inode, used);
1131 * We did fallocate with an offset that is already delayed
1132 * allocated. So on delayed allocated writeback we should
1133 * not re-claim the quota for fallocated blocks.
1135 dquot_release_reservation_block(inode, used);
1139 * If we have done all the pending block allocations and if
1140 * there aren't any writers on the inode, we can discard the
1141 * inode's preallocations.
1143 if ((ei->i_reserved_data_blocks == 0) &&
1144 (atomic_read(&inode->i_writecount) == 0))
1145 ext4_discard_preallocations(inode);
1148 static int __check_block_validity(struct inode *inode, const char *func,
1150 struct ext4_map_blocks *map)
1152 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
1154 ext4_error_inode(inode, func, line, map->m_pblk,
1155 "lblock %lu mapped to illegal pblock "
1156 "(length %d)", (unsigned long) map->m_lblk,
1163 #define check_block_validity(inode, map) \
1164 __check_block_validity((inode), __func__, __LINE__, (map))
1167 * Return the number of contiguous dirty pages in a given inode
1168 * starting at page frame idx.
1170 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
1171 unsigned int max_pages)
1173 struct address_space *mapping = inode->i_mapping;
1175 struct pagevec pvec;
1177 int i, nr_pages, done = 0;
1181 pagevec_init(&pvec, 0);
1184 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
1185 PAGECACHE_TAG_DIRTY,
1186 (pgoff_t)PAGEVEC_SIZE);
1189 for (i = 0; i < nr_pages; i++) {
1190 struct page *page = pvec.pages[i];
1191 struct buffer_head *bh, *head;
1194 if (unlikely(page->mapping != mapping) ||
1196 PageWriteback(page) ||
1197 page->index != idx) {
1202 if (page_has_buffers(page)) {
1203 bh = head = page_buffers(page);
1205 if (!buffer_delay(bh) &&
1206 !buffer_unwritten(bh))
1208 bh = bh->b_this_page;
1209 } while (!done && (bh != head));
1216 if (num >= max_pages) {
1221 pagevec_release(&pvec);
1227 * The ext4_map_blocks() function tries to look up the requested blocks,
1228 * and returns if the blocks are already mapped.
1230 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1231 * and store the allocated blocks in the result buffer head and mark it
1234 * If file type is extents based, it will call ext4_ext_map_blocks(),
1235 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
1238 * On success, it returns the number of blocks being mapped or allocate.
1239 * if create==0 and the blocks are pre-allocated and uninitialized block,
1240 * the result buffer head is unmapped. If the create ==1, it will make sure
1241 * the buffer head is mapped.
1243 * It returns 0 if plain look up failed (blocks have not been allocated), in
1244 * that casem, buffer head is unmapped
1246 * It returns the error in case of allocation failure.
1248 int ext4_map_blocks(handle_t *handle, struct inode *inode,
1249 struct ext4_map_blocks *map, int flags)
1254 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
1255 "logical block %lu\n", inode->i_ino, flags, map->m_len,
1256 (unsigned long) map->m_lblk);
1258 * Try to see if we can get the block without requesting a new
1259 * file system block.
1261 down_read((&EXT4_I(inode)->i_data_sem));
1262 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
1263 retval = ext4_ext_map_blocks(handle, inode, map, 0);
1265 retval = ext4_ind_map_blocks(handle, inode, map, 0);
1267 up_read((&EXT4_I(inode)->i_data_sem));
1269 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
1270 int ret = check_block_validity(inode, map);
1275 /* If it is only a block(s) look up */
1276 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
1280 * Returns if the blocks have already allocated
1282 * Note that if blocks have been preallocated
1283 * ext4_ext_get_block() returns th create = 0
1284 * with buffer head unmapped.
1286 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
1290 * When we call get_blocks without the create flag, the
1291 * BH_Unwritten flag could have gotten set if the blocks
1292 * requested were part of a uninitialized extent. We need to
1293 * clear this flag now that we are committed to convert all or
1294 * part of the uninitialized extent to be an initialized
1295 * extent. This is because we need to avoid the combination
1296 * of BH_Unwritten and BH_Mapped flags being simultaneously
1297 * set on the buffer_head.
1299 map->m_flags &= ~EXT4_MAP_UNWRITTEN;
1302 * New blocks allocate and/or writing to uninitialized extent
1303 * will possibly result in updating i_data, so we take
1304 * the write lock of i_data_sem, and call get_blocks()
1305 * with create == 1 flag.
1307 down_write((&EXT4_I(inode)->i_data_sem));
1310 * if the caller is from delayed allocation writeout path
1311 * we have already reserved fs blocks for allocation
1312 * let the underlying get_block() function know to
1313 * avoid double accounting
1315 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1316 EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1318 * We need to check for EXT4 here because migrate
1319 * could have changed the inode type in between
1321 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
1322 retval = ext4_ext_map_blocks(handle, inode, map, flags);
1324 retval = ext4_ind_map_blocks(handle, inode, map, flags);
1326 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
1328 * We allocated new blocks which will result in
1329 * i_data's format changing. Force the migrate
1330 * to fail by clearing migrate flags
1332 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
1336 * Update reserved blocks/metadata blocks after successful
1337 * block allocation which had been deferred till now. We don't
1338 * support fallocate for non extent files. So we can update
1339 * reserve space here.
