ext4: attempt to fix race in bigalloc code path
[pandora-kernel.git] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *      (jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20
21 #include <linux/module.h>
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/jbd2.h>
25 #include <linux/highuid.h>
26 #include <linux/pagemap.h>
27 #include <linux/quotaops.h>
28 #include <linux/string.h>
29 #include <linux/buffer_head.h>
30 #include <linux/writeback.h>
31 #include <linux/pagevec.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/uio.h>
35 #include <linux/bio.h>
36 #include <linux/workqueue.h>
37 #include <linux/kernel.h>
38 #include <linux/printk.h>
39 #include <linux/slab.h>
40 #include <linux/ratelimit.h>
41
42 #include "ext4_jbd2.h"
43 #include "xattr.h"
44 #include "acl.h"
45 #include "truncate.h"
46
47 #include <trace/events/ext4.h>
48
49 #define MPAGE_DA_EXTENT_TAIL 0x01
50
51 static inline int ext4_begin_ordered_truncate(struct inode *inode,
52                                               loff_t new_size)
53 {
54         trace_ext4_begin_ordered_truncate(inode, new_size);
55         /*
56          * If jinode is zero, then we never opened the file for
57          * writing, so there's no need to call
58          * jbd2_journal_begin_ordered_truncate() since there's no
59          * outstanding writes we need to flush.
60          */
61         if (!EXT4_I(inode)->jinode)
62                 return 0;
63         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
64                                                    EXT4_I(inode)->jinode,
65                                                    new_size);
66 }
67
68 static void ext4_invalidatepage(struct page *page, unsigned long offset);
69 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
70                                    struct buffer_head *bh_result, int create);
71 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
72 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
73 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
74 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
75
76 /*
77  * Test whether an inode is a fast symlink.
78  */
79 static int ext4_inode_is_fast_symlink(struct inode *inode)
80 {
81         int ea_blocks = EXT4_I(inode)->i_file_acl ?
82                 (inode->i_sb->s_blocksize >> 9) : 0;
83
84         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
85 }
86
87 /*
88  * Restart the transaction associated with *handle.  This does a commit,
89  * so before we call here everything must be consistently dirtied against
90  * this transaction.
91  */
92 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
93                                  int nblocks)
94 {
95         int ret;
96
97         /*
98          * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
99          * moment, get_block can be called only for blocks inside i_size since
100          * page cache has been already dropped and writes are blocked by
101          * i_mutex. So we can safely drop the i_data_sem here.
102          */
103         BUG_ON(EXT4_JOURNAL(inode) == NULL);
104         jbd_debug(2, "restarting handle %p\n", handle);
105         up_write(&EXT4_I(inode)->i_data_sem);
106         ret = ext4_journal_restart(handle, nblocks);
107         down_write(&EXT4_I(inode)->i_data_sem);
108         ext4_discard_preallocations(inode);
109
110         return ret;
111 }
112
113 /*
114  * Called at the last iput() if i_nlink is zero.
115  */
116 void ext4_evict_inode(struct inode *inode)
117 {
118         handle_t *handle;
119         int err;
120
121         trace_ext4_evict_inode(inode);
122
123         ext4_ioend_wait(inode);
124
125         if (inode->i_nlink) {
126                 /*
127                  * When journalling data dirty buffers are tracked only in the
128                  * journal. So although mm thinks everything is clean and
129                  * ready for reaping the inode might still have some pages to
130                  * write in the running transaction or waiting to be
131                  * checkpointed. Thus calling jbd2_journal_invalidatepage()
132                  * (via truncate_inode_pages()) to discard these buffers can
133                  * cause data loss. Also even if we did not discard these
134                  * buffers, we would have no way to find them after the inode
135                  * is reaped and thus user could see stale data if he tries to
136                  * read them before the transaction is checkpointed. So be
137                  * careful and force everything to disk here... We use
138                  * ei->i_datasync_tid to store the newest transaction
139                  * containing inode's data.
140                  *
141                  * Note that directories do not have this problem because they
142                  * don't use page cache.
143                  */
144                 if (ext4_should_journal_data(inode) &&
145                     (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
146                         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
147                         tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
148
149                         jbd2_log_start_commit(journal, commit_tid);
150                         jbd2_log_wait_commit(journal, commit_tid);
151                         filemap_write_and_wait(&inode->i_data);
152                 }
153                 truncate_inode_pages(&inode->i_data, 0);
154                 goto no_delete;
155         }
156
157         if (!is_bad_inode(inode))
158                 dquot_initialize(inode);
159
160         if (ext4_should_order_data(inode))
161                 ext4_begin_ordered_truncate(inode, 0);
162         truncate_inode_pages(&inode->i_data, 0);
163
164         if (is_bad_inode(inode))
165                 goto no_delete;
166
167         handle = ext4_journal_start(inode, ext4_blocks_for_truncate(inode)+3);
168         if (IS_ERR(handle)) {
169                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
170                 /*
171                  * If we're going to skip the normal cleanup, we still need to
172                  * make sure that the in-core orphan linked list is properly
173                  * cleaned up.
174                  */
175                 ext4_orphan_del(NULL, inode);
176                 goto no_delete;
177         }
178
179         if (IS_SYNC(inode))
180                 ext4_handle_sync(handle);
181         inode->i_size = 0;
182         err = ext4_mark_inode_dirty(handle, inode);
183         if (err) {
184                 ext4_warning(inode->i_sb,
185                              "couldn't mark inode dirty (err %d)", err);
186                 goto stop_handle;
187         }
188         if (inode->i_blocks)
189                 ext4_truncate(inode);
190
191         /*
192          * ext4_ext_truncate() doesn't reserve any slop when it
193          * restarts journal transactions; therefore there may not be
194          * enough credits left in the handle to remove the inode from
195          * the orphan list and set the dtime field.
196          */
197         if (!ext4_handle_has_enough_credits(handle, 3)) {
198                 err = ext4_journal_extend(handle, 3);
199                 if (err > 0)
200                         err = ext4_journal_restart(handle, 3);
201                 if (err != 0) {
202                         ext4_warning(inode->i_sb,
203                                      "couldn't extend journal (err %d)", err);
204                 stop_handle:
205                         ext4_journal_stop(handle);
206                         ext4_orphan_del(NULL, inode);
207                         goto no_delete;
208                 }
209         }
210
211         /*
212          * Kill off the orphan record which ext4_truncate created.
213          * AKPM: I think this can be inside the above `if'.
214          * Note that ext4_orphan_del() has to be able to cope with the
215          * deletion of a non-existent orphan - this is because we don't
216          * know if ext4_truncate() actually created an orphan record.
217          * (Well, we could do this if we need to, but heck - it works)
218          */
219         ext4_orphan_del(handle, inode);
220         EXT4_I(inode)->i_dtime  = get_seconds();
221
222         /*
223          * One subtle ordering requirement: if anything has gone wrong
224          * (transaction abort, IO errors, whatever), then we can still
225          * do these next steps (the fs will already have been marked as
226          * having errors), but we can't free the inode if the mark_dirty
227          * fails.
228          */
229         if (ext4_mark_inode_dirty(handle, inode))
230                 /* If that failed, just do the required in-core inode clear. */
231                 ext4_clear_inode(inode);
232         else
233                 ext4_free_inode(handle, inode);
234         ext4_journal_stop(handle);
235         return;
236 no_delete:
237         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
238 }
239
240 #ifdef CONFIG_QUOTA
241 qsize_t *ext4_get_reserved_space(struct inode *inode)
242 {
243         return &EXT4_I(inode)->i_reserved_quota;
244 }
245 #endif
246
247 /*
248  * Calculate the number of metadata blocks need to reserve
249  * to allocate a block located at @lblock
250  */
251 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
252 {
253         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
254                 return ext4_ext_calc_metadata_amount(inode, lblock);
255
256         return ext4_ind_calc_metadata_amount(inode, lblock);
257 }
258
259 /*
260  * Called with i_data_sem down, which is important since we can call
261  * ext4_discard_preallocations() from here.
262  */
263 void ext4_da_update_reserve_space(struct inode *inode,
264                                         int used, int quota_claim)
265 {
266         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
267         struct ext4_inode_info *ei = EXT4_I(inode);
268
269         spin_lock(&ei->i_block_reservation_lock);
270         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
271         if (unlikely(used > ei->i_reserved_data_blocks)) {
272                 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
273                          "with only %d reserved data blocks\n",
274                          __func__, inode->i_ino, used,
275                          ei->i_reserved_data_blocks);
276                 WARN_ON(1);
277                 used = ei->i_reserved_data_blocks;
278         }
279
280         /* Update per-inode reservations */
281         ei->i_reserved_data_blocks -= used;
282         ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
283         percpu_counter_sub(&sbi->s_dirtyclusters_counter,
284                            used + ei->i_allocated_meta_blocks);
285         ei->i_allocated_meta_blocks = 0;
286
287         if (ei->i_reserved_data_blocks == 0) {
288                 /*
289                  * We can release all of the reserved metadata blocks
290                  * only when we have written all of the delayed
291                  * allocation blocks.
292                  */
293                 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
294                                    ei->i_reserved_meta_blocks);
295                 ei->i_reserved_meta_blocks = 0;
296                 ei->i_da_metadata_calc_len = 0;
297         }
298         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
299
300         /* Update quota subsystem for data blocks */
301         if (quota_claim)
302                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
303         else {
304                 /*
305                  * We did fallocate with an offset that is already delayed
306                  * allocated. So on delayed allocated writeback we should
307                  * not re-claim the quota for fallocated blocks.
308                  */
309                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
310         }
311
312         /*
313          * If we have done all the pending block allocations and if
314          * there aren't any writers on the inode, we can discard the
315          * inode's preallocations.
316          */
317         if ((ei->i_reserved_data_blocks == 0) &&
318             (atomic_read(&inode->i_writecount) == 0))
319                 ext4_discard_preallocations(inode);
320 }
321
322 static int __check_block_validity(struct inode *inode, const char *func,
323                                 unsigned int line,
324                                 struct ext4_map_blocks *map)
325 {
326         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
327                                    map->m_len)) {
328                 ext4_error_inode(inode, func, line, map->m_pblk,
329                                  "lblock %lu mapped to illegal pblock "
330                                  "(length %d)", (unsigned long) map->m_lblk,
331                                  map->m_len);
332                 return -EIO;
333         }
334         return 0;
335 }
336
337 #define check_block_validity(inode, map)        \
338         __check_block_validity((inode), __func__, __LINE__, (map))
339
340 /*
341  * Return the number of contiguous dirty pages in a given inode
342  * starting at page frame idx.
343  */
344 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
345                                     unsigned int max_pages)
346 {
347         struct address_space *mapping = inode->i_mapping;
348         pgoff_t index;
349         struct pagevec pvec;
350         pgoff_t num = 0;
351         int i, nr_pages, done = 0;
352
353         if (max_pages == 0)
354                 return 0;
355         pagevec_init(&pvec, 0);
356         while (!done) {
357                 index = idx;
358                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
359                                               PAGECACHE_TAG_DIRTY,
360                                               (pgoff_t)PAGEVEC_SIZE);
361                 if (nr_pages == 0)
362                         break;
363                 for (i = 0; i < nr_pages; i++) {
364                         struct page *page = pvec.pages[i];
365                         struct buffer_head *bh, *head;
366
367                         lock_page(page);
368                         if (unlikely(page->mapping != mapping) ||
369                             !PageDirty(page) ||
370                             PageWriteback(page) ||
371                             page->index != idx) {
372                                 done = 1;
373                                 unlock_page(page);
374                                 break;
375                         }
376                         if (page_has_buffers(page)) {
377                                 bh = head = page_buffers(page);
378                                 do {
379                                         if (!buffer_delay(bh) &&
380                                             !buffer_unwritten(bh))
381                                                 done = 1;
382                                         bh = bh->b_this_page;
383                                 } while (!done && (bh != head));
384                         }
385                         unlock_page(page);
386                         if (done)
387                                 break;
388                         idx++;
389                         num++;
390                         if (num >= max_pages) {
391                                 done = 1;
392                                 break;
393                         }
394                 }
395                 pagevec_release(&pvec);
396         }
397         return num;
398 }
399
400 /*
401  * Sets the BH_Da_Mapped bit on the buffer heads corresponding to the given map.
402  */
403 static void set_buffers_da_mapped(struct inode *inode,
404                                    struct ext4_map_blocks *map)
405 {
406         struct address_space *mapping = inode->i_mapping;
407         struct pagevec pvec;
408         int i, nr_pages;
409         pgoff_t index, end;
410
411         index = map->m_lblk >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
412         end = (map->m_lblk + map->m_len - 1) >>
413                 (PAGE_CACHE_SHIFT - inode->i_blkbits);
414
415         pagevec_init(&pvec, 0);
416         while (index <= end) {
417                 nr_pages = pagevec_lookup(&pvec, mapping, index,
418                                           min(end - index + 1,
419                                               (pgoff_t)PAGEVEC_SIZE));
420                 if (nr_pages == 0)
421                         break;
422                 for (i = 0; i < nr_pages; i++) {
423                         struct page *page = pvec.pages[i];
424                         struct buffer_head *bh, *head;
425
426                         if (unlikely(page->mapping != mapping) ||
427                             !PageDirty(page))
428                                 break;
429
430                         if (page_has_buffers(page)) {
431                                 bh = head = page_buffers(page);
432                                 do {
433                                         set_buffer_da_mapped(bh);
434                                         bh = bh->b_this_page;
435                                 } while (bh != head);
436                         }
437                         index++;
438                 }
439                 pagevec_release(&pvec);
440         }
441 }
442
443 /*
444  * The ext4_map_blocks() function tries to look up the requested blocks,
445  * and returns if the blocks are already mapped.
446  *
447  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
448  * and store the allocated blocks in the result buffer head and mark it
449  * mapped.
450  *
451  * If file type is extents based, it will call ext4_ext_map_blocks(),
452  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
453  * based files
454  *
455  * On success, it returns the number of blocks being mapped or allocate.
456  * if create==0 and the blocks are pre-allocated and uninitialized block,
457  * the result buffer head is unmapped. If the create ==1, it will make sure
458  * the buffer head is mapped.
459  *
460  * It returns 0 if plain look up failed (blocks have not been allocated), in
461  * that casem, buffer head is unmapped
462  *
463  * It returns the error in case of allocation failure.
464  */
465 int ext4_map_blocks(handle_t *handle, struct inode *inode,
466                     struct ext4_map_blocks *map, int flags)
467 {
468         int retval;
469
470         map->m_flags = 0;
471         ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
472                   "logical block %lu\n", inode->i_ino, flags, map->m_len,
473                   (unsigned long) map->m_lblk);
474         /*
475          * Try to see if we can get the block without requesting a new
476          * file system block.
477          */
478         down_read((&EXT4_I(inode)->i_data_sem));
479         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
480                 retval = ext4_ext_map_blocks(handle, inode, map, 0);
481         } else {
482                 retval = ext4_ind_map_blocks(handle, inode, map, 0);
483         }
484         up_read((&EXT4_I(inode)->i_data_sem));
485
486         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
487                 int ret = check_block_validity(inode, map);
488                 if (ret != 0)
489                         return ret;
490         }
491
492         /* If it is only a block(s) look up */
493         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
494                 return retval;
495
496         /*
497          * Returns if the blocks have already allocated
498          *
499          * Note that if blocks have been preallocated
500          * ext4_ext_get_block() returns th create = 0
501          * with buffer head unmapped.
502          */
503         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
504                 return retval;
505
506         /*
507          * When we call get_blocks without the create flag, the
508          * BH_Unwritten flag could have gotten set if the blocks
509          * requested were part of a uninitialized extent.  We need to
510          * clear this flag now that we are committed to convert all or
511          * part of the uninitialized extent to be an initialized
512          * extent.  This is because we need to avoid the combination
513          * of BH_Unwritten and BH_Mapped flags being simultaneously
514          * set on the buffer_head.
515          */
516         map->m_flags &= ~EXT4_MAP_UNWRITTEN;
517
518         /*
519          * New blocks allocate and/or writing to uninitialized extent
520          * will possibly result in updating i_data, so we take
521          * the write lock of i_data_sem, and call get_blocks()
522          * with create == 1 flag.
523          */
524         down_write((&EXT4_I(inode)->i_data_sem));
525
526         /*
527          * if the caller is from delayed allocation writeout path
528          * we have already reserved fs blocks for allocation
529          * let the underlying get_block() function know to
530          * avoid double accounting
531          */
532         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
533                 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
534         /*
535          * We need to check for EXT4 here because migrate
536          * could have changed the inode type in between
537          */
538         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
539                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
540         } else {
541                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
542
543                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
544                         /*
545                          * We allocated new blocks which will result in
546                          * i_data's format changing.  Force the migrate
547                          * to fail by clearing migrate flags
548                          */
549                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
550                 }
551
552                 /*
553                  * Update reserved blocks/metadata blocks after successful
554                  * block allocation which had been deferred till now. We don't
555                  * support fallocate for non extent files. So we can update
556                  * reserve space here.
557                  */
558                 if ((retval > 0) &&
559                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
560                         ext4_da_update_reserve_space(inode, retval, 1);
561         }
562         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
563                 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
564
565                 /* If we have successfully mapped the delayed allocated blocks,
566                  * set the BH_Da_Mapped bit on them. Its important to do this
567                  * under the protection of i_data_sem.
568                  */
569                 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
570                         set_buffers_da_mapped(inode, map);
571         }
572
573         up_write((&EXT4_I(inode)->i_data_sem));
574         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
575                 int ret = check_block_validity(inode, map);
576                 if (ret != 0)
577                         return ret;
578         }
579         return retval;
580 }
581
582 /* Maximum number of blocks we map for direct IO at once. */
583 #define DIO_MAX_BLOCKS 4096
584
585 static int _ext4_get_block(struct inode *inode, sector_t iblock,
586                            struct buffer_head *bh, int flags)
587 {
588         handle_t *handle = ext4_journal_current_handle();
589         struct ext4_map_blocks map;
590         int ret = 0, started = 0;
591         int dio_credits;
592
593         map.m_lblk = iblock;
594         map.m_len = bh->b_size >> inode->i_blkbits;
595
596         if (flags && !handle) {
597                 /* Direct IO write... */
598                 if (map.m_len > DIO_MAX_BLOCKS)
599                         map.m_len = DIO_MAX_BLOCKS;
600                 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
601                 handle = ext4_journal_start(inode, dio_credits);
602                 if (IS_ERR(handle)) {
603                         ret = PTR_ERR(handle);
604                         return ret;
605                 }
606                 started = 1;
607         }
608
609         ret = ext4_map_blocks(handle, inode, &map, flags);
610         if (ret > 0) {
611                 map_bh(bh, inode->i_sb, map.m_pblk);
612                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
613                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
614                 ret = 0;
615         }
616         if (started)
617                 ext4_journal_stop(handle);
618         return ret;
619 }
620
621 int ext4_get_block(struct inode *inode, sector_t iblock,
622                    struct buffer_head *bh, int create)
623 {
624         return _ext4_get_block(inode, iblock, bh,
625                                create ? EXT4_GET_BLOCKS_CREATE : 0);
626 }
627
628 /*
629  * `handle' can be NULL if create is zero
630  */
631 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
632                                 ext4_lblk_t block, int create, int *errp)
633 {
634         struct ext4_map_blocks map;
635         struct buffer_head *bh;
636         int fatal = 0, err;
637
638         J_ASSERT(handle != NULL || create == 0);
639
640         map.m_lblk = block;
641         map.m_len = 1;
642         err = ext4_map_blocks(handle, inode, &map,
643                               create ? EXT4_GET_BLOCKS_CREATE : 0);
644
645         if (err < 0)
646                 *errp = err;
647         if (err <= 0)
648                 return NULL;
649         *errp = 0;
650
651         bh = sb_getblk(inode->i_sb, map.m_pblk);
652         if (!bh) {
653                 *errp = -EIO;
654                 return NULL;
655         }
656         if (map.m_flags & EXT4_MAP_NEW) {
657                 J_ASSERT(create != 0);
658                 J_ASSERT(handle != NULL);
659
660                 /*
661                  * Now that we do not always journal data, we should
662                  * keep in mind whether this should always journal the
663                  * new buffer as metadata.  For now, regular file
664                  * writes use ext4_get_block instead, so it's not a
665                  * problem.
