ext4: Fix bigalloc quota accounting and i_blocks value
[pandora-kernel.git] / fs / ext4 / extents.c
1 /*
2  * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3  * Written by Alex Tomas <alex@clusterfs.com>
4  *
5  * Architecture independence:
6  *   Copyright (c) 2005, Bull S.A.
7  *   Written by Pierre Peiffer <pierre.peiffer@bull.net>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public Licens
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
21  */
22
23 /*
24  * Extents support for EXT4
25  *
26  * TODO:
27  *   - ext4*_error() should be used in some situations
28  *   - analyze all BUG()/BUG_ON(), use -EIO where appropriate
29  *   - smart tree reduction
30  */
31
32 #include <linux/module.h>
33 #include <linux/fs.h>
34 #include <linux/time.h>
35 #include <linux/jbd2.h>
36 #include <linux/highuid.h>
37 #include <linux/pagemap.h>
38 #include <linux/quotaops.h>
39 #include <linux/string.h>
40 #include <linux/slab.h>
41 #include <linux/falloc.h>
42 #include <asm/uaccess.h>
43 #include <linux/fiemap.h>
44 #include "ext4_jbd2.h"
45 #include "ext4_extents.h"
46
47 #include <trace/events/ext4.h>
48
49 static int ext4_split_extent(handle_t *handle,
50                                 struct inode *inode,
51                                 struct ext4_ext_path *path,
52                                 struct ext4_map_blocks *map,
53                                 int split_flag,
54                                 int flags);
55
56 static int ext4_ext_truncate_extend_restart(handle_t *handle,
57                                             struct inode *inode,
58                                             int needed)
59 {
60         int err;
61
62         if (!ext4_handle_valid(handle))
63                 return 0;
64         if (handle->h_buffer_credits > needed)
65                 return 0;
66         err = ext4_journal_extend(handle, needed);
67         if (err <= 0)
68                 return err;
69         err = ext4_truncate_restart_trans(handle, inode, needed);
70         if (err == 0)
71                 err = -EAGAIN;
72
73         return err;
74 }
75
76 /*
77  * could return:
78  *  - EROFS
79  *  - ENOMEM
80  */
81 static int ext4_ext_get_access(handle_t *handle, struct inode *inode,
82                                 struct ext4_ext_path *path)
83 {
84         if (path->p_bh) {
85                 /* path points to block */
86                 return ext4_journal_get_write_access(handle, path->p_bh);
87         }
88         /* path points to leaf/index in inode body */
89         /* we use in-core data, no need to protect them */
90         return 0;
91 }
92
93 /*
94  * could return:
95  *  - EROFS
96  *  - ENOMEM
97  *  - EIO
98  */
99 #define ext4_ext_dirty(handle, inode, path) \
100                 __ext4_ext_dirty(__func__, __LINE__, (handle), (inode), (path))
101 static int __ext4_ext_dirty(const char *where, unsigned int line,
102                             handle_t *handle, struct inode *inode,
103                             struct ext4_ext_path *path)
104 {
105         int err;
106         if (path->p_bh) {
107                 /* path points to block */
108                 err = __ext4_handle_dirty_metadata(where, line, handle,
109                                                    inode, path->p_bh);
110         } else {
111                 /* path points to leaf/index in inode body */
112                 err = ext4_mark_inode_dirty(handle, inode);
113         }
114         return err;
115 }
116
117 static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode,
118                               struct ext4_ext_path *path,
119                               ext4_lblk_t block)
120 {
121         int depth;
122
123         if (path) {
124                 struct ext4_extent *ex;
125                 depth = path->p_depth;
126
127                 /*
128                  * Try to predict block placement assuming that we are
129                  * filling in a file which will eventually be
130                  * non-sparse --- i.e., in the case of libbfd writing
131                  * an ELF object sections out-of-order but in a way
132                  * the eventually results in a contiguous object or
133                  * executable file, or some database extending a table
134                  * space file.  However, this is actually somewhat
135                  * non-ideal if we are writing a sparse file such as
136                  * qemu or KVM writing a raw image file that is going
137                  * to stay fairly sparse, since it will end up
138                  * fragmenting the file system's free space.  Maybe we
139                  * should have some hueristics or some way to allow
140                  * userspace to pass a hint to file system,
141                  * especially if the latter case turns out to be
142                  * common.
143                  */
144                 ex = path[depth].p_ext;
145                 if (ex) {
146                         ext4_fsblk_t ext_pblk = ext4_ext_pblock(ex);
147                         ext4_lblk_t ext_block = le32_to_cpu(ex->ee_block);
148
149                         if (block > ext_block)
150                                 return ext_pblk + (block - ext_block);
151                         else
152                                 return ext_pblk - (ext_block - block);
153                 }
154
155                 /* it looks like index is empty;
156                  * try to find starting block from index itself */
157                 if (path[depth].p_bh)
158                         return path[depth].p_bh->b_blocknr;
159         }
160
161         /* OK. use inode's group */
162         return ext4_inode_to_goal_block(inode);
163 }
164
165 /*
166  * Allocation for a meta data block
167  */
168 static ext4_fsblk_t
169 ext4_ext_new_meta_block(handle_t *handle, struct inode *inode,
170                         struct ext4_ext_path *path,
171                         struct ext4_extent *ex, int *err, unsigned int flags)
172 {
173         ext4_fsblk_t goal, newblock;
174
175         goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block));
176         newblock = ext4_new_meta_blocks(handle, inode, goal, flags,
177                                         NULL, err);
178         return newblock;
179 }
180
181 static inline int ext4_ext_space_block(struct inode *inode, int check)
182 {
183         int size;
184
185         size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
186                         / sizeof(struct ext4_extent);
187         if (!check) {
188 #ifdef AGGRESSIVE_TEST
189                 if (size > 6)
190                         size = 6;
191 #endif
192         }
193         return size;
194 }
195
196 static inline int ext4_ext_space_block_idx(struct inode *inode, int check)
197 {
198         int size;
199
200         size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
201                         / sizeof(struct ext4_extent_idx);
202         if (!check) {
203 #ifdef AGGRESSIVE_TEST
204                 if (size > 5)
205                         size = 5;
206 #endif
207         }
208         return size;
209 }
210
211 static inline int ext4_ext_space_root(struct inode *inode, int check)
212 {
213         int size;
214
215         size = sizeof(EXT4_I(inode)->i_data);
216         size -= sizeof(struct ext4_extent_header);
217         size /= sizeof(struct ext4_extent);
218         if (!check) {
219 #ifdef AGGRESSIVE_TEST
220                 if (size > 3)
221                         size = 3;
222 #endif
223         }
224         return size;
225 }
226
227 static inline int ext4_ext_space_root_idx(struct inode *inode, int check)
228 {
229         int size;
230
231         size = sizeof(EXT4_I(inode)->i_data);
232         size -= sizeof(struct ext4_extent_header);
233         size /= sizeof(struct ext4_extent_idx);
234         if (!check) {
235 #ifdef AGGRESSIVE_TEST
236                 if (size > 4)
237                         size = 4;
238 #endif
239         }
240         return size;
241 }
242
243 /*
244  * Calculate the number of metadata blocks needed
245  * to allocate @blocks
246  * Worse case is one block per extent
247  */
248 int ext4_ext_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
249 {
250         struct ext4_inode_info *ei = EXT4_I(inode);
251         int idxs, num = 0;
252
253         idxs = ((inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
254                 / sizeof(struct ext4_extent_idx));
255
256         /*
257          * If the new delayed allocation block is contiguous with the
258          * previous da block, it can share index blocks with the
259          * previous block, so we only need to allocate a new index
260          * block every idxs leaf blocks.  At ldxs**2 blocks, we need
261          * an additional index block, and at ldxs**3 blocks, yet
262          * another index blocks.
263          */
264         if (ei->i_da_metadata_calc_len &&
265             ei->i_da_metadata_calc_last_lblock+1 == lblock) {
266                 if ((ei->i_da_metadata_calc_len % idxs) == 0)
267                         num++;
268                 if ((ei->i_da_metadata_calc_len % (idxs*idxs)) == 0)
269                         num++;
270                 if ((ei->i_da_metadata_calc_len % (idxs*idxs*idxs)) == 0) {
271                         num++;
272                         ei->i_da_metadata_calc_len = 0;
273                 } else
274                         ei->i_da_metadata_calc_len++;
275                 ei->i_da_metadata_calc_last_lblock++;
276                 return num;
277         }
278
279         /*
280          * In the worst case we need a new set of index blocks at
281          * every level of the inode's extent tree.
282          */
283         ei->i_da_metadata_calc_len = 1;
284         ei->i_da_metadata_calc_last_lblock = lblock;
285         return ext_depth(inode) + 1;
286 }
287
288 static int
289 ext4_ext_max_entries(struct inode *inode, int depth)
290 {
291         int max;
292
293         if (depth == ext_depth(inode)) {
294                 if (depth == 0)
295                         max = ext4_ext_space_root(inode, 1);
296                 else
297                         max = ext4_ext_space_root_idx(inode, 1);
298         } else {
299                 if (depth == 0)
300                         max = ext4_ext_space_block(inode, 1);
301                 else
302                         max = ext4_ext_space_block_idx(inode, 1);
303         }
304
305         return max;
306 }
307
308 static int ext4_valid_extent(struct inode *inode, struct ext4_extent *ext)
309 {
310         ext4_fsblk_t block = ext4_ext_pblock(ext);
311         int len = ext4_ext_get_actual_len(ext);
312
313         return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, len);
314 }
315
316 static int ext4_valid_extent_idx(struct inode *inode,
317                                 struct ext4_extent_idx *ext_idx)
318 {
319         ext4_fsblk_t block = ext4_idx_pblock(ext_idx);
320
321         return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, 1);
322 }
323
324 static int ext4_valid_extent_entries(struct inode *inode,
325                                 struct ext4_extent_header *eh,
326                                 int depth)
327 {
328         struct ext4_extent *ext;
329         struct ext4_extent_idx *ext_idx;
330         unsigned short entries;
331         if (eh->eh_entries == 0)
332                 return 1;
333
334         entries = le16_to_cpu(eh->eh_entries);
335
336         if (depth == 0) {
337                 /* leaf entries */
338                 ext = EXT_FIRST_EXTENT(eh);
339                 while (entries) {
340                         if (!ext4_valid_extent(inode, ext))
341                                 return 0;
342                         ext++;
343                         entries--;
344                 }
345         } else {
346                 ext_idx = EXT_FIRST_INDEX(eh);
347                 while (entries) {
348                         if (!ext4_valid_extent_idx(inode, ext_idx))
349                                 return 0;
350                         ext_idx++;
351                         entries--;
352                 }
353         }
354         return 1;
355 }
356
357 static int __ext4_ext_check(const char *function, unsigned int line,
358                             struct inode *inode, struct ext4_extent_header *eh,
359                             int depth)
360 {
361         const char *error_msg;
362         int max = 0;
363
364         if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) {
365                 error_msg = "invalid magic";
366                 goto corrupted;
367         }
368         if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) {
369                 error_msg = "unexpected eh_depth";
370                 goto corrupted;
371         }
372         if (unlikely(eh->eh_max == 0)) {
373                 error_msg = "invalid eh_max";
374                 goto corrupted;
375         }
376         max = ext4_ext_max_entries(inode, depth);
377         if (unlikely(le16_to_cpu(eh->eh_max) > max)) {
378                 error_msg = "too large eh_max";
379                 goto corrupted;
380         }
381         if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) {
382                 error_msg = "invalid eh_entries";
383                 goto corrupted;
384         }
385         if (!ext4_valid_extent_entries(inode, eh, depth)) {
386                 error_msg = "invalid extent entries";
387                 goto corrupted;
388         }
389         return 0;
390
391 corrupted:
392         ext4_error_inode(inode, function, line, 0,
393                         "bad header/extent: %s - magic %x, "
394                         "entries %u, max %u(%u), depth %u(%u)",
395                         error_msg, le16_to_cpu(eh->eh_magic),
396                         le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max),
397                         max, le16_to_cpu(eh->eh_depth), depth);
398
399         return -EIO;
400 }
401
402 #define ext4_ext_check(inode, eh, depth)        \
403         __ext4_ext_check(__func__, __LINE__, inode, eh, depth)
404
405 int ext4_ext_check_inode(struct inode *inode)
406 {
407         return ext4_ext_check(inode, ext_inode_hdr(inode), ext_depth(inode));
408 }
409
410 #ifdef EXT_DEBUG
411 static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path)
412 {
413         int k, l = path->p_depth;
414
415         ext_debug("path:");
416         for (k = 0; k <= l; k++, path++) {
417                 if (path->p_idx) {
418                   ext_debug("  %d->%llu", le32_to_cpu(path->p_idx->ei_block),
419                             ext4_idx_pblock(path->p_idx));
420                 } else if (path->p_ext) {
421                         ext_debug("  %d:[%d]%d:%llu ",
422                                   le32_to_cpu(path->p_ext->ee_block),
423                                   ext4_ext_is_uninitialized(path->p_ext),
424                                   ext4_ext_get_actual_len(path->p_ext),
425                                   ext4_ext_pblock(path->p_ext));
426                 } else
427                         ext_debug("  []");
428         }
429         ext_debug("\n");
430 }
431
432 static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path)
433 {
434         int depth = ext_depth(inode);
435         struct ext4_extent_header *eh;
436         struct ext4_extent *ex;
437         int i;
438
439         if (!path)
440                 return;
441
442         eh = path[depth].p_hdr;
443         ex = EXT_FIRST_EXTENT(eh);
444
445         ext_debug("Displaying leaf extents for inode %lu\n", inode->i_ino);
446
447         for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) {
448                 ext_debug("%d:[%d]%d:%llu ", le32_to_cpu(ex->ee_block),
449                           ext4_ext_is_uninitialized(ex),
450                           ext4_ext_get_actual_len(ex), ext4_ext_pblock(ex));
451         }
452         ext_debug("\n");
453 }
454
455 static void ext4_ext_show_move(struct inode *inode, struct ext4_ext_path *path,
456                         ext4_fsblk_t newblock, int level)
457 {
458         int depth = ext_depth(inode);
459         struct ext4_extent *ex;
460
461         if (depth != level) {
462                 struct ext4_extent_idx *idx;
463                 idx = path[level].p_idx;
464                 while (idx <= EXT_MAX_INDEX(path[level].p_hdr)) {
465                         ext_debug("%d: move %d:%llu in new index %llu\n", level,
466                                         le32_to_cpu(idx->ei_block),
467                                         ext4_idx_pblock(idx),
468                                         newblock);
469                         idx++;
470                 }
471
472                 return;
473         }
474
475         ex = path[depth].p_ext;
476         while (ex <= EXT_MAX_EXTENT(path[depth].p_hdr)) {
477                 ext_debug("move %d:%llu:[%d]%d in new leaf %llu\n",
478                                 le32_to_cpu(ex->ee_block),
479                                 ext4_ext_pblock(ex),
480                                 ext4_ext_is_uninitialized(ex),
481                                 ext4_ext_get_actual_len(ex),
482                                 newblock);
483                 ex++;
484         }
485 }
486
487 #else
488 #define ext4_ext_show_path(inode, path)
489 #define ext4_ext_show_leaf(inode, path)
490 #define ext4_ext_show_move(inode, path, newblock, level)
491 #endif
492
493 void ext4_ext_drop_refs(struct ext4_ext_path *path)
494 {
495         int depth = path->p_depth;
496         int i;
497
498         for (i = 0; i <= depth; i++, path++)
499                 if (path->p_bh) {
500                         brelse(path->p_bh);
501                         path->p_bh = NULL;
502                 }
503 }
504
505 /*
506  * ext4_ext_binsearch_idx:
507  * binary search for the closest index of the given block
508  * the header must be checked before calling this
509  */
510 static void
511 ext4_ext_binsearch_idx(struct inode *inode,
512                         struct ext4_ext_path *path, ext4_lblk_t block)
513 {
514         struct ext4_extent_header *eh = path->p_hdr;
515         struct ext4_extent_idx *r, *l, *m;
516
517
518         ext_debug("binsearch for %u(idx):  ", block);
519
520         l = EXT_FIRST_INDEX(eh) + 1;
521         r = EXT_LAST_INDEX(eh);
522         while (l <= r) {
523                 m = l + (r - l) / 2;
524                 if (block < le32_to_cpu(m->ei_block))
525                         r = m - 1;
526                 else
527                         l = m + 1;
528                 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ei_block),
529                                 m, le32_to_cpu(m->ei_block),
530                                 r, le32_to_cpu(r->ei_block));
531         }
532
533         path->p_idx = l - 1;
534         ext_debug("  -> %d->%lld ", le32_to_cpu(path->p_idx->ei_block),
535                   ext4_idx_pblock(path->p_idx));
536
537 #ifdef CHECK_BINSEARCH
538         {
539                 struct ext4_extent_idx *chix, *ix;
540                 int k;
541
542                 chix = ix = EXT_FIRST_INDEX(eh);
543                 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) {
544                   if (k != 0 &&
545                       le32_to_cpu(ix->ei_block) <= le32_to_cpu(ix[-1].ei_block)) {
546                                 printk(KERN_DEBUG "k=%d, ix=0x%p, "
547                                        "first=0x%p\n", k,
548                                        ix, EXT_FIRST_INDEX(eh));
549                                 printk(KERN_DEBUG "%u <= %u\n",
550                                        le32_to_cpu(ix->ei_block),
551                                        le32_to_cpu(ix[-1].ei_block));
552                         }
553                         BUG_ON(k && le32_to_cpu(ix->ei_block)
554                                            <= le32_to_cpu(ix[-1].ei_block));
555                         if (block < le32_to_cpu(ix->ei_block))
556                                 break;
557                         chix = ix;
558                 }
559                 BUG_ON(chix != path->p_idx);
560         }
561 #endif
562
563 }
564
565 /*
566  * ext4_ext_binsearch:
567  * binary search for closest extent of the given block
568  * the header must be checked before calling this
569  */
570 static void
571 ext4_ext_binsearch(struct inode *inode,
572                 struct ext4_ext_path *path, ext4_lblk_t block)
573 {
574         struct ext4_extent_header *eh = path->p_hdr;
575         struct ext4_extent *r, *l, *m;
576
577         if (eh->eh_entries == 0) {
578                 /*
579                  * this leaf is empty:
580                  * we get such a leaf in split/add case
581                  */
582                 return;
583         }
584
585         ext_debug("binsearch for %u:  ", block);
586
587         l = EXT_FIRST_EXTENT(eh) + 1;
588         r = EXT_LAST_EXTENT(eh);
589
590         while (l <= r) {
591                 m = l + (r - l) / 2;
592                 if (block < le32_to_cpu(m->ee_block))
593                         r = m - 1;
594                 else
595                         l = m + 1;
596                 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ee_block),
597                                 m, le32_to_cpu(m->ee_block),
598                                 r, le32_to_cpu(r->ee_block));
599         }
600
601         path->p_ext = l - 1;
602         ext_debug("  -> %d:%llu:[%d]%d ",
603                         le32_to_cpu(path->p_ext->ee_block),
604                         ext4_ext_pblock(path->p_ext),
605                         ext4_ext_is_uninitialized(path->p_ext),
606                         ext4_ext_get_actual_len(path->p_ext));
607
608 #ifdef CHECK_BINSEARCH
609         {
610                 struct ext4_extent *chex, *ex;
611                 int k;
612
613                 chex = ex = EXT_FIRST_EXTENT(eh);
614                 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) {
615                         BUG_ON(k && le32_to_cpu(ex->ee_block)
616                                           <= le32_to_cpu(ex[-1].ee_block));
617                         if (block < le32_to_cpu(ex->ee_block))
618                                 break;
619                         chex = ex;
620                 }
621                 BUG_ON(chex != path->p_ext);
622         }
623 #endif
624
625 }
626
627 int ext4_ext_tree_init(handle_t *handle, struct inode *inode)
628 {
629         struct ext4_extent_header *eh;
630
631         eh = ext_inode_hdr(inode);
632         eh->eh_depth = 0;
633         eh->eh_entries = 0;
634         eh->eh_magic = EXT4_EXT_MAGIC;
635         eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode, 0));
636         ext4_mark_inode_dirty(handle, inode);
637         ext4_ext_invalidate_cache(inode);
638         return 0;
639 }
640
641 struct ext4_ext_path *
642 ext4_ext_find_extent(struct inode *inode, ext4_lblk_t block,
643                                         struct ext4_ext_path *path)
644 {
645         struct ext4_extent_header *eh;
646         struct buffer_head *bh;
647         short int depth, i, ppos = 0, alloc = 0;
648
649         eh = ext_inode_hdr(inode);
650         depth = ext_depth(inode);
651
652         /* account possible depth increase */
653         if (!path) {
654                 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 2),
655                                 GFP_NOFS);
656                 if (!path)
657                         return ERR_PTR(-ENOMEM);
658                 alloc = 1;
659         }
660         path[0].p_hdr = eh;
661         path[0].p_bh = NULL;
662
663         i = depth;
664         /* walk through the tree */
665         while (i) {
666                 int need_to_validate = 0;
667
668                 ext_debug("depth %d: num %d, max %d\n",
669                           ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
670
671                 ext4_ext_binsearch_idx(inode, path + ppos, block);
672                 path[ppos].p_block = ext4_idx_pblock(path[ppos].p_idx);
673                 path[ppos].p_depth = i;
674                 path[ppos].p_ext = NULL;
675
676                 bh = sb_getblk(inode->i_sb, path[ppos].p_block);
677                 if (unlikely(!bh))
678                         goto err;
679                 if (!bh_uptodate_or_lock(bh)) {
680                         trace_ext4_ext_load_extent(inode, block,
681                                                 path[ppos].p_block);
682                         if (bh_submit_read(bh) < 0) {
683                                 put_bh(bh);
684                                 goto err;
685                         }
686                         /* validate the extent entries */
687                         need_to_validate = 1;
688                 }
689                 eh = ext_block_hdr(bh);
690                 ppos++;
691                 if (unlikely(ppos > depth)) {
692                         put_bh(bh);
693                         EXT4_ERROR_INODE(inode,
694                                          "ppos %d > depth %d", ppos, depth);
695                         goto err;
696                 }
697                 path[ppos].p_bh = bh;
698                 path[ppos].p_hdr = eh;
699                 i--;
700
701                 if (need_to_validate && ext4_ext_check(inode, eh, i))
702                         goto err;
703         }
704
705         path[ppos].p_depth = i;
706         path[ppos].p_ext = NULL;
707         path[ppos].p_idx = NULL;
708
709         /* find extent */
710         ext4_ext_binsearch(inode, path + ppos, block);
711         /* if not an empty leaf */
712         if (path[ppos].p_ext)
713                 path[ppos].p_block = ext4_ext_pblock(path[ppos].p_ext);
714
715         ext4_ext_show_path(inode, path);
716
717         return path;
718
719 err:
720         ext4_ext_drop_refs(path);
721         if (alloc)
722                 kfree(path);
723         return ERR_PTR(-EIO);
724 }
725
726 /*
727  * ext4_ext_insert_index:
728  * insert new index [@logical;@ptr] into the block at @curp;
729  * check where to insert: before @curp or after @curp
730  */
731 static int ext4_ext_insert_index(handle_t *handle, struct inode *inode,
732                                  struct ext4_ext_path *curp,
733                                  int logical, ext4_fsblk_t ptr)
734 {
735         struct ext4_extent_idx *ix;
736         int len, err;
737
738         err = ext4_ext_get_access(handle, inode, curp);
739         if (err)
740                 return err;
741
742         if (unlikely(logical == le32_to_cpu(curp->p_idx->ei_block))) {
743                 EXT4_ERROR_INODE(inode,
744                                  "logical %d == ei_block %d!",
745                                  logical, le32_to_cpu(curp->p_idx->ei_block));
746                 return -EIO;
747         }
748
749         if (unlikely(le16_to_cpu(curp->p_hdr->eh_entries)
750                              >= le16_to_cpu(curp->p_hdr->eh_max))) {
751                 EXT4_ERROR_INODE(inode,
752                                  "eh_entries %d >= eh_max %d!",
753                                  le16_to_cpu(curp->p_hdr->eh_entries),
754                                  le16_to_cpu(curp->p_hdr->eh_max));
755                 return -EIO;
756         }
757
758         len = EXT_MAX_INDEX(curp->p_hdr) - curp->p_idx;
759         if (logical > le32_to_cpu(curp->p_idx->ei_block)) {
760                 /* insert after */
761                 if (curp->p_idx != EXT_LAST_INDEX(curp->p_hdr)) {
762                         len = (len - 1) * sizeof(struct ext4_extent_idx);
763                         len = len < 0 ? 0 : len;
764                         ext_debug("insert new index %d after: %llu. "
765                                         "move %d from 0x%p to 0x%p\n",
766                                         logical, ptr, len,
767                                         (curp->p_idx + 1), (curp->p_idx + 2));
768                         memmove(curp->p_idx + 2, curp->p_idx + 1, len);
769                 }
770                 ix = curp->p_idx + 1;
771         } else {
772                 /* insert before */
773                 len = len * sizeof(struct ext4_extent_idx);
774                 len = len < 0 ? 0 : len;
775                 ext_debug("insert new index %d before: %llu. "
776                                 "move %d from 0x%p to 0x%p\n",
777                                 logical, ptr, len,
778                                 curp->p_idx, (curp->p_idx + 1));
779                 memmove(curp->p_idx + 1, curp->p_idx, len);
780                 ix = curp->p_idx;
781         }
782
783         ix->ei_block = cpu_to_le32(logical);
784         ext4_idx_store_pblock(ix, ptr);
785         le16_add_cpu(&curp->p_hdr->eh_entries, 1);
786
787         if (unlikely(ix > EXT_LAST_INDEX(curp->p_hdr))) {
788                 EXT4_ERROR_INODE(inode, "ix > EXT_LAST_INDEX!");
789                 return -EIO;
790         }
791
792         err = ext4_ext_dirty(handle, inode, curp);
793         ext4_std_error(inode->i_sb, err);
794
795         return err;
796 }
797
798 /*
799  * ext4_ext_split:
800  * inserts new subtree into the path, using free index entry
801  * at depth @at:
802  * - allocates all needed blocks (new leaf and all intermediate index blocks)
803  * - makes decision where to split
804  * - moves remaining extents and index entries (right to the split point)
805  *   into the newly allocated blocks
806  * - initializes subtree
807  */
808 static int ext4_ext_split(handle_t *handle, struct inode *inode,
809                           unsigned int flags,
810                           struct ext4_ext_path *path,
811                           struct ext4_extent *newext, int at)
812 {
813         struct buffer_head *bh = NULL;
814         int depth = ext_depth(inode);
815         struct ext4_extent_header *neh;
816         struct ext4_extent_idx *fidx;
817         int i = at, k, m, a;
818         ext4_fsblk_t newblock, oldblock;
819         __le32 border;
820         ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */
821         int err = 0;
822
823         /* make decision: where to split? */
824         /* FIXME: now decision is simplest: at current extent */
825
826         /* if current leaf will be split, then we should use
827          * border from split point */
828         if (unlikely(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr))) {
829                 EXT4_ERROR_INODE(inode, "p_ext > EXT_MAX_EXTENT!");
830                 return -EIO;
831         }
832         if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) {
833                 border = path[depth].p_ext[1].ee_block;
834                 ext_debug("leaf will be split."
