jbd2: Avoid possible NULL dereference in jbd2_journal_begin_ordered_truncate()
[pandora-kernel.git] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Goal-directed block allocation by Stephen Tweedie
16  *      (sct@redhat.com), 1993, 1998
17  *  Big-endian to little-endian byte-swapping/bitmaps by
18  *        David S. Miller (davem@caip.rutgers.edu), 1995
19  *  64-bit file support on 64-bit platforms by Jakub Jelinek
20  *      (jj@sunsite.ms.mff.cuni.cz)
21  *
22  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23  */
24
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/uio.h>
38 #include <linux/bio.h>
39 #include "ext4_jbd2.h"
40 #include "xattr.h"
41 #include "acl.h"
42 #include "ext4_extents.h"
43
44 #define MPAGE_DA_EXTENT_TAIL 0x01
45
46 static inline int ext4_begin_ordered_truncate(struct inode *inode,
47                                               loff_t new_size)
48 {
49         return jbd2_journal_begin_ordered_truncate(
50                                         EXT4_SB(inode->i_sb)->s_journal,
51                                         &EXT4_I(inode)->jinode,
52                                         new_size);
53 }
54
55 static void ext4_invalidatepage(struct page *page, unsigned long offset);
56
57 /*
58  * Test whether an inode is a fast symlink.
59  */
60 static int ext4_inode_is_fast_symlink(struct inode *inode)
61 {
62         int ea_blocks = EXT4_I(inode)->i_file_acl ?
63                 (inode->i_sb->s_blocksize >> 9) : 0;
64
65         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
66 }
67
68 /*
69  * The ext4 forget function must perform a revoke if we are freeing data
70  * which has been journaled.  Metadata (eg. indirect blocks) must be
71  * revoked in all cases.
72  *
73  * "bh" may be NULL: a metadata block may have been freed from memory
74  * but there may still be a record of it in the journal, and that record
75  * still needs to be revoked.
76  */
77 int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
78                         struct buffer_head *bh, ext4_fsblk_t blocknr)
79 {
80         int err;
81
82         might_sleep();
83
84         BUFFER_TRACE(bh, "enter");
85
86         jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
87                   "data mode %lx\n",
88                   bh, is_metadata, inode->i_mode,
89                   test_opt(inode->i_sb, DATA_FLAGS));
90
91         /* Never use the revoke function if we are doing full data
92          * journaling: there is no need to, and a V1 superblock won't
93          * support it.  Otherwise, only skip the revoke on un-journaled
94          * data blocks. */
95
96         if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
97             (!is_metadata && !ext4_should_journal_data(inode))) {
98                 if (bh) {
99                         BUFFER_TRACE(bh, "call jbd2_journal_forget");
100                         return ext4_journal_forget(handle, bh);
101                 }
102                 return 0;
103         }
104
105         /*
106          * data!=journal && (is_metadata || should_journal_data(inode))
107          */
108         BUFFER_TRACE(bh, "call ext4_journal_revoke");
109         err = ext4_journal_revoke(handle, blocknr, bh);
110         if (err)
111                 ext4_abort(inode->i_sb, __func__,
112                            "error %d when attempting revoke", err);
113         BUFFER_TRACE(bh, "exit");
114         return err;
115 }
116
117 /*
118  * Work out how many blocks we need to proceed with the next chunk of a
119  * truncate transaction.
120  */
121 static unsigned long blocks_for_truncate(struct inode *inode)
122 {
123         ext4_lblk_t needed;
124
125         needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
126
127         /* Give ourselves just enough room to cope with inodes in which
128          * i_blocks is corrupt: we've seen disk corruptions in the past
129          * which resulted in random data in an inode which looked enough
130          * like a regular file for ext4 to try to delete it.  Things
131          * will go a bit crazy if that happens, but at least we should
132          * try not to panic the whole kernel. */
133         if (needed < 2)
134                 needed = 2;
135
136         /* But we need to bound the transaction so we don't overflow the
137          * journal. */
138         if (needed > EXT4_MAX_TRANS_DATA)
139                 needed = EXT4_MAX_TRANS_DATA;
140
141         return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
142 }
143
144 /*
145  * Truncate transactions can be complex and absolutely huge.  So we need to
146  * be able to restart the transaction at a conventient checkpoint to make
147  * sure we don't overflow the journal.
148  *
149  * start_transaction gets us a new handle for a truncate transaction,
150  * and extend_transaction tries to extend the existing one a bit.  If
151  * extend fails, we need to propagate the failure up and restart the
152  * transaction in the top-level truncate loop. --sct
153  */
154 static handle_t *start_transaction(struct inode *inode)
155 {
156         handle_t *result;
157
158         result = ext4_journal_start(inode, blocks_for_truncate(inode));
159         if (!IS_ERR(result))
160                 return result;
161
162         ext4_std_error(inode->i_sb, PTR_ERR(result));
163         return result;
164 }
165
166 /*
167  * Try to extend this transaction for the purposes of truncation.
168  *
169  * Returns 0 if we managed to create more room.  If we can't create more
170  * room, and the transaction must be restarted we return 1.
171  */
172 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
173 {
174         if (handle->h_buffer_credits > EXT4_RESERVE_TRANS_BLOCKS)
175                 return 0;
176         if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
177                 return 0;
178         return 1;
179 }
180
181 /*
182  * Restart the transaction associated with *handle.  This does a commit,
183  * so before we call here everything must be consistently dirtied against
184  * this transaction.
185  */
186 static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
187 {
188         jbd_debug(2, "restarting handle %p\n", handle);
189         return ext4_journal_restart(handle, blocks_for_truncate(inode));
190 }
191
192 /*
193  * Called at the last iput() if i_nlink is zero.
194  */
195 void ext4_delete_inode (struct inode * inode)
196 {
197         handle_t *handle;
198         int err;
199
200         if (ext4_should_order_data(inode))
201                 ext4_begin_ordered_truncate(inode, 0);
202         truncate_inode_pages(&inode->i_data, 0);
203
204         if (is_bad_inode(inode))
205                 goto no_delete;
206
207         handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
208         if (IS_ERR(handle)) {
209                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
210                 /*
211                  * If we're going to skip the normal cleanup, we still need to
212                  * make sure that the in-core orphan linked list is properly
213                  * cleaned up.
214                  */
215                 ext4_orphan_del(NULL, inode);
216                 goto no_delete;
217         }
218
219         if (IS_SYNC(inode))
220                 handle->h_sync = 1;
221         inode->i_size = 0;
222         err = ext4_mark_inode_dirty(handle, inode);
223         if (err) {
224                 ext4_warning(inode->i_sb, __func__,
225                              "couldn't mark inode dirty (err %d)", err);
226                 goto stop_handle;
227         }
228         if (inode->i_blocks)
229                 ext4_truncate(inode);
230
231         /*
232          * ext4_ext_truncate() doesn't reserve any slop when it
233          * restarts journal transactions; therefore there may not be
234          * enough credits left in the handle to remove the inode from
235          * the orphan list and set the dtime field.
236          */
237         if (handle->h_buffer_credits < 3) {
238                 err = ext4_journal_extend(handle, 3);
239                 if (err > 0)
240                         err = ext4_journal_restart(handle, 3);
241                 if (err != 0) {
242                         ext4_warning(inode->i_sb, __func__,
243                                      "couldn't extend journal (err %d)", err);
244                 stop_handle:
245                         ext4_journal_stop(handle);
246                         goto no_delete;
247                 }
248         }
249
250         /*
251          * Kill off the orphan record which ext4_truncate created.
252          * AKPM: I think this can be inside the above `if'.
253          * Note that ext4_orphan_del() has to be able to cope with the
254          * deletion of a non-existent orphan - this is because we don't
255          * know if ext4_truncate() actually created an orphan record.
256          * (Well, we could do this if we need to, but heck - it works)
257          */
258         ext4_orphan_del(handle, inode);
259         EXT4_I(inode)->i_dtime  = get_seconds();
260
261         /*
262          * One subtle ordering requirement: if anything has gone wrong
263          * (transaction abort, IO errors, whatever), then we can still
264          * do these next steps (the fs will already have been marked as
265          * having errors), but we can't free the inode if the mark_dirty
266          * fails.
267          */
268         if (ext4_mark_inode_dirty(handle, inode))
269                 /* If that failed, just do the required in-core inode clear. */
270                 clear_inode(inode);
271         else
272                 ext4_free_inode(handle, inode);
273         ext4_journal_stop(handle);
274         return;
275 no_delete:
276         clear_inode(inode);     /* We must guarantee clearing of inode... */
277 }
278
279 typedef struct {
280         __le32  *p;
281         __le32  key;
282         struct buffer_head *bh;
283 } Indirect;
284
285 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
286 {
287         p->key = *(p->p = v);
288         p->bh = bh;
289 }
290
291 /**
292  *      ext4_block_to_path - parse the block number into array of offsets
293  *      @inode: inode in question (we are only interested in its superblock)
294  *      @i_block: block number to be parsed
295  *      @offsets: array to store the offsets in
296  *      @boundary: set this non-zero if the referred-to block is likely to be
297  *             followed (on disk) by an indirect block.
298  *
299  *      To store the locations of file's data ext4 uses a data structure common
300  *      for UNIX filesystems - tree of pointers anchored in the inode, with
301  *      data blocks at leaves and indirect blocks in intermediate nodes.
302  *      This function translates the block number into path in that tree -
303  *      return value is the path length and @offsets[n] is the offset of
304  *      pointer to (n+1)th node in the nth one. If @block is out of range
305  *      (negative or too large) warning is printed and zero returned.
306  *
307  *      Note: function doesn't find node addresses, so no IO is needed. All
308  *      we need to know is the capacity of indirect blocks (taken from the
309  *      inode->i_sb).
310  */
311
312 /*
313  * Portability note: the last comparison (check that we fit into triple
314  * indirect block) is spelled differently, because otherwise on an
315  * architecture with 32-bit longs and 8Kb pages we might get into trouble
316  * if our filesystem had 8Kb blocks. We might use long long, but that would
317  * kill us on x86. Oh, well, at least the sign propagation does not matter -
318  * i_block would have to be negative in the very beginning, so we would not
319  * get there at all.
320  */
321
322 static int ext4_block_to_path(struct inode *inode,
323                         ext4_lblk_t i_block,
324                         ext4_lblk_t offsets[4], int *boundary)
325 {
326         int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
327         int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
328         const long direct_blocks = EXT4_NDIR_BLOCKS,
329                 indirect_blocks = ptrs,
330                 double_blocks = (1 << (ptrs_bits * 2));
331         int n = 0;
332         int final = 0;
333
334         if (i_block < 0) {
335                 ext4_warning (inode->i_sb, "ext4_block_to_path", "block < 0");
336         } else if (i_block < direct_blocks) {
337                 offsets[n++] = i_block;
338                 final = direct_blocks;
339         } else if ( (i_block -= direct_blocks) < indirect_blocks) {
340                 offsets[n++] = EXT4_IND_BLOCK;
341                 offsets[n++] = i_block;
342                 final = ptrs;
343         } else if ((i_block -= indirect_blocks) < double_blocks) {
344                 offsets[n++] = EXT4_DIND_BLOCK;
345                 offsets[n++] = i_block >> ptrs_bits;
346                 offsets[n++] = i_block & (ptrs - 1);
347                 final = ptrs;
348         } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
349                 offsets[n++] = EXT4_TIND_BLOCK;
350                 offsets[n++] = i_block >> (ptrs_bits * 2);
351                 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
352                 offsets[n++] = i_block & (ptrs - 1);
353                 final = ptrs;
354         } else {
355                 ext4_warning(inode->i_sb, "ext4_block_to_path",
356                                 "block %lu > max in inode %lu",
357                                 i_block + direct_blocks +
358                                 indirect_blocks + double_blocks, inode->i_ino);
359         }
360         if (boundary)
361                 *boundary = final - 1 - (i_block & (ptrs - 1));
362         return n;
363 }
364
365 /**
366  *      ext4_get_branch - read the chain of indirect blocks leading to data
367  *      @inode: inode in question
368  *      @depth: depth of the chain (1 - direct pointer, etc.)
369  *      @offsets: offsets of pointers in inode/indirect blocks
370  *      @chain: place to store the result
371  *      @err: here we store the error value
372  *
373  *      Function fills the array of triples <key, p, bh> and returns %NULL
374  *      if everything went OK or the pointer to the last filled triple
375  *      (incomplete one) otherwise. Upon the return chain[i].key contains
376  *      the number of (i+1)-th block in the chain (as it is stored in memory,
377  *      i.e. little-endian 32-bit), chain[i].p contains the address of that
378  *      number (it points into struct inode for i==0 and into the bh->b_data
379  *      for i>0) and chain[i].bh points to the buffer_head of i-th indirect
380  *      block for i>0 and NULL for i==0. In other words, it holds the block
381  *      numbers of the chain, addresses they were taken from (and where we can
382  *      verify that chain did not change) and buffer_heads hosting these
383  *      numbers.
384  *
385  *      Function stops when it stumbles upon zero pointer (absent block)
386  *              (pointer to last triple returned, *@err == 0)
387  *      or when it gets an IO error reading an indirect block
388  *              (ditto, *@err == -EIO)
389  *      or when it reads all @depth-1 indirect blocks successfully and finds
390  *      the whole chain, all way to the data (returns %NULL, *err == 0).
391  *
392  *      Need to be called with
393  *      down_read(&EXT4_I(inode)->i_data_sem)
394  */
395 static Indirect *ext4_get_branch(struct inode *inode, int depth,
396                                  ext4_lblk_t  *offsets,
397                                  Indirect chain[4], int *err)
398 {
399         struct super_block *sb = inode->i_sb;
400         Indirect *p = chain;
401         struct buffer_head *bh;
402
403         *err = 0;
404         /* i_data is not going away, no lock needed */
405         add_chain (chain, NULL, EXT4_I(inode)->i_data + *offsets);
406         if (!p->key)
407                 goto no_block;
408         while (--depth) {
409                 bh = sb_bread(sb, le32_to_cpu(p->key));
410                 if (!bh)
411                         goto failure;
412                 add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
413                 /* Reader: end */
414                 if (!p->key)
415                         goto no_block;
416         }
417         return NULL;
418
419 failure:
420         *err = -EIO;
421 no_block:
422         return p;
423 }
424
425 /**
426  *      ext4_find_near - find a place for allocation with sufficient locality
427  *      @inode: owner
428  *      @ind: descriptor of indirect block.
429  *
430  *      This function returns the preferred place for block allocation.
431  *      It is used when heuristic for sequential allocation fails.
432  *      Rules are:
433  *        + if there is a block to the left of our position - allocate near it.
434  *        + if pointer will live in indirect block - allocate near that block.
435  *        + if pointer will live in inode - allocate in the same
436  *          cylinder group.
437  *
438  * In the latter case we colour the starting block by the callers PID to
439  * prevent it from clashing with concurrent allocations for a different inode
440  * in the same block group.   The PID is used here so that functionally related
441  * files will be close-by on-disk.
442  *
443  *      Caller must make sure that @ind is valid and will stay that way.
444  */
445 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
446 {
447         struct ext4_inode_info *ei = EXT4_I(inode);
448         __le32 *start = ind->bh ? (__le32*) ind->bh->b_data : ei->i_data;
449         __le32 *p;
450         ext4_fsblk_t bg_start;
451         ext4_fsblk_t last_block;
452         ext4_grpblk_t colour;
453
454         /* Try to find previous block */
455         for (p = ind->p - 1; p >= start; p--) {
456                 if (*p)
457                         return le32_to_cpu(*p);
458         }
459
460         /* No such thing, so let's try location of indirect block */
461         if (ind->bh)
462                 return ind->bh->b_blocknr;
463
464         /*
465          * It is going to be referred to from the inode itself? OK, just put it
466          * into the same cylinder group then.
467          */
468         bg_start = ext4_group_first_block_no(inode->i_sb, ei->i_block_group);
469         last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
470
471         if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
472                 colour = (current->pid % 16) *
473                         (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
474         else
475                 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
476         return bg_start + colour;
477 }
478
479 /**
480  *      ext4_find_goal - find a preferred place for allocation.
481  *      @inode: owner
482  *      @block:  block we want
483  *      @partial: pointer to the last triple within a chain
484  *
485  *      Normally this function find the preferred place for block allocation,
486  *      returns it.
487  */
488 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
489                 Indirect *partial)
490 {
491         struct ext4_block_alloc_info *block_i;
492
493         block_i =  EXT4_I(inode)->i_block_alloc_info;
494
495         /*
496          * try the heuristic for sequential allocation,
497          * failing that at least try to get decent locality.
498          */
499         if (block_i && (block == block_i->last_alloc_logical_block + 1)
500                 && (block_i->last_alloc_physical_block != 0)) {
501                 return block_i->last_alloc_physical_block + 1;
502         }
503
504         return ext4_find_near(inode, partial);
505 }
506
507 /**
508  *      ext4_blks_to_allocate: Look up the block map and count the number
509  *      of direct blocks need to be allocated for the given branch.
510  *
511  *      @branch: chain of indirect blocks
512  *      @k: number of blocks need for indirect blocks
513  *      @blks: number of data blocks to be mapped.
514  *      @blocks_to_boundary:  the offset in the indirect block
515  *
516  *      return the total number of blocks to be allocate, including the
517  *      direct and indirect blocks.
518  */
519 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
520                 int blocks_to_boundary)
521 {
522         unsigned long count = 0;
523
524         /*
525          * Simple case, [t,d]Indirect block(s) has not allocated yet
526          * then it's clear blocks on that path have not allocated
527          */
528         if (k > 0) {
529                 /* right now we don't handle cross boundary allocation */
530                 if (blks < blocks_to_boundary + 1)
531                         count += blks;
532                 else
533                         count += blocks_to_boundary + 1;
534                 return count;
535         }
536
537         count++;
538         while (count < blks && count <= blocks_to_boundary &&
539                 le32_to_cpu(*(branch[0].p + count)) == 0) {
540                 count++;
541         }
542         return count;
543 }
544
545 /**
546  *      ext4_alloc_blocks: multiple allocate blocks needed for a branch
547  *      @indirect_blks: the number of blocks need to allocate for indirect
548  *                      blocks
549  *
550  *      @new_blocks: on return it will store the new block numbers for
551  *      the indirect blocks(if needed) and the first direct block,
552  *      @blks:  on return it will store the total number of allocated
553  *              direct blocks
554  */
555 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
556                                 ext4_lblk_t iblock, ext4_fsblk_t goal,
557                                 int indirect_blks, int blks,
558                                 ext4_fsblk_t new_blocks[4], int *err)
559 {
560         int target, i;
561         unsigned long count = 0, blk_allocated = 0;
562         int index = 0;
563         ext4_fsblk_t current_block = 0;
564         int ret = 0;
565
566         /*
567          * Here we try to allocate the requested multiple blocks at once,
568          * on a best-effort basis.
569          * To build a branch, we should allocate blocks for
570          * the indirect blocks(if not allocated yet), and at least
571          * the first direct block of this branch.  That's the
572          * minimum number of blocks need to allocate(required)
573          */
574         /* first we try to allocate the indirect blocks */
575         target = indirect_blks;
576         while (target > 0) {
577                 count = target;
578                 /* allocating blocks for indirect blocks and direct blocks */
579                 current_block = ext4_new_meta_blocks(handle, inode,
580                                                         goal, &count, err);
581                 if (*err)
582                         goto failed_out;
583
584                 target -= count;
585                 /* allocate blocks for indirect blocks */
586                 while (index < indirect_blks && count) {
587                         new_blocks[index++] = current_block++;
588                         count--;
589                 }
590                 if (count > 0) {
591                         /*
592                          * save the new block number
593                          * for the first direct block
594                          */
595                         new_blocks[index] = current_block;
596                         printk(KERN_INFO "%s returned more blocks than "
597                                                 "requested\n", __func__);
598                         WARN_ON(1);
599                         break;
600                 }
601         }
602
603         target = blks - count ;
604         blk_allocated = count;
605         if (!target)
606                 goto allocated;
607         /* Now allocate data blocks */
608         count = target;
609         /* allocating blocks for data blocks */
610         current_block = ext4_new_blocks(handle, inode, iblock,
611                                                 goal, &count, err);
612         if (*err && (target == blks)) {
613                 /*
614                  * if the allocation failed and we didn't allocate
615                  * any blocks before
616                  */
617                 goto failed_out;
618         }
619         if (!*err) {
620                 if (target == blks) {
621                 /*
622                  * save the new block number
623                  * for the first direct block
624                  */
625                         new_blocks[index] = current_block;
626                 }
627                 blk_allocated += count;
628         }
629 allocated:
630         /* total number of blocks allocated for direct blocks */
631         ret = blk_allocated;
632         *err = 0;
633         return ret;
634 failed_out:
635         for (i = 0; i <index; i++)
636                 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
637         return ret;
638 }
639
640 /**
641  *      ext4_alloc_branch - allocate and set up a chain of blocks.
642  *      @inode: owner
643  *      @indirect_blks: number of allocated indirect blocks
644  *      @blks: number of allocated direct blocks
645  *      @offsets: offsets (in the blocks) to store the pointers to next.