666                  */
667                 lock_buffer(bh);
668                 BUFFER_TRACE(bh, "call get_create_access");
669                 fatal = ext4_journal_get_create_access(handle, bh);
670                 if (!fatal && !buffer_uptodate(bh)) {
671                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
672                         set_buffer_uptodate(bh);
673                 }
674                 unlock_buffer(bh);
675                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
676                 err = ext4_handle_dirty_metadata(handle, inode, bh);
677                 if (!fatal)
678                         fatal = err;
679         } else {
680                 BUFFER_TRACE(bh, "not a new buffer");
681         }
682         if (fatal) {
683                 *errp = fatal;
684                 brelse(bh);
685                 bh = NULL;
686         }
687         return bh;
688 }
689
690 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
691                                ext4_lblk_t block, int create, int *err)
692 {
693         struct buffer_head *bh;
694
695         bh = ext4_getblk(handle, inode, block, create, err);
696         if (!bh)
697                 return bh;
698         if (buffer_uptodate(bh))
699                 return bh;
700         ll_rw_block(READ_META, 1, &bh);
701         wait_on_buffer(bh);
702         if (buffer_uptodate(bh))
703                 return bh;
704         put_bh(bh);
705         *err = -EIO;
706         return NULL;
707 }
708
709 static int walk_page_buffers(handle_t *handle,
710                              struct buffer_head *head,
711                              unsigned from,
712                              unsigned to,
713                              int *partial,
714                              int (*fn)(handle_t *handle,
715                                        struct buffer_head *bh))
716 {
717         struct buffer_head *bh;
718         unsigned block_start, block_end;
719         unsigned blocksize = head->b_size;
720         int err, ret = 0;
721         struct buffer_head *next;
722
723         for (bh = head, block_start = 0;
724              ret == 0 && (bh != head || !block_start);
725              block_start = block_end, bh = next) {
726                 next = bh->b_this_page;
727                 block_end = block_start + blocksize;
728                 if (block_end <= from || block_start >= to) {
729                         if (partial && !buffer_uptodate(bh))
730                                 *partial = 1;
731                         continue;
732                 }
733                 err = (*fn)(handle, bh);
734                 if (!ret)
735                         ret = err;
736         }
737         return ret;
738 }
739
740 /*
741  * To preserve ordering, it is essential that the hole instantiation and
742  * the data write be encapsulated in a single transaction.  We cannot
743  * close off a transaction and start a new one between the ext4_get_block()
744  * and the commit_write().  So doing the jbd2_journal_start at the start of
745  * prepare_write() is the right place.
746  *
747  * Also, this function can nest inside ext4_writepage() ->
748  * block_write_full_page(). In that case, we *know* that ext4_writepage()
749  * has generated enough buffer credits to do the whole page.  So we won't
750  * block on the journal in that case, which is good, because the caller may
751  * be PF_MEMALLOC.
752  *
753  * By accident, ext4 can be reentered when a transaction is open via
754  * quota file writes.  If we were to commit the transaction while thus
755  * reentered, there can be a deadlock - we would be holding a quota
756  * lock, and the commit would never complete if another thread had a
757  * transaction open and was blocking on the quota lock - a ranking
758  * violation.
759  *
760  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
761  * will _not_ run commit under these circumstances because handle->h_ref
762  * is elevated.  We'll still have enough credits for the tiny quotafile
763  * write.
764  */
765 static int do_journal_get_write_access(handle_t *handle,
766                                        struct buffer_head *bh)
767 {
768         int dirty = buffer_dirty(bh);
769         int ret;
770
771         if (!buffer_mapped(bh) || buffer_freed(bh))
772                 return 0;
773         /*
774          * __block_write_begin() could have dirtied some buffers. Clean
775          * the dirty bit as jbd2_journal_get_write_access() could complain
776          * otherwise about fs integrity issues. Setting of the dirty bit
777          * by __block_write_begin() isn't a real problem here as we clear
778          * the bit before releasing a page lock and thus writeback cannot
779          * ever write the buffer.
780          */
781         if (dirty)
782                 clear_buffer_dirty(bh);
783         ret = ext4_journal_get_write_access(handle, bh);
784         if (!ret && dirty)
785                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
786         return ret;
787 }
788
789 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
790                    struct buffer_head *bh_result, int create);
791 static int ext4_write_begin(struct file *file, struct address_space *mapping,
792                             loff_t pos, unsigned len, unsigned flags,
793                             struct page **pagep, void **fsdata)
794 {
795         struct inode *inode = mapping->host;
796         int ret, needed_blocks;
797         handle_t *handle;
798         int retries = 0;
799         struct page *page;
800         pgoff_t index;
801         unsigned from, to;
802
803         trace_ext4_write_begin(inode, pos, len, flags);
804         /*
805          * Reserve one block more for addition to orphan list in case
806          * we allocate blocks but write fails for some reason
807          */
808         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
809         index = pos >> PAGE_CACHE_SHIFT;
810         from = pos & (PAGE_CACHE_SIZE - 1);
811         to = from + len;
812
813 retry:
814         handle = ext4_journal_start(inode, needed_blocks);
815         if (IS_ERR(handle)) {
816                 ret = PTR_ERR(handle);
817                 goto out;
818         }
819
820         /* We cannot recurse into the filesystem as the transaction is already
821          * started */
822         flags |= AOP_FLAG_NOFS;
823
824         page = grab_cache_page_write_begin(mapping, index, flags);
825         if (!page) {
826                 ext4_journal_stop(handle);
827                 ret = -ENOMEM;
828                 goto out;
829         }
830         *pagep = page;
831
832         if (ext4_should_dioread_nolock(inode))
833                 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
834         else
835                 ret = __block_write_begin(page, pos, len, ext4_get_block);
836
837         if (!ret && ext4_should_journal_data(inode)) {
838                 ret = walk_page_buffers(handle, page_buffers(page),
839                                 from, to, NULL, do_journal_get_write_access);
840         }
841
842         if (ret) {
843                 unlock_page(page);
844                 page_cache_release(page);
845                 /*
846                  * __block_write_begin may have instantiated a few blocks
847                  * outside i_size.  Trim these off again. Don't need
848                  * i_size_read because we hold i_mutex.
849                  *
850                  * Add inode to orphan list in case we crash before
851                  * truncate finishes
852                  */
853                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
854                         ext4_orphan_add(handle, inode);
855
856                 ext4_journal_stop(handle);
857                 if (pos + len > inode->i_size) {
858                         ext4_truncate_failed_write(inode);
859                         /*
860                          * If truncate failed early the inode might
861                          * still be on the orphan list; we need to
862                          * make sure the inode is removed from the
863                          * orphan list in that case.
864                          */
865                         if (inode->i_nlink)
866                                 ext4_orphan_del(NULL, inode);
867                 }
868         }
869
870         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
871                 goto retry;
872 out:
873         return ret;
874 }
875
876 /* For write_end() in data=journal mode */
877 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
878 {
879         if (!buffer_mapped(bh) || buffer_freed(bh))
880                 return 0;
881         set_buffer_uptodate(bh);
882         return ext4_handle_dirty_metadata(handle, NULL, bh);
883 }
884
885 static int ext4_generic_write_end(struct file *file,
886                                   struct address_space *mapping,
887                                   loff_t pos, unsigned len, unsigned copied,
888                                   struct page *page, void *fsdata)
889 {
890         int i_size_changed = 0;
891         struct inode *inode = mapping->host;
892         handle_t *handle = ext4_journal_current_handle();
893
894         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
895
896         /*
897          * No need to use i_size_read() here, the i_size
898          * cannot change under us because we hold i_mutex.
899          *
900          * But it's important to update i_size while still holding page lock:
901          * page writeout could otherwise come in and zero beyond i_size.
902          */
903         if (pos + copied > inode->i_size) {
904                 i_size_write(inode, pos + copied);
905                 i_size_changed = 1;
906         }
907
908         if (pos + copied >  EXT4_I(inode)->i_disksize) {
909                 /* We need to mark inode dirty even if
910                  * new_i_size is less that inode->i_size
911                  * bu greater than i_disksize.(hint delalloc)
912                  */
913                 ext4_update_i_disksize(inode, (pos + copied));
914                 i_size_changed = 1;
915         }
916         unlock_page(page);
917         page_cache_release(page);
918
919         /*
920          * Don't mark the inode dirty under page lock. First, it unnecessarily
921          * makes the holding time of page lock longer. Second, it forces lock
922          * ordering of page lock and transaction start for journaling
923          * filesystems.
924          */
925         if (i_size_changed)
926                 ext4_mark_inode_dirty(handle, inode);
927
928         return copied;
929 }
930
931 /*
932  * We need to pick up the new inode size which generic_commit_write gave us
933  * `file' can be NULL - eg, when called from page_symlink().
934  *
935  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
936  * buffers are managed internally.
937  */
938 static int ext4_ordered_write_end(struct file *file,
939                                   struct address_space *mapping,
940                                   loff_t pos, unsigned len, unsigned copied,
941                                   struct page *page, void *fsdata)
942 {
943         handle_t *handle = ext4_journal_current_handle();
944         struct inode *inode = mapping->host;
945         int ret = 0, ret2;
946
947         trace_ext4_ordered_write_end(inode, pos, len, copied);
948         ret = ext4_jbd2_file_inode(handle, inode);
949
950         if (ret == 0) {
951                 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
952                                                         page, fsdata);
953                 copied = ret2;
954                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
955                         /* if we have allocated more blocks and copied
956                          * less. We will have blocks allocated outside
957                          * inode->i_size. So truncate them
958                          */
959                         ext4_orphan_add(handle, inode);
960                 if (ret2 < 0)
961                         ret = ret2;
962         }
963         ret2 = ext4_journal_stop(handle);
964         if (!ret)
965                 ret = ret2;
966
967         if (pos + len > inode->i_size) {
968                 ext4_truncate_failed_write(inode);
969                 /*
970                  * If truncate failed early the inode might still be
971                  * on the orphan list; we need to make sure the inode
972                  * is removed from the orphan list in that case.
973                  */
974                 if (inode->i_nlink)
975                         ext4_orphan_del(NULL, inode);
976         }
977
978
979         return ret ? ret : copied;
980 }
981
982 static int ext4_writeback_write_end(struct file *file,
983                                     struct address_space *mapping,
984                                     loff_t pos, unsigned len, unsigned copied,
985                                     struct page *page, void *fsdata)
986 {
987         handle_t *handle = ext4_journal_current_handle();
988         struct inode *inode = mapping->host;
989         int ret = 0, ret2;
990
991         trace_ext4_writeback_write_end(inode, pos, len, copied);
992         ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
993                                                         page, fsdata);
994         copied = ret2;
995         if (pos + len > inode->i_size && ext4_can_truncate(inode))
996                 /* if we have allocated more blocks and copied
997                  * less. We will have blocks allocated outside
998                  * inode->i_size. So truncate them
999                  */
1000                 ext4_orphan_add(handle, inode);
1001
1002         if (ret2 < 0)
1003                 ret = ret2;
1004
1005         ret2 = ext4_journal_stop(handle);
1006         if (!ret)
1007                 ret = ret2;
1008
1009         if (pos + len > inode->i_size) {
1010                 ext4_truncate_failed_write(inode);
1011                 /*
1012                  * If truncate failed early the inode might still be
1013                  * on the orphan list; we need to make sure the inode
1014                  * is removed from the orphan list in that case.
1015                  */
1016                 if (inode->i_nlink)
1017                         ext4_orphan_del(NULL, inode);
1018         }
1019
1020         return ret ? ret : copied;
1021 }
1022
1023 static int ext4_journalled_write_end(struct file *file,
1024                                      struct address_space *mapping,
1025                                      loff_t pos, unsigned len, unsigned copied,
1026                                      struct page *page, void *fsdata)
1027 {
1028         handle_t *handle = ext4_journal_current_handle();
1029         struct inode *inode = mapping->host;
1030         int ret = 0, ret2;
1031         int partial = 0;
1032         unsigned from, to;
1033         loff_t new_i_size;
1034
1035         trace_ext4_journalled_write_end(inode, pos, len, copied);
1036         from = pos & (PAGE_CACHE_SIZE - 1);
1037         to = from + len;
1038
1039         BUG_ON(!ext4_handle_valid(handle));
1040
1041         if (copied < len) {
1042                 if (!PageUptodate(page))
1043                         copied = 0;
1044                 page_zero_new_buffers(page, from+copied, to);
1045         }
1046
1047         ret = walk_page_buffers(handle, page_buffers(page), from,
1048                                 to, &partial, write_end_fn);
1049         if (!partial)
1050                 SetPageUptodate(page);
1051         new_i_size = pos + copied;
1052         if (new_i_size > inode->i_size)
1053                 i_size_write(inode, pos+copied);
1054         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1055         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1056         if (new_i_size > EXT4_I(inode)->i_disksize) {
1057                 ext4_update_i_disksize(inode, new_i_size);
1058                 ret2 = ext4_mark_inode_dirty(handle, inode);
1059                 if (!ret)
1060                         ret = ret2;
1061         }
1062
1063         unlock_page(page);
1064         page_cache_release(page);
1065         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1066                 /* if we have allocated more blocks and copied
1067                  * less. We will have blocks allocated outside
1068                  * inode->i_size. So truncate them
1069                  */
1070                 ext4_orphan_add(handle, inode);
1071
1072         ret2 = ext4_journal_stop(handle);
1073         if (!ret)
1074                 ret = ret2;
1075         if (pos + len > inode->i_size) {
1076                 ext4_truncate_failed_write(inode);
1077                 /*
1078                  * If truncate failed early the inode might still be
1079                  * on the orphan list; we need to make sure the inode
1080                  * is removed from the orphan list in that case.
1081                  */
1082                 if (inode->i_nlink)
1083                         ext4_orphan_del(NULL, inode);
1084         }
1085
1086         return ret ? ret : copied;
1087 }
1088
1089 /*
1090  * Reserve a single cluster located at lblock
1091  */
1092 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1093 {
1094         int retries = 0;
1095         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1096         struct ext4_inode_info *ei = EXT4_I(inode);
1097         unsigned int md_needed;
1098         int ret;
1099
1100         /*
1101          * recalculate the amount of metadata blocks to reserve
1102          * in order to allocate nrblocks
1103          * worse case is one extent per block
1104          */
1105 repeat:
1106         spin_lock(&ei->i_block_reservation_lock);
1107         md_needed = EXT4_NUM_B2C(sbi,
1108                                  ext4_calc_metadata_amount(inode, lblock));
1109         trace_ext4_da_reserve_space(inode, md_needed);
1110         spin_unlock(&ei->i_block_reservation_lock);
1111
1112         /*
1113          * We will charge metadata quota at writeout time; this saves
1114          * us from metadata over-estimation, though we may go over by
1115          * a small amount in the end.  Here we just reserve for data.
1116          */
1117         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1118         if (ret)
1119                 return ret;
1120         /*
1121          * We do still charge estimated metadata to the sb though;
1122          * we cannot afford to run out of free blocks.
1123          */
1124         if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1125                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1126                 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1127                         yield();
1128                         goto repeat;
1129                 }
1130                 return -ENOSPC;
1131         }
1132         spin_lock(&ei->i_block_reservation_lock);
1133         ei->i_reserved_data_blocks++;
1134         ei->i_reserved_meta_blocks += md_needed;
1135         spin_unlock(&ei->i_block_reservation_lock);
1136
1137         return 0;       /* success */
1138 }
1139
1140 static void ext4_da_release_space(struct inode *inode, int to_free)
1141 {
1142         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1143         struct ext4_inode_info *ei = EXT4_I(inode);
1144
1145         if (!to_free)
1146                 return;         /* Nothing to release, exit */
1147
1148         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1149
1150         trace_ext4_da_release_space(inode, to_free);
1151         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1152                 /*
1153                  * if there aren't enough reserved blocks, then the
1154                  * counter is messed up somewhere.  Since this
1155                  * function is called from invalidate page, it's
1156                  * harmless to return without any action.
1157                  */
1158                 ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
1159                          "ino %lu, to_free %d with only %d reserved "
1160                          "data blocks\n", inode->i_ino, to_free,
1161                          ei->i_reserved_data_blocks);
1162                 WARN_ON(1);
1163                 to_free = ei->i_reserved_data_blocks;
1164         }
1165         ei->i_reserved_data_blocks -= to_free;
1166
1167         if (ei->i_reserved_data_blocks == 0) {
1168                 /*
1169                  * We can release all of the reserved metadata blocks
1170                  * only when we have written all of the delayed
1171                  * allocation blocks.
1172                  * Note that in case of bigalloc, i_reserved_meta_blocks,
1173                  * i_reserved_data_blocks, etc. refer to number of clusters.
1174                  */
1175                 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1176                                    ei->i_reserved_meta_blocks);
1177                 ei->i_reserved_meta_blocks = 0;
1178                 ei->i_da_metadata_calc_len = 0;
1179         }
1180
1181         /* update fs dirty data blocks counter */
1182         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1183
1184         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1185
1186         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1187 }
1188
1189 static void ext4_da_page_release_reservation(struct page *page,
1190                                              unsigned long offset)
1191 {
1192         int to_release = 0;
1193         struct buffer_head *head, *bh;
1194         unsigned int curr_off = 0;
1195         struct inode *inode = page->mapping->host;
1196         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1197         int num_clusters;
1198
1199         head = page_buffers(page);
1200         bh = head;
1201         do {
1202                 unsigned int next_off = curr_off + bh->b_size;
1203
1204                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1205                         to_release++;
1206                         clear_buffer_delay(bh);
1207                         clear_buffer_da_mapped(bh);
1208                 }
1209                 curr_off = next_off;
1210         } while ((bh = bh->b_this_page) != head);
1211
1212         /* If we have released all the blocks belonging to a cluster, then we
1213          * need to release the reserved space for that cluster. */
1214         num_clusters = EXT4_NUM_B2C(sbi, to_release);
1215         while (num_clusters > 0) {
1216                 ext4_fsblk_t lblk;
1217                 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1218                         ((num_clusters - 1) << sbi->s_cluster_bits);
1219                 if (sbi->s_cluster_ratio == 1 ||
1220                     !ext4_find_delalloc_cluster(inode, lblk, 1))
1221                         ext4_da_release_space(inode, 1);
1222
1223                 num_clusters--;
1224         }
1225 }
1226
1227 /*
1228  * Delayed allocation stuff
1229  */
1230
1231 /*
1232  * mpage_da_submit_io - walks through extent of pages and try to write
1233  * them with writepage() call back
1234  *
1235  * @mpd->inode: inode
1236  * @mpd->first_page: first page of the extent
1237  * @mpd->next_page: page after the last page of the extent
1238  *
1239  * By the time mpage_da_submit_io() is called we expect all blocks
1240  * to be allocated. this may be wrong if allocation failed.
1241  *
1242  * As pages are already locked by write_cache_pages(), we can't use it
1243  */
1244 static int mpage_da_submit_io(struct mpage_da_data *mpd,
1245                               struct ext4_map_blocks *map)
1246 {
1247         struct pagevec pvec;
1248         unsigned long index, end;
1249         int ret = 0, err, nr_pages, i;
1250         struct inode *inode = mpd->inode;
1251         struct address_space *mapping = inode->i_mapping;
1252         loff_t size = i_size_read(inode);
1253         unsigned int len, block_start;
1254         struct buffer_head *bh, *page_bufs = NULL;
1255         int journal_data = ext4_should_journal_data(inode);
1256         sector_t pblock = 0, cur_logical = 0;
1257         struct ext4_io_submit io_submit;
1258
1259         BUG_ON(mpd->next_page <= mpd->first_page);
1260         memset(&io_submit, 0, sizeof(io_submit));
1261         /*
1262          * We need to start from the first_page to the next_page - 1
1263          * to make sure we also write the mapped dirty buffer_heads.
