ext4: fix endianness breakage in ext4_split_extent_at()
[pandora-kernel.git] / fs / ext4 / extents.c
1 /*
2  * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3  * Written by Alex Tomas <alex@clusterfs.com>
4  *
5  * Architecture independence:
6  *   Copyright (c) 2005, Bull S.A.
7  *   Written by Pierre Peiffer <pierre.peiffer@bull.net>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public Licens
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
21  */
22
23 /*
24  * Extents support for EXT4
25  *
26  * TODO:
27  *   - ext4*_error() should be used in some situations
28  *   - analyze all BUG()/BUG_ON(), use -EIO where appropriate
29  *   - smart tree reduction
30  */
31
32 #include <linux/module.h>
33 #include <linux/fs.h>
34 #include <linux/time.h>
35 #include <linux/jbd2.h>
36 #include <linux/highuid.h>
37 #include <linux/pagemap.h>
38 #include <linux/quotaops.h>
39 #include <linux/string.h>
40 #include <linux/slab.h>
41 #include <linux/falloc.h>
42 #include <asm/uaccess.h>
43 #include <linux/fiemap.h>
44 #include "ext4_jbd2.h"
45
46 #include <trace/events/ext4.h>
47
48 static int ext4_split_extent(handle_t *handle,
49                                 struct inode *inode,
50                                 struct ext4_ext_path *path,
51                                 struct ext4_map_blocks *map,
52                                 int split_flag,
53                                 int flags);
54
55 static int ext4_ext_truncate_extend_restart(handle_t *handle,
56                                             struct inode *inode,
57                                             int needed)
58 {
59         int err;
60
61         if (!ext4_handle_valid(handle))
62                 return 0;
63         if (handle->h_buffer_credits > needed)
64                 return 0;
65         err = ext4_journal_extend(handle, needed);
66         if (err <= 0)
67                 return err;
68         err = ext4_truncate_restart_trans(handle, inode, needed);
69         if (err == 0)
70                 err = -EAGAIN;
71
72         return err;
73 }
74
75 /*
76  * could return:
77  *  - EROFS
78  *  - ENOMEM
79  */
80 static int ext4_ext_get_access(handle_t *handle, struct inode *inode,
81                                 struct ext4_ext_path *path)
82 {
83         if (path->p_bh) {
84                 /* path points to block */
85                 return ext4_journal_get_write_access(handle, path->p_bh);
86         }
87         /* path points to leaf/index in inode body */
88         /* we use in-core data, no need to protect them */
89         return 0;
90 }
91
92 /*
93  * could return:
94  *  - EROFS
95  *  - ENOMEM
96  *  - EIO
97  */
98 #define ext4_ext_dirty(handle, inode, path) \
99                 __ext4_ext_dirty(__func__, __LINE__, (handle), (inode), (path))
100 static int __ext4_ext_dirty(const char *where, unsigned int line,
101                             handle_t *handle, struct inode *inode,
102                             struct ext4_ext_path *path)
103 {
104         int err;
105         if (path->p_bh) {
106                 /* path points to block */
107                 err = __ext4_handle_dirty_metadata(where, line, handle,
108                                                    inode, path->p_bh);
109         } else {
110                 /* path points to leaf/index in inode body */
111                 err = ext4_mark_inode_dirty(handle, inode);
112         }
113         return err;
114 }
115
116 static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode,
117                               struct ext4_ext_path *path,
118                               ext4_lblk_t block)
119 {
120         if (path) {
121                 int depth = path->p_depth;
122                 struct ext4_extent *ex;
123
124                 /*
125                  * Try to predict block placement assuming that we are
126                  * filling in a file which will eventually be
127                  * non-sparse --- i.e., in the case of libbfd writing
128                  * an ELF object sections out-of-order but in a way
129                  * the eventually results in a contiguous object or
130                  * executable file, or some database extending a table
131                  * space file.  However, this is actually somewhat
132                  * non-ideal if we are writing a sparse file such as
133                  * qemu or KVM writing a raw image file that is going
134                  * to stay fairly sparse, since it will end up
135                  * fragmenting the file system's free space.  Maybe we
136                  * should have some hueristics or some way to allow
137                  * userspace to pass a hint to file system,
138                  * especially if the latter case turns out to be
139                  * common.
140                  */
141                 ex = path[depth].p_ext;
142                 if (ex) {
143                         ext4_fsblk_t ext_pblk = ext4_ext_pblock(ex);
144                         ext4_lblk_t ext_block = le32_to_cpu(ex->ee_block);
145
146                         if (block > ext_block)
147                                 return ext_pblk + (block - ext_block);
148                         else
149                                 return ext_pblk - (ext_block - block);
150                 }
151
152                 /* it looks like index is empty;
153                  * try to find starting block from index itself */
154                 if (path[depth].p_bh)
155                         return path[depth].p_bh->b_blocknr;
156         }
157
158         /* OK. use inode's group */
159         return ext4_inode_to_goal_block(inode);
160 }
161
162 /*
163  * Allocation for a meta data block
164  */
165 static ext4_fsblk_t
166 ext4_ext_new_meta_block(handle_t *handle, struct inode *inode,
167                         struct ext4_ext_path *path,
168                         struct ext4_extent *ex, int *err, unsigned int flags)
169 {
170         ext4_fsblk_t goal, newblock;
171
172         goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block));
173         newblock = ext4_new_meta_blocks(handle, inode, goal, flags,
174                                         NULL, err);
175         return newblock;
176 }
177
178 static inline int ext4_ext_space_block(struct inode *inode, int check)
179 {
180         int size;
181
182         size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
183                         / sizeof(struct ext4_extent);
184 #ifdef AGGRESSIVE_TEST
185         if (!check && size > 6)
186                 size = 6;
187 #endif
188         return size;
189 }
190
191 static inline int ext4_ext_space_block_idx(struct inode *inode, int check)
192 {
193         int size;
194
195         size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
196                         / sizeof(struct ext4_extent_idx);
197 #ifdef AGGRESSIVE_TEST
198         if (!check && size > 5)
199                 size = 5;
200 #endif
201         return size;
202 }
203
204 static inline int ext4_ext_space_root(struct inode *inode, int check)
205 {
206         int size;
207
208         size = sizeof(EXT4_I(inode)->i_data);
209         size -= sizeof(struct ext4_extent_header);
210         size /= sizeof(struct ext4_extent);
211 #ifdef AGGRESSIVE_TEST
212         if (!check && size > 3)
213                 size = 3;
214 #endif
215         return size;
216 }
217
218 static inline int ext4_ext_space_root_idx(struct inode *inode, int check)
219 {
220         int size;
221
222         size = sizeof(EXT4_I(inode)->i_data);
223         size -= sizeof(struct ext4_extent_header);
224         size /= sizeof(struct ext4_extent_idx);
225 #ifdef AGGRESSIVE_TEST
226         if (!check && size > 4)
227                 size = 4;
228 #endif
229         return size;
230 }
231
232 /*
233  * Calculate the number of metadata blocks needed
234  * to allocate @blocks
235  * Worse case is one block per extent
236  */
237 int ext4_ext_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
238 {
239         struct ext4_inode_info *ei = EXT4_I(inode);
240         int idxs;
241
242         idxs = ((inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
243                 / sizeof(struct ext4_extent_idx));
244
245         /*
246          * If the new delayed allocation block is contiguous with the
247          * previous da block, it can share index blocks with the
248          * previous block, so we only need to allocate a new index
249          * block every idxs leaf blocks.  At ldxs**2 blocks, we need
250          * an additional index block, and at ldxs**3 blocks, yet
251          * another index blocks.
252          */
253         if (ei->i_da_metadata_calc_len &&
254             ei->i_da_metadata_calc_last_lblock+1 == lblock) {
255                 int num = 0;
256
257                 if ((ei->i_da_metadata_calc_len % idxs) == 0)
258                         num++;
259                 if ((ei->i_da_metadata_calc_len % (idxs*idxs)) == 0)
260                         num++;
261                 if ((ei->i_da_metadata_calc_len % (idxs*idxs*idxs)) == 0) {
262                         num++;
263                         ei->i_da_metadata_calc_len = 0;
264                 } else
265                         ei->i_da_metadata_calc_len++;
266                 ei->i_da_metadata_calc_last_lblock++;
267                 return num;
268         }
269
270         /*
271          * In the worst case we need a new set of index blocks at
272          * every level of the inode's extent tree.
273          */
274         ei->i_da_metadata_calc_len = 1;
275         ei->i_da_metadata_calc_last_lblock = lblock;
276         return ext_depth(inode) + 1;
277 }
278
279 static int
280 ext4_ext_max_entries(struct inode *inode, int depth)
281 {
282         int max;
283
284         if (depth == ext_depth(inode)) {
285                 if (depth == 0)
286                         max = ext4_ext_space_root(inode, 1);
287                 else
288                         max = ext4_ext_space_root_idx(inode, 1);
289         } else {
290                 if (depth == 0)
291                         max = ext4_ext_space_block(inode, 1);
292                 else
293                         max = ext4_ext_space_block_idx(inode, 1);
294         }
295
296         return max;
297 }
298
299 static int ext4_valid_extent(struct inode *inode, struct ext4_extent *ext)
300 {
301         ext4_fsblk_t block = ext4_ext_pblock(ext);
302         int len = ext4_ext_get_actual_len(ext);
303
304         if (len == 0)
305                 return 0;
306         return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, len);
307 }
308
309 static int ext4_valid_extent_idx(struct inode *inode,
310                                 struct ext4_extent_idx *ext_idx)
311 {
312         ext4_fsblk_t block = ext4_idx_pblock(ext_idx);
313
314         return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, 1);
315 }
316
317 static int ext4_valid_extent_entries(struct inode *inode,
318                                 struct ext4_extent_header *eh,
319                                 int depth)
320 {
321         unsigned short entries;
322         if (eh->eh_entries == 0)
323                 return 1;
324
325         entries = le16_to_cpu(eh->eh_entries);
326
327         if (depth == 0) {
328                 /* leaf entries */
329                 struct ext4_extent *ext = EXT_FIRST_EXTENT(eh);
330                 while (entries) {
331                         if (!ext4_valid_extent(inode, ext))
332                                 return 0;
333                         ext++;
334                         entries--;
335                 }
336         } else {
337                 struct ext4_extent_idx *ext_idx = EXT_FIRST_INDEX(eh);
338                 while (entries) {
339                         if (!ext4_valid_extent_idx(inode, ext_idx))
340                                 return 0;
341                         ext_idx++;
342                         entries--;
343                 }
344         }
345         return 1;
346 }
347
348 static int __ext4_ext_check(const char *function, unsigned int line,
349                             struct inode *inode, struct ext4_extent_header *eh,
350                             int depth)
351 {
352         const char *error_msg;
353         int max = 0;
354
355         if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) {
356                 error_msg = "invalid magic";
357                 goto corrupted;
358         }
359         if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) {
360                 error_msg = "unexpected eh_depth";
361                 goto corrupted;
362         }
363         if (unlikely(eh->eh_max == 0)) {
364                 error_msg = "invalid eh_max";
365                 goto corrupted;
366         }
367         max = ext4_ext_max_entries(inode, depth);
368         if (unlikely(le16_to_cpu(eh->eh_max) > max)) {
369                 error_msg = "too large eh_max";
370                 goto corrupted;
371         }
372         if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) {
373                 error_msg = "invalid eh_entries";
374                 goto corrupted;
375         }
376         if (!ext4_valid_extent_entries(inode, eh, depth)) {
377                 error_msg = "invalid extent entries";
378                 goto corrupted;
379         }
380         return 0;
381
382 corrupted:
383         ext4_error_inode(inode, function, line, 0,
384                         "bad header/extent: %s - magic %x, "
385                         "entries %u, max %u(%u), depth %u(%u)",
386                         error_msg, le16_to_cpu(eh->eh_magic),
387                         le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max),
388                         max, le16_to_cpu(eh->eh_depth), depth);
389
390         return -EIO;
391 }
392
393 #define ext4_ext_check(inode, eh, depth)        \
394         __ext4_ext_check(__func__, __LINE__, inode, eh, depth)
395
396 int ext4_ext_check_inode(struct inode *inode)
397 {
398         return ext4_ext_check(inode, ext_inode_hdr(inode), ext_depth(inode));
399 }
400
401 #ifdef EXT_DEBUG
402 static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path)
403 {
404         int k, l = path->p_depth;
405
406         ext_debug("path:");
407         for (k = 0; k <= l; k++, path++) {
408                 if (path->p_idx) {
409                   ext_debug("  %d->%llu", le32_to_cpu(path->p_idx->ei_block),
410                             ext4_idx_pblock(path->p_idx));
411                 } else if (path->p_ext) {
412                         ext_debug("  %d:[%d]%d:%llu ",
413                                   le32_to_cpu(path->p_ext->ee_block),
414                                   ext4_ext_is_uninitialized(path->p_ext),
415                                   ext4_ext_get_actual_len(path->p_ext),
416                                   ext4_ext_pblock(path->p_ext));
417                 } else
418                         ext_debug("  []");
419         }
420         ext_debug("\n");
421 }
422
423 static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path)
424 {
425         int depth = ext_depth(inode);
426         struct ext4_extent_header *eh;
427         struct ext4_extent *ex;
428         int i;
429
430         if (!path)
431                 return;
432
433         eh = path[depth].p_hdr;
434         ex = EXT_FIRST_EXTENT(eh);
435
436         ext_debug("Displaying leaf extents for inode %lu\n", inode->i_ino);
437
438         for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) {
439                 ext_debug("%d:[%d]%d:%llu ", le32_to_cpu(ex->ee_block),
440                           ext4_ext_is_uninitialized(ex),
441                           ext4_ext_get_actual_len(ex), ext4_ext_pblock(ex));
442         }
443         ext_debug("\n");
444 }
445
446 static void ext4_ext_show_move(struct inode *inode, struct ext4_ext_path *path,
447                         ext4_fsblk_t newblock, int level)
448 {
449         int depth = ext_depth(inode);
450         struct ext4_extent *ex;
451
452         if (depth != level) {
453                 struct ext4_extent_idx *idx;
454                 idx = path[level].p_idx;
455                 while (idx <= EXT_MAX_INDEX(path[level].p_hdr)) {
456                         ext_debug("%d: move %d:%llu in new index %llu\n", level,
457                                         le32_to_cpu(idx->ei_block),
458                                         ext4_idx_pblock(idx),
459                                         newblock);
460                         idx++;
461                 }
462
463                 return;
464         }
465
466         ex = path[depth].p_ext;
467         while (ex <= EXT_MAX_EXTENT(path[depth].p_hdr)) {
468                 ext_debug("move %d:%llu:[%d]%d in new leaf %llu\n",
469                                 le32_to_cpu(ex->ee_block),
470                                 ext4_ext_pblock(ex),
471                                 ext4_ext_is_uninitialized(ex),
472                                 ext4_ext_get_actual_len(ex),
473                                 newblock);
474                 ex++;
475         }
476 }
477
478 #else
479 #define ext4_ext_show_path(inode, path)
480 #define ext4_ext_show_leaf(inode, path)
481 #define ext4_ext_show_move(inode, path, newblock, level)
482 #endif
483
484 void ext4_ext_drop_refs(struct ext4_ext_path *path)
485 {
486         int depth = path->p_depth;
487         int i;
488
489         for (i = 0; i <= depth; i++, path++)
490                 if (path->p_bh) {
491                         brelse(path->p_bh);
492                         path->p_bh = NULL;
493                 }
494 }
495
496 /*
497  * ext4_ext_binsearch_idx:
498  * binary search for the closest index of the given block
499  * the header must be checked before calling this
500  */
501 static void
502 ext4_ext_binsearch_idx(struct inode *inode,
503                         struct ext4_ext_path *path, ext4_lblk_t block)
504 {
505         struct ext4_extent_header *eh = path->p_hdr;
506         struct ext4_extent_idx *r, *l, *m;
507
508
509         ext_debug("binsearch for %u(idx):  ", block);
510
511         l = EXT_FIRST_INDEX(eh) + 1;
512         r = EXT_LAST_INDEX(eh);
513         while (l <= r) {
514                 m = l + (r - l) / 2;
515                 if (block < le32_to_cpu(m->ei_block))
516                         r = m - 1;
517                 else
518                         l = m + 1;
519                 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ei_block),
520                                 m, le32_to_cpu(m->ei_block),
521                                 r, le32_to_cpu(r->ei_block));
522         }
523
524         path->p_idx = l - 1;
525         ext_debug("  -> %d->%lld ", le32_to_cpu(path->p_idx->ei_block),
526                   ext4_idx_pblock(path->p_idx));
527
528 #ifdef CHECK_BINSEARCH
529         {
530                 struct ext4_extent_idx *chix, *ix;
531                 int k;
532
533                 chix = ix = EXT_FIRST_INDEX(eh);
534                 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) {
535                   if (k != 0 &&
536                       le32_to_cpu(ix->ei_block) <= le32_to_cpu(ix[-1].ei_block)) {
537                                 printk(KERN_DEBUG "k=%d, ix=0x%p, "
538                                        "first=0x%p\n", k,
539                                        ix, EXT_FIRST_INDEX(eh));
540                                 printk(KERN_DEBUG "%u <= %u\n",
541                                        le32_to_cpu(ix->ei_block),
542                                        le32_to_cpu(ix[-1].ei_block));
543                         }
544                         BUG_ON(k && le32_to_cpu(ix->ei_block)
545                                            <= le32_to_cpu(ix[-1].ei_block));
546                         if (block < le32_to_cpu(ix->ei_block))
547                                 break;
548                         chix = ix;
549                 }
550                 BUG_ON(chix != path->p_idx);
551         }
552 #endif
553
554 }
555
556 /*
557  * ext4_ext_binsearch:
558  * binary search for closest extent of the given block
559  * the header must be checked before calling this
560  */
561 static void
562 ext4_ext_binsearch(struct inode *inode,
563                 struct ext4_ext_path *path, ext4_lblk_t block)
564 {
565         struct ext4_extent_header *eh = path->p_hdr;
566         struct ext4_extent *r, *l, *m;
567
568         if (eh->eh_entries == 0) {
569                 /*
570                  * this leaf is empty:
571                  * we get such a leaf in split/add case
572                  */
573                 return;
574         }
575
576         ext_debug("binsearch for %u:  ", block);
577
578         l = EXT_FIRST_EXTENT(eh) + 1;
579         r = EXT_LAST_EXTENT(eh);
580
581         while (l <= r) {
582                 m = l + (r - l) / 2;
583                 if (block < le32_to_cpu(m->ee_block))
584                         r = m - 1;
585                 else
586                         l = m + 1;
587                 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ee_block),
588                                 m, le32_to_cpu(m->ee_block),
589                                 r, le32_to_cpu(r->ee_block));
590         }
591
592         path->p_ext = l - 1;
593         ext_debug("  -> %d:%llu:[%d]%d ",
594                         le32_to_cpu(path->p_ext->ee_block),
595                         ext4_ext_pblock(path->p_ext),
596                         ext4_ext_is_uninitialized(path->p_ext),
597                         ext4_ext_get_actual_len(path->p_ext));
598
599 #ifdef CHECK_BINSEARCH
600         {
601                 struct ext4_extent *chex, *ex;
602                 int k;
603
604                 chex = ex = EXT_FIRST_EXTENT(eh);
605                 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) {
606                         BUG_ON(k && le32_to_cpu(ex->ee_block)
607                                           <= le32_to_cpu(ex[-1].ee_block));
608                         if (block < le32_to_cpu(ex->ee_block))
609                                 break;
610                         chex = ex;
611                 }
612                 BUG_ON(chex != path->p_ext);
613         }
614 #endif
615
616 }
617
618 int ext4_ext_tree_init(handle_t *handle, struct inode *inode)
619 {
620         struct ext4_extent_header *eh;
621
622         eh = ext_inode_hdr(inode);
623         eh->eh_depth = 0;
624         eh->eh_entries = 0;
625         eh->eh_magic = EXT4_EXT_MAGIC;
626         eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode, 0));
627         ext4_mark_inode_dirty(handle, inode);
628         ext4_ext_invalidate_cache(inode);
629         return 0;
630 }
631
632 struct ext4_ext_path *
633 ext4_ext_find_extent(struct inode *inode, ext4_lblk_t block,
634                                         struct ext4_ext_path *path)
635 {
636         struct ext4_extent_header *eh;
637         struct buffer_head *bh;
638         short int depth, i, ppos = 0, alloc = 0;
639
640         eh = ext_inode_hdr(inode);
641         depth = ext_depth(inode);
642
643         /* account possible depth increase */
644         if (!path) {
645                 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 2),
646                                 GFP_NOFS);
647                 if (!path)
648                         return ERR_PTR(-ENOMEM);
649                 alloc = 1;
650         }
651         path[0].p_hdr = eh;
652         path[0].p_bh = NULL;
653
654         i = depth;
655         /* walk through the tree */
656         while (i) {
657                 int need_to_validate = 0;
658
659                 ext_debug("depth %d: num %d, max %d\n",
660                           ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
661
662                 ext4_ext_binsearch_idx(inode, path + ppos, block);
663                 path[ppos].p_block = ext4_idx_pblock(path[ppos].p_idx);
664                 path[ppos].p_depth = i;
665                 path[ppos].p_ext = NULL;
666
667                 bh = sb_getblk(inode->i_sb, path[ppos].p_block);
668                 if (unlikely(!bh))
669                         goto err;
670                 if (!bh_uptodate_or_lock(bh)) {
671                         trace_ext4_ext_load_extent(inode, block,
672                                                 path[ppos].p_block);
673                         if (bh_submit_read(bh) < 0) {
674                                 put_bh(bh);
675                                 goto err;
676                         }
677                         /* validate the extent entries */
678                         need_to_validate = 1;
679                 }
680                 eh = ext_block_hdr(bh);
681                 ppos++;
682                 if (unlikely(ppos > depth)) {
683                         put_bh(bh);
684                         EXT4_ERROR_INODE(inode,
685                                          "ppos %d > depth %d", ppos, depth);
686                         goto err;
687                 }
688                 path[ppos].p_bh = bh;
689                 path[ppos].p_hdr = eh;
690                 i--;
691
692                 if (need_to_validate && ext4_ext_check(inode, eh, i))
693                         goto err;
694         }
695
696         path[ppos].p_depth = i;
697         path[ppos].p_ext = NULL;
698         path[ppos].p_idx = NULL;
699
700         /* find extent */
701         ext4_ext_binsearch(inode, path + ppos, block);
702         /* if not an empty leaf */
703         if (path[ppos].p_ext)
704                 path[ppos].p_block = ext4_ext_pblock(path[ppos].p_ext);
705
706         ext4_ext_show_path(inode, path);
707
708         return path;
709
710 err:
711         ext4_ext_drop_refs(path);
712         if (alloc)
713                 kfree(path);
714         return ERR_PTR(-EIO);
715 }
716
717 /*
718  * ext4_ext_insert_index:
719  * insert new index [@logical;@ptr] into the block at @curp;
720  * check where to insert: before @curp or after @curp
721  */
722 static int ext4_ext_insert_index(handle_t *handle, struct inode *inode,
723                                  struct ext4_ext_path *curp,
724                                  int logical, ext4_fsblk_t ptr)
725 {
726         struct ext4_extent_idx *ix;
727         int len, err;
728
729         err = ext4_ext_get_access(handle, inode, curp);
730         if (err)
731                 return err;
732
733         if (unlikely(logical == le32_to_cpu(curp->p_idx->ei_block))) {
734                 EXT4_ERROR_INODE(inode,
735                                  "logical %d == ei_block %d!",
736                                  logical, le32_to_cpu(curp->p_idx->ei_block));
737                 return -EIO;
738         }
739
740         if (unlikely(le16_to_cpu(curp->p_hdr->eh_entries)
741                              >= le16_to_cpu(curp->p_hdr->eh_max))) {
742                 EXT4_ERROR_INODE(inode,
743                                  "eh_entries %d >= eh_max %d!",
744                                  le16_to_cpu(curp->p_hdr->eh_entries),
745                                  le16_to_cpu(curp->p_hdr->eh_max));
746                 return -EIO;
747         }
748
749         if (logical > le32_to_cpu(curp->p_idx->ei_block)) {
750                 /* insert after */
751                 ext_debug("insert new index %d after: %llu\n", logical, ptr);
752                 ix = curp->p_idx + 1;
753         } else {
754                 /* insert before */
755                 ext_debug("insert new index %d before: %llu\n", logical, ptr);
756                 ix = curp->p_idx;
757         }
758
759         len = EXT_LAST_INDEX(curp->p_hdr) - ix + 1;
760         BUG_ON(len < 0);
761         if (len > 0) {
762                 ext_debug("insert new index %d: "
763                                 "move %d indices from 0x%p to 0x%p\n",
764                                 logical, len, ix, ix + 1);
765                 memmove(ix + 1, ix, len * sizeof(struct ext4_extent_idx));
766         }
767
768         if (unlikely(ix > EXT_MAX_INDEX(curp->p_hdr))) {
769                 EXT4_ERROR_INODE(inode, "ix > EXT_MAX_INDEX!");
770                 return -EIO;
771         }
772
773         ix->ei_block = cpu_to_le32(logical);
774         ext4_idx_store_pblock(ix, ptr);
775         le16_add_cpu(&curp->p_hdr->eh_entries, 1);
776
777         if (unlikely(ix > EXT_LAST_INDEX(curp->p_hdr))) {
778                 EXT4_ERROR_INODE(inode, "ix > EXT_LAST_INDEX!");
779                 return -EIO;
780         }
781
782         err = ext4_ext_dirty(handle, inode, curp);
783         ext4_std_error(inode->i_sb, err);
784
785         return err;
786 }
787
788 /*
789  * ext4_ext_split:
790  * inserts new subtree into the path, using free index entry
791  * at depth @at:
792  * - allocates all needed blocks (new leaf and all intermediate index blocks)
793  * - makes decision where to split
794  * - moves remaining extents and index entries (right to the split point)
795  *   into the newly allocated blocks
796  * - initializes subtree
797  */
798 static int ext4_ext_split(handle_t *handle, struct inode *inode,
799                           unsigned int flags,
800                           struct ext4_ext_path *path,
801                           struct ext4_extent *newext, int at)
802 {
803         struct buffer_head *bh = NULL;
804         int depth = ext_depth(inode);
805         struct ext4_extent_header *neh;
806         struct ext4_extent_idx *fidx;
807         int i = at, k, m, a;
808         ext4_fsblk_t newblock, oldblock;
809         __le32 border;
810         ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */
811         int err = 0;
812
813         /* make decision: where to split? */
814         /* FIXME: now decision is simplest: at current extent */
815
816         /* if current leaf will be split, then we should use
817          * border from split point */
818         if (unlikely(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr))) {
819                 EXT4_ERROR_INODE(inode, "p_ext > EXT_MAX_EXTENT!");
820                 return -EIO;
821         }
822         if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) {
823                 border = path[depth].p_ext[1].ee_block;
824                 ext_debug("leaf will be split."