1342 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
1343 ext4_da_update_reserve_space(inode, retval, 1);
1345 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1346 EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1348 up_write((&EXT4_I(inode)->i_data_sem));
1349 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
1350 int ret = check_block_validity(inode, map);
1357 /* Maximum number of blocks we map for direct IO at once. */
1358 #define DIO_MAX_BLOCKS 4096
1360 static int _ext4_get_block(struct inode *inode, sector_t iblock,
1361 struct buffer_head *bh, int flags)
1363 handle_t *handle = ext4_journal_current_handle();
1364 struct ext4_map_blocks map;
1365 int ret = 0, started = 0;
1368 map.m_lblk = iblock;
1369 map.m_len = bh->b_size >> inode->i_blkbits;
1371 if (flags && !handle) {
1372 /* Direct IO write... */
1373 if (map.m_len > DIO_MAX_BLOCKS)
1374 map.m_len = DIO_MAX_BLOCKS;
1375 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
1376 handle = ext4_journal_start(inode, dio_credits);
1377 if (IS_ERR(handle)) {
1378 ret = PTR_ERR(handle);
1384 ret = ext4_map_blocks(handle, inode, &map, flags);
1386 map_bh(bh, inode->i_sb, map.m_pblk);
1387 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1388 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
1392 ext4_journal_stop(handle);
1396 int ext4_get_block(struct inode *inode, sector_t iblock,
1397 struct buffer_head *bh, int create)
1399 return _ext4_get_block(inode, iblock, bh,
1400 create ? EXT4_GET_BLOCKS_CREATE : 0);
1404 * `handle' can be NULL if create is zero
1406 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1407 ext4_lblk_t block, int create, int *errp)
1409 struct ext4_map_blocks map;
1410 struct buffer_head *bh;
1413 J_ASSERT(handle != NULL || create == 0);
1417 err = ext4_map_blocks(handle, inode, &map,
1418 create ? EXT4_GET_BLOCKS_CREATE : 0);
1426 bh = sb_getblk(inode->i_sb, map.m_pblk);
1431 if (map.m_flags & EXT4_MAP_NEW) {
1432 J_ASSERT(create != 0);
1433 J_ASSERT(handle != NULL);
1436 * Now that we do not always journal data, we should
1437 * keep in mind whether this should always journal the
1438 * new buffer as metadata. For now, regular file
1439 * writes use ext4_get_block instead, so it's not a
1443 BUFFER_TRACE(bh, "call get_create_access");
1444 fatal = ext4_journal_get_create_access(handle, bh);
1445 if (!fatal && !buffer_uptodate(bh)) {
1446 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1447 set_buffer_uptodate(bh);
1450 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1451 err = ext4_handle_dirty_metadata(handle, inode, bh);
1455 BUFFER_TRACE(bh, "not a new buffer");
1465 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1466 ext4_lblk_t block, int create, int *err)
1468 struct buffer_head *bh;
1470 bh = ext4_getblk(handle, inode, block, create, err);
1473 if (buffer_uptodate(bh))
1475 ll_rw_block(READ_META, 1, &bh);
1477 if (buffer_uptodate(bh))
1484 static int walk_page_buffers(handle_t *handle,
1485 struct buffer_head *head,
1489 int (*fn)(handle_t *handle,
1490 struct buffer_head *bh))
1492 struct buffer_head *bh;
1493 unsigned block_start, block_end;
1494 unsigned blocksize = head->b_size;
1496 struct buffer_head *next;
1498 for (bh = head, block_start = 0;
1499 ret == 0 && (bh != head || !block_start);
1500 block_start = block_end, bh = next) {
1501 next = bh->b_this_page;
1502 block_end = block_start + blocksize;
1503 if (block_end <= from || block_start >= to) {
1504 if (partial && !buffer_uptodate(bh))
1508 err = (*fn)(handle, bh);
1516 * To preserve ordering, it is essential that the hole instantiation and
1517 * the data write be encapsulated in a single transaction. We cannot
1518 * close off a transaction and start a new one between the ext4_get_block()
1519 * and the commit_write(). So doing the jbd2_journal_start at the start of
1520 * prepare_write() is the right place.
1522 * Also, this function can nest inside ext4_writepage() ->
1523 * block_write_full_page(). In that case, we *know* that ext4_writepage()
1524 * has generated enough buffer credits to do the whole page. So we won't
1525 * block on the journal in that case, which is good, because the caller may
1528 * By accident, ext4 can be reentered when a transaction is open via
1529 * quota file writes. If we were to commit the transaction while thus
1530 * reentered, there can be a deadlock - we would be holding a quota
1531 * lock, and the commit would never complete if another thread had a
1532 * transaction open and was blocking on the quota lock - a ranking
1535 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1536 * will _not_ run commit under these circumstances because handle->h_ref
1537 * is elevated. We'll still have enough credits for the tiny quotafile
1540 static int do_journal_get_write_access(handle_t *handle,
1541 struct buffer_head *bh)
1543 int dirty = buffer_dirty(bh);
1546 if (!buffer_mapped(bh) || buffer_freed(bh))
1549 * __block_prepare_write() could have dirtied some buffers. Clean
1550 * the dirty bit as jbd2_journal_get_write_access() could complain
1551 * otherwise about fs integrity issues. Setting of the dirty bit
1552 * by __block_prepare_write() isn't a real problem here as we clear
1553 * the bit before releasing a page lock and thus writeback cannot
1554 * ever write the buffer.
1557 clear_buffer_dirty(bh);
1558 ret = ext4_journal_get_write_access(handle, bh);
1560 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1565 * Truncate blocks that were not used by write. We have to truncate the
1566 * pagecache as well so that corresponding buffers get properly unmapped.
1568 static void ext4_truncate_failed_write(struct inode *inode)
1570 truncate_inode_pages(inode->i_mapping, inode->i_size);
1571 ext4_truncate(inode);
1574 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
1575 struct buffer_head *bh_result, int create);
1576 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1577 loff_t pos, unsigned len, unsigned flags,
1578 struct page **pagep, void **fsdata)
1580 struct inode *inode = mapping->host;
1581 int ret, needed_blocks;
1588 trace_ext4_write_begin(inode, pos, len, flags);
1590 * Reserve one block more for addition to orphan list in case
1591 * we allocate blocks but write fails for some reason
1593 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1594 index = pos >> PAGE_CACHE_SHIFT;
1595 from = pos & (PAGE_CACHE_SIZE - 1);
1599 handle = ext4_journal_start(inode, needed_blocks);
1600 if (IS_ERR(handle)) {
1601 ret = PTR_ERR(handle);
1605 /* We cannot recurse into the filesystem as the transaction is already
1607 flags |= AOP_FLAG_NOFS;
1609 page = grab_cache_page_write_begin(mapping, index, flags);
1611 ext4_journal_stop(handle);
1617 if (ext4_should_dioread_nolock(inode))
1618 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
1620 ret = __block_write_begin(page, pos, len, ext4_get_block);
1622 if (!ret && ext4_should_journal_data(inode)) {
1623 ret = walk_page_buffers(handle, page_buffers(page),
1624 from, to, NULL, do_journal_get_write_access);
1629 page_cache_release(page);
1631 * __block_write_begin may have instantiated a few blocks
1632 * outside i_size. Trim these off again. Don't need
1633 * i_size_read because we hold i_mutex.