835                                 " next leaf starts at %d\n",
836                                   le32_to_cpu(border));
837         } else {
838                 border = newext->ee_block;
839                 ext_debug("leaf will be added."
840                                 " next leaf starts at %d\n",
841                                 le32_to_cpu(border));
842         }
843
844         /*
845          * If error occurs, then we break processing
846          * and mark filesystem read-only. index won't
847          * be inserted and tree will be in consistent
848          * state. Next mount will repair buffers too.
849          */
850
851         /*
852          * Get array to track all allocated blocks.
853          * We need this to handle errors and free blocks
854          * upon them.
855          */
856         ablocks = kzalloc(sizeof(ext4_fsblk_t) * depth, GFP_NOFS);
857         if (!ablocks)
858                 return -ENOMEM;
859
860         /* allocate all needed blocks */
861         ext_debug("allocate %d blocks for indexes/leaf\n", depth - at);
862         for (a = 0; a < depth - at; a++) {
863                 newblock = ext4_ext_new_meta_block(handle, inode, path,
864                                                    newext, &err, flags);
865                 if (newblock == 0)
866                         goto cleanup;
867                 ablocks[a] = newblock;
868         }
869
870         /* initialize new leaf */
871         newblock = ablocks[--a];
872         if (unlikely(newblock == 0)) {
873                 EXT4_ERROR_INODE(inode, "newblock == 0!");
874                 err = -EIO;
875                 goto cleanup;
876         }
877         bh = sb_getblk(inode->i_sb, newblock);
878         if (!bh) {
879                 err = -EIO;
880                 goto cleanup;
881         }
882         lock_buffer(bh);
883
884         err = ext4_journal_get_create_access(handle, bh);
885         if (err)
886                 goto cleanup;
887
888         neh = ext_block_hdr(bh);
889         neh->eh_entries = 0;
890         neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
891         neh->eh_magic = EXT4_EXT_MAGIC;
892         neh->eh_depth = 0;
893
894         /* move remainder of path[depth] to the new leaf */
895         if (unlikely(path[depth].p_hdr->eh_entries !=
896                      path[depth].p_hdr->eh_max)) {
897                 EXT4_ERROR_INODE(inode, "eh_entries %d != eh_max %d!",
898                                  path[depth].p_hdr->eh_entries,
899                                  path[depth].p_hdr->eh_max);
900                 err = -EIO;
901                 goto cleanup;
902         }
903         /* start copy from next extent */
904         m = EXT_MAX_EXTENT(path[depth].p_hdr) - path[depth].p_ext++;
905         ext4_ext_show_move(inode, path, newblock, depth);
906         if (m) {
907                 struct ext4_extent *ex;
908                 ex = EXT_FIRST_EXTENT(neh);
909                 memmove(ex, path[depth].p_ext, sizeof(struct ext4_extent) * m);
910                 le16_add_cpu(&neh->eh_entries, m);
911         }
912
913         set_buffer_uptodate(bh);
914         unlock_buffer(bh);
915
916         err = ext4_handle_dirty_metadata(handle, inode, bh);
917         if (err)
918                 goto cleanup;
919         brelse(bh);
920         bh = NULL;
921
922         /* correct old leaf */
923         if (m) {
924                 err = ext4_ext_get_access(handle, inode, path + depth);
925                 if (err)
926                         goto cleanup;
927                 le16_add_cpu(&path[depth].p_hdr->eh_entries, -m);
928                 err = ext4_ext_dirty(handle, inode, path + depth);
929                 if (err)
930                         goto cleanup;
931
932         }
933
934         /* create intermediate indexes */
935         k = depth - at - 1;
936         if (unlikely(k < 0)) {
937                 EXT4_ERROR_INODE(inode, "k %d < 0!", k);
938                 err = -EIO;
939                 goto cleanup;
940         }
941         if (k)
942                 ext_debug("create %d intermediate indices\n", k);
943         /* insert new index into current index block */
944         /* current depth stored in i var */
945         i = depth - 1;
946         while (k--) {
947                 oldblock = newblock;
948                 newblock = ablocks[--a];
949                 bh = sb_getblk(inode->i_sb, newblock);
950                 if (!bh) {
951                         err = -EIO;
952                         goto cleanup;
953                 }
954                 lock_buffer(bh);
955
956                 err = ext4_journal_get_create_access(handle, bh);
957                 if (err)
958                         goto cleanup;
959
960                 neh = ext_block_hdr(bh);
961                 neh->eh_entries = cpu_to_le16(1);
962                 neh->eh_magic = EXT4_EXT_MAGIC;
963                 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
964                 neh->eh_depth = cpu_to_le16(depth - i);
965                 fidx = EXT_FIRST_INDEX(neh);
966                 fidx->ei_block = border;
967                 ext4_idx_store_pblock(fidx, oldblock);
968
969                 ext_debug("int.index at %d (block %llu): %u -> %llu\n",
970                                 i, newblock, le32_to_cpu(border), oldblock);
971
972                 /* move remainder of path[i] to the new index block */
973                 if (unlikely(EXT_MAX_INDEX(path[i].p_hdr) !=
974                                         EXT_LAST_INDEX(path[i].p_hdr))) {
975                         EXT4_ERROR_INODE(inode,
976                                          "EXT_MAX_INDEX != EXT_LAST_INDEX ee_block %d!",
977                                          le32_to_cpu(path[i].p_ext->ee_block));
978                         err = -EIO;
979                         goto cleanup;
980                 }
981                 /* start copy indexes */
982                 m = EXT_MAX_INDEX(path[i].p_hdr) - path[i].p_idx++;
983                 ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx,
984                                 EXT_MAX_INDEX(path[i].p_hdr));
985                 ext4_ext_show_move(inode, path, newblock, i);
986                 if (m) {
987                         memmove(++fidx, path[i].p_idx,
988                                 sizeof(struct ext4_extent_idx) * m);
989                         le16_add_cpu(&neh->eh_entries, m);
990                 }
991                 set_buffer_uptodate(bh);
992                 unlock_buffer(bh);
993
994                 err = ext4_handle_dirty_metadata(handle, inode, bh);
995                 if (err)
996                         goto cleanup;
997                 brelse(bh);
998                 bh = NULL;
999
1000                 /* correct old index */
1001                 if (m) {
1002                         err = ext4_ext_get_access(handle, inode, path + i);
1003                         if (err)
1004                                 goto cleanup;
1005                         le16_add_cpu(&path[i].p_hdr->eh_entries, -m);
1006                         err = ext4_ext_dirty(handle, inode, path + i);
1007                         if (err)
1008                                 goto cleanup;
1009                 }
1010
1011                 i--;
1012         }
1013
1014         /* insert new index */
1015         err = ext4_ext_insert_index(handle, inode, path + at,
1016                                     le32_to_cpu(border), newblock);
1017
1018 cleanup:
1019         if (bh) {
1020                 if (buffer_locked(bh))
1021                         unlock_buffer(bh);
1022                 brelse(bh);
1023         }
1024
1025         if (err) {
1026                 /* free all allocated blocks in error case */
1027                 for (i = 0; i < depth; i++) {
1028                         if (!ablocks[i])
1029                                 continue;
1030                         ext4_free_blocks(handle, inode, NULL, ablocks[i], 1,
1031                                          EXT4_FREE_BLOCKS_METADATA);
1032                 }
1033         }
1034         kfree(ablocks);
1035
1036         return err;
1037 }
1038
1039 /*
1040  * ext4_ext_grow_indepth:
1041  * implements tree growing procedure:
1042  * - allocates new block
1043  * - moves top-level data (index block or leaf) into the new block
1044  * - initializes new top-level, creating index that points to the
1045  *   just created block
1046  */
1047 static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode,
1048                                  unsigned int flags,
1049                                  struct ext4_ext_path *path,
1050                                  struct ext4_extent *newext)
1051 {
1052         struct ext4_ext_path *curp = path;
1053         struct ext4_extent_header *neh;
1054         struct buffer_head *bh;
1055         ext4_fsblk_t newblock;
1056         int err = 0;
1057
1058         newblock = ext4_ext_new_meta_block(handle, inode, path,
1059                 newext, &err, flags);
1060         if (newblock == 0)
1061                 return err;
1062
1063         bh = sb_getblk(inode->i_sb, newblock);
1064         if (!bh) {
1065                 err = -EIO;
1066                 ext4_std_error(inode->i_sb, err);
1067                 return err;
1068         }
1069         lock_buffer(bh);
1070
1071         err = ext4_journal_get_create_access(handle, bh);
1072         if (err) {
1073                 unlock_buffer(bh);
1074                 goto out;
1075         }
1076
1077         /* move top-level index/leaf into new block */
1078         memmove(bh->b_data, curp->p_hdr, sizeof(EXT4_I(inode)->i_data));
1079
1080         /* set size of new block */
1081         neh = ext_block_hdr(bh);
1082         /* old root could have indexes or leaves
1083          * so calculate e_max right way */
1084         if (ext_depth(inode))
1085                 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1086         else
1087                 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
1088         neh->eh_magic = EXT4_EXT_MAGIC;
1089         set_buffer_uptodate(bh);
1090         unlock_buffer(bh);
1091
1092         err = ext4_handle_dirty_metadata(handle, inode, bh);
1093         if (err)
1094                 goto out;
1095
1096         /* create index in new top-level index: num,max,pointer */
1097         err = ext4_ext_get_access(handle, inode, curp);
1098         if (err)
1099                 goto out;
1100
1101         curp->p_hdr->eh_magic = EXT4_EXT_MAGIC;
1102         curp->p_hdr->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode, 0));
1103         curp->p_hdr->eh_entries = cpu_to_le16(1);
1104         curp->p_idx = EXT_FIRST_INDEX(curp->p_hdr);
1105
1106         if (path[0].p_hdr->eh_depth)
1107                 curp->p_idx->ei_block =
1108                         EXT_FIRST_INDEX(path[0].p_hdr)->ei_block;
1109         else
1110                 curp->p_idx->ei_block =
1111                         EXT_FIRST_EXTENT(path[0].p_hdr)->ee_block;
1112         ext4_idx_store_pblock(curp->p_idx, newblock);
1113
1114         neh = ext_inode_hdr(inode);
1115         ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n",
1116                   le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max),
1117                   le32_to_cpu(EXT_FIRST_INDEX(neh)->ei_block),
1118                   ext4_idx_pblock(EXT_FIRST_INDEX(neh)));
1119
1120         neh->eh_depth = cpu_to_le16(path->p_depth + 1);
1121         err = ext4_ext_dirty(handle, inode, curp);
1122 out:
1123         brelse(bh);
1124
1125         return err;
1126 }
1127
1128 /*
1129  * ext4_ext_create_new_leaf:
1130  * finds empty index and adds new leaf.
1131  * if no free index is found, then it requests in-depth growing.
1132  */
1133 static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode,
1134                                     unsigned int flags,
1135                                     struct ext4_ext_path *path,
1136                                     struct ext4_extent *newext)
1137 {
1138         struct ext4_ext_path *curp;
1139         int depth, i, err = 0;
1140
1141 repeat:
1142         i = depth = ext_depth(inode);
1143
1144         /* walk up to the tree and look for free index entry */
1145         curp = path + depth;
1146         while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) {
1147                 i--;
1148                 curp--;
1149         }
1150
1151         /* we use already allocated block for index block,
1152          * so subsequent data blocks should be contiguous */
1153         if (EXT_HAS_FREE_INDEX(curp)) {
1154                 /* if we found index with free entry, then use that
1155                  * entry: create all needed subtree and add new leaf */
1156                 err = ext4_ext_split(handle, inode, flags, path, newext, i);
1157                 if (err)
1158                         goto out;
1159
1160                 /* refill path */
1161                 ext4_ext_drop_refs(path);
1162                 path = ext4_ext_find_extent(inode,
1163                                     (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1164                                     path);
1165                 if (IS_ERR(path))
1166                         err = PTR_ERR(path);
1167         } else {
1168                 /* tree is full, time to grow in depth */
1169                 err = ext4_ext_grow_indepth(handle, inode, flags,
1170                                             path, newext);
1171                 if (err)
1172                         goto out;
1173
1174                 /* refill path */
1175                 ext4_ext_drop_refs(path);
1176                 path = ext4_ext_find_extent(inode,
1177                                    (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1178                                     path);
1179                 if (IS_ERR(path)) {
1180                         err = PTR_ERR(path);
1181                         goto out;
1182                 }
1183
1184                 /*
1185                  * only first (depth 0 -> 1) produces free space;
1186                  * in all other cases we have to split the grown tree
1187                  */
1188                 depth = ext_depth(inode);
1189                 if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) {
1190                         /* now we need to split */
1191                         goto repeat;
1192                 }
1193         }
1194
1195 out:
1196         return err;
1197 }
1198
1199 /*
1200  * search the closest allocated block to the left for *logical
1201  * and returns it at @logical + it's physical address at @phys
1202  * if *logical is the smallest allocated block, the function
1203  * returns 0 at @phys
1204  * return value contains 0 (success) or error code
1205  */
1206 static int ext4_ext_search_left(struct inode *inode,
1207                                 struct ext4_ext_path *path,
1208                                 ext4_lblk_t *logical, ext4_fsblk_t *phys)
1209 {
1210         struct ext4_extent_idx *ix;
1211         struct ext4_extent *ex;
1212         int depth, ee_len;
1213
1214         if (unlikely(path == NULL)) {
1215                 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1216                 return -EIO;
1217         }
1218         depth = path->p_depth;
1219         *phys = 0;
1220
1221         if (depth == 0 && path->p_ext == NULL)
1222                 return 0;
1223
1224         /* usually extent in the path covers blocks smaller
1225          * then *logical, but it can be that extent is the
1226          * first one in the file */
1227
1228         ex = path[depth].p_ext;
1229         ee_len = ext4_ext_get_actual_len(ex);
1230         if (*logical < le32_to_cpu(ex->ee_block)) {
1231                 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1232                         EXT4_ERROR_INODE(inode,
1233                                          "EXT_FIRST_EXTENT != ex *logical %d ee_block %d!",
1234                                          *logical, le32_to_cpu(ex->ee_block));
1235                         return -EIO;
1236                 }
1237                 while (--depth >= 0) {
1238                         ix = path[depth].p_idx;
1239                         if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1240                                 EXT4_ERROR_INODE(inode,
1241                                   "ix (%d) != EXT_FIRST_INDEX (%d) (depth %d)!",
1242                                   ix != NULL ? ix->ei_block : 0,
1243                                   EXT_FIRST_INDEX(path[depth].p_hdr) != NULL ?
1244                                     EXT_FIRST_INDEX(path[depth].p_hdr)->ei_block : 0,
1245                                   depth);
1246                                 return -EIO;
1247                         }
1248                 }
1249                 return 0;
1250         }
1251
1252         if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1253                 EXT4_ERROR_INODE(inode,
1254                                  "logical %d < ee_block %d + ee_len %d!",
1255                                  *logical, le32_to_cpu(ex->ee_block), ee_len);
1256                 return -EIO;
1257         }
1258
1259         *logical = le32_to_cpu(ex->ee_block) + ee_len - 1;
1260         *phys = ext4_ext_pblock(ex) + ee_len - 1;
1261         return 0;
1262 }
1263
1264 /*
1265  * search the closest allocated block to the right for *logical
1266  * and returns it at @logical + it's physical address at @phys
1267  * if *logical is the smallest allocated block, the function
1268  * returns 0 at @phys
1269  * return value contains 0 (success) or error code
1270  */
1271 static int ext4_ext_search_right(struct inode *inode,
1272                                  struct ext4_ext_path *path,
1273                                  ext4_lblk_t *logical, ext4_fsblk_t *phys,
1274                                  struct ext4_extent **ret_ex)
1275 {
1276         struct buffer_head *bh = NULL;
1277         struct ext4_extent_header *eh;
1278         struct ext4_extent_idx *ix;
1279         struct ext4_extent *ex;
1280         ext4_fsblk_t block;
1281         int depth;      /* Note, NOT eh_depth; depth from top of tree */
1282         int ee_len;
1283
1284         if (unlikely(path == NULL)) {
1285                 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1286                 return -EIO;
1287         }
1288         depth = path->p_depth;
1289         *phys = 0;
1290
1291         if (depth == 0 && path->p_ext == NULL)
1292                 return 0;
1293
1294         /* usually extent in the path covers blocks smaller
1295          * then *logical, but it can be that extent is the
1296          * first one in the file */
1297
1298         ex = path[depth].p_ext;
1299         ee_len = ext4_ext_get_actual_len(ex);
1300         if (*logical < le32_to_cpu(ex->ee_block)) {
1301                 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1302                         EXT4_ERROR_INODE(inode,
1303                                          "first_extent(path[%d].p_hdr) != ex",
1304                                          depth);
1305                         return -EIO;
1306                 }
1307                 while (--depth >= 0) {
1308                         ix = path[depth].p_idx;
1309                         if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1310                                 EXT4_ERROR_INODE(inode,
1311                                                  "ix != EXT_FIRST_INDEX *logical %d!",
1312                                                  *logical);
1313                                 return -EIO;
1314                         }
1315                 }
1316                 goto found_extent;
1317         }
1318
1319         if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1320                 EXT4_ERROR_INODE(inode,
1321                                  "logical %d < ee_block %d + ee_len %d!",
1322                                  *logical, le32_to_cpu(ex->ee_block), ee_len);
1323                 return -EIO;
1324         }
1325
1326         if (ex != EXT_LAST_EXTENT(path[depth].p_hdr)) {
1327                 /* next allocated block in this leaf */
1328                 ex++;
1329                 goto found_extent;
1330         }
1331
1332         /* go up and search for index to the right */
1333         while (--depth >= 0) {
1334                 ix = path[depth].p_idx;
1335                 if (ix != EXT_LAST_INDEX(path[depth].p_hdr))
1336                         goto got_index;
1337         }
1338
1339         /* we've gone up to the root and found no index to the right */
1340         return 0;
1341
1342 got_index:
1343         /* we've found index to the right, let's
1344          * follow it and find the closest allocated
1345          * block to the right */
1346         ix++;
1347         block = ext4_idx_pblock(ix);
1348         while (++depth < path->p_depth) {
1349                 bh = sb_bread(inode->i_sb, block);
1350                 if (bh == NULL)
1351                         return -EIO;
1352                 eh = ext_block_hdr(bh);
1353                 /* subtract from p_depth to get proper eh_depth */
1354                 if (ext4_ext_check(inode, eh, path->p_depth - depth)) {
1355                         put_bh(bh);
1356                         return -EIO;
1357                 }
1358                 ix = EXT_FIRST_INDEX(eh);
1359                 block = ext4_idx_pblock(ix);
1360                 put_bh(bh);
1361         }
1362
1363         bh = sb_bread(inode->i_sb, block);
1364         if (bh == NULL)
1365                 return -EIO;
1366         eh = ext_block_hdr(bh);
1367         if (ext4_ext_check(inode, eh, path->p_depth - depth)) {
1368                 put_bh(bh);
1369                 return -EIO;
1370         }
1371         ex = EXT_FIRST_EXTENT(eh);
1372 found_extent:
1373         *logical = le32_to_cpu(ex->ee_block);
1374         *phys = ext4_ext_pblock(ex);
1375         *ret_ex = ex;
1376         if (bh)
1377                 put_bh(bh);
1378         return 0;
1379 }
1380
1381 /*
1382  * ext4_ext_next_allocated_block:
1383  * returns allocated block in subsequent extent or EXT_MAX_BLOCKS.