825                                 " next leaf starts at %d\n",
826                                   le32_to_cpu(border));
827         } else {
828                 border = newext->ee_block;
829                 ext_debug("leaf will be added."
830                                 " next leaf starts at %d\n",
831                                 le32_to_cpu(border));
832         }
833
834         /*
835          * If error occurs, then we break processing
836          * and mark filesystem read-only. index won't
837          * be inserted and tree will be in consistent
838          * state. Next mount will repair buffers too.
839          */
840
841         /*
842          * Get array to track all allocated blocks.
843          * We need this to handle errors and free blocks
844          * upon them.
845          */
846         ablocks = kzalloc(sizeof(ext4_fsblk_t) * depth, GFP_NOFS);
847         if (!ablocks)
848                 return -ENOMEM;
849
850         /* allocate all needed blocks */
851         ext_debug("allocate %d blocks for indexes/leaf\n", depth - at);
852         for (a = 0; a < depth - at; a++) {
853                 newblock = ext4_ext_new_meta_block(handle, inode, path,
854                                                    newext, &err, flags);
855                 if (newblock == 0)
856                         goto cleanup;
857                 ablocks[a] = newblock;
858         }
859
860         /* initialize new leaf */
861         newblock = ablocks[--a];
862         if (unlikely(newblock == 0)) {
863                 EXT4_ERROR_INODE(inode, "newblock == 0!");
864                 err = -EIO;
865                 goto cleanup;
866         }
867         bh = sb_getblk(inode->i_sb, newblock);
868         if (!bh) {
869                 err = -EIO;
870                 goto cleanup;
871         }
872         lock_buffer(bh);
873
874         err = ext4_journal_get_create_access(handle, bh);
875         if (err)
876                 goto cleanup;
877
878         neh = ext_block_hdr(bh);
879         neh->eh_entries = 0;
880         neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
881         neh->eh_magic = EXT4_EXT_MAGIC;
882         neh->eh_depth = 0;
883
884         /* move remainder of path[depth] to the new leaf */
885         if (unlikely(path[depth].p_hdr->eh_entries !=
886                      path[depth].p_hdr->eh_max)) {
887                 EXT4_ERROR_INODE(inode, "eh_entries %d != eh_max %d!",
888                                  path[depth].p_hdr->eh_entries,
889                                  path[depth].p_hdr->eh_max);
890                 err = -EIO;
891                 goto cleanup;
892         }
893         /* start copy from next extent */
894         m = EXT_MAX_EXTENT(path[depth].p_hdr) - path[depth].p_ext++;
895         ext4_ext_show_move(inode, path, newblock, depth);
896         if (m) {
897                 struct ext4_extent *ex;
898                 ex = EXT_FIRST_EXTENT(neh);
899                 memmove(ex, path[depth].p_ext, sizeof(struct ext4_extent) * m);
900                 le16_add_cpu(&neh->eh_entries, m);
901         }
902
903         set_buffer_uptodate(bh);
904         unlock_buffer(bh);
905
906         err = ext4_handle_dirty_metadata(handle, inode, bh);
907         if (err)
908                 goto cleanup;
909         brelse(bh);
910         bh = NULL;
911
912         /* correct old leaf */
913         if (m) {
914                 err = ext4_ext_get_access(handle, inode, path + depth);
915                 if (err)
916                         goto cleanup;
917                 le16_add_cpu(&path[depth].p_hdr->eh_entries, -m);
918                 err = ext4_ext_dirty(handle, inode, path + depth);
919                 if (err)
920                         goto cleanup;
921
922         }
923
924         /* create intermediate indexes */
925         k = depth - at - 1;
926         if (unlikely(k < 0)) {
927                 EXT4_ERROR_INODE(inode, "k %d < 0!", k);
928                 err = -EIO;
929                 goto cleanup;
930         }
931         if (k)
932                 ext_debug("create %d intermediate indices\n", k);
933         /* insert new index into current index block */
934         /* current depth stored in i var */
935         i = depth - 1;
936         while (k--) {
937                 oldblock = newblock;
938                 newblock = ablocks[--a];
939                 bh = sb_getblk(inode->i_sb, newblock);
940                 if (!bh) {
941                         err = -EIO;
942                         goto cleanup;
943                 }
944                 lock_buffer(bh);
945
946                 err = ext4_journal_get_create_access(handle, bh);
947                 if (err)
948                         goto cleanup;
949
950                 neh = ext_block_hdr(bh);
951                 neh->eh_entries = cpu_to_le16(1);
952                 neh->eh_magic = EXT4_EXT_MAGIC;
953                 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
954                 neh->eh_depth = cpu_to_le16(depth - i);
955                 fidx = EXT_FIRST_INDEX(neh);
956                 fidx->ei_block = border;
957                 ext4_idx_store_pblock(fidx, oldblock);
958
959                 ext_debug("int.index at %d (block %llu): %u -> %llu\n",
960                                 i, newblock, le32_to_cpu(border), oldblock);
961
962                 /* move remainder of path[i] to the new index block */
963                 if (unlikely(EXT_MAX_INDEX(path[i].p_hdr) !=
964                                         EXT_LAST_INDEX(path[i].p_hdr))) {
965                         EXT4_ERROR_INODE(inode,
966                                          "EXT_MAX_INDEX != EXT_LAST_INDEX ee_block %d!",
967                                          le32_to_cpu(path[i].p_ext->ee_block));
968                         err = -EIO;
969                         goto cleanup;
970                 }
971                 /* start copy indexes */
972                 m = EXT_MAX_INDEX(path[i].p_hdr) - path[i].p_idx++;
973                 ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx,
974                                 EXT_MAX_INDEX(path[i].p_hdr));
975                 ext4_ext_show_move(inode, path, newblock, i);
976                 if (m) {
977                         memmove(++fidx, path[i].p_idx,
978                                 sizeof(struct ext4_extent_idx) * m);
979                         le16_add_cpu(&neh->eh_entries, m);
980                 }
981                 set_buffer_uptodate(bh);
982                 unlock_buffer(bh);
983
984                 err = ext4_handle_dirty_metadata(handle, inode, bh);
985                 if (err)
986                         goto cleanup;
987                 brelse(bh);
988                 bh = NULL;
989
990                 /* correct old index */
991                 if (m) {
992                         err = ext4_ext_get_access(handle, inode, path + i);
993                         if (err)
994                                 goto cleanup;
995                         le16_add_cpu(&path[i].p_hdr->eh_entries, -m);
996                         err = ext4_ext_dirty(handle, inode, path + i);
997                         if (err)
998                                 goto cleanup;
999                 }
1000
1001                 i--;
1002         }
1003
1004         /* insert new index */
1005         err = ext4_ext_insert_index(handle, inode, path + at,
1006                                     le32_to_cpu(border), newblock);
1007
1008 cleanup:
1009         if (bh) {
1010                 if (buffer_locked(bh))
1011                         unlock_buffer(bh);
1012                 brelse(bh);
1013         }
1014
1015         if (err) {
1016                 /* free all allocated blocks in error case */
1017                 for (i = 0; i < depth; i++) {
1018                         if (!ablocks[i])
1019                                 continue;
1020                         ext4_free_blocks(handle, inode, NULL, ablocks[i], 1,
1021                                          EXT4_FREE_BLOCKS_METADATA);
1022                 }
1023         }
1024         kfree(ablocks);
1025
1026         return err;
1027 }
1028
1029 /*
1030  * ext4_ext_grow_indepth:
1031  * implements tree growing procedure:
1032  * - allocates new block
1033  * - moves top-level data (index block or leaf) into the new block
1034  * - initializes new top-level, creating index that points to the
1035  *   just created block
1036  */
1037 static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode,
1038                                  unsigned int flags,
1039                                  struct ext4_extent *newext)
1040 {
1041         struct ext4_extent_header *neh;
1042         struct buffer_head *bh;
1043         ext4_fsblk_t newblock;
1044         int err = 0;
1045
1046         newblock = ext4_ext_new_meta_block(handle, inode, NULL,
1047                 newext, &err, flags);
1048         if (newblock == 0)
1049                 return err;
1050
1051         bh = sb_getblk(inode->i_sb, newblock);
1052         if (!bh) {
1053                 err = -EIO;
1054                 ext4_std_error(inode->i_sb, err);
1055                 return err;
1056         }
1057         lock_buffer(bh);
1058
1059         err = ext4_journal_get_create_access(handle, bh);
1060         if (err) {
1061                 unlock_buffer(bh);
1062                 goto out;
1063         }
1064
1065         /* move top-level index/leaf into new block */
1066         memmove(bh->b_data, EXT4_I(inode)->i_data,
1067                 sizeof(EXT4_I(inode)->i_data));
1068
1069         /* set size of new block */
1070         neh = ext_block_hdr(bh);
1071         /* old root could have indexes or leaves
1072          * so calculate e_max right way */
1073         if (ext_depth(inode))
1074                 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1075         else
1076                 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
1077         neh->eh_magic = EXT4_EXT_MAGIC;
1078         set_buffer_uptodate(bh);
1079         unlock_buffer(bh);
1080
1081         err = ext4_handle_dirty_metadata(handle, inode, bh);
1082         if (err)
1083                 goto out;
1084
1085         /* Update top-level index: num,max,pointer */
1086         neh = ext_inode_hdr(inode);
1087         neh->eh_entries = cpu_to_le16(1);
1088         ext4_idx_store_pblock(EXT_FIRST_INDEX(neh), newblock);
1089         if (neh->eh_depth == 0) {
1090                 /* Root extent block becomes index block */
1091                 neh->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode, 0));
1092                 EXT_FIRST_INDEX(neh)->ei_block =
1093                         EXT_FIRST_EXTENT(neh)->ee_block;
1094         }
1095         ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n",
1096                   le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max),
1097                   le32_to_cpu(EXT_FIRST_INDEX(neh)->ei_block),
1098                   ext4_idx_pblock(EXT_FIRST_INDEX(neh)));
1099
1100         neh->eh_depth = cpu_to_le16(le16_to_cpu(neh->eh_depth) + 1);
1101         ext4_mark_inode_dirty(handle, inode);
1102 out:
1103         brelse(bh);
1104
1105         return err;
1106 }
1107
1108 /*
1109  * ext4_ext_create_new_leaf:
1110  * finds empty index and adds new leaf.
1111  * if no free index is found, then it requests in-depth growing.
1112  */
1113 static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode,
1114                                     unsigned int flags,
1115                                     struct ext4_ext_path *path,
1116                                     struct ext4_extent *newext)
1117 {
1118         struct ext4_ext_path *curp;
1119         int depth, i, err = 0;
1120
1121 repeat:
1122         i = depth = ext_depth(inode);
1123
1124         /* walk up to the tree and look for free index entry */
1125         curp = path + depth;
1126         while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) {
1127                 i--;
1128                 curp--;
1129         }
1130
1131         /* we use already allocated block for index block,
1132          * so subsequent data blocks should be contiguous */
1133         if (EXT_HAS_FREE_INDEX(curp)) {
1134                 /* if we found index with free entry, then use that
1135                  * entry: create all needed subtree and add new leaf */
1136                 err = ext4_ext_split(handle, inode, flags, path, newext, i);
1137                 if (err)
1138                         goto out;
1139
1140                 /* refill path */
1141                 ext4_ext_drop_refs(path);
1142                 path = ext4_ext_find_extent(inode,
1143                                     (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1144                                     path);
1145                 if (IS_ERR(path))
1146                         err = PTR_ERR(path);
1147         } else {
1148                 /* tree is full, time to grow in depth */
1149                 err = ext4_ext_grow_indepth(handle, inode, flags, newext);
1150                 if (err)
1151                         goto out;
1152
1153                 /* refill path */
1154                 ext4_ext_drop_refs(path);
1155                 path = ext4_ext_find_extent(inode,
1156                                    (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1157                                     path);
1158                 if (IS_ERR(path)) {
1159                         err = PTR_ERR(path);
1160                         goto out;
1161                 }
1162
1163                 /*
1164                  * only first (depth 0 -> 1) produces free space;
1165                  * in all other cases we have to split the grown tree
1166                  */
1167                 depth = ext_depth(inode);
1168                 if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) {
1169                         /* now we need to split */
1170                         goto repeat;
1171                 }
1172         }
1173
1174 out:
1175         return err;
1176 }
1177
1178 /*
1179  * search the closest allocated block to the left for *logical
1180  * and returns it at @logical + it's physical address at @phys
1181  * if *logical is the smallest allocated block, the function
1182  * returns 0 at @phys
1183  * return value contains 0 (success) or error code
1184  */
1185 static int ext4_ext_search_left(struct inode *inode,
1186                                 struct ext4_ext_path *path,
1187                                 ext4_lblk_t *logical, ext4_fsblk_t *phys)
1188 {
1189         struct ext4_extent_idx *ix;
1190         struct ext4_extent *ex;
1191         int depth, ee_len;
1192
1193         if (unlikely(path == NULL)) {
1194                 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1195                 return -EIO;
1196         }
1197         depth = path->p_depth;
1198         *phys = 0;
1199
1200         if (depth == 0 && path->p_ext == NULL)
1201                 return 0;
1202
1203         /* usually extent in the path covers blocks smaller
1204          * then *logical, but it can be that extent is the
1205          * first one in the file */
1206
1207         ex = path[depth].p_ext;
1208         ee_len = ext4_ext_get_actual_len(ex);
1209         if (*logical < le32_to_cpu(ex->ee_block)) {
1210                 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1211                         EXT4_ERROR_INODE(inode,
1212                                          "EXT_FIRST_EXTENT != ex *logical %d ee_block %d!",
1213                                          *logical, le32_to_cpu(ex->ee_block));
1214                         return -EIO;
1215                 }
1216                 while (--depth >= 0) {
1217                         ix = path[depth].p_idx;
1218                         if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1219                                 EXT4_ERROR_INODE(inode,
1220                                   "ix (%d) != EXT_FIRST_INDEX (%d) (depth %d)!",
1221                                   ix != NULL ? le32_to_cpu(ix->ei_block) : 0,
1222                                   EXT_FIRST_INDEX(path[depth].p_hdr) != NULL ?
1223                 le32_to_cpu(EXT_FIRST_INDEX(path[depth].p_hdr)->ei_block) : 0,
1224                                   depth);
1225                                 return -EIO;
1226                         }
1227                 }
1228                 return 0;
1229         }
1230
1231         if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1232                 EXT4_ERROR_INODE(inode,
1233                                  "logical %d < ee_block %d + ee_len %d!",
1234                                  *logical, le32_to_cpu(ex->ee_block), ee_len);
1235                 return -EIO;
1236         }
1237
1238         *logical = le32_to_cpu(ex->ee_block) + ee_len - 1;
1239         *phys = ext4_ext_pblock(ex) + ee_len - 1;
1240         return 0;
1241 }
1242
1243 /*
1244  * search the closest allocated block to the right for *logical
1245  * and returns it at @logical + it's physical address at @phys
1246  * if *logical is the largest allocated block, the function
1247  * returns 0 at @phys
1248  * return value contains 0 (success) or error code
1249  */
1250 static int ext4_ext_search_right(struct inode *inode,
1251                                  struct ext4_ext_path *path,
1252                                  ext4_lblk_t *logical, ext4_fsblk_t *phys,
1253                                  struct ext4_extent **ret_ex)
1254 {
1255         struct buffer_head *bh = NULL;
1256         struct ext4_extent_header *eh;
1257         struct ext4_extent_idx *ix;
1258         struct ext4_extent *ex;
1259         ext4_fsblk_t block;
1260         int depth;      /* Note, NOT eh_depth; depth from top of tree */
1261         int ee_len;
1262
1263         if (unlikely(path == NULL)) {
1264                 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1265                 return -EIO;
1266         }
1267         depth = path->p_depth;
1268         *phys = 0;
1269
1270         if (depth == 0 && path->p_ext == NULL)
1271                 return 0;
1272
1273         /* usually extent in the path covers blocks smaller
1274          * then *logical, but it can be that extent is the
1275          * first one in the file */
1276
1277         ex = path[depth].p_ext;
1278         ee_len = ext4_ext_get_actual_len(ex);
1279         if (*logical < le32_to_cpu(ex->ee_block)) {
1280                 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1281                         EXT4_ERROR_INODE(inode,
1282                                          "first_extent(path[%d].p_hdr) != ex",
1283                                          depth);
1284                         return -EIO;
1285                 }
1286                 while (--depth >= 0) {
1287                         ix = path[depth].p_idx;
1288                         if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1289                                 EXT4_ERROR_INODE(inode,
1290                                                  "ix != EXT_FIRST_INDEX *logical %d!",
1291                                                  *logical);
1292                                 return -EIO;
1293                         }
1294                 }
1295                 goto found_extent;
1296         }
1297
1298         if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1299                 EXT4_ERROR_INODE(inode,
1300                                  "logical %d < ee_block %d + ee_len %d!",
1301                                  *logical, le32_to_cpu(ex->ee_block), ee_len);
1302                 return -EIO;
1303         }
1304
1305         if (ex != EXT_LAST_EXTENT(path[depth].p_hdr)) {
1306                 /* next allocated block in this leaf */
1307                 ex++;
1308                 goto found_extent;
1309         }
1310
1311         /* go up and search for index to the right */
1312         while (--depth >= 0) {
1313                 ix = path[depth].p_idx;
1314                 if (ix != EXT_LAST_INDEX(path[depth].p_hdr))
1315                         goto got_index;
1316         }
1317
1318         /* we've gone up to the root and found no index to the right */
1319         return 0;
1320
1321 got_index:
1322         /* we've found index to the right, let's
1323          * follow it and find the closest allocated
1324          * block to the right */
1325         ix++;
1326         block = ext4_idx_pblock(ix);
1327         while (++depth < path->p_depth) {
1328                 bh = sb_bread(inode->i_sb, block);
1329                 if (bh == NULL)
1330                         return -EIO;
1331                 eh = ext_block_hdr(bh);
1332                 /* subtract from p_depth to get proper eh_depth */
1333                 if (ext4_ext_check(inode, eh, path->p_depth - depth)) {
1334                         put_bh(bh);
1335                         return -EIO;
1336                 }
1337                 ix = EXT_FIRST_INDEX(eh);
1338                 block = ext4_idx_pblock(ix);
1339                 put_bh(bh);
1340         }
1341
1342         bh = sb_bread(inode->i_sb, block);
1343         if (bh == NULL)
1344                 return -EIO;
1345         eh = ext_block_hdr(bh);
1346         if (ext4_ext_check(inode, eh, path->p_depth - depth)) {
1347                 put_bh(bh);
1348                 return -EIO;
1349         }
1350         ex = EXT_FIRST_EXTENT(eh);
1351 found_extent:
1352         *logical = le32_to_cpu(ex->ee_block);
1353         *phys = ext4_ext_pblock(ex);
1354         *ret_ex = ex;
1355         if (bh)
1356                 put_bh(bh);
1357         return 0;
1358 }
1359
1360 /*
1361  * ext4_ext_next_allocated_block:
1362  * returns allocated block in subsequent extent or EXT_MAX_BLOCKS.
1363  * NOTE: it considers block number from index entry as
1364  * allocated block. Thus, index entries have to be consistent
1365  * with leaves.