1635 * Add inode to orphan list in case we crash before
1638 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1639 ext4_orphan_add(handle, inode);
1641 ext4_journal_stop(handle);
1642 if (pos + len > inode->i_size) {
1643 ext4_truncate_failed_write(inode);
1645 * If truncate failed early the inode might
1646 * still be on the orphan list; we need to
1647 * make sure the inode is removed from the
1648 * orphan list in that case.
1651 ext4_orphan_del(NULL, inode);
1655 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1661 /* For write_end() in data=journal mode */
1662 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1664 if (!buffer_mapped(bh) || buffer_freed(bh))
1666 set_buffer_uptodate(bh);
1667 return ext4_handle_dirty_metadata(handle, NULL, bh);
1670 static int ext4_generic_write_end(struct file *file,
1671 struct address_space *mapping,
1672 loff_t pos, unsigned len, unsigned copied,
1673 struct page *page, void *fsdata)
1675 int i_size_changed = 0;
1676 struct inode *inode = mapping->host;
1677 handle_t *handle = ext4_journal_current_handle();
1679 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1682 * No need to use i_size_read() here, the i_size
1683 * cannot change under us because we hold i_mutex.
1685 * But it's important to update i_size while still holding page lock:
1686 * page writeout could otherwise come in and zero beyond i_size.
1688 if (pos + copied > inode->i_size) {
1689 i_size_write(inode, pos + copied);
1693 if (pos + copied > EXT4_I(inode)->i_disksize) {
1694 /* We need to mark inode dirty even if
1695 * new_i_size is less that inode->i_size
1696 * bu greater than i_disksize.(hint delalloc)
1698 ext4_update_i_disksize(inode, (pos + copied));
1702 page_cache_release(page);
1705 * Don't mark the inode dirty under page lock. First, it unnecessarily
1706 * makes the holding time of page lock longer. Second, it forces lock
1707 * ordering of page lock and transaction start for journaling
1711 ext4_mark_inode_dirty(handle, inode);
1717 * We need to pick up the new inode size which generic_commit_write gave us
1718 * `file' can be NULL - eg, when called from page_symlink().
1720 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1721 * buffers are managed internally.
1723 static int ext4_ordered_write_end(struct file *file,
1724 struct address_space *mapping,
1725 loff_t pos, unsigned len, unsigned copied,
1726 struct page *page, void *fsdata)
1728 handle_t *handle = ext4_journal_current_handle();
1729 struct inode *inode = mapping->host;
1732 trace_ext4_ordered_write_end(inode, pos, len, copied);
1733 ret = ext4_jbd2_file_inode(handle, inode);
1736 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1739 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1740 /* if we have allocated more blocks and copied
1741 * less. We will have blocks allocated outside
1742 * inode->i_size. So truncate them
1744 ext4_orphan_add(handle, inode);
1748 ret2 = ext4_journal_stop(handle);
1752 if (pos + len > inode->i_size) {
1753 ext4_truncate_failed_write(inode);
1755 * If truncate failed early the inode might still be
1756 * on the orphan list; we need to make sure the inode
1757 * is removed from the orphan list in that case.
1760 ext4_orphan_del(NULL, inode);
1764 return ret ? ret : copied;
1767 static int ext4_writeback_write_end(struct file *file,
1768 struct address_space *mapping,
1769 loff_t pos, unsigned len, unsigned copied,
1770 struct page *page, void *fsdata)
1772 handle_t *handle = ext4_journal_current_handle();
1773 struct inode *inode = mapping->host;
1776 trace_ext4_writeback_write_end(inode, pos, len, copied);
1777 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1780 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1781 /* if we have allocated more blocks and copied
1782 * less. We will have blocks allocated outside
1783 * inode->i_size. So truncate them
1785 ext4_orphan_add(handle, inode);
1790 ret2 = ext4_journal_stop(handle);
1794 if (pos + len > inode->i_size) {
1795 ext4_truncate_failed_write(inode);
1797 * If truncate failed early the inode might still be
1798 * on the orphan list; we need to make sure the inode
1799 * is removed from the orphan list in that case.
1802 ext4_orphan_del(NULL, inode);
1805 return ret ? ret : copied;
1808 static int ext4_journalled_write_end(struct file *file,
1809 struct address_space *mapping,
1810 loff_t pos, unsigned len, unsigned copied,
1811 struct page *page, void *fsdata)
1813 handle_t *handle = ext4_journal_current_handle();
1814 struct inode *inode = mapping->host;
1820 trace_ext4_journalled_write_end(inode, pos, len, copied);
1821 from = pos & (PAGE_CACHE_SIZE - 1);
1825 if (!PageUptodate(page))
1827 page_zero_new_buffers(page, from+copied, to);
1830 ret = walk_page_buffers(handle, page_buffers(page), from,
1831 to, &partial, write_end_fn);
1833 SetPageUptodate(page);
1834 new_i_size = pos + copied;
1835 if (new_i_size > inode->i_size)
1836 i_size_write(inode, pos+copied);
1837 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1838 if (new_i_size > EXT4_I(inode)->i_disksize) {
1839 ext4_update_i_disksize(inode, new_i_size);
1840 ret2 = ext4_mark_inode_dirty(handle, inode);
1846 page_cache_release(page);
1847 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1848 /* if we have allocated more blocks and copied
1849 * less. We will have blocks allocated outside
1850 * inode->i_size. So truncate them
1852 ext4_orphan_add(handle, inode);
1854 ret2 = ext4_journal_stop(handle);
1857 if (pos + len > inode->i_size) {
1858 ext4_truncate_failed_write(inode);
1860 * If truncate failed early the inode might still be
1861 * on the orphan list; we need to make sure the inode
1862 * is removed from the orphan list in that case.
1865 ext4_orphan_del(NULL, inode);
1868 return ret ? ret : copied;
1872 * Reserve a single block located at lblock
1874 static int ext4_da_reserve_space(struct inode *inode, sector_t lblock)
1877 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1878 struct ext4_inode_info *ei = EXT4_I(inode);
1879 unsigned long md_needed;
1883 * recalculate the amount of metadata blocks to reserve
1884 * in order to allocate nrblocks
1885 * worse case is one extent per block
1888 spin_lock(&ei->i_block_reservation_lock);
1889 md_needed = ext4_calc_metadata_amount(inode, lblock);
1890 trace_ext4_da_reserve_space(inode, md_needed);
1891 spin_unlock(&ei->i_block_reservation_lock);
1894 * We will charge metadata quota at writeout time; this saves
1895 * us from metadata over-estimation, though we may go over by
1896 * a small amount in the end. Here we just reserve for data.
