ext3: Convert ext3 to new truncate calling convention
[pandora-kernel.git] / fs / ext3 / inode.c
1 /*
2  *  linux/fs/ext3/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Goal-directed block allocation by Stephen Tweedie
16  *      (sct@redhat.com), 1993, 1998
17  *  Big-endian to little-endian byte-swapping/bitmaps by
18  *        David S. Miller (davem@caip.rutgers.edu), 1995
19  *  64-bit file support on 64-bit platforms by Jakub Jelinek
20  *      (jj@sunsite.ms.mff.cuni.cz)
21  *
22  *  Assorted race fixes, rewrite of ext3_get_block() by Al Viro, 2000
23  */
24
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/ext3_jbd.h>
29 #include <linux/jbd.h>
30 #include <linux/highuid.h>
31 #include <linux/pagemap.h>
32 #include <linux/quotaops.h>
33 #include <linux/string.h>
34 #include <linux/buffer_head.h>
35 #include <linux/writeback.h>
36 #include <linux/mpage.h>
37 #include <linux/uio.h>
38 #include <linux/bio.h>
39 #include <linux/fiemap.h>
40 #include <linux/namei.h>
41 #include <trace/events/ext3.h>
42 #include "xattr.h"
43 #include "acl.h"
44
45 static int ext3_writepage_trans_blocks(struct inode *inode);
46
47 /*
48  * Test whether an inode is a fast symlink.
49  */
50 static int ext3_inode_is_fast_symlink(struct inode *inode)
51 {
52         int ea_blocks = EXT3_I(inode)->i_file_acl ?
53                 (inode->i_sb->s_blocksize >> 9) : 0;
54
55         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
56 }
57
58 /*
59  * The ext3 forget function must perform a revoke if we are freeing data
60  * which has been journaled.  Metadata (eg. indirect blocks) must be
61  * revoked in all cases.
62  *
63  * "bh" may be NULL: a metadata block may have been freed from memory
64  * but there may still be a record of it in the journal, and that record
65  * still needs to be revoked.
66  */
67 int ext3_forget(handle_t *handle, int is_metadata, struct inode *inode,
68                         struct buffer_head *bh, ext3_fsblk_t blocknr)
69 {
70         int err;
71
72         might_sleep();
73
74         trace_ext3_forget(inode, is_metadata, blocknr);
75         BUFFER_TRACE(bh, "enter");
76
77         jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
78                   "data mode %lx\n",
79                   bh, is_metadata, inode->i_mode,
80                   test_opt(inode->i_sb, DATA_FLAGS));
81
82         /* Never use the revoke function if we are doing full data
83          * journaling: there is no need to, and a V1 superblock won't
84          * support it.  Otherwise, only skip the revoke on un-journaled
85          * data blocks. */
86
87         if (test_opt(inode->i_sb, DATA_FLAGS) == EXT3_MOUNT_JOURNAL_DATA ||
88             (!is_metadata && !ext3_should_journal_data(inode))) {
89                 if (bh) {
90                         BUFFER_TRACE(bh, "call journal_forget");
91                         return ext3_journal_forget(handle, bh);
92                 }
93                 return 0;
94         }
95
96         /*
97          * data!=journal && (is_metadata || should_journal_data(inode))
98          */
99         BUFFER_TRACE(bh, "call ext3_journal_revoke");
100         err = ext3_journal_revoke(handle, blocknr, bh);
101         if (err)
102                 ext3_abort(inode->i_sb, __func__,
103                            "error %d when attempting revoke", err);
104         BUFFER_TRACE(bh, "exit");
105         return err;
106 }
107
108 /*
109  * Work out how many blocks we need to proceed with the next chunk of a
110  * truncate transaction.
111  */
112 static unsigned long blocks_for_truncate(struct inode *inode)
113 {
114         unsigned long needed;
115
116         needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
117
118         /* Give ourselves just enough room to cope with inodes in which
119          * i_blocks is corrupt: we've seen disk corruptions in the past
120          * which resulted in random data in an inode which looked enough
121          * like a regular file for ext3 to try to delete it.  Things
122          * will go a bit crazy if that happens, but at least we should
123          * try not to panic the whole kernel. */
124         if (needed < 2)
125                 needed = 2;
126
127         /* But we need to bound the transaction so we don't overflow the
128          * journal. */
129         if (needed > EXT3_MAX_TRANS_DATA)
130                 needed = EXT3_MAX_TRANS_DATA;
131
132         return EXT3_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
133 }
134
135 /*
136  * Truncate transactions can be complex and absolutely huge.  So we need to
137  * be able to restart the transaction at a conventient checkpoint to make
138  * sure we don't overflow the journal.
139  *
140  * start_transaction gets us a new handle for a truncate transaction,
141  * and extend_transaction tries to extend the existing one a bit.  If
142  * extend fails, we need to propagate the failure up and restart the
143  * transaction in the top-level truncate loop. --sct
144  */
145 static handle_t *start_transaction(struct inode *inode)
146 {
147         handle_t *result;
148
149         result = ext3_journal_start(inode, blocks_for_truncate(inode));
150         if (!IS_ERR(result))
151                 return result;
152
153         ext3_std_error(inode->i_sb, PTR_ERR(result));
154         return result;
155 }
156
157 /*
158  * Try to extend this transaction for the purposes of truncation.
159  *
160  * Returns 0 if we managed to create more room.  If we can't create more
161  * room, and the transaction must be restarted we return 1.
162  */
163 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
164 {
165         if (handle->h_buffer_credits > EXT3_RESERVE_TRANS_BLOCKS)
166                 return 0;
167         if (!ext3_journal_extend(handle, blocks_for_truncate(inode)))
168                 return 0;
169         return 1;
170 }
171
172 /*
173  * Restart the transaction associated with *handle.  This does a commit,
174  * so before we call here everything must be consistently dirtied against
175  * this transaction.
176  */
177 static int truncate_restart_transaction(handle_t *handle, struct inode *inode)
178 {
179         int ret;
180
181         jbd_debug(2, "restarting handle %p\n", handle);
182         /*
183          * Drop truncate_mutex to avoid deadlock with ext3_get_blocks_handle
184          * At this moment, get_block can be called only for blocks inside
185          * i_size since page cache has been already dropped and writes are
186          * blocked by i_mutex. So we can safely drop the truncate_mutex.
187          */
188         mutex_unlock(&EXT3_I(inode)->truncate_mutex);
189         ret = ext3_journal_restart(handle, blocks_for_truncate(inode));
190         mutex_lock(&EXT3_I(inode)->truncate_mutex);
191         return ret;
192 }
193
194 /*
195  * Called at inode eviction from icache
196  */
197 void ext3_evict_inode (struct inode *inode)
198 {
199         struct ext3_block_alloc_info *rsv;
200         handle_t *handle;
201         int want_delete = 0;
202
203         trace_ext3_evict_inode(inode);
204         if (!inode->i_nlink && !is_bad_inode(inode)) {
205                 dquot_initialize(inode);
206                 want_delete = 1;
207         }
208
209         truncate_inode_pages(&inode->i_data, 0);
210
211         ext3_discard_reservation(inode);
212         rsv = EXT3_I(inode)->i_block_alloc_info;
213         EXT3_I(inode)->i_block_alloc_info = NULL;
214         if (unlikely(rsv))
215                 kfree(rsv);
216
217         if (!want_delete)
218                 goto no_delete;
219
220         handle = start_transaction(inode);
221         if (IS_ERR(handle)) {
222                 /*
223                  * If we're going to skip the normal cleanup, we still need to
224                  * make sure that the in-core orphan linked list is properly
225                  * cleaned up.
226                  */
227                 ext3_orphan_del(NULL, inode);
228                 goto no_delete;
229         }
230
231         if (IS_SYNC(inode))
232                 handle->h_sync = 1;
233         inode->i_size = 0;
234         if (inode->i_blocks)
235                 ext3_truncate(inode);
236         /*
237          * Kill off the orphan record created when the inode lost the last
238          * link.  Note that ext3_orphan_del() has to be able to cope with the
239          * deletion of a non-existent orphan - ext3_truncate() could
240          * have removed the record.
241          */
242         ext3_orphan_del(handle, inode);
243         EXT3_I(inode)->i_dtime  = get_seconds();
244
245         /*
246          * One subtle ordering requirement: if anything has gone wrong
247          * (transaction abort, IO errors, whatever), then we can still
248          * do these next steps (the fs will already have been marked as
249          * having errors), but we can't free the inode if the mark_dirty
250          * fails.
251          */
252         if (ext3_mark_inode_dirty(handle, inode)) {
253                 /* If that failed, just dquot_drop() and be done with that */
254                 dquot_drop(inode);
255                 end_writeback(inode);
256         } else {
257                 ext3_xattr_delete_inode(handle, inode);
258                 dquot_free_inode(inode);
259                 dquot_drop(inode);
260                 end_writeback(inode);
261                 ext3_free_inode(handle, inode);
262         }
263         ext3_journal_stop(handle);
264         return;
265 no_delete:
266         end_writeback(inode);
267         dquot_drop(inode);
268 }
269
270 typedef struct {
271         __le32  *p;
272         __le32  key;
273         struct buffer_head *bh;
274 } Indirect;
275
276 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
277 {
278         p->key = *(p->p = v);
279         p->bh = bh;
280 }
281
282 static int verify_chain(Indirect *from, Indirect *to)
283 {
284         while (from <= to && from->key == *from->p)
285                 from++;
286         return (from > to);
287 }
288
289 /**
290  *      ext3_block_to_path - parse the block number into array of offsets
291  *      @inode: inode in question (we are only interested in its superblock)
292  *      @i_block: block number to be parsed
293  *      @offsets: array to store the offsets in
294  *      @boundary: set this non-zero if the referred-to block is likely to be
295  *             followed (on disk) by an indirect block.
296  *
297  *      To store the locations of file's data ext3 uses a data structure common
298  *      for UNIX filesystems - tree of pointers anchored in the inode, with
299  *      data blocks at leaves and indirect blocks in intermediate nodes.
300  *      This function translates the block number into path in that tree -
301  *      return value is the path length and @offsets[n] is the offset of
302  *      pointer to (n+1)th node in the nth one. If @block is out of range
303  *      (negative or too large) warning is printed and zero returned.
304  *
305  *      Note: function doesn't find node addresses, so no IO is needed. All
306  *      we need to know is the capacity of indirect blocks (taken from the
307  *      inode->i_sb).
308  */
309
310 /*
311  * Portability note: the last comparison (check that we fit into triple
312  * indirect block) is spelled differently, because otherwise on an
313  * architecture with 32-bit longs and 8Kb pages we might get into trouble
314  * if our filesystem had 8Kb blocks. We might use long long, but that would
315  * kill us on x86. Oh, well, at least the sign propagation does not matter -
316  * i_block would have to be negative in the very beginning, so we would not
317  * get there at all.
318  */
319
320 static int ext3_block_to_path(struct inode *inode,
321                         long i_block, int offsets[4], int *boundary)
322 {
323         int ptrs = EXT3_ADDR_PER_BLOCK(inode->i_sb);
324         int ptrs_bits = EXT3_ADDR_PER_BLOCK_BITS(inode->i_sb);
325         const long direct_blocks = EXT3_NDIR_BLOCKS,
326                 indirect_blocks = ptrs,
327                 double_blocks = (1 << (ptrs_bits * 2));
328         int n = 0;
329         int final = 0;
330
331         if (i_block < 0) {
332                 ext3_warning (inode->i_sb, "ext3_block_to_path", "block < 0");
333         } else if (i_block < direct_blocks) {
334                 offsets[n++] = i_block;
335                 final = direct_blocks;
336         } else if ( (i_block -= direct_blocks) < indirect_blocks) {
337                 offsets[n++] = EXT3_IND_BLOCK;
338                 offsets[n++] = i_block;
339                 final = ptrs;
340         } else if ((i_block -= indirect_blocks) < double_blocks) {
341                 offsets[n++] = EXT3_DIND_BLOCK;
342                 offsets[n++] = i_block >> ptrs_bits;
343                 offsets[n++] = i_block & (ptrs - 1);
344                 final = ptrs;
345         } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
346                 offsets[n++] = EXT3_TIND_BLOCK;
347                 offsets[n++] = i_block >> (ptrs_bits * 2);
348                 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
349                 offsets[n++] = i_block & (ptrs - 1);
350                 final = ptrs;
351         } else {
352                 ext3_warning(inode->i_sb, "ext3_block_to_path", "block > big");
353         }
354         if (boundary)
355                 *boundary = final - 1 - (i_block & (ptrs - 1));
356         return n;
357 }
358
359 /**
360  *      ext3_get_branch - read the chain of indirect blocks leading to data
361  *      @inode: inode in question
362  *      @depth: depth of the chain (1 - direct pointer, etc.)
363  *      @offsets: offsets of pointers in inode/indirect blocks
364  *      @chain: place to store the result
365  *      @err: here we store the error value
366  *
367  *      Function fills the array of triples <key, p, bh> and returns %NULL
368  *      if everything went OK or the pointer to the last filled triple
369  *      (incomplete one) otherwise. Upon the return chain[i].key contains
370  *      the number of (i+1)-th block in the chain (as it is stored in memory,
371  *      i.e. little-endian 32-bit), chain[i].p contains the address of that
372  *      number (it points into struct inode for i==0 and into the bh->b_data
373  *      for i>0) and chain[i].bh points to the buffer_head of i-th indirect
374  *      block for i>0 and NULL for i==0. In other words, it holds the block
375  *      numbers of the chain, addresses they were taken from (and where we can
376  *      verify that chain did not change) and buffer_heads hosting these
377  *      numbers.
378  *
379  *      Function stops when it stumbles upon zero pointer (absent block)
380  *              (pointer to last triple returned, *@err == 0)
381  *      or when it gets an IO error reading an indirect block
382  *              (ditto, *@err == -EIO)
383  *      or when it notices that chain had been changed while it was reading
384  *              (ditto, *@err == -EAGAIN)
385  *      or when it reads all @depth-1 indirect blocks successfully and finds
386  *      the whole chain, all way to the data (returns %NULL, *err == 0).
387  */
388 static Indirect *ext3_get_branch(struct inode *inode, int depth, int *offsets,
389                                  Indirect chain[4], int *err)
390 {
391         struct super_block *sb = inode->i_sb;
392         Indirect *p = chain;
393         struct buffer_head *bh;
394
395         *err = 0;
396         /* i_data is not going away, no lock needed */
397         add_chain (chain, NULL, EXT3_I(inode)->i_data + *offsets);
398         if (!p->key)
399                 goto no_block;
400         while (--depth) {
401                 bh = sb_bread(sb, le32_to_cpu(p->key));
402                 if (!bh)
403                         goto failure;
404                 /* Reader: pointers */
405                 if (!verify_chain(chain, p))
406                         goto changed;
407                 add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
408                 /* Reader: end */
409                 if (!p->key)
410                         goto no_block;
411         }
412         return NULL;
413
414 changed:
415         brelse(bh);
416         *err = -EAGAIN;
417         goto no_block;
418 failure:
419         *err = -EIO;
420 no_block:
421         return p;
422 }
423
424 /**
425  *      ext3_find_near - find a place for allocation with sufficient locality
426  *      @inode: owner
427  *      @ind: descriptor of indirect block.
428  *
429  *      This function returns the preferred place for block allocation.
430  *      It is used when heuristic for sequential allocation fails.
431  *      Rules are:
432  *        + if there is a block to the left of our position - allocate near it.
433  *        + if pointer will live in indirect block - allocate near that block.
434  *        + if pointer will live in inode - allocate in the same
435  *          cylinder group.
436  *
437  * In the latter case we colour the starting block by the callers PID to
438  * prevent it from clashing with concurrent allocations for a different inode
439  * in the same block group.   The PID is used here so that functionally related
440  * files will be close-by on-disk.
441  *
442  *      Caller must make sure that @ind is valid and will stay that way.
443  */
444 static ext3_fsblk_t ext3_find_near(struct inode *inode, Indirect *ind)
445 {
446         struct ext3_inode_info *ei = EXT3_I(inode);
447         __le32 *start = ind->bh ? (__le32*) ind->bh->b_data : ei->i_data;
448         __le32 *p;
449         ext3_fsblk_t bg_start;
450         ext3_grpblk_t colour;
451
452         /* Try to find previous block */
453         for (p = ind->p - 1; p >= start; p--) {
454                 if (*p)
455                         return le32_to_cpu(*p);
456         }
457
458         /* No such thing, so let's try location of indirect block */
459         if (ind->bh)
460                 return ind->bh->b_blocknr;
461
462         /*
463          * It is going to be referred to from the inode itself? OK, just put it
464          * into the same cylinder group then.
