eCryptfs: Read/write entire page during page IO
[pandora-kernel.git] / fs / ecryptfs / crypto.c
1 /**
2  * eCryptfs: Linux filesystem encryption layer
3  *
4  * Copyright (C) 1997-2004 Erez Zadok
5  * Copyright (C) 2001-2004 Stony Brook University
6  * Copyright (C) 2004-2007 International Business Machines Corp.
7  *   Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
8  *              Michael C. Thompson <mcthomps@us.ibm.com>
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License as
12  * published by the Free Software Foundation; either version 2 of the
13  * License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful, but
16  * WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software
22  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
23  * 02111-1307, USA.
24  */
25
26 #include <linux/fs.h>
27 #include <linux/mount.h>
28 #include <linux/pagemap.h>
29 #include <linux/random.h>
30 #include <linux/compiler.h>
31 #include <linux/key.h>
32 #include <linux/namei.h>
33 #include <linux/crypto.h>
34 #include <linux/file.h>
35 #include <linux/scatterlist.h>
36 #include <linux/slab.h>
37 #include <asm/unaligned.h>
38 #include "ecryptfs_kernel.h"
39
40 static int
41 ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
42                              struct page *dst_page, int dst_offset,
43                              struct page *src_page, int src_offset, int size,
44                              unsigned char *iv);
45 static int
46 ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
47                              struct page *dst_page, int dst_offset,
48                              struct page *src_page, int src_offset, int size,
49                              unsigned char *iv);
50
51 /**
52  * ecryptfs_to_hex
53  * @dst: Buffer to take hex character representation of contents of
54  *       src; must be at least of size (src_size * 2)
55  * @src: Buffer to be converted to a hex string respresentation
56  * @src_size: number of bytes to convert
57  */
58 void ecryptfs_to_hex(char *dst, char *src, size_t src_size)
59 {
60         int x;
61
62         for (x = 0; x < src_size; x++)
63                 sprintf(&dst[x * 2], "%.2x", (unsigned char)src[x]);
64 }
65
66 /**
67  * ecryptfs_from_hex
68  * @dst: Buffer to take the bytes from src hex; must be at least of
69  *       size (src_size / 2)
70  * @src: Buffer to be converted from a hex string respresentation to raw value
71  * @dst_size: size of dst buffer, or number of hex characters pairs to convert
72  */
73 void ecryptfs_from_hex(char *dst, char *src, int dst_size)
74 {
75         int x;
76         char tmp[3] = { 0, };
77
78         for (x = 0; x < dst_size; x++) {
79                 tmp[0] = src[x * 2];
80                 tmp[1] = src[x * 2 + 1];
81                 dst[x] = (unsigned char)simple_strtol(tmp, NULL, 16);
82         }
83 }
84
85 /**
86  * ecryptfs_calculate_md5 - calculates the md5 of @src
87  * @dst: Pointer to 16 bytes of allocated memory
88  * @crypt_stat: Pointer to crypt_stat struct for the current inode
89  * @src: Data to be md5'd
90  * @len: Length of @src
91  *
92  * Uses the allocated crypto context that crypt_stat references to
93  * generate the MD5 sum of the contents of src.
94  */
95 static int ecryptfs_calculate_md5(char *dst,
96                                   struct ecryptfs_crypt_stat *crypt_stat,
97                                   char *src, int len)
98 {
99         struct scatterlist sg;
100         struct hash_desc desc = {
101                 .tfm = crypt_stat->hash_tfm,
102                 .flags = CRYPTO_TFM_REQ_MAY_SLEEP
103         };
104         int rc = 0;
105
106         mutex_lock(&crypt_stat->cs_hash_tfm_mutex);
107         sg_init_one(&sg, (u8 *)src, len);
108         if (!desc.tfm) {
109                 desc.tfm = crypto_alloc_hash(ECRYPTFS_DEFAULT_HASH, 0,
110                                              CRYPTO_ALG_ASYNC);
111                 if (IS_ERR(desc.tfm)) {
112                         rc = PTR_ERR(desc.tfm);
113                         ecryptfs_printk(KERN_ERR, "Error attempting to "
114                                         "allocate crypto context; rc = [%d]\n",
115                                         rc);
116                         goto out;
117                 }
118                 crypt_stat->hash_tfm = desc.tfm;
119         }
120         rc = crypto_hash_init(&desc);
121         if (rc) {
122                 printk(KERN_ERR
123                        "%s: Error initializing crypto hash; rc = [%d]\n",