646  *      @branch: place to store the chain in.
647  *
648  *      This function allocates blocks, zeroes out all but the last one,
649  *      links them into chain and (if we are synchronous) writes them to disk.
650  *      In other words, it prepares a branch that can be spliced onto the
651  *      inode. It stores the information about that chain in the branch[], in
652  *      the same format as ext4_get_branch() would do. We are calling it after
653  *      we had read the existing part of chain and partial points to the last
654  *      triple of that (one with zero ->key). Upon the exit we have the same
655  *      picture as after the successful ext4_get_block(), except that in one
656  *      place chain is disconnected - *branch->p is still zero (we did not
657  *      set the last link), but branch->key contains the number that should
658  *      be placed into *branch->p to fill that gap.
659  *
660  *      If allocation fails we free all blocks we've allocated (and forget
661  *      their buffer_heads) and return the error value the from failed
662  *      ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
663  *      as described above and return 0.
664  */
665 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
666                                 ext4_lblk_t iblock, int indirect_blks,
667                                 int *blks, ext4_fsblk_t goal,
668                                 ext4_lblk_t *offsets, Indirect *branch)
669 {
670         int blocksize = inode->i_sb->s_blocksize;
671         int i, n = 0;
672         int err = 0;
673         struct buffer_head *bh;
674         int num;
675         ext4_fsblk_t new_blocks[4];
676         ext4_fsblk_t current_block;
677
678         num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
679                                 *blks, new_blocks, &err);
680         if (err)
681                 return err;
682
683         branch[0].key = cpu_to_le32(new_blocks[0]);
684         /*
685          * metadata blocks and data blocks are allocated.
686          */
687         for (n = 1; n <= indirect_blks;  n++) {
688                 /*
689                  * Get buffer_head for parent block, zero it out
690                  * and set the pointer to new one, then send
691                  * parent to disk.
692                  */
693                 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
694                 branch[n].bh = bh;
695                 lock_buffer(bh);
696                 BUFFER_TRACE(bh, "call get_create_access");
697                 err = ext4_journal_get_create_access(handle, bh);
698                 if (err) {
699                         unlock_buffer(bh);
700                         brelse(bh);
701                         goto failed;
702                 }
703
704                 memset(bh->b_data, 0, blocksize);
705                 branch[n].p = (__le32 *) bh->b_data + offsets[n];
706                 branch[n].key = cpu_to_le32(new_blocks[n]);
707                 *branch[n].p = branch[n].key;
708                 if ( n == indirect_blks) {
709                         current_block = new_blocks[n];
710                         /*
711                          * End of chain, update the last new metablock of
712                          * the chain to point to the new allocated
713                          * data blocks numbers
714                          */
715                         for (i=1; i < num; i++)
716                                 *(branch[n].p + i) = cpu_to_le32(++current_block);
717                 }
718                 BUFFER_TRACE(bh, "marking uptodate");
719                 set_buffer_uptodate(bh);
720                 unlock_buffer(bh);
721
722                 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
723                 err = ext4_journal_dirty_metadata(handle, bh);
724                 if (err)
725                         goto failed;
726         }
727         *blks = num;
728         return err;
729 failed:
730         /* Allocation failed, free what we already allocated */
731         for (i = 1; i <= n ; i++) {
732                 BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
733                 ext4_journal_forget(handle, branch[i].bh);
734         }
735         for (i = 0; i <indirect_blks; i++)
736                 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
737
738         ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
739
740         return err;
741 }
742
743 /**
744  * ext4_splice_branch - splice the allocated branch onto inode.
745  * @inode: owner
746  * @block: (logical) number of block we are adding
747  * @chain: chain of indirect blocks (with a missing link - see
748  *      ext4_alloc_branch)
749  * @where: location of missing link
750  * @num:   number of indirect blocks we are adding
751  * @blks:  number of direct blocks we are adding
752  *
753  * This function fills the missing link and does all housekeeping needed in
754  * inode (->i_blocks, etc.). In case of success we end up with the full
755  * chain to new block and return 0.
756  */
757 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
758                         ext4_lblk_t block, Indirect *where, int num, int blks)
759 {
760         int i;
761         int err = 0;
762         struct ext4_block_alloc_info *block_i;
763         ext4_fsblk_t current_block;
764
765         block_i = EXT4_I(inode)->i_block_alloc_info;
766         /*
767          * If we're splicing into a [td]indirect block (as opposed to the
768          * inode) then we need to get write access to the [td]indirect block
769          * before the splice.
770          */
771         if (where->bh) {
772                 BUFFER_TRACE(where->bh, "get_write_access");
773                 err = ext4_journal_get_write_access(handle, where->bh);
774                 if (err)
775                         goto err_out;
776         }
777         /* That's it */
778
779         *where->p = where->key;
780
781         /*
782          * Update the host buffer_head or inode to point to more just allocated
783          * direct blocks blocks
784          */
785         if (num == 0 && blks > 1) {
786                 current_block = le32_to_cpu(where->key) + 1;
787                 for (i = 1; i < blks; i++)
788                         *(where->p + i ) = cpu_to_le32(current_block++);
789         }
790
791         /*
792          * update the most recently allocated logical & physical block
793          * in i_block_alloc_info, to assist find the proper goal block for next
794          * allocation
795          */
796         if (block_i) {
797                 block_i->last_alloc_logical_block = block + blks - 1;
798                 block_i->last_alloc_physical_block =
799                                 le32_to_cpu(where[num].key) + blks - 1;
800         }
801
802         /* We are done with atomic stuff, now do the rest of housekeeping */
803
804         inode->i_ctime = ext4_current_time(inode);
805         ext4_mark_inode_dirty(handle, inode);
806
807         /* had we spliced it onto indirect block? */
808         if (where->bh) {
809                 /*
810                  * If we spliced it onto an indirect block, we haven't
811                  * altered the inode.  Note however that if it is being spliced
812                  * onto an indirect block at the very end of the file (the
813                  * file is growing) then we *will* alter the inode to reflect
814                  * the new i_size.  But that is not done here - it is done in
815                  * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
816                  */
817                 jbd_debug(5, "splicing indirect only\n");
818                 BUFFER_TRACE(where->bh, "call ext4_journal_dirty_metadata");
819                 err = ext4_journal_dirty_metadata(handle, where->bh);
820                 if (err)
821                         goto err_out;
822         } else {
823                 /*
824                  * OK, we spliced it into the inode itself on a direct block.
825                  * Inode was dirtied above.
826                  */
827                 jbd_debug(5, "splicing direct\n");
828         }
829         return err;
830
831 err_out:
832         for (i = 1; i <= num; i++) {
833                 BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
834                 ext4_journal_forget(handle, where[i].bh);
835                 ext4_free_blocks(handle, inode,
836                                         le32_to_cpu(where[i-1].key), 1, 0);
837         }
838         ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
839
840         return err;
841 }
842
843 /*
844  * Allocation strategy is simple: if we have to allocate something, we will
845  * have to go the whole way to leaf. So let's do it before attaching anything
846  * to tree, set linkage between the newborn blocks, write them if sync is
847  * required, recheck the path, free and repeat if check fails, otherwise
848  * set the last missing link (that will protect us from any truncate-generated
849  * removals - all blocks on the path are immune now) and possibly force the
850  * write on the parent block.
851  * That has a nice additional property: no special recovery from the failed
852  * allocations is needed - we simply release blocks and do not touch anything
853  * reachable from inode.
854  *
855  * `handle' can be NULL if create == 0.
856  *
857  * return > 0, # of blocks mapped or allocated.
858  * return = 0, if plain lookup failed.
859  * return < 0, error case.
860  *
861  *
862  * Need to be called with
863  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
864  * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
865  */
866 int ext4_get_blocks_handle(handle_t *handle, struct inode *inode,
867                 ext4_lblk_t iblock, unsigned long maxblocks,
868                 struct buffer_head *bh_result,
869                 int create, int extend_disksize)
870 {
871         int err = -EIO;
872         ext4_lblk_t offsets[4];
873         Indirect chain[4];
874         Indirect *partial;
875         ext4_fsblk_t goal;
876         int indirect_blks;
877         int blocks_to_boundary = 0;
878         int depth;
879         struct ext4_inode_info *ei = EXT4_I(inode);
880         int count = 0;
881         ext4_fsblk_t first_block = 0;
882         loff_t disksize;
883
884
885         J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
886         J_ASSERT(handle != NULL || create == 0);
887         depth = ext4_block_to_path(inode, iblock, offsets,
888                                         &blocks_to_boundary);
889
890         if (depth == 0)
891                 goto out;
892
893         partial = ext4_get_branch(inode, depth, offsets, chain, &err);
894
895         /* Simplest case - block found, no allocation needed */
896         if (!partial) {
897                 first_block = le32_to_cpu(chain[depth - 1].key);
898                 clear_buffer_new(bh_result);
899                 count++;
900                 /*map more blocks*/
901                 while (count < maxblocks && count <= blocks_to_boundary) {
902                         ext4_fsblk_t blk;
903
904                         blk = le32_to_cpu(*(chain[depth-1].p + count));
905
906                         if (blk == first_block + count)
907                                 count++;
908                         else
909                                 break;
910                 }
911                 goto got_it;
912         }
913
914         /* Next simple case - plain lookup or failed read of indirect block */
915         if (!create || err == -EIO)
916                 goto cleanup;
917
918         /*
919          * Okay, we need to do block allocation.  Lazily initialize the block
920          * allocation info here if necessary
921         */
922         if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
923                 ext4_init_block_alloc_info(inode);
924
925         goal = ext4_find_goal(inode, iblock, partial);
926
927         /* the number of blocks need to allocate for [d,t]indirect blocks */
928         indirect_blks = (chain + depth) - partial - 1;
929
930         /*
931          * Next look up the indirect map to count the totoal number of
932          * direct blocks to allocate for this branch.
933          */
934         count = ext4_blks_to_allocate(partial, indirect_blks,
935                                         maxblocks, blocks_to_boundary);
936         /*
937          * Block out ext4_truncate while we alter the tree
938          */
939         err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
940                                         &count, goal,
941                                         offsets + (partial - chain), partial);
942
943         /*
944          * The ext4_splice_branch call will free and forget any buffers
945          * on the new chain if there is a failure, but that risks using
946          * up transaction credits, especially for bitmaps where the
947          * credits cannot be returned.  Can we handle this somehow?  We
948          * may need to return -EAGAIN upwards in the worst case.  --sct
949          */
950         if (!err)
951                 err = ext4_splice_branch(handle, inode, iblock,
952                                         partial, indirect_blks, count);
953         /*
954          * i_disksize growing is protected by i_data_sem.  Don't forget to
955          * protect it if you're about to implement concurrent
956          * ext4_get_block() -bzzz
957         */
958         if (!err && extend_disksize) {
959                 disksize = ((loff_t) iblock + count) << inode->i_blkbits;
960                 if (disksize > i_size_read(inode))
961                         disksize = i_size_read(inode);
962                 if (disksize > ei->i_disksize)
963                         ei->i_disksize = disksize;
964         }
965         if (err)
966                 goto cleanup;
967
968         set_buffer_new(bh_result);
969 got_it:
970         map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
971         if (count > blocks_to_boundary)
972                 set_buffer_boundary(bh_result);
973         err = count;
974         /* Clean up and exit */
975         partial = chain + depth - 1;    /* the whole chain */
976 cleanup:
977         while (partial > chain) {
978                 BUFFER_TRACE(partial->bh, "call brelse");
979                 brelse(partial->bh);
980                 partial--;
981         }
982         BUFFER_TRACE(bh_result, "returned");
983 out:
984         return err;
985 }
986
987 /*
988  * Calculate the number of metadata blocks need to reserve
989  * to allocate @blocks for non extent file based file
990  */
991 static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks)
992 {
993         int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb);
994         int ind_blks, dind_blks, tind_blks;
995
996         /* number of new indirect blocks needed */
997         ind_blks = (blocks + icap - 1) / icap;
998
999         dind_blks = (ind_blks + icap - 1) / icap;
1000
1001         tind_blks = 1;
1002
1003         return ind_blks + dind_blks + tind_blks;
1004 }
1005
1006 /*
1007  * Calculate the number of metadata blocks need to reserve
1008  * to allocate given number of blocks
1009  */
1010 static int ext4_calc_metadata_amount(struct inode *inode, int blocks)
1011 {
1012         if (!blocks)
1013                 return 0;
1014
1015         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
1016                 return ext4_ext_calc_metadata_amount(inode, blocks);
1017
1018         return ext4_indirect_calc_metadata_amount(inode, blocks);
1019 }
1020
1021 static void ext4_da_update_reserve_space(struct inode *inode, int used)
1022 {
1023         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1024         int total, mdb, mdb_free;
1025
1026         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1027         /* recalculate the number of metablocks still need to be reserved */
1028         total = EXT4_I(inode)->i_reserved_data_blocks - used;
1029         mdb = ext4_calc_metadata_amount(inode, total);
1030
1031         /* figure out how many metablocks to release */
1032         BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1033         mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1034
1035         /* Account for allocated meta_blocks */
1036         mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks;
1037
1038         /* update fs free blocks counter for truncate case */
1039         percpu_counter_add(&sbi->s_freeblocks_counter, mdb_free);
1040
1041         /* update per-inode reservations */
1042         BUG_ON(used  > EXT4_I(inode)->i_reserved_data_blocks);
1043         EXT4_I(inode)->i_reserved_data_blocks -= used;
1044
1045         BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1046         EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1047         EXT4_I(inode)->i_allocated_meta_blocks = 0;
1048         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1049 }
1050
1051 /*
1052  * The ext4_get_blocks_wrap() function try to look up the requested blocks,
1053  * and returns if the blocks are already mapped.
1054  *
1055  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1056  * and store the allocated blocks in the result buffer head and mark it
1057  * mapped.
1058  *
1059  * If file type is extents based, it will call ext4_ext_get_blocks(),
1060  * Otherwise, call with ext4_get_blocks_handle() to handle indirect mapping
1061  * based files
1062  *
1063  * On success, it returns the number of blocks being mapped or allocate.
1064  * if create==0 and the blocks are pre-allocated and uninitialized block,
1065  * the result buffer head is unmapped. If the create ==1, it will make sure
1066  * the buffer head is mapped.
1067  *
1068  * It returns 0 if plain look up failed (blocks have not been allocated), in
1069  * that casem, buffer head is unmapped
1070  *
1071  * It returns the error in case of allocation failure.
1072  */
1073 int ext4_get_blocks_wrap(handle_t *handle, struct inode *inode, sector_t block,
1074                         unsigned long max_blocks, struct buffer_head *bh,
1075                         int create, int extend_disksize, int flag)
1076 {
1077         int retval;
1078
1079         clear_buffer_mapped(bh);
1080
1081         /*
1082          * Try to see if we can get  the block without requesting
1083          * for new file system block.
1084          */
1085         down_read((&EXT4_I(inode)->i_data_sem));
1086         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1087                 retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1088                                 bh, 0, 0);
1089         } else {
1090                 retval = ext4_get_blocks_handle(handle,
1091                                 inode, block, max_blocks, bh, 0, 0);
1092         }
1093         up_read((&EXT4_I(inode)->i_data_sem));
1094
1095         /* If it is only a block(s) look up */
1096         if (!create)
1097                 return retval;
1098
1099         /*
1100          * Returns if the blocks have already allocated
1101          *
1102          * Note that if blocks have been preallocated
1103          * ext4_ext_get_block() returns th create = 0
1104          * with buffer head unmapped.
1105          */
1106         if (retval > 0 && buffer_mapped(bh))
1107                 return retval;
1108
1109         /*
1110          * New blocks allocate and/or writing to uninitialized extent
1111          * will possibly result in updating i_data, so we take
1112          * the write lock of i_data_sem, and call get_blocks()
1113          * with create == 1 flag.
1114          */
1115         down_write((&EXT4_I(inode)->i_data_sem));
1116
1117         /*
1118          * if the caller is from delayed allocation writeout path
1119          * we have already reserved fs blocks for allocation
1120          * let the underlying get_block() function know to
1121          * avoid double accounting
1122          */
1123         if (flag)
1124                 EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1125         /*
1126          * We need to check for EXT4 here because migrate
1127          * could have changed the inode type in between
1128          */
1129         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1130                 retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1131                                 bh, create, extend_disksize);
1132         } else {
1133                 retval = ext4_get_blocks_handle(handle, inode, block,
1134                                 max_blocks, bh, create, extend_disksize);
1135
1136                 if (retval > 0 && buffer_new(bh)) {
1137                         /*
1138                          * We allocated new blocks which will result in
1139                          * i_data's format changing.  Force the migrate
1140                          * to fail by clearing migrate flags
1141                          */
1142                         EXT4_I(inode)->i_flags = EXT4_I(inode)->i_flags &
1143                                                         ~EXT4_EXT_MIGRATE;
1144                 }
1145         }
1146
1147         if (flag) {
1148                 EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1149                 /*
1150                  * Update reserved blocks/metadata blocks
1151                  * after successful block allocation
1152                  * which were deferred till now
1153                  */
1154                 if ((retval > 0) && buffer_delay(bh))
1155                         ext4_da_update_reserve_space(inode, retval);
1156         }
1157
1158         up_write((&EXT4_I(inode)->i_data_sem));
1159         return retval;
1160 }
1161
1162 /* Maximum number of blocks we map for direct IO at once. */
1163 #define DIO_MAX_BLOCKS 4096
1164
1165 static int ext4_get_block(struct inode *inode, sector_t iblock,
1166                         struct buffer_head *bh_result, int create)
1167 {
1168         handle_t *handle = ext4_journal_current_handle();
1169         int ret = 0, started = 0;
1170         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1171         int dio_credits;
1172
1173         if (create && !handle) {
1174                 /* Direct IO write... */
1175                 if (max_blocks > DIO_MAX_BLOCKS)
1176                         max_blocks = DIO_MAX_BLOCKS;
1177                 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
1178                 handle = ext4_journal_start(inode, dio_credits);
1179                 if (IS_ERR(handle)) {
1180                         ret = PTR_ERR(handle);
1181                         goto out;
1182                 }
1183                 started = 1;
1184         }
1185
1186         ret = ext4_get_blocks_wrap(handle, inode, iblock,
1187                                         max_blocks, bh_result, create, 0, 0);
1188         if (ret > 0) {
1189                 bh_result->b_size = (ret << inode->i_blkbits);
1190                 ret = 0;
1191         }
1192         if (started)
1193                 ext4_journal_stop(handle);
1194 out:
1195         return ret;
1196 }
1197
1198 /*
1199  * `handle' can be NULL if create is zero
1200  */
1201 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1202                                 ext4_lblk_t block, int create, int *errp)
1203 {
1204         struct buffer_head dummy;
1205         int fatal = 0, err;
1206
1207         J_ASSERT(handle != NULL || create == 0);
1208
1209         dummy.b_state = 0;
1210         dummy.b_blocknr = -1000;
1211         buffer_trace_init(&dummy.b_history);
1212         err = ext4_get_blocks_wrap(handle, inode, block, 1,
1213                                         &dummy, create, 1, 0);
1214         /*
1215          * ext4_get_blocks_handle() returns number of blocks
1216          * mapped. 0 in case of a HOLE.
1217          */
1218         if (err > 0) {
1219                 if (err > 1)
1220                         WARN_ON(1);
1221                 err = 0;
1222         }
1223         *errp = err;
1224         if (!err && buffer_mapped(&dummy)) {
1225                 struct buffer_head *bh;
1226                 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1227                 if (!bh) {
1228                         *errp = -EIO;
1229                         goto err;
1230                 }
1231                 if (buffer_new(&dummy)) {
1232                         J_ASSERT(create != 0);
1233                         J_ASSERT(handle != NULL);
1234
1235                         /*
1236                          * Now that we do not always journal data, we should
1237                          * keep in mind whether this should always journal the
1238                          * new buffer as metadata.  For now, regular file
1239                          * writes use ext4_get_block instead, so it's not a
1240                          * problem.