465          */
466         bg_start = ext3_group_first_block_no(inode->i_sb, ei->i_block_group);
467         colour = (current->pid % 16) *
468                         (EXT3_BLOCKS_PER_GROUP(inode->i_sb) / 16);
469         return bg_start + colour;
470 }
471
472 /**
473  *      ext3_find_goal - find a preferred place for allocation.
474  *      @inode: owner
475  *      @block:  block we want
476  *      @partial: pointer to the last triple within a chain
477  *
478  *      Normally this function find the preferred place for block allocation,
479  *      returns it.
480  */
481
482 static ext3_fsblk_t ext3_find_goal(struct inode *inode, long block,
483                                    Indirect *partial)
484 {
485         struct ext3_block_alloc_info *block_i;
486
487         block_i =  EXT3_I(inode)->i_block_alloc_info;
488
489         /*
490          * try the heuristic for sequential allocation,
491          * failing that at least try to get decent locality.
492          */
493         if (block_i && (block == block_i->last_alloc_logical_block + 1)
494                 && (block_i->last_alloc_physical_block != 0)) {
495                 return block_i->last_alloc_physical_block + 1;
496         }
497
498         return ext3_find_near(inode, partial);
499 }
500
501 /**
502  *      ext3_blks_to_allocate - Look up the block map and count the number
503  *      of direct blocks need to be allocated for the given branch.
504  *
505  *      @branch: chain of indirect blocks
506  *      @k: number of blocks need for indirect blocks
507  *      @blks: number of data blocks to be mapped.
508  *      @blocks_to_boundary:  the offset in the indirect block
509  *
510  *      return the total number of blocks to be allocate, including the
511  *      direct and indirect blocks.
512  */
513 static int ext3_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
514                 int blocks_to_boundary)
515 {
516         unsigned long count = 0;
517
518         /*
519          * Simple case, [t,d]Indirect block(s) has not allocated yet
520          * then it's clear blocks on that path have not allocated
521          */
522         if (k > 0) {
523                 /* right now we don't handle cross boundary allocation */
524                 if (blks < blocks_to_boundary + 1)
525                         count += blks;
526                 else
527                         count += blocks_to_boundary + 1;
528                 return count;
529         }
530
531         count++;
532         while (count < blks && count <= blocks_to_boundary &&
533                 le32_to_cpu(*(branch[0].p + count)) == 0) {
534                 count++;
535         }
536         return count;
537 }
538
539 /**
540  *      ext3_alloc_blocks - multiple allocate blocks needed for a branch
541  *      @handle: handle for this transaction
542  *      @inode: owner
543  *      @goal: preferred place for allocation
544  *      @indirect_blks: the number of blocks need to allocate for indirect
545  *                      blocks
546  *      @blks:  number of blocks need to allocated for direct blocks
547  *      @new_blocks: on return it will store the new block numbers for
548  *      the indirect blocks(if needed) and the first direct block,
549  *      @err: here we store the error value
550  *
551  *      return the number of direct blocks allocated
552  */
553 static int ext3_alloc_blocks(handle_t *handle, struct inode *inode,
554                         ext3_fsblk_t goal, int indirect_blks, int blks,
555                         ext3_fsblk_t new_blocks[4], int *err)
556 {
557         int target, i;
558         unsigned long count = 0;
559         int index = 0;
560         ext3_fsblk_t current_block = 0;
561         int ret = 0;
562
563         /*
564          * Here we try to allocate the requested multiple blocks at once,
565          * on a best-effort basis.
566          * To build a branch, we should allocate blocks for
567          * the indirect blocks(if not allocated yet), and at least
568          * the first direct block of this branch.  That's the
569          * minimum number of blocks need to allocate(required)
570          */
571         target = blks + indirect_blks;
572
573         while (1) {
574                 count = target;
575                 /* allocating blocks for indirect blocks and direct blocks */
576                 current_block = ext3_new_blocks(handle,inode,goal,&count,err);
577                 if (*err)
578                         goto failed_out;
579
580                 target -= count;
581                 /* allocate blocks for indirect blocks */
582                 while (index < indirect_blks && count) {
583                         new_blocks[index++] = current_block++;
584                         count--;
585                 }
586
587                 if (count > 0)
588                         break;
589         }
590
591         /* save the new block number for the first direct block */
592         new_blocks[index] = current_block;
593
594         /* total number of blocks allocated for direct blocks */
595         ret = count;
596         *err = 0;
597         return ret;
598 failed_out:
599         for (i = 0; i <index; i++)
600                 ext3_free_blocks(handle, inode, new_blocks[i], 1);
601         return ret;
602 }
603
604 /**
605  *      ext3_alloc_branch - allocate and set up a chain of blocks.
606  *      @handle: handle for this transaction
607  *      @inode: owner
608  *      @indirect_blks: number of allocated indirect blocks
609  *      @blks: number of allocated direct blocks
610  *      @goal: preferred place for allocation
611  *      @offsets: offsets (in the blocks) to store the pointers to next.
612  *      @branch: place to store the chain in.
613  *
614  *      This function allocates blocks, zeroes out all but the last one,
615  *      links them into chain and (if we are synchronous) writes them to disk.
616  *      In other words, it prepares a branch that can be spliced onto the
617  *      inode. It stores the information about that chain in the branch[], in
618  *      the same format as ext3_get_branch() would do. We are calling it after
619  *      we had read the existing part of chain and partial points to the last
620  *      triple of that (one with zero ->key). Upon the exit we have the same
621  *      picture as after the successful ext3_get_block(), except that in one
622  *      place chain is disconnected - *branch->p is still zero (we did not
623  *      set the last link), but branch->key contains the number that should
624  *      be placed into *branch->p to fill that gap.
625  *
626  *      If allocation fails we free all blocks we've allocated (and forget
627  *      their buffer_heads) and return the error value the from failed
628  *      ext3_alloc_block() (normally -ENOSPC). Otherwise we set the chain
629  *      as described above and return 0.
630  */
631 static int ext3_alloc_branch(handle_t *handle, struct inode *inode,
632                         int indirect_blks, int *blks, ext3_fsblk_t goal,
633                         int *offsets, Indirect *branch)
634 {
635         int blocksize = inode->i_sb->s_blocksize;
636         int i, n = 0;
637         int err = 0;
638         struct buffer_head *bh;
639         int num;
640         ext3_fsblk_t new_blocks[4];
641         ext3_fsblk_t current_block;
642
643         num = ext3_alloc_blocks(handle, inode, goal, indirect_blks,
644                                 *blks, new_blocks, &err);
645         if (err)
646                 return err;
647
648         branch[0].key = cpu_to_le32(new_blocks[0]);
649         /*
650          * metadata blocks and data blocks are allocated.
651          */
652         for (n = 1; n <= indirect_blks;  n++) {
653                 /*
654                  * Get buffer_head for parent block, zero it out
655                  * and set the pointer to new one, then send
656                  * parent to disk.
657                  */
658                 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
659                 branch[n].bh = bh;
660                 lock_buffer(bh);
661                 BUFFER_TRACE(bh, "call get_create_access");
662                 err = ext3_journal_get_create_access(handle, bh);
663                 if (err) {
664                         unlock_buffer(bh);
665                         brelse(bh);
666                         goto failed;
667                 }
668
669                 memset(bh->b_data, 0, blocksize);
670                 branch[n].p = (__le32 *) bh->b_data + offsets[n];
671                 branch[n].key = cpu_to_le32(new_blocks[n]);
672                 *branch[n].p = branch[n].key;
673                 if ( n == indirect_blks) {
674                         current_block = new_blocks[n];
675                         /*
676                          * End of chain, update the last new metablock of
677                          * the chain to point to the new allocated
678                          * data blocks numbers
679                          */
680                         for (i=1; i < num; i++)
681                                 *(branch[n].p + i) = cpu_to_le32(++current_block);
682                 }
683                 BUFFER_TRACE(bh, "marking uptodate");
684                 set_buffer_uptodate(bh);
685                 unlock_buffer(bh);
686
687                 BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
688                 err = ext3_journal_dirty_metadata(handle, bh);
689                 if (err)
690                         goto failed;
691         }
692         *blks = num;
693         return err;
694 failed:
695         /* Allocation failed, free what we already allocated */
696         for (i = 1; i <= n ; i++) {
697                 BUFFER_TRACE(branch[i].bh, "call journal_forget");
698                 ext3_journal_forget(handle, branch[i].bh);
699         }
700         for (i = 0; i <indirect_blks; i++)
701                 ext3_free_blocks(handle, inode, new_blocks[i], 1);
702
703         ext3_free_blocks(handle, inode, new_blocks[i], num);
704
705         return err;
706 }
707
708 /**
709  * ext3_splice_branch - splice the allocated branch onto inode.
710  * @handle: handle for this transaction
711  * @inode: owner
712  * @block: (logical) number of block we are adding
713  * @where: location of missing link
714  * @num:   number of indirect blocks we are adding
715  * @blks:  number of direct blocks we are adding
716  *
717  * This function fills the missing link and does all housekeeping needed in
718  * inode (->i_blocks, etc.). In case of success we end up with the full
719  * chain to new block and return 0.
720  */
721 static int ext3_splice_branch(handle_t *handle, struct inode *inode,
722                         long block, Indirect *where, int num, int blks)
723 {
724         int i;
725         int err = 0;
726         struct ext3_block_alloc_info *block_i;
727         ext3_fsblk_t current_block;
728         struct ext3_inode_info *ei = EXT3_I(inode);
729
730         block_i = ei->i_block_alloc_info;
731         /*
732          * If we're splicing into a [td]indirect block (as opposed to the
733          * inode) then we need to get write access to the [td]indirect block
734          * before the splice.
735          */
736         if (where->bh) {
737                 BUFFER_TRACE(where->bh, "get_write_access");
738                 err = ext3_journal_get_write_access(handle, where->bh);
739                 if (err)
740                         goto err_out;
741         }
742         /* That's it */
743
744         *where->p = where->key;
745
746         /*
747          * Update the host buffer_head or inode to point to more just allocated
748          * direct blocks blocks
749          */
750         if (num == 0 && blks > 1) {
751                 current_block = le32_to_cpu(where->key) + 1;
752                 for (i = 1; i < blks; i++)
753                         *(where->p + i ) = cpu_to_le32(current_block++);
754         }
755
756         /*
757          * update the most recently allocated logical & physical block
758          * in i_block_alloc_info, to assist find the proper goal block for next
759          * allocation
760          */
761         if (block_i) {
762                 block_i->last_alloc_logical_block = block + blks - 1;
763                 block_i->last_alloc_physical_block =
764                                 le32_to_cpu(where[num].key) + blks - 1;
765         }
766
767         /* We are done with atomic stuff, now do the rest of housekeeping */
768
769         inode->i_ctime = CURRENT_TIME_SEC;
770         ext3_mark_inode_dirty(handle, inode);
771         /* ext3_mark_inode_dirty already updated i_sync_tid */
772         atomic_set(&ei->i_datasync_tid, handle->h_transaction->t_tid);
773
774         /* had we spliced it onto indirect block? */
775         if (where->bh) {
776                 /*
777                  * If we spliced it onto an indirect block, we haven't
778                  * altered the inode.  Note however that if it is being spliced
779                  * onto an indirect block at the very end of the file (the
780                  * file is growing) then we *will* alter the inode to reflect
781                  * the new i_size.  But that is not done here - it is done in
782                  * generic_commit_write->__mark_inode_dirty->ext3_dirty_inode.
783                  */
784                 jbd_debug(5, "splicing indirect only\n");
785                 BUFFER_TRACE(where->bh, "call ext3_journal_dirty_metadata");
786                 err = ext3_journal_dirty_metadata(handle, where->bh);
787                 if (err)
788                         goto err_out;
789         } else {
790                 /*
791                  * OK, we spliced it into the inode itself on a direct block.
792                  * Inode was dirtied above.
793                  */
794                 jbd_debug(5, "splicing direct\n");
795         }
796         return err;
797
798 err_out:
799         for (i = 1; i <= num; i++) {
800                 BUFFER_TRACE(where[i].bh, "call journal_forget");
801                 ext3_journal_forget(handle, where[i].bh);
802                 ext3_free_blocks(handle,inode,le32_to_cpu(where[i-1].key),1);
803         }
804         ext3_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks);
805
806         return err;
807 }
808
809 /*
810  * Allocation strategy is simple: if we have to allocate something, we will
811  * have to go the whole way to leaf. So let's do it before attaching anything
812  * to tree, set linkage between the newborn blocks, write them if sync is
813  * required, recheck the path, free and repeat if check fails, otherwise
814  * set the last missing link (that will protect us from any truncate-generated
815  * removals - all blocks on the path are immune now) and possibly force the
816  * write on the parent block.
817  * That has a nice additional property: no special recovery from the failed
818  * allocations is needed - we simply release blocks and do not touch anything
819  * reachable from inode.
820  *
821  * `handle' can be NULL if create == 0.
822  *
823  * The BKL may not be held on entry here.  Be sure to take it early.
824  * return > 0, # of blocks mapped or allocated.
825  * return = 0, if plain lookup failed.
826  * return < 0, error case.
827  */
828 int ext3_get_blocks_handle(handle_t *handle, struct inode *inode,
829                 sector_t iblock, unsigned long maxblocks,
830                 struct buffer_head *bh_result,
831                 int create)
832 {
833         int err = -EIO;
834         int offsets[4];
835         Indirect chain[4];
836         Indirect *partial;
837         ext3_fsblk_t goal;
838         int indirect_blks;
839         int blocks_to_boundary = 0;
840         int depth;
841         struct ext3_inode_info *ei = EXT3_I(inode);
842         int count = 0;
843         ext3_fsblk_t first_block = 0;
844
845
846         trace_ext3_get_blocks_enter(inode, iblock, maxblocks, create);
847         J_ASSERT(handle != NULL || create == 0);
848         depth = ext3_block_to_path(inode,iblock,offsets,&blocks_to_boundary);
849
850         if (depth == 0)
851                 goto out;
852
853         partial = ext3_get_branch(inode, depth, offsets, chain, &err);
854
855         /* Simplest case - block found, no allocation needed */
856         if (!partial) {
857                 first_block = le32_to_cpu(chain[depth - 1].key);
858                 clear_buffer_new(bh_result);
859                 count++;
860                 /*map more blocks*/
861                 while (count < maxblocks && count <= blocks_to_boundary) {
862                         ext3_fsblk_t blk;
863
864                         if (!verify_chain(chain, chain + depth - 1)) {
865                                 /*
866                                  * Indirect block might be removed by
867                                  * truncate while we were reading it.
868                                  * Handling of that case: forget what we've
869                                  * got now. Flag the err as EAGAIN, so it
870                                  * will reread.
871                                  */
872                                 err = -EAGAIN;
873                                 count = 0;
874                                 break;
875                         }
876                         blk = le32_to_cpu(*(chain[depth-1].p + count));
877
878                         if (blk == first_block + count)
879                                 count++;
880                         else
881                                 break;
882                 }
883                 if (err != -EAGAIN)
884                         goto got_it;
885         }
886
887         /* Next simple case - plain lookup or failed read of indirect block */
888         if (!create || err == -EIO)
889                 goto cleanup;
890
891         /*
892          * Block out ext3_truncate while we alter the tree
893          */
894         mutex_lock(&ei->truncate_mutex);
895
896         /*
897          * If the indirect block is missing while we are reading
898          * the chain(ext3_get_branch() returns -EAGAIN err), or
899          * if the chain has been changed after we grab the semaphore,
900          * (either because another process truncated this branch, or
901          * another get_block allocated this branch) re-grab the chain to see if
902          * the request block has been allocated or not.
903          *
904          * Since we already block the truncate/other get_block
905          * at this point, we will have the current copy of the chain when we
906          * splice the branch into the tree.
907          */
908         if (err == -EAGAIN || !verify_chain(chain, partial)) {
909                 while (partial > chain) {
910                         brelse(partial->bh);
911                         partial--;
912                 }
913                 partial = ext3_get_branch(inode, depth, offsets, chain, &err);
914                 if (!partial) {
915                         count++;
916                         mutex_unlock(&ei->truncate_mutex);
917                         if (err)
918                                 goto cleanup;
919                         clear_buffer_new(bh_result);
920                         goto got_it;
921                 }
922         }
923
924         /*
925          * Okay, we need to do block allocation.  Lazily initialize the block
926          * allocation info here if necessary
927         */
928         if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
929                 ext3_init_block_alloc_info(inode);
930
931         goal = ext3_find_goal(inode, iblock, partial);
932
933         /* the number of blocks need to allocate for [d,t]indirect blocks */
934         indirect_blks = (chain + depth) - partial - 1;
935
936         /*
937          * Next look up the indirect map to count the totoal number of
938          * direct blocks to allocate for this branch.