1898 ret = dquot_reserve_block(inode, 1);
1902 * We do still charge estimated metadata to the sb though;
1903 * we cannot afford to run out of free blocks.
1905 if (ext4_claim_free_blocks(sbi, md_needed + 1)) {
1906 dquot_release_reservation_block(inode, 1);
1907 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1913 spin_lock(&ei->i_block_reservation_lock);
1914 ei->i_reserved_data_blocks++;
1915 ei->i_reserved_meta_blocks += md_needed;
1916 spin_unlock(&ei->i_block_reservation_lock);
1918 return 0; /* success */
1921 static void ext4_da_release_space(struct inode *inode, int to_free)
1923 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1924 struct ext4_inode_info *ei = EXT4_I(inode);
1927 return; /* Nothing to release, exit */
1929 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1931 trace_ext4_da_release_space(inode, to_free);
1932 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1934 * if there aren't enough reserved blocks, then the
1935 * counter is messed up somewhere. Since this
1936 * function is called from invalidate page, it's
1937 * harmless to return without any action.
1939 ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
1940 "ino %lu, to_free %d with only %d reserved "
1941 "data blocks\n", inode->i_ino, to_free,
1942 ei->i_reserved_data_blocks);
1944 to_free = ei->i_reserved_data_blocks;
1946 ei->i_reserved_data_blocks -= to_free;
1948 if (ei->i_reserved_data_blocks == 0) {
1950 * We can release all of the reserved metadata blocks
1951 * only when we have written all of the delayed
1952 * allocation blocks.
1954 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1955 ei->i_reserved_meta_blocks);
1956 ei->i_reserved_meta_blocks = 0;
1957 ei->i_da_metadata_calc_len = 0;
1960 /* update fs dirty data blocks counter */
1961 percpu_counter_sub(&sbi->s_dirtyblocks_counter, to_free);
1963 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1965 dquot_release_reservation_block(inode, to_free);
1968 static void ext4_da_page_release_reservation(struct page *page,
1969 unsigned long offset)
1972 struct buffer_head *head, *bh;
1973 unsigned int curr_off = 0;
1975 head = page_buffers(page);
1978 unsigned int next_off = curr_off + bh->b_size;
1980 if ((offset <= curr_off) && (buffer_delay(bh))) {
1982 clear_buffer_delay(bh);
1984 curr_off = next_off;
1985 } while ((bh = bh->b_this_page) != head);
1986 ext4_da_release_space(page->mapping->host, to_release);
1990 * Delayed allocation stuff
1994 * mpage_da_submit_io - walks through extent of pages and try to write
1995 * them with writepage() call back
1997 * @mpd->inode: inode
1998 * @mpd->first_page: first page of the extent
1999 * @mpd->next_page: page after the last page of the extent
2001 * By the time mpage_da_submit_io() is called we expect all blocks
2002 * to be allocated. this may be wrong if allocation failed.
2004 * As pages are already locked by write_cache_pages(), we can't use it
2006 static int mpage_da_submit_io(struct mpage_da_data *mpd)
2008 struct pagevec pvec;
2009 unsigned long index, end;
2010 int ret = 0, err, nr_pages, i;
2011 struct inode *inode = mpd->inode;
2012 struct address_space *mapping = inode->i_mapping;
2013 loff_t size = i_size_read(inode);
2015 struct buffer_head *page_bufs = NULL;
2016 int journal_data = ext4_should_journal_data(inode);
2018 BUG_ON(mpd->next_page <= mpd->first_page);
2020 * We need to start from the first_page to the next_page - 1
2021 * to make sure we also write the mapped dirty buffer_heads.
2022 * If we look at mpd->b_blocknr we would only be looking
2023 * at the currently mapped buffer_heads.
2025 index = mpd->first_page;
2026 end = mpd->next_page - 1;
2028 pagevec_init(&pvec, 0);
2029 while (index <= end) {
2030 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2033 for (i = 0; i < nr_pages; i++) {
2034 int commit_write = 0;
2035 struct page *page = pvec.pages[i];
2037 index = page->index;
2041 if (index == size >> PAGE_CACHE_SHIFT)
2042 len = size & ~PAGE_CACHE_MASK;
2044 len = PAGE_CACHE_SIZE;
2047 BUG_ON(!PageLocked(page));
2048 BUG_ON(PageWriteback(page));
2051 * If the page does not have buffers (for
2052 * whatever reason), try to create them using
2053 * block_prepare_write. If this fails,
2054 * redirty the page and move on.