1241                          */
1242                         lock_buffer(bh);
1243                         BUFFER_TRACE(bh, "call get_create_access");
1244                         fatal = ext4_journal_get_create_access(handle, bh);
1245                         if (!fatal && !buffer_uptodate(bh)) {
1246                                 memset(bh->b_data,0,inode->i_sb->s_blocksize);
1247                                 set_buffer_uptodate(bh);
1248                         }
1249                         unlock_buffer(bh);
1250                         BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
1251                         err = ext4_journal_dirty_metadata(handle, bh);
1252                         if (!fatal)
1253                                 fatal = err;
1254                 } else {
1255                         BUFFER_TRACE(bh, "not a new buffer");
1256                 }
1257                 if (fatal) {
1258                         *errp = fatal;
1259                         brelse(bh);
1260                         bh = NULL;
1261                 }
1262                 return bh;
1263         }
1264 err:
1265         return NULL;
1266 }
1267
1268 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1269                                ext4_lblk_t block, int create, int *err)
1270 {
1271         struct buffer_head * bh;
1272
1273         bh = ext4_getblk(handle, inode, block, create, err);
1274         if (!bh)
1275                 return bh;
1276         if (buffer_uptodate(bh))
1277                 return bh;
1278         ll_rw_block(READ_META, 1, &bh);
1279         wait_on_buffer(bh);
1280         if (buffer_uptodate(bh))
1281                 return bh;
1282         put_bh(bh);
1283         *err = -EIO;
1284         return NULL;
1285 }
1286
1287 static int walk_page_buffers(   handle_t *handle,
1288                                 struct buffer_head *head,
1289                                 unsigned from,
1290                                 unsigned to,
1291                                 int *partial,
1292                                 int (*fn)(      handle_t *handle,
1293                                                 struct buffer_head *bh))
1294 {
1295         struct buffer_head *bh;
1296         unsigned block_start, block_end;
1297         unsigned blocksize = head->b_size;
1298         int err, ret = 0;
1299         struct buffer_head *next;
1300
1301         for (   bh = head, block_start = 0;
1302                 ret == 0 && (bh != head || !block_start);
1303                 block_start = block_end, bh = next)
1304         {
1305                 next = bh->b_this_page;
1306                 block_end = block_start + blocksize;
1307                 if (block_end <= from || block_start >= to) {
1308                         if (partial && !buffer_uptodate(bh))
1309                                 *partial = 1;
1310                         continue;
1311                 }
1312                 err = (*fn)(handle, bh);
1313                 if (!ret)
1314                         ret = err;
1315         }
1316         return ret;
1317 }
1318
1319 /*
1320  * To preserve ordering, it is essential that the hole instantiation and
1321  * the data write be encapsulated in a single transaction.  We cannot
1322  * close off a transaction and start a new one between the ext4_get_block()
1323  * and the commit_write().  So doing the jbd2_journal_start at the start of
1324  * prepare_write() is the right place.
1325  *
1326  * Also, this function can nest inside ext4_writepage() ->
1327  * block_write_full_page(). In that case, we *know* that ext4_writepage()
1328  * has generated enough buffer credits to do the whole page.  So we won't
1329  * block on the journal in that case, which is good, because the caller may
1330  * be PF_MEMALLOC.
1331  *
1332  * By accident, ext4 can be reentered when a transaction is open via
1333  * quota file writes.  If we were to commit the transaction while thus
1334  * reentered, there can be a deadlock - we would be holding a quota
1335  * lock, and the commit would never complete if another thread had a
1336  * transaction open and was blocking on the quota lock - a ranking
1337  * violation.
1338  *
1339  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1340  * will _not_ run commit under these circumstances because handle->h_ref
1341  * is elevated.  We'll still have enough credits for the tiny quotafile
1342  * write.
1343  */
1344 static int do_journal_get_write_access(handle_t *handle,
1345                                         struct buffer_head *bh)
1346 {
1347         if (!buffer_mapped(bh) || buffer_freed(bh))
1348                 return 0;
1349         return ext4_journal_get_write_access(handle, bh);
1350 }
1351
1352 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1353                                 loff_t pos, unsigned len, unsigned flags,
1354                                 struct page **pagep, void **fsdata)
1355 {
1356         struct inode *inode = mapping->host;
1357         int ret, needed_blocks = ext4_writepage_trans_blocks(inode);
1358         handle_t *handle;
1359         int retries = 0;
1360         struct page *page;
1361         pgoff_t index;
1362         unsigned from, to;
1363
1364         index = pos >> PAGE_CACHE_SHIFT;
1365         from = pos & (PAGE_CACHE_SIZE - 1);
1366         to = from + len;
1367
1368 retry:
1369         handle = ext4_journal_start(inode, needed_blocks);
1370         if (IS_ERR(handle)) {
1371                 ret = PTR_ERR(handle);
1372                 goto out;
1373         }
1374
1375         page = grab_cache_page_write_begin(mapping, index, flags);
1376         if (!page) {
1377                 ext4_journal_stop(handle);
1378                 ret = -ENOMEM;
1379                 goto out;
1380         }
1381         *pagep = page;
1382
1383         ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1384                                                         ext4_get_block);
1385
1386         if (!ret && ext4_should_journal_data(inode)) {
1387                 ret = walk_page_buffers(handle, page_buffers(page),
1388                                 from, to, NULL, do_journal_get_write_access);
1389         }
1390
1391         if (ret) {
1392                 unlock_page(page);
1393                 ext4_journal_stop(handle);
1394                 page_cache_release(page);
1395         }
1396
1397         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1398                 goto retry;
1399 out:
1400         return ret;
1401 }
1402
1403 /* For write_end() in data=journal mode */
1404 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1405 {
1406         if (!buffer_mapped(bh) || buffer_freed(bh))
1407                 return 0;
1408         set_buffer_uptodate(bh);
1409         return ext4_journal_dirty_metadata(handle, bh);
1410 }
1411
1412 /*
1413  * We need to pick up the new inode size which generic_commit_write gave us
1414  * `file' can be NULL - eg, when called from page_symlink().
1415  *
1416  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1417  * buffers are managed internally.
1418  */
1419 static int ext4_ordered_write_end(struct file *file,
1420                                 struct address_space *mapping,
1421                                 loff_t pos, unsigned len, unsigned copied,
1422                                 struct page *page, void *fsdata)
1423 {
1424         handle_t *handle = ext4_journal_current_handle();
1425         struct inode *inode = mapping->host;
1426         int ret = 0, ret2;
1427
1428         ret = ext4_jbd2_file_inode(handle, inode);
1429
1430         if (ret == 0) {
1431                 /*
1432                  * generic_write_end() will run mark_inode_dirty() if i_size
1433                  * changes.  So let's piggyback the i_disksize mark_inode_dirty
1434                  * into that.
1435                  */
1436                 loff_t new_i_size;
1437
1438                 new_i_size = pos + copied;
1439                 if (new_i_size > EXT4_I(inode)->i_disksize)
1440                         EXT4_I(inode)->i_disksize = new_i_size;
1441                 ret2 = generic_write_end(file, mapping, pos, len, copied,
1442                                                         page, fsdata);
1443                 copied = ret2;
1444                 if (ret2 < 0)
1445                         ret = ret2;
1446         }
1447         ret2 = ext4_journal_stop(handle);
1448         if (!ret)
1449                 ret = ret2;
1450
1451         return ret ? ret : copied;
1452 }
1453
1454 static int ext4_writeback_write_end(struct file *file,
1455                                 struct address_space *mapping,
1456                                 loff_t pos, unsigned len, unsigned copied,
1457                                 struct page *page, void *fsdata)
1458 {
1459         handle_t *handle = ext4_journal_current_handle();
1460         struct inode *inode = mapping->host;
1461         int ret = 0, ret2;
1462         loff_t new_i_size;
1463
1464         new_i_size = pos + copied;
1465         if (new_i_size > EXT4_I(inode)->i_disksize)
1466                 EXT4_I(inode)->i_disksize = new_i_size;
1467
1468         ret2 = generic_write_end(file, mapping, pos, len, copied,
1469                                                         page, fsdata);
1470         copied = ret2;
1471         if (ret2 < 0)
1472                 ret = ret2;
1473
1474         ret2 = ext4_journal_stop(handle);
1475         if (!ret)
1476                 ret = ret2;
1477
1478         return ret ? ret : copied;
1479 }
1480
1481 static int ext4_journalled_write_end(struct file *file,
1482                                 struct address_space *mapping,
1483                                 loff_t pos, unsigned len, unsigned copied,
1484                                 struct page *page, void *fsdata)
1485 {
1486         handle_t *handle = ext4_journal_current_handle();
1487         struct inode *inode = mapping->host;
1488         int ret = 0, ret2;
1489         int partial = 0;
1490         unsigned from, to;
1491
1492         from = pos & (PAGE_CACHE_SIZE - 1);
1493         to = from + len;
1494
1495         if (copied < len) {
1496                 if (!PageUptodate(page))
1497                         copied = 0;
1498                 page_zero_new_buffers(page, from+copied, to);
1499         }
1500
1501         ret = walk_page_buffers(handle, page_buffers(page), from,
1502                                 to, &partial, write_end_fn);
1503         if (!partial)
1504                 SetPageUptodate(page);
1505         if (pos+copied > inode->i_size)
1506                 i_size_write(inode, pos+copied);
1507         EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1508         if (inode->i_size > EXT4_I(inode)->i_disksize) {
1509                 EXT4_I(inode)->i_disksize = inode->i_size;
1510                 ret2 = ext4_mark_inode_dirty(handle, inode);
1511                 if (!ret)
1512                         ret = ret2;
1513         }
1514
1515         unlock_page(page);
1516         ret2 = ext4_journal_stop(handle);
1517         if (!ret)
1518                 ret = ret2;
1519         page_cache_release(page);
1520
1521         return ret ? ret : copied;
1522 }
1523
1524 static int ext4_da_reserve_space(struct inode *inode, int nrblocks)
1525 {
1526        struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1527        unsigned long md_needed, mdblocks, total = 0;
1528
1529         /*
1530          * recalculate the amount of metadata blocks to reserve
1531          * in order to allocate nrblocks
1532          * worse case is one extent per block
1533          */
1534         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1535         total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks;
1536         mdblocks = ext4_calc_metadata_amount(inode, total);
1537         BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks);
1538
1539         md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks;
1540         total = md_needed + nrblocks;
1541
1542         if (ext4_has_free_blocks(sbi, total) < total) {
1543                 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1544                 return -ENOSPC;
1545         }
1546         /* reduce fs free blocks counter */
1547         percpu_counter_sub(&sbi->s_freeblocks_counter, total);
1548
1549         EXT4_I(inode)->i_reserved_data_blocks += nrblocks;
1550         EXT4_I(inode)->i_reserved_meta_blocks = mdblocks;
1551
1552         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1553         return 0;       /* success */
1554 }
1555
1556 static void ext4_da_release_space(struct inode *inode, int to_free)
1557 {
1558         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1559         int total, mdb, mdb_free, release;
1560
1561         if (!to_free)
1562                 return;         /* Nothing to release, exit */
1563
1564         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1565
1566         if (!EXT4_I(inode)->i_reserved_data_blocks) {
1567                 /*
1568                  * if there is no reserved blocks, but we try to free some
1569                  * then the counter is messed up somewhere.
1570                  * but since this function is called from invalidate
1571                  * page, it's harmless to return without any action
1572                  */
1573                 printk(KERN_INFO "ext4 delalloc try to release %d reserved "
1574                             "blocks for inode %lu, but there is no reserved "
1575                             "data blocks\n", to_free, inode->i_ino);
1576                 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1577                 return;
1578         }
1579
1580         /* recalculate the number of metablocks still need to be reserved */
1581         total = EXT4_I(inode)->i_reserved_data_blocks - to_free;
1582         mdb = ext4_calc_metadata_amount(inode, total);
1583
1584         /* figure out how many metablocks to release */
1585         BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1586         mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1587
1588         release = to_free + mdb_free;
1589
1590         /* update fs free blocks counter for truncate case */
1591         percpu_counter_add(&sbi->s_freeblocks_counter, release);
1592
1593         /* update per-inode reservations */
1594         BUG_ON(to_free > EXT4_I(inode)->i_reserved_data_blocks);
1595         EXT4_I(inode)->i_reserved_data_blocks -= to_free;
1596
1597         BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1598         EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1599         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1600 }
1601
1602 static void ext4_da_page_release_reservation(struct page *page,
1603                                                 unsigned long offset)
1604 {
1605         int to_release = 0;
1606         struct buffer_head *head, *bh;
1607         unsigned int curr_off = 0;
1608
1609         head = page_buffers(page);
1610         bh = head;
1611         do {
1612                 unsigned int next_off = curr_off + bh->b_size;
1613
1614                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1615                         to_release++;
1616                         clear_buffer_delay(bh);
1617                 }
1618                 curr_off = next_off;
1619         } while ((bh = bh->b_this_page) != head);
1620         ext4_da_release_space(page->mapping->host, to_release);
1621 }
1622
1623 /*
1624  * Delayed allocation stuff
1625  */
1626
1627 struct mpage_da_data {
1628         struct inode *inode;
1629         struct buffer_head lbh;                 /* extent of blocks */
1630         unsigned long first_page, next_page;    /* extent of pages */
1631         get_block_t *get_block;
1632         struct writeback_control *wbc;
1633         int io_done;
1634         long pages_written;
1635 };
1636
1637 /*
1638  * mpage_da_submit_io - walks through extent of pages and try to write
1639  * them with writepage() call back
1640  *
1641  * @mpd->inode: inode
1642  * @mpd->first_page: first page of the extent
1643  * @mpd->next_page: page after the last page of the extent
1644  * @mpd->get_block: the filesystem's block mapper function
1645  *
1646  * By the time mpage_da_submit_io() is called we expect all blocks
1647  * to be allocated. this may be wrong if allocation failed.
1648  *
1649  * As pages are already locked by write_cache_pages(), we can't use it
1650  */
1651 static int mpage_da_submit_io(struct mpage_da_data *mpd)
1652 {
1653         long pages_skipped;
1654         struct pagevec pvec;
1655         unsigned long index, end;
1656         int ret = 0, err, nr_pages, i;
1657         struct inode *inode = mpd->inode;
1658         struct address_space *mapping = inode->i_mapping;
1659
1660         BUG_ON(mpd->next_page <= mpd->first_page);
1661         /*
1662          * We need to start from the first_page to the next_page - 1
1663          * to make sure we also write the mapped dirty buffer_heads.
1664          * If we look at mpd->lbh.b_blocknr we would only be looking
1665          * at the currently mapped buffer_heads.
1666          */
1667         index = mpd->first_page;
1668         end = mpd->next_page - 1;
1669
1670         pagevec_init(&pvec, 0);
1671         while (index <= end) {
1672                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1673                 if (nr_pages == 0)
1674                         break;
1675                 for (i = 0; i < nr_pages; i++) {
1676                         struct page *page = pvec.pages[i];
1677
1678                         index = page->index;
1679                         if (index > end)
1680                                 break;
1681                         index++;
1682
1683                         BUG_ON(!PageLocked(page));
1684                         BUG_ON(PageWriteback(page));
1685
1686                         pages_skipped = mpd->wbc->pages_skipped;
1687                         err = mapping->a_ops->writepage(page, mpd->wbc);
1688                         if (!err)
1689                                 mpd->pages_written++;
1690                         /*
1691                          * In error case, we have to continue because
1692                          * remaining pages are still locked
1693                          * XXX: unlock and re-dirty them?
1694                          */
1695                         if (ret == 0)
1696                                 ret = err;
1697                 }
1698                 pagevec_release(&pvec);
1699         }
1700         return ret;
1701 }
1702
1703 /*
1704  * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
1705  *
1706  * @mpd->inode - inode to walk through
1707  * @exbh->b_blocknr - first block on a disk
1708  * @exbh->b_size - amount of space in bytes
1709  * @logical - first logical block to start assignment with
1710  *
1711  * the function goes through all passed space and put actual disk
1712  * block numbers into buffer heads, dropping BH_Delay
1713  */
1714 static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
1715                                  struct buffer_head *exbh)
1716 {
1717         struct inode *inode = mpd->inode;
1718         struct address_space *mapping = inode->i_mapping;
1719         int blocks = exbh->b_size >> inode->i_blkbits;
1720         sector_t pblock = exbh->b_blocknr, cur_logical;
1721         struct buffer_head *head, *bh;
1722         pgoff_t index, end;
1723         struct pagevec pvec;
1724         int nr_pages, i;
1725
1726         index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1727         end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1728         cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1729
1730         pagevec_init(&pvec, 0);
1731
1732         while (index <= end) {
1733                 /* XXX: optimize tail */
1734                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1735                 if (nr_pages == 0)
1736                         break;
1737                 for (i = 0; i < nr_pages; i++) {
1738                         struct page *page = pvec.pages[i];
1739
1740                         index = page->index;
1741                         if (index > end)
1742                                 break;
1743                         index++;
1744
1745                         BUG_ON(!PageLocked(page));
1746                         BUG_ON(PageWriteback(page));
1747                         BUG_ON(!page_has_buffers(page));
1748
1749                         bh = page_buffers(page);
1750                         head = bh;
1751
1752                         /* skip blocks out of the range */
1753                         do {
1754                                 if (cur_logical >= logical)
1755                                         break;
1756                                 cur_logical++;
1757                         } while ((bh = bh->b_this_page) != head);
1758
1759                         do {
1760                                 if (cur_logical >= logical + blocks)
1761                                         break;
1762                                 if (buffer_delay(bh)) {
1763                                         bh->b_blocknr = pblock;
1764                                         clear_buffer_delay(bh);
1765                                         bh->b_bdev = inode->i_sb->s_bdev;
1766                                 } else if (buffer_unwritten(bh)) {
1767                                         bh->b_blocknr = pblock;
1768                                         clear_buffer_unwritten(bh);
1769                                         set_buffer_mapped(bh);
1770                                         set_buffer_new(bh);
1771                                         bh->b_bdev = inode->i_sb->s_bdev;
1772                                 } else if (buffer_mapped(bh))
1773                                         BUG_ON(bh->b_blocknr != pblock);
1774
1775                                 cur_logical++;
1776                                 pblock++;
1777                         } while ((bh = bh->b_this_page) != head);
1778                 }
1779                 pagevec_release(&pvec);
1780         }
1781 }
1782
1783
1784 /*
1785  * __unmap_underlying_blocks - just a helper function to unmap
1786  * set of blocks described by @bh
1787  */
1788 static inline void __unmap_underlying_blocks(struct inode *inode,
1789                                              struct buffer_head *bh)
1790 {
1791         struct block_device *bdev = inode->i_sb->s_bdev;
1792         int blocks, i;
1793
1794         blocks = bh->b_size >> inode->i_blkbits;
1795         for (i = 0; i < blocks; i++)
1796                 unmap_underlying_metadata(bdev, bh->b_blocknr + i);
1797 }
1798
1799 /*
1800  * mpage_da_map_blocks - go through given space
1801  *
1802  * @mpd->lbh - bh describing space
1803  * @mpd->get_block - the filesystem's block mapper function
1804  *
1805  * The function skips space we know is already mapped to disk blocks.
1806  *
1807  */
1808 static void mpage_da_map_blocks(struct mpage_da_data *mpd)
1809 {
1810         int err = 0;
1811         struct buffer_head *lbh = &mpd->lbh;
1812         sector_t next = lbh->b_blocknr;
1813         struct buffer_head new;
1814
1815         /*
1816          * We consider only non-mapped and non-allocated blocks
1817          */
1818         if (buffer_mapped(lbh) && !buffer_delay(lbh))
1819                 return;
1820
1821         new.b_state = lbh->b_state;
1822         new.b_blocknr = 0;
1823         new.b_size = lbh->b_size;
1824
1825         /*
1826          * If we didn't accumulate anything
1827          * to write simply return
1828          */
1829         if (!new.b_size)
1830                 return;
1831         err = mpd->get_block(mpd->inode, next, &new, 1);
1832         if (err)
1833                 return;
1834         BUG_ON(new.b_size == 0);
1835
1836         if (buffer_new(&new))
1837                 __unmap_underlying_blocks(mpd->inode, &new);
1838
1839         /*
1840          * If blocks are delayed marked, we need to
1841          * put actual blocknr and drop delayed bit
1842          */
1843         if (buffer_delay(lbh) || buffer_unwritten(lbh))
1844                 mpage_put_bnr_to_bhs(mpd, next, &new);
1845
1846         return;
1847 }
1848
1849 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1850                 (1 << BH_Delay) | (1 << BH_Unwritten))
1851
1852 /*
1853  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1854  *
1855  * @mpd->lbh - extent of blocks
1856  * @logical - logical number of the block in the file
1857  * @bh - bh of the block (used to access block's state)
1858  *
1859  * the function is used to collect contig. blocks in same state
1860  */
1861 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
1862                                    sector_t logical, struct buffer_head *bh)
1863 {
1864         sector_t next;
1865         size_t b_size = bh->b_size;
1866         struct buffer_head *lbh = &mpd->lbh;
1867         int nrblocks = lbh->b_size >> mpd->inode->i_blkbits;
1868
1869         /* check if thereserved journal credits might overflow */
1870         if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
1871                 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1872                         /*
1873                          * With non-extent format we are limited by the journal
1874                          * credit available.  Total credit needed to insert
1875                          * nrblocks contiguous blocks is dependent on the
1876                          * nrblocks.  So limit nrblocks.
1877                          */
1878                         goto flush_it;
1879                 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
1880                                 EXT4_MAX_TRANS_DATA) {
1881                         /*
1882                          * Adding the new buffer_head would make it cross the
1883                          * allowed limit for which we have journal credit
1884                          * reserved. So limit the new bh->b_size
1885                          */
1886                         b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
1887                                                 mpd->inode->i_blkbits;
1888                         /* we will do mpage_da_submit_io in the next loop */
1889                 }
1890         }
1891         /*
1892          * First block in the extent
1893          */
1894         if (lbh->b_size == 0) {
1895                 lbh->b_blocknr = logical;
1896                 lbh->b_size = b_size;
1897                 lbh->b_state = bh->b_state & BH_FLAGS;
1898                 return;
1899         }
1900
1901         next = lbh->b_blocknr + nrblocks;
1902         /*
1903          * Can we merge the block to our big extent?