939          */
940         count = ext3_blks_to_allocate(partial, indirect_blks,
941                                         maxblocks, blocks_to_boundary);
942         err = ext3_alloc_branch(handle, inode, indirect_blks, &count, goal,
943                                 offsets + (partial - chain), partial);
944
945         /*
946          * The ext3_splice_branch call will free and forget any buffers
947          * on the new chain if there is a failure, but that risks using
948          * up transaction credits, especially for bitmaps where the
949          * credits cannot be returned.  Can we handle this somehow?  We
950          * may need to return -EAGAIN upwards in the worst case.  --sct
951          */
952         if (!err)
953                 err = ext3_splice_branch(handle, inode, iblock,
954                                         partial, indirect_blks, count);
955         mutex_unlock(&ei->truncate_mutex);
956         if (err)
957                 goto cleanup;
958
959         set_buffer_new(bh_result);
960 got_it:
961         map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
962         if (count > blocks_to_boundary)
963                 set_buffer_boundary(bh_result);
964         err = count;
965         /* Clean up and exit */
966         partial = chain + depth - 1;    /* the whole chain */
967 cleanup:
968         while (partial > chain) {
969                 BUFFER_TRACE(partial->bh, "call brelse");
970                 brelse(partial->bh);
971                 partial--;
972         }
973         BUFFER_TRACE(bh_result, "returned");
974 out:
975         trace_ext3_get_blocks_exit(inode, iblock,
976                                    depth ? le32_to_cpu(chain[depth-1].key) : 0,
977                                    count, err);
978         return err;
979 }
980
981 /* Maximum number of blocks we map for direct IO at once. */
982 #define DIO_MAX_BLOCKS 4096
983 /*
984  * Number of credits we need for writing DIO_MAX_BLOCKS:
985  * We need sb + group descriptor + bitmap + inode -> 4
986  * For B blocks with A block pointers per block we need:
987  * 1 (triple ind.) + (B/A/A + 2) (doubly ind.) + (B/A + 2) (indirect).
988  * If we plug in 4096 for B and 256 for A (for 1KB block size), we get 25.
989  */
990 #define DIO_CREDITS 25
991
992 static int ext3_get_block(struct inode *inode, sector_t iblock,
993                         struct buffer_head *bh_result, int create)
994 {
995         handle_t *handle = ext3_journal_current_handle();
996         int ret = 0, started = 0;
997         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
998
999         if (create && !handle) {        /* Direct IO write... */
1000                 if (max_blocks > DIO_MAX_BLOCKS)
1001                         max_blocks = DIO_MAX_BLOCKS;
1002                 handle = ext3_journal_start(inode, DIO_CREDITS +
1003                                 EXT3_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb));
1004                 if (IS_ERR(handle)) {
1005                         ret = PTR_ERR(handle);
1006                         goto out;
1007                 }
1008                 started = 1;
1009         }
1010
1011         ret = ext3_get_blocks_handle(handle, inode, iblock,
1012                                         max_blocks, bh_result, create);
1013         if (ret > 0) {
1014                 bh_result->b_size = (ret << inode->i_blkbits);
1015                 ret = 0;
1016         }
1017         if (started)
1018                 ext3_journal_stop(handle);
1019 out:
1020         return ret;
1021 }
1022
1023 int ext3_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1024                 u64 start, u64 len)
1025 {
1026         return generic_block_fiemap(inode, fieinfo, start, len,
1027                                     ext3_get_block);
1028 }
1029
1030 /*
1031  * `handle' can be NULL if create is zero
1032  */
1033 struct buffer_head *ext3_getblk(handle_t *handle, struct inode *inode,
1034                                 long block, int create, int *errp)
1035 {
1036         struct buffer_head dummy;
1037         int fatal = 0, err;
1038
1039         J_ASSERT(handle != NULL || create == 0);
1040
1041         dummy.b_state = 0;
1042         dummy.b_blocknr = -1000;
1043         buffer_trace_init(&dummy.b_history);
1044         err = ext3_get_blocks_handle(handle, inode, block, 1,
1045                                         &dummy, create);
1046         /*
1047          * ext3_get_blocks_handle() returns number of blocks
1048          * mapped. 0 in case of a HOLE.
1049          */
1050         if (err > 0) {
1051                 if (err > 1)
1052                         WARN_ON(1);
1053                 err = 0;
1054         }
1055         *errp = err;
1056         if (!err && buffer_mapped(&dummy)) {
1057                 struct buffer_head *bh;
1058                 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1059                 if (!bh) {
1060                         *errp = -EIO;
1061                         goto err;
1062                 }
1063                 if (buffer_new(&dummy)) {
1064                         J_ASSERT(create != 0);
1065                         J_ASSERT(handle != NULL);
1066
1067                         /*
1068                          * Now that we do not always journal data, we should
1069                          * keep in mind whether this should always journal the
1070                          * new buffer as metadata.  For now, regular file
1071                          * writes use ext3_get_block instead, so it's not a
1072                          * problem.
1073                          */
1074                         lock_buffer(bh);
1075                         BUFFER_TRACE(bh, "call get_create_access");
1076                         fatal = ext3_journal_get_create_access(handle, bh);
1077                         if (!fatal && !buffer_uptodate(bh)) {
1078                                 memset(bh->b_data,0,inode->i_sb->s_blocksize);
1079                                 set_buffer_uptodate(bh);
1080                         }
1081                         unlock_buffer(bh);
1082                         BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
1083                         err = ext3_journal_dirty_metadata(handle, bh);
1084                         if (!fatal)
1085                                 fatal = err;
1086                 } else {
1087                         BUFFER_TRACE(bh, "not a new buffer");
1088                 }
1089                 if (fatal) {
1090                         *errp = fatal;
1091                         brelse(bh);
1092                         bh = NULL;
1093                 }
1094                 return bh;
1095         }
1096 err:
1097         return NULL;
1098 }
1099
1100 struct buffer_head *ext3_bread(handle_t *handle, struct inode *inode,
1101                                int block, int create, int *err)
1102 {
1103         struct buffer_head * bh;
1104
1105         bh = ext3_getblk(handle, inode, block, create, err);
1106         if (!bh)
1107                 return bh;
1108         if (buffer_uptodate(bh))
1109                 return bh;
1110         ll_rw_block(READ_META, 1, &bh);
1111         wait_on_buffer(bh);
1112         if (buffer_uptodate(bh))
1113                 return bh;
1114         put_bh(bh);
1115         *err = -EIO;
1116         return NULL;
1117 }
1118
1119 static int walk_page_buffers(   handle_t *handle,
1120                                 struct buffer_head *head,
1121                                 unsigned from,
1122                                 unsigned to,
1123                                 int *partial,
1124                                 int (*fn)(      handle_t *handle,
1125                                                 struct buffer_head *bh))
1126 {
1127         struct buffer_head *bh;
1128         unsigned block_start, block_end;
1129         unsigned blocksize = head->b_size;
1130         int err, ret = 0;
1131         struct buffer_head *next;
1132
1133         for (   bh = head, block_start = 0;
1134                 ret == 0 && (bh != head || !block_start);
1135                 block_start = block_end, bh = next)
1136         {
1137                 next = bh->b_this_page;
1138                 block_end = block_start + blocksize;
1139                 if (block_end <= from || block_start >= to) {
1140                         if (partial && !buffer_uptodate(bh))
1141                                 *partial = 1;
1142                         continue;
1143                 }
1144                 err = (*fn)(handle, bh);
1145                 if (!ret)
1146                         ret = err;
1147         }
1148         return ret;
1149 }
1150
1151 /*
1152  * To preserve ordering, it is essential that the hole instantiation and
1153  * the data write be encapsulated in a single transaction.  We cannot
1154  * close off a transaction and start a new one between the ext3_get_block()
1155  * and the commit_write().  So doing the journal_start at the start of
1156  * prepare_write() is the right place.
1157  *
1158  * Also, this function can nest inside ext3_writepage() ->
1159  * block_write_full_page(). In that case, we *know* that ext3_writepage()
1160  * has generated enough buffer credits to do the whole page.  So we won't
1161  * block on the journal in that case, which is good, because the caller may
1162  * be PF_MEMALLOC.
1163  *
1164  * By accident, ext3 can be reentered when a transaction is open via
1165  * quota file writes.  If we were to commit the transaction while thus
1166  * reentered, there can be a deadlock - we would be holding a quota
1167  * lock, and the commit would never complete if another thread had a
1168  * transaction open and was blocking on the quota lock - a ranking
1169  * violation.
1170  *
1171  * So what we do is to rely on the fact that journal_stop/journal_start
1172  * will _not_ run commit under these circumstances because handle->h_ref
1173  * is elevated.  We'll still have enough credits for the tiny quotafile
1174  * write.
1175  */
1176 static int do_journal_get_write_access(handle_t *handle,
1177                                         struct buffer_head *bh)
1178 {
1179         int dirty = buffer_dirty(bh);
1180         int ret;
1181
1182         if (!buffer_mapped(bh) || buffer_freed(bh))
1183                 return 0;
1184         /*
1185          * __block_prepare_write() could have dirtied some buffers. Clean
1186          * the dirty bit as jbd2_journal_get_write_access() could complain
1187          * otherwise about fs integrity issues. Setting of the dirty bit
1188          * by __block_prepare_write() isn't a real problem here as we clear
1189          * the bit before releasing a page lock and thus writeback cannot
1190          * ever write the buffer.
1191          */
1192         if (dirty)
1193                 clear_buffer_dirty(bh);
1194         ret = ext3_journal_get_write_access(handle, bh);
1195         if (!ret && dirty)
1196                 ret = ext3_journal_dirty_metadata(handle, bh);
1197         return ret;
1198 }
1199
1200 /*
1201  * Truncate blocks that were not used by write. We have to truncate the
1202  * pagecache as well so that corresponding buffers get properly unmapped.
1203  */
1204 static void ext3_truncate_failed_write(struct inode *inode)
1205 {
1206         truncate_inode_pages(inode->i_mapping, inode->i_size);
1207         ext3_truncate(inode);
1208 }
1209
1210 static int ext3_write_begin(struct file *file, struct address_space *mapping,
1211                                 loff_t pos, unsigned len, unsigned flags,
1212                                 struct page **pagep, void **fsdata)
1213 {
1214         struct inode *inode = mapping->host;
1215         int ret;
1216         handle_t *handle;
1217         int retries = 0;
1218         struct page *page;
1219         pgoff_t index;
1220         unsigned from, to;
1221         /* Reserve one block more for addition to orphan list in case
1222          * we allocate blocks but write fails for some reason */
1223         int needed_blocks = ext3_writepage_trans_blocks(inode) + 1;
1224
1225         trace_ext3_write_begin(inode, pos, len, flags);
1226
1227         index = pos >> PAGE_CACHE_SHIFT;
1228         from = pos & (PAGE_CACHE_SIZE - 1);
1229         to = from + len;
1230
1231 retry:
1232         page = grab_cache_page_write_begin(mapping, index, flags);
1233         if (!page)
1234                 return -ENOMEM;
1235         *pagep = page;
1236
1237         handle = ext3_journal_start(inode, needed_blocks);
1238         if (IS_ERR(handle)) {
1239                 unlock_page(page);
1240                 page_cache_release(page);
1241                 ret = PTR_ERR(handle);
1242                 goto out;
1243         }
1244         ret = __block_write_begin(page, pos, len, ext3_get_block);
1245         if (ret)
1246                 goto write_begin_failed;
1247
1248         if (ext3_should_journal_data(inode)) {
1249                 ret = walk_page_buffers(handle, page_buffers(page),
1250                                 from, to, NULL, do_journal_get_write_access);
1251         }
1252 write_begin_failed:
1253         if (ret) {
1254                 /*
1255                  * block_write_begin may have instantiated a few blocks
1256                  * outside i_size.  Trim these off again. Don't need
1257                  * i_size_read because we hold i_mutex.
1258                  *
1259                  * Add inode to orphan list in case we crash before truncate
1260                  * finishes. Do this only if ext3_can_truncate() agrees so
1261                  * that orphan processing code is happy.
1262                  */
1263                 if (pos + len > inode->i_size && ext3_can_truncate(inode))
1264                         ext3_orphan_add(handle, inode);
1265                 ext3_journal_stop(handle);
1266                 unlock_page(page);
1267                 page_cache_release(page);
1268                 if (pos + len > inode->i_size)
1269                         ext3_truncate_failed_write(inode);
1270         }
1271         if (ret == -ENOSPC && ext3_should_retry_alloc(inode->i_sb, &retries))
1272                 goto retry;
1273 out:
1274         return ret;
1275 }
1276
1277
1278 int ext3_journal_dirty_data(handle_t *handle, struct buffer_head *bh)
1279 {
1280         int err = journal_dirty_data(handle, bh);
1281         if (err)
1282                 ext3_journal_abort_handle(__func__, __func__,
1283                                                 bh, handle, err);
1284         return err;
1285 }
1286
1287 /* For ordered writepage and write_end functions */
1288 static int journal_dirty_data_fn(handle_t *handle, struct buffer_head *bh)
1289 {
1290         /*
1291          * Write could have mapped the buffer but it didn't copy the data in
1292          * yet. So avoid filing such buffer into a transaction.
1293          */
1294         if (buffer_mapped(bh) && buffer_uptodate(bh))
1295                 return ext3_journal_dirty_data(handle, bh);
1296         return 0;
1297 }
1298
1299 /* For write_end() in data=journal mode */
1300 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1301 {
1302         if (!buffer_mapped(bh) || buffer_freed(bh))
1303                 return 0;
1304         set_buffer_uptodate(bh);
1305         return ext3_journal_dirty_metadata(handle, bh);
1306 }
1307
1308 /*
1309  * This is nasty and subtle: ext3_write_begin() could have allocated blocks
1310  * for the whole page but later we failed to copy the data in. Update inode
1311  * size according to what we managed to copy. The rest is going to be
1312  * truncated in write_end function.
1313  */
1314 static void update_file_sizes(struct inode *inode, loff_t pos, unsigned copied)
1315 {
1316         /* What matters to us is i_disksize. We don't write i_size anywhere */
1317         if (pos + copied > inode->i_size)
1318                 i_size_write(inode, pos + copied);
1319         if (pos + copied > EXT3_I(inode)->i_disksize) {
1320                 EXT3_I(inode)->i_disksize = pos + copied;
1321                 mark_inode_dirty(inode);
1322         }
1323 }
1324
1325 /*
1326  * We need to pick up the new inode size which generic_commit_write gave us
1327  * `file' can be NULL - eg, when called from page_symlink().
1328  *
1329  * ext3 never places buffers on inode->i_mapping->private_list.  metadata
1330  * buffers are managed internally.
1331  */
1332 static int ext3_ordered_write_end(struct file *file,
1333                                 struct address_space *mapping,
1334                                 loff_t pos, unsigned len, unsigned copied,
1335                                 struct page *page, void *fsdata)
1336 {
1337         handle_t *handle = ext3_journal_current_handle();
1338         struct inode *inode = file->f_mapping->host;
1339         unsigned from, to;
1340         int ret = 0, ret2;
1341
1342         trace_ext3_ordered_write_end(inode, pos, len, copied);
1343         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1344
1345         from = pos & (PAGE_CACHE_SIZE - 1);
1346         to = from + copied;
1347         ret = walk_page_buffers(handle, page_buffers(page),
1348                 from, to, NULL, journal_dirty_data_fn);
1349
1350         if (ret == 0)
1351                 update_file_sizes(inode, pos, copied);
1352         /*
1353          * There may be allocated blocks outside of i_size because
1354          * we failed to copy some data. Prepare for truncate.
1355          */
1356         if (pos + len > inode->i_size && ext3_can_truncate(inode))
1357                 ext3_orphan_add(handle, inode);
1358         ret2 = ext3_journal_stop(handle);
1359         if (!ret)
1360                 ret = ret2;
1361         unlock_page(page);
1362         page_cache_release(page);
1363
1364         if (pos + len > inode->i_size)
1365                 ext3_truncate_failed_write(inode);
1366         return ret ? ret : copied;
1367 }
1368
1369 static int ext3_writeback_write_end(struct file *file,
1370                                 struct address_space *mapping,
1371                                 loff_t pos, unsigned len, unsigned copied,
1372                                 struct page *page, void *fsdata)
1373 {
1374         handle_t *handle = ext3_journal_current_handle();
1375         struct inode *inode = file->f_mapping->host;
1376         int ret;
1377
1378         trace_ext3_writeback_write_end(inode, pos, len, copied);
1379         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1380         update_file_sizes(inode, pos, copied);
1381         /*
1382          * There may be allocated blocks outside of i_size because
1383          * we failed to copy some data. Prepare for truncate.