1384  * NOTE: it considers block number from index entry as
1385  * allocated block. Thus, index entries have to be consistent
1386  * with leaves.
1387  */
1388 static ext4_lblk_t
1389 ext4_ext_next_allocated_block(struct ext4_ext_path *path)
1390 {
1391         int depth;
1392
1393         BUG_ON(path == NULL);
1394         depth = path->p_depth;
1395
1396         if (depth == 0 && path->p_ext == NULL)
1397                 return EXT_MAX_BLOCKS;
1398
1399         while (depth >= 0) {
1400                 if (depth == path->p_depth) {
1401                         /* leaf */
1402                         if (path[depth].p_ext !=
1403                                         EXT_LAST_EXTENT(path[depth].p_hdr))
1404                           return le32_to_cpu(path[depth].p_ext[1].ee_block);
1405                 } else {
1406                         /* index */
1407                         if (path[depth].p_idx !=
1408                                         EXT_LAST_INDEX(path[depth].p_hdr))
1409                           return le32_to_cpu(path[depth].p_idx[1].ei_block);
1410                 }
1411                 depth--;
1412         }
1413
1414         return EXT_MAX_BLOCKS;
1415 }
1416
1417 /*
1418  * ext4_ext_next_leaf_block:
1419  * returns first allocated block from next leaf or EXT_MAX_BLOCKS
1420  */
1421 static ext4_lblk_t ext4_ext_next_leaf_block(struct ext4_ext_path *path)
1422 {
1423         int depth;
1424
1425         BUG_ON(path == NULL);
1426         depth = path->p_depth;
1427
1428         /* zero-tree has no leaf blocks at all */
1429         if (depth == 0)
1430                 return EXT_MAX_BLOCKS;
1431
1432         /* go to index block */
1433         depth--;
1434
1435         while (depth >= 0) {
1436                 if (path[depth].p_idx !=
1437                                 EXT_LAST_INDEX(path[depth].p_hdr))
1438                         return (ext4_lblk_t)
1439                                 le32_to_cpu(path[depth].p_idx[1].ei_block);
1440                 depth--;
1441         }
1442
1443         return EXT_MAX_BLOCKS;
1444 }
1445
1446 /*
1447  * ext4_ext_correct_indexes:
1448  * if leaf gets modified and modified extent is first in the leaf,
1449  * then we have to correct all indexes above.
1450  * TODO: do we need to correct tree in all cases?
1451  */
1452 static int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode,
1453                                 struct ext4_ext_path *path)
1454 {
1455         struct ext4_extent_header *eh;
1456         int depth = ext_depth(inode);
1457         struct ext4_extent *ex;
1458         __le32 border;
1459         int k, err = 0;
1460
1461         eh = path[depth].p_hdr;
1462         ex = path[depth].p_ext;
1463
1464         if (unlikely(ex == NULL || eh == NULL)) {
1465                 EXT4_ERROR_INODE(inode,
1466                                  "ex %p == NULL or eh %p == NULL", ex, eh);
1467                 return -EIO;
1468         }
1469
1470         if (depth == 0) {
1471                 /* there is no tree at all */
1472                 return 0;
1473         }
1474
1475         if (ex != EXT_FIRST_EXTENT(eh)) {
1476                 /* we correct tree if first leaf got modified only */
1477                 return 0;
1478         }
1479
1480         /*
1481          * TODO: we need correction if border is smaller than current one
1482          */
1483         k = depth - 1;
1484         border = path[depth].p_ext->ee_block;
1485         err = ext4_ext_get_access(handle, inode, path + k);
1486         if (err)
1487                 return err;
1488         path[k].p_idx->ei_block = border;
1489         err = ext4_ext_dirty(handle, inode, path + k);
1490         if (err)
1491                 return err;
1492
1493         while (k--) {
1494                 /* change all left-side indexes */
1495                 if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr))
1496                         break;
1497                 err = ext4_ext_get_access(handle, inode, path + k);
1498                 if (err)
1499                         break;
1500                 path[k].p_idx->ei_block = border;
1501                 err = ext4_ext_dirty(handle, inode, path + k);
1502                 if (err)
1503                         break;
1504         }
1505
1506         return err;
1507 }
1508
1509 int
1510 ext4_can_extents_be_merged(struct inode *inode, struct ext4_extent *ex1,
1511                                 struct ext4_extent *ex2)
1512 {
1513         unsigned short ext1_ee_len, ext2_ee_len, max_len;
1514
1515         /*
1516          * Make sure that either both extents are uninitialized, or
1517          * both are _not_.
1518          */
1519         if (ext4_ext_is_uninitialized(ex1) ^ ext4_ext_is_uninitialized(ex2))
1520                 return 0;
1521
1522         if (ext4_ext_is_uninitialized(ex1))
1523                 max_len = EXT_UNINIT_MAX_LEN;
1524         else
1525                 max_len = EXT_INIT_MAX_LEN;
1526
1527         ext1_ee_len = ext4_ext_get_actual_len(ex1);
1528         ext2_ee_len = ext4_ext_get_actual_len(ex2);
1529
1530         if (le32_to_cpu(ex1->ee_block) + ext1_ee_len !=
1531                         le32_to_cpu(ex2->ee_block))
1532                 return 0;
1533
1534         /*
1535          * To allow future support for preallocated extents to be added
1536          * as an RO_COMPAT feature, refuse to merge to extents if
1537          * this can result in the top bit of ee_len being set.
1538          */
1539         if (ext1_ee_len + ext2_ee_len > max_len)
1540                 return 0;
1541 #ifdef AGGRESSIVE_TEST
1542         if (ext1_ee_len >= 4)
1543                 return 0;
1544 #endif
1545
1546         if (ext4_ext_pblock(ex1) + ext1_ee_len == ext4_ext_pblock(ex2))
1547                 return 1;
1548         return 0;
1549 }
1550
1551 /*
1552  * This function tries to merge the "ex" extent to the next extent in the tree.
1553  * It always tries to merge towards right. If you want to merge towards
1554  * left, pass "ex - 1" as argument instead of "ex".
1555  * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns
1556  * 1 if they got merged.
1557  */
1558 static int ext4_ext_try_to_merge_right(struct inode *inode,
1559                                  struct ext4_ext_path *path,
1560                                  struct ext4_extent *ex)
1561 {
1562         struct ext4_extent_header *eh;
1563         unsigned int depth, len;
1564         int merge_done = 0;
1565         int uninitialized = 0;
1566
1567         depth = ext_depth(inode);
1568         BUG_ON(path[depth].p_hdr == NULL);
1569         eh = path[depth].p_hdr;
1570
1571         while (ex < EXT_LAST_EXTENT(eh)) {
1572                 if (!ext4_can_extents_be_merged(inode, ex, ex + 1))
1573                         break;
1574                 /* merge with next extent! */
1575                 if (ext4_ext_is_uninitialized(ex))
1576                         uninitialized = 1;
1577                 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1578                                 + ext4_ext_get_actual_len(ex + 1));
1579                 if (uninitialized)
1580                         ext4_ext_mark_uninitialized(ex);
1581
1582                 if (ex + 1 < EXT_LAST_EXTENT(eh)) {
1583                         len = (EXT_LAST_EXTENT(eh) - ex - 1)
1584                                 * sizeof(struct ext4_extent);
1585                         memmove(ex + 1, ex + 2, len);
1586                 }
1587                 le16_add_cpu(&eh->eh_entries, -1);
1588                 merge_done = 1;
1589                 WARN_ON(eh->eh_entries == 0);
1590                 if (!eh->eh_entries)
1591                         EXT4_ERROR_INODE(inode, "eh->eh_entries = 0!");
1592         }
1593
1594         return merge_done;
1595 }
1596
1597 /*
1598  * This function tries to merge the @ex extent to neighbours in the tree.
1599  * return 1 if merge left else 0.
1600  */
1601 static int ext4_ext_try_to_merge(struct inode *inode,
1602                                   struct ext4_ext_path *path,
1603                                   struct ext4_extent *ex) {
1604         struct ext4_extent_header *eh;
1605         unsigned int depth;
1606         int merge_done = 0;
1607         int ret = 0;
1608
1609         depth = ext_depth(inode);
1610         BUG_ON(path[depth].p_hdr == NULL);
1611         eh = path[depth].p_hdr;
1612
1613         if (ex > EXT_FIRST_EXTENT(eh))
1614                 merge_done = ext4_ext_try_to_merge_right(inode, path, ex - 1);
1615
1616         if (!merge_done)
1617                 ret = ext4_ext_try_to_merge_right(inode, path, ex);
1618
1619         return ret;
1620 }
1621
1622 /*
1623  * check if a portion of the "newext" extent overlaps with an
1624  * existing extent.
1625  *
1626  * If there is an overlap discovered, it updates the length of the newext
1627  * such that there will be no overlap, and then returns 1.
1628  * If there is no overlap found, it returns 0.
1629  */
1630 static unsigned int ext4_ext_check_overlap(struct ext4_sb_info *sbi,
1631                                            struct inode *inode,
1632                                            struct ext4_extent *newext,
1633                                            struct ext4_ext_path *path)
1634 {
1635         ext4_lblk_t b1, b2;
1636         unsigned int depth, len1;
1637         unsigned int ret = 0;
1638
1639         b1 = le32_to_cpu(newext->ee_block);
1640         len1 = ext4_ext_get_actual_len(newext);
1641         depth = ext_depth(inode);
1642         if (!path[depth].p_ext)
1643                 goto out;
1644         b2 = le32_to_cpu(path[depth].p_ext->ee_block);
1645         b2 &= ~(sbi->s_cluster_ratio - 1);
1646
1647         /*
1648          * get the next allocated block if the extent in the path
1649          * is before the requested block(s)
1650          */
1651         if (b2 < b1) {
1652                 b2 = ext4_ext_next_allocated_block(path);
1653                 if (b2 == EXT_MAX_BLOCKS)
1654                         goto out;
1655                 b2 &= ~(sbi->s_cluster_ratio - 1);
1656         }
1657
1658         /* check for wrap through zero on extent logical start block*/
1659         if (b1 + len1 < b1) {
1660                 len1 = EXT_MAX_BLOCKS - b1;
1661                 newext->ee_len = cpu_to_le16(len1);
1662                 ret = 1;
1663         }
1664
1665         /* check for overlap */
1666         if (b1 + len1 > b2) {
1667                 newext->ee_len = cpu_to_le16(b2 - b1);
1668                 ret = 1;
1669         }
1670 out:
1671         return ret;
1672 }
1673
1674 /*
1675  * ext4_ext_insert_extent:
1676  * tries to merge requsted extent into the existing extent or
1677  * inserts requested extent as new one into the tree,
1678  * creating new leaf in the no-space case.
1679  */
1680 int ext4_ext_insert_extent(handle_t *handle, struct inode *inode,
1681                                 struct ext4_ext_path *path,
1682                                 struct ext4_extent *newext, int flag)
1683 {
1684         struct ext4_extent_header *eh;
1685         struct ext4_extent *ex, *fex;
1686         struct ext4_extent *nearex; /* nearest extent */
1687         struct ext4_ext_path *npath = NULL;
1688         int depth, len, err;
1689         ext4_lblk_t next;
1690         unsigned uninitialized = 0;
1691         int flags = 0;
1692
1693         if (unlikely(ext4_ext_get_actual_len(newext) == 0)) {
1694                 EXT4_ERROR_INODE(inode, "ext4_ext_get_actual_len(newext) == 0");
1695                 return -EIO;
1696         }
1697         depth = ext_depth(inode);
1698         ex = path[depth].p_ext;
1699         if (unlikely(path[depth].p_hdr == NULL)) {
1700                 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
1701                 return -EIO;
1702         }
1703
1704         /* try to insert block into found extent and return */
1705         if (ex && !(flag & EXT4_GET_BLOCKS_PRE_IO)
1706                 && ext4_can_extents_be_merged(inode, ex, newext)) {
1707                 ext_debug("append [%d]%d block to %d:[%d]%d (from %llu)\n",
1708                           ext4_ext_is_uninitialized(newext),
1709                           ext4_ext_get_actual_len(newext),
1710                           le32_to_cpu(ex->ee_block),
1711                           ext4_ext_is_uninitialized(ex),
1712                           ext4_ext_get_actual_len(ex),
1713                           ext4_ext_pblock(ex));
1714                 err = ext4_ext_get_access(handle, inode, path + depth);
1715                 if (err)
1716                         return err;
1717
1718                 /*
1719                  * ext4_can_extents_be_merged should have checked that either
1720                  * both extents are uninitialized, or both aren't. Thus we
1721                  * need to check only one of them here.
1722                  */
1723                 if (ext4_ext_is_uninitialized(ex))
1724                         uninitialized = 1;
1725                 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1726                                         + ext4_ext_get_actual_len(newext));
1727                 if (uninitialized)
1728                         ext4_ext_mark_uninitialized(ex);
1729                 eh = path[depth].p_hdr;
1730                 nearex = ex;
1731                 goto merge;
1732         }
1733
1734         depth = ext_depth(inode);
1735         eh = path[depth].p_hdr;
1736         if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max))
1737                 goto has_space;
1738
1739         /* probably next leaf has space for us? */
1740         fex = EXT_LAST_EXTENT(eh);
1741         next = EXT_MAX_BLOCKS;
1742         if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block))
1743                 next = ext4_ext_next_leaf_block(path);
1744         if (next != EXT_MAX_BLOCKS) {
1745                 ext_debug("next leaf block - %d\n", next);
1746                 BUG_ON(npath != NULL);
1747                 npath = ext4_ext_find_extent(inode, next, NULL);
1748                 if (IS_ERR(npath))
1749                         return PTR_ERR(npath);
1750                 BUG_ON(npath->p_depth != path->p_depth);
1751                 eh = npath[depth].p_hdr;
1752                 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) {
1753                         ext_debug("next leaf isn't full(%d)\n",
1754                                   le16_to_cpu(eh->eh_entries));
1755                         path = npath;
1756                         goto has_space;
1757                 }
1758                 ext_debug("next leaf has no free space(%d,%d)\n",
1759                           le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
1760         }
1761
1762         /*
1763          * There is no free space in the found leaf.
1764          * We're gonna add a new leaf in the tree.
1765          */
1766         if (flag & EXT4_GET_BLOCKS_PUNCH_OUT_EXT)
1767                 flags = EXT4_MB_USE_ROOT_BLOCKS;
1768         err = ext4_ext_create_new_leaf(handle, inode, flags, path, newext);
1769         if (err)
1770                 goto cleanup;
1771         depth = ext_depth(inode);
1772         eh = path[depth].p_hdr;
1773
1774 has_space:
1775         nearex = path[depth].p_ext;
1776
1777         err = ext4_ext_get_access(handle, inode, path + depth);
1778         if (err)
1779                 goto cleanup;
1780
1781         if (!nearex) {
1782                 /* there is no extent in this leaf, create first one */
1783                 ext_debug("first extent in the leaf: %d:%llu:[%d]%d\n",
1784                                 le32_to_cpu(newext->ee_block),
1785                                 ext4_ext_pblock(newext),
1786                                 ext4_ext_is_uninitialized(newext),
1787                                 ext4_ext_get_actual_len(newext));
1788                 path[depth].p_ext = EXT_FIRST_EXTENT(eh);
1789         } else if (le32_to_cpu(newext->ee_block)
1790                            > le32_to_cpu(nearex->ee_block)) {
1791 /*              BUG_ON(newext->ee_block == nearex->ee_block); */
1792                 if (nearex != EXT_LAST_EXTENT(eh)) {
1793                         len = EXT_MAX_EXTENT(eh) - nearex;
1794                         len = (len - 1) * sizeof(struct ext4_extent);
1795                         len = len < 0 ? 0 : len;
1796                         ext_debug("insert %d:%llu:[%d]%d after: nearest 0x%p, "
1797                                         "move %d from 0x%p to 0x%p\n",
1798                                         le32_to_cpu(newext->ee_block),
1799                                         ext4_ext_pblock(newext),
1800                                         ext4_ext_is_uninitialized(newext),
1801                                         ext4_ext_get_actual_len(newext),
1802                                         nearex, len, nearex + 1, nearex + 2);
1803                         memmove(nearex + 2, nearex + 1, len);
1804                 }
1805                 path[depth].p_ext = nearex + 1;
1806         } else {
1807                 BUG_ON(newext->ee_block == nearex->ee_block);
1808                 len = (EXT_MAX_EXTENT(eh) - nearex) * sizeof(struct ext4_extent);
1809                 len = len < 0 ? 0 : len;
1810                 ext_debug("insert %d:%llu:[%d]%d before: nearest 0x%p, "
1811                                 "move %d from 0x%p to 0x%p\n",
1812                                 le32_to_cpu(newext->ee_block),
1813                                 ext4_ext_pblock(newext),
1814                                 ext4_ext_is_uninitialized(newext),
1815                                 ext4_ext_get_actual_len(newext),
1816                                 nearex, len, nearex, nearex + 1);
1817                 memmove(nearex + 1, nearex, len);
1818                 path[depth].p_ext = nearex;
1819         }
1820
1821         le16_add_cpu(&eh->eh_entries, 1);
1822         nearex = path[depth].p_ext;
1823         nearex->ee_block = newext->ee_block;
1824         ext4_ext_store_pblock(nearex, ext4_ext_pblock(newext));
1825         nearex->ee_len = newext->ee_len;
1826
1827 merge:
1828         /* try to merge extents to the right */
1829         if (!(flag & EXT4_GET_BLOCKS_PRE_IO))
1830                 ext4_ext_try_to_merge(inode, path, nearex);
1831
1832         /* try to merge extents to the left */
1833
1834         /* time to correct all indexes above */
1835         err = ext4_ext_correct_indexes(handle, inode, path);
1836         if (err)
1837                 goto cleanup;
1838
1839         err = ext4_ext_dirty(handle, inode, path + depth);
1840
1841 cleanup:
1842         if (npath) {
1843                 ext4_ext_drop_refs(npath);
1844                 kfree(npath);
1845         }
1846         ext4_ext_invalidate_cache(inode);
1847         return err;
1848 }
1849
1850 static int ext4_ext_walk_space(struct inode *inode, ext4_lblk_t block,
1851                                ext4_lblk_t num, ext_prepare_callback func,
1852                                void *cbdata)
1853 {
1854         struct ext4_ext_path *path = NULL;
1855         struct ext4_ext_cache cbex;
1856         struct ext4_extent *ex;
1857         ext4_lblk_t next, start = 0, end = 0;
1858         ext4_lblk_t last = block + num;
1859         int depth, exists, err = 0;
1860
1861         BUG_ON(func == NULL);
1862         BUG_ON(inode == NULL);
1863
1864         while (block < last && block != EXT_MAX_BLOCKS) {
1865                 num = last - block;
1866                 /* find extent for this block */
1867                 down_read(&EXT4_I(inode)->i_data_sem);
1868                 path = ext4_ext_find_extent(inode, block, path);
1869                 up_read(&EXT4_I(inode)->i_data_sem);
1870                 if (IS_ERR(path)) {
1871                         err = PTR_ERR(path);
1872                         path = NULL;
1873                         break;
1874                 }
1875
1876                 depth = ext_depth(inode);
1877                 if (unlikely(path[depth].p_hdr == NULL)) {
1878                         EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
1879                         err = -EIO;
1880                         break;
1881                 }
1882                 ex = path[depth].p_ext;
1883                 next = ext4_ext_next_allocated_block(path);
1884
1885                 exists = 0;
1886                 if (!ex) {
1887                         /* there is no extent yet, so try to allocate
1888                          * all requested space */
1889                         start = block;
1890                         end = block + num;
1891                 } else if (le32_to_cpu(ex->ee_block) > block) {
1892                         /* need to allocate space before found extent */
1893                         start = block;
1894                         end = le32_to_cpu(ex->ee_block);
1895                         if (block + num < end)
1896                                 end = block + num;
1897                 } else if (block >= le32_to_cpu(ex->ee_block)
1898                                         + ext4_ext_get_actual_len(ex)) {
1899                         /* need to allocate space after found extent */
1900                         start = block;
1901                         end = block + num;
1902                         if (end >= next)
1903                                 end = next;
1904                 } else if (block >= le32_to_cpu(ex->ee_block)) {
1905                         /*
1906                          * some part of requested space is covered
1907                          * by found extent
1908                          */
1909                         start = block;
1910                         end = le32_to_cpu(ex->ee_block)
1911                                 + ext4_ext_get_actual_len(ex);
1912                         if (block + num < end)
1913                                 end = block + num;
1914                         exists = 1;
1915                 } else {
1916                         BUG();
1917                 }
1918                 BUG_ON(end <= start);
1919
1920                 if (!exists) {
1921                         cbex.ec_block = start;
1922                         cbex.ec_len = end - start;
1923                         cbex.ec_start = 0;
1924                 } else {
1925                         cbex.ec_block = le32_to_cpu(ex->ee_block);
1926                         cbex.ec_len = ext4_ext_get_actual_len(ex);
1927                         cbex.ec_start = ext4_ext_pblock(ex);
1928                 }
1929
1930                 if (unlikely(cbex.ec_len == 0)) {
1931                         EXT4_ERROR_INODE(inode, "cbex.ec_len == 0");
1932                         err = -EIO;
1933                         break;
1934                 }
1935                 err = func(inode, next, &cbex, ex, cbdata);
1936                 ext4_ext_drop_refs(path);
1937
1938                 if (err < 0)
1939                         break;
1940
1941                 if (err == EXT_REPEAT)
1942                         continue;
1943                 else if (err == EXT_BREAK) {
1944                         err = 0;
1945                         break;
1946                 }
1947
1948                 if (ext_depth(inode) != depth) {
1949                         /* depth was changed. we have to realloc path */
1950                         kfree(path);
1951                         path = NULL;
1952                 }
1953
1954                 block = cbex.ec_block + cbex.ec_len;
1955         }
1956
1957         if (path) {
1958                 ext4_ext_drop_refs(path);
1959                 kfree(path);
1960         }
1961
1962         return err;
1963 }
1964
1965 static void
1966 ext4_ext_put_in_cache(struct inode *inode, ext4_lblk_t block,
1967                         __u32 len, ext4_fsblk_t start)
1968 {
1969         struct ext4_ext_cache *cex;
1970         BUG_ON(len == 0);
1971         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1972         cex = &EXT4_I(inode)->i_cached_extent;
1973         cex->ec_block = block;
1974         cex->ec_len = len;
1975         cex->ec_start = start;
1976         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1977 }
1978
1979 /*
1980  * ext4_ext_put_gap_in_cache:
1981  * calculate boundaries of the gap that the requested block fits into
1982  * and cache this gap
1983  */
1984 static void
1985 ext4_ext_put_gap_in_cache(struct inode *inode, struct ext4_ext_path *path,
1986                                 ext4_lblk_t block)
1987 {
1988         int depth = ext_depth(inode);
1989         unsigned long len;
1990         ext4_lblk_t lblock;
1991         struct ext4_extent *ex;
1992
1993         ex = path[depth].p_ext;
1994         if (ex == NULL) {
1995                 /* there is no extent yet, so gap is [0;-] */
1996                 lblock = 0;
1997                 len = EXT_MAX_BLOCKS;
1998                 ext_debug("cache gap(whole file):");
1999         } else if (block < le32_to_cpu(ex->ee_block)) {
2000                 lblock = block;
2001                 len = le32_to_cpu(ex->ee_block) - block;
2002                 ext_debug("cache gap(before): %u [%u:%u]",
2003                                 block,
2004                                 le32_to_cpu(ex->ee_block),
2005                                  ext4_ext_get_actual_len(ex));
2006         } else if (block >= le32_to_cpu(ex->ee_block)
2007                         + ext4_ext_get_actual_len(ex)) {
2008                 ext4_lblk_t next;
2009                 lblock = le32_to_cpu(ex->ee_block)
2010                         + ext4_ext_get_actual_len(ex);
2011
2012                 next = ext4_ext_next_allocated_block(path);
2013                 ext_debug("cache gap(after): [%u:%u] %u",
2014                                 le32_to_cpu(ex->ee_block),
2015                                 ext4_ext_get_actual_len(ex),
2016                                 block);
2017                 BUG_ON(next == lblock);
2018                 len = next - lblock;
2019         } else {
2020                 lblock = len = 0;
2021                 BUG();
2022         }
2023
2024         ext_debug(" -> %u:%lu\n", lblock, len);
2025         ext4_ext_put_in_cache(inode, lblock, len, 0);
2026 }
2027
2028 /*
2029  * ext4_ext_check_cache()
2030  * Checks to see if the given block is in the cache.