1264          * If we look at mpd->b_blocknr we would only be looking
1265          * at the currently mapped buffer_heads.
1266          */
1267         index = mpd->first_page;
1268         end = mpd->next_page - 1;
1269
1270         pagevec_init(&pvec, 0);
1271         while (index <= end) {
1272                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1273                 if (nr_pages == 0)
1274                         break;
1275                 for (i = 0; i < nr_pages; i++) {
1276                         int commit_write = 0, skip_page = 0;
1277                         struct page *page = pvec.pages[i];
1278
1279                         index = page->index;
1280                         if (index > end)
1281                                 break;
1282
1283                         if (index == size >> PAGE_CACHE_SHIFT)
1284                                 len = size & ~PAGE_CACHE_MASK;
1285                         else
1286                                 len = PAGE_CACHE_SIZE;
1287                         if (map) {
1288                                 cur_logical = index << (PAGE_CACHE_SHIFT -
1289                                                         inode->i_blkbits);
1290                                 pblock = map->m_pblk + (cur_logical -
1291                                                         map->m_lblk);
1292                         }
1293                         index++;
1294
1295                         BUG_ON(!PageLocked(page));
1296                         BUG_ON(PageWriteback(page));
1297
1298                         /*
1299                          * If the page does not have buffers (for
1300                          * whatever reason), try to create them using
1301                          * __block_write_begin.  If this fails,
1302                          * skip the page and move on.
1303                          */
1304                         if (!page_has_buffers(page)) {
1305                                 if (__block_write_begin(page, 0, len,
1306                                                 noalloc_get_block_write)) {
1307                                 skip_page:
1308                                         unlock_page(page);
1309                                         continue;
1310                                 }
1311                                 commit_write = 1;
1312                         }
1313
1314                         bh = page_bufs = page_buffers(page);
1315                         block_start = 0;
1316                         do {
1317                                 if (!bh)
1318                                         goto skip_page;
1319                                 if (map && (cur_logical >= map->m_lblk) &&
1320                                     (cur_logical <= (map->m_lblk +
1321                                                      (map->m_len - 1)))) {
1322                                         if (buffer_delay(bh)) {
1323                                                 clear_buffer_delay(bh);
1324                                                 bh->b_blocknr = pblock;
1325                                         }
1326                                         if (buffer_da_mapped(bh))
1327                                                 clear_buffer_da_mapped(bh);
1328                                         if (buffer_unwritten(bh) ||
1329                                             buffer_mapped(bh))
1330                                                 BUG_ON(bh->b_blocknr != pblock);
1331                                         if (map->m_flags & EXT4_MAP_UNINIT)
1332                                                 set_buffer_uninit(bh);
1333                                         clear_buffer_unwritten(bh);
1334                                 }
1335
1336                                 /* skip page if block allocation undone */
1337                                 if (buffer_delay(bh) || buffer_unwritten(bh))
1338                                         skip_page = 1;
1339                                 bh = bh->b_this_page;
1340                                 block_start += bh->b_size;
1341                                 cur_logical++;
1342                                 pblock++;
1343                         } while (bh != page_bufs);
1344
1345                         if (skip_page)
1346                                 goto skip_page;
1347
1348                         if (commit_write)
1349                                 /* mark the buffer_heads as dirty & uptodate */
1350                                 block_commit_write(page, 0, len);
1351
1352                         clear_page_dirty_for_io(page);
1353                         /*
1354                          * Delalloc doesn't support data journalling,
1355                          * but eventually maybe we'll lift this
1356                          * restriction.
1357                          */
1358                         if (unlikely(journal_data && PageChecked(page)))
1359                                 err = __ext4_journalled_writepage(page, len);
1360                         else if (test_opt(inode->i_sb, MBLK_IO_SUBMIT))
1361                                 err = ext4_bio_write_page(&io_submit, page,
1362                                                           len, mpd->wbc);
1363                         else if (buffer_uninit(page_bufs)) {
1364                                 ext4_set_bh_endio(page_bufs, inode);
1365                                 err = block_write_full_page_endio(page,
1366                                         noalloc_get_block_write,
1367                                         mpd->wbc, ext4_end_io_buffer_write);
1368                         } else
1369                                 err = block_write_full_page(page,
1370                                         noalloc_get_block_write, mpd->wbc);
1371
1372                         if (!err)
1373                                 mpd->pages_written++;
1374                         /*
1375                          * In error case, we have to continue because
1376                          * remaining pages are still locked
1377                          */
1378                         if (ret == 0)
1379                                 ret = err;
1380                 }
1381                 pagevec_release(&pvec);
1382         }
1383         ext4_io_submit(&io_submit);
1384         return ret;
1385 }
1386
1387 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
1388 {
1389         int nr_pages, i;
1390         pgoff_t index, end;
1391         struct pagevec pvec;
1392         struct inode *inode = mpd->inode;
1393         struct address_space *mapping = inode->i_mapping;
1394
1395         index = mpd->first_page;
1396         end   = mpd->next_page - 1;
1397         while (index <= end) {
1398                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1399                 if (nr_pages == 0)
1400                         break;
1401                 for (i = 0; i < nr_pages; i++) {
1402                         struct page *page = pvec.pages[i];
1403                         if (page->index > end)
1404                                 break;
1405                         BUG_ON(!PageLocked(page));
1406                         BUG_ON(PageWriteback(page));
1407                         block_invalidatepage(page, 0);
1408                         ClearPageUptodate(page);
1409                         unlock_page(page);
1410                 }
1411                 index = pvec.pages[nr_pages - 1]->index + 1;
1412                 pagevec_release(&pvec);
1413         }
1414         return;
1415 }
1416
1417 static void ext4_print_free_blocks(struct inode *inode)
1418 {
1419         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1420         printk(KERN_CRIT "Total free blocks count %lld\n",
1421                EXT4_C2B(EXT4_SB(inode->i_sb),
1422                         ext4_count_free_clusters(inode->i_sb)));
1423         printk(KERN_CRIT "Free/Dirty block details\n");
1424         printk(KERN_CRIT "free_blocks=%lld\n",
1425                (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1426                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1427         printk(KERN_CRIT "dirty_blocks=%lld\n",
1428                (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1429                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1430         printk(KERN_CRIT "Block reservation details\n");
1431         printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
1432                EXT4_I(inode)->i_reserved_data_blocks);
1433         printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
1434                EXT4_I(inode)->i_reserved_meta_blocks);
1435         return;
1436 }
1437
1438 /*
1439  * mpage_da_map_and_submit - go through given space, map them
1440  *       if necessary, and then submit them for I/O
1441  *
1442  * @mpd - bh describing space
1443  *
1444  * The function skips space we know is already mapped to disk blocks.
1445  *
1446  */
1447 static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
1448 {
1449         int err, blks, get_blocks_flags;
1450         struct ext4_map_blocks map, *mapp = NULL;
1451         sector_t next = mpd->b_blocknr;
1452         unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
1453         loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
1454         handle_t *handle = NULL;
1455
1456         /*
1457          * If the blocks are mapped already, or we couldn't accumulate
1458          * any blocks, then proceed immediately to the submission stage.
1459          */
1460         if ((mpd->b_size == 0) ||
1461             ((mpd->b_state  & (1 << BH_Mapped)) &&
1462              !(mpd->b_state & (1 << BH_Delay)) &&
1463              !(mpd->b_state & (1 << BH_Unwritten))))
1464                 goto submit_io;
1465
1466         handle = ext4_journal_current_handle();
1467         BUG_ON(!handle);
1468
1469         /*
1470          * Call ext4_map_blocks() to allocate any delayed allocation
1471          * blocks, or to convert an uninitialized extent to be
1472          * initialized (in the case where we have written into
1473          * one or more preallocated blocks).
1474          *
1475          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
1476          * indicate that we are on the delayed allocation path.  This
1477          * affects functions in many different parts of the allocation
1478          * call path.  This flag exists primarily because we don't
1479          * want to change *many* call functions, so ext4_map_blocks()
1480          * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
1481          * inode's allocation semaphore is taken.
1482          *
1483          * If the blocks in questions were delalloc blocks, set
1484          * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
1485          * variables are updated after the blocks have been allocated.
1486          */
1487         map.m_lblk = next;
1488         map.m_len = max_blocks;
1489         get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
1490         if (ext4_should_dioread_nolock(mpd->inode))
1491                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
1492         if (mpd->b_state & (1 << BH_Delay))
1493                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
1494
1495         blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
1496         if (blks < 0) {
1497                 struct super_block *sb = mpd->inode->i_sb;
1498
1499                 err = blks;
1500                 /*
1501                  * If get block returns EAGAIN or ENOSPC and there
1502                  * appears to be free blocks we will just let
1503                  * mpage_da_submit_io() unlock all of the pages.
1504                  */
1505                 if (err == -EAGAIN)
1506                         goto submit_io;
1507
1508                 if (err == -ENOSPC && ext4_count_free_clusters(sb)) {
1509                         mpd->retval = err;
1510                         goto submit_io;
1511                 }
1512
1513                 /*
1514                  * get block failure will cause us to loop in
1515                  * writepages, because a_ops->writepage won't be able
1516                  * to make progress. The page will be redirtied by
1517                  * writepage and writepages will again try to write
1518                  * the same.
1519                  */
1520                 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
1521                         ext4_msg(sb, KERN_CRIT,
1522                                  "delayed block allocation failed for inode %lu "
1523                                  "at logical offset %llu with max blocks %zd "
1524                                  "with error %d", mpd->inode->i_ino,
1525                                  (unsigned long long) next,
1526                                  mpd->b_size >> mpd->inode->i_blkbits, err);
1527                         ext4_msg(sb, KERN_CRIT,
1528                                 "This should not happen!! Data will be lost\n");
1529                         if (err == -ENOSPC)
1530                                 ext4_print_free_blocks(mpd->inode);
1531                 }
1532                 /* invalidate all the pages */
1533                 ext4_da_block_invalidatepages(mpd);
1534
1535                 /* Mark this page range as having been completed */
1536                 mpd->io_done = 1;
1537                 return;
1538         }
1539         BUG_ON(blks == 0);
1540
1541         mapp = &map;
1542         if (map.m_flags & EXT4_MAP_NEW) {
1543                 struct block_device *bdev = mpd->inode->i_sb->s_bdev;
1544                 int i;
1545
1546                 for (i = 0; i < map.m_len; i++)
1547                         unmap_underlying_metadata(bdev, map.m_pblk + i);
1548
1549                 if (ext4_should_order_data(mpd->inode)) {
1550                         err = ext4_jbd2_file_inode(handle, mpd->inode);
1551                         if (err)
1552                                 /* Only if the journal is aborted */
1553                                 return;
1554                 }
1555         }
1556
1557         /*
1558          * Update on-disk size along with block allocation.
1559          */
1560         disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
1561         if (disksize > i_size_read(mpd->inode))
1562                 disksize = i_size_read(mpd->inode);
1563         if (disksize > EXT4_I(mpd->inode)->i_disksize) {
1564                 ext4_update_i_disksize(mpd->inode, disksize);
1565                 err = ext4_mark_inode_dirty(handle, mpd->inode);
1566                 if (err)
1567                         ext4_error(mpd->inode->i_sb,
1568                                    "Failed to mark inode %lu dirty",
1569                                    mpd->inode->i_ino);
1570         }
1571
1572 submit_io:
1573         mpage_da_submit_io(mpd, mapp);
1574         mpd->io_done = 1;
1575 }
1576
1577 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1578                 (1 << BH_Delay) | (1 << BH_Unwritten))
1579
1580 /*
1581  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1582  *
1583  * @mpd->lbh - extent of blocks
1584  * @logical - logical number of the block in the file
1585  * @bh - bh of the block (used to access block's state)
1586  *
1587  * the function is used to collect contig. blocks in same state
1588  */
1589 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
1590                                    sector_t logical, size_t b_size,
1591                                    unsigned long b_state)
1592 {
1593         sector_t next;
1594         int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
1595
1596         /*
1597          * XXX Don't go larger than mballoc is willing to allocate
1598          * This is a stopgap solution.  We eventually need to fold
1599          * mpage_da_submit_io() into this function and then call
1600          * ext4_map_blocks() multiple times in a loop
1601          */
1602         if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
1603                 goto flush_it;
1604
1605         /* check if thereserved journal credits might overflow */
1606         if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
1607                 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1608                         /*
1609                          * With non-extent format we are limited by the journal
1610                          * credit available.  Total credit needed to insert
1611                          * nrblocks contiguous blocks is dependent on the
1612                          * nrblocks.  So limit nrblocks.
1613                          */
1614                         goto flush_it;
1615                 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
1616                                 EXT4_MAX_TRANS_DATA) {
1617                         /*
1618                          * Adding the new buffer_head would make it cross the
1619                          * allowed limit for which we have journal credit
1620                          * reserved. So limit the new bh->b_size
1621                          */
1622                         b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
1623                                                 mpd->inode->i_blkbits;
1624                         /* we will do mpage_da_submit_io in the next loop */
1625                 }
1626         }
1627         /*
1628          * First block in the extent
1629          */
1630         if (mpd->b_size == 0) {
1631                 mpd->b_blocknr = logical;
1632                 mpd->b_size = b_size;
1633                 mpd->b_state = b_state & BH_FLAGS;
1634                 return;
1635         }
1636
1637         next = mpd->b_blocknr + nrblocks;
1638         /*
1639          * Can we merge the block to our big extent?
1640          */
1641         if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
1642                 mpd->b_size += b_size;
1643                 return;
1644         }
1645
1646 flush_it:
1647         /*
1648          * We couldn't merge the block to our extent, so we
1649          * need to flush current  extent and start new one
1650          */
1651         mpage_da_map_and_submit(mpd);
1652         return;
1653 }
1654
1655 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1656 {
1657         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1658 }
1659
1660 /*
1661  * This function is grabs code from the very beginning of
1662  * ext4_map_blocks, but assumes that the caller is from delayed write
1663  * time. This function looks up the requested blocks and sets the
1664  * buffer delay bit under the protection of i_data_sem.
1665  */
1666 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1667                               struct ext4_map_blocks *map,
1668                               struct buffer_head *bh)
1669 {
1670         int retval;
1671         sector_t invalid_block = ~((sector_t) 0xffff);
1672
1673         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1674                 invalid_block = ~0;
1675
1676         map->m_flags = 0;
1677         ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1678                   "logical block %lu\n", inode->i_ino, map->m_len,
1679                   (unsigned long) map->m_lblk);
1680         /*
1681          * Try to see if we can get the block without requesting a new
1682          * file system block.
1683          */
1684         down_read((&EXT4_I(inode)->i_data_sem));
1685         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1686                 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1687         else
1688                 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1689
1690         if (retval == 0) {
1691                 /*
1692                  * XXX: __block_prepare_write() unmaps passed block,
1693                  * is it OK?
1694                  */
1695                 /* If the block was allocated from previously allocated cluster,
1696                  * then we dont need to reserve it again. */
1697                 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1698                         retval = ext4_da_reserve_space(inode, iblock);
1699                         if (retval)
1700                                 /* not enough space to reserve */
1701                                 goto out_unlock;
1702                 }
1703
1704                 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1705                  * and it should not appear on the bh->b_state.
1706                  */
1707                 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1708
1709                 map_bh(bh, inode->i_sb, invalid_block);
1710                 set_buffer_new(bh);
1711                 set_buffer_delay(bh);
1712         }
1713
1714 out_unlock:
1715         up_read((&EXT4_I(inode)->i_data_sem));
1716
1717         return retval;
1718 }
1719
1720 /*
1721  * This is a special get_blocks_t callback which is used by
1722  * ext4_da_write_begin().  It will either return mapped block or
1723  * reserve space for a single block.
1724  *
1725  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1726  * We also have b_blocknr = -1 and b_bdev initialized properly
1727  *
1728  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1729  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1730  * initialized properly.
1731  */
1732 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1733                                   struct buffer_head *bh, int create)
1734 {
1735         struct ext4_map_blocks map;
1736         int ret = 0;
1737
1738         BUG_ON(create == 0);
1739         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1740
1741         map.m_lblk = iblock;
1742         map.m_len = 1;
1743
1744         /*
1745          * first, we need to know whether the block is allocated already
1746          * preallocated blocks are unmapped but should treated
1747          * the same as allocated blocks.
1748          */
1749         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1750         if (ret <= 0)
1751                 return ret;
1752
1753         map_bh(bh, inode->i_sb, map.m_pblk);
1754         bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1755
1756         if (buffer_unwritten(bh)) {
1757                 /* A delayed write to unwritten bh should be marked
1758                  * new and mapped.  Mapped ensures that we don't do
1759                  * get_block multiple times when we write to the same
1760                  * offset and new ensures that we do proper zero out
1761                  * for partial write.
1762                  */
1763                 set_buffer_new(bh);
1764                 set_buffer_mapped(bh);
1765         }
1766         return 0;
1767 }
1768
1769 /*
1770  * This function is used as a standard get_block_t calback function
1771  * when there is no desire to allocate any blocks.  It is used as a
1772  * callback function for block_write_begin() and block_write_full_page().
1773  * These functions should only try to map a single block at a time.
1774  *
1775  * Since this function doesn't do block allocations even if the caller
1776  * requests it by passing in create=1, it is critically important that
1777  * any caller checks to make sure that any buffer heads are returned
1778  * by this function are either all already mapped or marked for
1779  * delayed allocation before calling  block_write_full_page().  Otherwise,
1780  * b_blocknr could be left unitialized, and the page write functions will
1781  * be taken by surprise.
1782  */
1783 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
1784                                    struct buffer_head *bh_result, int create)
1785 {
1786         BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
1787         return _ext4_get_block(inode, iblock, bh_result, 0);
1788 }
1789
1790 static int bget_one(handle_t *handle, struct buffer_head *bh)
1791 {
1792         get_bh(bh);
1793         return 0;
1794 }
1795
1796 static int bput_one(handle_t *handle, struct buffer_head *bh)
1797 {
1798         put_bh(bh);
1799         return 0;
1800 }
1801
1802 static int __ext4_journalled_writepage(struct page *page,
1803                                        unsigned int len)
1804 {
1805         struct address_space *mapping = page->mapping;
1806         struct inode *inode = mapping->host;
1807         struct buffer_head *page_bufs;
1808         handle_t *handle = NULL;
1809         int ret = 0;
1810         int err;
1811
1812         ClearPageChecked(page);
1813         page_bufs = page_buffers(page);
1814         BUG_ON(!page_bufs);
1815         walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
1816         /* As soon as we unlock the page, it can go away, but we have
1817          * references to buffers so we are safe */
1818         unlock_page(page);
1819
1820         handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1821         if (IS_ERR(handle)) {
1822                 ret = PTR_ERR(handle);
1823                 goto out;
1824         }
1825
1826         BUG_ON(!ext4_handle_valid(handle));
1827
1828         ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
1829                                 do_journal_get_write_access);
1830
1831         err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
1832                                 write_end_fn);
1833         if (ret == 0)
1834                 ret = err;
1835         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1836         err = ext4_journal_stop(handle);
1837         if (!ret)
1838                 ret = err;
1839
1840         walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
1841         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1842 out:
1843         return ret;
1844 }
1845
1846 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
1847 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
1848
1849 /*
1850  * Note that we don't need to start a transaction unless we're journaling data
1851  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1852  * need to file the inode to the transaction's list in ordered mode because if
1853  * we are writing back data added by write(), the inode is already there and if
1854  * we are writing back data modified via mmap(), no one guarantees in which
1855  * transaction the data will hit the disk. In case we are journaling data, we
1856  * cannot start transaction directly because transaction start ranks above page
1857  * lock so we have to do some magic.
1858  *
1859  * This function can get called via...