1384          */
1385         if (pos + len > inode->i_size && ext3_can_truncate(inode))
1386                 ext3_orphan_add(handle, inode);
1387         ret = ext3_journal_stop(handle);
1388         unlock_page(page);
1389         page_cache_release(page);
1390
1391         if (pos + len > inode->i_size)
1392                 ext3_truncate_failed_write(inode);
1393         return ret ? ret : copied;
1394 }
1395
1396 static int ext3_journalled_write_end(struct file *file,
1397                                 struct address_space *mapping,
1398                                 loff_t pos, unsigned len, unsigned copied,
1399                                 struct page *page, void *fsdata)
1400 {
1401         handle_t *handle = ext3_journal_current_handle();
1402         struct inode *inode = mapping->host;
1403         int ret = 0, ret2;
1404         int partial = 0;
1405         unsigned from, to;
1406
1407         trace_ext3_journalled_write_end(inode, pos, len, copied);
1408         from = pos & (PAGE_CACHE_SIZE - 1);
1409         to = from + len;
1410
1411         if (copied < len) {
1412                 if (!PageUptodate(page))
1413                         copied = 0;
1414                 page_zero_new_buffers(page, from + copied, to);
1415                 to = from + copied;
1416         }
1417
1418         ret = walk_page_buffers(handle, page_buffers(page), from,
1419                                 to, &partial, write_end_fn);
1420         if (!partial)
1421                 SetPageUptodate(page);
1422
1423         if (pos + copied > inode->i_size)
1424                 i_size_write(inode, pos + copied);
1425         /*
1426          * There may be allocated blocks outside of i_size because
1427          * we failed to copy some data. Prepare for truncate.
1428          */
1429         if (pos + len > inode->i_size && ext3_can_truncate(inode))
1430                 ext3_orphan_add(handle, inode);
1431         ext3_set_inode_state(inode, EXT3_STATE_JDATA);
1432         if (inode->i_size > EXT3_I(inode)->i_disksize) {
1433                 EXT3_I(inode)->i_disksize = inode->i_size;
1434                 ret2 = ext3_mark_inode_dirty(handle, inode);
1435                 if (!ret)
1436                         ret = ret2;
1437         }
1438
1439         ret2 = ext3_journal_stop(handle);
1440         if (!ret)
1441                 ret = ret2;
1442         unlock_page(page);
1443         page_cache_release(page);
1444
1445         if (pos + len > inode->i_size)
1446                 ext3_truncate_failed_write(inode);
1447         return ret ? ret : copied;
1448 }
1449
1450 /*
1451  * bmap() is special.  It gets used by applications such as lilo and by
1452  * the swapper to find the on-disk block of a specific piece of data.
1453  *
1454  * Naturally, this is dangerous if the block concerned is still in the
1455  * journal.  If somebody makes a swapfile on an ext3 data-journaling
1456  * filesystem and enables swap, then they may get a nasty shock when the
1457  * data getting swapped to that swapfile suddenly gets overwritten by
1458  * the original zero's written out previously to the journal and
1459  * awaiting writeback in the kernel's buffer cache.
1460  *
1461  * So, if we see any bmap calls here on a modified, data-journaled file,
1462  * take extra steps to flush any blocks which might be in the cache.
1463  */
1464 static sector_t ext3_bmap(struct address_space *mapping, sector_t block)
1465 {
1466         struct inode *inode = mapping->host;
1467         journal_t *journal;
1468         int err;
1469
1470         if (ext3_test_inode_state(inode, EXT3_STATE_JDATA)) {
1471                 /*
1472                  * This is a REALLY heavyweight approach, but the use of
1473                  * bmap on dirty files is expected to be extremely rare:
1474                  * only if we run lilo or swapon on a freshly made file
1475                  * do we expect this to happen.
1476                  *
1477                  * (bmap requires CAP_SYS_RAWIO so this does not
1478                  * represent an unprivileged user DOS attack --- we'd be
1479                  * in trouble if mortal users could trigger this path at
1480                  * will.)
1481                  *
1482                  * NB. EXT3_STATE_JDATA is not set on files other than
1483                  * regular files.  If somebody wants to bmap a directory
1484                  * or symlink and gets confused because the buffer
1485                  * hasn't yet been flushed to disk, they deserve
1486                  * everything they get.
1487                  */
1488
1489                 ext3_clear_inode_state(inode, EXT3_STATE_JDATA);
1490                 journal = EXT3_JOURNAL(inode);
1491                 journal_lock_updates(journal);
1492                 err = journal_flush(journal);
1493                 journal_unlock_updates(journal);
1494
1495                 if (err)
1496                         return 0;
1497         }
1498
1499         return generic_block_bmap(mapping,block,ext3_get_block);
1500 }
1501
1502 static int bget_one(handle_t *handle, struct buffer_head *bh)
1503 {
1504         get_bh(bh);
1505         return 0;
1506 }
1507
1508 static int bput_one(handle_t *handle, struct buffer_head *bh)
1509 {
1510         put_bh(bh);
1511         return 0;
1512 }
1513
1514 static int buffer_unmapped(handle_t *handle, struct buffer_head *bh)
1515 {
1516         return !buffer_mapped(bh);
1517 }
1518
1519 /*
1520  * Note that we always start a transaction even if we're not journalling
1521  * data.  This is to preserve ordering: any hole instantiation within
1522  * __block_write_full_page -> ext3_get_block() should be journalled
1523  * along with the data so we don't crash and then get metadata which
1524  * refers to old data.
1525  *
1526  * In all journalling modes block_write_full_page() will start the I/O.
1527  *
1528  * Problem:
1529  *
1530  *      ext3_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1531  *              ext3_writepage()
1532  *
1533  * Similar for:
1534  *
1535  *      ext3_file_write() -> generic_file_write() -> __alloc_pages() -> ...
1536  *
1537  * Same applies to ext3_get_block().  We will deadlock on various things like
1538  * lock_journal and i_truncate_mutex.
1539  *
1540  * Setting PF_MEMALLOC here doesn't work - too many internal memory
1541  * allocations fail.
1542  *
1543  * 16May01: If we're reentered then journal_current_handle() will be
1544  *          non-zero. We simply *return*.
1545  *
1546  * 1 July 2001: @@@ FIXME:
1547  *   In journalled data mode, a data buffer may be metadata against the
1548  *   current transaction.  But the same file is part of a shared mapping
1549  *   and someone does a writepage() on it.
1550  *
1551  *   We will move the buffer onto the async_data list, but *after* it has
1552  *   been dirtied. So there's a small window where we have dirty data on
1553  *   BJ_Metadata.
1554  *
1555  *   Note that this only applies to the last partial page in the file.  The
1556  *   bit which block_write_full_page() uses prepare/commit for.  (That's
1557  *   broken code anyway: it's wrong for msync()).
1558  *
1559  *   It's a rare case: affects the final partial page, for journalled data
1560  *   where the file is subject to bith write() and writepage() in the same
1561  *   transction.  To fix it we'll need a custom block_write_full_page().
1562  *   We'll probably need that anyway for journalling writepage() output.
1563  *
1564  * We don't honour synchronous mounts for writepage().  That would be
1565  * disastrous.  Any write() or metadata operation will sync the fs for
1566  * us.
1567  *
1568  * AKPM2: if all the page's buffers are mapped to disk and !data=journal,
1569  * we don't need to open a transaction here.
1570  */
1571 static int ext3_ordered_writepage(struct page *page,
1572                                 struct writeback_control *wbc)
1573 {
1574         struct inode *inode = page->mapping->host;
1575         struct buffer_head *page_bufs;
1576         handle_t *handle = NULL;
1577         int ret = 0;
1578         int err;
1579
1580         J_ASSERT(PageLocked(page));
1581         WARN_ON_ONCE(IS_RDONLY(inode));
1582
1583         /*
1584          * We give up here if we're reentered, because it might be for a
1585          * different filesystem.
1586          */
1587         if (ext3_journal_current_handle())
1588                 goto out_fail;
1589
1590         trace_ext3_ordered_writepage(page);
1591         if (!page_has_buffers(page)) {
1592                 create_empty_buffers(page, inode->i_sb->s_blocksize,
1593                                 (1 << BH_Dirty)|(1 << BH_Uptodate));
1594                 page_bufs = page_buffers(page);
1595         } else {
1596                 page_bufs = page_buffers(page);
1597                 if (!walk_page_buffers(NULL, page_bufs, 0, PAGE_CACHE_SIZE,
1598                                        NULL, buffer_unmapped)) {
1599                         /* Provide NULL get_block() to catch bugs if buffers
1600                          * weren't really mapped */
1601                         return block_write_full_page(page, NULL, wbc);
1602                 }
1603         }
1604         handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
1605
1606         if (IS_ERR(handle)) {
1607                 ret = PTR_ERR(handle);
1608                 goto out_fail;
1609         }
1610
1611         walk_page_buffers(handle, page_bufs, 0,
1612                         PAGE_CACHE_SIZE, NULL, bget_one);
1613
1614         ret = block_write_full_page(page, ext3_get_block, wbc);
1615
1616         /*
1617          * The page can become unlocked at any point now, and
1618          * truncate can then come in and change things.  So we
1619          * can't touch *page from now on.  But *page_bufs is
1620          * safe due to elevated refcount.
1621          */
1622
1623         /*
1624          * And attach them to the current transaction.  But only if
1625          * block_write_full_page() succeeded.  Otherwise they are unmapped,
1626          * and generally junk.
1627          */
1628         if (ret == 0) {
1629                 err = walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE,
1630                                         NULL, journal_dirty_data_fn);
1631                 if (!ret)
1632                         ret = err;
1633         }
1634         walk_page_buffers(handle, page_bufs, 0,
1635                         PAGE_CACHE_SIZE, NULL, bput_one);
1636         err = ext3_journal_stop(handle);
1637         if (!ret)
1638                 ret = err;
1639         return ret;
1640
1641 out_fail:
1642         redirty_page_for_writepage(wbc, page);
1643         unlock_page(page);
1644         return ret;
1645 }
1646
1647 static int ext3_writeback_writepage(struct page *page,
1648                                 struct writeback_control *wbc)
1649 {
1650         struct inode *inode = page->mapping->host;
1651         handle_t *handle = NULL;
1652         int ret = 0;
1653         int err;
1654
1655         J_ASSERT(PageLocked(page));
1656         WARN_ON_ONCE(IS_RDONLY(inode));
1657
1658         if (ext3_journal_current_handle())
1659                 goto out_fail;
1660
1661         trace_ext3_writeback_writepage(page);
1662         if (page_has_buffers(page)) {
1663                 if (!walk_page_buffers(NULL, page_buffers(page), 0,
1664                                       PAGE_CACHE_SIZE, NULL, buffer_unmapped)) {
1665                         /* Provide NULL get_block() to catch bugs if buffers
1666                          * weren't really mapped */
1667                         return block_write_full_page(page, NULL, wbc);
1668                 }
1669         }
1670
1671         handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
1672         if (IS_ERR(handle)) {
1673                 ret = PTR_ERR(handle);
1674                 goto out_fail;
1675         }
1676
1677         ret = block_write_full_page(page, ext3_get_block, wbc);
1678
1679         err = ext3_journal_stop(handle);
1680         if (!ret)
1681                 ret = err;
1682         return ret;
1683
1684 out_fail:
1685         redirty_page_for_writepage(wbc, page);
1686         unlock_page(page);
1687         return ret;
1688 }
1689
1690 static int ext3_journalled_writepage(struct page *page,
1691                                 struct writeback_control *wbc)
1692 {
1693         struct inode *inode = page->mapping->host;
1694         handle_t *handle = NULL;
1695         int ret = 0;
1696         int err;
1697
1698         J_ASSERT(PageLocked(page));
1699         WARN_ON_ONCE(IS_RDONLY(inode));
1700
1701         if (ext3_journal_current_handle())
1702                 goto no_write;
1703
1704         trace_ext3_journalled_writepage(page);
1705         handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
1706         if (IS_ERR(handle)) {
1707                 ret = PTR_ERR(handle);
1708                 goto no_write;
1709         }
1710
1711         if (!page_has_buffers(page) || PageChecked(page)) {
1712                 /*
1713                  * It's mmapped pagecache.  Add buffers and journal it.  There
1714                  * doesn't seem much point in redirtying the page here.
1715                  */
1716                 ClearPageChecked(page);
1717                 ret = __block_write_begin(page, 0, PAGE_CACHE_SIZE,
1718                                           ext3_get_block);
1719                 if (ret != 0) {
1720                         ext3_journal_stop(handle);
1721                         goto out_unlock;
1722                 }
1723                 ret = walk_page_buffers(handle, page_buffers(page), 0,
1724                         PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
1725
1726                 err = walk_page_buffers(handle, page_buffers(page), 0,
1727                                 PAGE_CACHE_SIZE, NULL, write_end_fn);
1728                 if (ret == 0)
1729                         ret = err;
1730                 ext3_set_inode_state(inode, EXT3_STATE_JDATA);
1731                 unlock_page(page);
1732         } else {
1733                 /*
1734                  * It may be a page full of checkpoint-mode buffers.  We don't
1735                  * really know unless we go poke around in the buffer_heads.
1736                  * But block_write_full_page will do the right thing.
1737                  */
1738                 ret = block_write_full_page(page, ext3_get_block, wbc);
1739         }
1740         err = ext3_journal_stop(handle);
1741         if (!ret)
1742                 ret = err;
1743 out:
1744         return ret;
1745
1746 no_write:
1747         redirty_page_for_writepage(wbc, page);
1748 out_unlock:
1749         unlock_page(page);
1750         goto out;
1751 }
1752
1753 static int ext3_readpage(struct file *file, struct page *page)
1754 {
1755         trace_ext3_readpage(page);
1756         return mpage_readpage(page, ext3_get_block);
1757 }
1758
1759 static int
1760 ext3_readpages(struct file *file, struct address_space *mapping,
1761                 struct list_head *pages, unsigned nr_pages)
1762 {
1763         return mpage_readpages(mapping, pages, nr_pages, ext3_get_block);
1764 }
1765
1766 static void ext3_invalidatepage(struct page *page, unsigned long offset)
1767 {
1768         journal_t *journal = EXT3_JOURNAL(page->mapping->host);
1769
1770         trace_ext3_invalidatepage(page, offset);
1771
1772         /*
1773          * If it's a full truncate we just forget about the pending dirtying
1774          */
1775         if (offset == 0)
1776                 ClearPageChecked(page);
1777
1778         journal_invalidatepage(journal, page, offset);
1779 }
1780
1781 static int ext3_releasepage(struct page *page, gfp_t wait)
1782 {
1783         journal_t *journal = EXT3_JOURNAL(page->mapping->host);
1784
1785         trace_ext3_releasepage(page);
1786         WARN_ON(PageChecked(page));
1787         if (!page_has_buffers(page))
1788                 return 0;
1789         return journal_try_to_free_buffers(journal, page, wait);
1790 }
1791
1792 /*
1793  * If the O_DIRECT write will extend the file then add this inode to the
1794  * orphan list.  So recovery will truncate it back to the original size
1795  * if the machine crashes during the write.
1796  *
1797  * If the O_DIRECT write is intantiating holes inside i_size and the machine
1798  * crashes then stale disk data _may_ be exposed inside the file. But current
1799  * VFS code falls back into buffered path in that case so we are safe.
1800  */
1801 static ssize_t ext3_direct_IO(int rw, struct kiocb *iocb,
1802                         const struct iovec *iov, loff_t offset,
1803                         unsigned long nr_segs)
1804 {
1805         struct file *file = iocb->ki_filp;
1806         struct inode *inode = file->f_mapping->host;
1807         struct ext3_inode_info *ei = EXT3_I(inode);
1808         handle_t *handle;
1809         ssize_t ret;
1810         int orphan = 0;
1811         size_t count = iov_length(iov, nr_segs);
1812         int retries = 0;
1813
1814         trace_ext3_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
1815
1816         if (rw == WRITE) {
1817                 loff_t final_size = offset + count;
1818
1819                 if (final_size > inode->i_size) {
1820                         /* Credits for sb + inode write */
1821                         handle = ext3_journal_start(inode, 2);
1822                         if (IS_ERR(handle)) {
1823                                 ret = PTR_ERR(handle);
1824                                 goto out;
1825                         }
1826                         ret = ext3_orphan_add(handle, inode);
1827                         if (ret) {
1828                                 ext3_journal_stop(handle);
1829                                 goto out;
1830                         }
1831                         orphan = 1;
1832                         ei->i_disksize = inode->i_size;
1833                         ext3_journal_stop(handle);
1834                 }
1835         }
1836
1837 retry:
1838         ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
1839                                  offset, nr_segs,
1840                                  ext3_get_block, NULL);
1841         /*
1842          * In case of error extending write may have instantiated a few
1843          * blocks outside i_size. Trim these off again.