1904          */
1905         if (logical == next && (bh->b_state & BH_FLAGS) == lbh->b_state) {
1906                 lbh->b_size += b_size;
1907                 return;
1908         }
1909
1910 flush_it:
1911         /*
1912          * We couldn't merge the block to our extent, so we
1913          * need to flush current  extent and start new one
1914          */
1915         mpage_da_map_blocks(mpd);
1916         mpage_da_submit_io(mpd);
1917         mpd->io_done = 1;
1918         return;
1919 }
1920
1921 /*
1922  * __mpage_da_writepage - finds extent of pages and blocks
1923  *
1924  * @page: page to consider
1925  * @wbc: not used, we just follow rules
1926  * @data: context
1927  *
1928  * The function finds extents of pages and scan them for all blocks.
1929  */
1930 static int __mpage_da_writepage(struct page *page,
1931                                 struct writeback_control *wbc, void *data)
1932 {
1933         struct mpage_da_data *mpd = data;
1934         struct inode *inode = mpd->inode;
1935         struct buffer_head *bh, *head, fake;
1936         sector_t logical;
1937
1938         if (mpd->io_done) {
1939                 /*
1940                  * Rest of the page in the page_vec
1941                  * redirty then and skip then. We will
1942                  * try to to write them again after
1943                  * starting a new transaction
1944                  */
1945                 redirty_page_for_writepage(wbc, page);
1946                 unlock_page(page);
1947                 return MPAGE_DA_EXTENT_TAIL;
1948         }
1949         /*
1950          * Can we merge this page to current extent?
1951          */
1952         if (mpd->next_page != page->index) {
1953                 /*
1954                  * Nope, we can't. So, we map non-allocated blocks
1955                  * and start IO on them using writepage()
1956                  */
1957                 if (mpd->next_page != mpd->first_page) {
1958                         mpage_da_map_blocks(mpd);
1959                         mpage_da_submit_io(mpd);
1960                         /*
1961                          * skip rest of the page in the page_vec
1962                          */
1963                         mpd->io_done = 1;
1964                         redirty_page_for_writepage(wbc, page);
1965                         unlock_page(page);
1966                         return MPAGE_DA_EXTENT_TAIL;
1967                 }
1968
1969                 /*
1970                  * Start next extent of pages ...
1971                  */
1972                 mpd->first_page = page->index;
1973
1974                 /*
1975                  * ... and blocks
1976                  */
1977                 mpd->lbh.b_size = 0;
1978                 mpd->lbh.b_state = 0;
1979                 mpd->lbh.b_blocknr = 0;
1980         }
1981
1982         mpd->next_page = page->index + 1;
1983         logical = (sector_t) page->index <<
1984                   (PAGE_CACHE_SHIFT - inode->i_blkbits);
1985
1986         if (!page_has_buffers(page)) {
1987                 /*
1988                  * There is no attached buffer heads yet (mmap?)
1989                  * we treat the page asfull of dirty blocks
1990                  */
1991                 bh = &fake;
1992                 bh->b_size = PAGE_CACHE_SIZE;
1993                 bh->b_state = 0;
1994                 set_buffer_dirty(bh);
1995                 set_buffer_uptodate(bh);
1996                 mpage_add_bh_to_extent(mpd, logical, bh);
1997                 if (mpd->io_done)
1998                         return MPAGE_DA_EXTENT_TAIL;
1999         } else {
2000                 /*
2001                  * Page with regular buffer heads, just add all dirty ones
2002                  */
2003                 head = page_buffers(page);
2004                 bh = head;
2005                 do {
2006                         BUG_ON(buffer_locked(bh));
2007                         /*
2008                          * We need to try to allocate
2009                          * unmapped blocks in the same page.
2010                          * Otherwise we won't make progress
2011                          * with the page in ext4_da_writepage
2012                          */
2013                         if (buffer_dirty(bh) &&
2014                                 (!buffer_mapped(bh) || buffer_delay(bh))) {
2015                                 mpage_add_bh_to_extent(mpd, logical, bh);
2016                                 if (mpd->io_done)
2017                                         return MPAGE_DA_EXTENT_TAIL;
2018                         } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2019                                 /*
2020                                  * mapped dirty buffer. We need to update
2021                                  * the b_state because we look at
2022                                  * b_state in mpage_da_map_blocks. We don't
2023                                  * update b_size because if we find an
2024                                  * unmapped buffer_head later we need to
2025                                  * use the b_state flag of that buffer_head.
2026                                  */
2027                                 if (mpd->lbh.b_size == 0)
2028                                         mpd->lbh.b_state =
2029                                                 bh->b_state & BH_FLAGS;
2030                         }
2031                         logical++;
2032                 } while ((bh = bh->b_this_page) != head);
2033         }
2034
2035         return 0;
2036 }
2037
2038 /*
2039  * mpage_da_writepages - walk the list of dirty pages of the given
2040  * address space, allocates non-allocated blocks, maps newly-allocated
2041  * blocks to existing bhs and issue IO them
2042  *
2043  * @mapping: address space structure to write
2044  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2045  * @get_block: the filesystem's block mapper function.
2046  *
2047  * This is a library function, which implements the writepages()
2048  * address_space_operation.
2049  */
2050 static int mpage_da_writepages(struct address_space *mapping,
2051                                struct writeback_control *wbc,
2052                                get_block_t get_block)
2053 {
2054         struct mpage_da_data mpd;
2055         long to_write;
2056         int ret;
2057
2058         if (!get_block)
2059                 return generic_writepages(mapping, wbc);
2060
2061         mpd.wbc = wbc;
2062         mpd.inode = mapping->host;
2063         mpd.lbh.b_size = 0;
2064         mpd.lbh.b_state = 0;
2065         mpd.lbh.b_blocknr = 0;
2066         mpd.first_page = 0;
2067         mpd.next_page = 0;
2068         mpd.get_block = get_block;
2069         mpd.io_done = 0;
2070         mpd.pages_written = 0;
2071
2072         to_write = wbc->nr_to_write;
2073
2074         ret = write_cache_pages(mapping, wbc, __mpage_da_writepage, &mpd);
2075
2076         /*
2077          * Handle last extent of pages
2078          */
2079         if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2080                 mpage_da_map_blocks(&mpd);
2081                 mpage_da_submit_io(&mpd);
2082         }
2083
2084         wbc->nr_to_write = to_write - mpd.pages_written;
2085         return ret;
2086 }
2087
2088 /*
2089  * this is a special callback for ->write_begin() only
2090  * it's intention is to return mapped block or reserve space
2091  */
2092 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2093                                   struct buffer_head *bh_result, int create)
2094 {
2095         int ret = 0;
2096
2097         BUG_ON(create == 0);
2098         BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2099
2100         /*
2101          * first, we need to know whether the block is allocated already
2102          * preallocated blocks are unmapped but should treated
2103          * the same as allocated blocks.
2104          */
2105         ret = ext4_get_blocks_wrap(NULL, inode, iblock, 1,  bh_result, 0, 0, 0);
2106         if ((ret == 0) && !buffer_delay(bh_result)) {
2107                 /* the block isn't (pre)allocated yet, let's reserve space */
2108                 /*
2109                  * XXX: __block_prepare_write() unmaps passed block,
2110                  * is it OK?
2111                  */
2112                 ret = ext4_da_reserve_space(inode, 1);
2113                 if (ret)
2114                         /* not enough space to reserve */
2115                         return ret;
2116
2117                 map_bh(bh_result, inode->i_sb, 0);
2118                 set_buffer_new(bh_result);
2119                 set_buffer_delay(bh_result);
2120         } else if (ret > 0) {
2121                 bh_result->b_size = (ret << inode->i_blkbits);
2122                 ret = 0;
2123         }
2124
2125         return ret;
2126 }
2127 #define         EXT4_DELALLOC_RSVED     1
2128 static int ext4_da_get_block_write(struct inode *inode, sector_t iblock,
2129                                    struct buffer_head *bh_result, int create)
2130 {
2131         int ret;
2132         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2133         loff_t disksize = EXT4_I(inode)->i_disksize;
2134         handle_t *handle = NULL;
2135
2136         handle = ext4_journal_current_handle();
2137         if (!handle) {
2138                 ret = ext4_get_blocks_wrap(handle, inode, iblock, max_blocks,
2139                                    bh_result, 0, 0, 0);
2140                 BUG_ON(!ret);
2141         } else {
2142                 ret = ext4_get_blocks_wrap(handle, inode, iblock, max_blocks,
2143                                    bh_result, create, 0, EXT4_DELALLOC_RSVED);
2144         }
2145
2146         if (ret > 0) {
2147                 bh_result->b_size = (ret << inode->i_blkbits);
2148
2149                 /*
2150                  * Update on-disk size along with block allocation
2151                  * we don't use 'extend_disksize' as size may change
2152                  * within already allocated block -bzzz
2153                  */
2154                 disksize = ((loff_t) iblock + ret) << inode->i_blkbits;
2155                 if (disksize > i_size_read(inode))
2156                         disksize = i_size_read(inode);
2157                 if (disksize > EXT4_I(inode)->i_disksize) {
2158                         /*
2159                          * XXX: replace with spinlock if seen contended -bzzz
2160                          */
2161                         down_write(&EXT4_I(inode)->i_data_sem);
2162                         if (disksize > EXT4_I(inode)->i_disksize)
2163                                 EXT4_I(inode)->i_disksize = disksize;
2164                         up_write(&EXT4_I(inode)->i_data_sem);
2165
2166                         if (EXT4_I(inode)->i_disksize == disksize) {
2167                                 ret = ext4_mark_inode_dirty(handle, inode);
2168                                 return ret;
2169                         }
2170                 }
2171                 ret = 0;
2172         }
2173         return ret;
2174 }
2175
2176 static int ext4_bh_unmapped_or_delay(handle_t *handle, struct buffer_head *bh)
2177 {
2178         /*
2179          * unmapped buffer is possible for holes.
2180          * delay buffer is possible with delayed allocation
2181          */
2182         return ((!buffer_mapped(bh) || buffer_delay(bh)) && buffer_dirty(bh));
2183 }
2184
2185 static int ext4_normal_get_block_write(struct inode *inode, sector_t iblock,
2186                                    struct buffer_head *bh_result, int create)
2187 {
2188         int ret = 0;
2189         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2190
2191         /*
2192          * we don't want to do block allocation in writepage
2193          * so call get_block_wrap with create = 0
2194          */
2195         ret = ext4_get_blocks_wrap(NULL, inode, iblock, max_blocks,
2196                                    bh_result, 0, 0, 0);
2197         if (ret > 0) {
2198                 bh_result->b_size = (ret << inode->i_blkbits);
2199                 ret = 0;
2200         }
2201         return ret;
2202 }
2203
2204 /*
2205  * get called vi ext4_da_writepages after taking page lock (have journal handle)
2206  * get called via journal_submit_inode_data_buffers (no journal handle)
2207  * get called via shrink_page_list via pdflush (no journal handle)
2208  * or grab_page_cache when doing write_begin (have journal handle)
2209  */
2210 static int ext4_da_writepage(struct page *page,
2211                                 struct writeback_control *wbc)
2212 {
2213         int ret = 0;
2214         loff_t size;
2215         unsigned long len;
2216         struct buffer_head *page_bufs;
2217         struct inode *inode = page->mapping->host;
2218
2219         size = i_size_read(inode);
2220         if (page->index == size >> PAGE_CACHE_SHIFT)
2221                 len = size & ~PAGE_CACHE_MASK;
2222         else
2223                 len = PAGE_CACHE_SIZE;
2224
2225         if (page_has_buffers(page)) {
2226                 page_bufs = page_buffers(page);
2227                 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2228                                         ext4_bh_unmapped_or_delay)) {
2229                         /*
2230                          * We don't want to do  block allocation
2231                          * So redirty the page and return
2232                          * We may reach here when we do a journal commit
2233                          * via journal_submit_inode_data_buffers.
2234                          * If we don't have mapping block we just ignore
2235                          * them. We can also reach here via shrink_page_list
2236                          */
2237                         redirty_page_for_writepage(wbc, page);
2238                         unlock_page(page);
2239                         return 0;
2240                 }
2241         } else {
2242                 /*
2243                  * The test for page_has_buffers() is subtle:
2244                  * We know the page is dirty but it lost buffers. That means
2245                  * that at some moment in time after write_begin()/write_end()
2246                  * has been called all buffers have been clean and thus they
2247                  * must have been written at least once. So they are all
2248                  * mapped and we can happily proceed with mapping them
2249                  * and writing the page.
2250                  *
2251                  * Try to initialize the buffer_heads and check whether
2252                  * all are mapped and non delay. We don't want to
2253                  * do block allocation here.
2254                  */
2255                 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
2256                                                 ext4_normal_get_block_write);
2257                 if (!ret) {
2258                         page_bufs = page_buffers(page);
2259                         /* check whether all are mapped and non delay */
2260                         if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2261                                                 ext4_bh_unmapped_or_delay)) {
2262                                 redirty_page_for_writepage(wbc, page);
2263                                 unlock_page(page);
2264                                 return 0;
2265                         }
2266                 } else {
2267                         /*
2268                          * We can't do block allocation here
2269                          * so just redity the page and unlock
2270                          * and return
2271                          */
2272                         redirty_page_for_writepage(wbc, page);
2273                         unlock_page(page);
2274                         return 0;
2275                 }
2276                 /* now mark the buffer_heads as dirty and uptodate */
2277                 block_commit_write(page, 0, PAGE_CACHE_SIZE);
2278         }
2279
2280         if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
2281                 ret = nobh_writepage(page, ext4_normal_get_block_write, wbc);
2282         else
2283                 ret = block_write_full_page(page,
2284                                                 ext4_normal_get_block_write,
2285                                                 wbc);
2286
2287         return ret;
2288 }
2289
2290 /*
2291  * This is called via ext4_da_writepages() to
2292  * calulate the total number of credits to reserve to fit
2293  * a single extent allocation into a single transaction,
2294  * ext4_da_writpeages() will loop calling this before
2295  * the block allocation.
2296  */
2297
2298 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2299 {
2300         int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2301
2302         /*
2303          * With non-extent format the journal credit needed to
2304          * insert nrblocks contiguous block is dependent on
2305          * number of contiguous block. So we will limit
2306          * number of contiguous block to a sane value
2307          */
2308         if (!(inode->i_flags & EXT4_EXTENTS_FL) &&
2309             (max_blocks > EXT4_MAX_TRANS_DATA))
2310                 max_blocks = EXT4_MAX_TRANS_DATA;
2311
2312         return ext4_chunk_trans_blocks(inode, max_blocks);
2313 }
2314
2315 static int ext4_da_writepages(struct address_space *mapping,
2316                               struct writeback_control *wbc)
2317 {
2318         handle_t *handle = NULL;
2319         loff_t range_start = 0;
2320         struct inode *inode = mapping->host;
2321         int needed_blocks, ret = 0, nr_to_writebump = 0;
2322         long to_write, pages_skipped = 0;
2323         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2324
2325         /*
2326          * No pages to write? This is mainly a kludge to avoid starting
2327          * a transaction for special inodes like journal inode on last iput()
2328          * because that could violate lock ordering on umount
2329          */
2330         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2331                 return 0;
2332
2333         /*
2334          * If the filesystem has aborted, it is read-only, so return
2335          * right away instead of dumping stack traces later on that
2336          * will obscure the real source of the problem.  We test
2337          * EXT4_MOUNT_ABORT instead of sb->s_flag's MS_RDONLY because
2338          * the latter could be true if the filesystem is mounted
2339          * read-only, and in that case, ext4_da_writepages should
2340          * *never* be called, so if that ever happens, we would want
2341          * the stack trace.
2342          */
2343         if (unlikely(sbi->s_mount_opt & EXT4_MOUNT_ABORT))
2344                 return -EROFS;
2345
2346         /*
2347          * Make sure nr_to_write is >= sbi->s_mb_stream_request
2348          * This make sure small files blocks are allocated in
2349          * single attempt. This ensure that small files
2350          * get less fragmented.
2351          */
2352         if (wbc->nr_to_write < sbi->s_mb_stream_request) {
2353                 nr_to_writebump = sbi->s_mb_stream_request - wbc->nr_to_write;
2354                 wbc->nr_to_write = sbi->s_mb_stream_request;
2355         }
2356
2357         if (!wbc->range_cyclic)
2358                 /*
2359                  * If range_cyclic is not set force range_cont
2360                  * and save the old writeback_index
2361                  */
2362                 wbc->range_cont = 1;
2363
2364         range_start =  wbc->range_start;
2365         pages_skipped = wbc->pages_skipped;
2366
2367 restart_loop:
2368         to_write = wbc->nr_to_write;
2369         while (!ret && to_write > 0) {
2370
2371                 /*
2372                  * we  insert one extent at a time. So we need
2373                  * credit needed for single extent allocation.
2374                  * journalled mode is currently not supported
2375                  * by delalloc
2376                  */
2377                 BUG_ON(ext4_should_journal_data(inode));
2378                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2379
2380                 /* start a new transaction*/
2381                 handle = ext4_journal_start(inode, needed_blocks);
2382                 if (IS_ERR(handle)) {
2383                         ret = PTR_ERR(handle);
2384                         printk(KERN_CRIT "%s: jbd2_start: "
2385                                "%ld pages, ino %lu; err %d\n", __func__,
2386                                 wbc->nr_to_write, inode->i_ino, ret);
2387                         dump_stack();
2388                         goto out_writepages;
2389                 }
2390                 if (ext4_should_order_data(inode)) {
2391                         /*
2392                          * With ordered mode we need to add
2393                          * the inode to the journal handl
2394                          * when we do block allocation.
2395                          */
2396                         ret = ext4_jbd2_file_inode(handle, inode);
2397                         if (ret) {
2398                                 ext4_journal_stop(handle);
2399                                 goto out_writepages;
2400                         }
2401                 }
2402
2403                 to_write -= wbc->nr_to_write;
2404                 ret = mpage_da_writepages(mapping, wbc,
2405                                           ext4_da_get_block_write);
2406                 ext4_journal_stop(handle);
2407                 if (ret == MPAGE_DA_EXTENT_TAIL) {
2408                         /*
2409                          * got one extent now try with
2410                          * rest of the pages
2411                          */
2412                         to_write += wbc->nr_to_write;
2413                         ret = 0;
2414                 } else if (wbc->nr_to_write) {
2415                         /*
2416                          * There is no more writeout needed
2417                          * or we requested for a noblocking writeout
2418                          * and we found the device congested
2419                          */
2420                         to_write += wbc->nr_to_write;
2421                         break;
2422                 }
2423                 wbc->nr_to_write = to_write;
2424         }
2425
2426         if (wbc->range_cont && (pages_skipped != wbc->pages_skipped)) {
2427                 /* We skipped pages in this loop */
2428                 wbc->range_start = range_start;
2429                 wbc->nr_to_write = to_write +
2430                                 wbc->pages_skipped - pages_skipped;
2431                 wbc->pages_skipped = pages_skipped;
2432                 goto restart_loop;
2433         }
2434
2435 out_writepages:
2436         wbc->nr_to_write = to_write - nr_to_writebump;
2437         wbc->range_start = range_start;
2438         return ret;
2439 }
2440
2441 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2442                                 loff_t pos, unsigned len, unsigned flags,
2443                                 struct page **pagep, void **fsdata)
2444 {
2445         int ret, retries = 0;
2446         struct page *page;
2447         pgoff_t index;
2448         unsigned from, to;
2449         struct inode *inode = mapping->host;
2450         handle_t *handle;
2451
2452         index = pos >> PAGE_CACHE_SHIFT;
2453         from = pos & (PAGE_CACHE_SIZE - 1);
2454         to = from + len;
2455
2456 retry:
2457         /*
2458          * With delayed allocation, we don't log the i_disksize update
2459          * if there is delayed block allocation. But we still need
2460          * to journalling the i_disksize update if writes to the end
2461          * of file which has an already mapped buffer.
2462          */
2463         handle = ext4_journal_start(inode, 1);
2464         if (IS_ERR(handle)) {
2465                 ret = PTR_ERR(handle);
2466                 goto out;
2467         }
2468
2469         page = grab_cache_page_write_begin(mapping, index, flags);
2470         if (!page) {
2471                 ext4_journal_stop(handle);
2472                 ret = -ENOMEM;
2473                 goto out;
2474         }
2475         *pagep = page;
2476
2477         ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
2478                                                         ext4_da_get_block_prep);
2479         if (ret < 0) {
2480                 unlock_page(page);
2481                 ext4_journal_stop(handle);
2482                 page_cache_release(page);
2483         }
2484
2485         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2486                 goto retry;
2487 out:
2488         return ret;
2489 }
2490
2491 /*
2492  * Check if we should update i_disksize
2493  * when write to the end of file but not require block allocation
2494  */
2495 static int ext4_da_should_update_i_disksize(struct page *page,
2496                                          unsigned long offset)
2497 {
2498         struct buffer_head *bh;
2499         struct inode *inode = page->mapping->host;
2500         unsigned int idx;
2501         int i;
2502
2503         bh = page_buffers(page);
2504         idx = offset >> inode->i_blkbits;
2505
2506         for (i=0; i < idx; i++)
2507                 bh = bh->b_this_page;
2508
2509         if (!buffer_mapped(bh) || (buffer_delay(bh)))
2510                 return 0;
2511         return 1;
2512 }
2513
2514 static int ext4_da_write_end(struct file *file,
2515                                 struct address_space *mapping,
2516                                 loff_t pos, unsigned len, unsigned copied,
2517                                 struct page *page, void *fsdata)
2518 {
2519         struct inode *inode = mapping->host;
2520         int ret = 0, ret2;
2521         handle_t *handle = ext4_journal_current_handle();
2522         loff_t new_i_size;
2523         unsigned long start, end;
2524
2525         start = pos & (PAGE_CACHE_SIZE - 1);
2526         end = start + copied -1;
2527
2528         /*
2529          * generic_write_end() will run mark_inode_dirty() if i_size
2530          * changes.  So let's piggyback the i_disksize mark_inode_dirty
2531          * into that.