1860  *   - ext4_da_writepages after taking page lock (have journal handle)
1861  *   - journal_submit_inode_data_buffers (no journal handle)
1862  *   - shrink_page_list via pdflush (no journal handle)
1863  *   - grab_page_cache when doing write_begin (have journal handle)
1864  *
1865  * We don't do any block allocation in this function. If we have page with
1866  * multiple blocks we need to write those buffer_heads that are mapped. This
1867  * is important for mmaped based write. So if we do with blocksize 1K
1868  * truncate(f, 1024);
1869  * a = mmap(f, 0, 4096);
1870  * a[0] = 'a';
1871  * truncate(f, 4096);
1872  * we have in the page first buffer_head mapped via page_mkwrite call back
1873  * but other bufer_heads would be unmapped but dirty(dirty done via the
1874  * do_wp_page). So writepage should write the first block. If we modify
1875  * the mmap area beyond 1024 we will again get a page_fault and the
1876  * page_mkwrite callback will do the block allocation and mark the
1877  * buffer_heads mapped.
1878  *
1879  * We redirty the page if we have any buffer_heads that is either delay or
1880  * unwritten in the page.
1881  *
1882  * We can get recursively called as show below.
1883  *
1884  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1885  *              ext4_writepage()
1886  *
1887  * But since we don't do any block allocation we should not deadlock.
1888  * Page also have the dirty flag cleared so we don't get recurive page_lock.
1889  */
1890 static int ext4_writepage(struct page *page,
1891                           struct writeback_control *wbc)
1892 {
1893         int ret = 0, commit_write = 0;
1894         loff_t size;
1895         unsigned int len;
1896         struct buffer_head *page_bufs = NULL;
1897         struct inode *inode = page->mapping->host;
1898
1899         trace_ext4_writepage(page);
1900         size = i_size_read(inode);
1901         if (page->index == size >> PAGE_CACHE_SHIFT)
1902                 len = size & ~PAGE_CACHE_MASK;
1903         else
1904                 len = PAGE_CACHE_SIZE;
1905
1906         /*
1907          * If the page does not have buffers (for whatever reason),
1908          * try to create them using __block_write_begin.  If this
1909          * fails, redirty the page and move on.
1910          */
1911         if (!page_has_buffers(page)) {
1912                 if (__block_write_begin(page, 0, len,
1913                                         noalloc_get_block_write)) {
1914                 redirty_page:
1915                         redirty_page_for_writepage(wbc, page);
1916                         unlock_page(page);
1917                         return 0;
1918                 }
1919                 commit_write = 1;
1920         }
1921         page_bufs = page_buffers(page);
1922         if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1923                               ext4_bh_delay_or_unwritten)) {
1924                 /*
1925                  * We don't want to do block allocation, so redirty
1926                  * the page and return.  We may reach here when we do
1927                  * a journal commit via journal_submit_inode_data_buffers.
1928                  * We can also reach here via shrink_page_list
1929                  */
1930                 goto redirty_page;
1931         }
1932         if (commit_write)
1933                 /* now mark the buffer_heads as dirty and uptodate */
1934                 block_commit_write(page, 0, len);
1935
1936         if (PageChecked(page) && ext4_should_journal_data(inode))
1937                 /*
1938                  * It's mmapped pagecache.  Add buffers and journal it.  There
1939                  * doesn't seem much point in redirtying the page here.
1940                  */
1941                 return __ext4_journalled_writepage(page, len);
1942
1943         if (buffer_uninit(page_bufs)) {
1944                 ext4_set_bh_endio(page_bufs, inode);
1945                 ret = block_write_full_page_endio(page, noalloc_get_block_write,
1946                                             wbc, ext4_end_io_buffer_write);
1947         } else
1948                 ret = block_write_full_page(page, noalloc_get_block_write,
1949                                             wbc);
1950
1951         return ret;
1952 }
1953
1954 /*
1955  * This is called via ext4_da_writepages() to
1956  * calculate the total number of credits to reserve to fit
1957  * a single extent allocation into a single transaction,
1958  * ext4_da_writpeages() will loop calling this before
1959  * the block allocation.
1960  */
1961
1962 static int ext4_da_writepages_trans_blocks(struct inode *inode)
1963 {
1964         int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
1965
1966         /*
1967          * With non-extent format the journal credit needed to
1968          * insert nrblocks contiguous block is dependent on
1969          * number of contiguous block. So we will limit
1970          * number of contiguous block to a sane value
1971          */
1972         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
1973             (max_blocks > EXT4_MAX_TRANS_DATA))
1974                 max_blocks = EXT4_MAX_TRANS_DATA;
1975
1976         return ext4_chunk_trans_blocks(inode, max_blocks);
1977 }
1978
1979 /*
1980  * write_cache_pages_da - walk the list of dirty pages of the given
1981  * address space and accumulate pages that need writing, and call
1982  * mpage_da_map_and_submit to map a single contiguous memory region
1983  * and then write them.
1984  */
1985 static int write_cache_pages_da(struct address_space *mapping,
1986                                 struct writeback_control *wbc,
1987                                 struct mpage_da_data *mpd,
1988                                 pgoff_t *done_index)
1989 {
1990         struct buffer_head      *bh, *head;
1991         struct inode            *inode = mapping->host;
1992         struct pagevec          pvec;
1993         unsigned int            nr_pages;
1994         sector_t                logical;
1995         pgoff_t                 index, end;
1996         long                    nr_to_write = wbc->nr_to_write;
1997         int                     i, tag, ret = 0;
1998
1999         memset(mpd, 0, sizeof(struct mpage_da_data));
2000         mpd->wbc = wbc;
2001         mpd->inode = inode;
2002         pagevec_init(&pvec, 0);
2003         index = wbc->range_start >> PAGE_CACHE_SHIFT;
2004         end = wbc->range_end >> PAGE_CACHE_SHIFT;
2005
2006         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2007                 tag = PAGECACHE_TAG_TOWRITE;
2008         else
2009                 tag = PAGECACHE_TAG_DIRTY;
2010
2011         *done_index = index;
2012         while (index <= end) {
2013                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2014                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2015                 if (nr_pages == 0)
2016                         return 0;
2017
2018                 for (i = 0; i < nr_pages; i++) {
2019                         struct page *page = pvec.pages[i];
2020
2021                         /*
2022                          * At this point, the page may be truncated or
2023                          * invalidated (changing page->mapping to NULL), or
2024                          * even swizzled back from swapper_space to tmpfs file
2025                          * mapping. However, page->index will not change
2026                          * because we have a reference on the page.
2027                          */
2028                         if (page->index > end)
2029                                 goto out;
2030
2031                         *done_index = page->index + 1;
2032
2033                         /*
2034                          * If we can't merge this page, and we have
2035                          * accumulated an contiguous region, write it
2036                          */
2037                         if ((mpd->next_page != page->index) &&
2038                             (mpd->next_page != mpd->first_page)) {
2039                                 mpage_da_map_and_submit(mpd);
2040                                 goto ret_extent_tail;
2041                         }
2042
2043                         lock_page(page);
2044
2045                         /*
2046                          * If the page is no longer dirty, or its
2047                          * mapping no longer corresponds to inode we
2048                          * are writing (which means it has been
2049                          * truncated or invalidated), or the page is
2050                          * already under writeback and we are not
2051                          * doing a data integrity writeback, skip the page
2052                          */
2053                         if (!PageDirty(page) ||
2054                             (PageWriteback(page) &&
2055                              (wbc->sync_mode == WB_SYNC_NONE)) ||
2056                             unlikely(page->mapping != mapping)) {
2057                                 unlock_page(page);
2058                                 continue;
2059                         }
2060
2061                         wait_on_page_writeback(page);
2062                         BUG_ON(PageWriteback(page));
2063
2064                         if (mpd->next_page != page->index)
2065                                 mpd->first_page = page->index;
2066                         mpd->next_page = page->index + 1;
2067                         logical = (sector_t) page->index <<
2068                                 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2069
2070                         if (!page_has_buffers(page)) {
2071                                 mpage_add_bh_to_extent(mpd, logical,
2072                                                        PAGE_CACHE_SIZE,
2073                                                        (1 << BH_Dirty) | (1 << BH_Uptodate));
2074                                 if (mpd->io_done)
2075                                         goto ret_extent_tail;
2076                         } else {
2077                                 /*
2078                                  * Page with regular buffer heads,
2079                                  * just add all dirty ones
2080                                  */
2081                                 head = page_buffers(page);
2082                                 bh = head;
2083                                 do {
2084                                         BUG_ON(buffer_locked(bh));
2085                                         /*
2086                                          * We need to try to allocate
2087                                          * unmapped blocks in the same page.
2088                                          * Otherwise we won't make progress
2089                                          * with the page in ext4_writepage
2090                                          */
2091                                         if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2092                                                 mpage_add_bh_to_extent(mpd, logical,
2093                                                                        bh->b_size,
2094                                                                        bh->b_state);
2095                                                 if (mpd->io_done)
2096                                                         goto ret_extent_tail;
2097                                         } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2098                                                 /*
2099                                                  * mapped dirty buffer. We need
2100                                                  * to update the b_state
2101                                                  * because we look at b_state
2102                                                  * in mpage_da_map_blocks.  We
2103                                                  * don't update b_size because
2104                                                  * if we find an unmapped
2105                                                  * buffer_head later we need to
2106                                                  * use the b_state flag of that
2107                                                  * buffer_head.
2108                                                  */
2109                                                 if (mpd->b_size == 0)
2110                                                         mpd->b_state = bh->b_state & BH_FLAGS;
2111                                         }
2112                                         logical++;
2113                                 } while ((bh = bh->b_this_page) != head);
2114                         }
2115
2116                         if (nr_to_write > 0) {
2117                                 nr_to_write--;
2118                                 if (nr_to_write == 0 &&
2119                                     wbc->sync_mode == WB_SYNC_NONE)
2120                                         /*
2121                                          * We stop writing back only if we are
2122                                          * not doing integrity sync. In case of
2123                                          * integrity sync we have to keep going
2124                                          * because someone may be concurrently
2125                                          * dirtying pages, and we might have
2126                                          * synced a lot of newly appeared dirty
2127                                          * pages, but have not synced all of the
2128                                          * old dirty pages.
2129                                          */
2130                                         goto out;
2131                         }
2132                 }
2133                 pagevec_release(&pvec);
2134                 cond_resched();
2135         }
2136         return 0;
2137 ret_extent_tail:
2138         ret = MPAGE_DA_EXTENT_TAIL;
2139 out:
2140         pagevec_release(&pvec);
2141         cond_resched();
2142         return ret;
2143 }
2144
2145
2146 static int ext4_da_writepages(struct address_space *mapping,
2147                               struct writeback_control *wbc)
2148 {
2149         pgoff_t index;
2150         int range_whole = 0;
2151         handle_t *handle = NULL;
2152         struct mpage_da_data mpd;
2153         struct inode *inode = mapping->host;
2154         int pages_written = 0;
2155         unsigned int max_pages;
2156         int range_cyclic, cycled = 1, io_done = 0;
2157         int needed_blocks, ret = 0;
2158         long desired_nr_to_write, nr_to_writebump = 0;
2159         loff_t range_start = wbc->range_start;
2160         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2161         pgoff_t done_index = 0;
2162         pgoff_t end;
2163
2164         trace_ext4_da_writepages(inode, wbc);
2165
2166         /*
2167          * No pages to write? This is mainly a kludge to avoid starting
2168          * a transaction for special inodes like journal inode on last iput()
2169          * because that could violate lock ordering on umount
2170          */
2171         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2172                 return 0;
2173
2174         /*
2175          * If the filesystem has aborted, it is read-only, so return
2176          * right away instead of dumping stack traces later on that
2177          * will obscure the real source of the problem.  We test
2178          * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2179          * the latter could be true if the filesystem is mounted
2180          * read-only, and in that case, ext4_da_writepages should
2181          * *never* be called, so if that ever happens, we would want
2182          * the stack trace.
2183          */
2184         if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2185                 return -EROFS;
2186
2187         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2188                 range_whole = 1;
2189
2190         range_cyclic = wbc->range_cyclic;
2191         if (wbc->range_cyclic) {
2192                 index = mapping->writeback_index;
2193                 if (index)
2194                         cycled = 0;
2195                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2196                 wbc->range_end  = LLONG_MAX;
2197                 wbc->range_cyclic = 0;
2198                 end = -1;
2199         } else {
2200                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2201                 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2202         }
2203
2204         /*
2205          * This works around two forms of stupidity.  The first is in
2206          * the writeback code, which caps the maximum number of pages
2207          * written to be 1024 pages.  This is wrong on multiple
2208          * levels; different architectues have a different page size,
2209          * which changes the maximum amount of data which gets
2210          * written.  Secondly, 4 megabytes is way too small.  XFS
2211          * forces this value to be 16 megabytes by multiplying
2212          * nr_to_write parameter by four, and then relies on its
2213          * allocator to allocate larger extents to make them
2214          * contiguous.  Unfortunately this brings us to the second
2215          * stupidity, which is that ext4's mballoc code only allocates
2216          * at most 2048 blocks.  So we force contiguous writes up to
2217          * the number of dirty blocks in the inode, or
2218          * sbi->max_writeback_mb_bump whichever is smaller.
2219          */
2220         max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2221         if (!range_cyclic && range_whole) {
2222                 if (wbc->nr_to_write == LONG_MAX)
2223                         desired_nr_to_write = wbc->nr_to_write;
2224                 else
2225                         desired_nr_to_write = wbc->nr_to_write * 8;
2226         } else
2227                 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2228                                                            max_pages);
2229         if (desired_nr_to_write > max_pages)
2230                 desired_nr_to_write = max_pages;
2231
2232         if (wbc->nr_to_write < desired_nr_to_write) {
2233                 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2234                 wbc->nr_to_write = desired_nr_to_write;
2235         }
2236
2237 retry:
2238         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2239                 tag_pages_for_writeback(mapping, index, end);
2240
2241         while (!ret && wbc->nr_to_write > 0) {
2242
2243                 /*
2244                  * we  insert one extent at a time. So we need
2245                  * credit needed for single extent allocation.
2246                  * journalled mode is currently not supported
2247                  * by delalloc
2248                  */
2249                 BUG_ON(ext4_should_journal_data(inode));
2250                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2251
2252                 /* start a new transaction*/
2253                 handle = ext4_journal_start(inode, needed_blocks);
2254                 if (IS_ERR(handle)) {
2255                         ret = PTR_ERR(handle);
2256                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2257                                "%ld pages, ino %lu; err %d", __func__,
2258                                 wbc->nr_to_write, inode->i_ino, ret);
2259                         goto out_writepages;
2260                 }
2261
2262                 /*
2263                  * Now call write_cache_pages_da() to find the next
2264                  * contiguous region of logical blocks that need
2265                  * blocks to be allocated by ext4 and submit them.
2266                  */
2267                 ret = write_cache_pages_da(mapping, wbc, &mpd, &done_index);
2268                 /*
2269                  * If we have a contiguous extent of pages and we
2270                  * haven't done the I/O yet, map the blocks and submit
2271                  * them for I/O.
2272                  */
2273                 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2274                         mpage_da_map_and_submit(&mpd);
2275                         ret = MPAGE_DA_EXTENT_TAIL;
2276                 }
2277                 trace_ext4_da_write_pages(inode, &mpd);
2278                 wbc->nr_to_write -= mpd.pages_written;
2279
2280                 ext4_journal_stop(handle);
2281
2282                 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2283                         /* commit the transaction which would
2284                          * free blocks released in the transaction
2285                          * and try again
2286                          */
2287                         jbd2_journal_force_commit_nested(sbi->s_journal);
2288                         ret = 0;
2289                 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
2290                         /*
2291                          * got one extent now try with
2292                          * rest of the pages
2293                          */
2294                         pages_written += mpd.pages_written;
2295                         ret = 0;
2296                         io_done = 1;
2297                 } else if (wbc->nr_to_write)
2298                         /*
2299                          * There is no more writeout needed
2300                          * or we requested for a noblocking writeout
2301                          * and we found the device congested
2302                          */
2303                         break;
2304         }
2305         if (!io_done && !cycled) {
2306                 cycled = 1;
2307                 index = 0;
2308                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2309                 wbc->range_end  = mapping->writeback_index - 1;
2310                 goto retry;
2311         }
2312
2313         /* Update index */
2314         wbc->range_cyclic = range_cyclic;
2315         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2316                 /*
2317                  * set the writeback_index so that range_cyclic
2318                  * mode will write it back later
2319                  */
2320                 mapping->writeback_index = done_index;
2321
2322 out_writepages:
2323         wbc->nr_to_write -= nr_to_writebump;
2324         wbc->range_start = range_start;
2325         trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2326         return ret;
2327 }
2328
2329 #define FALL_BACK_TO_NONDELALLOC 1
2330 static int ext4_nonda_switch(struct super_block *sb)
2331 {
2332         s64 free_blocks, dirty_blocks;
2333         struct ext4_sb_info *sbi = EXT4_SB(sb);
2334
2335         /*
2336          * switch to non delalloc mode if we are running low
2337          * on free block. The free block accounting via percpu
2338          * counters can get slightly wrong with percpu_counter_batch getting
2339          * accumulated on each CPU without updating global counters
2340          * Delalloc need an accurate free block accounting. So switch
2341          * to non delalloc when we are near to error range.
2342          */
2343         free_blocks  = EXT4_C2B(sbi,
2344                 percpu_counter_read_positive(&sbi->s_freeclusters_counter));
2345         dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2346         if (2 * free_blocks < 3 * dirty_blocks ||
2347                 free_blocks < (dirty_blocks + EXT4_FREECLUSTERS_WATERMARK)) {
2348                 /*
2349                  * free block count is less than 150% of dirty blocks
2350                  * or free blocks is less than watermark
2351                  */
2352                 return 1;
2353         }
2354         /*
2355          * Even if we don't switch but are nearing capacity,
2356          * start pushing delalloc when 1/2 of free blocks are dirty.
2357          */
2358         if (free_blocks < 2 * dirty_blocks)
2359                 writeback_inodes_sb_if_idle(sb);
2360
2361         return 0;
2362 }
2363
2364 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2365                                loff_t pos, unsigned len, unsigned flags,
2366                                struct page **pagep, void **fsdata)
2367 {
2368         int ret, retries = 0;
2369         struct page *page;
2370         pgoff_t index;
2371         struct inode *inode = mapping->host;
2372         handle_t *handle;
2373         loff_t page_len;
2374
2375         index = pos >> PAGE_CACHE_SHIFT;
2376
2377         if (ext4_nonda_switch(inode->i_sb)) {
2378                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2379                 return ext4_write_begin(file, mapping, pos,
2380                                         len, flags, pagep, fsdata);
2381         }
2382         *fsdata = (void *)0;
2383         trace_ext4_da_write_begin(inode, pos, len, flags);
2384 retry:
2385         /*
2386          * With delayed allocation, we don't log the i_disksize update
2387          * if there is delayed block allocation. But we still need
2388          * to journalling the i_disksize update if writes to the end
2389          * of file which has an already mapped buffer.
2390          */
2391         handle = ext4_journal_start(inode, 1);
2392         if (IS_ERR(handle)) {
2393                 ret = PTR_ERR(handle);
2394                 goto out;
2395         }
2396         /* We cannot recurse into the filesystem as the transaction is already
2397          * started */
2398         flags |= AOP_FLAG_NOFS;
2399
2400         page = grab_cache_page_write_begin(mapping, index, flags);
2401         if (!page) {
2402                 ext4_journal_stop(handle);
2403                 ret = -ENOMEM;
2404                 goto out;
2405         }
2406         *pagep = page;
2407
2408         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2409         if (ret < 0) {
2410                 unlock_page(page);
2411                 ext4_journal_stop(handle);
2412                 page_cache_release(page);
2413                 /*
2414                  * block_write_begin may have instantiated a few blocks
2415                  * outside i_size.  Trim these off again. Don't need
2416                  * i_size_read because we hold i_mutex.