1366  */
1367 static ext4_lblk_t
1368 ext4_ext_next_allocated_block(struct ext4_ext_path *path)
1369 {
1370         int depth;
1371
1372         BUG_ON(path == NULL);
1373         depth = path->p_depth;
1374
1375         if (depth == 0 && path->p_ext == NULL)
1376                 return EXT_MAX_BLOCKS;
1377
1378         while (depth >= 0) {
1379                 if (depth == path->p_depth) {
1380                         /* leaf */
1381                         if (path[depth].p_ext &&
1382                                 path[depth].p_ext !=
1383                                         EXT_LAST_EXTENT(path[depth].p_hdr))
1384                           return le32_to_cpu(path[depth].p_ext[1].ee_block);
1385                 } else {
1386                         /* index */
1387                         if (path[depth].p_idx !=
1388                                         EXT_LAST_INDEX(path[depth].p_hdr))
1389                           return le32_to_cpu(path[depth].p_idx[1].ei_block);
1390                 }
1391                 depth--;
1392         }
1393
1394         return EXT_MAX_BLOCKS;
1395 }
1396
1397 /*
1398  * ext4_ext_next_leaf_block:
1399  * returns first allocated block from next leaf or EXT_MAX_BLOCKS
1400  */
1401 static ext4_lblk_t ext4_ext_next_leaf_block(struct ext4_ext_path *path)
1402 {
1403         int depth;
1404
1405         BUG_ON(path == NULL);
1406         depth = path->p_depth;
1407
1408         /* zero-tree has no leaf blocks at all */
1409         if (depth == 0)
1410                 return EXT_MAX_BLOCKS;
1411
1412         /* go to index block */
1413         depth--;
1414
1415         while (depth >= 0) {
1416                 if (path[depth].p_idx !=
1417                                 EXT_LAST_INDEX(path[depth].p_hdr))
1418                         return (ext4_lblk_t)
1419                                 le32_to_cpu(path[depth].p_idx[1].ei_block);
1420                 depth--;
1421         }
1422
1423         return EXT_MAX_BLOCKS;
1424 }
1425
1426 /*
1427  * ext4_ext_correct_indexes:
1428  * if leaf gets modified and modified extent is first in the leaf,
1429  * then we have to correct all indexes above.
1430  * TODO: do we need to correct tree in all cases?
1431  */
1432 static int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode,
1433                                 struct ext4_ext_path *path)
1434 {
1435         struct ext4_extent_header *eh;
1436         int depth = ext_depth(inode);
1437         struct ext4_extent *ex;
1438         __le32 border;
1439         int k, err = 0;
1440
1441         eh = path[depth].p_hdr;
1442         ex = path[depth].p_ext;
1443
1444         if (unlikely(ex == NULL || eh == NULL)) {
1445                 EXT4_ERROR_INODE(inode,
1446                                  "ex %p == NULL or eh %p == NULL", ex, eh);
1447                 return -EIO;
1448         }
1449
1450         if (depth == 0) {
1451                 /* there is no tree at all */
1452                 return 0;
1453         }
1454
1455         if (ex != EXT_FIRST_EXTENT(eh)) {
1456                 /* we correct tree if first leaf got modified only */
1457                 return 0;
1458         }
1459
1460         /*
1461          * TODO: we need correction if border is smaller than current one
1462          */
1463         k = depth - 1;
1464         border = path[depth].p_ext->ee_block;
1465         err = ext4_ext_get_access(handle, inode, path + k);
1466         if (err)
1467                 return err;
1468         path[k].p_idx->ei_block = border;
1469         err = ext4_ext_dirty(handle, inode, path + k);
1470         if (err)
1471                 return err;
1472
1473         while (k--) {
1474                 /* change all left-side indexes */
1475                 if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr))
1476                         break;
1477                 err = ext4_ext_get_access(handle, inode, path + k);
1478                 if (err)
1479                         break;
1480                 path[k].p_idx->ei_block = border;
1481                 err = ext4_ext_dirty(handle, inode, path + k);
1482                 if (err)
1483                         break;
1484         }
1485
1486         return err;
1487 }
1488
1489 int
1490 ext4_can_extents_be_merged(struct inode *inode, struct ext4_extent *ex1,
1491                                 struct ext4_extent *ex2)
1492 {
1493         unsigned short ext1_ee_len, ext2_ee_len, max_len;
1494
1495         /*
1496          * Make sure that either both extents are uninitialized, or
1497          * both are _not_.
1498          */
1499         if (ext4_ext_is_uninitialized(ex1) ^ ext4_ext_is_uninitialized(ex2))
1500                 return 0;
1501
1502         if (ext4_ext_is_uninitialized(ex1))
1503                 max_len = EXT_UNINIT_MAX_LEN;
1504         else
1505                 max_len = EXT_INIT_MAX_LEN;
1506
1507         ext1_ee_len = ext4_ext_get_actual_len(ex1);
1508         ext2_ee_len = ext4_ext_get_actual_len(ex2);
1509
1510         if (le32_to_cpu(ex1->ee_block) + ext1_ee_len !=
1511                         le32_to_cpu(ex2->ee_block))
1512                 return 0;
1513
1514         /*
1515          * To allow future support for preallocated extents to be added
1516          * as an RO_COMPAT feature, refuse to merge to extents if
1517          * this can result in the top bit of ee_len being set.
1518          */
1519         if (ext1_ee_len + ext2_ee_len > max_len)
1520                 return 0;
1521 #ifdef AGGRESSIVE_TEST
1522         if (ext1_ee_len >= 4)
1523                 return 0;
1524 #endif
1525
1526         if (ext4_ext_pblock(ex1) + ext1_ee_len == ext4_ext_pblock(ex2))
1527                 return 1;
1528         return 0;
1529 }
1530
1531 /*
1532  * This function tries to merge the "ex" extent to the next extent in the tree.
1533  * It always tries to merge towards right. If you want to merge towards
1534  * left, pass "ex - 1" as argument instead of "ex".
1535  * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns
1536  * 1 if they got merged.
1537  */
1538 static int ext4_ext_try_to_merge_right(struct inode *inode,
1539                                  struct ext4_ext_path *path,
1540                                  struct ext4_extent *ex)
1541 {
1542         struct ext4_extent_header *eh;
1543         unsigned int depth, len;
1544         int merge_done = 0;
1545         int uninitialized = 0;
1546
1547         depth = ext_depth(inode);
1548         BUG_ON(path[depth].p_hdr == NULL);
1549         eh = path[depth].p_hdr;
1550
1551         while (ex < EXT_LAST_EXTENT(eh)) {
1552                 if (!ext4_can_extents_be_merged(inode, ex, ex + 1))
1553                         break;
1554                 /* merge with next extent! */
1555                 if (ext4_ext_is_uninitialized(ex))
1556                         uninitialized = 1;
1557                 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1558                                 + ext4_ext_get_actual_len(ex + 1));
1559                 if (uninitialized)
1560                         ext4_ext_mark_uninitialized(ex);
1561
1562                 if (ex + 1 < EXT_LAST_EXTENT(eh)) {
1563                         len = (EXT_LAST_EXTENT(eh) - ex - 1)
1564                                 * sizeof(struct ext4_extent);
1565                         memmove(ex + 1, ex + 2, len);
1566                 }
1567                 le16_add_cpu(&eh->eh_entries, -1);
1568                 merge_done = 1;
1569                 WARN_ON(eh->eh_entries == 0);
1570                 if (!eh->eh_entries)
1571                         EXT4_ERROR_INODE(inode, "eh->eh_entries = 0!");
1572         }
1573
1574         return merge_done;
1575 }
1576
1577 /*
1578  * This function tries to merge the @ex extent to neighbours in the tree.
1579  * return 1 if merge left else 0.
1580  */
1581 static int ext4_ext_try_to_merge(struct inode *inode,
1582                                   struct ext4_ext_path *path,
1583                                   struct ext4_extent *ex) {
1584         struct ext4_extent_header *eh;
1585         unsigned int depth;
1586         int merge_done = 0;
1587         int ret = 0;
1588
1589         depth = ext_depth(inode);
1590         BUG_ON(path[depth].p_hdr == NULL);
1591         eh = path[depth].p_hdr;
1592
1593         if (ex > EXT_FIRST_EXTENT(eh))
1594                 merge_done = ext4_ext_try_to_merge_right(inode, path, ex - 1);
1595
1596         if (!merge_done)
1597                 ret = ext4_ext_try_to_merge_right(inode, path, ex);
1598
1599         return ret;
1600 }
1601
1602 /*
1603  * check if a portion of the "newext" extent overlaps with an
1604  * existing extent.
1605  *
1606  * If there is an overlap discovered, it updates the length of the newext
1607  * such that there will be no overlap, and then returns 1.
1608  * If there is no overlap found, it returns 0.
1609  */
1610 static unsigned int ext4_ext_check_overlap(struct ext4_sb_info *sbi,
1611                                            struct inode *inode,
1612                                            struct ext4_extent *newext,
1613                                            struct ext4_ext_path *path)
1614 {
1615         ext4_lblk_t b1, b2;
1616         unsigned int depth, len1;
1617         unsigned int ret = 0;
1618
1619         b1 = le32_to_cpu(newext->ee_block);
1620         len1 = ext4_ext_get_actual_len(newext);
1621         depth = ext_depth(inode);
1622         if (!path[depth].p_ext)
1623                 goto out;
1624         b2 = le32_to_cpu(path[depth].p_ext->ee_block);
1625         b2 &= ~(sbi->s_cluster_ratio - 1);
1626
1627         /*
1628          * get the next allocated block if the extent in the path
1629          * is before the requested block(s)
1630          */
1631         if (b2 < b1) {
1632                 b2 = ext4_ext_next_allocated_block(path);
1633                 if (b2 == EXT_MAX_BLOCKS)
1634                         goto out;
1635                 b2 &= ~(sbi->s_cluster_ratio - 1);
1636         }
1637
1638         /* check for wrap through zero on extent logical start block*/
1639         if (b1 + len1 < b1) {
1640                 len1 = EXT_MAX_BLOCKS - b1;
1641                 newext->ee_len = cpu_to_le16(len1);
1642                 ret = 1;
1643         }
1644
1645         /* check for overlap */
1646         if (b1 + len1 > b2) {
1647                 newext->ee_len = cpu_to_le16(b2 - b1);
1648                 ret = 1;
1649         }
1650 out:
1651         return ret;
1652 }
1653
1654 /*
1655  * ext4_ext_insert_extent:
1656  * tries to merge requsted extent into the existing extent or
1657  * inserts requested extent as new one into the tree,
1658  * creating new leaf in the no-space case.
1659  */
1660 int ext4_ext_insert_extent(handle_t *handle, struct inode *inode,
1661                                 struct ext4_ext_path *path,
1662                                 struct ext4_extent *newext, int flag)
1663 {
1664         struct ext4_extent_header *eh;
1665         struct ext4_extent *ex, *fex;
1666         struct ext4_extent *nearex; /* nearest extent */
1667         struct ext4_ext_path *npath = NULL;
1668         int depth, len, err;
1669         ext4_lblk_t next;
1670         unsigned uninitialized = 0;
1671         int flags = 0;
1672
1673         if (unlikely(ext4_ext_get_actual_len(newext) == 0)) {
1674                 EXT4_ERROR_INODE(inode, "ext4_ext_get_actual_len(newext) == 0");
1675                 return -EIO;
1676         }
1677         depth = ext_depth(inode);
1678         ex = path[depth].p_ext;
1679         if (unlikely(path[depth].p_hdr == NULL)) {
1680                 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
1681                 return -EIO;
1682         }
1683
1684         /* try to insert block into found extent and return */
1685         if (ex && !(flag & EXT4_GET_BLOCKS_PRE_IO)
1686                 && ext4_can_extents_be_merged(inode, ex, newext)) {
1687                 ext_debug("append [%d]%d block to %u:[%d]%d (from %llu)\n",
1688                           ext4_ext_is_uninitialized(newext),
1689                           ext4_ext_get_actual_len(newext),
1690                           le32_to_cpu(ex->ee_block),
1691                           ext4_ext_is_uninitialized(ex),
1692                           ext4_ext_get_actual_len(ex),
1693                           ext4_ext_pblock(ex));
1694                 err = ext4_ext_get_access(handle, inode, path + depth);
1695                 if (err)
1696                         return err;
1697
1698                 /*
1699                  * ext4_can_extents_be_merged should have checked that either
1700                  * both extents are uninitialized, or both aren't. Thus we
1701                  * need to check only one of them here.
1702                  */
1703                 if (ext4_ext_is_uninitialized(ex))
1704                         uninitialized = 1;
1705                 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1706                                         + ext4_ext_get_actual_len(newext));
1707                 if (uninitialized)
1708                         ext4_ext_mark_uninitialized(ex);
1709                 eh = path[depth].p_hdr;
1710                 nearex = ex;
1711                 goto merge;
1712         }
1713
1714         depth = ext_depth(inode);
1715         eh = path[depth].p_hdr;
1716         if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max))
1717                 goto has_space;
1718
1719         /* probably next leaf has space for us? */
1720         fex = EXT_LAST_EXTENT(eh);
1721         next = EXT_MAX_BLOCKS;
1722         if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block))
1723                 next = ext4_ext_next_leaf_block(path);
1724         if (next != EXT_MAX_BLOCKS) {
1725                 ext_debug("next leaf block - %u\n", next);
1726                 BUG_ON(npath != NULL);
1727                 npath = ext4_ext_find_extent(inode, next, NULL);
1728                 if (IS_ERR(npath))
1729                         return PTR_ERR(npath);
1730                 BUG_ON(npath->p_depth != path->p_depth);
1731                 eh = npath[depth].p_hdr;
1732                 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) {
1733                         ext_debug("next leaf isn't full(%d)\n",
1734                                   le16_to_cpu(eh->eh_entries));
1735                         path = npath;
1736                         goto has_space;
1737                 }
1738                 ext_debug("next leaf has no free space(%d,%d)\n",
1739                           le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
1740         }
1741
1742         /*
1743          * There is no free space in the found leaf.
1744          * We're gonna add a new leaf in the tree.
1745          */
1746         if (flag & EXT4_GET_BLOCKS_PUNCH_OUT_EXT)
1747                 flags = EXT4_MB_USE_ROOT_BLOCKS;
1748         err = ext4_ext_create_new_leaf(handle, inode, flags, path, newext);
1749         if (err)
1750                 goto cleanup;
1751         depth = ext_depth(inode);
1752         eh = path[depth].p_hdr;
1753
1754 has_space:
1755         nearex = path[depth].p_ext;
1756
1757         err = ext4_ext_get_access(handle, inode, path + depth);
1758         if (err)
1759                 goto cleanup;
1760
1761         if (!nearex) {
1762                 /* there is no extent in this leaf, create first one */
1763                 ext_debug("first extent in the leaf: %u:%llu:[%d]%d\n",
1764                                 le32_to_cpu(newext->ee_block),
1765                                 ext4_ext_pblock(newext),
1766                                 ext4_ext_is_uninitialized(newext),
1767                                 ext4_ext_get_actual_len(newext));
1768                 nearex = EXT_FIRST_EXTENT(eh);
1769         } else {
1770                 if (le32_to_cpu(newext->ee_block)
1771                            > le32_to_cpu(nearex->ee_block)) {
1772                         /* Insert after */
1773                         ext_debug("insert %u:%llu:[%d]%d before: "
1774                                         "nearest %p\n",
1775                                         le32_to_cpu(newext->ee_block),
1776                                         ext4_ext_pblock(newext),
1777                                         ext4_ext_is_uninitialized(newext),
1778                                         ext4_ext_get_actual_len(newext),
1779                                         nearex);
1780                         nearex++;
1781                 } else {
1782                         /* Insert before */
1783                         BUG_ON(newext->ee_block == nearex->ee_block);
1784                         ext_debug("insert %u:%llu:[%d]%d after: "
1785                                         "nearest %p\n",
1786                                         le32_to_cpu(newext->ee_block),
1787                                         ext4_ext_pblock(newext),
1788                                         ext4_ext_is_uninitialized(newext),
1789                                         ext4_ext_get_actual_len(newext),
1790                                         nearex);
1791                 }
1792                 len = EXT_LAST_EXTENT(eh) - nearex + 1;
1793                 if (len > 0) {
1794                         ext_debug("insert %u:%llu:[%d]%d: "
1795                                         "move %d extents from 0x%p to 0x%p\n",
1796                                         le32_to_cpu(newext->ee_block),
1797                                         ext4_ext_pblock(newext),
1798                                         ext4_ext_is_uninitialized(newext),
1799                                         ext4_ext_get_actual_len(newext),
1800                                         len, nearex, nearex + 1);
1801                         memmove(nearex + 1, nearex,
1802                                 len * sizeof(struct ext4_extent));
1803                 }
1804         }
1805
1806         le16_add_cpu(&eh->eh_entries, 1);
1807         path[depth].p_ext = nearex;
1808         nearex->ee_block = newext->ee_block;
1809         ext4_ext_store_pblock(nearex, ext4_ext_pblock(newext));
1810         nearex->ee_len = newext->ee_len;
1811
1812 merge:
1813         /* try to merge extents to the right */
1814         if (!(flag & EXT4_GET_BLOCKS_PRE_IO))
1815                 ext4_ext_try_to_merge(inode, path, nearex);
1816
1817         /* try to merge extents to the left */
1818
1819         /* time to correct all indexes above */
1820         err = ext4_ext_correct_indexes(handle, inode, path);
1821         if (err)
1822                 goto cleanup;
1823
1824         err = ext4_ext_dirty(handle, inode, path + depth);
1825
1826 cleanup:
1827         if (npath) {
1828                 ext4_ext_drop_refs(npath);
1829                 kfree(npath);
1830         }
1831         ext4_ext_invalidate_cache(inode);
1832         return err;
1833 }
1834
1835 static int ext4_ext_walk_space(struct inode *inode, ext4_lblk_t block,
1836                                ext4_lblk_t num, ext_prepare_callback func,
1837                                void *cbdata)
1838 {
1839         struct ext4_ext_path *path = NULL;
1840         struct ext4_ext_cache cbex;
1841         struct ext4_extent *ex;
1842         ext4_lblk_t next, start = 0, end = 0;
1843         ext4_lblk_t last = block + num;
1844         int depth, exists, err = 0;
1845
1846         BUG_ON(func == NULL);
1847         BUG_ON(inode == NULL);
1848
1849         while (block < last && block != EXT_MAX_BLOCKS) {
1850                 num = last - block;
1851                 /* find extent for this block */
1852                 down_read(&EXT4_I(inode)->i_data_sem);
1853                 path = ext4_ext_find_extent(inode, block, path);
1854                 up_read(&EXT4_I(inode)->i_data_sem);
1855                 if (IS_ERR(path)) {
1856                         err = PTR_ERR(path);
1857                         path = NULL;
1858                         break;
1859                 }
1860
1861                 depth = ext_depth(inode);
1862                 if (unlikely(path[depth].p_hdr == NULL)) {
1863                         EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
1864                         err = -EIO;
1865                         break;
1866                 }
1867                 ex = path[depth].p_ext;
1868                 next = ext4_ext_next_allocated_block(path);
1869
1870                 exists = 0;
1871                 if (!ex) {
1872                         /* there is no extent yet, so try to allocate
1873                          * all requested space */
1874                         start = block;
1875                         end = block + num;
1876                 } else if (le32_to_cpu(ex->ee_block) > block) {
1877                         /* need to allocate space before found extent */
1878                         start = block;
1879                         end = le32_to_cpu(ex->ee_block);
1880                         if (block + num < end)
1881                                 end = block + num;
1882                 } else if (block >= le32_to_cpu(ex->ee_block)
1883                                         + ext4_ext_get_actual_len(ex)) {
1884                         /* need to allocate space after found extent */
1885                         start = block;
1886                         end = block + num;
1887                         if (end >= next)
1888                                 end = next;
1889                 } else if (block >= le32_to_cpu(ex->ee_block)) {
1890                         /*
1891                          * some part of requested space is covered
1892                          * by found extent
1893                          */
1894                         start = block;
1895                         end = le32_to_cpu(ex->ee_block)
1896                                 + ext4_ext_get_actual_len(ex);
1897                         if (block + num < end)
1898                                 end = block + num;
1899                         exists = 1;
1900                 } else {
1901                         BUG();
1902                 }
1903                 BUG_ON(end <= start);
1904
1905                 if (!exists) {
1906                         cbex.ec_block = start;
1907                         cbex.ec_len = end - start;
1908                         cbex.ec_start = 0;
1909                 } else {
1910                         cbex.ec_block = le32_to_cpu(ex->ee_block);
1911                         cbex.ec_len = ext4_ext_get_actual_len(ex);
1912                         cbex.ec_start = ext4_ext_pblock(ex);
1913                 }
1914
1915                 if (unlikely(cbex.ec_len == 0)) {
1916                         EXT4_ERROR_INODE(inode, "cbex.ec_len == 0");
1917                         err = -EIO;
1918                         break;
1919                 }
1920                 err = func(inode, next, &cbex, ex, cbdata);
1921                 ext4_ext_drop_refs(path);
1922
1923                 if (err < 0)
1924                         break;
1925
1926                 if (err == EXT_REPEAT)
1927                         continue;
1928                 else if (err == EXT_BREAK) {
1929                         err = 0;
1930                         break;
1931                 }
1932
1933                 if (ext_depth(inode) != depth) {
1934                         /* depth was changed. we have to realloc path */
1935                         kfree(path);
1936                         path = NULL;
1937                 }
1938
1939                 block = cbex.ec_block + cbex.ec_len;
1940         }
1941
1942         if (path) {
1943                 ext4_ext_drop_refs(path);
1944                 kfree(path);
1945         }
1946
1947         return err;
1948 }
1949
1950 static void
1951 ext4_ext_put_in_cache(struct inode *inode, ext4_lblk_t block,
1952                         __u32 len, ext4_fsblk_t start)
1953 {
1954         struct ext4_ext_cache *cex;
1955         BUG_ON(len == 0);
1956         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1957         trace_ext4_ext_put_in_cache(inode, block, len, start);
1958         cex = &EXT4_I(inode)->i_cached_extent;
1959         cex->ec_block = block;
1960         cex->ec_len = len;
1961         cex->ec_start = start;
1962         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1963 }
1964
1965 /*
1966  * ext4_ext_put_gap_in_cache:
1967  * calculate boundaries of the gap that the requested block fits into
1968  * and cache this gap
1969  */
1970 static void
1971 ext4_ext_put_gap_in_cache(struct inode *inode, struct ext4_ext_path *path,
1972                                 ext4_lblk_t block)
1973 {
1974         int depth = ext_depth(inode);
1975         unsigned long len;
1976         ext4_lblk_t lblock;
1977         struct ext4_extent *ex;
1978
1979         ex = path[depth].p_ext;
1980         if (ex == NULL) {
1981                 /* there is no extent yet, so gap is [0;-] */
1982                 lblock = 0;
1983                 len = EXT_MAX_BLOCKS;
1984                 ext_debug("cache gap(whole file):");
1985         } else if (block < le32_to_cpu(ex->ee_block)) {
1986                 lblock = block;
1987                 len = le32_to_cpu(ex->ee_block) - block;
1988                 ext_debug("cache gap(before): %u [%u:%u]",
1989                                 block,
1990                                 le32_to_cpu(ex->ee_block),
1991                                  ext4_ext_get_actual_len(ex));
1992         } else if (block >= le32_to_cpu(ex->ee_block)
1993                         + ext4_ext_get_actual_len(ex)) {
1994                 ext4_lblk_t next;
1995                 lblock = le32_to_cpu(ex->ee_block)
1996                         + ext4_ext_get_actual_len(ex);
1997
1998                 next = ext4_ext_next_allocated_block(path);
1999                 ext_debug("cache gap(after): [%u:%u] %u",
2000                                 le32_to_cpu(ex->ee_block),
2001                                 ext4_ext_get_actual_len(ex),
2002                                 block);
2003                 BUG_ON(next == lblock);
2004                 len = next - lblock;
2005         } else {
2006                 lblock = len = 0;
2007                 BUG();
2008         }
2009
2010         ext_debug(" -> %u:%lu\n", lblock, len);
2011         ext4_ext_put_in_cache(inode, lblock, len, 0);
2012 }
2013
2014 /*
2015  * ext4_ext_check_cache()
2016  * Checks to see if the given block is in the cache.