2532          */
2533
2534         new_i_size = pos + copied;
2535         if (new_i_size > EXT4_I(inode)->i_disksize) {
2536                 if (ext4_da_should_update_i_disksize(page, end)) {
2537                         down_write(&EXT4_I(inode)->i_data_sem);
2538                         if (new_i_size > EXT4_I(inode)->i_disksize) {
2539                                 /*
2540                                  * Updating i_disksize when extending file
2541                                  * without needing block allocation
2542                                  */
2543                                 if (ext4_should_order_data(inode))
2544                                         ret = ext4_jbd2_file_inode(handle,
2545                                                                    inode);
2546
2547                                 EXT4_I(inode)->i_disksize = new_i_size;
2548                         }
2549                         up_write(&EXT4_I(inode)->i_data_sem);
2550                 }
2551         }
2552         ret2 = generic_write_end(file, mapping, pos, len, copied,
2553                                                         page, fsdata);
2554         copied = ret2;
2555         if (ret2 < 0)
2556                 ret = ret2;
2557         ret2 = ext4_journal_stop(handle);
2558         if (!ret)
2559                 ret = ret2;
2560
2561         return ret ? ret : copied;
2562 }
2563
2564 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2565 {
2566         /*
2567          * Drop reserved blocks
2568          */
2569         BUG_ON(!PageLocked(page));
2570         if (!page_has_buffers(page))
2571                 goto out;
2572
2573         ext4_da_page_release_reservation(page, offset);
2574
2575 out:
2576         ext4_invalidatepage(page, offset);
2577
2578         return;
2579 }
2580
2581
2582 /*
2583  * bmap() is special.  It gets used by applications such as lilo and by
2584  * the swapper to find the on-disk block of a specific piece of data.
2585  *
2586  * Naturally, this is dangerous if the block concerned is still in the
2587  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2588  * filesystem and enables swap, then they may get a nasty shock when the
2589  * data getting swapped to that swapfile suddenly gets overwritten by
2590  * the original zero's written out previously to the journal and
2591  * awaiting writeback in the kernel's buffer cache.
2592  *
2593  * So, if we see any bmap calls here on a modified, data-journaled file,
2594  * take extra steps to flush any blocks which might be in the cache.
2595  */
2596 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2597 {
2598         struct inode *inode = mapping->host;
2599         journal_t *journal;
2600         int err;
2601
2602         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2603                         test_opt(inode->i_sb, DELALLOC)) {
2604                 /*
2605                  * With delalloc we want to sync the file
2606                  * so that we can make sure we allocate
2607                  * blocks for file
2608                  */
2609                 filemap_write_and_wait(mapping);
2610         }
2611
2612         if (EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
2613                 /*
2614                  * This is a REALLY heavyweight approach, but the use of
2615                  * bmap on dirty files is expected to be extremely rare:
2616                  * only if we run lilo or swapon on a freshly made file
2617                  * do we expect this to happen.
2618                  *
2619                  * (bmap requires CAP_SYS_RAWIO so this does not
2620                  * represent an unprivileged user DOS attack --- we'd be
2621                  * in trouble if mortal users could trigger this path at
2622                  * will.)
2623                  *
2624                  * NB. EXT4_STATE_JDATA is not set on files other than
2625                  * regular files.  If somebody wants to bmap a directory
2626                  * or symlink and gets confused because the buffer
2627                  * hasn't yet been flushed to disk, they deserve
2628                  * everything they get.
2629                  */
2630
2631                 EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
2632                 journal = EXT4_JOURNAL(inode);
2633                 jbd2_journal_lock_updates(journal);
2634                 err = jbd2_journal_flush(journal);
2635                 jbd2_journal_unlock_updates(journal);
2636
2637                 if (err)
2638                         return 0;
2639         }
2640
2641         return generic_block_bmap(mapping,block,ext4_get_block);
2642 }
2643
2644 static int bget_one(handle_t *handle, struct buffer_head *bh)
2645 {
2646         get_bh(bh);
2647         return 0;
2648 }
2649
2650 static int bput_one(handle_t *handle, struct buffer_head *bh)
2651 {
2652         put_bh(bh);
2653         return 0;
2654 }
2655
2656 /*
2657  * Note that we don't need to start a transaction unless we're journaling data
2658  * because we should have holes filled from ext4_page_mkwrite(). We even don't
2659  * need to file the inode to the transaction's list in ordered mode because if
2660  * we are writing back data added by write(), the inode is already there and if
2661  * we are writing back data modified via mmap(), noone guarantees in which
2662  * transaction the data will hit the disk. In case we are journaling data, we
2663  * cannot start transaction directly because transaction start ranks above page
2664  * lock so we have to do some magic.
2665  *
2666  * In all journaling modes block_write_full_page() will start the I/O.
2667  *
2668  * Problem:
2669  *
2670  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2671  *              ext4_writepage()
2672  *
2673  * Similar for:
2674  *
2675  *      ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
2676  *
2677  * Same applies to ext4_get_block().  We will deadlock on various things like
2678  * lock_journal and i_data_sem
2679  *
2680  * Setting PF_MEMALLOC here doesn't work - too many internal memory
2681  * allocations fail.
2682  *
2683  * 16May01: If we're reentered then journal_current_handle() will be
2684  *          non-zero. We simply *return*.
2685  *
2686  * 1 July 2001: @@@ FIXME:
2687  *   In journalled data mode, a data buffer may be metadata against the
2688  *   current transaction.  But the same file is part of a shared mapping
2689  *   and someone does a writepage() on it.
2690  *
2691  *   We will move the buffer onto the async_data list, but *after* it has
2692  *   been dirtied. So there's a small window where we have dirty data on
2693  *   BJ_Metadata.
2694  *
2695  *   Note that this only applies to the last partial page in the file.  The
2696  *   bit which block_write_full_page() uses prepare/commit for.  (That's
2697  *   broken code anyway: it's wrong for msync()).
2698  *
2699  *   It's a rare case: affects the final partial page, for journalled data
2700  *   where the file is subject to bith write() and writepage() in the same
2701  *   transction.  To fix it we'll need a custom block_write_full_page().
2702  *   We'll probably need that anyway for journalling writepage() output.
2703  *
2704  * We don't honour synchronous mounts for writepage().  That would be
2705  * disastrous.  Any write() or metadata operation will sync the fs for
2706  * us.
2707  *
2708  */
2709 static int __ext4_normal_writepage(struct page *page,
2710                                 struct writeback_control *wbc)
2711 {
2712         struct inode *inode = page->mapping->host;
2713
2714         if (test_opt(inode->i_sb, NOBH))
2715                 return nobh_writepage(page,
2716                                         ext4_normal_get_block_write, wbc);
2717         else
2718                 return block_write_full_page(page,
2719                                                 ext4_normal_get_block_write,
2720                                                 wbc);
2721 }
2722
2723 static int ext4_normal_writepage(struct page *page,
2724                                 struct writeback_control *wbc)
2725 {
2726         struct inode *inode = page->mapping->host;
2727         loff_t size = i_size_read(inode);
2728         loff_t len;
2729
2730         J_ASSERT(PageLocked(page));
2731         if (page->index == size >> PAGE_CACHE_SHIFT)
2732                 len = size & ~PAGE_CACHE_MASK;
2733         else
2734                 len = PAGE_CACHE_SIZE;
2735
2736         if (page_has_buffers(page)) {
2737                 /* if page has buffers it should all be mapped
2738                  * and allocated. If there are not buffers attached
2739                  * to the page we know the page is dirty but it lost
2740                  * buffers. That means that at some moment in time
2741                  * after write_begin() / write_end() has been called
2742                  * all buffers have been clean and thus they must have been
2743                  * written at least once. So they are all mapped and we can
2744                  * happily proceed with mapping them and writing the page.
2745                  */
2746                 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
2747                                         ext4_bh_unmapped_or_delay));
2748         }
2749
2750         if (!ext4_journal_current_handle())
2751                 return __ext4_normal_writepage(page, wbc);
2752
2753         redirty_page_for_writepage(wbc, page);
2754         unlock_page(page);
2755         return 0;
2756 }
2757
2758 static int __ext4_journalled_writepage(struct page *page,
2759                                 struct writeback_control *wbc)
2760 {
2761         struct address_space *mapping = page->mapping;
2762         struct inode *inode = mapping->host;
2763         struct buffer_head *page_bufs;
2764         handle_t *handle = NULL;
2765         int ret = 0;
2766         int err;
2767
2768         ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
2769                                         ext4_normal_get_block_write);
2770         if (ret != 0)
2771                 goto out_unlock;
2772
2773         page_bufs = page_buffers(page);
2774         walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE, NULL,
2775                                                                 bget_one);
2776         /* As soon as we unlock the page, it can go away, but we have
2777          * references to buffers so we are safe */
2778         unlock_page(page);
2779
2780         handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
2781         if (IS_ERR(handle)) {
2782                 ret = PTR_ERR(handle);
2783                 goto out;
2784         }
2785
2786         ret = walk_page_buffers(handle, page_bufs, 0,
2787                         PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
2788
2789         err = walk_page_buffers(handle, page_bufs, 0,
2790                                 PAGE_CACHE_SIZE, NULL, write_end_fn);
2791         if (ret == 0)
2792                 ret = err;
2793         err = ext4_journal_stop(handle);
2794         if (!ret)
2795                 ret = err;
2796
2797         walk_page_buffers(handle, page_bufs, 0,
2798                                 PAGE_CACHE_SIZE, NULL, bput_one);
2799         EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
2800         goto out;
2801
2802 out_unlock:
2803         unlock_page(page);
2804 out:
2805         return ret;
2806 }
2807
2808 static int ext4_journalled_writepage(struct page *page,
2809                                 struct writeback_control *wbc)
2810 {
2811         struct inode *inode = page->mapping->host;
2812         loff_t size = i_size_read(inode);
2813         loff_t len;
2814
2815         J_ASSERT(PageLocked(page));
2816         if (page->index == size >> PAGE_CACHE_SHIFT)
2817                 len = size & ~PAGE_CACHE_MASK;
2818         else
2819                 len = PAGE_CACHE_SIZE;
2820
2821         if (page_has_buffers(page)) {
2822                 /* if page has buffers it should all be mapped
2823                  * and allocated. If there are not buffers attached
2824                  * to the page we know the page is dirty but it lost
2825                  * buffers. That means that at some moment in time
2826                  * after write_begin() / write_end() has been called
2827                  * all buffers have been clean and thus they must have been
2828                  * written at least once. So they are all mapped and we can
2829                  * happily proceed with mapping them and writing the page.
2830                  */
2831                 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
2832                                         ext4_bh_unmapped_or_delay));
2833         }
2834
2835         if (ext4_journal_current_handle())
2836                 goto no_write;
2837
2838         if (PageChecked(page)) {
2839                 /*
2840                  * It's mmapped pagecache.  Add buffers and journal it.  There
2841                  * doesn't seem much point in redirtying the page here.
2842                  */
2843                 ClearPageChecked(page);
2844                 return __ext4_journalled_writepage(page, wbc);
2845         } else {
2846                 /*
2847                  * It may be a page full of checkpoint-mode buffers.  We don't
2848                  * really know unless we go poke around in the buffer_heads.
2849                  * But block_write_full_page will do the right thing.
2850                  */
2851                 return block_write_full_page(page,
2852                                                 ext4_normal_get_block_write,
2853                                                 wbc);
2854         }
2855 no_write:
2856         redirty_page_for_writepage(wbc, page);
2857         unlock_page(page);
2858         return 0;
2859 }
2860
2861 static int ext4_readpage(struct file *file, struct page *page)
2862 {
2863         return mpage_readpage(page, ext4_get_block);
2864 }
2865
2866 static int
2867 ext4_readpages(struct file *file, struct address_space *mapping,
2868                 struct list_head *pages, unsigned nr_pages)
2869 {
2870         return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2871 }
2872
2873 static void ext4_invalidatepage(struct page *page, unsigned long offset)
2874 {
2875         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2876
2877         /*
2878          * If it's a full truncate we just forget about the pending dirtying
2879          */
2880         if (offset == 0)
2881                 ClearPageChecked(page);
2882
2883         jbd2_journal_invalidatepage(journal, page, offset);
2884 }
2885
2886 static int ext4_releasepage(struct page *page, gfp_t wait)
2887 {
2888         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2889
2890         WARN_ON(PageChecked(page));
2891         if (!page_has_buffers(page))
2892                 return 0;
2893         return jbd2_journal_try_to_free_buffers(journal, page, wait);
2894 }
2895
2896 /*
2897  * If the O_DIRECT write will extend the file then add this inode to the
2898  * orphan list.  So recovery will truncate it back to the original size
2899  * if the machine crashes during the write.
2900  *
2901  * If the O_DIRECT write is intantiating holes inside i_size and the machine
2902  * crashes then stale disk data _may_ be exposed inside the file. But current
2903  * VFS code falls back into buffered path in that case so we are safe.
2904  */
2905 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
2906                         const struct iovec *iov, loff_t offset,
2907                         unsigned long nr_segs)
2908 {
2909         struct file *file = iocb->ki_filp;
2910         struct inode *inode = file->f_mapping->host;
2911         struct ext4_inode_info *ei = EXT4_I(inode);
2912         handle_t *handle;
2913         ssize_t ret;
2914         int orphan = 0;
2915         size_t count = iov_length(iov, nr_segs);
2916
2917         if (rw == WRITE) {
2918                 loff_t final_size = offset + count;
2919
2920                 if (final_size > inode->i_size) {
2921                         /* Credits for sb + inode write */
2922                         handle = ext4_journal_start(inode, 2);
2923                         if (IS_ERR(handle)) {
2924                                 ret = PTR_ERR(handle);
2925                                 goto out;
2926                         }
2927                         ret = ext4_orphan_add(handle, inode);
2928                         if (ret) {
2929                                 ext4_journal_stop(handle);
2930                                 goto out;
2931                         }
2932                         orphan = 1;
2933                         ei->i_disksize = inode->i_size;
2934                         ext4_journal_stop(handle);
2935                 }
2936         }
2937
2938         ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
2939                                  offset, nr_segs,
2940                                  ext4_get_block, NULL);
2941
2942         if (orphan) {
2943                 int err;
2944
2945                 /* Credits for sb + inode write */
2946                 handle = ext4_journal_start(inode, 2);
2947                 if (IS_ERR(handle)) {
2948                         /* This is really bad luck. We've written the data
2949                          * but cannot extend i_size. Bail out and pretend
2950                          * the write failed... */
2951                         ret = PTR_ERR(handle);
2952                         goto out;
2953                 }
2954                 if (inode->i_nlink)
2955                         ext4_orphan_del(handle, inode);
2956                 if (ret > 0) {
2957                         loff_t end = offset + ret;
2958                         if (end > inode->i_size) {
2959                                 ei->i_disksize = end;
2960                                 i_size_write(inode, end);
2961                                 /*
2962                                  * We're going to return a positive `ret'
2963                                  * here due to non-zero-length I/O, so there's
2964                                  * no way of reporting error returns from
2965                                  * ext4_mark_inode_dirty() to userspace.  So
2966                                  * ignore it.
2967                                  */
2968                                 ext4_mark_inode_dirty(handle, inode);
2969                         }
2970                 }
2971                 err = ext4_journal_stop(handle);
2972                 if (ret == 0)
2973                         ret = err;
2974         }
2975 out:
2976         return ret;
2977 }
2978
2979 /*
2980  * Pages can be marked dirty completely asynchronously from ext4's journalling
2981  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
2982  * much here because ->set_page_dirty is called under VFS locks.  The page is
2983  * not necessarily locked.
2984  *
2985  * We cannot just dirty the page and leave attached buffers clean, because the
2986  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
2987  * or jbddirty because all the journalling code will explode.
2988  *
2989  * So what we do is to mark the page "pending dirty" and next time writepage
2990  * is called, propagate that into the buffers appropriately.
2991  */
2992 static int ext4_journalled_set_page_dirty(struct page *page)
2993 {
2994         SetPageChecked(page);
2995         return __set_page_dirty_nobuffers(page);
2996 }
2997
2998 static const struct address_space_operations ext4_ordered_aops = {
2999         .readpage               = ext4_readpage,
3000         .readpages              = ext4_readpages,
3001         .writepage              = ext4_normal_writepage,
3002         .sync_page              = block_sync_page,
3003         .write_begin            = ext4_write_begin,
3004         .write_end              = ext4_ordered_write_end,
3005         .bmap                   = ext4_bmap,
3006         .invalidatepage         = ext4_invalidatepage,
3007         .releasepage            = ext4_releasepage,
3008         .direct_IO              = ext4_direct_IO,
3009         .migratepage            = buffer_migrate_page,
3010         .is_partially_uptodate  = block_is_partially_uptodate,
3011 };
3012
3013 static const struct address_space_operations ext4_writeback_aops = {
3014         .readpage               = ext4_readpage,
3015         .readpages              = ext4_readpages,
3016         .writepage              = ext4_normal_writepage,
3017         .sync_page              = block_sync_page,
3018         .write_begin            = ext4_write_begin,
3019         .write_end              = ext4_writeback_write_end,
3020         .bmap                   = ext4_bmap,
3021         .invalidatepage         = ext4_invalidatepage,
3022         .releasepage            = ext4_releasepage,
3023         .direct_IO              = ext4_direct_IO,
3024         .migratepage            = buffer_migrate_page,
3025         .is_partially_uptodate  = block_is_partially_uptodate,
3026 };
3027
3028 static const struct address_space_operations ext4_journalled_aops = {
3029         .readpage               = ext4_readpage,
3030         .readpages              = ext4_readpages,
3031         .writepage              = ext4_journalled_writepage,
3032         .sync_page              = block_sync_page,
3033         .write_begin            = ext4_write_begin,
3034         .write_end              = ext4_journalled_write_end,
3035         .set_page_dirty         = ext4_journalled_set_page_dirty,
3036         .bmap                   = ext4_bmap,
3037         .invalidatepage         = ext4_invalidatepage,
3038         .releasepage            = ext4_releasepage,
3039         .is_partially_uptodate  = block_is_partially_uptodate,
3040 };
3041
3042 static const struct address_space_operations ext4_da_aops = {
3043         .readpage               = ext4_readpage,
3044         .readpages              = ext4_readpages,
3045         .writepage              = ext4_da_writepage,
3046         .writepages             = ext4_da_writepages,
3047         .sync_page              = block_sync_page,
3048         .write_begin            = ext4_da_write_begin,
3049         .write_end              = ext4_da_write_end,
3050         .bmap                   = ext4_bmap,
3051         .invalidatepage         = ext4_da_invalidatepage,
3052         .releasepage            = ext4_releasepage,
3053         .direct_IO              = ext4_direct_IO,
3054         .migratepage            = buffer_migrate_page,
3055         .is_partially_uptodate  = block_is_partially_uptodate,
3056 };
3057
3058 void ext4_set_aops(struct inode *inode)
3059 {
3060         if (ext4_should_order_data(inode) &&
3061                 test_opt(inode->i_sb, DELALLOC))
3062                 inode->i_mapping->a_ops = &ext4_da_aops;
3063         else if (ext4_should_order_data(inode))
3064                 inode->i_mapping->a_ops = &ext4_ordered_aops;
3065         else if (ext4_should_writeback_data(inode) &&
3066                  test_opt(inode->i_sb, DELALLOC))
3067                 inode->i_mapping->a_ops = &ext4_da_aops;
3068         else if (ext4_should_writeback_data(inode))
3069                 inode->i_mapping->a_ops = &ext4_writeback_aops;
3070         else
3071                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3072 }
3073
3074 /*
3075  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3076  * up to the end of the block which corresponds to `from'.
3077  * This required during truncate. We need to physically zero the tail end
3078  * of that block so it doesn't yield old data if the file is later grown.
3079  */
3080 int ext4_block_truncate_page(handle_t *handle,
3081                 struct address_space *mapping, loff_t from)
3082 {
3083         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3084         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3085         unsigned blocksize, length, pos;
3086         ext4_lblk_t iblock;
3087         struct inode *inode = mapping->host;
3088         struct buffer_head *bh;
3089         struct page *page;
3090         int err = 0;
3091
3092         page = grab_cache_page(mapping, from >> PAGE_CACHE_SHIFT);
3093         if (!page)
3094                 return -EINVAL;
3095
3096         blocksize = inode->i_sb->s_blocksize;
3097         length = blocksize - (offset & (blocksize - 1));
3098         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3099
3100         /*
3101          * For "nobh" option,  we can only work if we don't need to
3102          * read-in the page - otherwise we create buffers to do the IO.