1844          */
1845         if (unlikely((rw & WRITE) && ret < 0)) {
1846                 loff_t isize = i_size_read(inode);
1847                 loff_t end = offset + iov_length(iov, nr_segs);
1848
1849                 if (end > isize)
1850                         ext3_truncate_failed_write(inode);
1851         }
1852         if (ret == -ENOSPC && ext3_should_retry_alloc(inode->i_sb, &retries))
1853                 goto retry;
1854
1855         if (orphan) {
1856                 int err;
1857
1858                 /* Credits for sb + inode write */
1859                 handle = ext3_journal_start(inode, 2);
1860                 if (IS_ERR(handle)) {
1861                         /* This is really bad luck. We've written the data
1862                          * but cannot extend i_size. Truncate allocated blocks
1863                          * and pretend the write failed... */
1864                         ext3_truncate_failed_write(inode);
1865                         ret = PTR_ERR(handle);
1866                         goto out;
1867                 }
1868                 if (inode->i_nlink)
1869                         ext3_orphan_del(handle, inode);
1870                 if (ret > 0) {
1871                         loff_t end = offset + ret;
1872                         if (end > inode->i_size) {
1873                                 ei->i_disksize = end;
1874                                 i_size_write(inode, end);
1875                                 /*
1876                                  * We're going to return a positive `ret'
1877                                  * here due to non-zero-length I/O, so there's
1878                                  * no way of reporting error returns from
1879                                  * ext3_mark_inode_dirty() to userspace.  So
1880                                  * ignore it.
1881                                  */
1882                                 ext3_mark_inode_dirty(handle, inode);
1883                         }
1884                 }
1885                 err = ext3_journal_stop(handle);
1886                 if (ret == 0)
1887                         ret = err;
1888         }
1889 out:
1890         trace_ext3_direct_IO_exit(inode, offset,
1891                                 iov_length(iov, nr_segs), rw, ret);
1892         return ret;
1893 }
1894
1895 /*
1896  * Pages can be marked dirty completely asynchronously from ext3's journalling
1897  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
1898  * much here because ->set_page_dirty is called under VFS locks.  The page is
1899  * not necessarily locked.
1900  *
1901  * We cannot just dirty the page and leave attached buffers clean, because the
1902  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
1903  * or jbddirty because all the journalling code will explode.
1904  *
1905  * So what we do is to mark the page "pending dirty" and next time writepage
1906  * is called, propagate that into the buffers appropriately.
1907  */
1908 static int ext3_journalled_set_page_dirty(struct page *page)
1909 {
1910         SetPageChecked(page);
1911         return __set_page_dirty_nobuffers(page);
1912 }
1913
1914 static const struct address_space_operations ext3_ordered_aops = {
1915         .readpage               = ext3_readpage,
1916         .readpages              = ext3_readpages,
1917         .writepage              = ext3_ordered_writepage,
1918         .write_begin            = ext3_write_begin,
1919         .write_end              = ext3_ordered_write_end,
1920         .bmap                   = ext3_bmap,
1921         .invalidatepage         = ext3_invalidatepage,
1922         .releasepage            = ext3_releasepage,
1923         .direct_IO              = ext3_direct_IO,
1924         .migratepage            = buffer_migrate_page,
1925         .is_partially_uptodate  = block_is_partially_uptodate,
1926         .error_remove_page      = generic_error_remove_page,
1927 };
1928
1929 static const struct address_space_operations ext3_writeback_aops = {
1930         .readpage               = ext3_readpage,
1931         .readpages              = ext3_readpages,
1932         .writepage              = ext3_writeback_writepage,
1933         .write_begin            = ext3_write_begin,
1934         .write_end              = ext3_writeback_write_end,
1935         .bmap                   = ext3_bmap,
1936         .invalidatepage         = ext3_invalidatepage,
1937         .releasepage            = ext3_releasepage,
1938         .direct_IO              = ext3_direct_IO,
1939         .migratepage            = buffer_migrate_page,
1940         .is_partially_uptodate  = block_is_partially_uptodate,
1941         .error_remove_page      = generic_error_remove_page,
1942 };
1943
1944 static const struct address_space_operations ext3_journalled_aops = {
1945         .readpage               = ext3_readpage,
1946         .readpages              = ext3_readpages,
1947         .writepage              = ext3_journalled_writepage,
1948         .write_begin            = ext3_write_begin,
1949         .write_end              = ext3_journalled_write_end,
1950         .set_page_dirty         = ext3_journalled_set_page_dirty,
1951         .bmap                   = ext3_bmap,
1952         .invalidatepage         = ext3_invalidatepage,
1953         .releasepage            = ext3_releasepage,
1954         .is_partially_uptodate  = block_is_partially_uptodate,
1955         .error_remove_page      = generic_error_remove_page,
1956 };
1957
1958 void ext3_set_aops(struct inode *inode)
1959 {
1960         if (ext3_should_order_data(inode))
1961                 inode->i_mapping->a_ops = &ext3_ordered_aops;
1962         else if (ext3_should_writeback_data(inode))
1963                 inode->i_mapping->a_ops = &ext3_writeback_aops;
1964         else
1965                 inode->i_mapping->a_ops = &ext3_journalled_aops;
1966 }
1967
1968 /*
1969  * ext3_block_truncate_page() zeroes out a mapping from file offset `from'
1970  * up to the end of the block which corresponds to `from'.
1971  * This required during truncate. We need to physically zero the tail end
1972  * of that block so it doesn't yield old data if the file is later grown.
1973  */
1974 static int ext3_block_truncate_page(handle_t *handle, struct page *page,
1975                 struct address_space *mapping, loff_t from)
1976 {
1977         ext3_fsblk_t index = from >> PAGE_CACHE_SHIFT;
1978         unsigned offset = from & (PAGE_CACHE_SIZE-1);
1979         unsigned blocksize, iblock, length, pos;
1980         struct inode *inode = mapping->host;
1981         struct buffer_head *bh;
1982         int err = 0;
1983
1984         blocksize = inode->i_sb->s_blocksize;
1985         length = blocksize - (offset & (blocksize - 1));
1986         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
1987
1988         if (!page_has_buffers(page))
1989                 create_empty_buffers(page, blocksize, 0);
1990
1991         /* Find the buffer that contains "offset" */
1992         bh = page_buffers(page);
1993         pos = blocksize;
1994         while (offset >= pos) {
1995                 bh = bh->b_this_page;
1996                 iblock++;
1997                 pos += blocksize;
1998         }
1999
2000         err = 0;
2001         if (buffer_freed(bh)) {
2002                 BUFFER_TRACE(bh, "freed: skip");
2003                 goto unlock;
2004         }
2005
2006         if (!buffer_mapped(bh)) {
2007                 BUFFER_TRACE(bh, "unmapped");
2008                 ext3_get_block(inode, iblock, bh, 0);
2009                 /* unmapped? It's a hole - nothing to do */
2010                 if (!buffer_mapped(bh)) {
2011                         BUFFER_TRACE(bh, "still unmapped");
2012                         goto unlock;
2013                 }
2014         }
2015
2016         /* Ok, it's mapped. Make sure it's up-to-date */
2017         if (PageUptodate(page))
2018                 set_buffer_uptodate(bh);
2019
2020         if (!buffer_uptodate(bh)) {
2021                 err = -EIO;
2022                 ll_rw_block(READ, 1, &bh);
2023                 wait_on_buffer(bh);
2024                 /* Uhhuh. Read error. Complain and punt. */
2025                 if (!buffer_uptodate(bh))
2026                         goto unlock;
2027         }
2028
2029         if (ext3_should_journal_data(inode)) {
2030                 BUFFER_TRACE(bh, "get write access");
2031                 err = ext3_journal_get_write_access(handle, bh);
2032                 if (err)
2033                         goto unlock;
2034         }
2035
2036         zero_user(page, offset, length);
2037         BUFFER_TRACE(bh, "zeroed end of block");
2038
2039         err = 0;
2040         if (ext3_should_journal_data(inode)) {
2041                 err = ext3_journal_dirty_metadata(handle, bh);
2042         } else {
2043                 if (ext3_should_order_data(inode))
2044                         err = ext3_journal_dirty_data(handle, bh);
2045                 mark_buffer_dirty(bh);
2046         }
2047
2048 unlock:
2049         unlock_page(page);
2050         page_cache_release(page);
2051         return err;
2052 }
2053
2054 /*
2055  * Probably it should be a library function... search for first non-zero word
2056  * or memcmp with zero_page, whatever is better for particular architecture.
2057  * Linus?
2058  */
2059 static inline int all_zeroes(__le32 *p, __le32 *q)
2060 {
2061         while (p < q)
2062                 if (*p++)
2063                         return 0;
2064         return 1;
2065 }
2066
2067 /**
2068  *      ext3_find_shared - find the indirect blocks for partial truncation.
2069  *      @inode:   inode in question
2070  *      @depth:   depth of the affected branch
2071  *      @offsets: offsets of pointers in that branch (see ext3_block_to_path)
2072  *      @chain:   place to store the pointers to partial indirect blocks
2073  *      @top:     place to the (detached) top of branch
2074  *
2075  *      This is a helper function used by ext3_truncate().
2076  *
2077  *      When we do truncate() we may have to clean the ends of several
2078  *      indirect blocks but leave the blocks themselves alive. Block is
2079  *      partially truncated if some data below the new i_size is referred
2080  *      from it (and it is on the path to the first completely truncated
2081  *      data block, indeed).  We have to free the top of that path along
2082  *      with everything to the right of the path. Since no allocation
2083  *      past the truncation point is possible until ext3_truncate()
2084  *      finishes, we may safely do the latter, but top of branch may
2085  *      require special attention - pageout below the truncation point
2086  *      might try to populate it.
2087  *
2088  *      We atomically detach the top of branch from the tree, store the
2089  *      block number of its root in *@top, pointers to buffer_heads of
2090  *      partially truncated blocks - in @chain[].bh and pointers to
2091  *      their last elements that should not be removed - in
2092  *      @chain[].p. Return value is the pointer to last filled element
2093  *      of @chain.
2094  *
2095  *      The work left to caller to do the actual freeing of subtrees:
2096  *              a) free the subtree starting from *@top
2097  *              b) free the subtrees whose roots are stored in
2098  *                      (@chain[i].p+1 .. end of @chain[i].bh->b_data)
2099  *              c) free the subtrees growing from the inode past the @chain[0].
2100  *                      (no partially truncated stuff there).  */
2101
2102 static Indirect *ext3_find_shared(struct inode *inode, int depth,
2103                         int offsets[4], Indirect chain[4], __le32 *top)
2104 {
2105         Indirect *partial, *p;
2106         int k, err;
2107
2108         *top = 0;
2109         /* Make k index the deepest non-null offset + 1 */
2110         for (k = depth; k > 1 && !offsets[k-1]; k--)
2111                 ;
2112         partial = ext3_get_branch(inode, k, offsets, chain, &err);
2113         /* Writer: pointers */
2114         if (!partial)
2115                 partial = chain + k-1;
2116         /*
2117          * If the branch acquired continuation since we've looked at it -
2118          * fine, it should all survive and (new) top doesn't belong to us.
2119          */
2120         if (!partial->key && *partial->p)
2121                 /* Writer: end */
2122                 goto no_top;
2123         for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
2124                 ;
2125         /*
2126          * OK, we've found the last block that must survive. The rest of our
2127          * branch should be detached before unlocking. However, if that rest
2128          * of branch is all ours and does not grow immediately from the inode
2129          * it's easier to cheat and just decrement partial->p.
2130          */
2131         if (p == chain + k - 1 && p > chain) {
2132                 p->p--;
2133         } else {
2134                 *top = *p->p;
2135                 /* Nope, don't do this in ext3.  Must leave the tree intact */
2136 #if 0
2137                 *p->p = 0;
2138 #endif
2139         }
2140         /* Writer: end */
2141
2142         while(partial > p) {
2143                 brelse(partial->bh);
2144                 partial--;
2145         }
2146 no_top:
2147         return partial;
2148 }
2149
2150 /*
2151  * Zero a number of block pointers in either an inode or an indirect block.
2152  * If we restart the transaction we must again get write access to the
2153  * indirect block for further modification.
2154  *
2155  * We release `count' blocks on disk, but (last - first) may be greater
2156  * than `count' because there can be holes in there.
2157  */
2158 static void ext3_clear_blocks(handle_t *handle, struct inode *inode,
2159                 struct buffer_head *bh, ext3_fsblk_t block_to_free,
2160                 unsigned long count, __le32 *first, __le32 *last)
2161 {
2162         __le32 *p;
2163         if (try_to_extend_transaction(handle, inode)) {
2164                 if (bh) {
2165                         BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
2166                         if (ext3_journal_dirty_metadata(handle, bh))
2167                                 return;
2168                 }
2169                 ext3_mark_inode_dirty(handle, inode);
2170                 truncate_restart_transaction(handle, inode);
2171                 if (bh) {
2172                         BUFFER_TRACE(bh, "retaking write access");
2173                         if (ext3_journal_get_write_access(handle, bh))
2174                                 return;
2175                 }
2176         }
2177
2178         /*
2179          * Any buffers which are on the journal will be in memory. We find
2180          * them on the hash table so journal_revoke() will run journal_forget()
2181          * on them.  We've already detached each block from the file, so
2182          * bforget() in journal_forget() should be safe.
2183          *
2184          * AKPM: turn on bforget in journal_forget()!!!
2185          */
2186         for (p = first; p < last; p++) {
2187                 u32 nr = le32_to_cpu(*p);
2188                 if (nr) {
2189                         struct buffer_head *bh;
2190
2191                         *p = 0;
2192                         bh = sb_find_get_block(inode->i_sb, nr);
2193                         ext3_forget(handle, 0, inode, bh, nr);
2194                 }
2195         }
2196
2197         ext3_free_blocks(handle, inode, block_to_free, count);
2198 }
2199
2200 /**
2201  * ext3_free_data - free a list of data blocks
2202  * @handle:     handle for this transaction
2203  * @inode:      inode we are dealing with
2204  * @this_bh:    indirect buffer_head which contains *@first and *@last
2205  * @first:      array of block numbers
2206  * @last:       points immediately past the end of array
2207  *
2208  * We are freeing all blocks referred from that array (numbers are stored as
2209  * little-endian 32-bit) and updating @inode->i_blocks appropriately.
2210  *
2211  * We accumulate contiguous runs of blocks to free.  Conveniently, if these
2212  * blocks are contiguous then releasing them at one time will only affect one
2213  * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
2214  * actually use a lot of journal space.
2215  *
2216  * @this_bh will be %NULL if @first and @last point into the inode's direct
2217  * block pointers.
2218  */
2219 static void ext3_free_data(handle_t *handle, struct inode *inode,
2220                            struct buffer_head *this_bh,
2221                            __le32 *first, __le32 *last)
2222 {
2223         ext3_fsblk_t block_to_free = 0;    /* Starting block # of a run */
2224         unsigned long count = 0;            /* Number of blocks in the run */
2225         __le32 *block_to_free_p = NULL;     /* Pointer into inode/ind
2226                                                corresponding to
2227                                                block_to_free */
2228         ext3_fsblk_t nr;                    /* Current block # */
2229         __le32 *p;                          /* Pointer into inode/ind
2230                                                for current block */
2231         int err;
2232
2233         if (this_bh) {                          /* For indirect block */
2234                 BUFFER_TRACE(this_bh, "get_write_access");
2235                 err = ext3_journal_get_write_access(handle, this_bh);
2236                 /* Important: if we can't update the indirect pointers
2237                  * to the blocks, we can't free them. */
2238                 if (err)
2239                         return;
2240         }
2241
2242         for (p = first; p < last; p++) {
2243                 nr = le32_to_cpu(*p);
2244                 if (nr) {
2245                         /* accumulate blocks to free if they're contiguous */
2246                         if (count == 0) {
2247                                 block_to_free = nr;
2248                                 block_to_free_p = p;
2249                                 count = 1;
2250                         } else if (nr == block_to_free + count) {
2251                                 count++;
2252                         } else {
2253                                 ext3_clear_blocks(handle, inode, this_bh,
2254                                                   block_to_free,
2255                                                   count, block_to_free_p, p);
2256                                 block_to_free = nr;
2257                                 block_to_free_p = p;
2258                                 count = 1;
2259                         }
2260                 }
2261         }
2262
2263         if (count > 0)
2264                 ext3_clear_blocks(handle, inode, this_bh, block_to_free,
2265                                   count, block_to_free_p, p);
2266
2267         if (this_bh) {
2268                 BUFFER_TRACE(this_bh, "call ext3_journal_dirty_metadata");
2269
2270                 /*
2271                  * The buffer head should have an attached journal head at this
2272                  * point. However, if the data is corrupted and an indirect
2273                  * block pointed to itself, it would have been detached when
2274                  * the block was cleared. Check for this instead of OOPSing.