124                        __func__, rc);
125                 goto out;
126         }
127         rc = crypto_hash_update(&desc, &sg, len);
128         if (rc) {
129                 printk(KERN_ERR
130                        "%s: Error updating crypto hash; rc = [%d]\n",
131                        __func__, rc);
132                 goto out;
133         }
134         rc = crypto_hash_final(&desc, dst);
135         if (rc) {
136                 printk(KERN_ERR
137                        "%s: Error finalizing crypto hash; rc = [%d]\n",
138                        __func__, rc);
139                 goto out;
140         }
141 out:
142         mutex_unlock(&crypt_stat->cs_hash_tfm_mutex);
143         return rc;
144 }
145
146 static int ecryptfs_crypto_api_algify_cipher_name(char **algified_name,
147                                                   char *cipher_name,
148                                                   char *chaining_modifier)
149 {
150         int cipher_name_len = strlen(cipher_name);
151         int chaining_modifier_len = strlen(chaining_modifier);
152         int algified_name_len;
153         int rc;
154
155         algified_name_len = (chaining_modifier_len + cipher_name_len + 3);
156         (*algified_name) = kmalloc(algified_name_len, GFP_KERNEL);
157         if (!(*algified_name)) {
158                 rc = -ENOMEM;
159                 goto out;
160         }
161         snprintf((*algified_name), algified_name_len, "%s(%s)",
162                  chaining_modifier, cipher_name);
163         rc = 0;
164 out:
165         return rc;
166 }
167
168 /**
169  * ecryptfs_derive_iv
170  * @iv: destination for the derived iv vale
171  * @crypt_stat: Pointer to crypt_stat struct for the current inode
172  * @offset: Offset of the extent whose IV we are to derive
173  *
174  * Generate the initialization vector from the given root IV and page
175  * offset.
176  *
177  * Returns zero on success; non-zero on error.
178  */
179 int ecryptfs_derive_iv(char *iv, struct ecryptfs_crypt_stat *crypt_stat,
180                        loff_t offset)
181 {
182         int rc = 0;
183         char dst[MD5_DIGEST_SIZE];
184         char src[ECRYPTFS_MAX_IV_BYTES + 16];
185
186         if (unlikely(ecryptfs_verbosity > 0)) {
187                 ecryptfs_printk(KERN_DEBUG, "root iv:\n");
188                 ecryptfs_dump_hex(crypt_stat->root_iv, crypt_stat->iv_bytes);
189         }
190         /* TODO: It is probably secure to just cast the least
191          * significant bits of the root IV into an unsigned long and
192          * add the offset to that rather than go through all this
193          * hashing business. -Halcrow */
194         memcpy(src, crypt_stat->root_iv, crypt_stat->iv_bytes);
195         memset((src + crypt_stat->iv_bytes), 0, 16);
196         snprintf((src + crypt_stat->iv_bytes), 16, "%lld", offset);
197         if (unlikely(ecryptfs_verbosity > 0)) {
198                 ecryptfs_printk(KERN_DEBUG, "source:\n");
199                 ecryptfs_dump_hex(src, (crypt_stat->iv_bytes + 16));
200         }
201         rc = ecryptfs_calculate_md5(dst, crypt_stat, src,
202                                     (crypt_stat->iv_bytes + 16));
203         if (rc) {
204                 ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
205                                 "MD5 while generating IV for a page\n");
206                 goto out;
207         }
208         memcpy(iv, dst, crypt_stat->iv_bytes);
209         if (unlikely(ecryptfs_verbosity > 0)) {
210                 ecryptfs_printk(KERN_DEBUG, "derived iv:\n");
211                 ecryptfs_dump_hex(iv, crypt_stat->iv_bytes);
212         }
213 out:
214         return rc;
215 }
216
217 /**
218  * ecryptfs_init_crypt_stat
219  * @crypt_stat: Pointer to the crypt_stat struct to initialize.
220  *
221  * Initialize the crypt_stat structure.
222  */
223 void
224 ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
225 {
226         memset((void *)crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
227         INIT_LIST_HEAD(&crypt_stat->keysig_list);
228         mutex_init(&crypt_stat->keysig_list_mutex);
229         mutex_init(&crypt_stat->cs_mutex);
230         mutex_init(&crypt_stat->cs_tfm_mutex);
231         mutex_init(&crypt_stat->cs_hash_tfm_mutex);
232         crypt_stat->flags |= ECRYPTFS_STRUCT_INITIALIZED;
233 }
234
235 /**
236  * ecryptfs_destroy_crypt_stat
237  * @crypt_stat: Pointer to the crypt_stat struct to initialize.
238  *
239  * Releases all memory associated with a crypt_stat struct.