2056 if (!page_has_buffers(page)) {
2057 if (block_prepare_write(page, 0, len,
2058 noalloc_get_block_write)) {
2060 redirty_page_for_writepage(mpd->wbc,
2067 page_bufs = page_buffers(page);
2068 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2069 ext4_bh_delay_or_unwritten)) {
2071 * We couldn't do block allocation for
2078 /* mark the buffer_heads as dirty & uptodate */
2079 block_commit_write(page, 0, len);
2081 if (journal_data && PageChecked(page))
2082 err = __ext4_journalled_writepage(page, len);
2083 else if (buffer_uninit(page_bufs)) {
2084 ext4_set_bh_endio(page_bufs, inode);
2085 err = block_write_full_page_endio(page,
2086 noalloc_get_block_write,
2087 mpd->wbc, ext4_end_io_buffer_write);
2089 err = block_write_full_page(page,
2090 noalloc_get_block_write, mpd->wbc);
2093 mpd->pages_written++;
2095 * In error case, we have to continue because
2096 * remaining pages are still locked
2101 pagevec_release(&pvec);
2107 * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
2109 * the function goes through all passed space and put actual disk
2110 * block numbers into buffer heads, dropping BH_Delay and BH_Unwritten
2112 static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd,
2113 struct ext4_map_blocks *map)
2115 struct inode *inode = mpd->inode;
2116 struct address_space *mapping = inode->i_mapping;
2117 int blocks = map->m_len;
2118 sector_t pblock = map->m_pblk, cur_logical;
2119 struct buffer_head *head, *bh;
2121 struct pagevec pvec;
2124 index = map->m_lblk >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2125 end = (map->m_lblk + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2126 cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2128 pagevec_init(&pvec, 0);
2130 while (index <= end) {
2131 /* XXX: optimize tail */
2132 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2135 for (i = 0; i < nr_pages; i++) {
2136 struct page *page = pvec.pages[i];
2138 index = page->index;
2143 BUG_ON(!PageLocked(page));
2144 BUG_ON(PageWriteback(page));
2145 BUG_ON(!page_has_buffers(page));
2147 bh = page_buffers(page);
2150 /* skip blocks out of the range */
2152 if (cur_logical >= map->m_lblk)
2155 } while ((bh = bh->b_this_page) != head);
2158 if (cur_logical > map->m_lblk + (blocks - 1))
2161 if (buffer_delay(bh) || buffer_unwritten(bh)) {
2163 BUG_ON(bh->b_bdev != inode->i_sb->s_bdev);
2165 if (buffer_delay(bh)) {
2166 clear_buffer_delay(bh);
2167 bh->b_blocknr = pblock;
2170 * unwritten already should have
2171 * blocknr assigned. Verify that
2173 clear_buffer_unwritten(bh);
2174 BUG_ON(bh->b_blocknr != pblock);
2177 } else if (buffer_mapped(bh))
2178 BUG_ON(bh->b_blocknr != pblock);
2180 if (map->m_flags & EXT4_MAP_UNINIT)
2181 set_buffer_uninit(bh);
2184 } while ((bh = bh->b_this_page) != head);
2186 pagevec_release(&pvec);
2191 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
2192 sector_t logical, long blk_cnt)
2196 struct pagevec pvec;
2197 struct inode *inode = mpd->inode;
2198 struct address_space *mapping = inode->i_mapping;
2200 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2201 end = (logical + blk_cnt - 1) >>
2202 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2203 while (index <= end) {
2204 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2207 for (i = 0; i < nr_pages; i++) {
2208 struct page *page = pvec.pages[i];
2209 if (page->index > end)
2211 BUG_ON(!PageLocked(page));
2212 BUG_ON(PageWriteback(page));
2213 block_invalidatepage(page, 0);
2214 ClearPageUptodate(page);
2217 index = pvec.pages[nr_pages - 1]->index + 1;
2218 pagevec_release(&pvec);
2223 static void ext4_print_free_blocks(struct inode *inode)
2225 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2226 printk(KERN_CRIT "Total free blocks count %lld\n",
2227 ext4_count_free_blocks(inode->i_sb));
2228 printk(KERN_CRIT "Free/Dirty block details\n");
2229 printk(KERN_CRIT "free_blocks=%lld\n",
2230 (long long) percpu_counter_sum(&sbi->s_freeblocks_counter));
2231 printk(KERN_CRIT "dirty_blocks=%lld\n",
2232 (long long) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
2233 printk(KERN_CRIT "Block reservation details\n");
2234 printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
2235 EXT4_I(inode)->i_reserved_data_blocks);
2236 printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
2237 EXT4_I(inode)->i_reserved_meta_blocks);
2242 * mpage_da_map_and_submit - go through given space, map them
2243 * if necessary, and then submit them for I/O
2245 * @mpd - bh describing space
2247 * The function skips space we know is already mapped to disk blocks.
2250 static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
2252 int err, blks, get_blocks_flags;
2253 struct ext4_map_blocks map;
2254 sector_t next = mpd->b_blocknr;
2255 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
2256 loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
2257 handle_t *handle = NULL;
2260 * If the blocks are mapped already, or we couldn't accumulate
2261 * any blocks, then proceed immediately to the submission stage.
2263 if ((mpd->b_size == 0) ||
2264 ((mpd->b_state & (1 << BH_Mapped)) &&
2265 !(mpd->b_state & (1 << BH_Delay)) &&
2266 !(mpd->b_state & (1 << BH_Unwritten))))
2269 handle = ext4_journal_current_handle();
2273 * Call ext4_map_blocks() to allocate any delayed allocation
2274 * blocks, or to convert an uninitialized extent to be
2275 * initialized (in the case where we have written into
2276 * one or more preallocated blocks).
2278 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
2279 * indicate that we are on the delayed allocation path. This
2280 * affects functions in many different parts of the allocation
2281 * call path. This flag exists primarily because we don't
2282 * want to change *many* call functions, so ext4_map_blocks()
2283 * will set the magic i_delalloc_reserved_flag once the
2284 * inode's allocation semaphore is taken.
2286 * If the blocks in questions were delalloc blocks, set
2287 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
2288 * variables are updated after the blocks have been allocated.
2291 map.m_len = max_blocks;
2292 get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
2293 if (ext4_should_dioread_nolock(mpd->inode))
2294 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2295 if (mpd->b_state & (1 << BH_Delay))
2296 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2298 blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
2300 struct super_block *sb = mpd->inode->i_sb;
2304 * If get block returns EAGAIN or ENOSPC and there
2305 * appears to be free blocks we will call
2306 * ext4_writepage() for all of the pages which will
2307 * just redirty the pages.
2312 if (err == -ENOSPC &&
2313 ext4_count_free_blocks(sb)) {
2319 * get block failure will cause us to loop in
2320 * writepages, because a_ops->writepage won't be able
2321 * to make progress. The page will be redirtied by
2322 * writepage and writepages will again try to write
2325 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2326 ext4_msg(sb, KERN_CRIT,
2327 "delayed block allocation failed for inode %lu "
2328 "at logical offset %llu with max blocks %zd "
2329 "with error %d", mpd->inode->i_ino,
2330 (unsigned long long) next,
2331 mpd->b_size >> mpd->inode->i_blkbits, err);
2332 ext4_msg(sb, KERN_CRIT,
2333 "This should not happen!! Data will be lost\n");
2335 ext4_print_free_blocks(mpd->inode);
2337 /* invalidate all the pages */
2338 ext4_da_block_invalidatepages(mpd, next,
2339 mpd->b_size >> mpd->inode->i_blkbits);
2344 if (map.m_flags & EXT4_MAP_NEW) {
2345 struct block_device *bdev = mpd->inode->i_sb->s_bdev;
2348 for (i = 0; i < map.m_len; i++)
2349 unmap_underlying_metadata(bdev, map.m_pblk + i);
2353 * If blocks are delayed marked, we need to
2354 * put actual blocknr and drop delayed bit
2356 if ((mpd->b_state & (1 << BH_Delay)) ||
2357 (mpd->b_state & (1 << BH_Unwritten)))
2358 mpage_put_bnr_to_bhs(mpd, &map);
2360 if (ext4_should_order_data(mpd->inode)) {
2361 err = ext4_jbd2_file_inode(handle, mpd->inode);
2363 /* This only happens if the journal is aborted */
2368 * Update on-disk size along with block allocation.