2017  * If it is, the cached extent is stored in the given
2018  * cache extent pointer.  If the cached extent is a hole,
2019  * this routine should be used instead of
2020  * ext4_ext_in_cache if the calling function needs to
2021  * know the size of the hole.
2022  *
2023  * @inode: The files inode
2024  * @block: The block to look for in the cache
2025  * @ex:    Pointer where the cached extent will be stored
2026  *         if it contains block
2027  *
2028  * Return 0 if cache is invalid; 1 if the cache is valid
2029  */
2030 static int ext4_ext_check_cache(struct inode *inode, ext4_lblk_t block,
2031         struct ext4_ext_cache *ex){
2032         struct ext4_ext_cache *cex;
2033         struct ext4_sb_info *sbi;
2034         int ret = 0;
2035
2036         /*
2037          * We borrow i_block_reservation_lock to protect i_cached_extent
2038          */
2039         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
2040         cex = &EXT4_I(inode)->i_cached_extent;
2041         sbi = EXT4_SB(inode->i_sb);
2042
2043         /* has cache valid data? */
2044         if (cex->ec_len == 0)
2045                 goto errout;
2046
2047         if (in_range(block, cex->ec_block, cex->ec_len)) {
2048                 memcpy(ex, cex, sizeof(struct ext4_ext_cache));
2049                 ext_debug("%u cached by %u:%u:%llu\n",
2050                                 block,
2051                                 cex->ec_block, cex->ec_len, cex->ec_start);
2052                 ret = 1;
2053         }
2054 errout:
2055         trace_ext4_ext_in_cache(inode, block, ret);
2056         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
2057         return ret;
2058 }
2059
2060 /*
2061  * ext4_ext_in_cache()
2062  * Checks to see if the given block is in the cache.
2063  * If it is, the cached extent is stored in the given
2064  * extent pointer.
2065  *
2066  * @inode: The files inode
2067  * @block: The block to look for in the cache
2068  * @ex:    Pointer where the cached extent will be stored
2069  *         if it contains block
2070  *
2071  * Return 0 if cache is invalid; 1 if the cache is valid
2072  */
2073 static int
2074 ext4_ext_in_cache(struct inode *inode, ext4_lblk_t block,
2075                         struct ext4_extent *ex)
2076 {
2077         struct ext4_ext_cache cex;
2078         int ret = 0;
2079
2080         if (ext4_ext_check_cache(inode, block, &cex)) {
2081                 ex->ee_block = cpu_to_le32(cex.ec_block);
2082                 ext4_ext_store_pblock(ex, cex.ec_start);
2083                 ex->ee_len = cpu_to_le16(cex.ec_len);
2084                 ret = 1;
2085         }
2086
2087         return ret;
2088 }
2089
2090
2091 /*
2092  * ext4_ext_rm_idx:
2093  * removes index from the index block.
2094  */
2095 static int ext4_ext_rm_idx(handle_t *handle, struct inode *inode,
2096                         struct ext4_ext_path *path)
2097 {
2098         int err;
2099         ext4_fsblk_t leaf;
2100
2101         /* free index block */
2102         path--;
2103         leaf = ext4_idx_pblock(path->p_idx);
2104         if (unlikely(path->p_hdr->eh_entries == 0)) {
2105                 EXT4_ERROR_INODE(inode, "path->p_hdr->eh_entries == 0");
2106                 return -EIO;
2107         }
2108         err = ext4_ext_get_access(handle, inode, path);
2109         if (err)
2110                 return err;
2111
2112         if (path->p_idx != EXT_LAST_INDEX(path->p_hdr)) {
2113                 int len = EXT_LAST_INDEX(path->p_hdr) - path->p_idx;
2114                 len *= sizeof(struct ext4_extent_idx);
2115                 memmove(path->p_idx, path->p_idx + 1, len);
2116         }
2117
2118         le16_add_cpu(&path->p_hdr->eh_entries, -1);
2119         err = ext4_ext_dirty(handle, inode, path);
2120         if (err)
2121                 return err;
2122         ext_debug("index is empty, remove it, free block %llu\n", leaf);
2123         trace_ext4_ext_rm_idx(inode, leaf);
2124
2125         ext4_free_blocks(handle, inode, NULL, leaf, 1,
2126                          EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET);
2127         return err;
2128 }
2129
2130 /*
2131  * ext4_ext_calc_credits_for_single_extent:
2132  * This routine returns max. credits that needed to insert an extent
2133  * to the extent tree.
2134  * When pass the actual path, the caller should calculate credits
2135  * under i_data_sem.
2136  */
2137 int ext4_ext_calc_credits_for_single_extent(struct inode *inode, int nrblocks,
2138                                                 struct ext4_ext_path *path)
2139 {
2140         if (path) {
2141                 int depth = ext_depth(inode);
2142                 int ret = 0;
2143
2144                 /* probably there is space in leaf? */
2145                 if (le16_to_cpu(path[depth].p_hdr->eh_entries)
2146                                 < le16_to_cpu(path[depth].p_hdr->eh_max)) {
2147
2148                         /*
2149                          *  There are some space in the leaf tree, no
2150                          *  need to account for leaf block credit
2151                          *
2152                          *  bitmaps and block group descriptor blocks
2153                          *  and other metadata blocks still need to be
2154                          *  accounted.
2155                          */
2156                         /* 1 bitmap, 1 block group descriptor */
2157                         ret = 2 + EXT4_META_TRANS_BLOCKS(inode->i_sb);
2158                         return ret;
2159                 }
2160         }
2161
2162         return ext4_chunk_trans_blocks(inode, nrblocks);
2163 }
2164
2165 /*
2166  * How many index/leaf blocks need to change/allocate to modify nrblocks?
2167  *
2168  * if nrblocks are fit in a single extent (chunk flag is 1), then
2169  * in the worse case, each tree level index/leaf need to be changed
2170  * if the tree split due to insert a new extent, then the old tree
2171  * index/leaf need to be updated too
2172  *
2173  * If the nrblocks are discontiguous, they could cause
2174  * the whole tree split more than once, but this is really rare.
2175  */
2176 int ext4_ext_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
2177 {
2178         int index;
2179         int depth = ext_depth(inode);
2180
2181         if (chunk)
2182                 index = depth * 2;
2183         else
2184                 index = depth * 3;
2185
2186         return index;
2187 }
2188
2189 static int ext4_remove_blocks(handle_t *handle, struct inode *inode,
2190                               struct ext4_extent *ex,
2191                               ext4_fsblk_t *partial_cluster,
2192                               ext4_lblk_t from, ext4_lblk_t to)
2193 {
2194         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2195         unsigned short ee_len =  ext4_ext_get_actual_len(ex);
2196         ext4_fsblk_t pblk;
2197         int flags = EXT4_FREE_BLOCKS_FORGET;
2198
2199         if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2200                 flags |= EXT4_FREE_BLOCKS_METADATA;
2201         /*
2202          * For bigalloc file systems, we never free a partial cluster
2203          * at the beginning of the extent.  Instead, we make a note
2204          * that we tried freeing the cluster, and check to see if we
2205          * need to free it on a subsequent call to ext4_remove_blocks,
2206          * or at the end of the ext4_truncate() operation.
2207          */
2208         flags |= EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER;
2209
2210         trace_ext4_remove_blocks(inode, ex, from, to, *partial_cluster);
2211         /*
2212          * If we have a partial cluster, and it's different from the
2213          * cluster of the last block, we need to explicitly free the
2214          * partial cluster here.
2215          */
2216         pblk = ext4_ext_pblock(ex) + ee_len - 1;
2217         if (*partial_cluster && (EXT4_B2C(sbi, pblk) != *partial_cluster)) {
2218                 ext4_free_blocks(handle, inode, NULL,
2219                                  EXT4_C2B(sbi, *partial_cluster),
2220                                  sbi->s_cluster_ratio, flags);
2221                 *partial_cluster = 0;
2222         }
2223
2224 #ifdef EXTENTS_STATS
2225         {
2226                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2227                 spin_lock(&sbi->s_ext_stats_lock);
2228                 sbi->s_ext_blocks += ee_len;
2229                 sbi->s_ext_extents++;
2230                 if (ee_len < sbi->s_ext_min)
2231                         sbi->s_ext_min = ee_len;
2232                 if (ee_len > sbi->s_ext_max)
2233                         sbi->s_ext_max = ee_len;
2234                 if (ext_depth(inode) > sbi->s_depth_max)
2235                         sbi->s_depth_max = ext_depth(inode);
2236                 spin_unlock(&sbi->s_ext_stats_lock);
2237         }
2238 #endif
2239         if (from >= le32_to_cpu(ex->ee_block)
2240             && to == le32_to_cpu(ex->ee_block) + ee_len - 1) {
2241                 /* tail removal */
2242                 ext4_lblk_t num;
2243
2244                 num = le32_to_cpu(ex->ee_block) + ee_len - from;
2245                 pblk = ext4_ext_pblock(ex) + ee_len - num;
2246                 ext_debug("free last %u blocks starting %llu\n", num, pblk);
2247                 ext4_free_blocks(handle, inode, NULL, pblk, num, flags);
2248                 /*
2249                  * If the block range to be freed didn't start at the
2250                  * beginning of a cluster, and we removed the entire
2251                  * extent, save the partial cluster here, since we
2252                  * might need to delete if we determine that the
2253                  * truncate operation has removed all of the blocks in
2254                  * the cluster.
2255                  */
2256                 if (pblk & (sbi->s_cluster_ratio - 1) &&
2257                     (ee_len == num))
2258                         *partial_cluster = EXT4_B2C(sbi, pblk);
2259                 else
2260                         *partial_cluster = 0;
2261         } else if (from == le32_to_cpu(ex->ee_block)
2262                    && to <= le32_to_cpu(ex->ee_block) + ee_len - 1) {
2263                 /* head removal */
2264                 ext4_lblk_t num;
2265                 ext4_fsblk_t start;
2266
2267                 num = to - from;
2268                 start = ext4_ext_pblock(ex);
2269
2270                 ext_debug("free first %u blocks starting %llu\n", num, start);
2271                 ext4_free_blocks(handle, inode, NULL, start, num, flags);
2272
2273         } else {
2274                 printk(KERN_INFO "strange request: removal(2) "
2275                                 "%u-%u from %u:%u\n",
2276                                 from, to, le32_to_cpu(ex->ee_block), ee_len);
2277         }
2278         return 0;
2279 }
2280
2281
2282 /*
2283  * ext4_ext_rm_leaf() Removes the extents associated with the
2284  * blocks appearing between "start" and "end", and splits the extents
2285  * if "start" and "end" appear in the same extent
2286  *
2287  * @handle: The journal handle
2288  * @inode:  The files inode
2289  * @path:   The path to the leaf
2290  * @start:  The first block to remove
2291  * @end:   The last block to remove
2292  */
2293 static int
2294 ext4_ext_rm_leaf(handle_t *handle, struct inode *inode,
2295                  struct ext4_ext_path *path, ext4_fsblk_t *partial_cluster,
2296                  ext4_lblk_t start, ext4_lblk_t end)
2297 {
2298         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2299         int err = 0, correct_index = 0;
2300         int depth = ext_depth(inode), credits;
2301         struct ext4_extent_header *eh;
2302         ext4_lblk_t a, b;
2303         unsigned num;
2304         ext4_lblk_t ex_ee_block;
2305         unsigned short ex_ee_len;
2306         unsigned uninitialized = 0;
2307         struct ext4_extent *ex;
2308
2309         /* the header must be checked already in ext4_ext_remove_space() */
2310         ext_debug("truncate since %u in leaf\n", start);
2311         if (!path[depth].p_hdr)
2312                 path[depth].p_hdr = ext_block_hdr(path[depth].p_bh);
2313         eh = path[depth].p_hdr;
2314         if (unlikely(path[depth].p_hdr == NULL)) {
2315                 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
2316                 return -EIO;
2317         }
2318         /* find where to start removing */
2319         ex = EXT_LAST_EXTENT(eh);
2320
2321         ex_ee_block = le32_to_cpu(ex->ee_block);
2322         ex_ee_len = ext4_ext_get_actual_len(ex);
2323
2324         trace_ext4_ext_rm_leaf(inode, start, ex, *partial_cluster);
2325
2326         while (ex >= EXT_FIRST_EXTENT(eh) &&
2327                         ex_ee_block + ex_ee_len > start) {
2328
2329                 if (ext4_ext_is_uninitialized(ex))
2330                         uninitialized = 1;
2331                 else
2332                         uninitialized = 0;
2333
2334                 ext_debug("remove ext %u:[%d]%d\n", ex_ee_block,
2335                          uninitialized, ex_ee_len);
2336                 path[depth].p_ext = ex;
2337
2338                 a = ex_ee_block > start ? ex_ee_block : start;
2339                 b = ex_ee_block+ex_ee_len - 1 < end ?
2340                         ex_ee_block+ex_ee_len - 1 : end;
2341
2342                 ext_debug("  border %u:%u\n", a, b);
2343
2344                 /* If this extent is beyond the end of the hole, skip it */
2345                 if (end <= ex_ee_block) {
2346                         ex--;
2347                         ex_ee_block = le32_to_cpu(ex->ee_block);
2348                         ex_ee_len = ext4_ext_get_actual_len(ex);
2349                         continue;
2350                 } else if (b != ex_ee_block + ex_ee_len - 1) {
2351                         EXT4_ERROR_INODE(inode,"  bad truncate %u:%u\n",
2352                                          start, end);
2353                         err = -EIO;
2354                         goto out;
2355                 } else if (a != ex_ee_block) {
2356                         /* remove tail of the extent */
2357                         num = a - ex_ee_block;
2358                 } else {
2359                         /* remove whole extent: excellent! */
2360                         num = 0;
2361                 }
2362                 /*
2363                  * 3 for leaf, sb, and inode plus 2 (bmap and group
2364                  * descriptor) for each block group; assume two block
2365                  * groups plus ex_ee_len/blocks_per_block_group for
2366                  * the worst case
2367                  */
2368                 credits = 7 + 2*(ex_ee_len/EXT4_BLOCKS_PER_GROUP(inode->i_sb));
2369                 if (ex == EXT_FIRST_EXTENT(eh)) {
2370                         correct_index = 1;
2371                         credits += (ext_depth(inode)) + 1;
2372                 }
2373                 credits += EXT4_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb);
2374
2375                 err = ext4_ext_truncate_extend_restart(handle, inode, credits);
2376                 if (err)
2377                         goto out;
2378
2379                 err = ext4_ext_get_access(handle, inode, path + depth);
2380                 if (err)
2381                         goto out;
2382
2383                 err = ext4_remove_blocks(handle, inode, ex, partial_cluster,
2384                                          a, b);
2385                 if (err)
2386                         goto out;
2387
2388                 if (num == 0)
2389                         /* this extent is removed; mark slot entirely unused */
2390                         ext4_ext_store_pblock(ex, 0);
2391
2392                 ex->ee_len = cpu_to_le16(num);
2393                 /*
2394                  * Do not mark uninitialized if all the blocks in the
2395                  * extent have been removed.
2396                  */
2397                 if (uninitialized && num)
2398                         ext4_ext_mark_uninitialized(ex);
2399                 /*
2400                  * If the extent was completely released,
2401                  * we need to remove it from the leaf
2402                  */
2403                 if (num == 0) {
2404                         if (end != EXT_MAX_BLOCKS - 1) {
2405                                 /*
2406                                  * For hole punching, we need to scoot all the
2407                                  * extents up when an extent is removed so that
2408                                  * we dont have blank extents in the middle
2409                                  */
2410                                 memmove(ex, ex+1, (EXT_LAST_EXTENT(eh) - ex) *
2411                                         sizeof(struct ext4_extent));
2412
2413                                 /* Now get rid of the one at the end */
2414                                 memset(EXT_LAST_EXTENT(eh), 0,
2415                                         sizeof(struct ext4_extent));
2416                         }
2417                         le16_add_cpu(&eh->eh_entries, -1);
2418                 } else
2419                         *partial_cluster = 0;
2420
2421                 err = ext4_ext_dirty(handle, inode, path + depth);
2422                 if (err)
2423                         goto out;
2424
2425                 ext_debug("new extent: %u:%u:%llu\n", ex_ee_block, num,
2426                                 ext4_ext_pblock(ex));
2427                 ex--;
2428                 ex_ee_block = le32_to_cpu(ex->ee_block);
2429                 ex_ee_len = ext4_ext_get_actual_len(ex);
2430         }
2431
2432         if (correct_index && eh->eh_entries)
2433                 err = ext4_ext_correct_indexes(handle, inode, path);
2434
2435         /*
2436          * If there is still a entry in the leaf node, check to see if
2437          * it references the partial cluster.  This is the only place
2438          * where it could; if it doesn't, we can free the cluster.
2439          */
2440         if (*partial_cluster && ex >= EXT_FIRST_EXTENT(eh) &&
2441             (EXT4_B2C(sbi, ext4_ext_pblock(ex) + ex_ee_len - 1) !=
2442              *partial_cluster)) {
2443                 int flags = EXT4_FREE_BLOCKS_FORGET;
2444
2445                 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2446                         flags |= EXT4_FREE_BLOCKS_METADATA;
2447
2448                 ext4_free_blocks(handle, inode, NULL,
2449                                  EXT4_C2B(sbi, *partial_cluster),
2450                                  sbi->s_cluster_ratio, flags);
2451                 *partial_cluster = 0;
2452         }
2453
2454         /* if this leaf is free, then we should
2455          * remove it from index block above */
2456         if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL)
2457                 err = ext4_ext_rm_idx(handle, inode, path + depth);
2458
2459 out:
2460         return err;
2461 }
2462
2463 /*
2464  * ext4_ext_more_to_rm:
2465  * returns 1 if current index has to be freed (even partial)
2466  */
2467 static int
2468 ext4_ext_more_to_rm(struct ext4_ext_path *path)
2469 {
2470         BUG_ON(path->p_idx == NULL);
2471
2472         if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr))
2473                 return 0;
2474
2475         /*
2476          * if truncate on deeper level happened, it wasn't partial,
2477          * so we have to consider current index for truncation
2478          */
2479         if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block)
2480                 return 0;
2481         return 1;
2482 }
2483
2484 static int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start)
2485 {
2486         struct super_block *sb = inode->i_sb;
2487         int depth = ext_depth(inode);
2488         struct ext4_ext_path *path;
2489         ext4_fsblk_t partial_cluster = 0;
2490         handle_t *handle;
2491         int i, err;
2492
2493         ext_debug("truncate since %u\n", start);
2494
2495         /* probably first extent we're gonna free will be last in block */
2496         handle = ext4_journal_start(inode, depth + 1);
2497         if (IS_ERR(handle))
2498                 return PTR_ERR(handle);
2499
2500 again:
2501         ext4_ext_invalidate_cache(inode);
2502
2503         trace_ext4_ext_remove_space(inode, start, depth);
2504
2505         /*
2506          * We start scanning from right side, freeing all the blocks
2507          * after i_size and walking into the tree depth-wise.