3103          */
3104         if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
3105              ext4_should_writeback_data(inode) && PageUptodate(page)) {
3106                 zero_user(page, offset, length);
3107                 set_page_dirty(page);
3108                 goto unlock;
3109         }
3110
3111         if (!page_has_buffers(page))
3112                 create_empty_buffers(page, blocksize, 0);
3113
3114         /* Find the buffer that contains "offset" */
3115         bh = page_buffers(page);
3116         pos = blocksize;
3117         while (offset >= pos) {
3118                 bh = bh->b_this_page;
3119                 iblock++;
3120                 pos += blocksize;
3121         }
3122
3123         err = 0;
3124         if (buffer_freed(bh)) {
3125                 BUFFER_TRACE(bh, "freed: skip");
3126                 goto unlock;
3127         }
3128
3129         if (!buffer_mapped(bh)) {
3130                 BUFFER_TRACE(bh, "unmapped");
3131                 ext4_get_block(inode, iblock, bh, 0);
3132                 /* unmapped? It's a hole - nothing to do */
3133                 if (!buffer_mapped(bh)) {
3134                         BUFFER_TRACE(bh, "still unmapped");
3135                         goto unlock;
3136                 }
3137         }
3138
3139         /* Ok, it's mapped. Make sure it's up-to-date */
3140         if (PageUptodate(page))
3141                 set_buffer_uptodate(bh);
3142
3143         if (!buffer_uptodate(bh)) {
3144                 err = -EIO;
3145                 ll_rw_block(READ, 1, &bh);
3146                 wait_on_buffer(bh);
3147                 /* Uhhuh. Read error. Complain and punt. */
3148                 if (!buffer_uptodate(bh))
3149                         goto unlock;
3150         }
3151
3152         if (ext4_should_journal_data(inode)) {
3153                 BUFFER_TRACE(bh, "get write access");
3154                 err = ext4_journal_get_write_access(handle, bh);
3155                 if (err)
3156                         goto unlock;
3157         }
3158
3159         zero_user(page, offset, length);
3160
3161         BUFFER_TRACE(bh, "zeroed end of block");
3162
3163         err = 0;
3164         if (ext4_should_journal_data(inode)) {
3165                 err = ext4_journal_dirty_metadata(handle, bh);
3166         } else {
3167                 if (ext4_should_order_data(inode))
3168                         err = ext4_jbd2_file_inode(handle, inode);
3169                 mark_buffer_dirty(bh);
3170         }
3171
3172 unlock:
3173         unlock_page(page);
3174         page_cache_release(page);
3175         return err;
3176 }
3177
3178 /*
3179  * Probably it should be a library function... search for first non-zero word
3180  * or memcmp with zero_page, whatever is better for particular architecture.
3181  * Linus?
3182  */
3183 static inline int all_zeroes(__le32 *p, __le32 *q)
3184 {
3185         while (p < q)
3186                 if (*p++)
3187                         return 0;
3188         return 1;
3189 }
3190
3191 /**
3192  *      ext4_find_shared - find the indirect blocks for partial truncation.
3193  *      @inode:   inode in question
3194  *      @depth:   depth of the affected branch
3195  *      @offsets: offsets of pointers in that branch (see ext4_block_to_path)
3196  *      @chain:   place to store the pointers to partial indirect blocks
3197  *      @top:     place to the (detached) top of branch
3198  *
3199  *      This is a helper function used by ext4_truncate().
3200  *
3201  *      When we do truncate() we may have to clean the ends of several
3202  *      indirect blocks but leave the blocks themselves alive. Block is
3203  *      partially truncated if some data below the new i_size is refered
3204  *      from it (and it is on the path to the first completely truncated
3205  *      data block, indeed).  We have to free the top of that path along
3206  *      with everything to the right of the path. Since no allocation
3207  *      past the truncation point is possible until ext4_truncate()
3208  *      finishes, we may safely do the latter, but top of branch may
3209  *      require special attention - pageout below the truncation point
3210  *      might try to populate it.
3211  *
3212  *      We atomically detach the top of branch from the tree, store the
3213  *      block number of its root in *@top, pointers to buffer_heads of
3214  *      partially truncated blocks - in @chain[].bh and pointers to
3215  *      their last elements that should not be removed - in
3216  *      @chain[].p. Return value is the pointer to last filled element
3217  *      of @chain.
3218  *
3219  *      The work left to caller to do the actual freeing of subtrees:
3220  *              a) free the subtree starting from *@top
3221  *              b) free the subtrees whose roots are stored in
3222  *                      (@chain[i].p+1 .. end of @chain[i].bh->b_data)
3223  *              c) free the subtrees growing from the inode past the @chain[0].
3224  *                      (no partially truncated stuff there).  */
3225
3226 static Indirect *ext4_find_shared(struct inode *inode, int depth,
3227                         ext4_lblk_t offsets[4], Indirect chain[4], __le32 *top)
3228 {
3229         Indirect *partial, *p;
3230         int k, err;
3231
3232         *top = 0;
3233         /* Make k index the deepest non-null offest + 1 */
3234         for (k = depth; k > 1 && !offsets[k-1]; k--)
3235                 ;
3236         partial = ext4_get_branch(inode, k, offsets, chain, &err);
3237         /* Writer: pointers */
3238         if (!partial)
3239                 partial = chain + k-1;
3240         /*
3241          * If the branch acquired continuation since we've looked at it -
3242          * fine, it should all survive and (new) top doesn't belong to us.
3243          */
3244         if (!partial->key && *partial->p)
3245                 /* Writer: end */
3246                 goto no_top;
3247         for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
3248                 ;
3249         /*
3250          * OK, we've found the last block that must survive. The rest of our
3251          * branch should be detached before unlocking. However, if that rest
3252          * of branch is all ours and does not grow immediately from the inode
3253          * it's easier to cheat and just decrement partial->p.
3254          */
3255         if (p == chain + k - 1 && p > chain) {
3256                 p->p--;
3257         } else {
3258                 *top = *p->p;
3259                 /* Nope, don't do this in ext4.  Must leave the tree intact */
3260 #if 0
3261                 *p->p = 0;
3262 #endif
3263         }
3264         /* Writer: end */
3265
3266         while(partial > p) {
3267                 brelse(partial->bh);
3268                 partial--;
3269         }
3270 no_top:
3271         return partial;
3272 }
3273
3274 /*
3275  * Zero a number of block pointers in either an inode or an indirect block.
3276  * If we restart the transaction we must again get write access to the
3277  * indirect block for further modification.
3278  *
3279  * We release `count' blocks on disk, but (last - first) may be greater
3280  * than `count' because there can be holes in there.
3281  */
3282 static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
3283                 struct buffer_head *bh, ext4_fsblk_t block_to_free,
3284                 unsigned long count, __le32 *first, __le32 *last)
3285 {
3286         __le32 *p;
3287         if (try_to_extend_transaction(handle, inode)) {
3288                 if (bh) {
3289                         BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
3290                         ext4_journal_dirty_metadata(handle, bh);
3291                 }
3292                 ext4_mark_inode_dirty(handle, inode);
3293                 ext4_journal_test_restart(handle, inode);
3294                 if (bh) {
3295                         BUFFER_TRACE(bh, "retaking write access");
3296                         ext4_journal_get_write_access(handle, bh);
3297                 }
3298         }
3299
3300         /*
3301          * Any buffers which are on the journal will be in memory. We find
3302          * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget()
3303          * on them.  We've already detached each block from the file, so
3304          * bforget() in jbd2_journal_forget() should be safe.
3305          *
3306          * AKPM: turn on bforget in jbd2_journal_forget()!!!
3307          */
3308         for (p = first; p < last; p++) {
3309                 u32 nr = le32_to_cpu(*p);
3310                 if (nr) {
3311                         struct buffer_head *tbh;
3312
3313                         *p = 0;
3314                         tbh = sb_find_get_block(inode->i_sb, nr);
3315                         ext4_forget(handle, 0, inode, tbh, nr);
3316                 }
3317         }
3318
3319         ext4_free_blocks(handle, inode, block_to_free, count, 0);
3320 }
3321
3322 /**
3323  * ext4_free_data - free a list of data blocks
3324  * @handle:     handle for this transaction
3325  * @inode:      inode we are dealing with
3326  * @this_bh:    indirect buffer_head which contains *@first and *@last
3327  * @first:      array of block numbers
3328  * @last:       points immediately past the end of array
3329  *
3330  * We are freeing all blocks refered from that array (numbers are stored as
3331  * little-endian 32-bit) and updating @inode->i_blocks appropriately.
3332  *
3333  * We accumulate contiguous runs of blocks to free.  Conveniently, if these
3334  * blocks are contiguous then releasing them at one time will only affect one
3335  * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
3336  * actually use a lot of journal space.
3337  *
3338  * @this_bh will be %NULL if @first and @last point into the inode's direct
3339  * block pointers.
3340  */
3341 static void ext4_free_data(handle_t *handle, struct inode *inode,
3342                            struct buffer_head *this_bh,
3343                            __le32 *first, __le32 *last)
3344 {
3345         ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
3346         unsigned long count = 0;            /* Number of blocks in the run */
3347         __le32 *block_to_free_p = NULL;     /* Pointer into inode/ind
3348                                                corresponding to
3349                                                block_to_free */
3350         ext4_fsblk_t nr;                    /* Current block # */
3351         __le32 *p;                          /* Pointer into inode/ind
3352                                                for current block */
3353         int err;
3354
3355         if (this_bh) {                          /* For indirect block */
3356                 BUFFER_TRACE(this_bh, "get_write_access");
3357                 err = ext4_journal_get_write_access(handle, this_bh);
3358                 /* Important: if we can't update the indirect pointers
3359                  * to the blocks, we can't free them. */
3360                 if (err)
3361                         return;
3362         }
3363
3364         for (p = first; p < last; p++) {
3365                 nr = le32_to_cpu(*p);
3366                 if (nr) {
3367                         /* accumulate blocks to free if they're contiguous */
3368                         if (count == 0) {
3369                                 block_to_free = nr;
3370                                 block_to_free_p = p;
3371                                 count = 1;
3372                         } else if (nr == block_to_free + count) {
3373                                 count++;
3374                         } else {
3375                                 ext4_clear_blocks(handle, inode, this_bh,
3376                                                   block_to_free,
3377                                                   count, block_to_free_p, p);
3378                                 block_to_free = nr;
3379                                 block_to_free_p = p;
3380                                 count = 1;
3381                         }
3382                 }
3383         }
3384
3385         if (count > 0)
3386                 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
3387                                   count, block_to_free_p, p);
3388
3389         if (this_bh) {
3390                 BUFFER_TRACE(this_bh, "call ext4_journal_dirty_metadata");
3391
3392                 /*
3393                  * The buffer head should have an attached journal head at this
3394                  * point. However, if the data is corrupted and an indirect
3395                  * block pointed to itself, it would have been detached when
3396                  * the block was cleared. Check for this instead of OOPSing.
3397                  */
3398                 if (bh2jh(this_bh))
3399                         ext4_journal_dirty_metadata(handle, this_bh);
3400                 else
3401                         ext4_error(inode->i_sb, __func__,
3402                                    "circular indirect block detected, "
3403                                    "inode=%lu, block=%llu",
3404                                    inode->i_ino,
3405                                    (unsigned long long) this_bh->b_blocknr);
3406         }
3407 }
3408
3409 /**
3410  *      ext4_free_branches - free an array of branches
3411  *      @handle: JBD handle for this transaction
3412  *      @inode: inode we are dealing with
3413  *      @parent_bh: the buffer_head which contains *@first and *@last
3414  *      @first: array of block numbers
3415  *      @last:  pointer immediately past the end of array
3416  *      @depth: depth of the branches to free
3417  *
3418  *      We are freeing all blocks refered from these branches (numbers are
3419  *      stored as little-endian 32-bit) and updating @inode->i_blocks
3420  *      appropriately.
3421  */
3422 static void ext4_free_branches(handle_t *handle, struct inode *inode,
3423                                struct buffer_head *parent_bh,
3424                                __le32 *first, __le32 *last, int depth)
3425 {
3426         ext4_fsblk_t nr;
3427         __le32 *p;
3428
3429         if (is_handle_aborted(handle))
3430                 return;
3431
3432         if (depth--) {
3433                 struct buffer_head *bh;
3434                 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3435                 p = last;
3436                 while (--p >= first) {
3437                         nr = le32_to_cpu(*p);
3438                         if (!nr)
3439                                 continue;               /* A hole */
3440
3441                         /* Go read the buffer for the next level down */
3442                         bh = sb_bread(inode->i_sb, nr);
3443
3444                         /*
3445                          * A read failure? Report error and clear slot
3446                          * (should be rare).
3447                          */
3448                         if (!bh) {
3449                                 ext4_error(inode->i_sb, "ext4_free_branches",
3450                                            "Read failure, inode=%lu, block=%llu",
3451                                            inode->i_ino, nr);
3452                                 continue;
3453                         }
3454
3455                         /* This zaps the entire block.  Bottom up. */
3456                         BUFFER_TRACE(bh, "free child branches");
3457                         ext4_free_branches(handle, inode, bh,
3458                                            (__le32*)bh->b_data,
3459                                            (__le32*)bh->b_data + addr_per_block,
3460                                            depth);
3461
3462                         /*
3463                          * We've probably journalled the indirect block several
3464                          * times during the truncate.  But it's no longer
3465                          * needed and we now drop it from the transaction via
3466                          * jbd2_journal_revoke().
3467                          *
3468                          * That's easy if it's exclusively part of this
3469                          * transaction.  But if it's part of the committing
3470                          * transaction then jbd2_journal_forget() will simply
3471                          * brelse() it.  That means that if the underlying
3472                          * block is reallocated in ext4_get_block(),
3473                          * unmap_underlying_metadata() will find this block
3474                          * and will try to get rid of it.  damn, damn.
3475                          *
3476                          * If this block has already been committed to the
3477                          * journal, a revoke record will be written.  And
3478                          * revoke records must be emitted *before* clearing
3479                          * this block's bit in the bitmaps.
3480                          */
3481                         ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
3482
3483                         /*
3484                          * Everything below this this pointer has been
3485                          * released.  Now let this top-of-subtree go.
3486                          *
3487                          * We want the freeing of this indirect block to be
3488                          * atomic in the journal with the updating of the
3489                          * bitmap block which owns it.  So make some room in
3490                          * the journal.
3491                          *
3492                          * We zero the parent pointer *after* freeing its
3493                          * pointee in the bitmaps, so if extend_transaction()
3494                          * for some reason fails to put the bitmap changes and
3495                          * the release into the same transaction, recovery
3496                          * will merely complain about releasing a free block,
3497                          * rather than leaking blocks.
3498                          */
3499                         if (is_handle_aborted(handle))
3500                                 return;
3501                         if (try_to_extend_transaction(handle, inode)) {
3502                                 ext4_mark_inode_dirty(handle, inode);
3503                                 ext4_journal_test_restart(handle, inode);
3504                         }
3505
3506                         ext4_free_blocks(handle, inode, nr, 1, 1);
3507
3508                         if (parent_bh) {
3509                                 /*
3510                                  * The block which we have just freed is
3511                                  * pointed to by an indirect block: journal it
3512                                  */
3513                                 BUFFER_TRACE(parent_bh, "get_write_access");
3514                                 if (!ext4_journal_get_write_access(handle,
3515                                                                    parent_bh)){
3516                                         *p = 0;
3517                                         BUFFER_TRACE(parent_bh,
3518                                         "call ext4_journal_dirty_metadata");
3519                                         ext4_journal_dirty_metadata(handle,
3520                                                                     parent_bh);
3521                                 }
3522                         }
3523                 }
3524         } else {
3525                 /* We have reached the bottom of the tree. */
3526                 BUFFER_TRACE(parent_bh, "free data blocks");
3527                 ext4_free_data(handle, inode, parent_bh, first, last);
3528         }
3529 }
3530
3531 int ext4_can_truncate(struct inode *inode)
3532 {
3533         if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3534                 return 0;
3535         if (S_ISREG(inode->i_mode))
3536                 return 1;
3537         if (S_ISDIR(inode->i_mode))
3538                 return 1;
3539         if (S_ISLNK(inode->i_mode))
3540                 return !ext4_inode_is_fast_symlink(inode);
3541         return 0;
3542 }
3543
3544 /*
3545  * ext4_truncate()
3546  *
3547  * We block out ext4_get_block() block instantiations across the entire
3548  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3549  * simultaneously on behalf of the same inode.
3550  *
3551  * As we work through the truncate and commmit bits of it to the journal there
3552  * is one core, guiding principle: the file's tree must always be consistent on
3553  * disk.  We must be able to restart the truncate after a crash.
3554  *
3555  * The file's tree may be transiently inconsistent in memory (although it
3556  * probably isn't), but whenever we close off and commit a journal transaction,
3557  * the contents of (the filesystem + the journal) must be consistent and
3558  * restartable.  It's pretty simple, really: bottom up, right to left (although
3559  * left-to-right works OK too).
3560  *
3561  * Note that at recovery time, journal replay occurs *before* the restart of
3562  * truncate against the orphan inode list.
3563  *
3564  * The committed inode has the new, desired i_size (which is the same as
3565  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3566  * that this inode's truncate did not complete and it will again call
3567  * ext4_truncate() to have another go.  So there will be instantiated blocks
3568  * to the right of the truncation point in a crashed ext4 filesystem.  But
3569  * that's fine - as long as they are linked from the inode, the post-crash
3570  * ext4_truncate() run will find them and release them.
3571  */
3572 void ext4_truncate(struct inode *inode)
3573 {
3574         handle_t *handle;
3575         struct ext4_inode_info *ei = EXT4_I(inode);
3576         __le32 *i_data = ei->i_data;
3577         int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3578         struct address_space *mapping = inode->i_mapping;
3579         ext4_lblk_t offsets[4];
3580         Indirect chain[4];
3581         Indirect *partial;
3582         __le32 nr = 0;
3583         int n;
3584         ext4_lblk_t last_block;
3585         unsigned blocksize = inode->i_sb->s_blocksize;
3586
3587         if (!ext4_can_truncate(inode))
3588                 return;
3589
3590         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
3591                 ext4_ext_truncate(inode);
3592                 return;
3593         }
3594
3595         handle = start_transaction(inode);
3596         if (IS_ERR(handle))
3597                 return;         /* AKPM: return what? */
3598
3599         last_block = (inode->i_size + blocksize-1)
3600                                         >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
3601
3602         if (inode->i_size & (blocksize - 1))
3603                 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
3604                         goto out_stop;
3605
3606         n = ext4_block_to_path(inode, last_block, offsets, NULL);
3607         if (n == 0)
3608                 goto out_stop;  /* error */
3609
3610         /*
3611          * OK.  This truncate is going to happen.  We add the inode to the
3612          * orphan list, so that if this truncate spans multiple transactions,
3613          * and we crash, we will resume the truncate when the filesystem
3614          * recovers.  It also marks the inode dirty, to catch the new size.
3615          *
3616          * Implication: the file must always be in a sane, consistent
3617          * truncatable state while each transaction commits.
3618          */
3619         if (ext4_orphan_add(handle, inode))
3620                 goto out_stop;
3621
3622         /*
3623          * From here we block out all ext4_get_block() callers who want to
3624          * modify the block allocation tree.
3625          */
3626         down_write(&ei->i_data_sem);
3627
3628         ext4_discard_reservation(inode);
3629
3630         /*
3631          * The orphan list entry will now protect us from any crash which
3632          * occurs before the truncate completes, so it is now safe to propagate
3633          * the new, shorter inode size (held for now in i_size) into the
3634          * on-disk inode. We do this via i_disksize, which is the value which
3635          * ext4 *really* writes onto the disk inode.
3636          */
3637         ei->i_disksize = inode->i_size;
3638
3639         if (n == 1) {           /* direct blocks */
3640                 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
3641                                i_data + EXT4_NDIR_BLOCKS);
3642                 goto do_indirects;
3643         }
3644
3645         partial = ext4_find_shared(inode, n, offsets, chain, &nr);
3646         /* Kill the top of shared branch (not detached) */
3647         if (nr) {
3648                 if (partial == chain) {
3649                         /* Shared branch grows from the inode */
3650                         ext4_free_branches(handle, inode, NULL,
3651                                            &nr, &nr+1, (chain+n-1) - partial);
3652                         *partial->p = 0;
3653                         /*
3654                          * We mark the inode dirty prior to restart,
3655                          * and prior to stop.  No need for it here.