2417                  */
2418                 if (pos + len > inode->i_size)
2419                         ext4_truncate_failed_write(inode);
2420         } else {
2421                 page_len = pos & (PAGE_CACHE_SIZE - 1);
2422                 if (page_len > 0) {
2423                         ret = ext4_discard_partial_page_buffers_no_lock(handle,
2424                                 inode, page, pos - page_len, page_len,
2425                                 EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED);
2426                 }
2427         }
2428
2429         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2430                 goto retry;
2431 out:
2432         return ret;
2433 }
2434
2435 /*
2436  * Check if we should update i_disksize
2437  * when write to the end of file but not require block allocation
2438  */
2439 static int ext4_da_should_update_i_disksize(struct page *page,
2440                                             unsigned long offset)
2441 {
2442         struct buffer_head *bh;
2443         struct inode *inode = page->mapping->host;
2444         unsigned int idx;
2445         int i;
2446
2447         bh = page_buffers(page);
2448         idx = offset >> inode->i_blkbits;
2449
2450         for (i = 0; i < idx; i++)
2451                 bh = bh->b_this_page;
2452
2453         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2454                 return 0;
2455         return 1;
2456 }
2457
2458 static int ext4_da_write_end(struct file *file,
2459                              struct address_space *mapping,
2460                              loff_t pos, unsigned len, unsigned copied,
2461                              struct page *page, void *fsdata)
2462 {
2463         struct inode *inode = mapping->host;
2464         int ret = 0, ret2;
2465         handle_t *handle = ext4_journal_current_handle();
2466         loff_t new_i_size;
2467         unsigned long start, end;
2468         int write_mode = (int)(unsigned long)fsdata;
2469         loff_t page_len;
2470
2471         if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2472                 if (ext4_should_order_data(inode)) {
2473                         return ext4_ordered_write_end(file, mapping, pos,
2474                                         len, copied, page, fsdata);
2475                 } else if (ext4_should_writeback_data(inode)) {
2476                         return ext4_writeback_write_end(file, mapping, pos,
2477                                         len, copied, page, fsdata);
2478                 } else {
2479                         BUG();
2480                 }
2481         }
2482
2483         trace_ext4_da_write_end(inode, pos, len, copied);
2484         start = pos & (PAGE_CACHE_SIZE - 1);
2485         end = start + copied - 1;
2486
2487         /*
2488          * generic_write_end() will run mark_inode_dirty() if i_size
2489          * changes.  So let's piggyback the i_disksize mark_inode_dirty
2490          * into that.
2491          */
2492
2493         new_i_size = pos + copied;
2494         if (new_i_size > EXT4_I(inode)->i_disksize) {
2495                 if (ext4_da_should_update_i_disksize(page, end)) {
2496                         down_write(&EXT4_I(inode)->i_data_sem);
2497                         if (new_i_size > EXT4_I(inode)->i_disksize) {
2498                                 /*
2499                                  * Updating i_disksize when extending file
2500                                  * without needing block allocation
2501                                  */
2502                                 if (ext4_should_order_data(inode))
2503                                         ret = ext4_jbd2_file_inode(handle,
2504                                                                    inode);
2505
2506                                 EXT4_I(inode)->i_disksize = new_i_size;
2507                         }
2508                         up_write(&EXT4_I(inode)->i_data_sem);
2509                         /* We need to mark inode dirty even if
2510                          * new_i_size is less that inode->i_size
2511                          * bu greater than i_disksize.(hint delalloc)
2512                          */
2513                         ext4_mark_inode_dirty(handle, inode);
2514                 }
2515         }
2516         ret2 = generic_write_end(file, mapping, pos, len, copied,
2517                                                         page, fsdata);
2518
2519         page_len = PAGE_CACHE_SIZE -
2520                         ((pos + copied - 1) & (PAGE_CACHE_SIZE - 1));
2521
2522         if (page_len > 0) {
2523                 ret = ext4_discard_partial_page_buffers_no_lock(handle,
2524                         inode, page, pos + copied - 1, page_len,
2525                         EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED);
2526         }
2527
2528         copied = ret2;
2529         if (ret2 < 0)
2530                 ret = ret2;
2531         ret2 = ext4_journal_stop(handle);
2532         if (!ret)
2533                 ret = ret2;
2534
2535         return ret ? ret : copied;
2536 }
2537
2538 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2539 {
2540         /*
2541          * Drop reserved blocks
2542          */
2543         BUG_ON(!PageLocked(page));
2544         if (!page_has_buffers(page))
2545                 goto out;
2546
2547         ext4_da_page_release_reservation(page, offset);
2548
2549 out:
2550         ext4_invalidatepage(page, offset);
2551
2552         return;
2553 }
2554
2555 /*
2556  * Force all delayed allocation blocks to be allocated for a given inode.
2557  */
2558 int ext4_alloc_da_blocks(struct inode *inode)
2559 {
2560         trace_ext4_alloc_da_blocks(inode);
2561
2562         if (!EXT4_I(inode)->i_reserved_data_blocks &&
2563             !EXT4_I(inode)->i_reserved_meta_blocks)
2564                 return 0;
2565
2566         /*
2567          * We do something simple for now.  The filemap_flush() will
2568          * also start triggering a write of the data blocks, which is
2569          * not strictly speaking necessary (and for users of
2570          * laptop_mode, not even desirable).  However, to do otherwise
2571          * would require replicating code paths in:
2572          *
2573          * ext4_da_writepages() ->
2574          *    write_cache_pages() ---> (via passed in callback function)
2575          *        __mpage_da_writepage() -->
2576          *           mpage_add_bh_to_extent()
2577          *           mpage_da_map_blocks()
2578          *
2579          * The problem is that write_cache_pages(), located in
2580          * mm/page-writeback.c, marks pages clean in preparation for
2581          * doing I/O, which is not desirable if we're not planning on
2582          * doing I/O at all.
2583          *
2584          * We could call write_cache_pages(), and then redirty all of
2585          * the pages by calling redirty_page_for_writepage() but that
2586          * would be ugly in the extreme.  So instead we would need to
2587          * replicate parts of the code in the above functions,
2588          * simplifying them because we wouldn't actually intend to
2589          * write out the pages, but rather only collect contiguous
2590          * logical block extents, call the multi-block allocator, and
2591          * then update the buffer heads with the block allocations.
2592          *
2593          * For now, though, we'll cheat by calling filemap_flush(),
2594          * which will map the blocks, and start the I/O, but not
2595          * actually wait for the I/O to complete.
2596          */
2597         return filemap_flush(inode->i_mapping);
2598 }
2599
2600 /*
2601  * bmap() is special.  It gets used by applications such as lilo and by
2602  * the swapper to find the on-disk block of a specific piece of data.
2603  *
2604  * Naturally, this is dangerous if the block concerned is still in the
2605  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2606  * filesystem and enables swap, then they may get a nasty shock when the
2607  * data getting swapped to that swapfile suddenly gets overwritten by
2608  * the original zero's written out previously to the journal and
2609  * awaiting writeback in the kernel's buffer cache.
2610  *
2611  * So, if we see any bmap calls here on a modified, data-journaled file,
2612  * take extra steps to flush any blocks which might be in the cache.
2613  */
2614 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2615 {
2616         struct inode *inode = mapping->host;
2617         journal_t *journal;
2618         int err;
2619
2620         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2621                         test_opt(inode->i_sb, DELALLOC)) {
2622                 /*
2623                  * With delalloc we want to sync the file
2624                  * so that we can make sure we allocate
2625                  * blocks for file
2626                  */
2627                 filemap_write_and_wait(mapping);
2628         }
2629
2630         if (EXT4_JOURNAL(inode) &&
2631             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2632                 /*
2633                  * This is a REALLY heavyweight approach, but the use of
2634                  * bmap on dirty files is expected to be extremely rare:
2635                  * only if we run lilo or swapon on a freshly made file
2636                  * do we expect this to happen.
2637                  *
2638                  * (bmap requires CAP_SYS_RAWIO so this does not
2639                  * represent an unprivileged user DOS attack --- we'd be
2640                  * in trouble if mortal users could trigger this path at
2641                  * will.)
2642                  *
2643                  * NB. EXT4_STATE_JDATA is not set on files other than
2644                  * regular files.  If somebody wants to bmap a directory
2645                  * or symlink and gets confused because the buffer
2646                  * hasn't yet been flushed to disk, they deserve
2647                  * everything they get.
2648                  */
2649
2650                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2651                 journal = EXT4_JOURNAL(inode);
2652                 jbd2_journal_lock_updates(journal);
2653                 err = jbd2_journal_flush(journal);
2654                 jbd2_journal_unlock_updates(journal);
2655
2656                 if (err)
2657                         return 0;
2658         }
2659
2660         return generic_block_bmap(mapping, block, ext4_get_block);
2661 }
2662
2663 static int ext4_readpage(struct file *file, struct page *page)
2664 {
2665         trace_ext4_readpage(page);
2666         return mpage_readpage(page, ext4_get_block);
2667 }
2668
2669 static int
2670 ext4_readpages(struct file *file, struct address_space *mapping,
2671                 struct list_head *pages, unsigned nr_pages)
2672 {
2673         return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2674 }
2675
2676 static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
2677 {
2678         struct buffer_head *head, *bh;
2679         unsigned int curr_off = 0;
2680
2681         if (!page_has_buffers(page))
2682                 return;
2683         head = bh = page_buffers(page);
2684         do {
2685                 if (offset <= curr_off && test_clear_buffer_uninit(bh)
2686                                         && bh->b_private) {
2687                         ext4_free_io_end(bh->b_private);
2688                         bh->b_private = NULL;
2689                         bh->b_end_io = NULL;
2690                 }
2691                 curr_off = curr_off + bh->b_size;
2692                 bh = bh->b_this_page;
2693         } while (bh != head);
2694 }
2695
2696 static void ext4_invalidatepage(struct page *page, unsigned long offset)
2697 {
2698         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2699
2700         trace_ext4_invalidatepage(page, offset);
2701
2702         /*
2703          * free any io_end structure allocated for buffers to be discarded
2704          */
2705         if (ext4_should_dioread_nolock(page->mapping->host))
2706                 ext4_invalidatepage_free_endio(page, offset);
2707         /*
2708          * If it's a full truncate we just forget about the pending dirtying
2709          */
2710         if (offset == 0)
2711                 ClearPageChecked(page);
2712
2713         if (journal)
2714                 jbd2_journal_invalidatepage(journal, page, offset);
2715         else
2716                 block_invalidatepage(page, offset);
2717 }
2718
2719 static int ext4_releasepage(struct page *page, gfp_t wait)
2720 {
2721         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2722
2723         trace_ext4_releasepage(page);
2724
2725         WARN_ON(PageChecked(page));
2726         if (!page_has_buffers(page))
2727                 return 0;
2728         if (journal)
2729                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
2730         else
2731                 return try_to_free_buffers(page);
2732 }
2733
2734 /*
2735  * ext4_get_block used when preparing for a DIO write or buffer write.
2736  * We allocate an uinitialized extent if blocks haven't been allocated.
2737  * The extent will be converted to initialized after the IO is complete.
2738  */
2739 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
2740                    struct buffer_head *bh_result, int create)
2741 {
2742         ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
2743                    inode->i_ino, create);
2744         return _ext4_get_block(inode, iblock, bh_result,
2745                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
2746 }
2747
2748 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
2749                             ssize_t size, void *private, int ret,
2750                             bool is_async)
2751 {
2752         struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
2753         ext4_io_end_t *io_end = iocb->private;
2754         struct workqueue_struct *wq;
2755         unsigned long flags;
2756         struct ext4_inode_info *ei;
2757
2758         /* if not async direct IO or dio with 0 bytes write, just return */
2759         if (!io_end || !size)
2760                 goto out;
2761
2762         ext_debug("ext4_end_io_dio(): io_end 0x%p"
2763                   "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
2764                   iocb->private, io_end->inode->i_ino, iocb, offset,
2765                   size);
2766
2767         /* if not aio dio with unwritten extents, just free io and return */
2768         if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
2769                 ext4_free_io_end(io_end);
2770                 iocb->private = NULL;
2771 out:
2772                 if (is_async)
2773                         aio_complete(iocb, ret, 0);
2774                 inode_dio_done(inode);
2775                 return;
2776         }
2777
2778         io_end->offset = offset;
2779         io_end->size = size;
2780         if (is_async) {
2781                 io_end->iocb = iocb;
2782                 io_end->result = ret;
2783         }
2784         wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
2785
2786         /* Add the io_end to per-inode completed aio dio list*/
2787         ei = EXT4_I(io_end->inode);
2788         spin_lock_irqsave(&ei->i_completed_io_lock, flags);
2789         list_add_tail(&io_end->list, &ei->i_completed_io_list);
2790         spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
2791
2792         /* queue the work to convert unwritten extents to written */
2793         queue_work(wq, &io_end->work);
2794         iocb->private = NULL;
2795
2796         /* XXX: probably should move into the real I/O completion handler */
2797         inode_dio_done(inode);
2798 }
2799
2800 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
2801 {
2802         ext4_io_end_t *io_end = bh->b_private;
2803         struct workqueue_struct *wq;
2804         struct inode *inode;
2805         unsigned long flags;
2806
2807         if (!test_clear_buffer_uninit(bh) || !io_end)
2808                 goto out;
2809
2810         if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
2811                 printk("sb umounted, discard end_io request for inode %lu\n",
2812                         io_end->inode->i_ino);
2813                 ext4_free_io_end(io_end);
2814                 goto out;
2815         }
2816
2817         /*
2818          * It may be over-defensive here to check EXT4_IO_END_UNWRITTEN now,
2819          * but being more careful is always safe for the future change.
2820          */
2821         inode = io_end->inode;
2822         if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
2823                 io_end->flag |= EXT4_IO_END_UNWRITTEN;
2824                 atomic_inc(&EXT4_I(inode)->i_aiodio_unwritten);
2825         }
2826
2827         /* Add the io_end to per-inode completed io list*/
2828         spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
2829         list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
2830         spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
2831
2832         wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
2833         /* queue the work to convert unwritten extents to written */
2834         queue_work(wq, &io_end->work);
2835 out:
2836         bh->b_private = NULL;
2837         bh->b_end_io = NULL;
2838         clear_buffer_uninit(bh);
2839         end_buffer_async_write(bh, uptodate);
2840 }
2841
2842 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
2843 {
2844         ext4_io_end_t *io_end;
2845         struct page *page = bh->b_page;
2846         loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
2847         size_t size = bh->b_size;
2848
2849 retry:
2850         io_end = ext4_init_io_end(inode, GFP_ATOMIC);
2851         if (!io_end) {
2852                 pr_warn_ratelimited("%s: allocation fail\n", __func__);
2853                 schedule();
2854                 goto retry;
2855         }
2856         io_end->offset = offset;
2857         io_end->size = size;
2858         /*
2859          * We need to hold a reference to the page to make sure it
2860          * doesn't get evicted before ext4_end_io_work() has a chance
2861          * to convert the extent from written to unwritten.
2862          */
2863         io_end->page = page;
2864         get_page(io_end->page);
2865
2866         bh->b_private = io_end;
2867         bh->b_end_io = ext4_end_io_buffer_write;
2868         return 0;
2869 }
2870
2871 /*
2872  * For ext4 extent files, ext4 will do direct-io write to holes,
2873  * preallocated extents, and those write extend the file, no need to
2874  * fall back to buffered IO.
2875  *
2876  * For holes, we fallocate those blocks, mark them as uninitialized
2877  * If those blocks were preallocated, we mark sure they are splited, but
2878  * still keep the range to write as uninitialized.
2879  *
2880  * The unwrritten extents will be converted to written when DIO is completed.
2881  * For async direct IO, since the IO may still pending when return, we
2882  * set up an end_io call back function, which will do the conversion
2883  * when async direct IO completed.
2884  *
2885  * If the O_DIRECT write will extend the file then add this inode to the
2886  * orphan list.  So recovery will truncate it back to the original size
2887  * if the machine crashes during the write.
2888  *
2889  */
2890 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
2891                               const struct iovec *iov, loff_t offset,
2892                               unsigned long nr_segs)
2893 {
2894         struct file *file = iocb->ki_filp;
2895         struct inode *inode = file->f_mapping->host;
2896         ssize_t ret;
2897         size_t count = iov_length(iov, nr_segs);
2898
2899         loff_t final_size = offset + count;
2900         if (rw == WRITE && final_size <= inode->i_size) {
2901                 /*
2902                  * We could direct write to holes and fallocate.
2903                  *
2904                  * Allocated blocks to fill the hole are marked as uninitialized
2905                  * to prevent parallel buffered read to expose the stale data
2906                  * before DIO complete the data IO.
2907                  *
2908                  * As to previously fallocated extents, ext4 get_block
2909                  * will just simply mark the buffer mapped but still
2910                  * keep the extents uninitialized.
2911                  *
2912                  * for non AIO case, we will convert those unwritten extents
2913                  * to written after return back from blockdev_direct_IO.
2914                  *
2915                  * for async DIO, the conversion needs to be defered when
2916                  * the IO is completed. The ext4 end_io callback function
2917                  * will be called to take care of the conversion work.
2918                  * Here for async case, we allocate an io_end structure to
2919                  * hook to the iocb.
2920                  */
2921                 iocb->private = NULL;
2922                 EXT4_I(inode)->cur_aio_dio = NULL;
2923                 if (!is_sync_kiocb(iocb)) {
2924                         iocb->private = ext4_init_io_end(inode, GFP_NOFS);
2925                         if (!iocb->private)
2926                                 return -ENOMEM;
2927                         /*
2928                          * we save the io structure for current async
2929                          * direct IO, so that later ext4_map_blocks()
2930                          * could flag the io structure whether there
2931                          * is a unwritten extents needs to be converted
2932                          * when IO is completed.
2933                          */
2934                         EXT4_I(inode)->cur_aio_dio = iocb->private;
2935                 }
2936
2937                 ret = __blockdev_direct_IO(rw, iocb, inode,
2938                                          inode->i_sb->s_bdev, iov,
2939                                          offset, nr_segs,
2940                                          ext4_get_block_write,
2941                                          ext4_end_io_dio,
2942                                          NULL,
2943                                          DIO_LOCKING | DIO_SKIP_HOLES);
2944                 if (iocb->private)
2945                         EXT4_I(inode)->cur_aio_dio = NULL;
2946                 /*
2947                  * The io_end structure takes a reference to the inode,
2948                  * that structure needs to be destroyed and the
2949                  * reference to the inode need to be dropped, when IO is
2950                  * complete, even with 0 byte write, or failed.
2951                  *
2952                  * In the successful AIO DIO case, the io_end structure will be
2953                  * desctroyed and the reference to the inode will be dropped
2954                  * after the end_io call back function is called.
2955                  *
2956                  * In the case there is 0 byte write, or error case, since
2957                  * VFS direct IO won't invoke the end_io call back function,
2958                  * we need to free the end_io structure here.
2959                  */
2960                 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
2961                         ext4_free_io_end(iocb->private);
2962                         iocb->private = NULL;
2963                 } else if (ret > 0 && ext4_test_inode_state(inode,
2964                                                 EXT4_STATE_DIO_UNWRITTEN)) {
2965                         int err;
2966                         /*
2967                          * for non AIO case, since the IO is already
2968                          * completed, we could do the conversion right here
2969                          */
2970                         err = ext4_convert_unwritten_extents(inode,
2971                                                              offset, ret);
2972                         if (err < 0)
2973                                 ret = err;
2974                         ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
2975                 }
2976                 return ret;
2977         }
2978
2979         /* for write the the end of file case, we fall back to old way */
2980         return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
2981 }
2982
2983 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
2984                               const struct iovec *iov, loff_t offset,
2985                               unsigned long nr_segs)
2986 {
2987         struct file *file = iocb->ki_filp;
2988         struct inode *inode = file->f_mapping->host;
2989         ssize_t ret;
2990
2991         /*
2992          * If we are doing data journalling we don't support O_DIRECT
2993          */
2994         if (ext4_should_journal_data(inode))
2995                 return 0;
2996
2997         trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
2998         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
2999                 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3000         else
3001                 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3002         trace_ext4_direct_IO_exit(inode, offset,
3003                                 iov_length(iov, nr_segs), rw, ret);
3004         return ret;
3005 }
3006
3007 /*
3008  * Pages can be marked dirty completely asynchronously from ext4's journalling
3009  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3010  * much here because ->set_page_dirty is called under VFS locks.  The page is
3011  * not necessarily locked.