2508          */
2509         depth = ext_depth(inode);
2510         path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1), GFP_NOFS);
2511         if (path == NULL) {
2512                 ext4_journal_stop(handle);
2513                 return -ENOMEM;
2514         }
2515         path[0].p_depth = depth;
2516         path[0].p_hdr = ext_inode_hdr(inode);
2517         if (ext4_ext_check(inode, path[0].p_hdr, depth)) {
2518                 err = -EIO;
2519                 goto out;
2520         }
2521         i = err = 0;
2522
2523         while (i >= 0 && err == 0) {
2524                 if (i == depth) {
2525                         /* this is leaf block */
2526                         err = ext4_ext_rm_leaf(handle, inode, path,
2527                                                &partial_cluster, start,
2528                                                EXT_MAX_BLOCKS - 1);
2529                         /* root level has p_bh == NULL, brelse() eats this */
2530                         brelse(path[i].p_bh);
2531                         path[i].p_bh = NULL;
2532                         i--;
2533                         continue;
2534                 }
2535
2536                 /* this is index block */
2537                 if (!path[i].p_hdr) {
2538                         ext_debug("initialize header\n");
2539                         path[i].p_hdr = ext_block_hdr(path[i].p_bh);
2540                 }
2541
2542                 if (!path[i].p_idx) {
2543                         /* this level hasn't been touched yet */
2544                         path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr);
2545                         path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1;
2546                         ext_debug("init index ptr: hdr 0x%p, num %d\n",
2547                                   path[i].p_hdr,
2548                                   le16_to_cpu(path[i].p_hdr->eh_entries));
2549                 } else {
2550                         /* we were already here, see at next index */
2551                         path[i].p_idx--;
2552                 }
2553
2554                 ext_debug("level %d - index, first 0x%p, cur 0x%p\n",
2555                                 i, EXT_FIRST_INDEX(path[i].p_hdr),
2556                                 path[i].p_idx);
2557                 if (ext4_ext_more_to_rm(path + i)) {
2558                         struct buffer_head *bh;
2559                         /* go to the next level */
2560                         ext_debug("move to level %d (block %llu)\n",
2561                                   i + 1, ext4_idx_pblock(path[i].p_idx));
2562                         memset(path + i + 1, 0, sizeof(*path));
2563                         bh = sb_bread(sb, ext4_idx_pblock(path[i].p_idx));
2564                         if (!bh) {
2565                                 /* should we reset i_size? */
2566                                 err = -EIO;
2567                                 break;
2568                         }
2569                         if (WARN_ON(i + 1 > depth)) {
2570                                 err = -EIO;
2571                                 break;
2572                         }
2573                         if (ext4_ext_check(inode, ext_block_hdr(bh),
2574                                                         depth - i - 1)) {
2575                                 err = -EIO;
2576                                 break;
2577                         }
2578                         path[i + 1].p_bh = bh;
2579
2580                         /* save actual number of indexes since this
2581                          * number is changed at the next iteration */
2582                         path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries);
2583                         i++;
2584                 } else {
2585                         /* we finished processing this index, go up */
2586                         if (path[i].p_hdr->eh_entries == 0 && i > 0) {
2587                                 /* index is empty, remove it;
2588                                  * handle must be already prepared by the
2589                                  * truncatei_leaf() */
2590                                 err = ext4_ext_rm_idx(handle, inode, path + i);
2591                         }
2592                         /* root level has p_bh == NULL, brelse() eats this */
2593                         brelse(path[i].p_bh);
2594                         path[i].p_bh = NULL;
2595                         i--;
2596                         ext_debug("return to level %d\n", i);
2597                 }
2598         }
2599
2600         trace_ext4_ext_remove_space_done(inode, start, depth, partial_cluster,
2601                         path->p_hdr->eh_entries);
2602
2603         /* If we still have something in the partial cluster and we have removed
2604          * even the first extent, then we should free the blocks in the partial
2605          * cluster as well. */
2606         if (partial_cluster && path->p_hdr->eh_entries == 0) {
2607                 int flags = EXT4_FREE_BLOCKS_FORGET;
2608
2609                 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2610                         flags |= EXT4_FREE_BLOCKS_METADATA;
2611
2612                 ext4_free_blocks(handle, inode, NULL,
2613                                  EXT4_C2B(EXT4_SB(sb), partial_cluster),
2614                                  EXT4_SB(sb)->s_cluster_ratio, flags);
2615                 partial_cluster = 0;
2616         }
2617
2618         /* TODO: flexible tree reduction should be here */
2619         if (path->p_hdr->eh_entries == 0) {
2620                 /*
2621                  * truncate to zero freed all the tree,
2622                  * so we need to correct eh_depth
2623                  */
2624                 err = ext4_ext_get_access(handle, inode, path);
2625                 if (err == 0) {
2626                         ext_inode_hdr(inode)->eh_depth = 0;
2627                         ext_inode_hdr(inode)->eh_max =
2628                                 cpu_to_le16(ext4_ext_space_root(inode, 0));
2629                         err = ext4_ext_dirty(handle, inode, path);
2630                 }
2631         }
2632 out:
2633         ext4_ext_drop_refs(path);
2634         kfree(path);
2635         if (err == -EAGAIN)
2636                 goto again;
2637         ext4_journal_stop(handle);
2638
2639         return err;
2640 }
2641
2642 /*
2643  * called at mount time
2644  */
2645 void ext4_ext_init(struct super_block *sb)
2646 {
2647         /*
2648          * possible initialization would be here
2649          */
2650
2651         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
2652 #if defined(AGGRESSIVE_TEST) || defined(CHECK_BINSEARCH) || defined(EXTENTS_STATS)
2653                 printk(KERN_INFO "EXT4-fs: file extents enabled");
2654 #ifdef AGGRESSIVE_TEST
2655                 printk(", aggressive tests");
2656 #endif
2657 #ifdef CHECK_BINSEARCH
2658                 printk(", check binsearch");
2659 #endif
2660 #ifdef EXTENTS_STATS
2661                 printk(", stats");
2662 #endif
2663                 printk("\n");
2664 #endif
2665 #ifdef EXTENTS_STATS
2666                 spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock);
2667                 EXT4_SB(sb)->s_ext_min = 1 << 30;
2668                 EXT4_SB(sb)->s_ext_max = 0;
2669 #endif
2670         }
2671 }
2672
2673 /*
2674  * called at umount time
2675  */
2676 void ext4_ext_release(struct super_block *sb)
2677 {
2678         if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS))
2679                 return;
2680
2681 #ifdef EXTENTS_STATS
2682         if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) {
2683                 struct ext4_sb_info *sbi = EXT4_SB(sb);
2684                 printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n",
2685                         sbi->s_ext_blocks, sbi->s_ext_extents,
2686                         sbi->s_ext_blocks / sbi->s_ext_extents);
2687                 printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n",
2688                         sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max);
2689         }
2690 #endif
2691 }
2692
2693 /* FIXME!! we need to try to merge to left or right after zero-out  */
2694 static int ext4_ext_zeroout(struct inode *inode, struct ext4_extent *ex)
2695 {
2696         ext4_fsblk_t ee_pblock;
2697         unsigned int ee_len;
2698         int ret;
2699
2700         ee_len    = ext4_ext_get_actual_len(ex);
2701         ee_pblock = ext4_ext_pblock(ex);
2702
2703         ret = sb_issue_zeroout(inode->i_sb, ee_pblock, ee_len, GFP_NOFS);
2704         if (ret > 0)
2705                 ret = 0;
2706
2707         return ret;
2708 }
2709
2710 /*
2711  * used by extent splitting.
2712  */
2713 #define EXT4_EXT_MAY_ZEROOUT    0x1  /* safe to zeroout if split fails \
2714                                         due to ENOSPC */
2715 #define EXT4_EXT_MARK_UNINIT1   0x2  /* mark first half uninitialized */
2716 #define EXT4_EXT_MARK_UNINIT2   0x4  /* mark second half uninitialized */
2717
2718 /*
2719  * ext4_split_extent_at() splits an extent at given block.
2720  *
2721  * @handle: the journal handle
2722  * @inode: the file inode
2723  * @path: the path to the extent
2724  * @split: the logical block where the extent is splitted.
2725  * @split_flags: indicates if the extent could be zeroout if split fails, and
2726  *               the states(init or uninit) of new extents.
2727  * @flags: flags used to insert new extent to extent tree.
2728  *
2729  *
2730  * Splits extent [a, b] into two extents [a, @split) and [@split, b], states
2731  * of which are deterimined by split_flag.
2732  *
2733  * There are two cases:
2734  *  a> the extent are splitted into two extent.
2735  *  b> split is not needed, and just mark the extent.
2736  *
2737  * return 0 on success.
2738  */
2739 static int ext4_split_extent_at(handle_t *handle,
2740                              struct inode *inode,
2741                              struct ext4_ext_path *path,
2742                              ext4_lblk_t split,
2743                              int split_flag,
2744                              int flags)
2745 {
2746         ext4_fsblk_t newblock;
2747         ext4_lblk_t ee_block;
2748         struct ext4_extent *ex, newex, orig_ex;
2749         struct ext4_extent *ex2 = NULL;
2750         unsigned int ee_len, depth;
2751         int err = 0;
2752
2753         ext_debug("ext4_split_extents_at: inode %lu, logical"
2754                 "block %llu\n", inode->i_ino, (unsigned long long)split);
2755
2756         ext4_ext_show_leaf(inode, path);
2757
2758         depth = ext_depth(inode);
2759         ex = path[depth].p_ext;
2760         ee_block = le32_to_cpu(ex->ee_block);
2761         ee_len = ext4_ext_get_actual_len(ex);
2762         newblock = split - ee_block + ext4_ext_pblock(ex);
2763
2764         BUG_ON(split < ee_block || split >= (ee_block + ee_len));
2765
2766         err = ext4_ext_get_access(handle, inode, path + depth);
2767         if (err)
2768                 goto out;
2769
2770         if (split == ee_block) {
2771                 /*
2772                  * case b: block @split is the block that the extent begins with
2773                  * then we just change the state of the extent, and splitting
2774                  * is not needed.
2775                  */
2776                 if (split_flag & EXT4_EXT_MARK_UNINIT2)
2777                         ext4_ext_mark_uninitialized(ex);
2778                 else
2779                         ext4_ext_mark_initialized(ex);
2780
2781                 if (!(flags & EXT4_GET_BLOCKS_PRE_IO))
2782                         ext4_ext_try_to_merge(inode, path, ex);
2783
2784                 err = ext4_ext_dirty(handle, inode, path + depth);
2785                 goto out;
2786         }
2787
2788         /* case a */
2789         memcpy(&orig_ex, ex, sizeof(orig_ex));
2790         ex->ee_len = cpu_to_le16(split - ee_block);
2791         if (split_flag & EXT4_EXT_MARK_UNINIT1)
2792                 ext4_ext_mark_uninitialized(ex);
2793
2794         /*
2795          * path may lead to new leaf, not to original leaf any more
2796          * after ext4_ext_insert_extent() returns,
2797          */
2798         err = ext4_ext_dirty(handle, inode, path + depth);
2799         if (err)
2800                 goto fix_extent_len;
2801
2802         ex2 = &newex;
2803         ex2->ee_block = cpu_to_le32(split);
2804         ex2->ee_len   = cpu_to_le16(ee_len - (split - ee_block));
2805         ext4_ext_store_pblock(ex2, newblock);
2806         if (split_flag & EXT4_EXT_MARK_UNINIT2)
2807                 ext4_ext_mark_uninitialized(ex2);
2808
2809         err = ext4_ext_insert_extent(handle, inode, path, &newex, flags);
2810         if (err == -ENOSPC && (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
2811                 err = ext4_ext_zeroout(inode, &orig_ex);
2812                 if (err)
2813                         goto fix_extent_len;
2814                 /* update the extent length and mark as initialized */
2815                 ex->ee_len = cpu_to_le16(ee_len);
2816                 ext4_ext_try_to_merge(inode, path, ex);
2817                 err = ext4_ext_dirty(handle, inode, path + depth);
2818                 goto out;
2819         } else if (err)
2820                 goto fix_extent_len;
2821
2822 out:
2823         ext4_ext_show_leaf(inode, path);
2824         return err;
2825
2826 fix_extent_len:
2827         ex->ee_len = orig_ex.ee_len;
2828         ext4_ext_dirty(handle, inode, path + depth);
2829         return err;
2830 }
2831
2832 /*
2833  * ext4_split_extents() splits an extent and mark extent which is covered
2834  * by @map as split_flags indicates
2835  *
2836  * It may result in splitting the extent into multiple extents (upto three)
2837  * There are three possibilities:
2838  *   a> There is no split required
2839  *   b> Splits in two extents: Split is happening at either end of the extent
2840  *   c> Splits in three extents: Somone is splitting in middle of the extent
2841  *
2842  */
2843 static int ext4_split_extent(handle_t *handle,
2844                               struct inode *inode,
2845                               struct ext4_ext_path *path,
2846                               struct ext4_map_blocks *map,
2847                               int split_flag,
2848                               int flags)
2849 {
2850         ext4_lblk_t ee_block;
2851         struct ext4_extent *ex;
2852         unsigned int ee_len, depth;
2853         int err = 0;
2854         int uninitialized;
2855         int split_flag1, flags1;
2856
2857         depth = ext_depth(inode);
2858         ex = path[depth].p_ext;
2859         ee_block = le32_to_cpu(ex->ee_block);
2860         ee_len = ext4_ext_get_actual_len(ex);
2861         uninitialized = ext4_ext_is_uninitialized(ex);
2862
2863         if (map->m_lblk + map->m_len < ee_block + ee_len) {
2864                 split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT ?
2865                               EXT4_EXT_MAY_ZEROOUT : 0;
2866                 flags1 = flags | EXT4_GET_BLOCKS_PRE_IO;
2867                 if (uninitialized)
2868                         split_flag1 |= EXT4_EXT_MARK_UNINIT1 |
2869                                        EXT4_EXT_MARK_UNINIT2;
2870                 err = ext4_split_extent_at(handle, inode, path,
2871                                 map->m_lblk + map->m_len, split_flag1, flags1);
2872                 if (err)
2873                         goto out;
2874         }
2875
2876         ext4_ext_drop_refs(path);
2877         path = ext4_ext_find_extent(inode, map->m_lblk, path);
2878         if (IS_ERR(path))
2879                 return PTR_ERR(path);
2880
2881         if (map->m_lblk >= ee_block) {
2882                 split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT ?
2883                               EXT4_EXT_MAY_ZEROOUT : 0;
2884                 if (uninitialized)
2885                         split_flag1 |= EXT4_EXT_MARK_UNINIT1;
2886                 if (split_flag & EXT4_EXT_MARK_UNINIT2)
2887                         split_flag1 |= EXT4_EXT_MARK_UNINIT2;
2888                 err = ext4_split_extent_at(handle, inode, path,
2889                                 map->m_lblk, split_flag1, flags);
2890                 if (err)
2891                         goto out;
2892         }
2893
2894         ext4_ext_show_leaf(inode, path);
2895 out:
2896         return err ? err : map->m_len;
2897 }
2898
2899 #define EXT4_EXT_ZERO_LEN 7
2900 /*
2901  * This function is called by ext4_ext_map_blocks() if someone tries to write
2902  * to an uninitialized extent. It may result in splitting the uninitialized
2903  * extent into multiple extents (up to three - one initialized and two
2904  * uninitialized).
2905  * There are three possibilities:
2906  *   a> There is no split required: Entire extent should be initialized
2907  *   b> Splits in two extents: Write is happening at either end of the extent
2908  *   c> Splits in three extents: Somone is writing in middle of the extent
2909  *
2910  * Pre-conditions:
2911  *  - The extent pointed to by 'path' is uninitialized.
2912  *  - The extent pointed to by 'path' contains a superset
2913  *    of the logical span [map->m_lblk, map->m_lblk + map->m_len).
2914  *
2915  * Post-conditions on success:
2916  *  - the returned value is the number of blocks beyond map->l_lblk
2917  *    that are allocated and initialized.
2918  *    It is guaranteed to be >= map->m_len.
2919  */
2920 static int ext4_ext_convert_to_initialized(handle_t *handle,
2921                                            struct inode *inode,
2922                                            struct ext4_map_blocks *map,
2923                                            struct ext4_ext_path *path)
2924 {
2925         struct ext4_extent_header *eh;
2926         struct ext4_map_blocks split_map;
2927         struct ext4_extent zero_ex;
2928         struct ext4_extent *ex;
2929         ext4_lblk_t ee_block, eof_block;
2930         unsigned int ee_len, depth;
2931         int allocated;
2932         int err = 0;
2933         int split_flag = 0;
2934
2935         ext_debug("ext4_ext_convert_to_initialized: inode %lu, logical"
2936                 "block %llu, max_blocks %u\n", inode->i_ino,
2937                 (unsigned long long)map->m_lblk, map->m_len);
2938
2939         eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
2940                 inode->i_sb->s_blocksize_bits;
2941         if (eof_block < map->m_lblk + map->m_len)
2942                 eof_block = map->m_lblk + map->m_len;
2943
2944         depth = ext_depth(inode);
2945         eh = path[depth].p_hdr;
2946         ex = path[depth].p_ext;
2947         ee_block = le32_to_cpu(ex->ee_block);
2948         ee_len = ext4_ext_get_actual_len(ex);
2949         allocated = ee_len - (map->m_lblk - ee_block);
2950
2951         trace_ext4_ext_convert_to_initialized_enter(inode, map, ex);
2952
2953         /* Pre-conditions */
2954         BUG_ON(!ext4_ext_is_uninitialized(ex));
2955         BUG_ON(!in_range(map->m_lblk, ee_block, ee_len));
2956
2957         /*
2958          * Attempt to transfer newly initialized blocks from the currently
2959          * uninitialized extent to its left neighbor. This is much cheaper
2960          * than an insertion followed by a merge as those involve costly
2961          * memmove() calls. This is the common case in steady state for
2962          * workloads doing fallocate(FALLOC_FL_KEEP_SIZE) followed by append
2963          * writes.
2964          *
2965          * Limitations of the current logic:
2966          *  - L1: we only deal with writes at the start of the extent.
2967          *    The approach could be extended to writes at the end
2968          *    of the extent but this scenario was deemed less common.
2969          *  - L2: we do not deal with writes covering the whole extent.
2970          *    This would require removing the extent if the transfer
2971          *    is possible.
2972          *  - L3: we only attempt to merge with an extent stored in the
2973          *    same extent tree node.
2974          */
2975         if ((map->m_lblk == ee_block) &&        /*L1*/
2976                 (map->m_len < ee_len) &&        /*L2*/
2977                 (ex > EXT_FIRST_EXTENT(eh))) {  /*L3*/
2978                 struct ext4_extent *prev_ex;
2979                 ext4_lblk_t prev_lblk;
2980                 ext4_fsblk_t prev_pblk, ee_pblk;
2981                 unsigned int prev_len, write_len;
2982
2983                 prev_ex = ex - 1;
2984                 prev_lblk = le32_to_cpu(prev_ex->ee_block);
2985                 prev_len = ext4_ext_get_actual_len(prev_ex);
2986                 prev_pblk = ext4_ext_pblock(prev_ex);
2987                 ee_pblk = ext4_ext_pblock(ex);
2988                 write_len = map->m_len;
2989
2990                 /*
2991                  * A transfer of blocks from 'ex' to 'prev_ex' is allowed
2992                  * upon those conditions:
2993                  * - C1: prev_ex is initialized,
2994                  * - C2: prev_ex is logically abutting ex,
2995                  * - C3: prev_ex is physically abutting ex,
2996                  * - C4: prev_ex can receive the additional blocks without
2997                  *   overflowing the (initialized) length limit.
2998                  */
2999                 if ((!ext4_ext_is_uninitialized(prev_ex)) &&            /*C1*/
3000                         ((prev_lblk + prev_len) == ee_block) &&         /*C2*/
3001                         ((prev_pblk + prev_len) == ee_pblk) &&          /*C3*/
3002                         (prev_len < (EXT_INIT_MAX_LEN - write_len))) {  /*C4*/
3003                         err = ext4_ext_get_access(handle, inode, path + depth);
3004                         if (err)
3005                                 goto out;
3006
3007                         trace_ext4_ext_convert_to_initialized_fastpath(inode,
3008                                 map, ex, prev_ex);
3009
3010                         /* Shift the start of ex by 'write_len' blocks */
3011                         ex->ee_block = cpu_to_le32(ee_block + write_len);
3012                         ext4_ext_store_pblock(ex, ee_pblk + write_len);
3013                         ex->ee_len = cpu_to_le16(ee_len - write_len);
3014                         ext4_ext_mark_uninitialized(ex); /* Restore the flag */
3015
3016                         /* Extend prev_ex by 'write_len' blocks */
3017                         prev_ex->ee_len = cpu_to_le16(prev_len + write_len);
3018
3019                         /* Mark the block containing both extents as dirty */
3020                         ext4_ext_dirty(handle, inode, path + depth);
3021
3022                         /* Update path to point to the right extent */
3023                         path[depth].p_ext = prev_ex;
3024
3025                         /* Result: number of initialized blocks past m_lblk */
3026                         allocated = write_len;
3027                         goto out;
3028                 }
3029         }
3030
3031         WARN_ON(map->m_lblk < ee_block);
3032         /*
3033          * It is safe to convert extent to initialized via explicit
3034          * zeroout only if extent is fully insde i_size or new_size.
3035          */
3036         split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
3037
3038         /* If extent has less than 2*EXT4_EXT_ZERO_LEN zerout directly */
3039         if (ee_len <= 2*EXT4_EXT_ZERO_LEN &&
3040             (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
3041                 err = ext4_ext_zeroout(inode, ex);
3042                 if (err)
3043                         goto out;
3044
3045                 err = ext4_ext_get_access(handle, inode, path + depth);
3046                 if (err)
3047                         goto out;
3048                 ext4_ext_mark_initialized(ex);
3049                 ext4_ext_try_to_merge(inode, path, ex);
3050                 err = ext4_ext_dirty(handle, inode, path + depth);
3051                 goto out;
3052         }
3053
3054         /*
3055          * four cases:
3056          * 1. split the extent into three extents.
3057          * 2. split the extent into two extents, zeroout the first half.
3058          * 3. split the extent into two extents, zeroout the second half.
3059          * 4. split the extent into two extents with out zeroout.
3060          */
3061         split_map.m_lblk = map->m_lblk;
3062         split_map.m_len = map->m_len;
3063
3064         if (allocated > map->m_len) {
3065                 if (allocated <= EXT4_EXT_ZERO_LEN &&
3066                     (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
3067                         /* case 3 */
3068                         zero_ex.ee_block =
3069                                          cpu_to_le32(map->m_lblk);
3070                         zero_ex.ee_len = cpu_to_le16(allocated);
3071                         ext4_ext_store_pblock(&zero_ex,
3072                                 ext4_ext_pblock(ex) + map->m_lblk - ee_block);
3073                         err = ext4_ext_zeroout(inode, &zero_ex);
3074                         if (err)
3075                                 goto out;
3076                         split_map.m_lblk = map->m_lblk;
3077                         split_map.m_len = allocated;
3078                 } else if ((map->m_lblk - ee_block + map->m_len <
3079                            EXT4_EXT_ZERO_LEN) &&
3080                            (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
3081                         /* case 2 */
3082                         if (map->m_lblk != ee_block) {
3083                                 zero_ex.ee_block = ex->ee_block;
3084                                 zero_ex.ee_len = cpu_to_le16(map->m_lblk -
3085                                                         ee_block);
3086                                 ext4_ext_store_pblock(&zero_ex,
3087                                                       ext4_ext_pblock(ex));
3088                                 err = ext4_ext_zeroout(inode, &zero_ex);
3089                                 if (err)
3090                                         goto out;
3091                         }
3092
3093                         split_map.m_lblk = ee_block;
3094                         split_map.m_len = map->m_lblk - ee_block + map->m_len;
3095                         allocated = map->m_len;
3096                 }
3097         }
3098
3099         allocated = ext4_split_extent(handle, inode, path,
3100                                        &split_map, split_flag, 0);
3101         if (allocated < 0)
3102                 err = allocated;
3103
3104 out:
3105         return err ? err : allocated;
3106 }
3107
3108 /*
3109  * This function is called by ext4_ext_map_blocks() from
3110  * ext4_get_blocks_dio_write() when DIO to write
3111  * to an uninitialized extent.
3112  *
3113  * Writing to an uninitialized extent may result in splitting the uninitialized
3114  * extent into multiple /initialized uninitialized extents (up to three)
3115  * There are three possibilities:
3116  *   a> There is no split required: Entire extent should be uninitialized
3117  *   b> Splits in two extents: Write is happening at either end of the extent
3118  *   c> Splits in three extents: Somone is writing in middle of the extent
3119  *
3120  * One of more index blocks maybe needed if the extent tree grow after
3121  * the uninitialized extent split. To prevent ENOSPC occur at the IO
3122  * complete, we need to split the uninitialized extent before DIO submit
3123  * the IO. The uninitialized extent called at this time will be split
3124  * into three uninitialized extent(at most). After IO complete, the part
3125  * being filled will be convert to initialized by the end_io callback function
3126  * via ext4_convert_unwritten_extents().
3127  *
3128  * Returns the size of uninitialized extent to be written on success.
3129  */
3130 static int ext4_split_unwritten_extents(handle_t *handle,
3131                                         struct inode *inode,
3132                                         struct ext4_map_blocks *map,
3133                                         struct ext4_ext_path *path,
3134                                         int flags)
3135 {
3136         ext4_lblk_t eof_block;
3137         ext4_lblk_t ee_block;
3138         struct ext4_extent *ex;
3139         unsigned int ee_len;
3140         int split_flag = 0, depth;
3141
3142         ext_debug("ext4_split_unwritten_extents: inode %lu, logical"
3143                 "block %llu, max_blocks %u\n", inode->i_ino,
3144                 (unsigned long long)map->m_lblk, map->m_len);
3145
3146         eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
3147                 inode->i_sb->s_blocksize_bits;
3148         if (eof_block < map->m_lblk + map->m_len)
3149                 eof_block = map->m_lblk + map->m_len;
3150         /*
3151          * It is safe to convert extent to initialized via explicit
3152          * zeroout only if extent is fully insde i_size or new_size.