3656                          */
3657                 } else {
3658                         /* Shared branch grows from an indirect block */
3659                         BUFFER_TRACE(partial->bh, "get_write_access");
3660                         ext4_free_branches(handle, inode, partial->bh,
3661                                         partial->p,
3662                                         partial->p+1, (chain+n-1) - partial);
3663                 }
3664         }
3665         /* Clear the ends of indirect blocks on the shared branch */
3666         while (partial > chain) {
3667                 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
3668                                    (__le32*)partial->bh->b_data+addr_per_block,
3669                                    (chain+n-1) - partial);
3670                 BUFFER_TRACE(partial->bh, "call brelse");
3671                 brelse (partial->bh);
3672                 partial--;
3673         }
3674 do_indirects:
3675         /* Kill the remaining (whole) subtrees */
3676         switch (offsets[0]) {
3677         default:
3678                 nr = i_data[EXT4_IND_BLOCK];
3679                 if (nr) {
3680                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
3681                         i_data[EXT4_IND_BLOCK] = 0;
3682                 }
3683         case EXT4_IND_BLOCK:
3684                 nr = i_data[EXT4_DIND_BLOCK];
3685                 if (nr) {
3686                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
3687                         i_data[EXT4_DIND_BLOCK] = 0;
3688                 }
3689         case EXT4_DIND_BLOCK:
3690                 nr = i_data[EXT4_TIND_BLOCK];
3691                 if (nr) {
3692                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
3693                         i_data[EXT4_TIND_BLOCK] = 0;
3694                 }
3695         case EXT4_TIND_BLOCK:
3696                 ;
3697         }
3698
3699         up_write(&ei->i_data_sem);
3700         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3701         ext4_mark_inode_dirty(handle, inode);
3702
3703         /*
3704          * In a multi-transaction truncate, we only make the final transaction
3705          * synchronous
3706          */
3707         if (IS_SYNC(inode))
3708                 handle->h_sync = 1;
3709 out_stop:
3710         /*
3711          * If this was a simple ftruncate(), and the file will remain alive
3712          * then we need to clear up the orphan record which we created above.
3713          * However, if this was a real unlink then we were called by
3714          * ext4_delete_inode(), and we allow that function to clean up the
3715          * orphan info for us.
3716          */
3717         if (inode->i_nlink)
3718                 ext4_orphan_del(handle, inode);
3719
3720         ext4_journal_stop(handle);
3721 }
3722
3723 static ext4_fsblk_t ext4_get_inode_block(struct super_block *sb,
3724                 unsigned long ino, struct ext4_iloc *iloc)
3725 {
3726         ext4_group_t block_group;
3727         unsigned long offset;
3728         ext4_fsblk_t block;
3729         struct ext4_group_desc *gdp;
3730
3731         if (!ext4_valid_inum(sb, ino)) {
3732                 /*
3733                  * This error is already checked for in namei.c unless we are
3734                  * looking at an NFS filehandle, in which case no error
3735                  * report is needed
3736                  */
3737                 return 0;
3738         }
3739
3740         block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
3741         gdp = ext4_get_group_desc(sb, block_group, NULL);
3742         if (!gdp)
3743                 return 0;
3744
3745         /*
3746          * Figure out the offset within the block group inode table
3747          */
3748         offset = ((ino - 1) % EXT4_INODES_PER_GROUP(sb)) *
3749                 EXT4_INODE_SIZE(sb);
3750         block = ext4_inode_table(sb, gdp) +
3751                 (offset >> EXT4_BLOCK_SIZE_BITS(sb));
3752
3753         iloc->block_group = block_group;
3754         iloc->offset = offset & (EXT4_BLOCK_SIZE(sb) - 1);
3755         return block;
3756 }
3757
3758 /*
3759  * ext4_get_inode_loc returns with an extra refcount against the inode's
3760  * underlying buffer_head on success. If 'in_mem' is true, we have all
3761  * data in memory that is needed to recreate the on-disk version of this
3762  * inode.
3763  */
3764 static int __ext4_get_inode_loc(struct inode *inode,
3765                                 struct ext4_iloc *iloc, int in_mem)
3766 {
3767         ext4_fsblk_t block;
3768         struct buffer_head *bh;
3769
3770         block = ext4_get_inode_block(inode->i_sb, inode->i_ino, iloc);
3771         if (!block)
3772                 return -EIO;
3773
3774         bh = sb_getblk(inode->i_sb, block);
3775         if (!bh) {
3776                 ext4_error (inode->i_sb, "ext4_get_inode_loc",
3777                                 "unable to read inode block - "
3778                                 "inode=%lu, block=%llu",
3779                                  inode->i_ino, block);
3780                 return -EIO;
3781         }
3782         if (!buffer_uptodate(bh)) {
3783                 lock_buffer(bh);
3784
3785                 /*
3786                  * If the buffer has the write error flag, we have failed
3787                  * to write out another inode in the same block.  In this
3788                  * case, we don't have to read the block because we may
3789                  * read the old inode data successfully.
3790                  */
3791                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3792                         set_buffer_uptodate(bh);
3793
3794                 if (buffer_uptodate(bh)) {
3795                         /* someone brought it uptodate while we waited */
3796                         unlock_buffer(bh);
3797                         goto has_buffer;
3798                 }
3799
3800                 /*
3801                  * If we have all information of the inode in memory and this
3802                  * is the only valid inode in the block, we need not read the
3803                  * block.
3804                  */
3805                 if (in_mem) {
3806                         struct buffer_head *bitmap_bh;
3807                         struct ext4_group_desc *desc;
3808                         int inodes_per_buffer;
3809                         int inode_offset, i;
3810                         ext4_group_t block_group;
3811                         int start;
3812
3813                         block_group = (inode->i_ino - 1) /
3814                                         EXT4_INODES_PER_GROUP(inode->i_sb);
3815                         inodes_per_buffer = bh->b_size /
3816                                 EXT4_INODE_SIZE(inode->i_sb);
3817                         inode_offset = ((inode->i_ino - 1) %
3818                                         EXT4_INODES_PER_GROUP(inode->i_sb));
3819                         start = inode_offset & ~(inodes_per_buffer - 1);
3820
3821                         /* Is the inode bitmap in cache? */
3822                         desc = ext4_get_group_desc(inode->i_sb,
3823                                                 block_group, NULL);
3824                         if (!desc)
3825                                 goto make_io;
3826
3827                         bitmap_bh = sb_getblk(inode->i_sb,
3828                                 ext4_inode_bitmap(inode->i_sb, desc));
3829                         if (!bitmap_bh)
3830                                 goto make_io;
3831
3832                         /*
3833                          * If the inode bitmap isn't in cache then the
3834                          * optimisation may end up performing two reads instead
3835                          * of one, so skip it.
3836                          */
3837                         if (!buffer_uptodate(bitmap_bh)) {
3838                                 brelse(bitmap_bh);
3839                                 goto make_io;
3840                         }
3841                         for (i = start; i < start + inodes_per_buffer; i++) {
3842                                 if (i == inode_offset)
3843                                         continue;
3844                                 if (ext4_test_bit(i, bitmap_bh->b_data))
3845                                         break;
3846                         }
3847                         brelse(bitmap_bh);
3848                         if (i == start + inodes_per_buffer) {
3849                                 /* all other inodes are free, so skip I/O */
3850                                 memset(bh->b_data, 0, bh->b_size);
3851                                 set_buffer_uptodate(bh);
3852                                 unlock_buffer(bh);
3853                                 goto has_buffer;
3854                         }
3855                 }
3856
3857 make_io:
3858                 /*
3859                  * There are other valid inodes in the buffer, this inode
3860                  * has in-inode xattrs, or we don't have this inode in memory.
3861                  * Read the block from disk.
3862                  */
3863                 get_bh(bh);
3864                 bh->b_end_io = end_buffer_read_sync;
3865                 submit_bh(READ_META, bh);
3866                 wait_on_buffer(bh);
3867                 if (!buffer_uptodate(bh)) {
3868                         ext4_error(inode->i_sb, "ext4_get_inode_loc",
3869                                         "unable to read inode block - "
3870                                         "inode=%lu, block=%llu",
3871                                         inode->i_ino, block);
3872                         brelse(bh);
3873                         return -EIO;
3874                 }
3875         }
3876 has_buffer:
3877         iloc->bh = bh;
3878         return 0;
3879 }
3880
3881 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3882 {
3883         /* We have all inode data except xattrs in memory here. */
3884         return __ext4_get_inode_loc(inode, iloc,
3885                 !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
3886 }
3887
3888 void ext4_set_inode_flags(struct inode *inode)
3889 {
3890         unsigned int flags = EXT4_I(inode)->i_flags;
3891
3892         inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3893         if (flags & EXT4_SYNC_FL)
3894                 inode->i_flags |= S_SYNC;
3895         if (flags & EXT4_APPEND_FL)
3896                 inode->i_flags |= S_APPEND;
3897         if (flags & EXT4_IMMUTABLE_FL)
3898                 inode->i_flags |= S_IMMUTABLE;
3899         if (flags & EXT4_NOATIME_FL)
3900                 inode->i_flags |= S_NOATIME;
3901         if (flags & EXT4_DIRSYNC_FL)
3902                 inode->i_flags |= S_DIRSYNC;
3903 }
3904
3905 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3906 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3907 {
3908         unsigned int flags = ei->vfs_inode.i_flags;
3909
3910         ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3911                         EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
3912         if (flags & S_SYNC)
3913                 ei->i_flags |= EXT4_SYNC_FL;
3914         if (flags & S_APPEND)
3915                 ei->i_flags |= EXT4_APPEND_FL;
3916         if (flags & S_IMMUTABLE)
3917                 ei->i_flags |= EXT4_IMMUTABLE_FL;
3918         if (flags & S_NOATIME)
3919                 ei->i_flags |= EXT4_NOATIME_FL;
3920         if (flags & S_DIRSYNC)
3921                 ei->i_flags |= EXT4_DIRSYNC_FL;
3922 }
3923 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3924                                         struct ext4_inode_info *ei)
3925 {
3926         blkcnt_t i_blocks ;
3927         struct inode *inode = &(ei->vfs_inode);
3928         struct super_block *sb = inode->i_sb;
3929
3930         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3931                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3932                 /* we are using combined 48 bit field */
3933                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3934                                         le32_to_cpu(raw_inode->i_blocks_lo);
3935                 if (ei->i_flags & EXT4_HUGE_FILE_FL) {
3936                         /* i_blocks represent file system block size */
3937                         return i_blocks  << (inode->i_blkbits - 9);
3938                 } else {
3939                         return i_blocks;
3940                 }
3941         } else {
3942                 return le32_to_cpu(raw_inode->i_blocks_lo);
3943         }
3944 }
3945
3946 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3947 {
3948         struct ext4_iloc iloc;
3949         struct ext4_inode *raw_inode;
3950         struct ext4_inode_info *ei;
3951         struct buffer_head *bh;
3952         struct inode *inode;
3953         long ret;
3954         int block;
3955
3956         inode = iget_locked(sb, ino);
3957         if (!inode)
3958                 return ERR_PTR(-ENOMEM);
3959         if (!(inode->i_state & I_NEW))
3960                 return inode;
3961
3962         ei = EXT4_I(inode);
3963 #ifdef CONFIG_EXT4DEV_FS_POSIX_ACL
3964         ei->i_acl = EXT4_ACL_NOT_CACHED;
3965         ei->i_default_acl = EXT4_ACL_NOT_CACHED;
3966 #endif
3967         ei->i_block_alloc_info = NULL;
3968
3969         ret = __ext4_get_inode_loc(inode, &iloc, 0);
3970         if (ret < 0)
3971                 goto bad_inode;
3972         bh = iloc.bh;
3973         raw_inode = ext4_raw_inode(&iloc);
3974         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
3975         inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
3976         inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
3977         if(!(test_opt (inode->i_sb, NO_UID32))) {
3978                 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
3979                 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
3980         }
3981         inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
3982
3983         ei->i_state = 0;
3984         ei->i_dir_start_lookup = 0;
3985         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
3986         /* We now have enough fields to check if the inode was active or not.
3987          * This is needed because nfsd might try to access dead inodes
3988          * the test is that same one that e2fsck uses
3989          * NeilBrown 1999oct15
3990          */
3991         if (inode->i_nlink == 0) {
3992                 if (inode->i_mode == 0 ||
3993                     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
3994                         /* this inode is deleted */
3995                         brelse (bh);
3996                         ret = -ESTALE;
3997                         goto bad_inode;
3998                 }
3999                 /* The only unlinked inodes we let through here have
4000                  * valid i_mode and are being read by the orphan
4001                  * recovery code: that's fine, we're about to complete
4002                  * the process of deleting those. */
4003         }
4004         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4005         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4006         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4007         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4008             cpu_to_le32(EXT4_OS_HURD)) {
4009                 ei->i_file_acl |=
4010                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4011         }
4012         inode->i_size = ext4_isize(raw_inode);
4013         ei->i_disksize = inode->i_size;
4014         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4015         ei->i_block_group = iloc.block_group;
4016         /*
4017          * NOTE! The in-memory inode i_data array is in little-endian order
4018          * even on big-endian machines: we do NOT byteswap the block numbers!
4019          */
4020         for (block = 0; block < EXT4_N_BLOCKS; block++)
4021                 ei->i_data[block] = raw_inode->i_block[block];
4022         INIT_LIST_HEAD(&ei->i_orphan);
4023
4024         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4025                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4026                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4027                     EXT4_INODE_SIZE(inode->i_sb)) {
4028                         brelse (bh);
4029                         ret = -EIO;
4030                         goto bad_inode;
4031                 }
4032                 if (ei->i_extra_isize == 0) {
4033                         /* The extra space is currently unused. Use it. */
4034                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4035                                             EXT4_GOOD_OLD_INODE_SIZE;
4036                 } else {
4037                         __le32 *magic = (void *)raw_inode +
4038                                         EXT4_GOOD_OLD_INODE_SIZE +
4039                                         ei->i_extra_isize;
4040                         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
4041                                  ei->i_state |= EXT4_STATE_XATTR;
4042                 }
4043         } else
4044                 ei->i_extra_isize = 0;
4045
4046         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4047         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4048         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4049         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4050
4051         inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4052         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4053                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4054                         inode->i_version |=
4055                         (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4056         }
4057
4058         if (S_ISREG(inode->i_mode)) {
4059                 inode->i_op = &ext4_file_inode_operations;
4060                 inode->i_fop = &ext4_file_operations;
4061                 ext4_set_aops(inode);
4062         } else if (S_ISDIR(inode->i_mode)) {
4063                 inode->i_op = &ext4_dir_inode_operations;
4064                 inode->i_fop = &ext4_dir_operations;
4065         } else if (S_ISLNK(inode->i_mode)) {
4066                 if (ext4_inode_is_fast_symlink(inode))
4067                         inode->i_op = &ext4_fast_symlink_inode_operations;
4068                 else {
4069                         inode->i_op = &ext4_symlink_inode_operations;
4070                         ext4_set_aops(inode);
4071                 }
4072         } else {
4073                 inode->i_op = &ext4_special_inode_operations;
4074                 if (raw_inode->i_block[0])
4075                         init_special_inode(inode, inode->i_mode,
4076                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4077                 else
4078                         init_special_inode(inode, inode->i_mode,
4079                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4080         }
4081         brelse (iloc.bh);
4082         ext4_set_inode_flags(inode);
4083         unlock_new_inode(inode);
4084         return inode;
4085
4086 bad_inode:
4087         iget_failed(inode);
4088         return ERR_PTR(ret);
4089 }
4090
4091 static int ext4_inode_blocks_set(handle_t *handle,
4092                                 struct ext4_inode *raw_inode,
4093                                 struct ext4_inode_info *ei)
4094 {
4095         struct inode *inode = &(ei->vfs_inode);
4096         u64 i_blocks = inode->i_blocks;
4097         struct super_block *sb = inode->i_sb;
4098         int err = 0;
4099
4100         if (i_blocks <= ~0U) {
4101                 /*
4102                  * i_blocks can be represnted in a 32 bit variable
4103                  * as multiple of 512 bytes
4104                  */
4105                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4106                 raw_inode->i_blocks_high = 0;
4107                 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4108         } else if (i_blocks <= 0xffffffffffffULL) {
4109                 /*
4110                  * i_blocks can be represented in a 48 bit variable
4111                  * as multiple of 512 bytes
4112                  */
4113                 err = ext4_update_rocompat_feature(handle, sb,
4114                                             EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
4115                 if (err)
4116                         goto  err_out;
4117                 /* i_block is stored in the split  48 bit fields */
4118                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4119                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4120                 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4121         } else {
4122                 /*
4123                  * i_blocks should be represented in a 48 bit variable
4124                  * as multiple of  file system block size
4125                  */
4126                 err = ext4_update_rocompat_feature(handle, sb,
4127                                             EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
4128                 if (err)
4129                         goto  err_out;
4130                 ei->i_flags |= EXT4_HUGE_FILE_FL;
4131                 /* i_block is stored in file system block size */
4132                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4133                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4134                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4135         }
4136 err_out:
4137         return err;
4138 }
4139
4140 /*
4141  * Post the struct inode info into an on-disk inode location in the
4142  * buffer-cache.  This gobbles the caller's reference to the
4143  * buffer_head in the inode location struct.
4144  *
4145  * The caller must have write access to iloc->bh.
4146  */
4147 static int ext4_do_update_inode(handle_t *handle,
4148                                 struct inode *inode,
4149                                 struct ext4_iloc *iloc)
4150 {
4151         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4152         struct ext4_inode_info *ei = EXT4_I(inode);
4153         struct buffer_head *bh = iloc->bh;
4154         int err = 0, rc, block;
4155
4156         /* For fields not not tracking in the in-memory inode,
4157          * initialise them to zero for new inodes. */
4158         if (ei->i_state & EXT4_STATE_NEW)
4159                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4160
4161         ext4_get_inode_flags(ei);
4162         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4163         if(!(test_opt(inode->i_sb, NO_UID32))) {
4164                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
4165                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
4166 /*
4167  * Fix up interoperability with old kernels. Otherwise, old inodes get
4168  * re-used with the upper 16 bits of the uid/gid intact
4169  */
4170                 if(!ei->i_dtime) {
4171                         raw_inode->i_uid_high =
4172                                 cpu_to_le16(high_16_bits(inode->i_uid));
4173                         raw_inode->i_gid_high =
4174                                 cpu_to_le16(high_16_bits(inode->i_gid));
4175                 } else {
4176                         raw_inode->i_uid_high = 0;
4177                         raw_inode->i_gid_high = 0;
4178                 }
4179         } else {
4180                 raw_inode->i_uid_low =
4181                         cpu_to_le16(fs_high2lowuid(inode->i_uid));
4182                 raw_inode->i_gid_low =
4183                         cpu_to_le16(fs_high2lowgid(inode->i_gid));
4184                 raw_inode->i_uid_high = 0;
4185                 raw_inode->i_gid_high = 0;
4186         }
4187         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4188
4189         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4190         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4191         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4192         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4193
4194         if (ext4_inode_blocks_set(handle, raw_inode, ei))
4195                 goto out_brelse;
4196         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4197         /* clear the migrate flag in the raw_inode */
4198         raw_inode->i_flags = cpu_to_le32(ei->i_flags & ~EXT4_EXT_MIGRATE);
4199         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4200             cpu_to_le32(EXT4_OS_HURD))
4201                 raw_inode->i_file_acl_high =
4202                         cpu_to_le16(ei->i_file_acl >> 32);
4203         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4204         ext4_isize_set(raw_inode, ei->i_disksize);
4205         if (ei->i_disksize > 0x7fffffffULL) {
4206                 struct super_block *sb = inode->i_sb;
4207                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4208                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4209                                 EXT4_SB(sb)->s_es->s_rev_level ==
4210                                 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4211                         /* If this is the first large file
4212                          * created, add a flag to the superblock.
4213                          */
4214                         err = ext4_journal_get_write_access(handle,
4215                                         EXT4_SB(sb)->s_sbh);
4216                         if (err)
4217                                 goto out_brelse;
4218                         ext4_update_dynamic_rev(sb);
4219                         EXT4_SET_RO_COMPAT_FEATURE(sb,
4220                                         EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4221                         sb->s_dirt = 1;
4222                         handle->h_sync = 1;
4223                         err = ext4_journal_dirty_metadata(handle,
4224                                         EXT4_SB(sb)->s_sbh);
4225                 }
4226         }
4227         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4228         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4229                 if (old_valid_dev(inode->i_rdev)) {
4230                         raw_inode->i_block[0] =
4231                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4232                         raw_inode->i_block[1] = 0;
4233                 } else {
4234                         raw_inode->i_block[0] = 0;
4235                         raw_inode->i_block[1] =
4236                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4237                         raw_inode->i_block[2] = 0;
4238                 }
4239         } else for (block = 0; block < EXT4_N_BLOCKS; block++)
4240                 raw_inode->i_block[block] = ei->i_data[block];
4241
4242         raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4243         if (ei->i_extra_isize) {
4244                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4245                         raw_inode->i_version_hi =
4246                         cpu_to_le32(inode->i_version >> 32);
4247                 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4248         }
4249
4250
4251         BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
4252         rc = ext4_journal_dirty_metadata(handle, bh);
4253         if (!err)
4254                 err = rc;
4255         ei->i_state &= ~EXT4_STATE_NEW;
4256
4257 out_brelse:
4258         brelse (bh);
4259         ext4_std_error(inode->i_sb, err);
4260         return err;
4261 }
4262
4263 /*
4264  * ext4_write_inode()
4265  *
4266  * We are called from a few places:
4267  *
4268  * - Within generic_file_write() for O_SYNC files.