2370 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
2371 if (disksize > i_size_read(mpd->inode))
2372 disksize = i_size_read(mpd->inode);
2373 if (disksize > EXT4_I(mpd->inode)->i_disksize) {
2374 ext4_update_i_disksize(mpd->inode, disksize);
2375 err = ext4_mark_inode_dirty(handle, mpd->inode);
2377 ext4_error(mpd->inode->i_sb,
2378 "Failed to mark inode %lu dirty",
2383 mpage_da_submit_io(mpd);
2387 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
2388 (1 << BH_Delay) | (1 << BH_Unwritten))
2391 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
2393 * @mpd->lbh - extent of blocks
2394 * @logical - logical number of the block in the file
2395 * @bh - bh of the block (used to access block's state)
2397 * the function is used to collect contig. blocks in same state
2399 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
2400 sector_t logical, size_t b_size,
2401 unsigned long b_state)
2404 int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
2407 * XXX Don't go larger than mballoc is willing to allocate
2408 * This is a stopgap solution. We eventually need to fold
2409 * mpage_da_submit_io() into this function and then call
2410 * ext4_map_blocks() multiple times in a loop
2412 if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
2415 /* check if thereserved journal credits might overflow */
2416 if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
2417 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
2419 * With non-extent format we are limited by the journal
2420 * credit available. Total credit needed to insert
2421 * nrblocks contiguous blocks is dependent on the
2422 * nrblocks. So limit nrblocks.
2425 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
2426 EXT4_MAX_TRANS_DATA) {
2428 * Adding the new buffer_head would make it cross the
2429 * allowed limit for which we have journal credit
2430 * reserved. So limit the new bh->b_size
2432 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
2433 mpd->inode->i_blkbits;
2434 /* we will do mpage_da_submit_io in the next loop */
2438 * First block in the extent
2440 if (mpd->b_size == 0) {
2441 mpd->b_blocknr = logical;
2442 mpd->b_size = b_size;
2443 mpd->b_state = b_state & BH_FLAGS;
2447 next = mpd->b_blocknr + nrblocks;
2449 * Can we merge the block to our big extent?
2451 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
2452 mpd->b_size += b_size;
2458 * We couldn't merge the block to our extent, so we
2459 * need to flush current extent and start new one
2461 mpage_da_map_and_submit(mpd);
2465 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
2467 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
2471 * __mpage_da_writepage - finds extent of pages and blocks
2473 * @page: page to consider
2474 * @wbc: not used, we just follow rules
2477 * The function finds extents of pages and scan them for all blocks.
2479 static int __mpage_da_writepage(struct page *page,
2480 struct writeback_control *wbc, void *data)
2482 struct mpage_da_data *mpd = data;
2483 struct inode *inode = mpd->inode;
2484 struct buffer_head *bh, *head;
2488 * Can we merge this page to current extent?
2490 if (mpd->next_page != page->index) {
2492 * Nope, we can't. So, we map non-allocated blocks
2493 * and start IO on them
2495 if (mpd->next_page != mpd->first_page) {
2496 mpage_da_map_and_submit(mpd);
2498 * skip rest of the page in the page_vec
2500 redirty_page_for_writepage(wbc, page);
2502 return MPAGE_DA_EXTENT_TAIL;
2506 * Start next extent of pages ...
2508 mpd->first_page = page->index;
2518 mpd->next_page = page->index + 1;
2519 logical = (sector_t) page->index <<
2520 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2522 if (!page_has_buffers(page)) {
2523 mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
2524 (1 << BH_Dirty) | (1 << BH_Uptodate));
2526 return MPAGE_DA_EXTENT_TAIL;
2529 * Page with regular buffer heads, just add all dirty ones
2531 head = page_buffers(page);
2534 BUG_ON(buffer_locked(bh));
2536 * We need to try to allocate
2537 * unmapped blocks in the same page.
2538 * Otherwise we won't make progress
2539 * with the page in ext4_writepage
2541 if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2542 mpage_add_bh_to_extent(mpd, logical,
2546 return MPAGE_DA_EXTENT_TAIL;
2547 } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2549 * mapped dirty buffer. We need to update
2550 * the b_state because we look at
2551 * b_state in mpage_da_map_blocks. We don't
2552 * update b_size because if we find an
2553 * unmapped buffer_head later we need to
2554 * use the b_state flag of that buffer_head.
2556 if (mpd->b_size == 0)
2557 mpd->b_state = bh->b_state & BH_FLAGS;
2560 } while ((bh = bh->b_this_page) != head);
2567 * This is a special get_blocks_t callback which is used by
2568 * ext4_da_write_begin(). It will either return mapped block or
2569 * reserve space for a single block.
2571 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2572 * We also have b_blocknr = -1 and b_bdev initialized properly
2574 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2575 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2576 * initialized properly.
2578 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2579 struct buffer_head *bh, int create)
2581 struct ext4_map_blocks map;
2583 sector_t invalid_block = ~((sector_t) 0xffff);
2585 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
2588 BUG_ON(create == 0);
2589 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
2591 map.m_lblk = iblock;
2595 * first, we need to know whether the block is allocated already
2596 * preallocated blocks are unmapped but should treated
2597 * the same as allocated blocks.
2599 ret = ext4_map_blocks(NULL, inode, &map, 0);
2603 if (buffer_delay(bh))
2604 return 0; /* Not sure this could or should happen */
2606 * XXX: __block_prepare_write() unmaps passed block,
2609 ret = ext4_da_reserve_space(inode, iblock);
2611 /* not enough space to reserve */
2614 map_bh(bh, inode->i_sb, invalid_block);
2616 set_buffer_delay(bh);
2620 map_bh(bh, inode->i_sb, map.m_pblk);
2621 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
2623 if (buffer_unwritten(bh)) {
2624 /* A delayed write to unwritten bh should be marked
2625 * new and mapped. Mapped ensures that we don't do
2626 * get_block multiple times when we write to the same
2627 * offset and new ensures that we do proper zero out
2628 * for partial write.