3153          */
3154         depth = ext_depth(inode);
3155         ex = path[depth].p_ext;
3156         ee_block = le32_to_cpu(ex->ee_block);
3157         ee_len = ext4_ext_get_actual_len(ex);
3158
3159         split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
3160         split_flag |= EXT4_EXT_MARK_UNINIT2;
3161
3162         flags |= EXT4_GET_BLOCKS_PRE_IO;
3163         return ext4_split_extent(handle, inode, path, map, split_flag, flags);
3164 }
3165
3166 static int ext4_convert_unwritten_extents_endio(handle_t *handle,
3167                                               struct inode *inode,
3168                                               struct ext4_ext_path *path)
3169 {
3170         struct ext4_extent *ex;
3171         int depth;
3172         int err = 0;
3173
3174         depth = ext_depth(inode);
3175         ex = path[depth].p_ext;
3176
3177         ext_debug("ext4_convert_unwritten_extents_endio: inode %lu, logical"
3178                 "block %llu, max_blocks %u\n", inode->i_ino,
3179                 (unsigned long long)le32_to_cpu(ex->ee_block),
3180                 ext4_ext_get_actual_len(ex));
3181
3182         err = ext4_ext_get_access(handle, inode, path + depth);
3183         if (err)
3184                 goto out;
3185         /* first mark the extent as initialized */
3186         ext4_ext_mark_initialized(ex);
3187
3188         /* note: ext4_ext_correct_indexes() isn't needed here because
3189          * borders are not changed
3190          */
3191         ext4_ext_try_to_merge(inode, path, ex);
3192
3193         /* Mark modified extent as dirty */
3194         err = ext4_ext_dirty(handle, inode, path + depth);
3195 out:
3196         ext4_ext_show_leaf(inode, path);
3197         return err;
3198 }
3199
3200 static void unmap_underlying_metadata_blocks(struct block_device *bdev,
3201                         sector_t block, int count)
3202 {
3203         int i;
3204         for (i = 0; i < count; i++)
3205                 unmap_underlying_metadata(bdev, block + i);
3206 }
3207
3208 /*
3209  * Handle EOFBLOCKS_FL flag, clearing it if necessary
3210  */
3211 static int check_eofblocks_fl(handle_t *handle, struct inode *inode,
3212                               ext4_lblk_t lblk,
3213                               struct ext4_ext_path *path,
3214                               unsigned int len)
3215 {
3216         int i, depth;
3217         struct ext4_extent_header *eh;
3218         struct ext4_extent *last_ex;
3219
3220         if (!ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))
3221                 return 0;
3222
3223         depth = ext_depth(inode);
3224         eh = path[depth].p_hdr;
3225
3226         if (unlikely(!eh->eh_entries)) {
3227                 EXT4_ERROR_INODE(inode, "eh->eh_entries == 0 and "
3228                                  "EOFBLOCKS_FL set");
3229                 return -EIO;
3230         }
3231         last_ex = EXT_LAST_EXTENT(eh);
3232         /*
3233          * We should clear the EOFBLOCKS_FL flag if we are writing the
3234          * last block in the last extent in the file.  We test this by
3235          * first checking to see if the caller to
3236          * ext4_ext_get_blocks() was interested in the last block (or
3237          * a block beyond the last block) in the current extent.  If
3238          * this turns out to be false, we can bail out from this
3239          * function immediately.
3240          */
3241         if (lblk + len < le32_to_cpu(last_ex->ee_block) +
3242             ext4_ext_get_actual_len(last_ex))
3243                 return 0;
3244         /*
3245          * If the caller does appear to be planning to write at or
3246          * beyond the end of the current extent, we then test to see
3247          * if the current extent is the last extent in the file, by
3248          * checking to make sure it was reached via the rightmost node
3249          * at each level of the tree.
3250          */
3251         for (i = depth-1; i >= 0; i--)
3252                 if (path[i].p_idx != EXT_LAST_INDEX(path[i].p_hdr))
3253                         return 0;
3254         ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3255         return ext4_mark_inode_dirty(handle, inode);
3256 }
3257
3258 /**
3259  * ext4_find_delalloc_range: find delayed allocated block in the given range.
3260  *
3261  * Goes through the buffer heads in the range [lblk_start, lblk_end] and returns
3262  * whether there are any buffers marked for delayed allocation. It returns '1'
3263  * on the first delalloc'ed buffer head found. If no buffer head in the given
3264  * range is marked for delalloc, it returns 0.
3265  * lblk_start should always be <= lblk_end.
3266  * search_hint_reverse is to indicate that searching in reverse from lblk_end to
3267  * lblk_start might be more efficient (i.e., we will likely hit the delalloc'ed
3268  * block sooner). This is useful when blocks are truncated sequentially from
3269  * lblk_start towards lblk_end.
3270  */
3271 static int ext4_find_delalloc_range(struct inode *inode,
3272                                     ext4_lblk_t lblk_start,
3273                                     ext4_lblk_t lblk_end,
3274                                     int search_hint_reverse)
3275 {
3276         struct address_space *mapping = inode->i_mapping;
3277         struct buffer_head *head, *bh = NULL;
3278         struct page *page;
3279         ext4_lblk_t i, pg_lblk;
3280         pgoff_t index;
3281
3282         /* reverse search wont work if fs block size is less than page size */
3283         if (inode->i_blkbits < PAGE_CACHE_SHIFT)
3284                 search_hint_reverse = 0;
3285
3286         if (search_hint_reverse)
3287                 i = lblk_end;
3288         else
3289                 i = lblk_start;
3290
3291         index = i >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
3292
3293         while ((i >= lblk_start) && (i <= lblk_end)) {
3294                 page = find_get_page(mapping, index);
3295                 if (!page)
3296                         goto nextpage;
3297
3298                 if (!page_has_buffers(page))
3299                         goto nextpage;
3300
3301                 head = page_buffers(page);
3302                 if (!head)
3303                         goto nextpage;
3304
3305                 bh = head;
3306                 pg_lblk = index << (PAGE_CACHE_SHIFT -
3307                                                 inode->i_blkbits);
3308                 do {
3309                         if (unlikely(pg_lblk < lblk_start)) {
3310                                 /*
3311                                  * This is possible when fs block size is less
3312                                  * than page size and our cluster starts/ends in
3313                                  * middle of the page. So we need to skip the
3314                                  * initial few blocks till we reach the 'lblk'
3315                                  */
3316                                 pg_lblk++;
3317                                 continue;
3318                         }
3319
3320                         /* Check if the buffer is delayed allocated and that it
3321                          * is not yet mapped. (when da-buffers are mapped during
3322                          * their writeout, their da_mapped bit is set.)
3323                          */
3324                         if (buffer_delay(bh) && !buffer_da_mapped(bh)) {
3325                                 page_cache_release(page);
3326                                 trace_ext4_find_delalloc_range(inode,
3327                                                 lblk_start, lblk_end,
3328                                                 search_hint_reverse,
3329                                                 1, i);
3330                                 return 1;
3331                         }
3332                         if (search_hint_reverse)
3333                                 i--;
3334                         else
3335                                 i++;
3336                 } while ((i >= lblk_start) && (i <= lblk_end) &&
3337                                 ((bh = bh->b_this_page) != head));
3338 nextpage:
3339                 if (page)
3340                         page_cache_release(page);
3341                 /*
3342                  * Move to next page. 'i' will be the first lblk in the next
3343                  * page.
3344                  */
3345                 if (search_hint_reverse)
3346                         index--;
3347                 else
3348                         index++;
3349                 i = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
3350         }
3351
3352         trace_ext4_find_delalloc_range(inode, lblk_start, lblk_end,
3353                                         search_hint_reverse, 0, 0);
3354         return 0;
3355 }
3356
3357 int ext4_find_delalloc_cluster(struct inode *inode, ext4_lblk_t lblk,
3358                                int search_hint_reverse)
3359 {
3360         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3361         ext4_lblk_t lblk_start, lblk_end;
3362         lblk_start = lblk & (~(sbi->s_cluster_ratio - 1));
3363         lblk_end = lblk_start + sbi->s_cluster_ratio - 1;
3364
3365         return ext4_find_delalloc_range(inode, lblk_start, lblk_end,
3366                                         search_hint_reverse);
3367 }
3368
3369 /**
3370  * Determines how many complete clusters (out of those specified by the 'map')
3371  * are under delalloc and were reserved quota for.
3372  * This function is called when we are writing out the blocks that were
3373  * originally written with their allocation delayed, but then the space was
3374  * allocated using fallocate() before the delayed allocation could be resolved.
3375  * The cases to look for are:
3376  * ('=' indicated delayed allocated blocks
3377  *  '-' indicates non-delayed allocated blocks)
3378  * (a) partial clusters towards beginning and/or end outside of allocated range
3379  *     are not delalloc'ed.
3380  *      Ex:
3381  *      |----c---=|====c====|====c====|===-c----|
3382  *               |++++++ allocated ++++++|
3383  *      ==> 4 complete clusters in above example
3384  *
3385  * (b) partial cluster (outside of allocated range) towards either end is
3386  *     marked for delayed allocation. In this case, we will exclude that
3387  *     cluster.
3388  *      Ex:
3389  *      |----====c========|========c========|
3390  *           |++++++ allocated ++++++|
3391  *      ==> 1 complete clusters in above example
3392  *
3393  *      Ex:
3394  *      |================c================|
3395  *            |++++++ allocated ++++++|
3396  *      ==> 0 complete clusters in above example
3397  *
3398  * The ext4_da_update_reserve_space will be called only if we
3399  * determine here that there were some "entire" clusters that span
3400  * this 'allocated' range.
3401  * In the non-bigalloc case, this function will just end up returning num_blks
3402  * without ever calling ext4_find_delalloc_range.
3403  */
3404 static unsigned int
3405 get_reserved_cluster_alloc(struct inode *inode, ext4_lblk_t lblk_start,
3406                            unsigned int num_blks)
3407 {
3408         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3409         ext4_lblk_t alloc_cluster_start, alloc_cluster_end;
3410         ext4_lblk_t lblk_from, lblk_to, c_offset;
3411         unsigned int allocated_clusters = 0;
3412
3413         alloc_cluster_start = EXT4_B2C(sbi, lblk_start);
3414         alloc_cluster_end = EXT4_B2C(sbi, lblk_start + num_blks - 1);
3415
3416         /* max possible clusters for this allocation */
3417         allocated_clusters = alloc_cluster_end - alloc_cluster_start + 1;
3418
3419         trace_ext4_get_reserved_cluster_alloc(inode, lblk_start, num_blks);
3420
3421         /* Check towards left side */
3422         c_offset = lblk_start & (sbi->s_cluster_ratio - 1);
3423         if (c_offset) {
3424                 lblk_from = lblk_start & (~(sbi->s_cluster_ratio - 1));
3425                 lblk_to = lblk_from + c_offset - 1;
3426
3427                 if (ext4_find_delalloc_range(inode, lblk_from, lblk_to, 0))
3428                         allocated_clusters--;
3429         }
3430
3431         /* Now check towards right. */
3432         c_offset = (lblk_start + num_blks) & (sbi->s_cluster_ratio - 1);
3433         if (allocated_clusters && c_offset) {
3434                 lblk_from = lblk_start + num_blks;
3435                 lblk_to = lblk_from + (sbi->s_cluster_ratio - c_offset) - 1;
3436
3437                 if (ext4_find_delalloc_range(inode, lblk_from, lblk_to, 0))
3438                         allocated_clusters--;
3439         }
3440
3441         return allocated_clusters;
3442 }
3443
3444 static int
3445 ext4_ext_handle_uninitialized_extents(handle_t *handle, struct inode *inode,
3446                         struct ext4_map_blocks *map,
3447                         struct ext4_ext_path *path, int flags,
3448                         unsigned int allocated, ext4_fsblk_t newblock)
3449 {
3450         int ret = 0;
3451         int err = 0;
3452         ext4_io_end_t *io = EXT4_I(inode)->cur_aio_dio;
3453
3454         ext_debug("ext4_ext_handle_uninitialized_extents: inode %lu, logical"
3455                   "block %llu, max_blocks %u, flags %d, allocated %u",
3456                   inode->i_ino, (unsigned long long)map->m_lblk, map->m_len,
3457                   flags, allocated);
3458         ext4_ext_show_leaf(inode, path);
3459
3460         trace_ext4_ext_handle_uninitialized_extents(inode, map, allocated,
3461                                                     newblock);
3462
3463         /* get_block() before submit the IO, split the extent */
3464         if ((flags & EXT4_GET_BLOCKS_PRE_IO)) {
3465                 ret = ext4_split_unwritten_extents(handle, inode, map,
3466                                                    path, flags);
3467                 /*
3468                  * Flag the inode(non aio case) or end_io struct (aio case)
3469                  * that this IO needs to conversion to written when IO is
3470                  * completed
3471                  */
3472                 if (io)
3473                         ext4_set_io_unwritten_flag(inode, io);
3474                 else
3475                         ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3476                 if (ext4_should_dioread_nolock(inode))
3477                         map->m_flags |= EXT4_MAP_UNINIT;
3478                 goto out;
3479         }
3480         /* IO end_io complete, convert the filled extent to written */
3481         if ((flags & EXT4_GET_BLOCKS_CONVERT)) {
3482                 ret = ext4_convert_unwritten_extents_endio(handle, inode,
3483                                                         path);
3484                 if (ret >= 0) {
3485                         ext4_update_inode_fsync_trans(handle, inode, 1);
3486                         err = check_eofblocks_fl(handle, inode, map->m_lblk,
3487                                                  path, map->m_len);
3488                 } else
3489                         err = ret;
3490                 goto out2;
3491         }
3492         /* buffered IO case */
3493         /*
3494          * repeat fallocate creation request
3495          * we already have an unwritten extent
3496          */
3497         if (flags & EXT4_GET_BLOCKS_UNINIT_EXT)
3498                 goto map_out;
3499
3500         /* buffered READ or buffered write_begin() lookup */
3501         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3502                 /*
3503                  * We have blocks reserved already.  We
3504                  * return allocated blocks so that delalloc
3505                  * won't do block reservation for us.  But
3506                  * the buffer head will be unmapped so that
3507                  * a read from the block returns 0s.
3508                  */
3509                 map->m_flags |= EXT4_MAP_UNWRITTEN;
3510                 goto out1;
3511         }
3512
3513         /* buffered write, writepage time, convert*/
3514         ret = ext4_ext_convert_to_initialized(handle, inode, map, path);
3515         if (ret >= 0)
3516                 ext4_update_inode_fsync_trans(handle, inode, 1);
3517 out:
3518         if (ret <= 0) {
3519                 err = ret;
3520                 goto out2;
3521         } else
3522                 allocated = ret;
3523         map->m_flags |= EXT4_MAP_NEW;
3524         /*
3525          * if we allocated more blocks than requested
3526          * we need to make sure we unmap the extra block
3527          * allocated. The actual needed block will get
3528          * unmapped later when we find the buffer_head marked
3529          * new.
3530          */
3531         if (allocated > map->m_len) {
3532                 unmap_underlying_metadata_blocks(inode->i_sb->s_bdev,
3533                                         newblock + map->m_len,
3534                                         allocated - map->m_len);
3535                 allocated = map->m_len;
3536         }
3537
3538         /*
3539          * If we have done fallocate with the offset that is already
3540          * delayed allocated, we would have block reservation
3541          * and quota reservation done in the delayed write path.
3542          * But fallocate would have already updated quota and block
3543          * count for this offset. So cancel these reservation
3544          */
3545         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
3546                 unsigned int reserved_clusters;
3547                 reserved_clusters = get_reserved_cluster_alloc(inode,
3548                                 map->m_lblk, map->m_len);
3549                 if (reserved_clusters)
3550                         ext4_da_update_reserve_space(inode,
3551                                                      reserved_clusters,
3552                                                      0);
3553         }
3554
3555 map_out:
3556         map->m_flags |= EXT4_MAP_MAPPED;
3557         if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0) {
3558                 err = check_eofblocks_fl(handle, inode, map->m_lblk, path,
3559                                          map->m_len);
3560                 if (err < 0)
3561                         goto out2;
3562         }
3563 out1:
3564         if (allocated > map->m_len)
3565                 allocated = map->m_len;
3566         ext4_ext_show_leaf(inode, path);
3567         map->m_pblk = newblock;
3568         map->m_len = allocated;
3569 out2:
3570         if (path) {
3571                 ext4_ext_drop_refs(path);
3572                 kfree(path);
3573         }
3574         return err ? err : allocated;
3575 }
3576
3577 /*
3578  * get_implied_cluster_alloc - check to see if the requested
3579  * allocation (in the map structure) overlaps with a cluster already
3580  * allocated in an extent.
3581  *      @sb     The filesystem superblock structure
3582  *      @map    The requested lblk->pblk mapping
3583  *      @ex     The extent structure which might contain an implied
3584  *                      cluster allocation
3585  *
3586  * This function is called by ext4_ext_map_blocks() after we failed to
3587  * find blocks that were already in the inode's extent tree.  Hence,
3588  * we know that the beginning of the requested region cannot overlap
3589  * the extent from the inode's extent tree.  There are three cases we
3590  * want to catch.  The first is this case:
3591  *
3592  *               |--- cluster # N--|
3593  *    |--- extent ---|  |---- requested region ---|
3594  *                      |==========|
3595  *
3596  * The second case that we need to test for is this one:
3597  *
3598  *   |--------- cluster # N ----------------|
3599  *         |--- requested region --|   |------- extent ----|
3600  *         |=======================|
3601  *
3602  * The third case is when the requested region lies between two extents
3603  * within the same cluster:
3604  *          |------------- cluster # N-------------|
3605  * |----- ex -----|                  |---- ex_right ----|
3606  *                  |------ requested region ------|
3607  *                  |================|
3608  *
3609  * In each of the above cases, we need to set the map->m_pblk and
3610  * map->m_len so it corresponds to the return the extent labelled as
3611  * "|====|" from cluster #N, since it is already in use for data in
3612  * cluster EXT4_B2C(sbi, map->m_lblk).  We will then return 1 to
3613  * signal to ext4_ext_map_blocks() that map->m_pblk should be treated
3614  * as a new "allocated" block region.  Otherwise, we will return 0 and
3615  * ext4_ext_map_blocks() will then allocate one or more new clusters
3616  * by calling ext4_mb_new_blocks().
3617  */
3618 static int get_implied_cluster_alloc(struct super_block *sb,
3619                                      struct ext4_map_blocks *map,
3620                                      struct ext4_extent *ex,
3621                                      struct ext4_ext_path *path)
3622 {
3623         struct ext4_sb_info *sbi = EXT4_SB(sb);
3624         ext4_lblk_t c_offset = map->m_lblk & (sbi->s_cluster_ratio-1);
3625         ext4_lblk_t ex_cluster_start, ex_cluster_end;
3626         ext4_lblk_t rr_cluster_start, rr_cluster_end;
3627         ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
3628         ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
3629         unsigned short ee_len = ext4_ext_get_actual_len(ex);
3630
3631         /* The extent passed in that we are trying to match */
3632         ex_cluster_start = EXT4_B2C(sbi, ee_block);
3633         ex_cluster_end = EXT4_B2C(sbi, ee_block + ee_len - 1);
3634
3635         /* The requested region passed into ext4_map_blocks() */
3636         rr_cluster_start = EXT4_B2C(sbi, map->m_lblk);
3637         rr_cluster_end = EXT4_B2C(sbi, map->m_lblk + map->m_len - 1);
3638
3639         if ((rr_cluster_start == ex_cluster_end) ||
3640             (rr_cluster_start == ex_cluster_start)) {
3641                 if (rr_cluster_start == ex_cluster_end)
3642                         ee_start += ee_len - 1;
3643                 map->m_pblk = (ee_start & ~(sbi->s_cluster_ratio - 1)) +
3644                         c_offset;
3645                 map->m_len = min(map->m_len,
3646                                  (unsigned) sbi->s_cluster_ratio - c_offset);
3647                 /*
3648                  * Check for and handle this case:
3649                  *
3650                  *   |--------- cluster # N-------------|
3651                  *                     |------- extent ----|
3652                  *         |--- requested region ---|
3653                  *         |===========|
3654                  */
3655
3656                 if (map->m_lblk < ee_block)
3657                         map->m_len = min(map->m_len, ee_block - map->m_lblk);
3658
3659                 /*
3660                  * Check for the case where there is already another allocated
3661                  * block to the right of 'ex' but before the end of the cluster.
3662                  *
3663                  *          |------------- cluster # N-------------|
3664                  * |----- ex -----|                  |---- ex_right ----|
3665                  *                  |------ requested region ------|
3666                  *                  |================|
3667                  */
3668                 if (map->m_lblk > ee_block) {
3669                         ext4_lblk_t next = ext4_ext_next_allocated_block(path);
3670                         map->m_len = min(map->m_len, next - map->m_lblk);
3671                 }
3672
3673                 trace_ext4_get_implied_cluster_alloc_exit(sb, map, 1);
3674                 return 1;
3675         }
3676
3677         trace_ext4_get_implied_cluster_alloc_exit(sb, map, 0);
3678         return 0;
3679 }
3680
3681
3682 /*
3683  * Block allocation/map/preallocation routine for extents based files
3684  *
3685  *
3686  * Need to be called with
3687  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
3688  * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
3689  *
3690  * return > 0, number of of blocks already mapped/allocated
3691  *          if create == 0 and these are pre-allocated blocks
3692  *              buffer head is unmapped
3693  *          otherwise blocks are mapped
3694  *
3695  * return = 0, if plain look up failed (blocks have not been allocated)
3696  *          buffer head is unmapped
3697  *
3698  * return < 0, error case.
3699  */
3700 int ext4_ext_map_blocks(handle_t *handle, struct inode *inode,
3701                         struct ext4_map_blocks *map, int flags)
3702 {
3703         struct ext4_ext_path *path = NULL;
3704         struct ext4_extent newex, *ex, *ex2;
3705         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3706         ext4_fsblk_t newblock = 0;
3707         int free_on_err = 0, err = 0, depth, ret;
3708         unsigned int allocated = 0, offset = 0;
3709         unsigned int allocated_clusters = 0;
3710         unsigned int punched_out = 0;
3711         unsigned int result = 0;
3712         struct ext4_allocation_request ar;
3713         ext4_io_end_t *io = EXT4_I(inode)->cur_aio_dio;
3714         ext4_lblk_t cluster_offset;
3715
3716         ext_debug("blocks %u/%u requested for inode %lu\n",
3717                   map->m_lblk, map->m_len, inode->i_ino);
3718         trace_ext4_ext_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
3719
3720         /* check in cache */
3721         if (!(flags & EXT4_GET_BLOCKS_PUNCH_OUT_EXT) &&
3722                 ext4_ext_in_cache(inode, map->m_lblk, &newex)) {
3723                 if (!newex.ee_start_lo && !newex.ee_start_hi) {
3724                         if ((sbi->s_cluster_ratio > 1) &&
3725                             ext4_find_delalloc_cluster(inode, map->m_lblk, 0))
3726                                 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
3727
3728                         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3729                                 /*
3730                                  * block isn't allocated yet and
3731                                  * user doesn't want to allocate it
3732                                  */
3733                                 goto out2;
3734                         }
3735                         /* we should allocate requested block */
3736                 } else {
3737                         /* block is already allocated */
3738                         if (sbi->s_cluster_ratio > 1)
3739                                 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
3740                         newblock = map->m_lblk
3741                                    - le32_to_cpu(newex.ee_block)
3742                                    + ext4_ext_pblock(&newex);
3743                         /* number of remaining blocks in the extent */
3744                         allocated = ext4_ext_get_actual_len(&newex) -
3745                                 (map->m_lblk - le32_to_cpu(newex.ee_block));
3746                         goto out;
3747                 }
3748         }
3749
3750         /* find extent for this block */
3751         path = ext4_ext_find_extent(inode, map->m_lblk, NULL);
3752         if (IS_ERR(path)) {
3753                 err = PTR_ERR(path);
3754                 path = NULL;
3755                 goto out2;
3756         }
3757
3758         depth = ext_depth(inode);
3759
3760         /*
3761          * consistent leaf must not be empty;
3762          * this situation is possible, though, _during_ tree modification;
3763          * this is why assert can't be put in ext4_ext_find_extent()
3764          */
3765         if (unlikely(path[depth].p_ext == NULL && depth != 0)) {
3766                 EXT4_ERROR_INODE(inode, "bad extent address "
3767                                  "lblock: %lu, depth: %d pblock %lld",
3768                                  (unsigned long) map->m_lblk, depth,
3769                                  path[depth].p_block);
3770                 err = -EIO;
3771                 goto out2;
3772         }
3773
3774         ex = path[depth].p_ext;
3775         if (ex) {
3776                 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
3777                 ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
3778                 unsigned short ee_len;
3779
3780                 /*
3781                  * Uninitialized extents are treated as holes, except that
3782                  * we split out initialized portions during a write.