4269  *   Here, there will be no transaction running. We wait for any running
4270  *   trasnaction to commit.
4271  *
4272  * - Within sys_sync(), kupdate and such.
4273  *   We wait on commit, if tol to.
4274  *
4275  * - Within prune_icache() (PF_MEMALLOC == true)
4276  *   Here we simply return.  We can't afford to block kswapd on the
4277  *   journal commit.
4278  *
4279  * In all cases it is actually safe for us to return without doing anything,
4280  * because the inode has been copied into a raw inode buffer in
4281  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4282  * knfsd.
4283  *
4284  * Note that we are absolutely dependent upon all inode dirtiers doing the
4285  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4286  * which we are interested.
4287  *
4288  * It would be a bug for them to not do this.  The code:
4289  *
4290  *      mark_inode_dirty(inode)
4291  *      stuff();
4292  *      inode->i_size = expr;
4293  *
4294  * is in error because a kswapd-driven write_inode() could occur while
4295  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
4296  * will no longer be on the superblock's dirty inode list.
4297  */
4298 int ext4_write_inode(struct inode *inode, int wait)
4299 {
4300         if (current->flags & PF_MEMALLOC)
4301                 return 0;
4302
4303         if (ext4_journal_current_handle()) {
4304                 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4305                 dump_stack();
4306                 return -EIO;
4307         }
4308
4309         if (!wait)
4310                 return 0;
4311
4312         return ext4_force_commit(inode->i_sb);
4313 }
4314
4315 /*
4316  * ext4_setattr()
4317  *
4318  * Called from notify_change.
4319  *
4320  * We want to trap VFS attempts to truncate the file as soon as
4321  * possible.  In particular, we want to make sure that when the VFS
4322  * shrinks i_size, we put the inode on the orphan list and modify
4323  * i_disksize immediately, so that during the subsequent flushing of
4324  * dirty pages and freeing of disk blocks, we can guarantee that any
4325  * commit will leave the blocks being flushed in an unused state on
4326  * disk.  (On recovery, the inode will get truncated and the blocks will
4327  * be freed, so we have a strong guarantee that no future commit will
4328  * leave these blocks visible to the user.)
4329  *
4330  * Another thing we have to assure is that if we are in ordered mode
4331  * and inode is still attached to the committing transaction, we must
4332  * we start writeout of all the dirty pages which are being truncated.
4333  * This way we are sure that all the data written in the previous
4334  * transaction are already on disk (truncate waits for pages under
4335  * writeback).
4336  *
4337  * Called with inode->i_mutex down.
4338  */
4339 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4340 {
4341         struct inode *inode = dentry->d_inode;
4342         int error, rc = 0;
4343         const unsigned int ia_valid = attr->ia_valid;
4344
4345         error = inode_change_ok(inode, attr);
4346         if (error)
4347                 return error;
4348
4349         if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
4350                 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
4351                 handle_t *handle;
4352
4353                 /* (user+group)*(old+new) structure, inode write (sb,
4354                  * inode block, ? - but truncate inode update has it) */
4355                 handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
4356                                         EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
4357                 if (IS_ERR(handle)) {
4358                         error = PTR_ERR(handle);
4359                         goto err_out;
4360                 }
4361                 error = DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0;
4362                 if (error) {
4363                         ext4_journal_stop(handle);
4364                         return error;
4365                 }
4366                 /* Update corresponding info in inode so that everything is in
4367                  * one transaction */
4368                 if (attr->ia_valid & ATTR_UID)
4369                         inode->i_uid = attr->ia_uid;
4370                 if (attr->ia_valid & ATTR_GID)
4371                         inode->i_gid = attr->ia_gid;
4372                 error = ext4_mark_inode_dirty(handle, inode);
4373                 ext4_journal_stop(handle);
4374         }
4375
4376         if (attr->ia_valid & ATTR_SIZE) {
4377                 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
4378                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4379
4380                         if (attr->ia_size > sbi->s_bitmap_maxbytes) {
4381                                 error = -EFBIG;
4382                                 goto err_out;
4383                         }
4384                 }
4385         }
4386
4387         if (S_ISREG(inode->i_mode) &&
4388             attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
4389                 handle_t *handle;
4390
4391                 handle = ext4_journal_start(inode, 3);
4392                 if (IS_ERR(handle)) {
4393                         error = PTR_ERR(handle);
4394                         goto err_out;
4395                 }
4396
4397                 error = ext4_orphan_add(handle, inode);
4398                 EXT4_I(inode)->i_disksize = attr->ia_size;
4399                 rc = ext4_mark_inode_dirty(handle, inode);
4400                 if (!error)
4401                         error = rc;
4402                 ext4_journal_stop(handle);
4403
4404                 if (ext4_should_order_data(inode)) {
4405                         error = ext4_begin_ordered_truncate(inode,
4406                                                             attr->ia_size);
4407                         if (error) {
4408                                 /* Do as much error cleanup as possible */
4409                                 handle = ext4_journal_start(inode, 3);
4410                                 if (IS_ERR(handle)) {
4411                                         ext4_orphan_del(NULL, inode);
4412                                         goto err_out;
4413                                 }
4414                                 ext4_orphan_del(handle, inode);
4415                                 ext4_journal_stop(handle);
4416                                 goto err_out;
4417                         }
4418                 }
4419         }
4420
4421         rc = inode_setattr(inode, attr);
4422
4423         /* If inode_setattr's call to ext4_truncate failed to get a
4424          * transaction handle at all, we need to clean up the in-core
4425          * orphan list manually. */
4426         if (inode->i_nlink)
4427                 ext4_orphan_del(NULL, inode);
4428
4429         if (!rc && (ia_valid & ATTR_MODE))
4430                 rc = ext4_acl_chmod(inode);
4431
4432 err_out:
4433         ext4_std_error(inode->i_sb, error);
4434         if (!error)
4435                 error = rc;
4436         return error;
4437 }
4438
4439 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4440                  struct kstat *stat)
4441 {
4442         struct inode *inode;
4443         unsigned long delalloc_blocks;
4444
4445         inode = dentry->d_inode;
4446         generic_fillattr(inode, stat);
4447
4448         /*
4449          * We can't update i_blocks if the block allocation is delayed
4450          * otherwise in the case of system crash before the real block
4451          * allocation is done, we will have i_blocks inconsistent with
4452          * on-disk file blocks.
4453          * We always keep i_blocks updated together with real
4454          * allocation. But to not confuse with user, stat
4455          * will return the blocks that include the delayed allocation
4456          * blocks for this file.
4457          */
4458         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
4459         delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
4460         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
4461
4462         stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4463         return 0;
4464 }
4465
4466 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
4467                                       int chunk)
4468 {
4469         int indirects;
4470
4471         /* if nrblocks are contiguous */
4472         if (chunk) {
4473                 /*
4474                  * With N contiguous data blocks, it need at most
4475                  * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
4476                  * 2 dindirect blocks
4477                  * 1 tindirect block
4478                  */
4479                 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
4480                 return indirects + 3;
4481         }
4482         /*
4483          * if nrblocks are not contiguous, worse case, each block touch
4484          * a indirect block, and each indirect block touch a double indirect
4485          * block, plus a triple indirect block
4486          */
4487         indirects = nrblocks * 2 + 1;
4488         return indirects;
4489 }
4490
4491 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4492 {
4493         if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
4494                 return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
4495         return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4496 }
4497
4498 /*
4499  * Account for index blocks, block groups bitmaps and block group
4500  * descriptor blocks if modify datablocks and index blocks
4501  * worse case, the indexs blocks spread over different block groups
4502  *
4503  * If datablocks are discontiguous, they are possible to spread over
4504  * different block groups too. If they are contiugous, with flexbg,
4505  * they could still across block group boundary.
4506  *
4507  * Also account for superblock, inode, quota and xattr blocks
4508  */
4509 int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4510 {
4511         int groups, gdpblocks;
4512         int idxblocks;
4513         int ret = 0;
4514
4515         /*
4516          * How many index blocks need to touch to modify nrblocks?
4517          * The "Chunk" flag indicating whether the nrblocks is
4518          * physically contiguous on disk
4519          *
4520          * For Direct IO and fallocate, they calls get_block to allocate
4521          * one single extent at a time, so they could set the "Chunk" flag
4522          */
4523         idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4524
4525         ret = idxblocks;
4526
4527         /*
4528          * Now let's see how many group bitmaps and group descriptors need
4529          * to account
4530          */
4531         groups = idxblocks;
4532         if (chunk)
4533                 groups += 1;
4534         else
4535                 groups += nrblocks;
4536
4537         gdpblocks = groups;
4538         if (groups > EXT4_SB(inode->i_sb)->s_groups_count)
4539                 groups = EXT4_SB(inode->i_sb)->s_groups_count;
4540         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4541                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4542
4543         /* bitmaps and block group descriptor blocks */
4544         ret += groups + gdpblocks;
4545
4546         /* Blocks for super block, inode, quota and xattr blocks */
4547         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4548
4549         return ret;
4550 }
4551
4552 /*
4553  * Calulate the total number of credits to reserve to fit
4554  * the modification of a single pages into a single transaction,
4555  * which may include multiple chunks of block allocations.
4556  *
4557  * This could be called via ext4_write_begin()
4558  *
4559  * We need to consider the worse case, when
4560  * one new block per extent.
4561  */
4562 int ext4_writepage_trans_blocks(struct inode *inode)
4563 {
4564         int bpp = ext4_journal_blocks_per_page(inode);
4565         int ret;
4566
4567         ret = ext4_meta_trans_blocks(inode, bpp, 0);
4568
4569         /* Account for data blocks for journalled mode */
4570         if (ext4_should_journal_data(inode))
4571                 ret += bpp;
4572         return ret;
4573 }
4574
4575 /*
4576  * Calculate the journal credits for a chunk of data modification.
4577  *
4578  * This is called from DIO, fallocate or whoever calling
4579  * ext4_get_blocks_wrap() to map/allocate a chunk of contigous disk blocks.
4580  *
4581  * journal buffers for data blocks are not included here, as DIO
4582  * and fallocate do no need to journal data buffers.
4583  */
4584 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4585 {
4586         return ext4_meta_trans_blocks(inode, nrblocks, 1);
4587 }
4588
4589 /*
4590  * The caller must have previously called ext4_reserve_inode_write().
4591  * Give this, we know that the caller already has write access to iloc->bh.
4592  */
4593 int ext4_mark_iloc_dirty(handle_t *handle,
4594                 struct inode *inode, struct ext4_iloc *iloc)
4595 {
4596         int err = 0;
4597
4598         if (test_opt(inode->i_sb, I_VERSION))
4599                 inode_inc_iversion(inode);
4600
4601         /* the do_update_inode consumes one bh->b_count */
4602         get_bh(iloc->bh);
4603
4604         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4605         err = ext4_do_update_inode(handle, inode, iloc);
4606         put_bh(iloc->bh);
4607         return err;
4608 }
4609
4610 /*
4611  * On success, We end up with an outstanding reference count against
4612  * iloc->bh.  This _must_ be cleaned up later.
4613  */
4614
4615 int
4616 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4617                          struct ext4_iloc *iloc)
4618 {
4619         int err = 0;
4620         if (handle) {
4621                 err = ext4_get_inode_loc(inode, iloc);
4622                 if (!err) {
4623                         BUFFER_TRACE(iloc->bh, "get_write_access");
4624                         err = ext4_journal_get_write_access(handle, iloc->bh);
4625                         if (err) {
4626                                 brelse(iloc->bh);
4627                                 iloc->bh = NULL;
4628                         }
4629                 }
4630         }
4631         ext4_std_error(inode->i_sb, err);
4632         return err;
4633 }
4634
4635 /*
4636  * Expand an inode by new_extra_isize bytes.
4637  * Returns 0 on success or negative error number on failure.
4638  */
4639 static int ext4_expand_extra_isize(struct inode *inode,
4640                                    unsigned int new_extra_isize,
4641                                    struct ext4_iloc iloc,
4642                                    handle_t *handle)
4643 {
4644         struct ext4_inode *raw_inode;
4645         struct ext4_xattr_ibody_header *header;
4646         struct ext4_xattr_entry *entry;
4647
4648         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4649                 return 0;
4650
4651         raw_inode = ext4_raw_inode(&iloc);
4652
4653         header = IHDR(inode, raw_inode);
4654         entry = IFIRST(header);
4655
4656         /* No extended attributes present */
4657         if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
4658                 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4659                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4660                         new_extra_isize);
4661                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4662                 return 0;
4663         }
4664
4665         /* try to expand with EAs present */
4666         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4667                                           raw_inode, handle);
4668 }
4669
4670 /*
4671  * What we do here is to mark the in-core inode as clean with respect to inode
4672  * dirtiness (it may still be data-dirty).
4673  * This means that the in-core inode may be reaped by prune_icache
4674  * without having to perform any I/O.  This is a very good thing,
4675  * because *any* task may call prune_icache - even ones which
4676  * have a transaction open against a different journal.
4677  *
4678  * Is this cheating?  Not really.  Sure, we haven't written the
4679  * inode out, but prune_icache isn't a user-visible syncing function.
4680  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4681  * we start and wait on commits.
4682  *
4683  * Is this efficient/effective?  Well, we're being nice to the system
4684  * by cleaning up our inodes proactively so they can be reaped
4685  * without I/O.  But we are potentially leaving up to five seconds'
4686  * worth of inodes floating about which prune_icache wants us to
4687  * write out.  One way to fix that would be to get prune_icache()
4688  * to do a write_super() to free up some memory.  It has the desired
4689  * effect.
4690  */
4691 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4692 {
4693         struct ext4_iloc iloc;
4694         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4695         static unsigned int mnt_count;
4696         int err, ret;
4697
4698         might_sleep();
4699         err = ext4_reserve_inode_write(handle, inode, &iloc);
4700         if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4701             !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
4702                 /*
4703                  * We need extra buffer credits since we may write into EA block
4704                  * with this same handle. If journal_extend fails, then it will
4705                  * only result in a minor loss of functionality for that inode.
4706                  * If this is felt to be critical, then e2fsck should be run to
4707                  * force a large enough s_min_extra_isize.
4708                  */
4709                 if ((jbd2_journal_extend(handle,
4710                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4711                         ret = ext4_expand_extra_isize(inode,
4712                                                       sbi->s_want_extra_isize,
4713                                                       iloc, handle);
4714                         if (ret) {
4715                                 EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
4716                                 if (mnt_count !=
4717                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
4718                                         ext4_warning(inode->i_sb, __func__,
4719                                         "Unable to expand inode %lu. Delete"
4720                                         " some EAs or run e2fsck.",
4721                                         inode->i_ino);
4722                                         mnt_count =
4723                                           le16_to_cpu(sbi->s_es->s_mnt_count);
4724                                 }
4725                         }
4726                 }
4727         }
4728         if (!err)
4729                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4730         return err;
4731 }
4732
4733 /*
4734  * ext4_dirty_inode() is called from __mark_inode_dirty()
4735  *
4736  * We're really interested in the case where a file is being extended.
4737  * i_size has been changed by generic_commit_write() and we thus need
4738  * to include the updated inode in the current transaction.
4739  *
4740  * Also, DQUOT_ALLOC_SPACE() will always dirty the inode when blocks
4741  * are allocated to the file.
4742  *
4743  * If the inode is marked synchronous, we don't honour that here - doing
4744  * so would cause a commit on atime updates, which we don't bother doing.
4745  * We handle synchronous inodes at the highest possible level.
4746  */
4747 void ext4_dirty_inode(struct inode *inode)
4748 {
4749         handle_t *current_handle = ext4_journal_current_handle();
4750         handle_t *handle;
4751
4752         handle = ext4_journal_start(inode, 2);
4753         if (IS_ERR(handle))
4754                 goto out;
4755         if (current_handle &&
4756                 current_handle->h_transaction != handle->h_transaction) {
4757                 /* This task has a transaction open against a different fs */
4758                 printk(KERN_EMERG "%s: transactions do not match!\n",
4759                        __func__);
4760         } else {
4761                 jbd_debug(5, "marking dirty.  outer handle=%p\n",
4762                                 current_handle);
4763                 ext4_mark_inode_dirty(handle, inode);
4764         }
4765         ext4_journal_stop(handle);
4766 out:
4767         return;
4768 }
4769
4770 #if 0
4771 /*
4772  * Bind an inode's backing buffer_head into this transaction, to prevent
4773  * it from being flushed to disk early.  Unlike
4774  * ext4_reserve_inode_write, this leaves behind no bh reference and
4775  * returns no iloc structure, so the caller needs to repeat the iloc
4776  * lookup to mark the inode dirty later.
4777  */
4778 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4779 {
4780         struct ext4_iloc iloc;
4781
4782         int err = 0;
4783         if (handle) {
4784                 err = ext4_get_inode_loc(inode, &iloc);
4785                 if (!err) {
4786                         BUFFER_TRACE(iloc.bh, "get_write_access");
4787                         err = jbd2_journal_get_write_access(handle, iloc.bh);
4788                         if (!err)
4789                                 err = ext4_journal_dirty_metadata(handle,
4790                                                                   iloc.bh);
4791                         brelse(iloc.bh);
4792                 }
4793         }
4794         ext4_std_error(inode->i_sb, err);
4795         return err;
4796 }
4797 #endif
4798
4799 int ext4_change_inode_journal_flag(struct inode *inode, int val)
4800 {
4801         journal_t *journal;
4802         handle_t *handle;
4803         int err;
4804
4805         /*
4806          * We have to be very careful here: changing a data block's
4807          * journaling status dynamically is dangerous.  If we write a
4808          * data block to the journal, change the status and then delete
4809          * that block, we risk forgetting to revoke the old log record
4810          * from the journal and so a subsequent replay can corrupt data.
4811          * So, first we make sure that the journal is empty and that
4812          * nobody is changing anything.
4813          */
4814
4815         journal = EXT4_JOURNAL(inode);
4816         if (is_journal_aborted(journal))
4817                 return -EROFS;
4818
4819         jbd2_journal_lock_updates(journal);
4820         jbd2_journal_flush(journal);
4821
4822         /*
4823          * OK, there are no updates running now, and all cached data is
4824          * synced to disk.  We are now in a completely consistent state
4825          * which doesn't have anything in the journal, and we know that
4826          * no filesystem updates are running, so it is safe to modify
4827          * the inode's in-core data-journaling state flag now.
4828          */
4829
4830         if (val)
4831                 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
4832         else
4833                 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
4834         ext4_set_aops(inode);
4835
4836         jbd2_journal_unlock_updates(journal);
4837
4838         /* Finally we can mark the inode as dirty. */
4839
4840         handle = ext4_journal_start(inode, 1);
4841         if (IS_ERR(handle))
4842                 return PTR_ERR(handle);
4843
4844         err = ext4_mark_inode_dirty(handle, inode);
4845         handle->h_sync = 1;
4846         ext4_journal_stop(handle);
4847         ext4_std_error(inode->i_sb, err);
4848
4849         return err;
4850 }
4851
4852 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4853 {
4854         return !buffer_mapped(bh);
4855 }
4856
4857 int ext4_page_mkwrite(struct vm_area_struct *vma, struct page *page)
4858 {
4859         loff_t size;
4860         unsigned long len;
4861         int ret = -EINVAL;
4862         struct file *file = vma->vm_file;
4863         struct inode *inode = file->f_path.dentry->d_inode;
4864         struct address_space *mapping = inode->i_mapping;
4865
4866         /*
4867          * Get i_alloc_sem to stop truncates messing with the inode. We cannot
4868          * get i_mutex because we are already holding mmap_sem.
4869          */
4870         down_read(&inode->i_alloc_sem);
4871         size = i_size_read(inode);
4872         if (page->mapping != mapping || size <= page_offset(page)
4873             || !PageUptodate(page)) {
4874                 /* page got truncated from under us? */
4875                 goto out_unlock;
4876         }
4877         ret = 0;
4878         if (PageMappedToDisk(page))
4879                 goto out_unlock;
4880
4881         if (page->index == size >> PAGE_CACHE_SHIFT)
4882                 len = size & ~PAGE_CACHE_MASK;
4883         else
4884                 len = PAGE_CACHE_SIZE;
4885
4886         if (page_has_buffers(page)) {
4887                 /* return if we have all the buffers mapped */
4888                 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
4889                                        ext4_bh_unmapped))
4890                         goto out_unlock;
4891         }
4892         /*
4893          * OK, we need to fill the hole... Do write_begin write_end
4894          * to do block allocation/reservation.We are not holding
4895          * inode.i__mutex here. That allow * parallel write_begin,
4896          * write_end call. lock_page prevent this from happening
4897          * on the same page though
4898          */
4899         ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
4900                         len, AOP_FLAG_UNINTERRUPTIBLE, &page, NULL);
4901         if (ret < 0)
4902                 goto out_unlock;
4903         ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
4904                         len, len, page, NULL);
4905         if (ret < 0)
4906                 goto out_unlock;
4907         ret = 0;
4908 out_unlock:
4909         up_read(&inode->i_alloc_sem);
4910         return ret;
4911 }