240  */
241 void ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
242 {
243         struct ecryptfs_key_sig *key_sig, *key_sig_tmp;
244
245         if (crypt_stat->tfm)
246                 crypto_free_ablkcipher(crypt_stat->tfm);
247         if (crypt_stat->hash_tfm)
248                 crypto_free_hash(crypt_stat->hash_tfm);
249         list_for_each_entry_safe(key_sig, key_sig_tmp,
250                                  &crypt_stat->keysig_list, crypt_stat_list) {
251                 list_del(&key_sig->crypt_stat_list);
252                 kmem_cache_free(ecryptfs_key_sig_cache, key_sig);
253         }
254         memset(crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
255 }
256
257 void ecryptfs_destroy_mount_crypt_stat(
258         struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
259 {
260         struct ecryptfs_global_auth_tok *auth_tok, *auth_tok_tmp;
261
262         if (!(mount_crypt_stat->flags & ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED))
263                 return;
264         mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
265         list_for_each_entry_safe(auth_tok, auth_tok_tmp,
266                                  &mount_crypt_stat->global_auth_tok_list,
267                                  mount_crypt_stat_list) {
268                 list_del(&auth_tok->mount_crypt_stat_list);
269                 if (auth_tok->global_auth_tok_key
270                     && !(auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID))
271                         key_put(auth_tok->global_auth_tok_key);
272                 kmem_cache_free(ecryptfs_global_auth_tok_cache, auth_tok);
273         }
274         mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
275         memset(mount_crypt_stat, 0, sizeof(struct ecryptfs_mount_crypt_stat));
276 }
277
278 /**
279  * virt_to_scatterlist
280  * @addr: Virtual address
281  * @size: Size of data; should be an even multiple of the block size
282  * @sg: Pointer to scatterlist array; set to NULL to obtain only
283  *      the number of scatterlist structs required in array
284  * @sg_size: Max array size
285  *
286  * Fills in a scatterlist array with page references for a passed
287  * virtual address.
288  *
289  * Returns the number of scatterlist structs in array used
290  */
291 int virt_to_scatterlist(const void *addr, int size, struct scatterlist *sg,
292                         int sg_size)
293 {
294         int i = 0;
295         struct page *pg;
296         int offset;
297         int remainder_of_page;
298
299         sg_init_table(sg, sg_size);
300
301         while (size > 0 && i < sg_size) {
302                 pg = virt_to_page(addr);
303                 offset = offset_in_page(addr);
304                 sg_set_page(&sg[i], pg, 0, offset);
305                 remainder_of_page = PAGE_CACHE_SIZE - offset;
306                 if (size >= remainder_of_page) {
307                         sg[i].length = remainder_of_page;
308                         addr += remainder_of_page;
309                         size -= remainder_of_page;
310                 } else {
311                         sg[i].length = size;
312                         addr += size;
313                         size = 0;
314                 }
315                 i++;
316         }
317         if (size > 0)
318                 return -ENOMEM;
319         return i;
320 }
321
322 struct extent_crypt_result {
323         struct completion completion;
324         int rc;
325 };
326
327 static void extent_crypt_complete(struct crypto_async_request *req, int rc)
328 {
329         struct extent_crypt_result *ecr = req->data;
330
331         if (rc == -EINPROGRESS)
332                 return;
333
334         ecr->rc = rc;
335         complete(&ecr->completion);
336 }
337
338 /**
339  * encrypt_scatterlist
340  * @crypt_stat: Pointer to the crypt_stat struct to initialize.