2031  * If it is, the cached extent is stored in the given
2032  * cache extent pointer.  If the cached extent is a hole,
2033  * this routine should be used instead of
2034  * ext4_ext_in_cache if the calling function needs to
2035  * know the size of the hole.
2036  *
2037  * @inode: The files inode
2038  * @block: The block to look for in the cache
2039  * @ex:    Pointer where the cached extent will be stored
2040  *         if it contains block
2041  *
2042  * Return 0 if cache is invalid; 1 if the cache is valid
2043  */
2044 static int ext4_ext_check_cache(struct inode *inode, ext4_lblk_t block,
2045         struct ext4_ext_cache *ex){
2046         struct ext4_ext_cache *cex;
2047         struct ext4_sb_info *sbi;
2048         int ret = 0;
2049
2050         /*
2051          * We borrow i_block_reservation_lock to protect i_cached_extent
2052          */
2053         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
2054         cex = &EXT4_I(inode)->i_cached_extent;
2055         sbi = EXT4_SB(inode->i_sb);
2056
2057         /* has cache valid data? */
2058         if (cex->ec_len == 0)
2059                 goto errout;
2060
2061         if (in_range(block, cex->ec_block, cex->ec_len)) {
2062                 memcpy(ex, cex, sizeof(struct ext4_ext_cache));
2063                 ext_debug("%u cached by %u:%u:%llu\n",
2064                                 block,
2065                                 cex->ec_block, cex->ec_len, cex->ec_start);
2066                 ret = 1;
2067         }
2068 errout:
2069         if (!ret)
2070                 sbi->extent_cache_misses++;
2071         else
2072                 sbi->extent_cache_hits++;
2073         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
2074         return ret;
2075 }
2076
2077 /*
2078  * ext4_ext_in_cache()
2079  * Checks to see if the given block is in the cache.
2080  * If it is, the cached extent is stored in the given
2081  * extent pointer.
2082  *
2083  * @inode: The files inode
2084  * @block: The block to look for in the cache
2085  * @ex:    Pointer where the cached extent will be stored
2086  *         if it contains block
2087  *
2088  * Return 0 if cache is invalid; 1 if the cache is valid
2089  */
2090 static int
2091 ext4_ext_in_cache(struct inode *inode, ext4_lblk_t block,
2092                         struct ext4_extent *ex)
2093 {
2094         struct ext4_ext_cache cex;
2095         int ret = 0;
2096
2097         if (ext4_ext_check_cache(inode, block, &cex)) {
2098                 ex->ee_block = cpu_to_le32(cex.ec_block);
2099                 ext4_ext_store_pblock(ex, cex.ec_start);
2100                 ex->ee_len = cpu_to_le16(cex.ec_len);
2101                 ret = 1;
2102         }
2103
2104         return ret;
2105 }
2106
2107
2108 /*
2109  * ext4_ext_rm_idx:
2110  * removes index from the index block.
2111  */
2112 static int ext4_ext_rm_idx(handle_t *handle, struct inode *inode,
2113                         struct ext4_ext_path *path)
2114 {
2115         int err;
2116         ext4_fsblk_t leaf;
2117
2118         /* free index block */
2119         path--;
2120         leaf = ext4_idx_pblock(path->p_idx);
2121         if (unlikely(path->p_hdr->eh_entries == 0)) {
2122                 EXT4_ERROR_INODE(inode, "path->p_hdr->eh_entries == 0");
2123                 return -EIO;
2124         }
2125         err = ext4_ext_get_access(handle, inode, path);
2126         if (err)
2127                 return err;
2128
2129         if (path->p_idx != EXT_LAST_INDEX(path->p_hdr)) {
2130                 int len = EXT_LAST_INDEX(path->p_hdr) - path->p_idx;
2131                 len *= sizeof(struct ext4_extent_idx);
2132                 memmove(path->p_idx, path->p_idx + 1, len);
2133         }
2134
2135         le16_add_cpu(&path->p_hdr->eh_entries, -1);
2136         err = ext4_ext_dirty(handle, inode, path);
2137         if (err)
2138                 return err;
2139         ext_debug("index is empty, remove it, free block %llu\n", leaf);
2140         ext4_free_blocks(handle, inode, NULL, leaf, 1,
2141                          EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET);
2142         return err;
2143 }
2144
2145 /*
2146  * ext4_ext_calc_credits_for_single_extent:
2147  * This routine returns max. credits that needed to insert an extent
2148  * to the extent tree.
2149  * When pass the actual path, the caller should calculate credits
2150  * under i_data_sem.
2151  */
2152 int ext4_ext_calc_credits_for_single_extent(struct inode *inode, int nrblocks,
2153                                                 struct ext4_ext_path *path)
2154 {
2155         if (path) {
2156                 int depth = ext_depth(inode);
2157                 int ret = 0;
2158
2159                 /* probably there is space in leaf? */
2160                 if (le16_to_cpu(path[depth].p_hdr->eh_entries)
2161                                 < le16_to_cpu(path[depth].p_hdr->eh_max)) {
2162
2163                         /*
2164                          *  There are some space in the leaf tree, no
2165                          *  need to account for leaf block credit
2166                          *
2167                          *  bitmaps and block group descriptor blocks
2168                          *  and other metadat blocks still need to be
2169                          *  accounted.
2170                          */
2171                         /* 1 bitmap, 1 block group descriptor */
2172                         ret = 2 + EXT4_META_TRANS_BLOCKS(inode->i_sb);
2173                         return ret;
2174                 }
2175         }
2176
2177         return ext4_chunk_trans_blocks(inode, nrblocks);
2178 }
2179
2180 /*
2181  * How many index/leaf blocks need to change/allocate to modify nrblocks?
2182  *
2183  * if nrblocks are fit in a single extent (chunk flag is 1), then
2184  * in the worse case, each tree level index/leaf need to be changed
2185  * if the tree split due to insert a new extent, then the old tree
2186  * index/leaf need to be updated too
2187  *
2188  * If the nrblocks are discontiguous, they could cause
2189  * the whole tree split more than once, but this is really rare.
2190  */
2191 int ext4_ext_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
2192 {
2193         int index;
2194         int depth = ext_depth(inode);
2195
2196         if (chunk)
2197                 index = depth * 2;
2198         else
2199                 index = depth * 3;
2200
2201         return index;
2202 }
2203
2204 static int ext4_remove_blocks(handle_t *handle, struct inode *inode,
2205                               struct ext4_extent *ex,
2206                               ext4_fsblk_t *partial_cluster,
2207                               ext4_lblk_t from, ext4_lblk_t to)
2208 {
2209         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2210         unsigned short ee_len =  ext4_ext_get_actual_len(ex);
2211         ext4_fsblk_t pblk;
2212         int flags = EXT4_FREE_BLOCKS_FORGET;
2213
2214         if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2215                 flags |= EXT4_FREE_BLOCKS_METADATA;
2216         /*
2217          * For bigalloc file systems, we never free a partial cluster
2218          * at the beginning of the extent.  Instead, we make a note
2219          * that we tried freeing the cluster, and check to see if we
2220          * need to free it on a subsequent call to ext4_remove_blocks,
2221          * or at the end of the ext4_truncate() operation.
2222          */
2223         flags |= EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER;
2224
2225         /*
2226          * If we have a partial cluster, and it's different from the
2227          * cluster of the last block, we need to explicitly free the
2228          * partial cluster here.
2229          */
2230         pblk = ext4_ext_pblock(ex) + ee_len - 1;
2231         if (*partial_cluster && (EXT4_B2C(sbi, pblk) != *partial_cluster)) {
2232                 ext4_free_blocks(handle, inode, NULL,
2233                                  EXT4_C2B(sbi, *partial_cluster),
2234                                  sbi->s_cluster_ratio, flags);
2235                 *partial_cluster = 0;
2236         }
2237
2238 #ifdef EXTENTS_STATS
2239         {
2240                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2241                 spin_lock(&sbi->s_ext_stats_lock);
2242                 sbi->s_ext_blocks += ee_len;
2243                 sbi->s_ext_extents++;
2244                 if (ee_len < sbi->s_ext_min)
2245                         sbi->s_ext_min = ee_len;
2246                 if (ee_len > sbi->s_ext_max)
2247                         sbi->s_ext_max = ee_len;
2248                 if (ext_depth(inode) > sbi->s_depth_max)
2249                         sbi->s_depth_max = ext_depth(inode);
2250                 spin_unlock(&sbi->s_ext_stats_lock);
2251         }
2252 #endif
2253         if (from >= le32_to_cpu(ex->ee_block)
2254             && to == le32_to_cpu(ex->ee_block) + ee_len - 1) {
2255                 /* tail removal */
2256                 ext4_lblk_t num;
2257
2258                 num = le32_to_cpu(ex->ee_block) + ee_len - from;
2259                 pblk = ext4_ext_pblock(ex) + ee_len - num;
2260                 ext_debug("free last %u blocks starting %llu\n", num, pblk);
2261                 ext4_free_blocks(handle, inode, NULL, pblk, num, flags);
2262                 /*
2263                  * If the block range to be freed didn't start at the
2264                  * beginning of a cluster, and we removed the entire
2265                  * extent, save the partial cluster here, since we
2266                  * might need to delete if we determine that the
2267                  * truncate operation has removed all of the blocks in
2268                  * the cluster.
2269                  */
2270                 if (pblk & (sbi->s_cluster_ratio - 1) &&
2271                     (ee_len == num))
2272                         *partial_cluster = EXT4_B2C(sbi, pblk);
2273                 else
2274                         *partial_cluster = 0;
2275         } else if (from == le32_to_cpu(ex->ee_block)
2276                    && to <= le32_to_cpu(ex->ee_block) + ee_len - 1) {
2277                 /* head removal */
2278                 ext4_lblk_t num;
2279                 ext4_fsblk_t start;
2280
2281                 num = to - from;
2282                 start = ext4_ext_pblock(ex);
2283
2284                 ext_debug("free first %u blocks starting %llu\n", num, start);
2285                 ext4_free_blocks(handle, inode, 0, start, num, flags);
2286
2287         } else {
2288                 printk(KERN_INFO "strange request: removal(2) "
2289                                 "%u-%u from %u:%u\n",
2290                                 from, to, le32_to_cpu(ex->ee_block), ee_len);
2291         }
2292         return 0;
2293 }
2294
2295
2296 /*
2297  * ext4_ext_rm_leaf() Removes the extents associated with the
2298  * blocks appearing between "start" and "end", and splits the extents
2299  * if "start" and "end" appear in the same extent
2300  *
2301  * @handle: The journal handle
2302  * @inode:  The files inode
2303  * @path:   The path to the leaf
2304  * @start:  The first block to remove
2305  * @end:   The last block to remove
2306  */
2307 static int
2308 ext4_ext_rm_leaf(handle_t *handle, struct inode *inode,
2309                  struct ext4_ext_path *path, ext4_fsblk_t *partial_cluster,
2310                  ext4_lblk_t start, ext4_lblk_t end)
2311 {
2312         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2313         int err = 0, correct_index = 0;
2314         int depth = ext_depth(inode), credits;
2315         struct ext4_extent_header *eh;
2316         ext4_lblk_t a, b, block;
2317         unsigned num;
2318         ext4_lblk_t ex_ee_block;
2319         unsigned short ex_ee_len;
2320         unsigned uninitialized = 0;
2321         struct ext4_extent *ex;
2322         struct ext4_map_blocks map;
2323
2324         /* the header must be checked already in ext4_ext_remove_space() */
2325         ext_debug("truncate since %u in leaf\n", start);
2326         if (!path[depth].p_hdr)
2327                 path[depth].p_hdr = ext_block_hdr(path[depth].p_bh);
2328         eh = path[depth].p_hdr;
2329         if (unlikely(path[depth].p_hdr == NULL)) {
2330                 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
2331                 return -EIO;
2332         }
2333         /* find where to start removing */
2334         ex = EXT_LAST_EXTENT(eh);
2335
2336         ex_ee_block = le32_to_cpu(ex->ee_block);
2337         ex_ee_len = ext4_ext_get_actual_len(ex);
2338
2339         while (ex >= EXT_FIRST_EXTENT(eh) &&
2340                         ex_ee_block + ex_ee_len > start) {
2341
2342                 if (ext4_ext_is_uninitialized(ex))
2343                         uninitialized = 1;
2344                 else
2345                         uninitialized = 0;
2346
2347                 ext_debug("remove ext %u:[%d]%d\n", ex_ee_block,
2348                          uninitialized, ex_ee_len);
2349                 path[depth].p_ext = ex;
2350
2351                 a = ex_ee_block > start ? ex_ee_block : start;
2352                 b = ex_ee_block+ex_ee_len - 1 < end ?
2353                         ex_ee_block+ex_ee_len - 1 : end;
2354
2355                 ext_debug("  border %u:%u\n", a, b);
2356
2357                 /* If this extent is beyond the end of the hole, skip it */
2358                 if (end <= ex_ee_block) {
2359                         ex--;
2360                         ex_ee_block = le32_to_cpu(ex->ee_block);
2361                         ex_ee_len = ext4_ext_get_actual_len(ex);
2362                         continue;
2363                 } else if (a != ex_ee_block &&
2364                         b != ex_ee_block + ex_ee_len - 1) {
2365                         /*
2366                          * If this is a truncate, then this condition should
2367                          * never happen because at least one of the end points
2368                          * needs to be on the edge of the extent.
2369                          */
2370                         if (end == EXT_MAX_BLOCKS - 1) {
2371                                 ext_debug("  bad truncate %u:%u\n",
2372                                                 start, end);
2373                                 block = 0;
2374                                 num = 0;
2375                                 err = -EIO;
2376                                 goto out;
2377                         }
2378                         /*
2379                          * else this is a hole punch, so the extent needs to
2380                          * be split since neither edge of the hole is on the
2381                          * extent edge
2382                          */
2383                         else{
2384                                 map.m_pblk = ext4_ext_pblock(ex);
2385                                 map.m_lblk = ex_ee_block;
2386                                 map.m_len = b - ex_ee_block;
2387
2388                                 err = ext4_split_extent(handle,
2389                                         inode, path, &map, 0,
2390                                         EXT4_GET_BLOCKS_PUNCH_OUT_EXT |
2391                                         EXT4_GET_BLOCKS_PRE_IO);
2392
2393                                 if (err < 0)
2394                                         goto out;
2395
2396                                 ex_ee_len = ext4_ext_get_actual_len(ex);
2397
2398                                 b = ex_ee_block+ex_ee_len - 1 < end ?
2399                                         ex_ee_block+ex_ee_len - 1 : end;
2400
2401                                 /* Then remove tail of this extent */
2402                                 block = ex_ee_block;
2403                                 num = a - block;
2404                         }
2405                 } else if (a != ex_ee_block) {
2406                         /* remove tail of the extent */
2407                         block = ex_ee_block;
2408                         num = a - block;
2409                 } else if (b != ex_ee_block + ex_ee_len - 1) {
2410                         /* remove head of the extent */
2411                         block = b;
2412                         num =  ex_ee_block + ex_ee_len - b;
2413
2414                         /*
2415                          * If this is a truncate, this condition
2416                          * should never happen
2417                          */
2418                         if (end == EXT_MAX_BLOCKS - 1) {
2419                                 ext_debug("  bad truncate %u:%u\n",
2420                                         start, end);
2421                                 err = -EIO;
2422                                 goto out;
2423                         }
2424                 } else {
2425                         /* remove whole extent: excellent! */
2426                         block = ex_ee_block;
2427                         num = 0;
2428                         if (a != ex_ee_block) {
2429                                 ext_debug("  bad truncate %u:%u\n",
2430                                         start, end);
2431                                 err = -EIO;
2432                                 goto out;
2433                         }
2434
2435                         if (b != ex_ee_block + ex_ee_len - 1) {
2436                                 ext_debug("  bad truncate %u:%u\n",
2437                                         start, end);
2438                                 err = -EIO;
2439                                 goto out;
2440                         }
2441                 }
2442
2443                 /*
2444                  * 3 for leaf, sb, and inode plus 2 (bmap and group
2445                  * descriptor) for each block group; assume two block
2446                  * groups plus ex_ee_len/blocks_per_block_group for
2447                  * the worst case
2448                  */
2449                 credits = 7 + 2*(ex_ee_len/EXT4_BLOCKS_PER_GROUP(inode->i_sb));
2450                 if (ex == EXT_FIRST_EXTENT(eh)) {
2451                         correct_index = 1;
2452                         credits += (ext_depth(inode)) + 1;
2453                 }
2454                 credits += EXT4_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb);
2455
2456                 err = ext4_ext_truncate_extend_restart(handle, inode, credits);
2457                 if (err)
2458                         goto out;
2459
2460                 err = ext4_ext_get_access(handle, inode, path + depth);
2461                 if (err)
2462                         goto out;
2463
2464                 err = ext4_remove_blocks(handle, inode, ex, partial_cluster,
2465                                          a, b);
2466                 if (err)
2467                         goto out;
2468
2469                 if (num == 0) {
2470                         /* this extent is removed; mark slot entirely unused */
2471                         ext4_ext_store_pblock(ex, 0);
2472                 } else if (block != ex_ee_block) {
2473                         /*
2474                          * If this was a head removal, then we need to update
2475                          * the physical block since it is now at a different
2476                          * location
2477                          */
2478                         ext4_ext_store_pblock(ex, ext4_ext_pblock(ex) + (b-a));
2479                 }
2480
2481                 ex->ee_block = cpu_to_le32(block);
2482                 ex->ee_len = cpu_to_le16(num);
2483                 /*
2484                  * Do not mark uninitialized if all the blocks in the
2485                  * extent have been removed.
2486                  */
2487                 if (uninitialized && num)
2488                         ext4_ext_mark_uninitialized(ex);
2489
2490                 err = ext4_ext_dirty(handle, inode, path + depth);
2491                 if (err)
2492                         goto out;
2493
2494                 /*
2495                  * If the extent was completely released,
2496                  * we need to remove it from the leaf
2497                  */
2498                 if (num == 0) {
2499                         if (end != EXT_MAX_BLOCKS - 1) {
2500                                 /*
2501                                  * For hole punching, we need to scoot all the
2502                                  * extents up when an extent is removed so that
2503                                  * we dont have blank extents in the middle
2504                                  */
2505                                 memmove(ex, ex+1, (EXT_LAST_EXTENT(eh) - ex) *
2506                                         sizeof(struct ext4_extent));
2507
2508                                 /* Now get rid of the one at the end */
2509                                 memset(EXT_LAST_EXTENT(eh), 0,
2510                                         sizeof(struct ext4_extent));
2511                         }
2512                         le16_add_cpu(&eh->eh_entries, -1);
2513                 } else
2514                         *partial_cluster = 0;
2515
2516                 ext_debug("new extent: %u:%u:%llu\n", block, num,
2517                                 ext4_ext_pblock(ex));
2518                 ex--;
2519                 ex_ee_block = le32_to_cpu(ex->ee_block);
2520                 ex_ee_len = ext4_ext_get_actual_len(ex);
2521         }
2522
2523         if (correct_index && eh->eh_entries)
2524                 err = ext4_ext_correct_indexes(handle, inode, path);
2525
2526         /*
2527          * If there is still a entry in the leaf node, check to see if
2528          * it references the partial cluster.  This is the only place
2529          * where it could; if it doesn't, we can free the cluster.