3783                  */
3784                 ee_len = ext4_ext_get_actual_len(ex);
3785
3786                 trace_ext4_ext_show_extent(inode, ee_block, ee_start, ee_len);
3787
3788                 /* if found extent covers block, simply return it */
3789                 if (in_range(map->m_lblk, ee_block, ee_len)) {
3790                         struct ext4_map_blocks punch_map;
3791                         ext4_fsblk_t partial_cluster = 0;
3792
3793                         newblock = map->m_lblk - ee_block + ee_start;
3794                         /* number of remaining blocks in the extent */
3795                         allocated = ee_len - (map->m_lblk - ee_block);
3796                         ext_debug("%u fit into %u:%d -> %llu\n", map->m_lblk,
3797                                   ee_block, ee_len, newblock);
3798
3799                         if ((flags & EXT4_GET_BLOCKS_PUNCH_OUT_EXT) == 0) {
3800                                 /*
3801                                  * Do not put uninitialized extent
3802                                  * in the cache
3803                                  */
3804                                 if (!ext4_ext_is_uninitialized(ex)) {
3805                                         ext4_ext_put_in_cache(inode, ee_block,
3806                                                 ee_len, ee_start);
3807                                         goto out;
3808                                 }
3809                                 ret = ext4_ext_handle_uninitialized_extents(
3810                                         handle, inode, map, path, flags,
3811                                         allocated, newblock);
3812                                 return ret;
3813                         }
3814
3815                         /*
3816                          * Punch out the map length, but only to the
3817                          * end of the extent
3818                          */
3819                         punched_out = allocated < map->m_len ?
3820                                 allocated : map->m_len;
3821
3822                         /*
3823                          * Sense extents need to be converted to
3824                          * uninitialized, they must fit in an
3825                          * uninitialized extent
3826                          */
3827                         if (punched_out > EXT_UNINIT_MAX_LEN)
3828                                 punched_out = EXT_UNINIT_MAX_LEN;
3829
3830                         punch_map.m_lblk = map->m_lblk;
3831                         punch_map.m_pblk = newblock;
3832                         punch_map.m_len = punched_out;
3833                         punch_map.m_flags = 0;
3834
3835                         /* Check to see if the extent needs to be split */
3836                         if (punch_map.m_len != ee_len ||
3837                                 punch_map.m_lblk != ee_block) {
3838
3839                                 ret = ext4_split_extent(handle, inode,
3840                                 path, &punch_map, 0,
3841                                 EXT4_GET_BLOCKS_PUNCH_OUT_EXT |
3842                                 EXT4_GET_BLOCKS_PRE_IO);
3843
3844                                 if (ret < 0) {
3845                                         err = ret;
3846                                         goto out2;
3847                                 }
3848                                 /*
3849                                  * find extent for the block at
3850                                  * the start of the hole
3851                                  */
3852                                 ext4_ext_drop_refs(path);
3853                                 kfree(path);
3854
3855                                 path = ext4_ext_find_extent(inode,
3856                                 map->m_lblk, NULL);
3857                                 if (IS_ERR(path)) {
3858                                         err = PTR_ERR(path);
3859                                         path = NULL;
3860                                         goto out2;
3861                                 }
3862
3863                                 depth = ext_depth(inode);
3864                                 ex = path[depth].p_ext;
3865                                 ee_len = ext4_ext_get_actual_len(ex);
3866                                 ee_block = le32_to_cpu(ex->ee_block);
3867                                 ee_start = ext4_ext_pblock(ex);
3868
3869                         }
3870
3871                         ext4_ext_mark_uninitialized(ex);
3872
3873                         ext4_ext_invalidate_cache(inode);
3874
3875                         err = ext4_ext_rm_leaf(handle, inode, path,
3876                                                &partial_cluster, map->m_lblk,
3877                                                map->m_lblk + punched_out);
3878
3879                         if (!err && path->p_hdr->eh_entries == 0) {
3880                                 /*
3881                                  * Punch hole freed all of this sub tree,
3882                                  * so we need to correct eh_depth
3883                                  */
3884                                 err = ext4_ext_get_access(handle, inode, path);
3885                                 if (err == 0) {
3886                                         ext_inode_hdr(inode)->eh_depth = 0;
3887                                         ext_inode_hdr(inode)->eh_max =
3888                                         cpu_to_le16(ext4_ext_space_root(
3889                                                 inode, 0));
3890
3891                                         err = ext4_ext_dirty(
3892                                                 handle, inode, path);
3893                                 }
3894                         }
3895
3896                         goto out2;
3897                 }
3898         }
3899
3900         if ((sbi->s_cluster_ratio > 1) &&
3901             ext4_find_delalloc_cluster(inode, map->m_lblk, 0))
3902                 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
3903
3904         /*
3905          * requested block isn't allocated yet;
3906          * we couldn't try to create block if create flag is zero
3907          */
3908         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3909                 /*
3910                  * put just found gap into cache to speed up
3911                  * subsequent requests
3912                  */
3913                 ext4_ext_put_gap_in_cache(inode, path, map->m_lblk);
3914                 goto out2;
3915         }
3916
3917         /*
3918          * Okay, we need to do block allocation.
3919          */
3920         map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
3921         newex.ee_block = cpu_to_le32(map->m_lblk);
3922         cluster_offset = map->m_lblk & (sbi->s_cluster_ratio-1);
3923
3924         /*
3925          * If we are doing bigalloc, check to see if the extent returned
3926          * by ext4_ext_find_extent() implies a cluster we can use.
3927          */
3928         if (cluster_offset && ex &&
3929             get_implied_cluster_alloc(inode->i_sb, map, ex, path)) {
3930                 ar.len = allocated = map->m_len;
3931                 newblock = map->m_pblk;
3932                 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
3933                 goto got_allocated_blocks;
3934         }
3935
3936         /* find neighbour allocated blocks */
3937         ar.lleft = map->m_lblk;
3938         err = ext4_ext_search_left(inode, path, &ar.lleft, &ar.pleft);
3939         if (err)
3940                 goto out2;
3941         ar.lright = map->m_lblk;
3942         ex2 = NULL;
3943         err = ext4_ext_search_right(inode, path, &ar.lright, &ar.pright, &ex2);
3944         if (err)
3945                 goto out2;
3946
3947         /* Check if the extent after searching to the right implies a
3948          * cluster we can use. */
3949         if ((sbi->s_cluster_ratio > 1) && ex2 &&
3950             get_implied_cluster_alloc(inode->i_sb, map, ex2, path)) {
3951                 ar.len = allocated = map->m_len;
3952                 newblock = map->m_pblk;
3953                 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
3954                 goto got_allocated_blocks;
3955         }
3956
3957         /*
3958          * See if request is beyond maximum number of blocks we can have in
3959          * a single extent. For an initialized extent this limit is
3960          * EXT_INIT_MAX_LEN and for an uninitialized extent this limit is
3961          * EXT_UNINIT_MAX_LEN.
3962          */
3963         if (map->m_len > EXT_INIT_MAX_LEN &&
3964             !(flags & EXT4_GET_BLOCKS_UNINIT_EXT))
3965                 map->m_len = EXT_INIT_MAX_LEN;
3966         else if (map->m_len > EXT_UNINIT_MAX_LEN &&
3967                  (flags & EXT4_GET_BLOCKS_UNINIT_EXT))
3968                 map->m_len = EXT_UNINIT_MAX_LEN;
3969
3970         /* Check if we can really insert (m_lblk)::(m_lblk + m_len) extent */
3971         newex.ee_len = cpu_to_le16(map->m_len);
3972         err = ext4_ext_check_overlap(sbi, inode, &newex, path);
3973         if (err)
3974                 allocated = ext4_ext_get_actual_len(&newex);
3975         else
3976                 allocated = map->m_len;
3977
3978         /* allocate new block */
3979         ar.inode = inode;
3980         ar.goal = ext4_ext_find_goal(inode, path, map->m_lblk);
3981         ar.logical = map->m_lblk;
3982         /*
3983          * We calculate the offset from the beginning of the cluster
3984          * for the logical block number, since when we allocate a
3985          * physical cluster, the physical block should start at the
3986          * same offset from the beginning of the cluster.  This is
3987          * needed so that future calls to get_implied_cluster_alloc()
3988          * work correctly.
3989          */
3990         offset = map->m_lblk & (sbi->s_cluster_ratio - 1);
3991         ar.len = EXT4_NUM_B2C(sbi, offset+allocated);
3992         ar.goal -= offset;
3993         ar.logical -= offset;
3994         if (S_ISREG(inode->i_mode))
3995                 ar.flags = EXT4_MB_HINT_DATA;
3996         else
3997                 /* disable in-core preallocation for non-regular files */
3998                 ar.flags = 0;
3999         if (flags & EXT4_GET_BLOCKS_NO_NORMALIZE)
4000                 ar.flags |= EXT4_MB_HINT_NOPREALLOC;
4001         newblock = ext4_mb_new_blocks(handle, &ar, &err);
4002         if (!newblock)
4003                 goto out2;
4004         ext_debug("allocate new block: goal %llu, found %llu/%u\n",
4005                   ar.goal, newblock, allocated);
4006         free_on_err = 1;
4007         allocated_clusters = ar.len;
4008         ar.len = EXT4_C2B(sbi, ar.len) - offset;
4009         if (ar.len > allocated)
4010                 ar.len = allocated;
4011
4012 got_allocated_blocks:
4013         /* try to insert new extent into found leaf and return */
4014         ext4_ext_store_pblock(&newex, newblock + offset);
4015         newex.ee_len = cpu_to_le16(ar.len);
4016         /* Mark uninitialized */
4017         if (flags & EXT4_GET_BLOCKS_UNINIT_EXT){
4018                 ext4_ext_mark_uninitialized(&newex);
4019                 /*
4020                  * io_end structure was created for every IO write to an
4021                  * uninitialized extent. To avoid unnecessary conversion,
4022                  * here we flag the IO that really needs the conversion.
4023                  * For non asycn direct IO case, flag the inode state
4024                  * that we need to perform conversion when IO is done.
4025                  */
4026                 if ((flags & EXT4_GET_BLOCKS_PRE_IO)) {
4027                         if (io)
4028                                 ext4_set_io_unwritten_flag(inode, io);
4029                         else
4030                                 ext4_set_inode_state(inode,
4031                                                      EXT4_STATE_DIO_UNWRITTEN);
4032                 }
4033                 if (ext4_should_dioread_nolock(inode))
4034                         map->m_flags |= EXT4_MAP_UNINIT;
4035         }
4036
4037         err = 0;
4038         if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0)
4039                 err = check_eofblocks_fl(handle, inode, map->m_lblk,
4040                                          path, ar.len);
4041         if (!err)
4042                 err = ext4_ext_insert_extent(handle, inode, path,
4043                                              &newex, flags);
4044         if (err && free_on_err) {
4045                 int fb_flags = flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE ?
4046                         EXT4_FREE_BLOCKS_NO_QUOT_UPDATE : 0;
4047                 /* free data blocks we just allocated */
4048                 /* not a good idea to call discard here directly,
4049                  * but otherwise we'd need to call it every free() */
4050                 ext4_discard_preallocations(inode);
4051                 ext4_free_blocks(handle, inode, NULL, ext4_ext_pblock(&newex),
4052                                  ext4_ext_get_actual_len(&newex), fb_flags);
4053                 goto out2;
4054         }
4055
4056         /* previous routine could use block we allocated */
4057         newblock = ext4_ext_pblock(&newex);
4058         allocated = ext4_ext_get_actual_len(&newex);
4059         if (allocated > map->m_len)
4060                 allocated = map->m_len;
4061         map->m_flags |= EXT4_MAP_NEW;
4062
4063         /*
4064          * Update reserved blocks/metadata blocks after successful
4065          * block allocation which had been deferred till now.
4066          */
4067         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
4068                 unsigned int reserved_clusters;
4069                 /*
4070                  * Check how many clusters we had reserved this allocated range
4071                  */
4072                 reserved_clusters = get_reserved_cluster_alloc(inode,
4073                                                 map->m_lblk, allocated);
4074                 if (map->m_flags & EXT4_MAP_FROM_CLUSTER) {
4075                         if (reserved_clusters) {
4076                                 /*
4077                                  * We have clusters reserved for this range.
4078                                  * But since we are not doing actual allocation
4079                                  * and are simply using blocks from previously
4080                                  * allocated cluster, we should release the
4081                                  * reservation and not claim quota.
4082                                  */
4083                                 ext4_da_update_reserve_space(inode,
4084                                                 reserved_clusters, 0);
4085                         }
4086                 } else {
4087                         BUG_ON(allocated_clusters < reserved_clusters);
4088                         /* We will claim quota for all newly allocated blocks.*/
4089                         ext4_da_update_reserve_space(inode, allocated_clusters,
4090                                                         1);
4091                         if (reserved_clusters < allocated_clusters) {
4092                                 struct ext4_inode_info *ei = EXT4_I(inode);
4093                                 int reservation = allocated_clusters -
4094                                                   reserved_clusters;
4095                                 /*
4096                                  * It seems we claimed few clusters outside of
4097                                  * the range of this allocation. We should give
4098                                  * it back to the reservation pool. This can
4099                                  * happen in the following case:
4100                                  *
4101                                  * * Suppose s_cluster_ratio is 4 (i.e., each
4102                                  *   cluster has 4 blocks. Thus, the clusters
4103                                  *   are [0-3],[4-7],[8-11]...
4104                                  * * First comes delayed allocation write for
4105                                  *   logical blocks 10 & 11. Since there were no
4106                                  *   previous delayed allocated blocks in the
4107                                  *   range [8-11], we would reserve 1 cluster
4108                                  *   for this write.
4109                                  * * Next comes write for logical blocks 3 to 8.
4110                                  *   In this case, we will reserve 2 clusters
4111                                  *   (for [0-3] and [4-7]; and not for [8-11] as
4112                                  *   that range has a delayed allocated blocks.
4113                                  *   Thus total reserved clusters now becomes 3.
4114                                  * * Now, during the delayed allocation writeout
4115                                  *   time, we will first write blocks [3-8] and
4116                                  *   allocate 3 clusters for writing these
4117                                  *   blocks. Also, we would claim all these
4118                                  *   three clusters above.
4119                                  * * Now when we come here to writeout the
4120                                  *   blocks [10-11], we would expect to claim
4121                                  *   the reservation of 1 cluster we had made
4122                                  *   (and we would claim it since there are no
4123                                  *   more delayed allocated blocks in the range
4124                                  *   [8-11]. But our reserved cluster count had
4125                                  *   already gone to 0.
4126                                  *
4127                                  *   Thus, at the step 4 above when we determine
4128                                  *   that there are still some unwritten delayed
4129                                  *   allocated blocks outside of our current
4130                                  *   block range, we should increment the
4131                                  *   reserved clusters count so that when the
4132                                  *   remaining blocks finally gets written, we
4133                                  *   could claim them.
4134                                  */
4135                                 dquot_reserve_block(inode,
4136                                                 EXT4_C2B(sbi, reservation));
4137                                 spin_lock(&ei->i_block_reservation_lock);
4138                                 ei->i_reserved_data_blocks += reservation;
4139                                 spin_unlock(&ei->i_block_reservation_lock);
4140                         }
4141                 }
4142         }
4143
4144         /*
4145          * Cache the extent and update transaction to commit on fdatasync only
4146          * when it is _not_ an uninitialized extent.
4147          */
4148         if ((flags & EXT4_GET_BLOCKS_UNINIT_EXT) == 0) {
4149                 ext4_ext_put_in_cache(inode, map->m_lblk, allocated, newblock);
4150                 ext4_update_inode_fsync_trans(handle, inode, 1);
4151         } else
4152                 ext4_update_inode_fsync_trans(handle, inode, 0);
4153 out:
4154         if (allocated > map->m_len)
4155                 allocated = map->m_len;
4156         ext4_ext_show_leaf(inode, path);
4157         map->m_flags |= EXT4_MAP_MAPPED;
4158         map->m_pblk = newblock;
4159         map->m_len = allocated;
4160 out2:
4161         if (path) {
4162                 ext4_ext_drop_refs(path);
4163                 kfree(path);
4164         }
4165         result = (flags & EXT4_GET_BLOCKS_PUNCH_OUT_EXT) ?
4166                         punched_out : allocated;
4167
4168         trace_ext4_ext_map_blocks_exit(inode, map->m_lblk,
4169                 newblock, map->m_len, err ? err : result);
4170
4171         return err ? err : result;
4172 }
4173
4174 void ext4_ext_truncate(struct inode *inode)
4175 {
4176         struct address_space *mapping = inode->i_mapping;
4177         struct super_block *sb = inode->i_sb;
4178         ext4_lblk_t last_block;
4179         handle_t *handle;
4180         loff_t page_len;
4181         int err = 0;
4182
4183         /*
4184          * finish any pending end_io work so we won't run the risk of
4185          * converting any truncated blocks to initialized later
4186          */
4187         ext4_flush_completed_IO(inode);
4188
4189         /*
4190          * probably first extent we're gonna free will be last in block
4191          */
4192         err = ext4_writepage_trans_blocks(inode);
4193         handle = ext4_journal_start(inode, err);
4194         if (IS_ERR(handle))
4195                 return;
4196
4197         if (inode->i_size % PAGE_CACHE_SIZE != 0) {
4198                 page_len = PAGE_CACHE_SIZE -
4199                         (inode->i_size & (PAGE_CACHE_SIZE - 1));
4200
4201                 err = ext4_discard_partial_page_buffers(handle,
4202                         mapping, inode->i_size, page_len, 0);
4203
4204                 if (err)
4205                         goto out_stop;
4206         }
4207
4208         if (ext4_orphan_add(handle, inode))
4209                 goto out_stop;
4210
4211         down_write(&EXT4_I(inode)->i_data_sem);
4212         ext4_ext_invalidate_cache(inode);
4213
4214         ext4_discard_preallocations(inode);
4215
4216         /*
4217          * TODO: optimization is possible here.
4218          * Probably we need not scan at all,
4219          * because page truncation is enough.
4220          */
4221
4222         /* we have to know where to truncate from in crash case */
4223         EXT4_I(inode)->i_disksize = inode->i_size;
4224         ext4_mark_inode_dirty(handle, inode);
4225
4226         last_block = (inode->i_size + sb->s_blocksize - 1)
4227                         >> EXT4_BLOCK_SIZE_BITS(sb);
4228         err = ext4_ext_remove_space(inode, last_block);
4229
4230         /* In a multi-transaction truncate, we only make the final
4231          * transaction synchronous.
4232          */
4233         if (IS_SYNC(inode))
4234                 ext4_handle_sync(handle);
4235
4236         up_write(&EXT4_I(inode)->i_data_sem);
4237
4238 out_stop:
4239         /*
4240          * If this was a simple ftruncate() and the file will remain alive,
4241          * then we need to clear up the orphan record which we created above.
4242          * However, if this was a real unlink then we were called by
4243          * ext4_delete_inode(), and we allow that function to clean up the
4244          * orphan info for us.
4245          */
4246         if (inode->i_nlink)
4247                 ext4_orphan_del(handle, inode);
4248
4249         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4250         ext4_mark_inode_dirty(handle, inode);
4251         ext4_journal_stop(handle);
4252 }
4253
4254 static void ext4_falloc_update_inode(struct inode *inode,
4255                                 int mode, loff_t new_size, int update_ctime)
4256 {
4257         struct timespec now;
4258
4259         if (update_ctime) {
4260                 now = current_fs_time(inode->i_sb);
4261                 if (!timespec_equal(&inode->i_ctime, &now))
4262                         inode->i_ctime = now;
4263         }
4264         /*
4265          * Update only when preallocation was requested beyond
4266          * the file size.
4267          */
4268         if (!(mode & FALLOC_FL_KEEP_SIZE)) {
4269                 if (new_size > i_size_read(inode))
4270                         i_size_write(inode, new_size);
4271                 if (new_size > EXT4_I(inode)->i_disksize)
4272                         ext4_update_i_disksize(inode, new_size);
4273         } else {
4274                 /*
4275                  * Mark that we allocate beyond EOF so the subsequent truncate
4276                  * can proceed even if the new size is the same as i_size.
4277                  */
4278                 if (new_size > i_size_read(inode))
4279                         ext4_set_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4280         }
4281
4282 }
4283
4284 /*
4285  * preallocate space for a file. This implements ext4's fallocate file
4286  * operation, which gets called from sys_fallocate system call.
4287  * For block-mapped files, posix_fallocate should fall back to the method
4288  * of writing zeroes to the required new blocks (the same behavior which is
4289  * expected for file systems which do not support fallocate() system call).
4290  */
4291 long ext4_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
4292 {
4293         struct inode *inode = file->f_path.dentry->d_inode;
4294         handle_t *handle;
4295         loff_t new_size;
4296         unsigned int max_blocks;
4297         int ret = 0;
4298         int ret2 = 0;
4299         int retries = 0;
4300         int flags;
4301         struct ext4_map_blocks map;
4302         unsigned int credits, blkbits = inode->i_blkbits;
4303
4304         /*
4305          * currently supporting (pre)allocate mode for extent-based
4306          * files _only_
4307          */
4308         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4309                 return -EOPNOTSUPP;
4310
4311         /* Return error if mode is not supported */
4312         if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
4313                 return -EOPNOTSUPP;
4314
4315         if (mode & FALLOC_FL_PUNCH_HOLE)
4316                 return ext4_punch_hole(file, offset, len);
4317
4318         trace_ext4_fallocate_enter(inode, offset, len, mode);
4319         map.m_lblk = offset >> blkbits;
4320         /*
4321          * We can't just convert len to max_blocks because
4322          * If blocksize = 4096 offset = 3072 and len = 2048
4323          */
4324         max_blocks = (EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits)
4325                 - map.m_lblk;
4326         /*
4327          * credits to insert 1 extent into extent tree
4328          */
4329         credits = ext4_chunk_trans_blocks(inode, max_blocks);
4330         mutex_lock(&inode->i_mutex);
4331         ret = inode_newsize_ok(inode, (len + offset));
4332         if (ret) {
4333                 mutex_unlock(&inode->i_mutex);
4334                 trace_ext4_fallocate_exit(inode, offset, max_blocks, ret);
4335                 return ret;
4336         }
4337         flags = EXT4_GET_BLOCKS_CREATE_UNINIT_EXT;
4338         if (mode & FALLOC_FL_KEEP_SIZE)
4339                 flags |= EXT4_GET_BLOCKS_KEEP_SIZE;
4340         /*
4341          * Don't normalize the request if it can fit in one extent so
4342          * that it doesn't get unnecessarily split into multiple
4343          * extents.