3012  *
3013  * We cannot just dirty the page and leave attached buffers clean, because the
3014  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3015  * or jbddirty because all the journalling code will explode.
3016  *
3017  * So what we do is to mark the page "pending dirty" and next time writepage
3018  * is called, propagate that into the buffers appropriately.
3019  */
3020 static int ext4_journalled_set_page_dirty(struct page *page)
3021 {
3022         SetPageChecked(page);
3023         return __set_page_dirty_nobuffers(page);
3024 }
3025
3026 static const struct address_space_operations ext4_ordered_aops = {
3027         .readpage               = ext4_readpage,
3028         .readpages              = ext4_readpages,
3029         .writepage              = ext4_writepage,
3030         .write_begin            = ext4_write_begin,
3031         .write_end              = ext4_ordered_write_end,
3032         .bmap                   = ext4_bmap,
3033         .invalidatepage         = ext4_invalidatepage,
3034         .releasepage            = ext4_releasepage,
3035         .direct_IO              = ext4_direct_IO,
3036         .migratepage            = buffer_migrate_page,
3037         .is_partially_uptodate  = block_is_partially_uptodate,
3038         .error_remove_page      = generic_error_remove_page,
3039 };
3040
3041 static const struct address_space_operations ext4_writeback_aops = {
3042         .readpage               = ext4_readpage,
3043         .readpages              = ext4_readpages,
3044         .writepage              = ext4_writepage,
3045         .write_begin            = ext4_write_begin,
3046         .write_end              = ext4_writeback_write_end,
3047         .bmap                   = ext4_bmap,
3048         .invalidatepage         = ext4_invalidatepage,
3049         .releasepage            = ext4_releasepage,
3050         .direct_IO              = ext4_direct_IO,
3051         .migratepage            = buffer_migrate_page,
3052         .is_partially_uptodate  = block_is_partially_uptodate,
3053         .error_remove_page      = generic_error_remove_page,
3054 };
3055
3056 static const struct address_space_operations ext4_journalled_aops = {
3057         .readpage               = ext4_readpage,
3058         .readpages              = ext4_readpages,
3059         .writepage              = ext4_writepage,
3060         .write_begin            = ext4_write_begin,
3061         .write_end              = ext4_journalled_write_end,
3062         .set_page_dirty         = ext4_journalled_set_page_dirty,
3063         .bmap                   = ext4_bmap,
3064         .invalidatepage         = ext4_invalidatepage,
3065         .releasepage            = ext4_releasepage,
3066         .direct_IO              = ext4_direct_IO,
3067         .is_partially_uptodate  = block_is_partially_uptodate,
3068         .error_remove_page      = generic_error_remove_page,
3069 };
3070
3071 static const struct address_space_operations ext4_da_aops = {
3072         .readpage               = ext4_readpage,
3073         .readpages              = ext4_readpages,
3074         .writepage              = ext4_writepage,
3075         .writepages             = ext4_da_writepages,
3076         .write_begin            = ext4_da_write_begin,
3077         .write_end              = ext4_da_write_end,
3078         .bmap                   = ext4_bmap,
3079         .invalidatepage         = ext4_da_invalidatepage,
3080         .releasepage            = ext4_releasepage,
3081         .direct_IO              = ext4_direct_IO,
3082         .migratepage            = buffer_migrate_page,
3083         .is_partially_uptodate  = block_is_partially_uptodate,
3084         .error_remove_page      = generic_error_remove_page,
3085 };
3086
3087 void ext4_set_aops(struct inode *inode)
3088 {
3089         if (ext4_should_order_data(inode) &&
3090                 test_opt(inode->i_sb, DELALLOC))
3091                 inode->i_mapping->a_ops = &ext4_da_aops;
3092         else if (ext4_should_order_data(inode))
3093                 inode->i_mapping->a_ops = &ext4_ordered_aops;
3094         else if (ext4_should_writeback_data(inode) &&
3095                  test_opt(inode->i_sb, DELALLOC))
3096                 inode->i_mapping->a_ops = &ext4_da_aops;
3097         else if (ext4_should_writeback_data(inode))
3098                 inode->i_mapping->a_ops = &ext4_writeback_aops;
3099         else
3100                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3101 }
3102
3103
3104 /*
3105  * ext4_discard_partial_page_buffers()
3106  * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
3107  * This function finds and locks the page containing the offset
3108  * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
3109  * Calling functions that already have the page locked should call
3110  * ext4_discard_partial_page_buffers_no_lock directly.
3111  */
3112 int ext4_discard_partial_page_buffers(handle_t *handle,
3113                 struct address_space *mapping, loff_t from,
3114                 loff_t length, int flags)
3115 {
3116         struct inode *inode = mapping->host;
3117         struct page *page;
3118         int err = 0;
3119
3120         page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3121                                    mapping_gfp_mask(mapping) & ~__GFP_FS);
3122         if (!page)
3123                 return -EINVAL;
3124
3125         err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page,
3126                 from, length, flags);
3127
3128         unlock_page(page);
3129         page_cache_release(page);
3130         return err;
3131 }
3132
3133 /*
3134  * ext4_discard_partial_page_buffers_no_lock()
3135  * Zeros a page range of length 'length' starting from offset 'from'.
3136  * Buffer heads that correspond to the block aligned regions of the
3137  * zeroed range will be unmapped.  Unblock aligned regions
3138  * will have the corresponding buffer head mapped if needed so that
3139  * that region of the page can be updated with the partial zero out.
3140  *
3141  * This function assumes that the page has already been  locked.  The
3142  * The range to be discarded must be contained with in the given page.
3143  * If the specified range exceeds the end of the page it will be shortened
3144  * to the end of the page that corresponds to 'from'.  This function is
3145  * appropriate for updating a page and it buffer heads to be unmapped and
3146  * zeroed for blocks that have been either released, or are going to be
3147  * released.
3148  *
3149  * handle: The journal handle
3150  * inode:  The files inode
3151  * page:   A locked page that contains the offset "from"
3152  * from:   The starting byte offset (from the begining of the file)
3153  *         to begin discarding
3154  * len:    The length of bytes to discard
3155  * flags:  Optional flags that may be used:
3156  *
3157  *         EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
3158  *         Only zero the regions of the page whose buffer heads
3159  *         have already been unmapped.  This flag is appropriate
3160  *         for updateing the contents of a page whose blocks may
3161  *         have already been released, and we only want to zero
3162  *         out the regions that correspond to those released blocks.
3163  *
3164  * Returns zero on sucess or negative on failure.
3165  */
3166 int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
3167                 struct inode *inode, struct page *page, loff_t from,
3168                 loff_t length, int flags)
3169 {
3170         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3171         unsigned int offset = from & (PAGE_CACHE_SIZE-1);
3172         unsigned int blocksize, max, pos;
3173         unsigned int end_of_block, range_to_discard;
3174         ext4_lblk_t iblock;
3175         struct buffer_head *bh;
3176         int err = 0;
3177
3178         blocksize = inode->i_sb->s_blocksize;
3179         max = PAGE_CACHE_SIZE - offset;
3180
3181         if (index != page->index)
3182                 return -EINVAL;
3183
3184         /*
3185          * correct length if it does not fall between
3186          * 'from' and the end of the page
3187          */
3188         if (length > max || length < 0)
3189                 length = max;
3190
3191         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3192
3193         if (!page_has_buffers(page)) {
3194                 /*
3195                  * If the range to be discarded covers a partial block
3196                  * we need to get the page buffers.  This is because
3197                  * partial blocks cannot be released and the page needs
3198                  * to be updated with the contents of the block before
3199                  * we write the zeros on top of it.
3200                  */
3201                 if (!(from & (blocksize - 1)) ||
3202                     !((from + length) & (blocksize - 1))) {
3203                         create_empty_buffers(page, blocksize, 0);
3204                 } else {
3205                         /*
3206                          * If there are no partial blocks,
3207                          * there is nothing to update,
3208                          * so we can return now
3209                          */
3210                         return 0;
3211                 }
3212         }
3213
3214         /* Find the buffer that contains "offset" */
3215         bh = page_buffers(page);
3216         pos = blocksize;
3217         while (offset >= pos) {
3218                 bh = bh->b_this_page;
3219                 iblock++;
3220                 pos += blocksize;
3221         }
3222
3223         pos = offset;
3224         while (pos < offset + length) {
3225                 err = 0;
3226
3227                 /* The length of space left to zero and unmap */
3228                 range_to_discard = offset + length - pos;
3229
3230                 /* The length of space until the end of the block */
3231                 end_of_block = blocksize - (pos & (blocksize-1));
3232
3233                 /*
3234                  * Do not unmap or zero past end of block
3235                  * for this buffer head
3236                  */
3237                 if (range_to_discard > end_of_block)
3238                         range_to_discard = end_of_block;
3239
3240
3241                 /*
3242                  * Skip this buffer head if we are only zeroing unampped
3243                  * regions of the page
3244                  */
3245                 if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED &&
3246                         buffer_mapped(bh))
3247                                 goto next;
3248
3249                 /* If the range is block aligned, unmap */
3250                 if (range_to_discard == blocksize) {
3251                         clear_buffer_dirty(bh);
3252                         bh->b_bdev = NULL;
3253                         clear_buffer_mapped(bh);
3254                         clear_buffer_req(bh);
3255                         clear_buffer_new(bh);
3256                         clear_buffer_delay(bh);
3257                         clear_buffer_unwritten(bh);
3258                         clear_buffer_uptodate(bh);
3259                         zero_user(page, pos, range_to_discard);
3260                         BUFFER_TRACE(bh, "Buffer discarded");
3261                         goto next;
3262                 }
3263
3264                 /*
3265                  * If this block is not completely contained in the range
3266                  * to be discarded, then it is not going to be released. Because
3267                  * we need to keep this block, we need to make sure this part
3268                  * of the page is uptodate before we modify it by writeing
3269                  * partial zeros on it.
3270                  */
3271                 if (!buffer_mapped(bh)) {
3272                         /*
3273                          * Buffer head must be mapped before we can read
3274                          * from the block
3275                          */
3276                         BUFFER_TRACE(bh, "unmapped");
3277                         ext4_get_block(inode, iblock, bh, 0);
3278                         /* unmapped? It's a hole - nothing to do */
3279                         if (!buffer_mapped(bh)) {
3280                                 BUFFER_TRACE(bh, "still unmapped");
3281                                 goto next;
3282                         }
3283                 }
3284
3285                 /* Ok, it's mapped. Make sure it's up-to-date */
3286                 if (PageUptodate(page))
3287                         set_buffer_uptodate(bh);
3288
3289                 if (!buffer_uptodate(bh)) {
3290                         err = -EIO;
3291                         ll_rw_block(READ, 1, &bh);
3292                         wait_on_buffer(bh);
3293                         /* Uhhuh. Read error. Complain and punt.*/
3294                         if (!buffer_uptodate(bh))
3295                                 goto next;
3296                 }
3297
3298                 if (ext4_should_journal_data(inode)) {
3299                         BUFFER_TRACE(bh, "get write access");
3300                         err = ext4_journal_get_write_access(handle, bh);
3301                         if (err)
3302                                 goto next;
3303                 }
3304
3305                 zero_user(page, pos, range_to_discard);
3306
3307                 err = 0;
3308                 if (ext4_should_journal_data(inode)) {
3309                         err = ext4_handle_dirty_metadata(handle, inode, bh);
3310                 } else
3311                         mark_buffer_dirty(bh);
3312
3313                 BUFFER_TRACE(bh, "Partial buffer zeroed");
3314 next:
3315                 bh = bh->b_this_page;
3316                 iblock++;
3317                 pos += range_to_discard;
3318         }
3319
3320         return err;
3321 }
3322
3323 /*
3324  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3325  * up to the end of the block which corresponds to `from'.
3326  * This required during truncate. We need to physically zero the tail end
3327  * of that block so it doesn't yield old data if the file is later grown.
3328  */
3329 int ext4_block_truncate_page(handle_t *handle,
3330                 struct address_space *mapping, loff_t from)
3331 {
3332         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3333         unsigned length;
3334         unsigned blocksize;
3335         struct inode *inode = mapping->host;
3336
3337         blocksize = inode->i_sb->s_blocksize;
3338         length = blocksize - (offset & (blocksize - 1));
3339
3340         return ext4_block_zero_page_range(handle, mapping, from, length);
3341 }
3342
3343 /*
3344  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3345  * starting from file offset 'from'.  The range to be zero'd must
3346  * be contained with in one block.  If the specified range exceeds
3347  * the end of the block it will be shortened to end of the block
3348  * that cooresponds to 'from'
3349  */
3350 int ext4_block_zero_page_range(handle_t *handle,
3351                 struct address_space *mapping, loff_t from, loff_t length)
3352 {
3353         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3354         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3355         unsigned blocksize, max, pos;
3356         ext4_lblk_t iblock;
3357         struct inode *inode = mapping->host;
3358         struct buffer_head *bh;
3359         struct page *page;
3360         int err = 0;
3361
3362         page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3363                                    mapping_gfp_mask(mapping) & ~__GFP_FS);
3364         if (!page)
3365                 return -EINVAL;
3366
3367         blocksize = inode->i_sb->s_blocksize;
3368         max = blocksize - (offset & (blocksize - 1));
3369
3370         /*
3371          * correct length if it does not fall between
3372          * 'from' and the end of the block
3373          */
3374         if (length > max || length < 0)
3375                 length = max;
3376
3377         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3378
3379         if (!page_has_buffers(page))
3380                 create_empty_buffers(page, blocksize, 0);
3381
3382         /* Find the buffer that contains "offset" */
3383         bh = page_buffers(page);
3384         pos = blocksize;
3385         while (offset >= pos) {
3386                 bh = bh->b_this_page;
3387                 iblock++;
3388                 pos += blocksize;
3389         }
3390
3391         err = 0;
3392         if (buffer_freed(bh)) {
3393                 BUFFER_TRACE(bh, "freed: skip");
3394                 goto unlock;
3395         }
3396
3397         if (!buffer_mapped(bh)) {
3398                 BUFFER_TRACE(bh, "unmapped");
3399                 ext4_get_block(inode, iblock, bh, 0);
3400                 /* unmapped? It's a hole - nothing to do */
3401                 if (!buffer_mapped(bh)) {
3402                         BUFFER_TRACE(bh, "still unmapped");
3403                         goto unlock;
3404                 }
3405         }
3406
3407         /* Ok, it's mapped. Make sure it's up-to-date */
3408         if (PageUptodate(page))
3409                 set_buffer_uptodate(bh);
3410
3411         if (!buffer_uptodate(bh)) {
3412                 err = -EIO;
3413                 ll_rw_block(READ, 1, &bh);
3414                 wait_on_buffer(bh);
3415                 /* Uhhuh. Read error. Complain and punt. */
3416                 if (!buffer_uptodate(bh))
3417                         goto unlock;
3418         }
3419
3420         if (ext4_should_journal_data(inode)) {
3421                 BUFFER_TRACE(bh, "get write access");
3422                 err = ext4_journal_get_write_access(handle, bh);
3423                 if (err)
3424                         goto unlock;
3425         }
3426
3427         zero_user(page, offset, length);
3428
3429         BUFFER_TRACE(bh, "zeroed end of block");
3430
3431         err = 0;
3432         if (ext4_should_journal_data(inode)) {
3433                 err = ext4_handle_dirty_metadata(handle, inode, bh);
3434         } else
3435                 mark_buffer_dirty(bh);
3436
3437 unlock:
3438         unlock_page(page);
3439         page_cache_release(page);
3440         return err;
3441 }
3442
3443 int ext4_can_truncate(struct inode *inode)
3444 {
3445         if (S_ISREG(inode->i_mode))
3446                 return 1;
3447         if (S_ISDIR(inode->i_mode))
3448                 return 1;
3449         if (S_ISLNK(inode->i_mode))
3450                 return !ext4_inode_is_fast_symlink(inode);
3451         return 0;
3452 }
3453
3454 /*
3455  * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3456  * associated with the given offset and length
3457  *
3458  * @inode:  File inode
3459  * @offset: The offset where the hole will begin
3460  * @len:    The length of the hole
3461  *
3462  * Returns: 0 on sucess or negative on failure
3463  */
3464
3465 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3466 {
3467         struct inode *inode = file->f_path.dentry->d_inode;
3468         if (!S_ISREG(inode->i_mode))
3469                 return -ENOTSUPP;
3470
3471         if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3472                 /* TODO: Add support for non extent hole punching */
3473                 return -ENOTSUPP;
3474         }
3475
3476         if (EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) {
3477                 /* TODO: Add support for bigalloc file systems */
3478                 return -ENOTSUPP;
3479         }
3480
3481         return ext4_ext_punch_hole(file, offset, length);
3482 }
3483
3484 /*
3485  * ext4_truncate()
3486  *
3487  * We block out ext4_get_block() block instantiations across the entire
3488  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3489  * simultaneously on behalf of the same inode.
3490  *
3491  * As we work through the truncate and commmit bits of it to the journal there
3492  * is one core, guiding principle: the file's tree must always be consistent on
3493  * disk.  We must be able to restart the truncate after a crash.
3494  *
3495  * The file's tree may be transiently inconsistent in memory (although it
3496  * probably isn't), but whenever we close off and commit a journal transaction,
3497  * the contents of (the filesystem + the journal) must be consistent and
3498  * restartable.  It's pretty simple, really: bottom up, right to left (although
3499  * left-to-right works OK too).
3500  *
3501  * Note that at recovery time, journal replay occurs *before* the restart of
3502  * truncate against the orphan inode list.
3503  *
3504  * The committed inode has the new, desired i_size (which is the same as
3505  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3506  * that this inode's truncate did not complete and it will again call
3507  * ext4_truncate() to have another go.  So there will be instantiated blocks
3508  * to the right of the truncation point in a crashed ext4 filesystem.  But
3509  * that's fine - as long as they are linked from the inode, the post-crash
3510  * ext4_truncate() run will find them and release them.
3511  */
3512 void ext4_truncate(struct inode *inode)
3513 {
3514         trace_ext4_truncate_enter(inode);
3515
3516         if (!ext4_can_truncate(inode))
3517                 return;
3518
3519         ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3520
3521         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3522                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3523
3524         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3525                 ext4_ext_truncate(inode);
3526         else
3527                 ext4_ind_truncate(inode);
3528
3529         trace_ext4_truncate_exit(inode);
3530 }
3531
3532 /*
3533  * ext4_get_inode_loc returns with an extra refcount against the inode's
3534  * underlying buffer_head on success. If 'in_mem' is true, we have all
3535  * data in memory that is needed to recreate the on-disk version of this
3536  * inode.
3537  */
3538 static int __ext4_get_inode_loc(struct inode *inode,
3539                                 struct ext4_iloc *iloc, int in_mem)
3540 {
3541         struct ext4_group_desc  *gdp;
3542         struct buffer_head      *bh;
3543         struct super_block      *sb = inode->i_sb;
3544         ext4_fsblk_t            block;
3545         int                     inodes_per_block, inode_offset;
3546
3547         iloc->bh = NULL;
3548         if (!ext4_valid_inum(sb, inode->i_ino))
3549                 return -EIO;
3550
3551         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3552         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3553         if (!gdp)
3554                 return -EIO;
3555
3556         /*
3557          * Figure out the offset within the block group inode table
3558          */
3559         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3560         inode_offset = ((inode->i_ino - 1) %
3561                         EXT4_INODES_PER_GROUP(sb));
3562         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3563         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3564
3565         bh = sb_getblk(sb, block);
3566         if (!bh) {
3567                 EXT4_ERROR_INODE_BLOCK(inode, block,
3568                                        "unable to read itable block");
3569                 return -EIO;
3570         }
3571         if (!buffer_uptodate(bh)) {
3572                 lock_buffer(bh);
3573
3574                 /*
3575                  * If the buffer has the write error flag, we have failed
3576                  * to write out another inode in the same block.  In this
3577                  * case, we don't have to read the block because we may
3578                  * read the old inode data successfully.