2530          */
2531         if (*partial_cluster && ex >= EXT_FIRST_EXTENT(eh) &&
2532             (EXT4_B2C(sbi, ext4_ext_pblock(ex) + ex_ee_len - 1) !=
2533              *partial_cluster)) {
2534                 int flags = EXT4_FREE_BLOCKS_FORGET;
2535
2536                 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2537                         flags |= EXT4_FREE_BLOCKS_METADATA;
2538
2539                 ext4_free_blocks(handle, inode, NULL,
2540                                  EXT4_C2B(sbi, *partial_cluster),
2541                                  sbi->s_cluster_ratio, flags);
2542                 *partial_cluster = 0;
2543         }
2544
2545         /* if this leaf is free, then we should
2546          * remove it from index block above */
2547         if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL)
2548                 err = ext4_ext_rm_idx(handle, inode, path + depth);
2549
2550 out:
2551         return err;
2552 }
2553
2554 /*
2555  * ext4_ext_more_to_rm:
2556  * returns 1 if current index has to be freed (even partial)
2557  */
2558 static int
2559 ext4_ext_more_to_rm(struct ext4_ext_path *path)
2560 {
2561         BUG_ON(path->p_idx == NULL);
2562
2563         if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr))
2564                 return 0;
2565
2566         /*
2567          * if truncate on deeper level happened, it wasn't partial,
2568          * so we have to consider current index for truncation
2569          */
2570         if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block)
2571                 return 0;
2572         return 1;
2573 }
2574
2575 static int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start)
2576 {
2577         struct super_block *sb = inode->i_sb;
2578         int depth = ext_depth(inode);
2579         struct ext4_ext_path *path;
2580         ext4_fsblk_t partial_cluster = 0;
2581         handle_t *handle;
2582         int i, err;
2583
2584         ext_debug("truncate since %u\n", start);
2585
2586         /* probably first extent we're gonna free will be last in block */
2587         handle = ext4_journal_start(inode, depth + 1);
2588         if (IS_ERR(handle))
2589                 return PTR_ERR(handle);
2590
2591 again:
2592         ext4_ext_invalidate_cache(inode);
2593
2594         /*
2595          * We start scanning from right side, freeing all the blocks
2596          * after i_size and walking into the tree depth-wise.
2597          */
2598         depth = ext_depth(inode);
2599         path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1), GFP_NOFS);
2600         if (path == NULL) {
2601                 ext4_journal_stop(handle);
2602                 return -ENOMEM;
2603         }
2604         path[0].p_depth = depth;
2605         path[0].p_hdr = ext_inode_hdr(inode);
2606         if (ext4_ext_check(inode, path[0].p_hdr, depth)) {
2607                 err = -EIO;
2608                 goto out;
2609         }
2610         i = err = 0;
2611
2612         while (i >= 0 && err == 0) {
2613                 if (i == depth) {
2614                         /* this is leaf block */
2615                         err = ext4_ext_rm_leaf(handle, inode, path,
2616                                                &partial_cluster, start,
2617                                                EXT_MAX_BLOCKS - 1);
2618                         /* root level has p_bh == NULL, brelse() eats this */
2619                         brelse(path[i].p_bh);
2620                         path[i].p_bh = NULL;
2621                         i--;
2622                         continue;
2623                 }
2624
2625                 /* this is index block */
2626                 if (!path[i].p_hdr) {
2627                         ext_debug("initialize header\n");
2628                         path[i].p_hdr = ext_block_hdr(path[i].p_bh);
2629                 }
2630
2631                 if (!path[i].p_idx) {
2632                         /* this level hasn't been touched yet */
2633                         path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr);
2634                         path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1;
2635                         ext_debug("init index ptr: hdr 0x%p, num %d\n",
2636                                   path[i].p_hdr,
2637                                   le16_to_cpu(path[i].p_hdr->eh_entries));
2638                 } else {
2639                         /* we were already here, see at next index */
2640                         path[i].p_idx--;
2641                 }
2642
2643                 ext_debug("level %d - index, first 0x%p, cur 0x%p\n",
2644                                 i, EXT_FIRST_INDEX(path[i].p_hdr),
2645                                 path[i].p_idx);
2646                 if (ext4_ext_more_to_rm(path + i)) {
2647                         struct buffer_head *bh;
2648                         /* go to the next level */
2649                         ext_debug("move to level %d (block %llu)\n",
2650                                   i + 1, ext4_idx_pblock(path[i].p_idx));
2651                         memset(path + i + 1, 0, sizeof(*path));
2652                         bh = sb_bread(sb, ext4_idx_pblock(path[i].p_idx));
2653                         if (!bh) {
2654                                 /* should we reset i_size? */
2655                                 err = -EIO;
2656                                 break;
2657                         }
2658                         if (WARN_ON(i + 1 > depth)) {
2659                                 err = -EIO;
2660                                 break;
2661                         }
2662                         if (ext4_ext_check(inode, ext_block_hdr(bh),
2663                                                         depth - i - 1)) {
2664                                 err = -EIO;
2665                                 break;
2666                         }
2667                         path[i + 1].p_bh = bh;
2668
2669                         /* save actual number of indexes since this
2670                          * number is changed at the next iteration */
2671                         path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries);
2672                         i++;
2673                 } else {
2674                         /* we finished processing this index, go up */
2675                         if (path[i].p_hdr->eh_entries == 0 && i > 0) {
2676                                 /* index is empty, remove it;
2677                                  * handle must be already prepared by the
2678                                  * truncatei_leaf() */
2679                                 err = ext4_ext_rm_idx(handle, inode, path + i);
2680                         }
2681                         /* root level has p_bh == NULL, brelse() eats this */
2682                         brelse(path[i].p_bh);
2683                         path[i].p_bh = NULL;
2684                         i--;
2685                         ext_debug("return to level %d\n", i);
2686                 }
2687         }
2688
2689         /* If we still have something in the partial cluster and we have removed
2690          * even the first extent, then we should free the blocks in the partial
2691          * cluster as well. */
2692         if (partial_cluster && path->p_hdr->eh_entries == 0) {
2693                 int flags = EXT4_FREE_BLOCKS_FORGET;
2694
2695                 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2696                         flags |= EXT4_FREE_BLOCKS_METADATA;
2697
2698                 ext4_free_blocks(handle, inode, NULL,
2699                                  EXT4_C2B(EXT4_SB(sb), partial_cluster),
2700                                  EXT4_SB(sb)->s_cluster_ratio, flags);
2701                 partial_cluster = 0;
2702         }
2703
2704         /* TODO: flexible tree reduction should be here */
2705         if (path->p_hdr->eh_entries == 0) {
2706                 /*
2707                  * truncate to zero freed all the tree,
2708                  * so we need to correct eh_depth
2709                  */
2710                 err = ext4_ext_get_access(handle, inode, path);
2711                 if (err == 0) {
2712                         ext_inode_hdr(inode)->eh_depth = 0;
2713                         ext_inode_hdr(inode)->eh_max =
2714                                 cpu_to_le16(ext4_ext_space_root(inode, 0));
2715                         err = ext4_ext_dirty(handle, inode, path);
2716                 }
2717         }
2718 out:
2719         ext4_ext_drop_refs(path);
2720         kfree(path);
2721         if (err == -EAGAIN)
2722                 goto again;
2723         ext4_journal_stop(handle);
2724
2725         return err;
2726 }
2727
2728 /*
2729  * called at mount time
2730  */
2731 void ext4_ext_init(struct super_block *sb)
2732 {
2733         /*
2734          * possible initialization would be here
2735          */
2736
2737         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
2738 #if defined(AGGRESSIVE_TEST) || defined(CHECK_BINSEARCH) || defined(EXTENTS_STATS)
2739                 printk(KERN_INFO "EXT4-fs: file extents enabled");
2740 #ifdef AGGRESSIVE_TEST
2741                 printk(", aggressive tests");
2742 #endif
2743 #ifdef CHECK_BINSEARCH
2744                 printk(", check binsearch");
2745 #endif
2746 #ifdef EXTENTS_STATS
2747                 printk(", stats");
2748 #endif
2749                 printk("\n");
2750 #endif
2751 #ifdef EXTENTS_STATS
2752                 spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock);
2753                 EXT4_SB(sb)->s_ext_min = 1 << 30;
2754                 EXT4_SB(sb)->s_ext_max = 0;
2755 #endif
2756         }
2757 }
2758
2759 /*
2760  * called at umount time
2761  */
2762 void ext4_ext_release(struct super_block *sb)
2763 {
2764         if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS))
2765                 return;
2766
2767 #ifdef EXTENTS_STATS
2768         if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) {
2769                 struct ext4_sb_info *sbi = EXT4_SB(sb);
2770                 printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n",
2771                         sbi->s_ext_blocks, sbi->s_ext_extents,
2772                         sbi->s_ext_blocks / sbi->s_ext_extents);
2773                 printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n",
2774                         sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max);
2775         }
2776 #endif
2777 }
2778
2779 /* FIXME!! we need to try to merge to left or right after zero-out  */
2780 static int ext4_ext_zeroout(struct inode *inode, struct ext4_extent *ex)
2781 {
2782         ext4_fsblk_t ee_pblock;
2783         unsigned int ee_len;
2784         int ret;
2785
2786         ee_len    = ext4_ext_get_actual_len(ex);
2787         ee_pblock = ext4_ext_pblock(ex);
2788
2789         ret = sb_issue_zeroout(inode->i_sb, ee_pblock, ee_len, GFP_NOFS);
2790         if (ret > 0)
2791                 ret = 0;
2792
2793         return ret;
2794 }
2795
2796 /*
2797  * used by extent splitting.
2798  */
2799 #define EXT4_EXT_MAY_ZEROOUT    0x1  /* safe to zeroout if split fails \
2800                                         due to ENOSPC */
2801 #define EXT4_EXT_MARK_UNINIT1   0x2  /* mark first half uninitialized */
2802 #define EXT4_EXT_MARK_UNINIT2   0x4  /* mark second half uninitialized */
2803
2804 /*
2805  * ext4_split_extent_at() splits an extent at given block.
2806  *
2807  * @handle: the journal handle
2808  * @inode: the file inode
2809  * @path: the path to the extent
2810  * @split: the logical block where the extent is splitted.
2811  * @split_flags: indicates if the extent could be zeroout if split fails, and
2812  *               the states(init or uninit) of new extents.
2813  * @flags: flags used to insert new extent to extent tree.
2814  *
2815  *
2816  * Splits extent [a, b] into two extents [a, @split) and [@split, b], states
2817  * of which are deterimined by split_flag.
2818  *
2819  * There are two cases:
2820  *  a> the extent are splitted into two extent.
2821  *  b> split is not needed, and just mark the extent.
2822  *
2823  * return 0 on success.
2824  */
2825 static int ext4_split_extent_at(handle_t *handle,
2826                              struct inode *inode,
2827                              struct ext4_ext_path *path,
2828                              ext4_lblk_t split,
2829                              int split_flag,
2830                              int flags)
2831 {
2832         ext4_fsblk_t newblock;
2833         ext4_lblk_t ee_block;
2834         struct ext4_extent *ex, newex, orig_ex;
2835         struct ext4_extent *ex2 = NULL;
2836         unsigned int ee_len, depth;
2837         int err = 0;
2838
2839         ext_debug("ext4_split_extents_at: inode %lu, logical"
2840                 "block %llu\n", inode->i_ino, (unsigned long long)split);
2841
2842         ext4_ext_show_leaf(inode, path);
2843
2844         depth = ext_depth(inode);
2845         ex = path[depth].p_ext;
2846         ee_block = le32_to_cpu(ex->ee_block);
2847         ee_len = ext4_ext_get_actual_len(ex);
2848         newblock = split - ee_block + ext4_ext_pblock(ex);
2849
2850         BUG_ON(split < ee_block || split >= (ee_block + ee_len));
2851
2852         err = ext4_ext_get_access(handle, inode, path + depth);
2853         if (err)
2854                 goto out;
2855
2856         if (split == ee_block) {
2857                 /*
2858                  * case b: block @split is the block that the extent begins with
2859                  * then we just change the state of the extent, and splitting
2860                  * is not needed.
2861                  */
2862                 if (split_flag & EXT4_EXT_MARK_UNINIT2)
2863                         ext4_ext_mark_uninitialized(ex);
2864                 else
2865                         ext4_ext_mark_initialized(ex);
2866
2867                 if (!(flags & EXT4_GET_BLOCKS_PRE_IO))
2868                         ext4_ext_try_to_merge(inode, path, ex);
2869
2870                 err = ext4_ext_dirty(handle, inode, path + depth);
2871                 goto out;
2872         }
2873
2874         /* case a */
2875         memcpy(&orig_ex, ex, sizeof(orig_ex));
2876         ex->ee_len = cpu_to_le16(split - ee_block);
2877         if (split_flag & EXT4_EXT_MARK_UNINIT1)
2878                 ext4_ext_mark_uninitialized(ex);
2879
2880         /*
2881          * path may lead to new leaf, not to original leaf any more
2882          * after ext4_ext_insert_extent() returns,
2883          */
2884         err = ext4_ext_dirty(handle, inode, path + depth);
2885         if (err)
2886                 goto fix_extent_len;
2887
2888         ex2 = &newex;
2889         ex2->ee_block = cpu_to_le32(split);
2890         ex2->ee_len   = cpu_to_le16(ee_len - (split - ee_block));
2891         ext4_ext_store_pblock(ex2, newblock);
2892         if (split_flag & EXT4_EXT_MARK_UNINIT2)
2893                 ext4_ext_mark_uninitialized(ex2);
2894
2895         err = ext4_ext_insert_extent(handle, inode, path, &newex, flags);
2896         if (err == -ENOSPC && (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
2897                 err = ext4_ext_zeroout(inode, &orig_ex);
2898                 if (err)
2899                         goto fix_extent_len;
2900                 /* update the extent length and mark as initialized */
2901                 ex->ee_len = cpu_to_le32(ee_len);
2902                 ext4_ext_try_to_merge(inode, path, ex);
2903                 err = ext4_ext_dirty(handle, inode, path + depth);
2904                 goto out;
2905         } else if (err)
2906                 goto fix_extent_len;
2907
2908 out:
2909         ext4_ext_show_leaf(inode, path);
2910         return err;
2911
2912 fix_extent_len:
2913         ex->ee_len = orig_ex.ee_len;
2914         ext4_ext_dirty(handle, inode, path + depth);
2915         return err;
2916 }
2917
2918 /*
2919  * ext4_split_extents() splits an extent and mark extent which is covered
2920  * by @map as split_flags indicates
2921  *
2922  * It may result in splitting the extent into multiple extents (upto three)
2923  * There are three possibilities:
2924  *   a> There is no split required
2925  *   b> Splits in two extents: Split is happening at either end of the extent
2926  *   c> Splits in three extents: Somone is splitting in middle of the extent
2927  *
2928  */
2929 static int ext4_split_extent(handle_t *handle,
2930                               struct inode *inode,
2931                               struct ext4_ext_path *path,
2932                               struct ext4_map_blocks *map,
2933                               int split_flag,
2934                               int flags)
2935 {
2936         ext4_lblk_t ee_block;
2937         struct ext4_extent *ex;
2938         unsigned int ee_len, depth;
2939         int err = 0;
2940         int uninitialized;
2941         int split_flag1, flags1;
2942
2943         depth = ext_depth(inode);
2944         ex = path[depth].p_ext;
2945         ee_block = le32_to_cpu(ex->ee_block);
2946         ee_len = ext4_ext_get_actual_len(ex);
2947         uninitialized = ext4_ext_is_uninitialized(ex);
2948
2949         if (map->m_lblk + map->m_len < ee_block + ee_len) {
2950                 split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT ?
2951                               EXT4_EXT_MAY_ZEROOUT : 0;
2952                 flags1 = flags | EXT4_GET_BLOCKS_PRE_IO;
2953                 if (uninitialized)
2954                         split_flag1 |= EXT4_EXT_MARK_UNINIT1 |
2955                                        EXT4_EXT_MARK_UNINIT2;
2956                 err = ext4_split_extent_at(handle, inode, path,
2957                                 map->m_lblk + map->m_len, split_flag1, flags1);
2958                 if (err)
2959                         goto out;
2960         }
2961
2962         ext4_ext_drop_refs(path);
2963         path = ext4_ext_find_extent(inode, map->m_lblk, path);
2964         if (IS_ERR(path))
2965                 return PTR_ERR(path);
2966
2967         if (map->m_lblk >= ee_block) {
2968                 split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT ?
2969                               EXT4_EXT_MAY_ZEROOUT : 0;
2970                 if (uninitialized)
2971                         split_flag1 |= EXT4_EXT_MARK_UNINIT1;
2972                 if (split_flag & EXT4_EXT_MARK_UNINIT2)
2973                         split_flag1 |= EXT4_EXT_MARK_UNINIT2;
2974                 err = ext4_split_extent_at(handle, inode, path,
2975                                 map->m_lblk, split_flag1, flags);
2976                 if (err)
2977                         goto out;
2978         }
2979
2980         ext4_ext_show_leaf(inode, path);
2981 out:
2982         return err ? err : map->m_len;
2983 }
2984
2985 #define EXT4_EXT_ZERO_LEN 7
2986 /*
2987  * This function is called by ext4_ext_map_blocks() if someone tries to write
2988  * to an uninitialized extent. It may result in splitting the uninitialized
2989  * extent into multiple extents (up to three - one initialized and two
2990  * uninitialized).
2991  * There are three possibilities:
2992  *   a> There is no split required: Entire extent should be initialized
2993  *   b> Splits in two extents: Write is happening at either end of the extent
2994  *   c> Splits in three extents: Somone is writing in middle of the extent
2995  */
2996 static int ext4_ext_convert_to_initialized(handle_t *handle,
2997                                            struct inode *inode,
2998                                            struct ext4_map_blocks *map,
2999                                            struct ext4_ext_path *path)
3000 {
3001         struct ext4_map_blocks split_map;
3002         struct ext4_extent zero_ex;
3003         struct ext4_extent *ex;
3004         ext4_lblk_t ee_block, eof_block;
3005         unsigned int allocated, ee_len, depth;
3006         int err = 0;
3007         int split_flag = 0;
3008
3009         ext_debug("ext4_ext_convert_to_initialized: inode %lu, logical"
3010                 "block %llu, max_blocks %u\n", inode->i_ino,
3011                 (unsigned long long)map->m_lblk, map->m_len);
3012
3013         eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
3014                 inode->i_sb->s_blocksize_bits;
3015         if (eof_block < map->m_lblk + map->m_len)
3016                 eof_block = map->m_lblk + map->m_len;
3017
3018         depth = ext_depth(inode);
3019         ex = path[depth].p_ext;
3020         ee_block = le32_to_cpu(ex->ee_block);
3021         ee_len = ext4_ext_get_actual_len(ex);
3022         allocated = ee_len - (map->m_lblk - ee_block);
3023
3024         WARN_ON(map->m_lblk < ee_block);
3025         /*
3026          * It is safe to convert extent to initialized via explicit
3027          * zeroout only if extent is fully insde i_size or new_size.
3028          */
3029         split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
3030
3031         /* If extent has less than 2*EXT4_EXT_ZERO_LEN zerout directly */
3032         if (ee_len <= 2*EXT4_EXT_ZERO_LEN &&
3033             (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
3034                 err = ext4_ext_zeroout(inode, ex);
3035                 if (err)
3036                         goto out;
3037
3038                 err = ext4_ext_get_access(handle, inode, path + depth);
3039                 if (err)
3040                         goto out;
3041                 ext4_ext_mark_initialized(ex);
3042                 ext4_ext_try_to_merge(inode, path, ex);
3043                 err = ext4_ext_dirty(handle, inode, path + depth);
3044                 goto out;
3045         }
3046
3047         /*
3048          * four cases:
3049          * 1. split the extent into three extents.
3050          * 2. split the extent into two extents, zeroout the first half.
3051          * 3. split the extent into two extents, zeroout the second half.
3052          * 4. split the extent into two extents with out zeroout.
3053          */
3054         split_map.m_lblk = map->m_lblk;
3055         split_map.m_len = map->m_len;
3056
3057         if (allocated > map->m_len) {
3058                 if (allocated <= EXT4_EXT_ZERO_LEN &&
3059                     (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
3060                         /* case 3 */
3061                         zero_ex.ee_block =
3062                                          cpu_to_le32(map->m_lblk);
3063                         zero_ex.ee_len = cpu_to_le16(allocated);
3064                         ext4_ext_store_pblock(&zero_ex,
3065                                 ext4_ext_pblock(ex) + map->m_lblk - ee_block);
3066                         err = ext4_ext_zeroout(inode, &zero_ex);
3067                         if (err)
3068                                 goto out;
3069                         split_map.m_lblk = map->m_lblk;
3070                         split_map.m_len = allocated;
3071                 } else if ((map->m_lblk - ee_block + map->m_len <
3072                            EXT4_EXT_ZERO_LEN) &&
3073                            (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
3074                         /* case 2 */
3075                         if (map->m_lblk != ee_block) {
3076                                 zero_ex.ee_block = ex->ee_block;
3077                                 zero_ex.ee_len = cpu_to_le16(map->m_lblk -
3078                                                         ee_block);
3079                                 ext4_ext_store_pblock(&zero_ex,
3080                                                       ext4_ext_pblock(ex));
3081                                 err = ext4_ext_zeroout(inode, &zero_ex);
3082                                 if (err)
3083                                         goto out;
3084                         }
3085
3086                         split_map.m_lblk = ee_block;
3087                         split_map.m_len = map->m_lblk - ee_block + map->m_len;
3088                         allocated = map->m_len;
3089                 }
3090         }
3091
3092         allocated = ext4_split_extent(handle, inode, path,
3093                                        &split_map, split_flag, 0);
3094         if (allocated < 0)
3095                 err = allocated;
3096
3097 out:
3098         return err ? err : allocated;
3099 }
3100
3101 /*
3102  * This function is called by ext4_ext_map_blocks() from
3103  * ext4_get_blocks_dio_write() when DIO to write
3104  * to an uninitialized extent.
3105  *
3106  * Writing to an uninitialized extent may result in splitting the uninitialized
3107  * extent into multiple /initialized uninitialized extents (up to three)
3108  * There are three possibilities:
3109  *   a> There is no split required: Entire extent should be uninitialized
3110  *   b> Splits in two extents: Write is happening at either end of the extent
3111  *   c> Splits in three extents: Somone is writing in middle of the extent
3112  *
3113  * One of more index blocks maybe needed if the extent tree grow after
3114  * the uninitialized extent split. To prevent ENOSPC occur at the IO
3115  * complete, we need to split the uninitialized extent before DIO submit
3116  * the IO. The uninitialized extent called at this time will be split
3117  * into three uninitialized extent(at most). After IO complete, the part
3118  * being filled will be convert to initialized by the end_io callback function
3119  * via ext4_convert_unwritten_extents().
3120  *
3121  * Returns the size of uninitialized extent to be written on success.
3122  */
3123 static int ext4_split_unwritten_extents(handle_t *handle,
3124                                         struct inode *inode,
3125                                         struct ext4_map_blocks *map,
3126                                         struct ext4_ext_path *path,
3127                                         int flags)
3128 {
3129         ext4_lblk_t eof_block;
3130         ext4_lblk_t ee_block;
3131         struct ext4_extent *ex;
3132         unsigned int ee_len;
3133         int split_flag = 0, depth;
3134
3135         ext_debug("ext4_split_unwritten_extents: inode %lu, logical"
3136                 "block %llu, max_blocks %u\n", inode->i_ino,
3137                 (unsigned long long)map->m_lblk, map->m_len);
3138
3139         eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
3140                 inode->i_sb->s_blocksize_bits;
3141         if (eof_block < map->m_lblk + map->m_len)
3142                 eof_block = map->m_lblk + map->m_len;
3143         /*
3144          * It is safe to convert extent to initialized via explicit
3145          * zeroout only if extent is fully insde i_size or new_size.