4344          */
4345         if (len <= EXT_UNINIT_MAX_LEN << blkbits)
4346                 flags |= EXT4_GET_BLOCKS_NO_NORMALIZE;
4347 retry:
4348         while (ret >= 0 && ret < max_blocks) {
4349                 map.m_lblk = map.m_lblk + ret;
4350                 map.m_len = max_blocks = max_blocks - ret;
4351                 handle = ext4_journal_start(inode, credits);
4352                 if (IS_ERR(handle)) {
4353                         ret = PTR_ERR(handle);
4354                         break;
4355                 }
4356                 ret = ext4_map_blocks(handle, inode, &map, flags);
4357                 if (ret <= 0) {
4358 #ifdef EXT4FS_DEBUG
4359                         WARN_ON(ret <= 0);
4360                         printk(KERN_ERR "%s: ext4_ext_map_blocks "
4361                                     "returned error inode#%lu, block=%u, "
4362                                     "max_blocks=%u", __func__,
4363                                     inode->i_ino, map.m_lblk, max_blocks);
4364 #endif
4365                         ext4_mark_inode_dirty(handle, inode);
4366                         ret2 = ext4_journal_stop(handle);
4367                         break;
4368                 }
4369                 if ((map.m_lblk + ret) >= (EXT4_BLOCK_ALIGN(offset + len,
4370                                                 blkbits) >> blkbits))
4371                         new_size = offset + len;
4372                 else
4373                         new_size = ((loff_t) map.m_lblk + ret) << blkbits;
4374
4375                 ext4_falloc_update_inode(inode, mode, new_size,
4376                                          (map.m_flags & EXT4_MAP_NEW));
4377                 ext4_mark_inode_dirty(handle, inode);
4378                 ret2 = ext4_journal_stop(handle);
4379                 if (ret2)
4380                         break;
4381         }
4382         if (ret == -ENOSPC &&
4383                         ext4_should_retry_alloc(inode->i_sb, &retries)) {
4384                 ret = 0;
4385                 goto retry;
4386         }
4387         mutex_unlock(&inode->i_mutex);
4388         trace_ext4_fallocate_exit(inode, offset, max_blocks,
4389                                 ret > 0 ? ret2 : ret);
4390         return ret > 0 ? ret2 : ret;
4391 }
4392
4393 /*
4394  * This function convert a range of blocks to written extents
4395  * The caller of this function will pass the start offset and the size.
4396  * all unwritten extents within this range will be converted to
4397  * written extents.
4398  *
4399  * This function is called from the direct IO end io call back
4400  * function, to convert the fallocated extents after IO is completed.
4401  * Returns 0 on success.
4402  */
4403 int ext4_convert_unwritten_extents(struct inode *inode, loff_t offset,
4404                                     ssize_t len)
4405 {
4406         handle_t *handle;
4407         unsigned int max_blocks;
4408         int ret = 0;
4409         int ret2 = 0;
4410         struct ext4_map_blocks map;
4411         unsigned int credits, blkbits = inode->i_blkbits;
4412
4413         map.m_lblk = offset >> blkbits;
4414         /*
4415          * We can't just convert len to max_blocks because
4416          * If blocksize = 4096 offset = 3072 and len = 2048
4417          */
4418         max_blocks = ((EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits) -
4419                       map.m_lblk);
4420         /*
4421          * credits to insert 1 extent into extent tree
4422          */
4423         credits = ext4_chunk_trans_blocks(inode, max_blocks);
4424         while (ret >= 0 && ret < max_blocks) {
4425                 map.m_lblk += ret;
4426                 map.m_len = (max_blocks -= ret);
4427                 handle = ext4_journal_start(inode, credits);
4428                 if (IS_ERR(handle)) {
4429                         ret = PTR_ERR(handle);
4430                         break;
4431                 }
4432                 ret = ext4_map_blocks(handle, inode, &map,
4433                                       EXT4_GET_BLOCKS_IO_CONVERT_EXT);
4434                 if (ret <= 0) {
4435                         WARN_ON(ret <= 0);
4436                         printk(KERN_ERR "%s: ext4_ext_map_blocks "
4437                                     "returned error inode#%lu, block=%u, "
4438                                     "max_blocks=%u", __func__,
4439                                     inode->i_ino, map.m_lblk, map.m_len);
4440                 }
4441                 ext4_mark_inode_dirty(handle, inode);
4442                 ret2 = ext4_journal_stop(handle);
4443                 if (ret <= 0 || ret2 )
4444                         break;
4445         }
4446         return ret > 0 ? ret2 : ret;
4447 }
4448
4449 /*
4450  * Callback function called for each extent to gather FIEMAP information.
4451  */
4452 static int ext4_ext_fiemap_cb(struct inode *inode, ext4_lblk_t next,
4453                        struct ext4_ext_cache *newex, struct ext4_extent *ex,
4454                        void *data)
4455 {
4456         __u64   logical;
4457         __u64   physical;
4458         __u64   length;
4459         __u32   flags = 0;
4460         int             ret = 0;
4461         struct fiemap_extent_info *fieinfo = data;
4462         unsigned char blksize_bits;
4463
4464         blksize_bits = inode->i_sb->s_blocksize_bits;
4465         logical = (__u64)newex->ec_block << blksize_bits;
4466
4467         if (newex->ec_start == 0) {
4468                 /*
4469                  * No extent in extent-tree contains block @newex->ec_start,
4470                  * then the block may stay in 1)a hole or 2)delayed-extent.
4471                  *
4472                  * Holes or delayed-extents are processed as follows.
4473                  * 1. lookup dirty pages with specified range in pagecache.
4474                  *    If no page is got, then there is no delayed-extent and
4475                  *    return with EXT_CONTINUE.
4476                  * 2. find the 1st mapped buffer,
4477                  * 3. check if the mapped buffer is both in the request range
4478                  *    and a delayed buffer. If not, there is no delayed-extent,
4479                  *    then return.
4480                  * 4. a delayed-extent is found, the extent will be collected.
4481                  */
4482                 ext4_lblk_t     end = 0;
4483                 pgoff_t         last_offset;
4484                 pgoff_t         offset;
4485                 pgoff_t         index;
4486                 pgoff_t         start_index = 0;
4487                 struct page     **pages = NULL;
4488                 struct buffer_head *bh = NULL;
4489                 struct buffer_head *head = NULL;
4490                 unsigned int nr_pages = PAGE_SIZE / sizeof(struct page *);
4491
4492                 pages = kmalloc(PAGE_SIZE, GFP_KERNEL);
4493                 if (pages == NULL)
4494                         return -ENOMEM;
4495
4496                 offset = logical >> PAGE_SHIFT;
4497 repeat:
4498                 last_offset = offset;
4499                 head = NULL;
4500                 ret = find_get_pages_tag(inode->i_mapping, &offset,
4501                                         PAGECACHE_TAG_DIRTY, nr_pages, pages);
4502
4503                 if (!(flags & FIEMAP_EXTENT_DELALLOC)) {
4504                         /* First time, try to find a mapped buffer. */
4505                         if (ret == 0) {
4506 out:
4507                                 for (index = 0; index < ret; index++)
4508                                         page_cache_release(pages[index]);
4509                                 /* just a hole. */
4510                                 kfree(pages);
4511                                 return EXT_CONTINUE;
4512                         }
4513                         index = 0;
4514
4515 next_page:
4516                         /* Try to find the 1st mapped buffer. */
4517                         end = ((__u64)pages[index]->index << PAGE_SHIFT) >>
4518                                   blksize_bits;
4519                         if (!page_has_buffers(pages[index]))
4520                                 goto out;
4521                         head = page_buffers(pages[index]);
4522                         if (!head)
4523                                 goto out;
4524
4525                         index++;
4526                         bh = head;
4527                         do {
4528                                 if (end >= newex->ec_block +
4529                                         newex->ec_len)
4530                                         /* The buffer is out of
4531                                          * the request range.
4532                                          */
4533                                         goto out;
4534
4535                                 if (buffer_mapped(bh) &&
4536                                     end >= newex->ec_block) {
4537                                         start_index = index - 1;
4538                                         /* get the 1st mapped buffer. */
4539                                         goto found_mapped_buffer;
4540                                 }
4541
4542                                 bh = bh->b_this_page;
4543                                 end++;
4544                         } while (bh != head);
4545
4546                         /* No mapped buffer in the range found in this page,
4547                          * We need to look up next page.
4548                          */
4549                         if (index >= ret) {
4550                                 /* There is no page left, but we need to limit
4551                                  * newex->ec_len.
4552                                  */
4553                                 newex->ec_len = end - newex->ec_block;
4554                                 goto out;
4555                         }
4556                         goto next_page;
4557                 } else {
4558                         /*Find contiguous delayed buffers. */
4559                         if (ret > 0 && pages[0]->index == last_offset)
4560                                 head = page_buffers(pages[0]);
4561                         bh = head;
4562                         index = 1;
4563                         start_index = 0;
4564                 }
4565
4566 found_mapped_buffer:
4567                 if (bh != NULL && buffer_delay(bh)) {
4568                         /* 1st or contiguous delayed buffer found. */
4569                         if (!(flags & FIEMAP_EXTENT_DELALLOC)) {
4570                                 /*
4571                                  * 1st delayed buffer found, record
4572                                  * the start of extent.
4573                                  */
4574                                 flags |= FIEMAP_EXTENT_DELALLOC;
4575                                 newex->ec_block = end;
4576                                 logical = (__u64)end << blksize_bits;
4577                         }
4578                         /* Find contiguous delayed buffers. */
4579                         do {
4580                                 if (!buffer_delay(bh))
4581                                         goto found_delayed_extent;
4582                                 bh = bh->b_this_page;
4583                                 end++;
4584                         } while (bh != head);
4585
4586                         for (; index < ret; index++) {
4587                                 if (!page_has_buffers(pages[index])) {
4588                                         bh = NULL;
4589                                         break;
4590                                 }
4591                                 head = page_buffers(pages[index]);
4592                                 if (!head) {
4593                                         bh = NULL;
4594                                         break;
4595                                 }
4596
4597                                 if (pages[index]->index !=
4598                                     pages[start_index]->index + index
4599                                     - start_index) {
4600                                         /* Blocks are not contiguous. */
4601                                         bh = NULL;
4602                                         break;
4603                                 }
4604                                 bh = head;
4605                                 do {
4606                                         if (!buffer_delay(bh))
4607                                                 /* Delayed-extent ends. */
4608                                                 goto found_delayed_extent;
4609                                         bh = bh->b_this_page;
4610                                         end++;
4611                                 } while (bh != head);
4612                         }
4613                 } else if (!(flags & FIEMAP_EXTENT_DELALLOC))
4614                         /* a hole found. */
4615                         goto out;
4616
4617 found_delayed_extent:
4618                 newex->ec_len = min(end - newex->ec_block,
4619                                                 (ext4_lblk_t)EXT_INIT_MAX_LEN);
4620                 if (ret == nr_pages && bh != NULL &&
4621                         newex->ec_len < EXT_INIT_MAX_LEN &&
4622                         buffer_delay(bh)) {
4623                         /* Have not collected an extent and continue. */
4624                         for (index = 0; index < ret; index++)
4625                                 page_cache_release(pages[index]);
4626                         goto repeat;
4627                 }
4628
4629                 for (index = 0; index < ret; index++)
4630                         page_cache_release(pages[index]);
4631                 kfree(pages);
4632         }
4633
4634         physical = (__u64)newex->ec_start << blksize_bits;
4635         length =   (__u64)newex->ec_len << blksize_bits;
4636
4637         if (ex && ext4_ext_is_uninitialized(ex))
4638                 flags |= FIEMAP_EXTENT_UNWRITTEN;
4639
4640         if (next == EXT_MAX_BLOCKS)
4641                 flags |= FIEMAP_EXTENT_LAST;
4642
4643         ret = fiemap_fill_next_extent(fieinfo, logical, physical,
4644                                         length, flags);
4645         if (ret < 0)
4646                 return ret;
4647         if (ret == 1)
4648                 return EXT_BREAK;
4649         return EXT_CONTINUE;
4650 }
4651 /* fiemap flags we can handle specified here */
4652 #define EXT4_FIEMAP_FLAGS       (FIEMAP_FLAG_SYNC|FIEMAP_FLAG_XATTR)
4653
4654 static int ext4_xattr_fiemap(struct inode *inode,
4655                                 struct fiemap_extent_info *fieinfo)
4656 {
4657         __u64 physical = 0;
4658         __u64 length;
4659         __u32 flags = FIEMAP_EXTENT_LAST;
4660         int blockbits = inode->i_sb->s_blocksize_bits;
4661         int error = 0;
4662
4663         /* in-inode? */
4664         if (ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
4665                 struct ext4_iloc iloc;
4666                 int offset;     /* offset of xattr in inode */
4667
4668                 error = ext4_get_inode_loc(inode, &iloc);
4669                 if (error)
4670                         return error;
4671                 physical = iloc.bh->b_blocknr << blockbits;
4672                 offset = EXT4_GOOD_OLD_INODE_SIZE +
4673                                 EXT4_I(inode)->i_extra_isize;
4674                 physical += offset;
4675                 length = EXT4_SB(inode->i_sb)->s_inode_size - offset;
4676                 flags |= FIEMAP_EXTENT_DATA_INLINE;
4677                 brelse(iloc.bh);
4678         } else { /* external block */
4679                 physical = EXT4_I(inode)->i_file_acl << blockbits;
4680                 length = inode->i_sb->s_blocksize;
4681         }
4682
4683         if (physical)
4684                 error = fiemap_fill_next_extent(fieinfo, 0, physical,
4685                                                 length, flags);
4686         return (error < 0 ? error : 0);
4687 }
4688
4689 /*
4690  * ext4_ext_punch_hole
4691  *
4692  * Punches a hole of "length" bytes in a file starting
4693  * at byte "offset"
4694  *
4695  * @inode:  The inode of the file to punch a hole in
4696  * @offset: The starting byte offset of the hole
4697  * @length: The length of the hole
4698  *
4699  * Returns the number of blocks removed or negative on err
4700  */
4701 int ext4_ext_punch_hole(struct file *file, loff_t offset, loff_t length)
4702 {
4703         struct inode *inode = file->f_path.dentry->d_inode;
4704         struct super_block *sb = inode->i_sb;
4705         struct ext4_ext_cache cache_ex;
4706         ext4_lblk_t first_block, last_block, num_blocks, iblock, max_blocks;
4707         struct address_space *mapping = inode->i_mapping;
4708         struct ext4_map_blocks map;
4709         handle_t *handle;
4710         loff_t first_page, last_page, page_len;
4711         loff_t first_page_offset, last_page_offset;
4712         int ret, credits, blocks_released, err = 0;
4713
4714         /* No need to punch hole beyond i_size */
4715         if (offset >= inode->i_size)
4716                 return 0;
4717
4718         /*
4719          * If the hole extends beyond i_size, set the hole
4720          * to end after the page that contains i_size
4721          */
4722         if (offset + length > inode->i_size) {
4723                 length = inode->i_size +
4724                    PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
4725                    offset;
4726         }
4727
4728         first_block = (offset + sb->s_blocksize - 1) >>
4729                 EXT4_BLOCK_SIZE_BITS(sb);
4730         last_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4731
4732         first_page = (offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
4733         last_page = (offset + length) >> PAGE_CACHE_SHIFT;
4734
4735         first_page_offset = first_page << PAGE_CACHE_SHIFT;
4736         last_page_offset = last_page << PAGE_CACHE_SHIFT;
4737
4738         /*
4739          * Write out all dirty pages to avoid race conditions
4740          * Then release them.
4741          */
4742         if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4743                 err = filemap_write_and_wait_range(mapping,
4744                         offset, offset + length - 1);
4745
4746                 if (err)
4747                         return err;
4748         }
4749
4750         /* Now release the pages */
4751         if (last_page_offset > first_page_offset) {
4752                 truncate_inode_pages_range(mapping, first_page_offset,
4753                                            last_page_offset-1);
4754         }
4755
4756         /* finish any pending end_io work */
4757         ext4_flush_completed_IO(inode);
4758
4759         credits = ext4_writepage_trans_blocks(inode);
4760         handle = ext4_journal_start(inode, credits);
4761         if (IS_ERR(handle))
4762                 return PTR_ERR(handle);
4763
4764         err = ext4_orphan_add(handle, inode);
4765         if (err)
4766                 goto out;
4767
4768         /*
4769          * Now we need to zero out the non-page-aligned data in the
4770          * pages at the start and tail of the hole, and unmap the buffer
4771          * heads for the block aligned regions of the page that were
4772          * completely zeroed.
4773          */
4774         if (first_page > last_page) {
4775                 /*
4776                  * If the file space being truncated is contained within a page
4777                  * just zero out and unmap the middle of that page
4778                  */
4779                 err = ext4_discard_partial_page_buffers(handle,
4780                         mapping, offset, length, 0);
4781
4782                 if (err)
4783                         goto out;
4784         } else {
4785                 /*
4786                  * zero out and unmap the partial page that contains
4787                  * the start of the hole
4788                  */
4789                 page_len  = first_page_offset - offset;
4790                 if (page_len > 0) {
4791                         err = ext4_discard_partial_page_buffers(handle, mapping,
4792                                                    offset, page_len, 0);
4793                         if (err)
4794                                 goto out;
4795                 }
4796
4797                 /*
4798                  * zero out and unmap the partial page that contains
4799                  * the end of the hole
4800                  */
4801                 page_len = offset + length - last_page_offset;
4802                 if (page_len > 0) {
4803                         err = ext4_discard_partial_page_buffers(handle, mapping,
4804                                         last_page_offset, page_len, 0);
4805                         if (err)
4806                                 goto out;
4807                 }
4808         }
4809
4810
4811         /*
4812          * If i_size is contained in the last page, we need to
4813          * unmap and zero the partial page after i_size
4814          */
4815         if (inode->i_size >> PAGE_CACHE_SHIFT == last_page &&
4816            inode->i_size % PAGE_CACHE_SIZE != 0) {
4817
4818                 page_len = PAGE_CACHE_SIZE -
4819                         (inode->i_size & (PAGE_CACHE_SIZE - 1));
4820
4821                 if (page_len > 0) {
4822                         err = ext4_discard_partial_page_buffers(handle,
4823                           mapping, inode->i_size, page_len, 0);
4824
4825                         if (err)
4826                                 goto out;
4827                 }
4828         }
4829
4830         /* If there are no blocks to remove, return now */
4831         if (first_block >= last_block)
4832                 goto out;
4833
4834         down_write(&EXT4_I(inode)->i_data_sem);
4835         ext4_ext_invalidate_cache(inode);
4836         ext4_discard_preallocations(inode);
4837
4838         /*
4839          * Loop over all the blocks and identify blocks
4840          * that need to be punched out
4841          */
4842         iblock = first_block;
4843         blocks_released = 0;
4844         while (iblock < last_block) {
4845                 max_blocks = last_block - iblock;
4846                 num_blocks = 1;
4847                 memset(&map, 0, sizeof(map));
4848                 map.m_lblk = iblock;
4849                 map.m_len = max_blocks;
4850                 ret = ext4_ext_map_blocks(handle, inode, &map,
4851                         EXT4_GET_BLOCKS_PUNCH_OUT_EXT);
4852
4853                 if (ret > 0) {
4854                         blocks_released += ret;
4855                         num_blocks = ret;
4856                 } else if (ret == 0) {
4857                         /*
4858                          * If map blocks could not find the block,
4859                          * then it is in a hole.  If the hole was
4860                          * not already cached, then map blocks should
4861                          * put it in the cache.  So we can get the hole
4862                          * out of the cache
4863                          */
4864                         memset(&cache_ex, 0, sizeof(cache_ex));
4865                         if ((ext4_ext_check_cache(inode, iblock, &cache_ex)) &&
4866                                 !cache_ex.ec_start) {
4867
4868                                 /* The hole is cached */
4869                                 num_blocks = cache_ex.ec_block +
4870                                 cache_ex.ec_len - iblock;
4871
4872                         } else {
4873                                 /* The block could not be identified */
4874                                 err = -EIO;
4875                                 break;
4876                         }
4877                 } else {
4878                         /* Map blocks error */
4879                         err = ret;
4880                         break;
4881                 }
4882
4883                 if (num_blocks == 0) {
4884                         /* This condition should never happen */
4885                         ext_debug("Block lookup failed");
4886                         err = -EIO;
4887                         break;
4888                 }
4889
4890                 iblock += num_blocks;
4891         }
4892
4893         if (blocks_released > 0) {
4894                 ext4_ext_invalidate_cache(inode);
4895                 ext4_discard_preallocations(inode);
4896         }
4897
4898         if (IS_SYNC(inode))
4899                 ext4_handle_sync(handle);
4900
4901         up_write(&EXT4_I(inode)->i_data_sem);
4902
4903 out:
4904         ext4_orphan_del(handle, inode);
4905         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4906         ext4_mark_inode_dirty(handle, inode);
4907         ext4_journal_stop(handle);
4908         return err;
4909 }
4910 int ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4911                 __u64 start, __u64 len)
4912 {
4913         ext4_lblk_t start_blk;
4914         int error = 0;
4915
4916         /* fallback to generic here if not in extents fmt */
4917         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4918                 return generic_block_fiemap(inode, fieinfo, start, len,
4919                         ext4_get_block);
4920
4921         if (fiemap_check_flags(fieinfo, EXT4_FIEMAP_FLAGS))
4922                 return -EBADR;
4923
4924         if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
4925                 error = ext4_xattr_fiemap(inode, fieinfo);
4926         } else {
4927                 ext4_lblk_t len_blks;
4928                 __u64 last_blk;
4929
4930                 start_blk = start >> inode->i_sb->s_blocksize_bits;
4931                 last_blk = (start + len - 1) >> inode->i_sb->s_blocksize_bits;
4932                 if (last_blk >= EXT_MAX_BLOCKS)
4933                         last_blk = EXT_MAX_BLOCKS-1;
4934                 len_blks = ((ext4_lblk_t) last_blk) - start_blk + 1;
4935
4936                 /*
4937                  * Walk the extent tree gathering extent information.
4938                  * ext4_ext_fiemap_cb will push extents back to user.
4939                  */
4940                 error = ext4_ext_walk_space(inode, start_blk, len_blks,
4941                                           ext4_ext_fiemap_cb, fieinfo);
4942         }
4943
4944         return error;
4945 }