3579                  */
3580                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3581                         set_buffer_uptodate(bh);
3582
3583                 if (buffer_uptodate(bh)) {
3584                         /* someone brought it uptodate while we waited */
3585                         unlock_buffer(bh);
3586                         goto has_buffer;
3587                 }
3588
3589                 /*
3590                  * If we have all information of the inode in memory and this
3591                  * is the only valid inode in the block, we need not read the
3592                  * block.
3593                  */
3594                 if (in_mem) {
3595                         struct buffer_head *bitmap_bh;
3596                         int i, start;
3597
3598                         start = inode_offset & ~(inodes_per_block - 1);
3599
3600                         /* Is the inode bitmap in cache? */
3601                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3602                         if (!bitmap_bh)
3603                                 goto make_io;
3604
3605                         /*
3606                          * If the inode bitmap isn't in cache then the
3607                          * optimisation may end up performing two reads instead
3608                          * of one, so skip it.
3609                          */
3610                         if (!buffer_uptodate(bitmap_bh)) {
3611                                 brelse(bitmap_bh);
3612                                 goto make_io;
3613                         }
3614                         for (i = start; i < start + inodes_per_block; i++) {
3615                                 if (i == inode_offset)
3616                                         continue;
3617                                 if (ext4_test_bit(i, bitmap_bh->b_data))
3618                                         break;
3619                         }
3620                         brelse(bitmap_bh);
3621                         if (i == start + inodes_per_block) {
3622                                 /* all other inodes are free, so skip I/O */
3623                                 memset(bh->b_data, 0, bh->b_size);
3624                                 set_buffer_uptodate(bh);
3625                                 unlock_buffer(bh);
3626                                 goto has_buffer;
3627                         }
3628                 }
3629
3630 make_io:
3631                 /*
3632                  * If we need to do any I/O, try to pre-readahead extra
3633                  * blocks from the inode table.
3634                  */
3635                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3636                         ext4_fsblk_t b, end, table;
3637                         unsigned num;
3638
3639                         table = ext4_inode_table(sb, gdp);
3640                         /* s_inode_readahead_blks is always a power of 2 */
3641                         b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
3642                         if (table > b)
3643                                 b = table;
3644                         end = b + EXT4_SB(sb)->s_inode_readahead_blks;
3645                         num = EXT4_INODES_PER_GROUP(sb);
3646                         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3647                                        EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
3648                                 num -= ext4_itable_unused_count(sb, gdp);
3649                         table += num / inodes_per_block;
3650                         if (end > table)
3651                                 end = table;
3652                         while (b <= end)
3653                                 sb_breadahead(sb, b++);
3654                 }
3655
3656                 /*
3657                  * There are other valid inodes in the buffer, this inode
3658                  * has in-inode xattrs, or we don't have this inode in memory.
3659                  * Read the block from disk.
3660                  */
3661                 trace_ext4_load_inode(inode);
3662                 get_bh(bh);
3663                 bh->b_end_io = end_buffer_read_sync;
3664                 submit_bh(READ_META, bh);
3665                 wait_on_buffer(bh);
3666                 if (!buffer_uptodate(bh)) {
3667                         EXT4_ERROR_INODE_BLOCK(inode, block,
3668                                                "unable to read itable block");
3669                         brelse(bh);
3670                         return -EIO;
3671                 }
3672         }
3673 has_buffer:
3674         iloc->bh = bh;
3675         return 0;
3676 }
3677
3678 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3679 {
3680         /* We have all inode data except xattrs in memory here. */
3681         return __ext4_get_inode_loc(inode, iloc,
3682                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3683 }
3684
3685 void ext4_set_inode_flags(struct inode *inode)
3686 {
3687         unsigned int flags = EXT4_I(inode)->i_flags;
3688
3689         inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3690         if (flags & EXT4_SYNC_FL)
3691                 inode->i_flags |= S_SYNC;
3692         if (flags & EXT4_APPEND_FL)
3693                 inode->i_flags |= S_APPEND;
3694         if (flags & EXT4_IMMUTABLE_FL)
3695                 inode->i_flags |= S_IMMUTABLE;
3696         if (flags & EXT4_NOATIME_FL)
3697                 inode->i_flags |= S_NOATIME;
3698         if (flags & EXT4_DIRSYNC_FL)
3699                 inode->i_flags |= S_DIRSYNC;
3700 }
3701
3702 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3703 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3704 {
3705         unsigned int vfs_fl;
3706         unsigned long old_fl, new_fl;
3707
3708         do {
3709                 vfs_fl = ei->vfs_inode.i_flags;
3710                 old_fl = ei->i_flags;
3711                 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3712                                 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3713                                 EXT4_DIRSYNC_FL);
3714                 if (vfs_fl & S_SYNC)
3715                         new_fl |= EXT4_SYNC_FL;
3716                 if (vfs_fl & S_APPEND)
3717                         new_fl |= EXT4_APPEND_FL;
3718                 if (vfs_fl & S_IMMUTABLE)
3719                         new_fl |= EXT4_IMMUTABLE_FL;
3720                 if (vfs_fl & S_NOATIME)
3721                         new_fl |= EXT4_NOATIME_FL;
3722                 if (vfs_fl & S_DIRSYNC)
3723                         new_fl |= EXT4_DIRSYNC_FL;
3724         } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3725 }
3726
3727 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3728                                   struct ext4_inode_info *ei)
3729 {
3730         blkcnt_t i_blocks ;
3731         struct inode *inode = &(ei->vfs_inode);
3732         struct super_block *sb = inode->i_sb;
3733
3734         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3735                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3736                 /* we are using combined 48 bit field */
3737                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3738                                         le32_to_cpu(raw_inode->i_blocks_lo);
3739                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
3740                         /* i_blocks represent file system block size */
3741                         return i_blocks  << (inode->i_blkbits - 9);
3742                 } else {
3743                         return i_blocks;
3744                 }
3745         } else {
3746                 return le32_to_cpu(raw_inode->i_blocks_lo);
3747         }
3748 }
3749
3750 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3751 {
3752         struct ext4_iloc iloc;
3753         struct ext4_inode *raw_inode;
3754         struct ext4_inode_info *ei;
3755         struct inode *inode;
3756         journal_t *journal = EXT4_SB(sb)->s_journal;
3757         long ret;
3758         int block;
3759
3760         inode = iget_locked(sb, ino);
3761         if (!inode)
3762                 return ERR_PTR(-ENOMEM);
3763         if (!(inode->i_state & I_NEW))
3764                 return inode;
3765
3766         ei = EXT4_I(inode);
3767         iloc.bh = NULL;
3768
3769         ret = __ext4_get_inode_loc(inode, &iloc, 0);
3770         if (ret < 0)
3771                 goto bad_inode;
3772         raw_inode = ext4_raw_inode(&iloc);
3773         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
3774         inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
3775         inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
3776         if (!(test_opt(inode->i_sb, NO_UID32))) {
3777                 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
3778                 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
3779         }
3780         inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
3781
3782         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
3783         ei->i_dir_start_lookup = 0;
3784         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
3785         /* We now have enough fields to check if the inode was active or not.
3786          * This is needed because nfsd might try to access dead inodes
3787          * the test is that same one that e2fsck uses
3788          * NeilBrown 1999oct15
3789          */
3790         if (inode->i_nlink == 0) {
3791                 if (inode->i_mode == 0 ||
3792                     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
3793                         /* this inode is deleted */
3794                         ret = -ESTALE;
3795                         goto bad_inode;
3796                 }
3797                 /* The only unlinked inodes we let through here have
3798                  * valid i_mode and are being read by the orphan
3799                  * recovery code: that's fine, we're about to complete
3800                  * the process of deleting those. */
3801         }
3802         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
3803         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
3804         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
3805         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
3806                 ei->i_file_acl |=
3807                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
3808         inode->i_size = ext4_isize(raw_inode);
3809         ei->i_disksize = inode->i_size;
3810 #ifdef CONFIG_QUOTA
3811         ei->i_reserved_quota = 0;
3812 #endif
3813         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
3814         ei->i_block_group = iloc.block_group;
3815         ei->i_last_alloc_group = ~0;
3816         /*
3817          * NOTE! The in-memory inode i_data array is in little-endian order
3818          * even on big-endian machines: we do NOT byteswap the block numbers!
3819          */
3820         for (block = 0; block < EXT4_N_BLOCKS; block++)
3821                 ei->i_data[block] = raw_inode->i_block[block];
3822         INIT_LIST_HEAD(&ei->i_orphan);
3823
3824         /*
3825          * Set transaction id's of transactions that have to be committed
3826          * to finish f[data]sync. We set them to currently running transaction
3827          * as we cannot be sure that the inode or some of its metadata isn't
3828          * part of the transaction - the inode could have been reclaimed and
3829          * now it is reread from disk.
3830          */
3831         if (journal) {
3832                 transaction_t *transaction;
3833                 tid_t tid;
3834
3835                 read_lock(&journal->j_state_lock);
3836                 if (journal->j_running_transaction)
3837                         transaction = journal->j_running_transaction;
3838                 else
3839                         transaction = journal->j_committing_transaction;
3840                 if (transaction)
3841                         tid = transaction->t_tid;
3842                 else
3843                         tid = journal->j_commit_sequence;
3844                 read_unlock(&journal->j_state_lock);
3845                 ei->i_sync_tid = tid;
3846                 ei->i_datasync_tid = tid;
3847         }
3848
3849         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3850                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3851                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3852                     EXT4_INODE_SIZE(inode->i_sb)) {
3853                         ret = -EIO;
3854                         goto bad_inode;
3855                 }
3856                 if (ei->i_extra_isize == 0) {
3857                         /* The extra space is currently unused. Use it. */
3858                         ei->i_extra_isize = sizeof(struct ext4_inode) -
3859                                             EXT4_GOOD_OLD_INODE_SIZE;
3860                 } else {
3861                         __le32 *magic = (void *)raw_inode +
3862                                         EXT4_GOOD_OLD_INODE_SIZE +
3863                                         ei->i_extra_isize;
3864                         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
3865                                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
3866                 }
3867         } else
3868                 ei->i_extra_isize = 0;
3869
3870         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
3871         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
3872         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
3873         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
3874
3875         inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
3876         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3877                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
3878                         inode->i_version |=
3879                         (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
3880         }
3881
3882         ret = 0;
3883         if (ei->i_file_acl &&
3884             !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
3885                 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
3886                                  ei->i_file_acl);
3887                 ret = -EIO;
3888                 goto bad_inode;
3889         } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3890                 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3891                     (S_ISLNK(inode->i_mode) &&
3892                      !ext4_inode_is_fast_symlink(inode)))
3893                         /* Validate extent which is part of inode */
3894                         ret = ext4_ext_check_inode(inode);
3895         } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3896                    (S_ISLNK(inode->i_mode) &&
3897                     !ext4_inode_is_fast_symlink(inode))) {
3898                 /* Validate block references which are part of inode */
3899                 ret = ext4_ind_check_inode(inode);
3900         }
3901         if (ret)
3902                 goto bad_inode;
3903
3904         if (S_ISREG(inode->i_mode)) {
3905                 inode->i_op = &ext4_file_inode_operations;
3906                 inode->i_fop = &ext4_file_operations;
3907                 ext4_set_aops(inode);
3908         } else if (S_ISDIR(inode->i_mode)) {
3909                 inode->i_op = &ext4_dir_inode_operations;
3910                 inode->i_fop = &ext4_dir_operations;
3911         } else if (S_ISLNK(inode->i_mode)) {
3912                 if (ext4_inode_is_fast_symlink(inode)) {
3913                         inode->i_op = &ext4_fast_symlink_inode_operations;
3914                         nd_terminate_link(ei->i_data, inode->i_size,
3915                                 sizeof(ei->i_data) - 1);
3916                 } else {
3917                         inode->i_op = &ext4_symlink_inode_operations;
3918                         ext4_set_aops(inode);
3919                 }
3920         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
3921               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
3922                 inode->i_op = &ext4_special_inode_operations;
3923                 if (raw_inode->i_block[0])
3924                         init_special_inode(inode, inode->i_mode,
3925                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
3926                 else
3927                         init_special_inode(inode, inode->i_mode,
3928                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
3929         } else {
3930                 ret = -EIO;
3931                 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
3932                 goto bad_inode;
3933         }
3934         brelse(iloc.bh);
3935         ext4_set_inode_flags(inode);
3936         unlock_new_inode(inode);
3937         return inode;
3938
3939 bad_inode:
3940         brelse(iloc.bh);
3941         iget_failed(inode);
3942         return ERR_PTR(ret);
3943 }
3944
3945 static int ext4_inode_blocks_set(handle_t *handle,
3946                                 struct ext4_inode *raw_inode,
3947                                 struct ext4_inode_info *ei)
3948 {
3949         struct inode *inode = &(ei->vfs_inode);
3950         u64 i_blocks = inode->i_blocks;
3951         struct super_block *sb = inode->i_sb;
3952
3953         if (i_blocks <= ~0U) {
3954                 /*
3955                  * i_blocks can be represnted in a 32 bit variable
3956                  * as multiple of 512 bytes
3957                  */
3958                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3959                 raw_inode->i_blocks_high = 0;
3960                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3961                 return 0;
3962         }
3963         if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
3964                 return -EFBIG;
3965
3966         if (i_blocks <= 0xffffffffffffULL) {
3967                 /*
3968                  * i_blocks can be represented in a 48 bit variable
3969                  * as multiple of 512 bytes
3970                  */
3971                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3972                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
3973                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3974         } else {
3975                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3976                 /* i_block is stored in file system block size */
3977                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
3978                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3979                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
3980         }
3981         return 0;
3982 }
3983
3984 /*
3985  * Post the struct inode info into an on-disk inode location in the
3986  * buffer-cache.  This gobbles the caller's reference to the
3987  * buffer_head in the inode location struct.
3988  *
3989  * The caller must have write access to iloc->bh.
3990  */
3991 static int ext4_do_update_inode(handle_t *handle,
3992                                 struct inode *inode,
3993                                 struct ext4_iloc *iloc)
3994 {
3995         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
3996         struct ext4_inode_info *ei = EXT4_I(inode);
3997         struct buffer_head *bh = iloc->bh;
3998         int err = 0, rc, block;
3999
4000         /* For fields not not tracking in the in-memory inode,
4001          * initialise them to zero for new inodes. */
4002         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4003                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4004
4005         ext4_get_inode_flags(ei);
4006         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4007         if (!(test_opt(inode->i_sb, NO_UID32))) {
4008                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
4009                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
4010 /*
4011  * Fix up interoperability with old kernels. Otherwise, old inodes get
4012  * re-used with the upper 16 bits of the uid/gid intact
4013  */
4014                 if (!ei->i_dtime) {
4015                         raw_inode->i_uid_high =
4016                                 cpu_to_le16(high_16_bits(inode->i_uid));
4017                         raw_inode->i_gid_high =
4018                                 cpu_to_le16(high_16_bits(inode->i_gid));
4019                 } else {
4020                         raw_inode->i_uid_high = 0;
4021                         raw_inode->i_gid_high = 0;
4022                 }
4023         } else {
4024                 raw_inode->i_uid_low =
4025                         cpu_to_le16(fs_high2lowuid(inode->i_uid));
4026                 raw_inode->i_gid_low =
4027                         cpu_to_le16(fs_high2lowgid(inode->i_gid));
4028                 raw_inode->i_uid_high = 0;
4029                 raw_inode->i_gid_high = 0;
4030         }
4031         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4032
4033         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4034         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4035         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4036         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4037
4038         if (ext4_inode_blocks_set(handle, raw_inode, ei))
4039                 goto out_brelse;
4040         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4041         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4042         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4043             cpu_to_le32(EXT4_OS_HURD))
4044                 raw_inode->i_file_acl_high =
4045                         cpu_to_le16(ei->i_file_acl >> 32);
4046         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4047         ext4_isize_set(raw_inode, ei->i_disksize);
4048         if (ei->i_disksize > 0x7fffffffULL) {
4049                 struct super_block *sb = inode->i_sb;
4050                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4051                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4052                                 EXT4_SB(sb)->s_es->s_rev_level ==
4053                                 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4054                         /* If this is the first large file
4055                          * created, add a flag to the superblock.
4056                          */
4057                         err = ext4_journal_get_write_access(handle,
4058                                         EXT4_SB(sb)->s_sbh);
4059                         if (err)
4060                                 goto out_brelse;
4061                         ext4_update_dynamic_rev(sb);
4062                         EXT4_SET_RO_COMPAT_FEATURE(sb,
4063                                         EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4064                         sb->s_dirt = 1;
4065                         ext4_handle_sync(handle);
4066                         err = ext4_handle_dirty_metadata(handle, NULL,
4067                                         EXT4_SB(sb)->s_sbh);
4068                 }
4069         }
4070         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4071         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4072                 if (old_valid_dev(inode->i_rdev)) {
4073                         raw_inode->i_block[0] =
4074                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4075                         raw_inode->i_block[1] = 0;
4076                 } else {
4077                         raw_inode->i_block[0] = 0;
4078                         raw_inode->i_block[1] =
4079                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4080                         raw_inode->i_block[2] = 0;
4081                 }
4082         } else
4083                 for (block = 0; block < EXT4_N_BLOCKS; block++)
4084                         raw_inode->i_block[block] = ei->i_data[block];
4085
4086         raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4087         if (ei->i_extra_isize) {
4088                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4089                         raw_inode->i_version_hi =
4090                         cpu_to_le32(inode->i_version >> 32);
4091                 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4092         }
4093
4094         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4095         rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4096         if (!err)
4097                 err = rc;
4098         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4099
4100         ext4_update_inode_fsync_trans(handle, inode, 0);
4101 out_brelse:
4102         brelse(bh);
4103         ext4_std_error(inode->i_sb, err);
4104         return err;
4105 }
4106
4107 /*
4108  * ext4_write_inode()
4109  *
4110  * We are called from a few places:
4111  *
4112  * - Within generic_file_write() for O_SYNC files.
4113  *   Here, there will be no transaction running. We wait for any running
4114  *   trasnaction to commit.
4115  *
4116  * - Within sys_sync(), kupdate and such.
4117  *   We wait on commit, if tol to.
4118  *
4119  * - Within prune_icache() (PF_MEMALLOC == true)
4120  *   Here we simply return.  We can't afford to block kswapd on the
4121  *   journal commit.
4122  *
4123  * In all cases it is actually safe for us to return without doing anything,
4124  * because the inode has been copied into a raw inode buffer in
4125  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4126  * knfsd.
4127  *
4128  * Note that we are absolutely dependent upon all inode dirtiers doing the
4129  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4130  * which we are interested.
4131  *
4132  * It would be a bug for them to not do this.  The code:
4133  *
4134  *      mark_inode_dirty(inode)
4135  *      stuff();
4136  *      inode->i_size = expr;
4137  *
4138  * is in error because a kswapd-driven write_inode() could occur while
4139  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
4140  * will no longer be on the superblock's dirty inode list.
4141  */
4142 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4143 {
4144         int err;
4145
4146         if (current->flags & PF_MEMALLOC)
4147                 return 0;
4148
4149         if (EXT4_SB(inode->i_sb)->s_journal) {
4150                 if (ext4_journal_current_handle()) {
4151                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4152                         dump_stack();
4153                         return -EIO;
4154                 }
4155
4156                 if (wbc->sync_mode != WB_SYNC_ALL)
4157                         return 0;
4158
4159                 err = ext4_force_commit(inode->i_sb);
4160         } else {
4161                 struct ext4_iloc iloc;
4162
4163                 err = __ext4_get_inode_loc(inode, &iloc, 0);
4164                 if (err)
4165                         return err;
4166                 if (wbc->sync_mode == WB_SYNC_ALL)
4167                         sync_dirty_buffer(iloc.bh);
4168                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4169                         EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4170                                          "IO error syncing inode");
4171                         err = -EIO;
4172                 }
4173                 brelse(iloc.bh);
4174         }
4175         return err;
4176 }
4177
4178 /*
4179  * ext4_setattr()
4180  *
4181  * Called from notify_change.