3146          */
3147         depth = ext_depth(inode);
3148         ex = path[depth].p_ext;
3149         ee_block = le32_to_cpu(ex->ee_block);
3150         ee_len = ext4_ext_get_actual_len(ex);
3151
3152         split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
3153         split_flag |= EXT4_EXT_MARK_UNINIT2;
3154
3155         flags |= EXT4_GET_BLOCKS_PRE_IO;
3156         return ext4_split_extent(handle, inode, path, map, split_flag, flags);
3157 }
3158
3159 static int ext4_convert_unwritten_extents_endio(handle_t *handle,
3160                                               struct inode *inode,
3161                                               struct ext4_ext_path *path)
3162 {
3163         struct ext4_extent *ex;
3164         int depth;
3165         int err = 0;
3166
3167         depth = ext_depth(inode);
3168         ex = path[depth].p_ext;
3169
3170         ext_debug("ext4_convert_unwritten_extents_endio: inode %lu, logical"
3171                 "block %llu, max_blocks %u\n", inode->i_ino,
3172                 (unsigned long long)le32_to_cpu(ex->ee_block),
3173                 ext4_ext_get_actual_len(ex));
3174
3175         err = ext4_ext_get_access(handle, inode, path + depth);
3176         if (err)
3177                 goto out;
3178         /* first mark the extent as initialized */
3179         ext4_ext_mark_initialized(ex);
3180
3181         /* note: ext4_ext_correct_indexes() isn't needed here because
3182          * borders are not changed
3183          */
3184         ext4_ext_try_to_merge(inode, path, ex);
3185
3186         /* Mark modified extent as dirty */
3187         err = ext4_ext_dirty(handle, inode, path + depth);
3188 out:
3189         ext4_ext_show_leaf(inode, path);
3190         return err;
3191 }
3192
3193 static void unmap_underlying_metadata_blocks(struct block_device *bdev,
3194                         sector_t block, int count)
3195 {
3196         int i;
3197         for (i = 0; i < count; i++)
3198                 unmap_underlying_metadata(bdev, block + i);
3199 }
3200
3201 /*
3202  * Handle EOFBLOCKS_FL flag, clearing it if necessary
3203  */
3204 static int check_eofblocks_fl(handle_t *handle, struct inode *inode,
3205                               ext4_lblk_t lblk,
3206                               struct ext4_ext_path *path,
3207                               unsigned int len)
3208 {
3209         int i, depth;
3210         struct ext4_extent_header *eh;
3211         struct ext4_extent *last_ex;
3212
3213         if (!ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))
3214                 return 0;
3215
3216         depth = ext_depth(inode);
3217         eh = path[depth].p_hdr;
3218
3219         if (unlikely(!eh->eh_entries)) {
3220                 EXT4_ERROR_INODE(inode, "eh->eh_entries == 0 and "
3221                                  "EOFBLOCKS_FL set");
3222                 return -EIO;
3223         }
3224         last_ex = EXT_LAST_EXTENT(eh);
3225         /*
3226          * We should clear the EOFBLOCKS_FL flag if we are writing the
3227          * last block in the last extent in the file.  We test this by
3228          * first checking to see if the caller to
3229          * ext4_ext_get_blocks() was interested in the last block (or
3230          * a block beyond the last block) in the current extent.  If
3231          * this turns out to be false, we can bail out from this
3232          * function immediately.
3233          */
3234         if (lblk + len < le32_to_cpu(last_ex->ee_block) +
3235             ext4_ext_get_actual_len(last_ex))
3236                 return 0;
3237         /*
3238          * If the caller does appear to be planning to write at or
3239          * beyond the end of the current extent, we then test to see
3240          * if the current extent is the last extent in the file, by
3241          * checking to make sure it was reached via the rightmost node
3242          * at each level of the tree.
3243          */
3244         for (i = depth-1; i >= 0; i--)
3245                 if (path[i].p_idx != EXT_LAST_INDEX(path[i].p_hdr))
3246                         return 0;
3247         ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3248         return ext4_mark_inode_dirty(handle, inode);
3249 }
3250
3251 /**
3252  * ext4_find_delalloc_range: find delayed allocated block in the given range.
3253  *
3254  * Goes through the buffer heads in the range [lblk_start, lblk_end] and returns
3255  * whether there are any buffers marked for delayed allocation. It returns '1'
3256  * on the first delalloc'ed buffer head found. If no buffer head in the given
3257  * range is marked for delalloc, it returns 0.
3258  * lblk_start should always be <= lblk_end.
3259  * search_hint_reverse is to indicate that searching in reverse from lblk_end to
3260  * lblk_start might be more efficient (i.e., we will likely hit the delalloc'ed
3261  * block sooner). This is useful when blocks are truncated sequentially from
3262  * lblk_start towards lblk_end.
3263  */
3264 static int ext4_find_delalloc_range(struct inode *inode,
3265                                     ext4_lblk_t lblk_start,
3266                                     ext4_lblk_t lblk_end,
3267                                     int search_hint_reverse)
3268 {
3269         struct address_space *mapping = inode->i_mapping;
3270         struct buffer_head *head, *bh = NULL;
3271         struct page *page;
3272         ext4_lblk_t i, pg_lblk;
3273         pgoff_t index;
3274
3275         /* reverse search wont work if fs block size is less than page size */
3276         if (inode->i_blkbits < PAGE_CACHE_SHIFT)
3277                 search_hint_reverse = 0;
3278
3279         if (search_hint_reverse)
3280                 i = lblk_end;
3281         else
3282                 i = lblk_start;
3283
3284         index = i >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
3285
3286         while ((i >= lblk_start) && (i <= lblk_end)) {
3287                 page = find_get_page(mapping, index);
3288                 if (!page || !PageDirty(page))
3289                         goto nextpage;
3290
3291                 if (PageWriteback(page)) {
3292                         /*
3293                          * This might be a race with allocation and writeout. In
3294                          * this case we just assume that the rest of the range
3295                          * will eventually be written and there wont be any
3296                          * delalloc blocks left.
3297                          * TODO: the above assumption is troublesome, but might
3298                          * work better in practice. other option could be note
3299                          * somewhere that the cluster is getting written out and
3300                          * detect that here.
3301                          */
3302                         page_cache_release(page);
3303                         return 0;
3304                 }
3305
3306                 if (!page_has_buffers(page))
3307                         goto nextpage;
3308
3309                 head = page_buffers(page);
3310                 if (!head)
3311                         goto nextpage;
3312
3313                 bh = head;
3314                 pg_lblk = index << (PAGE_CACHE_SHIFT -
3315                                                 inode->i_blkbits);
3316                 do {
3317                         if (unlikely(pg_lblk < lblk_start)) {
3318                                 /*
3319                                  * This is possible when fs block size is less
3320                                  * than page size and our cluster starts/ends in
3321                                  * middle of the page. So we need to skip the
3322                                  * initial few blocks till we reach the 'lblk'
3323                                  */
3324                                 pg_lblk++;
3325                                 continue;
3326                         }
3327
3328                         if (buffer_delay(bh)) {
3329                                 page_cache_release(page);
3330                                 return 1;
3331                         }
3332                         if (search_hint_reverse)
3333                                 i--;
3334                         else
3335                                 i++;
3336                 } while ((i >= lblk_start) && (i <= lblk_end) &&
3337                                 ((bh = bh->b_this_page) != head));
3338 nextpage:
3339                 if (page)
3340                         page_cache_release(page);
3341                 /*
3342                  * Move to next page. 'i' will be the first lblk in the next
3343                  * page.
3344                  */
3345                 if (search_hint_reverse)
3346                         index--;
3347                 else
3348                         index++;
3349                 i = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
3350         }
3351
3352         return 0;
3353 }
3354
3355 int ext4_find_delalloc_cluster(struct inode *inode, ext4_lblk_t lblk,
3356                                int search_hint_reverse)
3357 {
3358         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3359         ext4_lblk_t lblk_start, lblk_end;
3360         lblk_start = lblk & (~(sbi->s_cluster_ratio - 1));
3361         lblk_end = lblk_start + sbi->s_cluster_ratio - 1;
3362
3363         return ext4_find_delalloc_range(inode, lblk_start, lblk_end,
3364                                         search_hint_reverse);
3365 }
3366
3367 /**
3368  * Determines how many complete clusters (out of those specified by the 'map')
3369  * are under delalloc and were reserved quota for.
3370  * This function is called when we are writing out the blocks that were
3371  * originally written with their allocation delayed, but then the space was
3372  * allocated using fallocate() before the delayed allocation could be resolved.
3373  * The cases to look for are:
3374  * ('=' indicated delayed allocated blocks
3375  *  '-' indicates non-delayed allocated blocks)
3376  * (a) partial clusters towards beginning and/or end outside of allocated range
3377  *     are not delalloc'ed.
3378  *      Ex:
3379  *      |----c---=|====c====|====c====|===-c----|
3380  *               |++++++ allocated ++++++|
3381  *      ==> 4 complete clusters in above example
3382  *
3383  * (b) partial cluster (outside of allocated range) towards either end is
3384  *     marked for delayed allocation. In this case, we will exclude that
3385  *     cluster.
3386  *      Ex:
3387  *      |----====c========|========c========|
3388  *           |++++++ allocated ++++++|
3389  *      ==> 1 complete clusters in above example
3390  *
3391  *      Ex:
3392  *      |================c================|
3393  *            |++++++ allocated ++++++|
3394  *      ==> 0 complete clusters in above example
3395  *
3396  * The ext4_da_update_reserve_space will be called only if we
3397  * determine here that there were some "entire" clusters that span
3398  * this 'allocated' range.
3399  * In the non-bigalloc case, this function will just end up returning num_blks
3400  * without ever calling ext4_find_delalloc_range.
3401  */
3402 static unsigned int
3403 get_reserved_cluster_alloc(struct inode *inode, ext4_lblk_t lblk_start,
3404                            unsigned int num_blks)
3405 {
3406         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3407         ext4_lblk_t alloc_cluster_start, alloc_cluster_end;
3408         ext4_lblk_t lblk_from, lblk_to, c_offset;
3409         unsigned int allocated_clusters = 0;
3410
3411         alloc_cluster_start = EXT4_B2C(sbi, lblk_start);
3412         alloc_cluster_end = EXT4_B2C(sbi, lblk_start + num_blks - 1);
3413
3414         /* max possible clusters for this allocation */
3415         allocated_clusters = alloc_cluster_end - alloc_cluster_start + 1;
3416
3417         /* Check towards left side */
3418         c_offset = lblk_start & (sbi->s_cluster_ratio - 1);
3419         if (c_offset) {
3420                 lblk_from = lblk_start & (~(sbi->s_cluster_ratio - 1));
3421                 lblk_to = lblk_from + c_offset - 1;
3422
3423                 if (ext4_find_delalloc_range(inode, lblk_from, lblk_to, 0))
3424                         allocated_clusters--;
3425         }
3426
3427         /* Now check towards right. */
3428         c_offset = (lblk_start + num_blks) & (sbi->s_cluster_ratio - 1);
3429         if (allocated_clusters && c_offset) {
3430                 lblk_from = lblk_start + num_blks;
3431                 lblk_to = lblk_from + (sbi->s_cluster_ratio - c_offset) - 1;
3432
3433                 if (ext4_find_delalloc_range(inode, lblk_from, lblk_to, 0))
3434                         allocated_clusters--;
3435         }
3436
3437         return allocated_clusters;
3438 }
3439
3440 static int
3441 ext4_ext_handle_uninitialized_extents(handle_t *handle, struct inode *inode,
3442                         struct ext4_map_blocks *map,
3443                         struct ext4_ext_path *path, int flags,
3444                         unsigned int allocated, ext4_fsblk_t newblock)
3445 {
3446         int ret = 0;
3447         int err = 0;
3448         ext4_io_end_t *io = EXT4_I(inode)->cur_aio_dio;
3449
3450         ext_debug("ext4_ext_handle_uninitialized_extents: inode %lu, logical"
3451                   "block %llu, max_blocks %u, flags %d, allocated %u",
3452                   inode->i_ino, (unsigned long long)map->m_lblk, map->m_len,
3453                   flags, allocated);
3454         ext4_ext_show_leaf(inode, path);
3455
3456         /* get_block() before submit the IO, split the extent */
3457         if ((flags & EXT4_GET_BLOCKS_PRE_IO)) {
3458                 ret = ext4_split_unwritten_extents(handle, inode, map,
3459                                                    path, flags);
3460                 /*
3461                  * Flag the inode(non aio case) or end_io struct (aio case)
3462                  * that this IO needs to conversion to written when IO is
3463                  * completed
3464                  */
3465                 if (io && !(io->flag & EXT4_IO_END_UNWRITTEN)) {
3466                         io->flag = EXT4_IO_END_UNWRITTEN;
3467                         atomic_inc(&EXT4_I(inode)->i_aiodio_unwritten);
3468                 } else
3469                         ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3470                 if (ext4_should_dioread_nolock(inode))
3471                         map->m_flags |= EXT4_MAP_UNINIT;
3472                 goto out;
3473         }
3474         /* IO end_io complete, convert the filled extent to written */
3475         if ((flags & EXT4_GET_BLOCKS_CONVERT)) {
3476                 ret = ext4_convert_unwritten_extents_endio(handle, inode,
3477                                                         path);
3478                 if (ret >= 0) {
3479                         ext4_update_inode_fsync_trans(handle, inode, 1);
3480                         err = check_eofblocks_fl(handle, inode, map->m_lblk,
3481                                                  path, map->m_len);
3482                 } else
3483                         err = ret;
3484                 goto out2;
3485         }
3486         /* buffered IO case */
3487         /*
3488          * repeat fallocate creation request
3489          * we already have an unwritten extent
3490          */
3491         if (flags & EXT4_GET_BLOCKS_UNINIT_EXT)
3492                 goto map_out;
3493
3494         /* buffered READ or buffered write_begin() lookup */
3495         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3496                 /*
3497                  * We have blocks reserved already.  We
3498                  * return allocated blocks so that delalloc
3499                  * won't do block reservation for us.  But
3500                  * the buffer head will be unmapped so that
3501                  * a read from the block returns 0s.
3502                  */
3503                 map->m_flags |= EXT4_MAP_UNWRITTEN;
3504                 goto out1;
3505         }
3506
3507         /* buffered write, writepage time, convert*/
3508         ret = ext4_ext_convert_to_initialized(handle, inode, map, path);
3509         if (ret >= 0) {
3510                 ext4_update_inode_fsync_trans(handle, inode, 1);
3511                 err = check_eofblocks_fl(handle, inode, map->m_lblk, path,
3512                                          map->m_len);
3513                 if (err < 0)
3514                         goto out2;
3515         }
3516
3517 out:
3518         if (ret <= 0) {
3519                 err = ret;
3520                 goto out2;
3521         } else
3522                 allocated = ret;
3523         map->m_flags |= EXT4_MAP_NEW;
3524         /*
3525          * if we allocated more blocks than requested
3526          * we need to make sure we unmap the extra block
3527          * allocated. The actual needed block will get
3528          * unmapped later when we find the buffer_head marked
3529          * new.
3530          */
3531         if (allocated > map->m_len) {
3532                 unmap_underlying_metadata_blocks(inode->i_sb->s_bdev,
3533                                         newblock + map->m_len,
3534                                         allocated - map->m_len);
3535                 allocated = map->m_len;
3536         }
3537
3538         /*
3539          * If we have done fallocate with the offset that is already
3540          * delayed allocated, we would have block reservation
3541          * and quota reservation done in the delayed write path.
3542          * But fallocate would have already updated quota and block
3543          * count for this offset. So cancel these reservation
3544          */
3545         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
3546                 unsigned int reserved_clusters;
3547                 reserved_clusters = get_reserved_cluster_alloc(inode,
3548                                 map->m_lblk, map->m_len);
3549                 if (reserved_clusters)
3550                         ext4_da_update_reserve_space(inode,
3551                                                      reserved_clusters,
3552                                                      0);
3553         }
3554
3555 map_out:
3556         map->m_flags |= EXT4_MAP_MAPPED;
3557 out1:
3558         if (allocated > map->m_len)
3559                 allocated = map->m_len;
3560         ext4_ext_show_leaf(inode, path);
3561         map->m_pblk = newblock;
3562         map->m_len = allocated;
3563 out2:
3564         if (path) {
3565                 ext4_ext_drop_refs(path);
3566                 kfree(path);
3567         }
3568         return err ? err : allocated;
3569 }
3570
3571 /*
3572  * get_implied_cluster_alloc - check to see if the requested
3573  * allocation (in the map structure) overlaps with a cluster already
3574  * allocated in an extent.
3575  *      @sbi    The ext4-specific superblock structure
3576  *      @map    The requested lblk->pblk mapping
3577  *      @ex     The extent structure which might contain an implied
3578  *                      cluster allocation
3579  *
3580  * This function is called by ext4_ext_map_blocks() after we failed to
3581  * find blocks that were already in the inode's extent tree.  Hence,
3582  * we know that the beginning of the requested region cannot overlap
3583  * the extent from the inode's extent tree.  There are three cases we
3584  * want to catch.  The first is this case:
3585  *
3586  *               |--- cluster # N--|
3587  *    |--- extent ---|  |---- requested region ---|
3588  *                      |==========|
3589  *
3590  * The second case that we need to test for is this one:
3591  *
3592  *   |--------- cluster # N ----------------|
3593  *         |--- requested region --|   |------- extent ----|
3594  *         |=======================|
3595  *
3596  * The third case is when the requested region lies between two extents
3597  * within the same cluster:
3598  *          |------------- cluster # N-------------|
3599  * |----- ex -----|                  |---- ex_right ----|
3600  *                  |------ requested region ------|
3601  *                  |================|
3602  *
3603  * In each of the above cases, we need to set the map->m_pblk and
3604  * map->m_len so it corresponds to the return the extent labelled as
3605  * "|====|" from cluster #N, since it is already in use for data in
3606  * cluster EXT4_B2C(sbi, map->m_lblk).  We will then return 1 to
3607  * signal to ext4_ext_map_blocks() that map->m_pblk should be treated
3608  * as a new "allocated" block region.  Otherwise, we will return 0 and
3609  * ext4_ext_map_blocks() will then allocate one or more new clusters
3610  * by calling ext4_mb_new_blocks().
3611  */
3612 static int get_implied_cluster_alloc(struct ext4_sb_info *sbi,
3613                                      struct ext4_map_blocks *map,
3614                                      struct ext4_extent *ex,
3615                                      struct ext4_ext_path *path)
3616 {
3617         ext4_lblk_t c_offset = map->m_lblk & (sbi->s_cluster_ratio-1);
3618         ext4_lblk_t ex_cluster_start, ex_cluster_end;
3619         ext4_lblk_t rr_cluster_start, rr_cluster_end;
3620         ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
3621         ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
3622         unsigned short ee_len = ext4_ext_get_actual_len(ex);
3623
3624         /* The extent passed in that we are trying to match */
3625         ex_cluster_start = EXT4_B2C(sbi, ee_block);
3626         ex_cluster_end = EXT4_B2C(sbi, ee_block + ee_len - 1);
3627
3628         /* The requested region passed into ext4_map_blocks() */
3629         rr_cluster_start = EXT4_B2C(sbi, map->m_lblk);
3630         rr_cluster_end = EXT4_B2C(sbi, map->m_lblk + map->m_len - 1);
3631
3632         if ((rr_cluster_start == ex_cluster_end) ||
3633             (rr_cluster_start == ex_cluster_start)) {
3634                 if (rr_cluster_start == ex_cluster_end)
3635                         ee_start += ee_len - 1;
3636                 map->m_pblk = (ee_start & ~(sbi->s_cluster_ratio - 1)) +
3637                         c_offset;
3638                 map->m_len = min(map->m_len,
3639                                  (unsigned) sbi->s_cluster_ratio - c_offset);
3640                 /*
3641                  * Check for and handle this case:
3642                  *
3643                  *   |--------- cluster # N-------------|
3644                  *                     |------- extent ----|
3645                  *         |--- requested region ---|
3646                  *         |===========|
3647                  */
3648
3649                 if (map->m_lblk < ee_block)
3650                         map->m_len = min(map->m_len, ee_block - map->m_lblk);
3651
3652                 /*
3653                  * Check for the case where there is already another allocated
3654                  * block to the right of 'ex' but before the end of the cluster.
3655                  *
3656                  *          |------------- cluster # N-------------|
3657                  * |----- ex -----|                  |---- ex_right ----|
3658                  *                  |------ requested region ------|
3659                  *                  |================|
3660                  */
3661                 if (map->m_lblk > ee_block) {
3662                         ext4_lblk_t next = ext4_ext_next_allocated_block(path);
3663                         map->m_len = min(map->m_len, next - map->m_lblk);
3664                 }
3665                 return 1;
3666         }
3667         return 0;
3668 }
3669
3670
3671 /*
3672  * Block allocation/map/preallocation routine for extents based files
3673  *
3674  *
3675  * Need to be called with
3676  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
3677  * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
3678  *
3679  * return > 0, number of of blocks already mapped/allocated
3680  *          if create == 0 and these are pre-allocated blocks
3681  *              buffer head is unmapped
3682  *          otherwise blocks are mapped
3683  *
3684  * return = 0, if plain look up failed (blocks have not been allocated)
3685  *          buffer head is unmapped
3686  *
3687  * return < 0, error case.
3688  */
3689 int ext4_ext_map_blocks(handle_t *handle, struct inode *inode,
3690                         struct ext4_map_blocks *map, int flags)
3691 {
3692         struct ext4_ext_path *path = NULL;
3693         struct ext4_extent newex, *ex, *ex2;
3694         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3695         ext4_fsblk_t newblock = 0;
3696         int free_on_err = 0, err = 0, depth, ret;
3697         unsigned int allocated = 0, offset = 0;
3698         unsigned int allocated_clusters = 0, reserved_clusters = 0;
3699         unsigned int punched_out = 0;
3700         unsigned int result = 0;
3701         struct ext4_allocation_request ar;
3702         ext4_io_end_t *io = EXT4_I(inode)->cur_aio_dio;
3703         ext4_lblk_t cluster_offset;
3704         struct ext4_map_blocks punch_map;
3705
3706         ext_debug("blocks %u/%u requested for inode %lu\n",
3707                   map->m_lblk, map->m_len, inode->i_ino);
3708         trace_ext4_ext_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
3709
3710         /* check in cache */
3711         if (!(flags & EXT4_GET_BLOCKS_PUNCH_OUT_EXT) &&
3712                 ext4_ext_in_cache(inode, map->m_lblk, &newex)) {
3713                 if (!newex.ee_start_lo && !newex.ee_start_hi) {
3714                         if ((sbi->s_cluster_ratio > 1) &&
3715                             ext4_find_delalloc_cluster(inode, map->m_lblk, 0))
3716                                 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
3717
3718                         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3719                                 /*
3720                                  * block isn't allocated yet and
3721                                  * user doesn't want to allocate it
3722                                  */
3723                                 goto out2;
3724                         }
3725                         /* we should allocate requested block */
3726                 } else {
3727                         /* block is already allocated */
3728                         if (sbi->s_cluster_ratio > 1)
3729                                 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
3730                         newblock = map->m_lblk
3731                                    - le32_to_cpu(newex.ee_block)
3732                                    + ext4_ext_pblock(&newex);
3733                         /* number of remaining blocks in the extent */
3734                         allocated = ext4_ext_get_actual_len(&newex) -
3735                                 (map->m_lblk - le32_to_cpu(newex.ee_block));
3736                         goto out;
3737                 }
3738         }
3739
3740         /* find extent for this block */
3741         path = ext4_ext_find_extent(inode, map->m_lblk, NULL);
3742         if (IS_ERR(path)) {
3743                 err = PTR_ERR(path);
3744                 path = NULL;
3745                 goto out2;
3746         }
3747
3748         depth = ext_depth(inode);
3749
3750         /*
3751          * consistent leaf must not be empty;
3752          * this situation is possible, though, _during_ tree modification;
3753          * this is why assert can't be put in ext4_ext_find_extent()
3754          */
3755         if (unlikely(path[depth].p_ext == NULL && depth != 0)) {
3756                 EXT4_ERROR_INODE(inode, "bad extent address "
3757                                  "lblock: %lu, depth: %d pblock %lld",
3758                                  (unsigned long) map->m_lblk, depth,
3759                                  path[depth].p_block);
3760                 err = -EIO;
3761                 goto out2;
3762         }
3763
3764         ex = path[depth].p_ext;
3765         if (ex) {
3766                 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
3767                 ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
3768                 unsigned short ee_len;
3769
3770                 /*
3771                  * Uninitialized extents are treated as holes, except that
3772                  * we split out initialized portions during a write.