2631 set_buffer_mapped(bh);
2637 * This function is used as a standard get_block_t calback function
2638 * when there is no desire to allocate any blocks. It is used as a
2639 * callback function for block_prepare_write() and block_write_full_page().
2640 * These functions should only try to map a single block at a time.
2642 * Since this function doesn't do block allocations even if the caller
2643 * requests it by passing in create=1, it is critically important that
2644 * any caller checks to make sure that any buffer heads are returned
2645 * by this function are either all already mapped or marked for
2646 * delayed allocation before calling block_write_full_page(). Otherwise,
2647 * b_blocknr could be left unitialized, and the page write functions will
2648 * be taken by surprise.
2650 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
2651 struct buffer_head *bh_result, int create)
2653 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2654 return _ext4_get_block(inode, iblock, bh_result, 0);
2657 static int bget_one(handle_t *handle, struct buffer_head *bh)
2663 static int bput_one(handle_t *handle, struct buffer_head *bh)
2669 static int __ext4_journalled_writepage(struct page *page,
2672 struct address_space *mapping = page->mapping;
2673 struct inode *inode = mapping->host;
2674 struct buffer_head *page_bufs;
2675 handle_t *handle = NULL;
2679 ClearPageChecked(page);
2680 page_bufs = page_buffers(page);
2682 walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
2683 /* As soon as we unlock the page, it can go away, but we have
2684 * references to buffers so we are safe */
2687 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
2688 if (IS_ERR(handle)) {
2689 ret = PTR_ERR(handle);
2693 ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2694 do_journal_get_write_access);
2696 err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2700 err = ext4_journal_stop(handle);
2704 walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
2705 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2710 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
2711 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
2714 * Note that we don't need to start a transaction unless we're journaling data
2715 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2716 * need to file the inode to the transaction's list in ordered mode because if
2717 * we are writing back data added by write(), the inode is already there and if
2718 * we are writing back data modified via mmap(), noone guarantees in which
2719 * transaction the data will hit the disk. In case we are journaling data, we
2720 * cannot start transaction directly because transaction start ranks above page
2721 * lock so we have to do some magic.
2723 * This function can get called via...
2724 * - ext4_da_writepages after taking page lock (have journal handle)
2725 * - journal_submit_inode_data_buffers (no journal handle)
2726 * - shrink_page_list via pdflush (no journal handle)
2727 * - grab_page_cache when doing write_begin (have journal handle)
2729 * We don't do any block allocation in this function. If we have page with
2730 * multiple blocks we need to write those buffer_heads that are mapped. This
2731 * is important for mmaped based write. So if we do with blocksize 1K
2732 * truncate(f, 1024);
2733 * a = mmap(f, 0, 4096);
2735 * truncate(f, 4096);
2736 * we have in the page first buffer_head mapped via page_mkwrite call back
2737 * but other bufer_heads would be unmapped but dirty(dirty done via the
2738 * do_wp_page). So writepage should write the first block. If we modify
2739 * the mmap area beyond 1024 we will again get a page_fault and the
2740 * page_mkwrite callback will do the block allocation and mark the
2741 * buffer_heads mapped.
2743 * We redirty the page if we have any buffer_heads that is either delay or
2744 * unwritten in the page.
2746 * We can get recursively called as show below.
2748 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2751 * But since we don't do any block allocation we should not deadlock.
2752 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2754 static int ext4_writepage(struct page *page,
2755 struct writeback_control *wbc)
2757 int ret = 0, commit_write = 0;
2760 struct buffer_head *page_bufs = NULL;
2761 struct inode *inode = page->mapping->host;
2763 trace_ext4_writepage(inode, page);
2764 size = i_size_read(inode);
2765 if (page->index == size >> PAGE_CACHE_SHIFT)
2766 len = size & ~PAGE_CACHE_MASK;
2768 len = PAGE_CACHE_SIZE;
2771 * If the page does not have buffers (for whatever reason),
2772 * try to create them using block_prepare_write. If this
2773 * fails, redirty the page and move on.
2775 if (!page_buffers(page)) {
2776 if (block_prepare_write(page, 0, len,
2777 noalloc_get_block_write)) {
2779 redirty_page_for_writepage(wbc, page);
2785 page_bufs = page_buffers(page);
2786 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2787 ext4_bh_delay_or_unwritten)) {
2789 * We don't want to do block allocation So redirty the
2790 * page and return We may reach here when we do a
2791 * journal commit via
2792 * journal_submit_inode_data_buffers. If we don't
2793 * have mapping block we just ignore them. We can also
2794 * reach here via shrink_page_list
2799 /* now mark the buffer_heads as dirty and uptodate */
2800 block_commit_write(page, 0, len);
2802 if (PageChecked(page) && ext4_should_journal_data(inode))
2804 * It's mmapped pagecache. Add buffers and journal it. There
2805 * doesn't seem much point in redirtying the page here.
2807 return __ext4_journalled_writepage(page, len);
2809 if (buffer_uninit(page_bufs)) {
2810 ext4_set_bh_endio(page_bufs, inode);
2811 ret = block_write_full_page_endio(page, noalloc_get_block_write,
2812 wbc, ext4_end_io_buffer_write);
2814 ret = block_write_full_page(page, noalloc_get_block_write,
2821 * This is called via ext4_da_writepages() to
2822 * calulate the total number of credits to reserve to fit
2823 * a single extent allocation into a single transaction,
2824 * ext4_da_writpeages() will loop calling this before
2825 * the block allocation.
2828 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2830 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2833 * With non-extent format the journal credit needed to
2834 * insert nrblocks contiguous block is dependent on
2835 * number of contiguous block. So we will limit
2836 * number of contiguous block to a sane value
2838 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
2839 (max_blocks > EXT4_MAX_TRANS_DATA))
2840 max_blocks = EXT4_MAX_TRANS_DATA;
2842 return ext4_chunk_trans_blocks(inode, max_blocks);
2846 * write_cache_pages_da - walk the list of dirty pages of the given
2847 * address space and call the callback function (which usually writes
2850 * This is a forked version of write_cache_pages(). Differences:
2851 * Range cyclic is ignored.