2275                  */
2276                 if (bh2jh(this_bh))
2277                         ext3_journal_dirty_metadata(handle, this_bh);
2278                 else
2279                         ext3_error(inode->i_sb, "ext3_free_data",
2280                                    "circular indirect block detected, "
2281                                    "inode=%lu, block=%llu",
2282                                    inode->i_ino,
2283                                    (unsigned long long)this_bh->b_blocknr);
2284         }
2285 }
2286
2287 /**
2288  *      ext3_free_branches - free an array of branches
2289  *      @handle: JBD handle for this transaction
2290  *      @inode: inode we are dealing with
2291  *      @parent_bh: the buffer_head which contains *@first and *@last
2292  *      @first: array of block numbers
2293  *      @last:  pointer immediately past the end of array
2294  *      @depth: depth of the branches to free
2295  *
2296  *      We are freeing all blocks referred from these branches (numbers are
2297  *      stored as little-endian 32-bit) and updating @inode->i_blocks
2298  *      appropriately.
2299  */
2300 static void ext3_free_branches(handle_t *handle, struct inode *inode,
2301                                struct buffer_head *parent_bh,
2302                                __le32 *first, __le32 *last, int depth)
2303 {
2304         ext3_fsblk_t nr;
2305         __le32 *p;
2306
2307         if (is_handle_aborted(handle))
2308                 return;
2309
2310         if (depth--) {
2311                 struct buffer_head *bh;
2312                 int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb);
2313                 p = last;
2314                 while (--p >= first) {
2315                         nr = le32_to_cpu(*p);
2316                         if (!nr)
2317                                 continue;               /* A hole */
2318
2319                         /* Go read the buffer for the next level down */
2320                         bh = sb_bread(inode->i_sb, nr);
2321
2322                         /*
2323                          * A read failure? Report error and clear slot
2324                          * (should be rare).
2325                          */
2326                         if (!bh) {
2327                                 ext3_error(inode->i_sb, "ext3_free_branches",
2328                                            "Read failure, inode=%lu, block="E3FSBLK,
2329                                            inode->i_ino, nr);
2330                                 continue;
2331                         }
2332
2333                         /* This zaps the entire block.  Bottom up. */
2334                         BUFFER_TRACE(bh, "free child branches");
2335                         ext3_free_branches(handle, inode, bh,
2336                                            (__le32*)bh->b_data,
2337                                            (__le32*)bh->b_data + addr_per_block,
2338                                            depth);
2339
2340                         /*
2341                          * Everything below this this pointer has been
2342                          * released.  Now let this top-of-subtree go.
2343                          *
2344                          * We want the freeing of this indirect block to be
2345                          * atomic in the journal with the updating of the
2346                          * bitmap block which owns it.  So make some room in
2347                          * the journal.
2348                          *
2349                          * We zero the parent pointer *after* freeing its
2350                          * pointee in the bitmaps, so if extend_transaction()
2351                          * for some reason fails to put the bitmap changes and
2352                          * the release into the same transaction, recovery
2353                          * will merely complain about releasing a free block,
2354                          * rather than leaking blocks.
2355                          */
2356                         if (is_handle_aborted(handle))
2357                                 return;
2358                         if (try_to_extend_transaction(handle, inode)) {
2359                                 ext3_mark_inode_dirty(handle, inode);
2360                                 truncate_restart_transaction(handle, inode);
2361                         }
2362
2363                         /*
2364                          * We've probably journalled the indirect block several
2365                          * times during the truncate.  But it's no longer
2366                          * needed and we now drop it from the transaction via
2367                          * journal_revoke().
2368                          *
2369                          * That's easy if it's exclusively part of this
2370                          * transaction.  But if it's part of the committing
2371                          * transaction then journal_forget() will simply
2372                          * brelse() it.  That means that if the underlying
2373                          * block is reallocated in ext3_get_block(),
2374                          * unmap_underlying_metadata() will find this block
2375                          * and will try to get rid of it.  damn, damn. Thus
2376                          * we don't allow a block to be reallocated until
2377                          * a transaction freeing it has fully committed.
2378                          *
2379                          * We also have to make sure journal replay after a
2380                          * crash does not overwrite non-journaled data blocks
2381                          * with old metadata when the block got reallocated for
2382                          * data.  Thus we have to store a revoke record for a
2383                          * block in the same transaction in which we free the
2384                          * block.
2385                          */
2386                         ext3_forget(handle, 1, inode, bh, bh->b_blocknr);
2387
2388                         ext3_free_blocks(handle, inode, nr, 1);
2389
2390                         if (parent_bh) {
2391                                 /*
2392                                  * The block which we have just freed is
2393                                  * pointed to by an indirect block: journal it
2394                                  */
2395                                 BUFFER_TRACE(parent_bh, "get_write_access");
2396                                 if (!ext3_journal_get_write_access(handle,
2397                                                                    parent_bh)){
2398                                         *p = 0;
2399                                         BUFFER_TRACE(parent_bh,
2400                                         "call ext3_journal_dirty_metadata");
2401                                         ext3_journal_dirty_metadata(handle,
2402                                                                     parent_bh);
2403                                 }
2404                         }
2405                 }
2406         } else {
2407                 /* We have reached the bottom of the tree. */
2408                 BUFFER_TRACE(parent_bh, "free data blocks");
2409                 ext3_free_data(handle, inode, parent_bh, first, last);
2410         }
2411 }
2412
2413 int ext3_can_truncate(struct inode *inode)
2414 {
2415         if (S_ISREG(inode->i_mode))
2416                 return 1;
2417         if (S_ISDIR(inode->i_mode))
2418                 return 1;
2419         if (S_ISLNK(inode->i_mode))
2420                 return !ext3_inode_is_fast_symlink(inode);
2421         return 0;
2422 }
2423
2424 /*
2425  * ext3_truncate()
2426  *
2427  * We block out ext3_get_block() block instantiations across the entire
2428  * transaction, and VFS/VM ensures that ext3_truncate() cannot run
2429  * simultaneously on behalf of the same inode.
2430  *
2431  * As we work through the truncate and commmit bits of it to the journal there
2432  * is one core, guiding principle: the file's tree must always be consistent on
2433  * disk.  We must be able to restart the truncate after a crash.
2434  *
2435  * The file's tree may be transiently inconsistent in memory (although it
2436  * probably isn't), but whenever we close off and commit a journal transaction,
2437  * the contents of (the filesystem + the journal) must be consistent and
2438  * restartable.  It's pretty simple, really: bottom up, right to left (although
2439  * left-to-right works OK too).
2440  *
2441  * Note that at recovery time, journal replay occurs *before* the restart of
2442  * truncate against the orphan inode list.
2443  *
2444  * The committed inode has the new, desired i_size (which is the same as
2445  * i_disksize in this case).  After a crash, ext3_orphan_cleanup() will see
2446  * that this inode's truncate did not complete and it will again call
2447  * ext3_truncate() to have another go.  So there will be instantiated blocks
2448  * to the right of the truncation point in a crashed ext3 filesystem.  But
2449  * that's fine - as long as they are linked from the inode, the post-crash
2450  * ext3_truncate() run will find them and release them.
2451  */
2452 void ext3_truncate(struct inode *inode)
2453 {
2454         handle_t *handle;
2455         struct ext3_inode_info *ei = EXT3_I(inode);
2456         __le32 *i_data = ei->i_data;
2457         int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb);
2458         struct address_space *mapping = inode->i_mapping;
2459         int offsets[4];
2460         Indirect chain[4];
2461         Indirect *partial;
2462         __le32 nr = 0;
2463         int n;
2464         long last_block;
2465         unsigned blocksize = inode->i_sb->s_blocksize;
2466         struct page *page;
2467
2468         trace_ext3_truncate_enter(inode);
2469
2470         if (!ext3_can_truncate(inode))
2471                 goto out_notrans;
2472
2473         if (inode->i_size == 0 && ext3_should_writeback_data(inode))
2474                 ext3_set_inode_state(inode, EXT3_STATE_FLUSH_ON_CLOSE);
2475
2476         /*
2477          * We have to lock the EOF page here, because lock_page() nests
2478          * outside journal_start().
2479          */
2480         if ((inode->i_size & (blocksize - 1)) == 0) {
2481                 /* Block boundary? Nothing to do */
2482                 page = NULL;
2483         } else {
2484                 page = grab_cache_page(mapping,
2485                                 inode->i_size >> PAGE_CACHE_SHIFT);
2486                 if (!page)
2487                         goto out_notrans;
2488         }
2489
2490         handle = start_transaction(inode);
2491         if (IS_ERR(handle)) {
2492                 if (page) {
2493                         clear_highpage(page);
2494                         flush_dcache_page(page);
2495                         unlock_page(page);
2496                         page_cache_release(page);
2497                 }
2498                 goto out_notrans;
2499         }
2500
2501         last_block = (inode->i_size + blocksize-1)
2502                                         >> EXT3_BLOCK_SIZE_BITS(inode->i_sb);
2503
2504         if (page)
2505                 ext3_block_truncate_page(handle, page, mapping, inode->i_size);
2506
2507         n = ext3_block_to_path(inode, last_block, offsets, NULL);
2508         if (n == 0)
2509                 goto out_stop;  /* error */
2510
2511         /*
2512          * OK.  This truncate is going to happen.  We add the inode to the
2513          * orphan list, so that if this truncate spans multiple transactions,
2514          * and we crash, we will resume the truncate when the filesystem
2515          * recovers.  It also marks the inode dirty, to catch the new size.
2516          *
2517          * Implication: the file must always be in a sane, consistent
2518          * truncatable state while each transaction commits.
2519          */
2520         if (ext3_orphan_add(handle, inode))
2521                 goto out_stop;
2522
2523         /*
2524          * The orphan list entry will now protect us from any crash which
2525          * occurs before the truncate completes, so it is now safe to propagate
2526          * the new, shorter inode size (held for now in i_size) into the
2527          * on-disk inode. We do this via i_disksize, which is the value which
2528          * ext3 *really* writes onto the disk inode.
2529          */
2530         ei->i_disksize = inode->i_size;
2531
2532         /*
2533          * From here we block out all ext3_get_block() callers who want to
2534          * modify the block allocation tree.
2535          */
2536         mutex_lock(&ei->truncate_mutex);
2537
2538         if (n == 1) {           /* direct blocks */
2539                 ext3_free_data(handle, inode, NULL, i_data+offsets[0],
2540                                i_data + EXT3_NDIR_BLOCKS);
2541                 goto do_indirects;
2542         }
2543
2544         partial = ext3_find_shared(inode, n, offsets, chain, &nr);
2545         /* Kill the top of shared branch (not detached) */
2546         if (nr) {
2547                 if (partial == chain) {
2548                         /* Shared branch grows from the inode */
2549                         ext3_free_branches(handle, inode, NULL,
2550                                            &nr, &nr+1, (chain+n-1) - partial);
2551                         *partial->p = 0;
2552                         /*
2553                          * We mark the inode dirty prior to restart,
2554                          * and prior to stop.  No need for it here.
2555                          */
2556                 } else {
2557                         /* Shared branch grows from an indirect block */
2558                         ext3_free_branches(handle, inode, partial->bh,
2559                                         partial->p,
2560                                         partial->p+1, (chain+n-1) - partial);
2561                 }
2562         }
2563         /* Clear the ends of indirect blocks on the shared branch */
2564         while (partial > chain) {
2565                 ext3_free_branches(handle, inode, partial->bh, partial->p + 1,
2566                                    (__le32*)partial->bh->b_data+addr_per_block,
2567                                    (chain+n-1) - partial);
2568                 BUFFER_TRACE(partial->bh, "call brelse");
2569                 brelse (partial->bh);
2570                 partial--;
2571         }
2572 do_indirects:
2573         /* Kill the remaining (whole) subtrees */
2574         switch (offsets[0]) {
2575         default:
2576                 nr = i_data[EXT3_IND_BLOCK];
2577                 if (nr) {
2578                         ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
2579                         i_data[EXT3_IND_BLOCK] = 0;
2580                 }
2581         case EXT3_IND_BLOCK:
2582                 nr = i_data[EXT3_DIND_BLOCK];
2583                 if (nr) {
2584                         ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
2585                         i_data[EXT3_DIND_BLOCK] = 0;
2586                 }
2587         case EXT3_DIND_BLOCK:
2588                 nr = i_data[EXT3_TIND_BLOCK];
2589                 if (nr) {
2590                         ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
2591                         i_data[EXT3_TIND_BLOCK] = 0;
2592                 }
2593         case EXT3_TIND_BLOCK:
2594                 ;
2595         }
2596
2597         ext3_discard_reservation(inode);
2598
2599         mutex_unlock(&ei->truncate_mutex);
2600         inode->i_mtime = inode->i_ctime = CURRENT_TIME_SEC;
2601         ext3_mark_inode_dirty(handle, inode);
2602
2603         /*
2604          * In a multi-transaction truncate, we only make the final transaction
2605          * synchronous
2606          */
2607         if (IS_SYNC(inode))
2608                 handle->h_sync = 1;
2609 out_stop:
2610         /*
2611          * If this was a simple ftruncate(), and the file will remain alive
2612          * then we need to clear up the orphan record which we created above.
2613          * However, if this was a real unlink then we were called by
2614          * ext3_evict_inode(), and we allow that function to clean up the
2615          * orphan info for us.
2616          */
2617         if (inode->i_nlink)
2618                 ext3_orphan_del(handle, inode);
2619
2620         ext3_journal_stop(handle);
2621         trace_ext3_truncate_exit(inode);
2622         return;
2623 out_notrans:
2624         /*
2625          * Delete the inode from orphan list so that it doesn't stay there
2626          * forever and trigger assertion on umount.
2627          */
2628         if (inode->i_nlink)
2629                 ext3_orphan_del(NULL, inode);
2630         trace_ext3_truncate_exit(inode);
2631 }
2632
2633 static ext3_fsblk_t ext3_get_inode_block(struct super_block *sb,
2634                 unsigned long ino, struct ext3_iloc *iloc)
2635 {
2636         unsigned long block_group;
2637         unsigned long offset;
2638         ext3_fsblk_t block;
2639         struct ext3_group_desc *gdp;
2640
2641         if (!ext3_valid_inum(sb, ino)) {
2642                 /*
2643                  * This error is already checked for in namei.c unless we are
2644                  * looking at an NFS filehandle, in which case no error
2645                  * report is needed
2646                  */
2647                 return 0;
2648         }
2649
2650         block_group = (ino - 1) / EXT3_INODES_PER_GROUP(sb);
2651         gdp = ext3_get_group_desc(sb, block_group, NULL);
2652         if (!gdp)
2653                 return 0;
2654         /*
2655          * Figure out the offset within the block group inode table
2656          */
2657         offset = ((ino - 1) % EXT3_INODES_PER_GROUP(sb)) *
2658                 EXT3_INODE_SIZE(sb);
2659         block = le32_to_cpu(gdp->bg_inode_table) +
2660                 (offset >> EXT3_BLOCK_SIZE_BITS(sb));
2661
2662         iloc->block_group = block_group;
2663         iloc->offset = offset & (EXT3_BLOCK_SIZE(sb) - 1);
2664         return block;
2665 }
2666
2667 /*
2668  * ext3_get_inode_loc returns with an extra refcount against the inode's
2669  * underlying buffer_head on success. If 'in_mem' is true, we have all
2670  * data in memory that is needed to recreate the on-disk version of this
2671  * inode.