4182  *
4183  * We want to trap VFS attempts to truncate the file as soon as
4184  * possible.  In particular, we want to make sure that when the VFS
4185  * shrinks i_size, we put the inode on the orphan list and modify
4186  * i_disksize immediately, so that during the subsequent flushing of
4187  * dirty pages and freeing of disk blocks, we can guarantee that any
4188  * commit will leave the blocks being flushed in an unused state on
4189  * disk.  (On recovery, the inode will get truncated and the blocks will
4190  * be freed, so we have a strong guarantee that no future commit will
4191  * leave these blocks visible to the user.)
4192  *
4193  * Another thing we have to assure is that if we are in ordered mode
4194  * and inode is still attached to the committing transaction, we must
4195  * we start writeout of all the dirty pages which are being truncated.
4196  * This way we are sure that all the data written in the previous
4197  * transaction are already on disk (truncate waits for pages under
4198  * writeback).
4199  *
4200  * Called with inode->i_mutex down.
4201  */
4202 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4203 {
4204         struct inode *inode = dentry->d_inode;
4205         int error, rc = 0;
4206         int orphan = 0;
4207         const unsigned int ia_valid = attr->ia_valid;
4208
4209         error = inode_change_ok(inode, attr);
4210         if (error)
4211                 return error;
4212
4213         if (is_quota_modification(inode, attr))
4214                 dquot_initialize(inode);
4215         if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
4216                 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
4217                 handle_t *handle;
4218
4219                 /* (user+group)*(old+new) structure, inode write (sb,
4220                  * inode block, ? - but truncate inode update has it) */
4221                 handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
4222                                         EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
4223                 if (IS_ERR(handle)) {
4224                         error = PTR_ERR(handle);
4225                         goto err_out;
4226                 }
4227                 error = dquot_transfer(inode, attr);
4228                 if (error) {
4229                         ext4_journal_stop(handle);
4230                         return error;
4231                 }
4232                 /* Update corresponding info in inode so that everything is in
4233                  * one transaction */
4234                 if (attr->ia_valid & ATTR_UID)
4235                         inode->i_uid = attr->ia_uid;
4236                 if (attr->ia_valid & ATTR_GID)
4237                         inode->i_gid = attr->ia_gid;
4238                 error = ext4_mark_inode_dirty(handle, inode);
4239                 ext4_journal_stop(handle);
4240         }
4241
4242         if (attr->ia_valid & ATTR_SIZE) {
4243                 inode_dio_wait(inode);
4244
4245                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4246                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4247
4248                         if (attr->ia_size > sbi->s_bitmap_maxbytes)
4249                                 return -EFBIG;
4250                 }
4251         }
4252
4253         if (S_ISREG(inode->i_mode) &&
4254             attr->ia_valid & ATTR_SIZE &&
4255             (attr->ia_size < inode->i_size)) {
4256                 handle_t *handle;
4257
4258                 handle = ext4_journal_start(inode, 3);
4259                 if (IS_ERR(handle)) {
4260                         error = PTR_ERR(handle);
4261                         goto err_out;
4262                 }
4263                 if (ext4_handle_valid(handle)) {
4264                         error = ext4_orphan_add(handle, inode);
4265                         orphan = 1;
4266                 }
4267                 EXT4_I(inode)->i_disksize = attr->ia_size;
4268                 rc = ext4_mark_inode_dirty(handle, inode);
4269                 if (!error)
4270                         error = rc;
4271                 ext4_journal_stop(handle);
4272
4273                 if (ext4_should_order_data(inode)) {
4274                         error = ext4_begin_ordered_truncate(inode,
4275                                                             attr->ia_size);
4276                         if (error) {
4277                                 /* Do as much error cleanup as possible */
4278                                 handle = ext4_journal_start(inode, 3);
4279                                 if (IS_ERR(handle)) {
4280                                         ext4_orphan_del(NULL, inode);
4281                                         goto err_out;
4282                                 }
4283                                 ext4_orphan_del(handle, inode);
4284                                 orphan = 0;
4285                                 ext4_journal_stop(handle);
4286                                 goto err_out;
4287                         }
4288                 }
4289         }
4290
4291         if (attr->ia_valid & ATTR_SIZE) {
4292                 if (attr->ia_size != i_size_read(inode)) {
4293                         truncate_setsize(inode, attr->ia_size);
4294                         ext4_truncate(inode);
4295                 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))
4296                         ext4_truncate(inode);
4297         }
4298
4299         if (!rc) {
4300                 setattr_copy(inode, attr);
4301                 mark_inode_dirty(inode);
4302         }
4303
4304         /*
4305          * If the call to ext4_truncate failed to get a transaction handle at
4306          * all, we need to clean up the in-core orphan list manually.
4307          */
4308         if (orphan && inode->i_nlink)
4309                 ext4_orphan_del(NULL, inode);
4310
4311         if (!rc && (ia_valid & ATTR_MODE))
4312                 rc = ext4_acl_chmod(inode);
4313
4314 err_out:
4315         ext4_std_error(inode->i_sb, error);
4316         if (!error)
4317                 error = rc;
4318         return error;
4319 }
4320
4321 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4322                  struct kstat *stat)
4323 {
4324         struct inode *inode;
4325         unsigned long delalloc_blocks;
4326
4327         inode = dentry->d_inode;
4328         generic_fillattr(inode, stat);
4329
4330         /*
4331          * We can't update i_blocks if the block allocation is delayed
4332          * otherwise in the case of system crash before the real block
4333          * allocation is done, we will have i_blocks inconsistent with
4334          * on-disk file blocks.
4335          * We always keep i_blocks updated together with real
4336          * allocation. But to not confuse with user, stat
4337          * will return the blocks that include the delayed allocation
4338          * blocks for this file.
4339          */
4340         delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
4341
4342         stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4343         return 0;
4344 }
4345
4346 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4347 {
4348         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4349                 return ext4_ind_trans_blocks(inode, nrblocks, chunk);
4350         return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4351 }
4352
4353 /*
4354  * Account for index blocks, block groups bitmaps and block group
4355  * descriptor blocks if modify datablocks and index blocks
4356  * worse case, the indexs blocks spread over different block groups
4357  *
4358  * If datablocks are discontiguous, they are possible to spread over
4359  * different block groups too. If they are contiuguous, with flexbg,
4360  * they could still across block group boundary.
4361  *
4362  * Also account for superblock, inode, quota and xattr blocks
4363  */
4364 static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4365 {
4366         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4367         int gdpblocks;
4368         int idxblocks;
4369         int ret = 0;
4370
4371         /*
4372          * How many index blocks need to touch to modify nrblocks?
4373          * The "Chunk" flag indicating whether the nrblocks is
4374          * physically contiguous on disk
4375          *
4376          * For Direct IO and fallocate, they calls get_block to allocate
4377          * one single extent at a time, so they could set the "Chunk" flag
4378          */
4379         idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4380
4381         ret = idxblocks;
4382
4383         /*
4384          * Now let's see how many group bitmaps and group descriptors need
4385          * to account
4386          */
4387         groups = idxblocks;
4388         if (chunk)
4389                 groups += 1;
4390         else
4391                 groups += nrblocks;
4392
4393         gdpblocks = groups;
4394         if (groups > ngroups)
4395                 groups = ngroups;
4396         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4397                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4398
4399         /* bitmaps and block group descriptor blocks */
4400         ret += groups + gdpblocks;
4401
4402         /* Blocks for super block, inode, quota and xattr blocks */
4403         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4404
4405         return ret;
4406 }
4407
4408 /*
4409  * Calculate the total number of credits to reserve to fit
4410  * the modification of a single pages into a single transaction,
4411  * which may include multiple chunks of block allocations.
4412  *
4413  * This could be called via ext4_write_begin()
4414  *
4415  * We need to consider the worse case, when
4416  * one new block per extent.
4417  */
4418 int ext4_writepage_trans_blocks(struct inode *inode)
4419 {
4420         int bpp = ext4_journal_blocks_per_page(inode);
4421         int ret;
4422
4423         ret = ext4_meta_trans_blocks(inode, bpp, 0);
4424
4425         /* Account for data blocks for journalled mode */
4426         if (ext4_should_journal_data(inode))
4427                 ret += bpp;
4428         return ret;
4429 }
4430
4431 /*
4432  * Calculate the journal credits for a chunk of data modification.
4433  *
4434  * This is called from DIO, fallocate or whoever calling
4435  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4436  *
4437  * journal buffers for data blocks are not included here, as DIO
4438  * and fallocate do no need to journal data buffers.
4439  */
4440 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4441 {
4442         return ext4_meta_trans_blocks(inode, nrblocks, 1);
4443 }
4444
4445 /*
4446  * The caller must have previously called ext4_reserve_inode_write().
4447  * Give this, we know that the caller already has write access to iloc->bh.
4448  */
4449 int ext4_mark_iloc_dirty(handle_t *handle,
4450                          struct inode *inode, struct ext4_iloc *iloc)
4451 {
4452         int err = 0;
4453
4454         if (test_opt(inode->i_sb, I_VERSION))
4455                 inode_inc_iversion(inode);
4456
4457         /* the do_update_inode consumes one bh->b_count */
4458         get_bh(iloc->bh);
4459
4460         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4461         err = ext4_do_update_inode(handle, inode, iloc);
4462         put_bh(iloc->bh);
4463         return err;
4464 }
4465
4466 /*
4467  * On success, We end up with an outstanding reference count against
4468  * iloc->bh.  This _must_ be cleaned up later.
4469  */
4470
4471 int
4472 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4473                          struct ext4_iloc *iloc)
4474 {
4475         int err;
4476
4477         err = ext4_get_inode_loc(inode, iloc);
4478         if (!err) {
4479                 BUFFER_TRACE(iloc->bh, "get_write_access");
4480                 err = ext4_journal_get_write_access(handle, iloc->bh);
4481                 if (err) {
4482                         brelse(iloc->bh);
4483                         iloc->bh = NULL;
4484                 }
4485         }
4486         ext4_std_error(inode->i_sb, err);
4487         return err;
4488 }
4489
4490 /*
4491  * Expand an inode by new_extra_isize bytes.
4492  * Returns 0 on success or negative error number on failure.
4493  */
4494 static int ext4_expand_extra_isize(struct inode *inode,
4495                                    unsigned int new_extra_isize,
4496                                    struct ext4_iloc iloc,
4497                                    handle_t *handle)
4498 {
4499         struct ext4_inode *raw_inode;
4500         struct ext4_xattr_ibody_header *header;
4501
4502         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4503                 return 0;
4504
4505         raw_inode = ext4_raw_inode(&iloc);
4506
4507         header = IHDR(inode, raw_inode);
4508
4509         /* No extended attributes present */
4510         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4511             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4512                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4513                         new_extra_isize);
4514                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4515                 return 0;
4516         }
4517
4518         /* try to expand with EAs present */
4519         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4520                                           raw_inode, handle);
4521 }
4522
4523 /*
4524  * What we do here is to mark the in-core inode as clean with respect to inode
4525  * dirtiness (it may still be data-dirty).
4526  * This means that the in-core inode may be reaped by prune_icache
4527  * without having to perform any I/O.  This is a very good thing,
4528  * because *any* task may call prune_icache - even ones which
4529  * have a transaction open against a different journal.
4530  *
4531  * Is this cheating?  Not really.  Sure, we haven't written the
4532  * inode out, but prune_icache isn't a user-visible syncing function.
4533  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4534  * we start and wait on commits.
4535  *
4536  * Is this efficient/effective?  Well, we're being nice to the system
4537  * by cleaning up our inodes proactively so they can be reaped
4538  * without I/O.  But we are potentially leaving up to five seconds'
4539  * worth of inodes floating about which prune_icache wants us to
4540  * write out.  One way to fix that would be to get prune_icache()
4541  * to do a write_super() to free up some memory.  It has the desired
4542  * effect.
4543  */
4544 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4545 {
4546         struct ext4_iloc iloc;
4547         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4548         static unsigned int mnt_count;
4549         int err, ret;
4550
4551         might_sleep();
4552         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4553         err = ext4_reserve_inode_write(handle, inode, &iloc);
4554         if (ext4_handle_valid(handle) &&
4555             EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4556             !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4557                 /*
4558                  * We need extra buffer credits since we may write into EA block
4559                  * with this same handle. If journal_extend fails, then it will
4560                  * only result in a minor loss of functionality for that inode.
4561                  * If this is felt to be critical, then e2fsck should be run to
4562                  * force a large enough s_min_extra_isize.
4563                  */
4564                 if ((jbd2_journal_extend(handle,
4565                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4566                         ret = ext4_expand_extra_isize(inode,
4567                                                       sbi->s_want_extra_isize,
4568                                                       iloc, handle);
4569                         if (ret) {
4570                                 ext4_set_inode_state(inode,
4571                                                      EXT4_STATE_NO_EXPAND);
4572                                 if (mnt_count !=
4573                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
4574                                         ext4_warning(inode->i_sb,
4575                                         "Unable to expand inode %lu. Delete"
4576                                         " some EAs or run e2fsck.",
4577                                         inode->i_ino);
4578                                         mnt_count =
4579                                           le16_to_cpu(sbi->s_es->s_mnt_count);
4580                                 }
4581                         }
4582                 }
4583         }
4584         if (!err)
4585                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4586         return err;
4587 }
4588
4589 /*
4590  * ext4_dirty_inode() is called from __mark_inode_dirty()
4591  *
4592  * We're really interested in the case where a file is being extended.
4593  * i_size has been changed by generic_commit_write() and we thus need
4594  * to include the updated inode in the current transaction.
4595  *
4596  * Also, dquot_alloc_block() will always dirty the inode when blocks
4597  * are allocated to the file.
4598  *
4599  * If the inode is marked synchronous, we don't honour that here - doing
4600  * so would cause a commit on atime updates, which we don't bother doing.
4601  * We handle synchronous inodes at the highest possible level.
4602  */
4603 void ext4_dirty_inode(struct inode *inode, int flags)
4604 {
4605         handle_t *handle;
4606
4607         handle = ext4_journal_start(inode, 2);
4608         if (IS_ERR(handle))
4609                 goto out;
4610
4611         ext4_mark_inode_dirty(handle, inode);
4612
4613         ext4_journal_stop(handle);
4614 out:
4615         return;
4616 }
4617
4618 #if 0
4619 /*
4620  * Bind an inode's backing buffer_head into this transaction, to prevent
4621  * it from being flushed to disk early.  Unlike
4622  * ext4_reserve_inode_write, this leaves behind no bh reference and
4623  * returns no iloc structure, so the caller needs to repeat the iloc
4624  * lookup to mark the inode dirty later.
4625  */
4626 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4627 {
4628         struct ext4_iloc iloc;
4629
4630         int err = 0;
4631         if (handle) {
4632                 err = ext4_get_inode_loc(inode, &iloc);
4633                 if (!err) {
4634                         BUFFER_TRACE(iloc.bh, "get_write_access");
4635                         err = jbd2_journal_get_write_access(handle, iloc.bh);
4636                         if (!err)
4637                                 err = ext4_handle_dirty_metadata(handle,
4638                                                                  NULL,
4639                                                                  iloc.bh);
4640                         brelse(iloc.bh);
4641                 }
4642         }
4643         ext4_std_error(inode->i_sb, err);
4644         return err;
4645 }
4646 #endif
4647
4648 int ext4_change_inode_journal_flag(struct inode *inode, int val)
4649 {
4650         journal_t *journal;
4651         handle_t *handle;
4652         int err;
4653
4654         /*
4655          * We have to be very careful here: changing a data block's
4656          * journaling status dynamically is dangerous.  If we write a
4657          * data block to the journal, change the status and then delete
4658          * that block, we risk forgetting to revoke the old log record
4659          * from the journal and so a subsequent replay can corrupt data.
4660          * So, first we make sure that the journal is empty and that
4661          * nobody is changing anything.
4662          */
4663
4664         journal = EXT4_JOURNAL(inode);
4665         if (!journal)
4666                 return 0;
4667         if (is_journal_aborted(journal))
4668                 return -EROFS;
4669
4670         jbd2_journal_lock_updates(journal);
4671         jbd2_journal_flush(journal);
4672
4673         /*
4674          * OK, there are no updates running now, and all cached data is
4675          * synced to disk.  We are now in a completely consistent state
4676          * which doesn't have anything in the journal, and we know that
4677          * no filesystem updates are running, so it is safe to modify
4678          * the inode's in-core data-journaling state flag now.
4679          */
4680
4681         if (val)
4682                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4683         else
4684                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4685         ext4_set_aops(inode);
4686
4687         jbd2_journal_unlock_updates(journal);
4688
4689         /* Finally we can mark the inode as dirty. */
4690
4691         handle = ext4_journal_start(inode, 1);
4692         if (IS_ERR(handle))
4693                 return PTR_ERR(handle);
4694
4695         err = ext4_mark_inode_dirty(handle, inode);
4696         ext4_handle_sync(handle);
4697         ext4_journal_stop(handle);
4698         ext4_std_error(inode->i_sb, err);
4699
4700         return err;
4701 }
4702
4703 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4704 {
4705         return !buffer_mapped(bh);
4706 }
4707
4708 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
4709 {
4710         struct page *page = vmf->page;
4711         loff_t size;
4712         unsigned long len;
4713         int ret;
4714         struct file *file = vma->vm_file;
4715         struct inode *inode = file->f_path.dentry->d_inode;
4716         struct address_space *mapping = inode->i_mapping;
4717         handle_t *handle;
4718         get_block_t *get_block;
4719         int retries = 0;
4720
4721         /*
4722          * This check is racy but catches the common case. We rely on
4723          * __block_page_mkwrite() to do a reliable check.
4724          */
4725         vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
4726         /* Delalloc case is easy... */
4727         if (test_opt(inode->i_sb, DELALLOC) &&
4728             !ext4_should_journal_data(inode) &&
4729             !ext4_nonda_switch(inode->i_sb)) {
4730                 do {
4731                         ret = __block_page_mkwrite(vma, vmf,
4732                                                    ext4_da_get_block_prep);
4733                 } while (ret == -ENOSPC &&
4734                        ext4_should_retry_alloc(inode->i_sb, &retries));
4735                 goto out_ret;
4736         }
4737
4738         lock_page(page);
4739         size = i_size_read(inode);
4740         /* Page got truncated from under us? */
4741         if (page->mapping != mapping || page_offset(page) > size) {
4742                 unlock_page(page);
4743                 ret = VM_FAULT_NOPAGE;
4744                 goto out;
4745         }
4746
4747         if (page->index == size >> PAGE_CACHE_SHIFT)
4748                 len = size & ~PAGE_CACHE_MASK;
4749         else
4750                 len = PAGE_CACHE_SIZE;
4751         /*
4752          * Return if we have all the buffers mapped. This avoids the need to do
4753          * journal_start/journal_stop which can block and take a long time
4754          */
4755         if (page_has_buffers(page)) {
4756                 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
4757                                         ext4_bh_unmapped)) {
4758                         /* Wait so that we don't change page under IO */
4759                         wait_on_page_writeback(page);
4760                         ret = VM_FAULT_LOCKED;
4761                         goto out;
4762                 }
4763         }
4764         unlock_page(page);
4765         /* OK, we need to fill the hole... */
4766         if (ext4_should_dioread_nolock(inode))
4767                 get_block = ext4_get_block_write;
4768         else
4769                 get_block = ext4_get_block;
4770 retry_alloc:
4771         handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
4772         if (IS_ERR(handle)) {
4773                 ret = VM_FAULT_SIGBUS;
4774                 goto out;
4775         }
4776         ret = __block_page_mkwrite(vma, vmf, get_block);
4777         if (!ret && ext4_should_journal_data(inode)) {
4778                 if (walk_page_buffers(handle, page_buffers(page), 0,
4779                           PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
4780                         unlock_page(page);
4781                         ret = VM_FAULT_SIGBUS;
4782                         goto out;
4783                 }
4784                 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
4785         }
4786         ext4_journal_stop(handle);
4787         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
4788                 goto retry_alloc;
4789 out_ret:
4790         ret = block_page_mkwrite_return(ret);
4791 out:
4792         return ret;
4793 }