2852 * no_nrwrite_index_update is always presumed true
2854 static int write_cache_pages_da(struct address_space *mapping,
2855 struct writeback_control *wbc,
2856 struct mpage_da_data *mpd)
2860 struct pagevec pvec;
2863 pgoff_t end; /* Inclusive */
2864 long nr_to_write = wbc->nr_to_write;
2866 pagevec_init(&pvec, 0);
2867 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2868 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2870 while (!done && (index <= end)) {
2873 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
2874 PAGECACHE_TAG_DIRTY,
2875 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2879 for (i = 0; i < nr_pages; i++) {
2880 struct page *page = pvec.pages[i];
2883 * At this point, the page may be truncated or
2884 * invalidated (changing page->mapping to NULL), or
2885 * even swizzled back from swapper_space to tmpfs file
2886 * mapping. However, page->index will not change
2887 * because we have a reference on the page.
2889 if (page->index > end) {
2897 * Page truncated or invalidated. We can freely skip it
2898 * then, even for data integrity operations: the page
2899 * has disappeared concurrently, so there could be no
2900 * real expectation of this data interity operation
2901 * even if there is now a new, dirty page at the same
2902 * pagecache address.
2904 if (unlikely(page->mapping != mapping)) {
2910 if (!PageDirty(page)) {
2911 /* someone wrote it for us */
2912 goto continue_unlock;
2915 if (PageWriteback(page)) {
2916 if (wbc->sync_mode != WB_SYNC_NONE)
2917 wait_on_page_writeback(page);
2919 goto continue_unlock;
2922 BUG_ON(PageWriteback(page));
2923 if (!clear_page_dirty_for_io(page))
2924 goto continue_unlock;
2926 ret = __mpage_da_writepage(page, wbc, mpd);
2927 if (unlikely(ret)) {
2928 if (ret == AOP_WRITEPAGE_ACTIVATE) {
2937 if (nr_to_write > 0) {
2939 if (nr_to_write == 0 &&
2940 wbc->sync_mode == WB_SYNC_NONE) {
2942 * We stop writing back only if we are
2943 * not doing integrity sync. In case of
2944 * integrity sync we have to keep going
2945 * because someone may be concurrently
2946 * dirtying pages, and we might have
2947 * synced a lot of newly appeared dirty
2948 * pages, but have not synced all of the
2956 pagevec_release(&pvec);
2963 static int ext4_da_writepages(struct address_space *mapping,
2964 struct writeback_control *wbc)
2967 int range_whole = 0;
2968 handle_t *handle = NULL;
2969 struct mpage_da_data mpd;
2970 struct inode *inode = mapping->host;
2971 int pages_written = 0;
2973 unsigned int max_pages;
2974 int range_cyclic, cycled = 1, io_done = 0;
2975 int needed_blocks, ret = 0;
2976 long desired_nr_to_write, nr_to_writebump = 0;
2977 loff_t range_start = wbc->range_start;
2978 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2980 trace_ext4_da_writepages(inode, wbc);
2983 * No pages to write? This is mainly a kludge to avoid starting
2984 * a transaction for special inodes like journal inode on last iput()
2985 * because that could violate lock ordering on umount
2987 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2991 * If the filesystem has aborted, it is read-only, so return
2992 * right away instead of dumping stack traces later on that
2993 * will obscure the real source of the problem. We test
2994 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2995 * the latter could be true if the filesystem is mounted
2996 * read-only, and in that case, ext4_da_writepages should
2997 * *never* be called, so if that ever happens, we would want
3000 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
3003 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
3006 range_cyclic = wbc->range_cyclic;
3007 if (wbc->range_cyclic) {
3008 index = mapping->writeback_index;
3011 wbc->range_start = index << PAGE_CACHE_SHIFT;
3012 wbc->range_end = LLONG_MAX;
3013 wbc->range_cyclic = 0;
3015 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3018 * This works around two forms of stupidity. The first is in
3019 * the writeback code, which caps the maximum number of pages
3020 * written to be 1024 pages. This is wrong on multiple
3021 * levels; different architectues have a different page size,
3022 * which changes the maximum amount of data which gets
3023 * written. Secondly, 4 megabytes is way too small. XFS
3024 * forces this value to be 16 megabytes by multiplying
3025 * nr_to_write parameter by four, and then relies on its
3026 * allocator to allocate larger extents to make them
3027 * contiguous. Unfortunately this brings us to the second
3028 * stupidity, which is that ext4's mballoc code only allocates
3029 * at most 2048 blocks. So we force contiguous writes up to
3030 * the number of dirty blocks in the inode, or
3031 * sbi->max_writeback_mb_bump whichever is smaller.
3033 max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
3034 if (!range_cyclic && range_whole) {
3035 if (wbc->nr_to_write == LONG_MAX)
3036 desired_nr_to_write = wbc->nr_to_write;
3038 desired_nr_to_write = wbc->nr_to_write * 8;
3040 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
3042 if (desired_nr_to_write > max_pages)
3043 desired_nr_to_write = max_pages;
3045 if (wbc->nr_to_write < desired_nr_to_write) {
3046 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
3047 wbc->nr_to_write = desired_nr_to_write;
3051 mpd.inode = mapping->host;
3053 pages_skipped = wbc->pages_skipped;
3056 while (!ret && wbc->nr_to_write > 0) {
3059 * we insert one extent at a time. So we need
3060 * credit needed for single extent allocation.
3061 * journalled mode is currently not supported
3064 BUG_ON(ext4_should_journal_data(inode));
3065 needed_blocks = ext4_da_writepages_trans_blocks(inode);
3067 /* start a new transaction*/
3068 handle = ext4_journal_start(inode, needed_blocks);
3069 if (IS_ERR(handle)) {
3070 ret = PTR_ERR(handle);
3071 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
3072 "%ld pages, ino %lu; err %d", __func__,
3073 wbc->nr_to_write, inode->i_ino, ret);
3074 goto out_writepages;
3078 * Now call __mpage_da_writepage to find the next
3079 * contiguous region of logical blocks that need
3080 * blocks to be allocated by ext4. We don't actually
3081 * submit the blocks for I/O here, even though
3082 * write_cache_pages thinks it will, and will set the
3083 * pages as clean for write before calling
3084 * __mpage_da_writepage().