2672  */
2673 static int __ext3_get_inode_loc(struct inode *inode,
2674                                 struct ext3_iloc *iloc, int in_mem)
2675 {
2676         ext3_fsblk_t block;
2677         struct buffer_head *bh;
2678
2679         block = ext3_get_inode_block(inode->i_sb, inode->i_ino, iloc);
2680         if (!block)
2681                 return -EIO;
2682
2683         bh = sb_getblk(inode->i_sb, block);
2684         if (!bh) {
2685                 ext3_error (inode->i_sb, "ext3_get_inode_loc",
2686                                 "unable to read inode block - "
2687                                 "inode=%lu, block="E3FSBLK,
2688                                  inode->i_ino, block);
2689                 return -EIO;
2690         }
2691         if (!buffer_uptodate(bh)) {
2692                 lock_buffer(bh);
2693
2694                 /*
2695                  * If the buffer has the write error flag, we have failed
2696                  * to write out another inode in the same block.  In this
2697                  * case, we don't have to read the block because we may
2698                  * read the old inode data successfully.
2699                  */
2700                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
2701                         set_buffer_uptodate(bh);
2702
2703                 if (buffer_uptodate(bh)) {
2704                         /* someone brought it uptodate while we waited */
2705                         unlock_buffer(bh);
2706                         goto has_buffer;
2707                 }
2708
2709                 /*
2710                  * If we have all information of the inode in memory and this
2711                  * is the only valid inode in the block, we need not read the
2712                  * block.
2713                  */
2714                 if (in_mem) {
2715                         struct buffer_head *bitmap_bh;
2716                         struct ext3_group_desc *desc;
2717                         int inodes_per_buffer;
2718                         int inode_offset, i;
2719                         int block_group;
2720                         int start;
2721
2722                         block_group = (inode->i_ino - 1) /
2723                                         EXT3_INODES_PER_GROUP(inode->i_sb);
2724                         inodes_per_buffer = bh->b_size /
2725                                 EXT3_INODE_SIZE(inode->i_sb);
2726                         inode_offset = ((inode->i_ino - 1) %
2727                                         EXT3_INODES_PER_GROUP(inode->i_sb));
2728                         start = inode_offset & ~(inodes_per_buffer - 1);
2729
2730                         /* Is the inode bitmap in cache? */
2731                         desc = ext3_get_group_desc(inode->i_sb,
2732                                                 block_group, NULL);
2733                         if (!desc)
2734                                 goto make_io;
2735
2736                         bitmap_bh = sb_getblk(inode->i_sb,
2737                                         le32_to_cpu(desc->bg_inode_bitmap));
2738                         if (!bitmap_bh)
2739                                 goto make_io;
2740
2741                         /*
2742                          * If the inode bitmap isn't in cache then the
2743                          * optimisation may end up performing two reads instead
2744                          * of one, so skip it.
2745                          */
2746                         if (!buffer_uptodate(bitmap_bh)) {
2747                                 brelse(bitmap_bh);
2748                                 goto make_io;
2749                         }
2750                         for (i = start; i < start + inodes_per_buffer; i++) {
2751                                 if (i == inode_offset)
2752                                         continue;
2753                                 if (ext3_test_bit(i, bitmap_bh->b_data))
2754                                         break;
2755                         }
2756                         brelse(bitmap_bh);
2757                         if (i == start + inodes_per_buffer) {
2758                                 /* all other inodes are free, so skip I/O */
2759                                 memset(bh->b_data, 0, bh->b_size);
2760                                 set_buffer_uptodate(bh);
2761                                 unlock_buffer(bh);
2762                                 goto has_buffer;
2763                         }
2764                 }
2765
2766 make_io:
2767                 /*
2768                  * There are other valid inodes in the buffer, this inode
2769                  * has in-inode xattrs, or we don't have this inode in memory.
2770                  * Read the block from disk.
2771                  */
2772                 trace_ext3_load_inode(inode);
2773                 get_bh(bh);
2774                 bh->b_end_io = end_buffer_read_sync;
2775                 submit_bh(READ_META, bh);
2776                 wait_on_buffer(bh);
2777                 if (!buffer_uptodate(bh)) {
2778                         ext3_error(inode->i_sb, "ext3_get_inode_loc",
2779                                         "unable to read inode block - "
2780                                         "inode=%lu, block="E3FSBLK,
2781                                         inode->i_ino, block);
2782                         brelse(bh);
2783                         return -EIO;
2784                 }
2785         }
2786 has_buffer:
2787         iloc->bh = bh;
2788         return 0;
2789 }
2790
2791 int ext3_get_inode_loc(struct inode *inode, struct ext3_iloc *iloc)
2792 {
2793         /* We have all inode data except xattrs in memory here. */
2794         return __ext3_get_inode_loc(inode, iloc,
2795                 !ext3_test_inode_state(inode, EXT3_STATE_XATTR));
2796 }
2797
2798 void ext3_set_inode_flags(struct inode *inode)
2799 {
2800         unsigned int flags = EXT3_I(inode)->i_flags;
2801
2802         inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
2803         if (flags & EXT3_SYNC_FL)
2804                 inode->i_flags |= S_SYNC;
2805         if (flags & EXT3_APPEND_FL)
2806                 inode->i_flags |= S_APPEND;
2807         if (flags & EXT3_IMMUTABLE_FL)
2808                 inode->i_flags |= S_IMMUTABLE;
2809         if (flags & EXT3_NOATIME_FL)
2810                 inode->i_flags |= S_NOATIME;
2811         if (flags & EXT3_DIRSYNC_FL)
2812                 inode->i_flags |= S_DIRSYNC;
2813 }
2814
2815 /* Propagate flags from i_flags to EXT3_I(inode)->i_flags */
2816 void ext3_get_inode_flags(struct ext3_inode_info *ei)
2817 {
2818         unsigned int flags = ei->vfs_inode.i_flags;
2819
2820         ei->i_flags &= ~(EXT3_SYNC_FL|EXT3_APPEND_FL|
2821                         EXT3_IMMUTABLE_FL|EXT3_NOATIME_FL|EXT3_DIRSYNC_FL);
2822         if (flags & S_SYNC)
2823                 ei->i_flags |= EXT3_SYNC_FL;
2824         if (flags & S_APPEND)
2825                 ei->i_flags |= EXT3_APPEND_FL;
2826         if (flags & S_IMMUTABLE)
2827                 ei->i_flags |= EXT3_IMMUTABLE_FL;
2828         if (flags & S_NOATIME)
2829                 ei->i_flags |= EXT3_NOATIME_FL;
2830         if (flags & S_DIRSYNC)
2831                 ei->i_flags |= EXT3_DIRSYNC_FL;
2832 }
2833
2834 struct inode *ext3_iget(struct super_block *sb, unsigned long ino)
2835 {
2836         struct ext3_iloc iloc;
2837         struct ext3_inode *raw_inode;
2838         struct ext3_inode_info *ei;
2839         struct buffer_head *bh;
2840         struct inode *inode;
2841         journal_t *journal = EXT3_SB(sb)->s_journal;
2842         transaction_t *transaction;
2843         long ret;
2844         int block;
2845
2846         inode = iget_locked(sb, ino);
2847         if (!inode)
2848                 return ERR_PTR(-ENOMEM);
2849         if (!(inode->i_state & I_NEW))
2850                 return inode;
2851
2852         ei = EXT3_I(inode);
2853         ei->i_block_alloc_info = NULL;
2854
2855         ret = __ext3_get_inode_loc(inode, &iloc, 0);
2856         if (ret < 0)
2857                 goto bad_inode;
2858         bh = iloc.bh;
2859         raw_inode = ext3_raw_inode(&iloc);
2860         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
2861         inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
2862         inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
2863         if(!(test_opt (inode->i_sb, NO_UID32))) {
2864                 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
2865                 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
2866         }
2867         inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
2868         inode->i_size = le32_to_cpu(raw_inode->i_size);
2869         inode->i_atime.tv_sec = (signed)le32_to_cpu(raw_inode->i_atime);
2870         inode->i_ctime.tv_sec = (signed)le32_to_cpu(raw_inode->i_ctime);
2871         inode->i_mtime.tv_sec = (signed)le32_to_cpu(raw_inode->i_mtime);
2872         inode->i_atime.tv_nsec = inode->i_ctime.tv_nsec = inode->i_mtime.tv_nsec = 0;
2873
2874         ei->i_state_flags = 0;
2875         ei->i_dir_start_lookup = 0;
2876         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
2877         /* We now have enough fields to check if the inode was active or not.
2878          * This is needed because nfsd might try to access dead inodes
2879          * the test is that same one that e2fsck uses
2880          * NeilBrown 1999oct15
2881          */
2882         if (inode->i_nlink == 0) {
2883                 if (inode->i_mode == 0 ||
2884                     !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ORPHAN_FS)) {
2885                         /* this inode is deleted */
2886                         brelse (bh);
2887                         ret = -ESTALE;
2888                         goto bad_inode;
2889                 }
2890                 /* The only unlinked inodes we let through here have
2891                  * valid i_mode and are being read by the orphan
2892                  * recovery code: that's fine, we're about to complete
2893                  * the process of deleting those. */
2894         }
2895         inode->i_blocks = le32_to_cpu(raw_inode->i_blocks);
2896         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
2897 #ifdef EXT3_FRAGMENTS
2898         ei->i_faddr = le32_to_cpu(raw_inode->i_faddr);
2899         ei->i_frag_no = raw_inode->i_frag;
2900         ei->i_frag_size = raw_inode->i_fsize;
2901 #endif
2902         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
2903         if (!S_ISREG(inode->i_mode)) {
2904                 ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl);
2905         } else {
2906                 inode->i_size |=
2907                         ((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32;
2908         }
2909         ei->i_disksize = inode->i_size;
2910         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
2911         ei->i_block_group = iloc.block_group;
2912         /*
2913          * NOTE! The in-memory inode i_data array is in little-endian order
2914          * even on big-endian machines: we do NOT byteswap the block numbers!
2915          */
2916         for (block = 0; block < EXT3_N_BLOCKS; block++)
2917                 ei->i_data[block] = raw_inode->i_block[block];
2918         INIT_LIST_HEAD(&ei->i_orphan);
2919
2920         /*
2921          * Set transaction id's of transactions that have to be committed
2922          * to finish f[data]sync. We set them to currently running transaction
2923          * as we cannot be sure that the inode or some of its metadata isn't
2924          * part of the transaction - the inode could have been reclaimed and
2925          * now it is reread from disk.
2926          */
2927         if (journal) {
2928                 tid_t tid;
2929
2930                 spin_lock(&journal->j_state_lock);
2931                 if (journal->j_running_transaction)
2932                         transaction = journal->j_running_transaction;
2933                 else
2934                         transaction = journal->j_committing_transaction;
2935                 if (transaction)
2936                         tid = transaction->t_tid;
2937                 else
2938                         tid = journal->j_commit_sequence;
2939                 spin_unlock(&journal->j_state_lock);
2940                 atomic_set(&ei->i_sync_tid, tid);
2941                 atomic_set(&ei->i_datasync_tid, tid);
2942         }
2943
2944         if (inode->i_ino >= EXT3_FIRST_INO(inode->i_sb) + 1 &&
2945             EXT3_INODE_SIZE(inode->i_sb) > EXT3_GOOD_OLD_INODE_SIZE) {
2946                 /*
2947                  * When mke2fs creates big inodes it does not zero out
2948                  * the unused bytes above EXT3_GOOD_OLD_INODE_SIZE,
2949                  * so ignore those first few inodes.
2950                  */
2951                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
2952                 if (EXT3_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
2953                     EXT3_INODE_SIZE(inode->i_sb)) {
2954                         brelse (bh);
2955                         ret = -EIO;
2956                         goto bad_inode;
2957                 }
2958                 if (ei->i_extra_isize == 0) {
2959                         /* The extra space is currently unused. Use it. */
2960                         ei->i_extra_isize = sizeof(struct ext3_inode) -
2961                                             EXT3_GOOD_OLD_INODE_SIZE;
2962                 } else {
2963                         __le32 *magic = (void *)raw_inode +
2964                                         EXT3_GOOD_OLD_INODE_SIZE +
2965                                         ei->i_extra_isize;
2966                         if (*magic == cpu_to_le32(EXT3_XATTR_MAGIC))
2967                                  ext3_set_inode_state(inode, EXT3_STATE_XATTR);
2968                 }
2969         } else
2970                 ei->i_extra_isize = 0;
2971
2972         if (S_ISREG(inode->i_mode)) {
2973                 inode->i_op = &ext3_file_inode_operations;
2974                 inode->i_fop = &ext3_file_operations;
2975                 ext3_set_aops(inode);
2976         } else if (S_ISDIR(inode->i_mode)) {
2977                 inode->i_op = &ext3_dir_inode_operations;
2978                 inode->i_fop = &ext3_dir_operations;
2979         } else if (S_ISLNK(inode->i_mode)) {
2980                 if (ext3_inode_is_fast_symlink(inode)) {
2981                         inode->i_op = &ext3_fast_symlink_inode_operations;
2982                         nd_terminate_link(ei->i_data, inode->i_size,
2983                                 sizeof(ei->i_data) - 1);
2984                 } else {
2985                         inode->i_op = &ext3_symlink_inode_operations;
2986                         ext3_set_aops(inode);
2987                 }
2988         } else {
2989                 inode->i_op = &ext3_special_inode_operations;
2990                 if (raw_inode->i_block[0])
2991                         init_special_inode(inode, inode->i_mode,
2992                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
2993                 else
2994                         init_special_inode(inode, inode->i_mode,
2995                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
2996         }
2997         brelse (iloc.bh);
2998         ext3_set_inode_flags(inode);
2999         unlock_new_inode(inode);
3000         return inode;
3001
3002 bad_inode:
3003         iget_failed(inode);
3004         return ERR_PTR(ret);
3005 }
3006
3007 /*
3008  * Post the struct inode info into an on-disk inode location in the
3009  * buffer-cache.  This gobbles the caller's reference to the
3010  * buffer_head in the inode location struct.
3011  *
3012  * The caller must have write access to iloc->bh.
3013  */
3014 static int ext3_do_update_inode(handle_t *handle,
3015                                 struct inode *inode,
3016                                 struct ext3_iloc *iloc)
3017 {
3018         struct ext3_inode *raw_inode = ext3_raw_inode(iloc);
3019         struct ext3_inode_info *ei = EXT3_I(inode);
3020         struct buffer_head *bh = iloc->bh;
3021         int err = 0, rc, block;
3022
3023 again:
3024         /* we can't allow multiple procs in here at once, its a bit racey */
3025         lock_buffer(bh);
3026
3027         /* For fields not not tracking in the in-memory inode,
3028          * initialise them to zero for new inodes. */
3029         if (ext3_test_inode_state(inode, EXT3_STATE_NEW))
3030                 memset(raw_inode, 0, EXT3_SB(inode->i_sb)->s_inode_size);
3031
3032         ext3_get_inode_flags(ei);
3033         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
3034         if(!(test_opt(inode->i_sb, NO_UID32))) {
3035                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
3036                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
3037 /*
3038  * Fix up interoperability with old kernels. Otherwise, old inodes get
3039  * re-used with the upper 16 bits of the uid/gid intact
3040  */
3041                 if(!ei->i_dtime) {
3042                         raw_inode->i_uid_high =
3043                                 cpu_to_le16(high_16_bits(inode->i_uid));
3044                         raw_inode->i_gid_high =
3045                                 cpu_to_le16(high_16_bits(inode->i_gid));
3046                 } else {
3047                         raw_inode->i_uid_high = 0;
3048                         raw_inode->i_gid_high = 0;
3049                 }
3050         } else {
3051                 raw_inode->i_uid_low =
3052                         cpu_to_le16(fs_high2lowuid(inode->i_uid));
3053                 raw_inode->i_gid_low =
3054                         cpu_to_le16(fs_high2lowgid(inode->i_gid));
3055                 raw_inode->i_uid_high = 0;
3056                 raw_inode->i_gid_high = 0;
3057         }
3058         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
3059         raw_inode->i_size = cpu_to_le32(ei->i_disksize);
3060         raw_inode->i_atime = cpu_to_le32(inode->i_atime.tv_sec);
3061         raw_inode->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec);
3062         raw_inode->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec);
3063         raw_inode->i_blocks = cpu_to_le32(inode->i_blocks);
3064         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
3065         raw_inode->i_flags = cpu_to_le32(ei->i_flags);
3066 #ifdef EXT3_FRAGMENTS
3067         raw_inode->i_faddr = cpu_to_le32(ei->i_faddr);
3068         raw_inode->i_frag = ei->i_frag_no;
3069         raw_inode->i_fsize = ei->i_frag_size;
3070 #endif
3071         raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl);
3072         if (!S_ISREG(inode->i_mode)) {
3073                 raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl);
3074         } else {
3075                 raw_inode->i_size_high =
3076                         cpu_to_le32(ei->i_disksize >> 32);
3077                 if (ei->i_disksize > 0x7fffffffULL) {
3078                         struct super_block *sb = inode->i_sb;
3079                         if (!EXT3_HAS_RO_COMPAT_FEATURE(sb,
3080                                         EXT3_FEATURE_RO_COMPAT_LARGE_FILE) ||
3081                             EXT3_SB(sb)->s_es->s_rev_level ==
3082                                         cpu_to_le32(EXT3_GOOD_OLD_REV)) {
3083                                /* If this is the first large file
3084                                 * created, add a flag to the superblock.