3773                  */
3774                 ee_len = ext4_ext_get_actual_len(ex);
3775                 /* if found extent covers block, simply return it */
3776                 if (in_range(map->m_lblk, ee_block, ee_len)) {
3777                         ext4_fsblk_t partial_cluster = 0;
3778
3779                         newblock = map->m_lblk - ee_block + ee_start;
3780                         /* number of remaining blocks in the extent */
3781                         allocated = ee_len - (map->m_lblk - ee_block);
3782                         ext_debug("%u fit into %u:%d -> %llu\n", map->m_lblk,
3783                                   ee_block, ee_len, newblock);
3784
3785                         if ((flags & EXT4_GET_BLOCKS_PUNCH_OUT_EXT) == 0) {
3786                                 /*
3787                                  * Do not put uninitialized extent
3788                                  * in the cache
3789                                  */
3790                                 if (!ext4_ext_is_uninitialized(ex)) {
3791                                         ext4_ext_put_in_cache(inode, ee_block,
3792                                                 ee_len, ee_start);
3793                                         goto out;
3794                                 }
3795                                 ret = ext4_ext_handle_uninitialized_extents(
3796                                         handle, inode, map, path, flags,
3797                                         allocated, newblock);
3798                                 return ret;
3799                         }
3800
3801                         /*
3802                          * Punch out the map length, but only to the
3803                          * end of the extent
3804                          */
3805                         punched_out = allocated < map->m_len ?
3806                                 allocated : map->m_len;
3807
3808                         /*
3809                          * Sense extents need to be converted to
3810                          * uninitialized, they must fit in an
3811                          * uninitialized extent
3812                          */
3813                         if (punched_out > EXT_UNINIT_MAX_LEN)
3814                                 punched_out = EXT_UNINIT_MAX_LEN;
3815
3816                         punch_map.m_lblk = map->m_lblk;
3817                         punch_map.m_pblk = newblock;
3818                         punch_map.m_len = punched_out;
3819                         punch_map.m_flags = 0;
3820
3821                         /* Check to see if the extent needs to be split */
3822                         if (punch_map.m_len != ee_len ||
3823                                 punch_map.m_lblk != ee_block) {
3824
3825                                 ret = ext4_split_extent(handle, inode,
3826                                 path, &punch_map, 0,
3827                                 EXT4_GET_BLOCKS_PUNCH_OUT_EXT |
3828                                 EXT4_GET_BLOCKS_PRE_IO);
3829
3830                                 if (ret < 0) {
3831                                         err = ret;
3832                                         goto out2;
3833                                 }
3834                                 /*
3835                                  * find extent for the block at
3836                                  * the start of the hole
3837                                  */
3838                                 ext4_ext_drop_refs(path);
3839                                 kfree(path);
3840
3841                                 path = ext4_ext_find_extent(inode,
3842                                 map->m_lblk, NULL);
3843                                 if (IS_ERR(path)) {
3844                                         err = PTR_ERR(path);
3845                                         path = NULL;
3846                                         goto out2;
3847                                 }
3848
3849                                 depth = ext_depth(inode);
3850                                 ex = path[depth].p_ext;
3851                                 ee_len = ext4_ext_get_actual_len(ex);
3852                                 ee_block = le32_to_cpu(ex->ee_block);
3853                                 ee_start = ext4_ext_pblock(ex);
3854
3855                         }
3856
3857                         ext4_ext_mark_uninitialized(ex);
3858
3859                         ext4_ext_invalidate_cache(inode);
3860
3861                         err = ext4_ext_rm_leaf(handle, inode, path,
3862                                                &partial_cluster, map->m_lblk,
3863                                                map->m_lblk + punched_out);
3864
3865                         if (!err && path->p_hdr->eh_entries == 0) {
3866                                 /*
3867                                  * Punch hole freed all of this sub tree,
3868                                  * so we need to correct eh_depth
3869                                  */
3870                                 err = ext4_ext_get_access(handle, inode, path);
3871                                 if (err == 0) {
3872                                         ext_inode_hdr(inode)->eh_depth = 0;
3873                                         ext_inode_hdr(inode)->eh_max =
3874                                         cpu_to_le16(ext4_ext_space_root(
3875                                                 inode, 0));
3876
3877                                         err = ext4_ext_dirty(
3878                                                 handle, inode, path);
3879                                 }
3880                         }
3881
3882                         goto out2;
3883                 }
3884         }
3885
3886         if ((sbi->s_cluster_ratio > 1) &&
3887             ext4_find_delalloc_cluster(inode, map->m_lblk, 0))
3888                 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
3889
3890         /*
3891          * requested block isn't allocated yet;
3892          * we couldn't try to create block if create flag is zero
3893          */
3894         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3895                 /*
3896                  * put just found gap into cache to speed up
3897                  * subsequent requests
3898                  */
3899                 ext4_ext_put_gap_in_cache(inode, path, map->m_lblk);
3900                 goto out2;
3901         }
3902
3903         /*
3904          * Okay, we need to do block allocation.
3905          */
3906         map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
3907         newex.ee_block = cpu_to_le32(map->m_lblk);
3908         cluster_offset = map->m_lblk & (sbi->s_cluster_ratio-1);
3909
3910         /*
3911          * If we are doing bigalloc, check to see if the extent returned
3912          * by ext4_ext_find_extent() implies a cluster we can use.
3913          */
3914         if (cluster_offset && ex &&
3915             get_implied_cluster_alloc(sbi, map, ex, path)) {
3916                 ar.len = allocated = map->m_len;
3917                 newblock = map->m_pblk;
3918                 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
3919                 goto got_allocated_blocks;
3920         }
3921
3922         /* find neighbour allocated blocks */
3923         ar.lleft = map->m_lblk;
3924         err = ext4_ext_search_left(inode, path, &ar.lleft, &ar.pleft);
3925         if (err)
3926                 goto out2;
3927         ar.lright = map->m_lblk;
3928         ex2 = NULL;
3929         err = ext4_ext_search_right(inode, path, &ar.lright, &ar.pright, &ex2);
3930         if (err)
3931                 goto out2;
3932
3933         /* Check if the extent after searching to the right implies a
3934          * cluster we can use. */
3935         if ((sbi->s_cluster_ratio > 1) && ex2 &&
3936             get_implied_cluster_alloc(sbi, map, ex2, path)) {
3937                 ar.len = allocated = map->m_len;
3938                 newblock = map->m_pblk;
3939                 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
3940                 goto got_allocated_blocks;
3941         }
3942
3943         /*
3944          * See if request is beyond maximum number of blocks we can have in
3945          * a single extent. For an initialized extent this limit is
3946          * EXT_INIT_MAX_LEN and for an uninitialized extent this limit is
3947          * EXT_UNINIT_MAX_LEN.
3948          */
3949         if (map->m_len > EXT_INIT_MAX_LEN &&
3950             !(flags & EXT4_GET_BLOCKS_UNINIT_EXT))
3951                 map->m_len = EXT_INIT_MAX_LEN;
3952         else if (map->m_len > EXT_UNINIT_MAX_LEN &&
3953                  (flags & EXT4_GET_BLOCKS_UNINIT_EXT))
3954                 map->m_len = EXT_UNINIT_MAX_LEN;
3955
3956         /* Check if we can really insert (m_lblk)::(m_lblk + m_len) extent */
3957         newex.ee_len = cpu_to_le16(map->m_len);
3958         err = ext4_ext_check_overlap(sbi, inode, &newex, path);
3959         if (err)
3960                 allocated = ext4_ext_get_actual_len(&newex);
3961         else
3962                 allocated = map->m_len;
3963
3964         /* allocate new block */
3965         ar.inode = inode;
3966         ar.goal = ext4_ext_find_goal(inode, path, map->m_lblk);
3967         ar.logical = map->m_lblk;
3968         /*
3969          * We calculate the offset from the beginning of the cluster
3970          * for the logical block number, since when we allocate a
3971          * physical cluster, the physical block should start at the
3972          * same offset from the beginning of the cluster.  This is
3973          * needed so that future calls to get_implied_cluster_alloc()
3974          * work correctly.
3975          */
3976         offset = map->m_lblk & (sbi->s_cluster_ratio - 1);
3977         ar.len = EXT4_NUM_B2C(sbi, offset+allocated);
3978         ar.goal -= offset;
3979         ar.logical -= offset;
3980         if (S_ISREG(inode->i_mode))
3981                 ar.flags = EXT4_MB_HINT_DATA;
3982         else
3983                 /* disable in-core preallocation for non-regular files */
3984                 ar.flags = 0;
3985         if (flags & EXT4_GET_BLOCKS_NO_NORMALIZE)
3986                 ar.flags |= EXT4_MB_HINT_NOPREALLOC;
3987         newblock = ext4_mb_new_blocks(handle, &ar, &err);
3988         if (!newblock)
3989                 goto out2;
3990         ext_debug("allocate new block: goal %llu, found %llu/%u\n",
3991                   ar.goal, newblock, allocated);
3992         free_on_err = 1;
3993         allocated_clusters = ar.len;
3994         ar.len = EXT4_C2B(sbi, ar.len) - offset;
3995         if (ar.len > allocated)
3996                 ar.len = allocated;
3997
3998 got_allocated_blocks:
3999         /* try to insert new extent into found leaf and return */
4000         ext4_ext_store_pblock(&newex, newblock + offset);
4001         newex.ee_len = cpu_to_le16(ar.len);
4002         /* Mark uninitialized */
4003         if (flags & EXT4_GET_BLOCKS_UNINIT_EXT){
4004                 ext4_ext_mark_uninitialized(&newex);
4005                 /*
4006                  * io_end structure was created for every IO write to an
4007                  * uninitialized extent. To avoid unnecessary conversion,
4008                  * here we flag the IO that really needs the conversion.
4009                  * For non asycn direct IO case, flag the inode state
4010                  * that we need to perform conversion when IO is done.
4011                  */
4012                 if ((flags & EXT4_GET_BLOCKS_PRE_IO)) {
4013                         if (io && !(io->flag & EXT4_IO_END_UNWRITTEN)) {
4014                                 io->flag = EXT4_IO_END_UNWRITTEN;
4015                                 atomic_inc(&EXT4_I(inode)->i_aiodio_unwritten);
4016                         } else
4017                                 ext4_set_inode_state(inode,
4018                                                      EXT4_STATE_DIO_UNWRITTEN);
4019                 }
4020                 if (ext4_should_dioread_nolock(inode))
4021                         map->m_flags |= EXT4_MAP_UNINIT;
4022         }
4023
4024         err = check_eofblocks_fl(handle, inode, map->m_lblk, path, ar.len);
4025         if (!err)
4026                 err = ext4_ext_insert_extent(handle, inode, path,
4027                                              &newex, flags);
4028         if (err && free_on_err) {
4029                 int fb_flags = flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE ?
4030                         EXT4_FREE_BLOCKS_NO_QUOT_UPDATE : 0;
4031                 /* free data blocks we just allocated */
4032                 /* not a good idea to call discard here directly,
4033                  * but otherwise we'd need to call it every free() */
4034                 ext4_discard_preallocations(inode);
4035                 ext4_free_blocks(handle, inode, NULL, ext4_ext_pblock(&newex),
4036                                  ext4_ext_get_actual_len(&newex), fb_flags);
4037                 goto out2;
4038         }
4039
4040         /* previous routine could use block we allocated */
4041         newblock = ext4_ext_pblock(&newex);
4042         allocated = ext4_ext_get_actual_len(&newex);
4043         if (allocated > map->m_len)
4044                 allocated = map->m_len;
4045         map->m_flags |= EXT4_MAP_NEW;
4046
4047         /*
4048          * Update reserved blocks/metadata blocks after successful
4049          * block allocation which had been deferred till now.
4050          */
4051         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
4052                 /*
4053                  * Check how many clusters we had reserved this allocted range.
4054                  */
4055                 reserved_clusters = get_reserved_cluster_alloc(inode,
4056                                                 map->m_lblk, allocated);
4057                 if (map->m_flags & EXT4_MAP_FROM_CLUSTER) {
4058                         if (reserved_clusters) {
4059                                 /*
4060                                  * We have clusters reserved for this range.
4061                                  * But since we are not doing actual allocation
4062                                  * and are simply using blocks from previously
4063                                  * allocated cluster, we should release the
4064                                  * reservation and not claim quota.
4065                                  */
4066                                 ext4_da_update_reserve_space(inode,
4067                                                 reserved_clusters, 0);
4068                         }
4069                 } else {
4070                         BUG_ON(allocated_clusters < reserved_clusters);
4071                         /* We will claim quota for all newly allocated blocks.*/
4072                         ext4_da_update_reserve_space(inode, allocated_clusters,
4073                                                         1);
4074                         if (reserved_clusters < allocated_clusters) {
4075                                 int reservation = allocated_clusters -
4076                                                   reserved_clusters;
4077                                 /*
4078                                  * It seems we claimed few clusters outside of
4079                                  * the range of this allocation. We should give
4080                                  * it back to the reservation pool. This can
4081                                  * happen in the following case:
4082                                  *
4083                                  * * Suppose s_cluster_ratio is 4 (i.e., each
4084                                  *   cluster has 4 blocks. Thus, the clusters
4085                                  *   are [0-3],[4-7],[8-11]...
4086                                  * * First comes delayed allocation write for
4087                                  *   logical blocks 10 & 11. Since there were no
4088                                  *   previous delayed allocated blocks in the
4089                                  *   range [8-11], we would reserve 1 cluster
4090                                  *   for this write.
4091                                  * * Next comes write for logical blocks 3 to 8.
4092                                  *   In this case, we will reserve 2 clusters
4093                                  *   (for [0-3] and [4-7]; and not for [8-11] as
4094                                  *   that range has a delayed allocated blocks.
4095                                  *   Thus total reserved clusters now becomes 3.
4096                                  * * Now, during the delayed allocation writeout
4097                                  *   time, we will first write blocks [3-8] and
4098                                  *   allocate 3 clusters for writing these
4099                                  *   blocks. Also, we would claim all these
4100                                  *   three clusters above.
4101                                  * * Now when we come here to writeout the
4102                                  *   blocks [10-11], we would expect to claim
4103                                  *   the reservation of 1 cluster we had made
4104                                  *   (and we would claim it since there are no
4105                                  *   more delayed allocated blocks in the range
4106                                  *   [8-11]. But our reserved cluster count had
4107                                  *   already gone to 0.
4108                                  *
4109                                  *   Thus, at the step 4 above when we determine
4110                                  *   that there are still some unwritten delayed
4111                                  *   allocated blocks outside of our current
4112                                  *   block range, we should increment the
4113                                  *   reserved clusters count so that when the
4114                                  *   remaining blocks finally gets written, we
4115                                  *   could claim them.
4116                                  */
4117                                 while (reservation) {
4118                                         ext4_da_reserve_space(inode,
4119                                                               map->m_lblk);
4120                                         reservation--;
4121                                 }
4122                         }
4123                 }
4124         }
4125
4126         /*
4127          * Cache the extent and update transaction to commit on fdatasync only
4128          * when it is _not_ an uninitialized extent.
4129          */
4130         if ((flags & EXT4_GET_BLOCKS_UNINIT_EXT) == 0) {
4131                 ext4_ext_put_in_cache(inode, map->m_lblk, allocated, newblock);
4132                 ext4_update_inode_fsync_trans(handle, inode, 1);
4133         } else
4134                 ext4_update_inode_fsync_trans(handle, inode, 0);
4135 out:
4136         if (allocated > map->m_len)
4137                 allocated = map->m_len;
4138         ext4_ext_show_leaf(inode, path);
4139         map->m_flags |= EXT4_MAP_MAPPED;
4140         map->m_pblk = newblock;
4141         map->m_len = allocated;
4142 out2:
4143         if (path) {
4144                 ext4_ext_drop_refs(path);
4145                 kfree(path);
4146         }
4147         trace_ext4_ext_map_blocks_exit(inode, map->m_lblk,
4148                 newblock, map->m_len, err ? err : allocated);
4149
4150         result = (flags & EXT4_GET_BLOCKS_PUNCH_OUT_EXT) ?
4151                         punched_out : allocated;
4152
4153         return err ? err : result;
4154 }
4155
4156 void ext4_ext_truncate(struct inode *inode)
4157 {
4158         struct address_space *mapping = inode->i_mapping;
4159         struct super_block *sb = inode->i_sb;
4160         ext4_lblk_t last_block;
4161         handle_t *handle;
4162         loff_t page_len;
4163         int err = 0;
4164
4165         /*
4166          * finish any pending end_io work so we won't run the risk of
4167          * converting any truncated blocks to initialized later
4168          */
4169         ext4_flush_completed_IO(inode);
4170
4171         /*
4172          * probably first extent we're gonna free will be last in block
4173          */
4174         err = ext4_writepage_trans_blocks(inode);
4175         handle = ext4_journal_start(inode, err);
4176         if (IS_ERR(handle))
4177                 return;
4178
4179         if (inode->i_size % PAGE_CACHE_SIZE != 0) {
4180                 page_len = PAGE_CACHE_SIZE -
4181                         (inode->i_size & (PAGE_CACHE_SIZE - 1));
4182
4183                 err = ext4_discard_partial_page_buffers(handle,
4184                         mapping, inode->i_size, page_len, 0);
4185
4186                 if (err)
4187                         goto out_stop;
4188         }
4189
4190         if (ext4_orphan_add(handle, inode))
4191                 goto out_stop;
4192
4193         down_write(&EXT4_I(inode)->i_data_sem);
4194         ext4_ext_invalidate_cache(inode);
4195
4196         ext4_discard_preallocations(inode);
4197
4198         /*
4199          * TODO: optimization is possible here.
4200          * Probably we need not scan at all,
4201          * because page truncation is enough.
4202          */
4203
4204         /* we have to know where to truncate from in crash case */
4205         EXT4_I(inode)->i_disksize = inode->i_size;
4206         ext4_mark_inode_dirty(handle, inode);
4207
4208         last_block = (inode->i_size + sb->s_blocksize - 1)
4209                         >> EXT4_BLOCK_SIZE_BITS(sb);
4210         err = ext4_ext_remove_space(inode, last_block);
4211
4212         /* In a multi-transaction truncate, we only make the final
4213          * transaction synchronous.
4214          */
4215         if (IS_SYNC(inode))
4216                 ext4_handle_sync(handle);
4217
4218         up_write(&EXT4_I(inode)->i_data_sem);
4219
4220 out_stop:
4221         /*
4222          * If this was a simple ftruncate() and the file will remain alive,
4223          * then we need to clear up the orphan record which we created above.
4224          * However, if this was a real unlink then we were called by
4225          * ext4_delete_inode(), and we allow that function to clean up the
4226          * orphan info for us.
4227          */
4228         if (inode->i_nlink)
4229                 ext4_orphan_del(handle, inode);
4230
4231         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4232         ext4_mark_inode_dirty(handle, inode);
4233         ext4_journal_stop(handle);
4234 }
4235
4236 static void ext4_falloc_update_inode(struct inode *inode,
4237                                 int mode, loff_t new_size, int update_ctime)
4238 {
4239         struct timespec now;
4240
4241         if (update_ctime) {
4242                 now = current_fs_time(inode->i_sb);
4243                 if (!timespec_equal(&inode->i_ctime, &now))
4244                         inode->i_ctime = now;
4245         }
4246         /*
4247          * Update only when preallocation was requested beyond
4248          * the file size.
4249          */
4250         if (!(mode & FALLOC_FL_KEEP_SIZE)) {
4251                 if (new_size > i_size_read(inode))
4252                         i_size_write(inode, new_size);
4253                 if (new_size > EXT4_I(inode)->i_disksize)
4254                         ext4_update_i_disksize(inode, new_size);
4255         } else {
4256                 /*
4257                  * Mark that we allocate beyond EOF so the subsequent truncate
4258                  * can proceed even if the new size is the same as i_size.
4259                  */
4260                 if (new_size > i_size_read(inode))
4261                         ext4_set_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4262         }
4263
4264 }
4265
4266 /*
4267  * preallocate space for a file. This implements ext4's fallocate file
4268  * operation, which gets called from sys_fallocate system call.
4269  * For block-mapped files, posix_fallocate should fall back to the method
4270  * of writing zeroes to the required new blocks (the same behavior which is
4271  * expected for file systems which do not support fallocate() system call).
4272  */
4273 long ext4_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
4274 {
4275         struct inode *inode = file->f_path.dentry->d_inode;
4276         handle_t *handle;
4277         loff_t new_size;
4278         unsigned int max_blocks;
4279         int ret = 0;
4280         int ret2 = 0;
4281         int retries = 0;
4282         struct ext4_map_blocks map;
4283         unsigned int credits, blkbits = inode->i_blkbits;
4284
4285         /*
4286          * currently supporting (pre)allocate mode for extent-based
4287          * files _only_
4288          */
4289         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4290                 return -EOPNOTSUPP;
4291
4292         /* Return error if mode is not supported */
4293         if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
4294                 return -EOPNOTSUPP;
4295
4296         if (mode & FALLOC_FL_PUNCH_HOLE)
4297                 return ext4_punch_hole(file, offset, len);
4298
4299         trace_ext4_fallocate_enter(inode, offset, len, mode);
4300         map.m_lblk = offset >> blkbits;
4301         /*
4302          * We can't just convert len to max_blocks because
4303          * If blocksize = 4096 offset = 3072 and len = 2048
4304          */
4305         max_blocks = (EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits)
4306                 - map.m_lblk;
4307         /*
4308          * credits to insert 1 extent into extent tree
4309          */
4310         credits = ext4_chunk_trans_blocks(inode, max_blocks);
4311         mutex_lock(&inode->i_mutex);
4312         ret = inode_newsize_ok(inode, (len + offset));
4313         if (ret) {
4314                 mutex_unlock(&inode->i_mutex);
4315                 trace_ext4_fallocate_exit(inode, offset, max_blocks, ret);
4316                 return ret;
4317         }
4318 retry:
4319         while (ret >= 0 && ret < max_blocks) {
4320                 map.m_lblk = map.m_lblk + ret;
4321                 map.m_len = max_blocks = max_blocks - ret;
4322                 handle = ext4_journal_start(inode, credits);
4323                 if (IS_ERR(handle)) {
4324                         ret = PTR_ERR(handle);
4325                         break;
4326                 }
4327                 ret = ext4_map_blocks(handle, inode, &map,
4328                                       EXT4_GET_BLOCKS_CREATE_UNINIT_EXT |
4329                                       EXT4_GET_BLOCKS_NO_NORMALIZE);
4330                 if (ret <= 0) {
4331 #ifdef EXT4FS_DEBUG
4332                         WARN_ON(ret <= 0);
4333                         printk(KERN_ERR "%s: ext4_ext_map_blocks "
4334                                     "returned error inode#%lu, block=%u, "
4335                                     "max_blocks=%u", __func__,
4336                                     inode->i_ino, map.m_lblk, max_blocks);
4337 #endif
4338                         ext4_mark_inode_dirty(handle, inode);
4339                         ret2 = ext4_journal_stop(handle);
4340                         break;
4341                 }
4342                 if ((map.m_lblk + ret) >= (EXT4_BLOCK_ALIGN(offset + len,
4343                                                 blkbits) >> blkbits))
4344                         new_size = offset + len;
4345                 else
4346                         new_size = ((loff_t) map.m_lblk + ret) << blkbits;
4347
4348                 ext4_falloc_update_inode(inode, mode, new_size,
4349                                          (map.m_flags & EXT4_MAP_NEW));
4350                 ext4_mark_inode_dirty(handle, inode);
4351                 ret2 = ext4_journal_stop(handle);
4352                 if (ret2)
4353                         break;
4354         }
4355         if (ret == -ENOSPC &&
4356                         ext4_should_retry_alloc(inode->i_sb, &retries)) {
4357                 ret = 0;
4358                 goto retry;
4359         }
4360         mutex_unlock(&inode->i_mutex);
4361         trace_ext4_fallocate_exit(inode, offset, max_blocks,
4362                                 ret > 0 ? ret2 : ret);
4363         return ret > 0 ? ret2 : ret;
4364 }
4365
4366 /*
4367  * This function convert a range of blocks to written extents
4368  * The caller of this function will pass the start offset and the size.
4369  * all unwritten extents within this range will be converted to
4370  * written extents.
4371  *
4372  * This function is called from the direct IO end io call back
4373  * function, to convert the fallocated extents after IO is completed.
4374  * Returns 0 on success.
4375  */
4376 int ext4_convert_unwritten_extents(struct inode *inode, loff_t offset,
4377                                     ssize_t len)
4378 {
4379         handle_t *handle;
4380         unsigned int max_blocks;
4381         int ret = 0;
4382         int ret2 = 0;
4383         struct ext4_map_blocks map;
4384         unsigned int credits, blkbits = inode->i_blkbits;
4385
4386         map.m_lblk = offset >> blkbits;
4387         /*
4388          * We can't just convert len to max_blocks because
4389          * If blocksize = 4096 offset = 3072 and len = 2048
4390          */
4391         max_blocks = ((EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits) -
4392                       map.m_lblk);
4393         /*
4394          * credits to insert 1 extent into extent tree
4395          */
4396         credits = ext4_chunk_trans_blocks(inode, max_blocks);
4397         while (ret >= 0 && ret < max_blocks) {
4398                 map.m_lblk += ret;
4399                 map.m_len = (max_blocks -= ret);
4400                 handle = ext4_journal_start(inode, credits);
4401                 if (IS_ERR(handle)) {
4402                         ret = PTR_ERR(handle);
4403                         break;
4404                 }
4405                 ret = ext4_map_blocks(handle, inode, &map,
4406                                       EXT4_GET_BLOCKS_IO_CONVERT_EXT);
4407                 if (ret <= 0) {
4408                         WARN_ON(ret <= 0);
4409                         printk(KERN_ERR "%s: ext4_ext_map_blocks "
4410                                     "returned error inode#%lu, block=%u, "
4411                                     "max_blocks=%u", __func__,
4412                                     inode->i_ino, map.m_lblk, map.m_len);
4413                 }
4414                 ext4_mark_inode_dirty(handle, inode);
4415                 ret2 = ext4_journal_stop(handle);
4416                 if (ret <= 0 || ret2 )
4417                         break;
4418         }
4419         return ret > 0 ? ret2 : ret;
4420 }
4421
4422 /*
4423  * Callback function called for each extent to gather FIEMAP information.
4424  */
4425 static int ext4_ext_fiemap_cb(struct inode *inode, ext4_lblk_t next,
4426                        struct ext4_ext_cache *newex, struct ext4_extent *ex,
4427                        void *data)
4428 {
4429         __u64   logical;
4430         __u64   physical;
4431         __u64   length;
4432         __u32   flags = 0;
4433         int             ret = 0;
4434         struct fiemap_extent_info *fieinfo = data;
4435         unsigned char blksize_bits;
4436
4437         blksize_bits = inode->i_sb->s_blocksize_bits;
4438         logical = (__u64)newex->ec_block << blksize_bits;
4439
4440         if (newex->ec_start == 0) {
4441                 /*
4442                  * No extent in extent-tree contains block @newex->ec_start,
4443                  * then the block may stay in 1)a hole or 2)delayed-extent.
4444                  *
4445                  * Holes or delayed-extents are processed as follows.
4446                  * 1. lookup dirty pages with specified range in pagecache.
4447                  *    If no page is got, then there is no delayed-extent and
4448                  *    return with EXT_CONTINUE.
4449                  * 2. find the 1st mapped buffer,
4450                  * 3. check if the mapped buffer is both in the request range
4451                  *    and a delayed buffer. If not, there is no delayed-extent,
4452                  *    then return.
4453                  * 4. a delayed-extent is found, the extent will be collected.
4454                  */
4455                 ext4_lblk_t     end = 0;
4456                 pgoff_t         last_offset;
4457                 pgoff_t         offset;
4458                 pgoff_t         index;
4459                 pgoff_t         start_index = 0;
4460                 struct page     **pages = NULL;
4461                 struct buffer_head *bh = NULL;
4462                 struct buffer_head *head = NULL;
4463                 unsigned int nr_pages = PAGE_SIZE / sizeof(struct page *);
4464
4465                 pages = kmalloc(PAGE_SIZE, GFP_KERNEL);
4466                 if (pages == NULL)
4467                         return -ENOMEM;
4468
4469                 offset = logical >> PAGE_SHIFT;
4470 repeat:
4471                 last_offset = offset;
4472                 head = NULL;
4473                 ret = find_get_pages_tag(inode->i_mapping, &offset,
4474                                         PAGECACHE_TAG_DIRTY, nr_pages, pages);
4475
4476                 if (!(flags & FIEMAP_EXTENT_DELALLOC)) {
4477                         /* First time, try to find a mapped buffer. */
4478                         if (ret == 0) {
4479 out:
4480                                 for (index = 0; index < ret; index++)
4481                                         page_cache_release(pages[index]);
4482                                 /* just a hole. */
4483                                 kfree(pages);
4484                                 return EXT_CONTINUE;
4485                         }
4486                         index = 0;
4487
4488 next_page:
4489                         /* Try to find the 1st mapped buffer. */
4490                         end = ((__u64)pages[index]->index << PAGE_SHIFT) >>
4491                                   blksize_bits;
4492                         if (!page_has_buffers(pages[index]))
4493                                 goto out;
4494                         head = page_buffers(pages[index]);
4495                         if (!head)
4496                                 goto out;
4497
4498                         index++;
4499                         bh = head;
4500                         do {
4501                                 if (end >= newex->ec_block +
4502                                         newex->ec_len)
4503                                         /* The buffer is out of
4504                                          * the request range.
4505                                          */
4506                                         goto out;
4507
4508                                 if (buffer_mapped(bh) &&
4509                                     end >= newex->ec_block) {
4510                                         start_index = index - 1;
4511                                         /* get the 1st mapped buffer. */
4512                                         goto found_mapped_buffer;
4513                                 }
4514
4515                                 bh = bh->b_this_page;
4516                                 end++;
4517                         } while (bh != head);
4518
4519                         /* No mapped buffer in the range found in this page,
4520                          * We need to look up next page.
4521                          */
4522                         if (index >= ret) {
4523                                 /* There is no page left, but we need to limit
4524                                  * newex->ec_len.
4525                                  */
4526                                 newex->ec_len = end - newex->ec_block;
4527                                 goto out;
4528                         }
4529                         goto next_page;
4530                 } else {
4531                         /*Find contiguous delayed buffers. */
4532                         if (ret > 0 && pages[0]->index == last_offset)
4533                                 head = page_buffers(pages[0]);
4534                         bh = head;
4535                         index = 1;
4536                         start_index = 0;
4537                 }
4538
4539 found_mapped_buffer:
4540                 if (bh != NULL && buffer_delay(bh)) {
4541                         /* 1st or contiguous delayed buffer found. */
4542                         if (!(flags & FIEMAP_EXTENT_DELALLOC)) {
4543                                 /*
4544                                  * 1st delayed buffer found, record
4545                                  * the start of extent.
4546                                  */
4547                                 flags |= FIEMAP_EXTENT_DELALLOC;
4548                                 newex->ec_block = end;
4549                                 logical = (__u64)end << blksize_bits;
4550                         }
4551                         /* Find contiguous delayed buffers. */
4552                         do {
4553                                 if (!buffer_delay(bh))
4554                                         goto found_delayed_extent;
4555                                 bh = bh->b_this_page;
4556                                 end++;
4557                         } while (bh != head);
4558
4559                         for (; index < ret; index++) {
4560                                 if (!page_has_buffers(pages[index])) {
4561                                         bh = NULL;
4562                                         break;
4563                                 }
4564                                 head = page_buffers(pages[index]);
4565                                 if (!head) {
4566                                         bh = NULL;
4567                                         break;
4568                                 }
4569
4570                                 if (pages[index]->index !=
4571                                     pages[start_index]->index + index
4572                                     - start_index) {
4573                                         /* Blocks are not contiguous. */
4574                                         bh = NULL;
4575                                         break;
4576                                 }
4577                                 bh = head;
4578                                 do {
4579                                         if (!buffer_delay(bh))
4580                                                 /* Delayed-extent ends. */
4581                                                 goto found_delayed_extent;
4582                                         bh = bh->b_this_page;
4583                                         end++;
4584                                 } while (bh != head);
4585                         }
4586                 } else if (!(flags & FIEMAP_EXTENT_DELALLOC))
4587                         /* a hole found. */
4588                         goto out;
4589
4590 found_delayed_extent:
4591                 newex->ec_len = min(end - newex->ec_block,
4592                                                 (ext4_lblk_t)EXT_INIT_MAX_LEN);
4593                 if (ret == nr_pages && bh != NULL &&
4594                         newex->ec_len < EXT_INIT_MAX_LEN &&
4595                         buffer_delay(bh)) {
4596                         /* Have not collected an extent and continue. */
4597                         for (index = 0; index < ret; index++)
4598                                 page_cache_release(pages[index]);
4599                         goto repeat;
4600                 }
4601
4602                 for (index = 0; index < ret; index++)
4603                         page_cache_release(pages[index]);
4604                 kfree(pages);
4605         }
4606
4607         physical = (__u64)newex->ec_start << blksize_bits;
4608         length =   (__u64)newex->ec_len << blksize_bits;
4609
4610         if (ex && ext4_ext_is_uninitialized(ex))
4611                 flags |= FIEMAP_EXTENT_UNWRITTEN;
4612
4613         if (next == EXT_MAX_BLOCKS)
4614                 flags |= FIEMAP_EXTENT_LAST;
4615
4616         ret = fiemap_fill_next_extent(fieinfo, logical, physical,
4617                                         length, flags);
4618         if (ret < 0)
4619                 return ret;
4620         if (ret == 1)
4621                 return EXT_BREAK;
4622         return EXT_CONTINUE;
4623 }
4624 /* fiemap flags we can handle specified here */
4625 #define EXT4_FIEMAP_FLAGS       (FIEMAP_FLAG_SYNC|FIEMAP_FLAG_XATTR)
4626
4627 static int ext4_xattr_fiemap(struct inode *inode,
4628                                 struct fiemap_extent_info *fieinfo)
4629 {
4630         __u64 physical = 0;
4631         __u64 length;
4632         __u32 flags = FIEMAP_EXTENT_LAST;
4633         int blockbits = inode->i_sb->s_blocksize_bits;
4634         int error = 0;
4635
4636         /* in-inode? */
4637         if (ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
4638                 struct ext4_iloc iloc;
4639                 int offset;     /* offset of xattr in inode */
4640
4641                 error = ext4_get_inode_loc(inode, &iloc);
4642                 if (error)
4643                         return error;
4644                 physical = iloc.bh->b_blocknr << blockbits;
4645                 offset = EXT4_GOOD_OLD_INODE_SIZE +
4646                                 EXT4_I(inode)->i_extra_isize;
4647                 physical += offset;
4648                 length = EXT4_SB(inode->i_sb)->s_inode_size - offset;
4649                 flags |= FIEMAP_EXTENT_DATA_INLINE;
4650                 brelse(iloc.bh);
4651         } else { /* external block */
4652                 physical = EXT4_I(inode)->i_file_acl << blockbits;
4653                 length = inode->i_sb->s_blocksize;
4654         }
4655
4656         if (physical)
4657                 error = fiemap_fill_next_extent(fieinfo, 0, physical,
4658                                                 length, flags);
4659         return (error < 0 ? error : 0);
4660 }
4661
4662 /*
4663  * ext4_ext_punch_hole
4664  *
4665  * Punches a hole of "length" bytes in a file starting
4666  * at byte "offset"
4667  *
4668  * @inode:  The inode of the file to punch a hole in
4669  * @offset: The starting byte offset of the hole
4670  * @length: The length of the hole
4671  *
4672  * Returns the number of blocks removed or negative on err
4673  */
4674 int ext4_ext_punch_hole(struct file *file, loff_t offset, loff_t length)
4675 {
4676         struct inode *inode = file->f_path.dentry->d_inode;
4677         struct super_block *sb = inode->i_sb;
4678         struct ext4_ext_cache cache_ex;
4679         ext4_lblk_t first_block, last_block, num_blocks, iblock, max_blocks;
4680         struct address_space *mapping = inode->i_mapping;
4681         struct ext4_map_blocks map;
4682         handle_t *handle;
4683         loff_t first_page, last_page, page_len;
4684         loff_t first_page_offset, last_page_offset;
4685         int ret, credits, blocks_released, err = 0;
4686
4687         /* No need to punch hole beyond i_size */
4688         if (offset >= inode->i_size)
4689                 return 0;
4690
4691         /*
4692          * If the hole extends beyond i_size, set the hole
4693          * to end after the page that contains i_size
4694          */
4695         if (offset + length > inode->i_size) {
4696                 length = inode->i_size +
4697                    PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
4698                    offset;
4699         }
4700
4701         first_block = (offset + sb->s_blocksize - 1) >>
4702                 EXT4_BLOCK_SIZE_BITS(sb);
4703         last_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4704
4705         first_page = (offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
4706         last_page = (offset + length) >> PAGE_CACHE_SHIFT;
4707
4708         first_page_offset = first_page << PAGE_CACHE_SHIFT;
4709         last_page_offset = last_page << PAGE_CACHE_SHIFT;
4710
4711         /*
4712          * Write out all dirty pages to avoid race conditions
4713          * Then release them.
4714          */
4715         if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4716                 err = filemap_write_and_wait_range(mapping,
4717                         offset, offset + length - 1);
4718
4719                 if (err)
4720                         return err;
4721         }
4722
4723         /* Now release the pages */
4724         if (last_page_offset > first_page_offset) {
4725                 truncate_inode_pages_range(mapping, first_page_offset,
4726                                            last_page_offset-1);
4727         }
4728
4729         /* finish any pending end_io work */
4730         ext4_flush_completed_IO(inode);
4731
4732         credits = ext4_writepage_trans_blocks(inode);
4733         handle = ext4_journal_start(inode, credits);
4734         if (IS_ERR(handle))
4735                 return PTR_ERR(handle);
4736
4737         err = ext4_orphan_add(handle, inode);
4738         if (err)
4739                 goto out;
4740
4741         /*
4742          * Now we need to zero out the non-page-aligned data in the
4743          * pages at the start and tail of the hole, and unmap the buffer
4744          * heads for the block aligned regions of the page that were
4745          * completely zeroed.
4746          */
4747         if (first_page > last_page) {
4748                 /*
4749                  * If the file space being truncated is contained within a page
4750                  * just zero out and unmap the middle of that page
4751                  */
4752                 err = ext4_discard_partial_page_buffers(handle,
4753                         mapping, offset, length, 0);
4754
4755                 if (err)
4756                         goto out;
4757         } else {
4758                 /*
4759                  * zero out and unmap the partial page that contains
4760                  * the start of the hole
4761                  */
4762                 page_len  = first_page_offset - offset;
4763                 if (page_len > 0) {
4764                         err = ext4_discard_partial_page_buffers(handle, mapping,
4765                                                    offset, page_len, 0);
4766                         if (err)
4767                                 goto out;
4768                 }
4769
4770                 /*
4771                  * zero out and unmap the partial page that contains
4772                  * the end of the hole
4773                  */
4774                 page_len = offset + length - last_page_offset;
4775                 if (page_len > 0) {
4776                         err = ext4_discard_partial_page_buffers(handle, mapping,
4777                                         last_page_offset, page_len, 0);
4778                         if (err)
4779                                 goto out;
4780                 }
4781         }
4782
4783
4784         /*
4785          * If i_size is contained in the last page, we need to
4786          * unmap and zero the partial page after i_size
4787          */
4788         if (inode->i_size >> PAGE_CACHE_SHIFT == last_page &&
4789            inode->i_size % PAGE_CACHE_SIZE != 0) {
4790
4791                 page_len = PAGE_CACHE_SIZE -
4792                         (inode->i_size & (PAGE_CACHE_SIZE - 1));
4793
4794                 if (page_len > 0) {
4795                         err = ext4_discard_partial_page_buffers(handle,
4796                           mapping, inode->i_size, page_len, 0);
4797
4798                         if (err)
4799                                 goto out;
4800                 }
4801         }
4802
4803         /* If there are no blocks to remove, return now */
4804         if (first_block >= last_block)
4805                 goto out;
4806
4807         down_write(&EXT4_I(inode)->i_data_sem);
4808         ext4_ext_invalidate_cache(inode);
4809         ext4_discard_preallocations(inode);
4810
4811         /*
4812          * Loop over all the blocks and identify blocks
4813          * that need to be punched out
4814          */
4815         iblock = first_block;
4816         blocks_released = 0;
4817         while (iblock < last_block) {
4818                 max_blocks = last_block - iblock;
4819                 num_blocks = 1;
4820                 memset(&map, 0, sizeof(map));
4821                 map.m_lblk = iblock;
4822                 map.m_len = max_blocks;
4823                 ret = ext4_ext_map_blocks(handle, inode, &map,
4824                         EXT4_GET_BLOCKS_PUNCH_OUT_EXT);
4825
4826                 if (ret > 0) {
4827                         blocks_released += ret;
4828                         num_blocks = ret;
4829                 } else if (ret == 0) {
4830                         /*
4831                          * If map blocks could not find the block,
4832                          * then it is in a hole.  If the hole was
4833                          * not already cached, then map blocks should
4834                          * put it in the cache.  So we can get the hole
4835                          * out of the cache
4836                          */
4837                         memset(&cache_ex, 0, sizeof(cache_ex));
4838                         if ((ext4_ext_check_cache(inode, iblock, &cache_ex)) &&
4839                                 !cache_ex.ec_start) {
4840
4841                                 /* The hole is cached */
4842                                 num_blocks = cache_ex.ec_block +
4843                                 cache_ex.ec_len - iblock;
4844
4845                         } else {
4846                                 /* The block could not be identified */
4847                                 err = -EIO;
4848                                 break;
4849                         }
4850                 } else {
4851                         /* Map blocks error */
4852                         err = ret;
4853                         break;
4854                 }
4855
4856                 if (num_blocks == 0) {
4857                         /* This condition should never happen */
4858                         ext_debug("Block lookup failed");
4859                         err = -EIO;
4860                         break;
4861                 }
4862
4863                 iblock += num_blocks;
4864         }
4865
4866         if (blocks_released > 0) {
4867                 ext4_ext_invalidate_cache(inode);
4868                 ext4_discard_preallocations(inode);
4869         }
4870
4871         if (IS_SYNC(inode))
4872                 ext4_handle_sync(handle);
4873
4874         up_write(&EXT4_I(inode)->i_data_sem);
4875
4876 out:
4877         ext4_orphan_del(handle, inode);
4878         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4879         ext4_mark_inode_dirty(handle, inode);
4880         ext4_journal_stop(handle);
4881         return err;
4882 }
4883 int ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4884                 __u64 start, __u64 len)
4885 {
4886         ext4_lblk_t start_blk;
4887         int error = 0;
4888
4889         /* fallback to generic here if not in extents fmt */
4890         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4891                 return generic_block_fiemap(inode, fieinfo, start, len,
4892                         ext4_get_block);
4893
4894         if (fiemap_check_flags(fieinfo, EXT4_FIEMAP_FLAGS))
4895                 return -EBADR;
4896
4897         if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
4898                 error = ext4_xattr_fiemap(inode, fieinfo);
4899         } else {
4900                 ext4_lblk_t len_blks;
4901                 __u64 last_blk;
4902
4903                 start_blk = start >> inode->i_sb->s_blocksize_bits;
4904                 last_blk = (start + len - 1) >> inode->i_sb->s_blocksize_bits;
4905                 if (last_blk >= EXT_MAX_BLOCKS)
4906                         last_blk = EXT_MAX_BLOCKS-1;
4907                 len_blks = ((ext4_lblk_t) last_blk) - start_blk + 1;
4908
4909                 /*
4910                  * Walk the extent tree gathering extent information.
4911                  * ext4_ext_fiemap_cb will push extents back to user.
4912                  */
4913                 error = ext4_ext_walk_space(inode, start_blk, len_blks,
4914                                           ext4_ext_fiemap_cb, fieinfo);
4915         }
4916
4917         return error;
4918 }