3085                                 */
3086                                 unlock_buffer(bh);
3087                                 err = ext3_journal_get_write_access(handle,
3088                                                 EXT3_SB(sb)->s_sbh);
3089                                 if (err)
3090                                         goto out_brelse;
3091
3092                                 ext3_update_dynamic_rev(sb);
3093                                 EXT3_SET_RO_COMPAT_FEATURE(sb,
3094                                         EXT3_FEATURE_RO_COMPAT_LARGE_FILE);
3095                                 handle->h_sync = 1;
3096                                 err = ext3_journal_dirty_metadata(handle,
3097                                                 EXT3_SB(sb)->s_sbh);
3098                                 /* get our lock and start over */
3099                                 goto again;
3100                         }
3101                 }
3102         }
3103         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
3104         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
3105                 if (old_valid_dev(inode->i_rdev)) {
3106                         raw_inode->i_block[0] =
3107                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
3108                         raw_inode->i_block[1] = 0;
3109                 } else {
3110                         raw_inode->i_block[0] = 0;
3111                         raw_inode->i_block[1] =
3112                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
3113                         raw_inode->i_block[2] = 0;
3114                 }
3115         } else for (block = 0; block < EXT3_N_BLOCKS; block++)
3116                 raw_inode->i_block[block] = ei->i_data[block];
3117
3118         if (ei->i_extra_isize)
3119                 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
3120
3121         BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
3122         unlock_buffer(bh);
3123         rc = ext3_journal_dirty_metadata(handle, bh);
3124         if (!err)
3125                 err = rc;
3126         ext3_clear_inode_state(inode, EXT3_STATE_NEW);
3127
3128         atomic_set(&ei->i_sync_tid, handle->h_transaction->t_tid);
3129 out_brelse:
3130         brelse (bh);
3131         ext3_std_error(inode->i_sb, err);
3132         return err;
3133 }
3134
3135 /*
3136  * ext3_write_inode()
3137  *
3138  * We are called from a few places:
3139  *
3140  * - Within generic_file_write() for O_SYNC files.
3141  *   Here, there will be no transaction running. We wait for any running
3142  *   trasnaction to commit.
3143  *
3144  * - Within sys_sync(), kupdate and such.
3145  *   We wait on commit, if tol to.
3146  *
3147  * - Within prune_icache() (PF_MEMALLOC == true)
3148  *   Here we simply return.  We can't afford to block kswapd on the
3149  *   journal commit.
3150  *
3151  * In all cases it is actually safe for us to return without doing anything,
3152  * because the inode has been copied into a raw inode buffer in
3153  * ext3_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
3154  * knfsd.
3155  *
3156  * Note that we are absolutely dependent upon all inode dirtiers doing the
3157  * right thing: they *must* call mark_inode_dirty() after dirtying info in
3158  * which we are interested.
3159  *
3160  * It would be a bug for them to not do this.  The code:
3161  *
3162  *      mark_inode_dirty(inode)
3163  *      stuff();
3164  *      inode->i_size = expr;
3165  *
3166  * is in error because a kswapd-driven write_inode() could occur while
3167  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
3168  * will no longer be on the superblock's dirty inode list.
3169  */
3170 int ext3_write_inode(struct inode *inode, struct writeback_control *wbc)
3171 {
3172         if (current->flags & PF_MEMALLOC)
3173                 return 0;
3174
3175         if (ext3_journal_current_handle()) {
3176                 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
3177                 dump_stack();
3178                 return -EIO;
3179         }
3180
3181         if (wbc->sync_mode != WB_SYNC_ALL)
3182                 return 0;
3183
3184         return ext3_force_commit(inode->i_sb);
3185 }
3186
3187 /*
3188  * ext3_setattr()
3189  *
3190  * Called from notify_change.
3191  *
3192  * We want to trap VFS attempts to truncate the file as soon as
3193  * possible.  In particular, we want to make sure that when the VFS
3194  * shrinks i_size, we put the inode on the orphan list and modify
3195  * i_disksize immediately, so that during the subsequent flushing of
3196  * dirty pages and freeing of disk blocks, we can guarantee that any
3197  * commit will leave the blocks being flushed in an unused state on
3198  * disk.  (On recovery, the inode will get truncated and the blocks will
3199  * be freed, so we have a strong guarantee that no future commit will
3200  * leave these blocks visible to the user.)
3201  *
3202  * Called with inode->sem down.
3203  */
3204 int ext3_setattr(struct dentry *dentry, struct iattr *attr)
3205 {
3206         struct inode *inode = dentry->d_inode;
3207         int error, rc = 0;
3208         const unsigned int ia_valid = attr->ia_valid;
3209
3210         error = inode_change_ok(inode, attr);
3211         if (error)
3212                 return error;
3213
3214         if (is_quota_modification(inode, attr))
3215                 dquot_initialize(inode);
3216         if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
3217                 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
3218                 handle_t *handle;
3219
3220                 /* (user+group)*(old+new) structure, inode write (sb,
3221                  * inode block, ? - but truncate inode update has it) */
3222                 handle = ext3_journal_start(inode, EXT3_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
3223                                         EXT3_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)+3);
3224                 if (IS_ERR(handle)) {
3225                         error = PTR_ERR(handle);
3226                         goto err_out;
3227                 }
3228                 error = dquot_transfer(inode, attr);
3229                 if (error) {
3230                         ext3_journal_stop(handle);
3231                         return error;
3232                 }
3233                 /* Update corresponding info in inode so that everything is in
3234                  * one transaction */
3235                 if (attr->ia_valid & ATTR_UID)
3236                         inode->i_uid = attr->ia_uid;
3237                 if (attr->ia_valid & ATTR_GID)
3238                         inode->i_gid = attr->ia_gid;
3239                 error = ext3_mark_inode_dirty(handle, inode);
3240                 ext3_journal_stop(handle);
3241         }
3242
3243         if (S_ISREG(inode->i_mode) &&
3244             attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
3245                 handle_t *handle;
3246
3247                 handle = ext3_journal_start(inode, 3);
3248                 if (IS_ERR(handle)) {
3249                         error = PTR_ERR(handle);
3250                         goto err_out;
3251                 }
3252
3253                 error = ext3_orphan_add(handle, inode);
3254                 EXT3_I(inode)->i_disksize = attr->ia_size;
3255                 rc = ext3_mark_inode_dirty(handle, inode);
3256                 if (!error)
3257                         error = rc;
3258                 ext3_journal_stop(handle);
3259         }
3260
3261         if ((attr->ia_valid & ATTR_SIZE) &&
3262             attr->ia_size != i_size_read(inode)) {
3263                 truncate_setsize(inode, attr->ia_size);
3264                 ext3_truncate(inode);
3265         }
3266
3267         setattr_copy(inode, attr);
3268         mark_inode_dirty(inode);
3269
3270         if (ia_valid & ATTR_MODE)
3271                 rc = ext3_acl_chmod(inode);
3272
3273 err_out:
3274         ext3_std_error(inode->i_sb, error);
3275         if (!error)
3276                 error = rc;
3277         return error;
3278 }
3279
3280
3281 /*
3282  * How many blocks doth make a writepage()?
3283  *
3284  * With N blocks per page, it may be:
3285  * N data blocks
3286  * 2 indirect block
3287  * 2 dindirect
3288  * 1 tindirect
3289  * N+5 bitmap blocks (from the above)
3290  * N+5 group descriptor summary blocks
3291  * 1 inode block
3292  * 1 superblock.
3293  * 2 * EXT3_SINGLEDATA_TRANS_BLOCKS for the quote files
3294  *
3295  * 3 * (N + 5) + 2 + 2 * EXT3_SINGLEDATA_TRANS_BLOCKS
3296  *
3297  * With ordered or writeback data it's the same, less the N data blocks.
3298  *
3299  * If the inode's direct blocks can hold an integral number of pages then a
3300  * page cannot straddle two indirect blocks, and we can only touch one indirect
3301  * and dindirect block, and the "5" above becomes "3".
3302  *
3303  * This still overestimates under most circumstances.  If we were to pass the
3304  * start and end offsets in here as well we could do block_to_path() on each
3305  * block and work out the exact number of indirects which are touched.  Pah.
3306  */
3307
3308 static int ext3_writepage_trans_blocks(struct inode *inode)
3309 {
3310         int bpp = ext3_journal_blocks_per_page(inode);
3311         int indirects = (EXT3_NDIR_BLOCKS % bpp) ? 5 : 3;
3312         int ret;
3313
3314         if (ext3_should_journal_data(inode))
3315                 ret = 3 * (bpp + indirects) + 2;
3316         else
3317                 ret = 2 * (bpp + indirects) + indirects + 2;
3318
3319 #ifdef CONFIG_QUOTA
3320         /* We know that structure was already allocated during dquot_initialize so
3321          * we will be updating only the data blocks + inodes */
3322         ret += EXT3_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb);
3323 #endif
3324
3325         return ret;
3326 }
3327
3328 /*
3329  * The caller must have previously called ext3_reserve_inode_write().
3330  * Give this, we know that the caller already has write access to iloc->bh.
3331  */
3332 int ext3_mark_iloc_dirty(handle_t *handle,
3333                 struct inode *inode, struct ext3_iloc *iloc)
3334 {
3335         int err = 0;
3336
3337         /* the do_update_inode consumes one bh->b_count */
3338         get_bh(iloc->bh);
3339
3340         /* ext3_do_update_inode() does journal_dirty_metadata */
3341         err = ext3_do_update_inode(handle, inode, iloc);
3342         put_bh(iloc->bh);
3343         return err;
3344 }
3345
3346 /*
3347  * On success, We end up with an outstanding reference count against
3348  * iloc->bh.  This _must_ be cleaned up later.
3349  */
3350
3351 int
3352 ext3_reserve_inode_write(handle_t *handle, struct inode *inode,
3353                          struct ext3_iloc *iloc)
3354 {
3355         int err = 0;
3356         if (handle) {
3357                 err = ext3_get_inode_loc(inode, iloc);
3358                 if (!err) {
3359                         BUFFER_TRACE(iloc->bh, "get_write_access");
3360                         err = ext3_journal_get_write_access(handle, iloc->bh);
3361                         if (err) {
3362                                 brelse(iloc->bh);
3363                                 iloc->bh = NULL;
3364                         }
3365                 }
3366         }
3367         ext3_std_error(inode->i_sb, err);
3368         return err;
3369 }
3370
3371 /*
3372  * What we do here is to mark the in-core inode as clean with respect to inode
3373  * dirtiness (it may still be data-dirty).
3374  * This means that the in-core inode may be reaped by prune_icache
3375  * without having to perform any I/O.  This is a very good thing,
3376  * because *any* task may call prune_icache - even ones which
3377  * have a transaction open against a different journal.
3378  *
3379  * Is this cheating?  Not really.  Sure, we haven't written the
3380  * inode out, but prune_icache isn't a user-visible syncing function.
3381  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
3382  * we start and wait on commits.
3383  *
3384  * Is this efficient/effective?  Well, we're being nice to the system
3385  * by cleaning up our inodes proactively so they can be reaped
3386  * without I/O.  But we are potentially leaving up to five seconds'
3387  * worth of inodes floating about which prune_icache wants us to
3388  * write out.  One way to fix that would be to get prune_icache()
3389  * to do a write_super() to free up some memory.  It has the desired
3390  * effect.
3391  */
3392 int ext3_mark_inode_dirty(handle_t *handle, struct inode *inode)
3393 {
3394         struct ext3_iloc iloc;
3395         int err;
3396
3397         might_sleep();
3398         trace_ext3_mark_inode_dirty(inode, _RET_IP_);
3399         err = ext3_reserve_inode_write(handle, inode, &iloc);
3400         if (!err)
3401                 err = ext3_mark_iloc_dirty(handle, inode, &iloc);
3402         return err;
3403 }
3404
3405 /*
3406  * ext3_dirty_inode() is called from __mark_inode_dirty()
3407  *
3408  * We're really interested in the case where a file is being extended.
3409  * i_size has been changed by generic_commit_write() and we thus need
3410  * to include the updated inode in the current transaction.
3411  *
3412  * Also, dquot_alloc_space() will always dirty the inode when blocks
3413  * are allocated to the file.
3414  *
3415  * If the inode is marked synchronous, we don't honour that here - doing
3416  * so would cause a commit on atime updates, which we don't bother doing.
3417  * We handle synchronous inodes at the highest possible level.
3418  */
3419 void ext3_dirty_inode(struct inode *inode, int flags)
3420 {
3421         handle_t *current_handle = ext3_journal_current_handle();
3422         handle_t *handle;
3423
3424         handle = ext3_journal_start(inode, 2);
3425         if (IS_ERR(handle))
3426                 goto out;
3427         if (current_handle &&
3428                 current_handle->h_transaction != handle->h_transaction) {
3429                 /* This task has a transaction open against a different fs */
3430                 printk(KERN_EMERG "%s: transactions do not match!\n",
3431                        __func__);
3432         } else {
3433                 jbd_debug(5, "marking dirty.  outer handle=%p\n",
3434                                 current_handle);
3435                 ext3_mark_inode_dirty(handle, inode);
3436         }
3437         ext3_journal_stop(handle);
3438 out:
3439         return;
3440 }
3441
3442 #if 0
3443 /*
3444  * Bind an inode's backing buffer_head into this transaction, to prevent
3445  * it from being flushed to disk early.  Unlike
3446  * ext3_reserve_inode_write, this leaves behind no bh reference and
3447  * returns no iloc structure, so the caller needs to repeat the iloc
3448  * lookup to mark the inode dirty later.
3449  */
3450 static int ext3_pin_inode(handle_t *handle, struct inode *inode)
3451 {
3452         struct ext3_iloc iloc;
3453
3454         int err = 0;
3455         if (handle) {
3456                 err = ext3_get_inode_loc(inode, &iloc);
3457                 if (!err) {
3458                         BUFFER_TRACE(iloc.bh, "get_write_access");
3459                         err = journal_get_write_access(handle, iloc.bh);
3460                         if (!err)
3461                                 err = ext3_journal_dirty_metadata(handle,
3462                                                                   iloc.bh);
3463                         brelse(iloc.bh);
3464                 }
3465         }
3466         ext3_std_error(inode->i_sb, err);
3467         return err;
3468 }
3469 #endif
3470
3471 int ext3_change_inode_journal_flag(struct inode *inode, int val)
3472 {
3473         journal_t *journal;
3474         handle_t *handle;
3475         int err;
3476
3477         /*
3478          * We have to be very careful here: changing a data block's
3479          * journaling status dynamically is dangerous.  If we write a
3480          * data block to the journal, change the status and then delete
3481          * that block, we risk forgetting to revoke the old log record
3482          * from the journal and so a subsequent replay can corrupt data.
3483          * So, first we make sure that the journal is empty and that
3484          * nobody is changing anything.
3485          */
3486
3487         journal = EXT3_JOURNAL(inode);
3488         if (is_journal_aborted(journal))
3489                 return -EROFS;
3490
3491         journal_lock_updates(journal);
3492         journal_flush(journal);
3493
3494         /*
3495          * OK, there are no updates running now, and all cached data is
3496          * synced to disk.  We are now in a completely consistent state
3497          * which doesn't have anything in the journal, and we know that
3498          * no filesystem updates are running, so it is safe to modify
3499          * the inode's in-core data-journaling state flag now.
3500          */
3501
3502         if (val)
3503                 EXT3_I(inode)->i_flags |= EXT3_JOURNAL_DATA_FL;
3504         else
3505                 EXT3_I(inode)->i_flags &= ~EXT3_JOURNAL_DATA_FL;
3506         ext3_set_aops(inode);
3507
3508         journal_unlock_updates(journal);
3509
3510         /* Finally we can mark the inode as dirty. */
3511
3512         handle = ext3_journal_start(inode, 1);
3513         if (IS_ERR(handle))
3514                 return PTR_ERR(handle);
3515
3516         err = ext3_mark_inode_dirty(handle, inode);
3517         handle->h_sync = 1;
3518         ext3_journal_stop(handle);
3519         ext3_std_error(inode->i_sb, err);
3520
3521         return err;
3522 }