341  * @dest_sg: Destination of encrypted data
342  * @src_sg: Data to be encrypted
343  * @size: Length of data to be encrypted
344  * @iv: iv to use during encryption
345  *
346  * Returns the number of bytes encrypted; negative value on error
347  */
348 static int encrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
349                                struct scatterlist *dest_sg,
350                                struct scatterlist *src_sg, int size,
351                                unsigned char *iv)
352 {
353         struct ablkcipher_request *req = NULL;
354         struct extent_crypt_result ecr;
355         int rc = 0;
356
357         BUG_ON(!crypt_stat || !crypt_stat->tfm
358                || !(crypt_stat->flags & ECRYPTFS_STRUCT_INITIALIZED));
359         if (unlikely(ecryptfs_verbosity > 0)) {
360                 ecryptfs_printk(KERN_DEBUG, "Key size [%zd]; key:\n",
361                                 crypt_stat->key_size);
362                 ecryptfs_dump_hex(crypt_stat->key,
363                                   crypt_stat->key_size);
364         }
365
366         init_completion(&ecr.completion);
367
368         mutex_lock(&crypt_stat->cs_tfm_mutex);
369         req = ablkcipher_request_alloc(crypt_stat->tfm, GFP_NOFS);
370         if (!req) {
371                 mutex_unlock(&crypt_stat->cs_tfm_mutex);
372                 rc = -ENOMEM;
373                 goto out;
374         }
375
376         ablkcipher_request_set_callback(req,
377                         CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
378                         extent_crypt_complete, &ecr);
379         /* Consider doing this once, when the file is opened */
380         if (!(crypt_stat->flags & ECRYPTFS_KEY_SET)) {
381                 rc = crypto_ablkcipher_setkey(crypt_stat->tfm, crypt_stat->key,
382                                               crypt_stat->key_size);
383                 if (rc) {
384                         ecryptfs_printk(KERN_ERR,
385                                         "Error setting key; rc = [%d]\n",
386                                         rc);
387                         mutex_unlock(&crypt_stat->cs_tfm_mutex);
388                         rc = -EINVAL;
389                         goto out;
390                 }
391                 crypt_stat->flags |= ECRYPTFS_KEY_SET;
392         }
393         mutex_unlock(&crypt_stat->cs_tfm_mutex);
394         ecryptfs_printk(KERN_DEBUG, "Encrypting [%d] bytes.\n", size);
395         ablkcipher_request_set_crypt(req, src_sg, dest_sg, size, iv);
396         rc = crypto_ablkcipher_encrypt(req);
397         if (rc == -EINPROGRESS || rc == -EBUSY) {
398                 struct extent_crypt_result *ecr = req->base.data;
399
400                 wait_for_completion(&ecr->completion);
401                 rc = ecr->rc;
402                 INIT_COMPLETION(ecr->completion);
403         }
404 out:
405         ablkcipher_request_free(req);
406         return rc;
407 }
408
409 /**
410  * ecryptfs_lower_offset_for_extent
411  *
412  * Convert an eCryptfs page index into a lower byte offset
413  */
414 static void ecryptfs_lower_offset_for_extent(loff_t *offset, loff_t extent_num,
415                                              struct ecryptfs_crypt_stat *crypt_stat)
416 {
417         (*offset) = ecryptfs_lower_header_size(crypt_stat)
418                     + (crypt_stat->extent_size * extent_num);
419 }
420
421 /**
422  * ecryptfs_encrypt_extent
423  * @enc_extent_page: Allocated page into which to encrypt the data in
424  *                   @page
425  * @crypt_stat: crypt_stat containing cryptographic context for the
426  *              encryption operation
427  * @page: Page containing plaintext data extent to encrypt
428  * @extent_offset: Page extent offset for use in generating IV
429  *
430  * Encrypts one extent of data.
431  *
432  * Return zero on success; non-zero otherwise
433  */
434 static int ecryptfs_encrypt_extent(struct page *enc_extent_page,
435                                    struct ecryptfs_crypt_stat *crypt_stat,
436                                    struct page *page,
437                                    unsigned long extent_offset)
438 {
439         loff_t extent_base;
440         char extent_iv[ECRYPTFS_MAX_IV_BYTES];
441         int rc;
442
443         extent_base = (((loff_t)page->index)
444                        * (PAGE_CACHE_SIZE / crypt_stat->extent_size));
445         rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
446                                 (extent_base + extent_offset));
447         if (rc) {
448                 ecryptfs_printk(KERN_ERR, "Error attempting to derive IV for "
449                         "extent [0x%.16llx]; rc = [%d]\n",
450                         (unsigned long long)(extent_base + extent_offset), rc);
451                 goto out;
452         }
453         rc = ecryptfs_encrypt_page_offset(crypt_stat, enc_extent_page,
454                                         extent_offset * crypt_stat->extent_size,
455                                         page,
456                                         extent_offset * crypt_stat->extent_size,
457                                         crypt_stat->extent_size, extent_iv);
458         if (rc < 0) {
459                 printk(KERN_ERR "%s: Error attempting to encrypt page with "
460                        "page->index = [%ld], extent_offset = [%ld]; "
461                        "rc = [%d]\n", __func__, page->index, extent_offset,
462                        rc);
463                 goto out;
464         }
465         rc = 0;
466 out:
467         return rc;
468 }
469
470 /**
471  * ecryptfs_encrypt_page
472  * @page: Page mapped from the eCryptfs inode for the file; contains
473  *        decrypted content that needs to be encrypted (to a temporary
474  *        page; not in place) and written out to the lower file
475  *
476  * Encrypt an eCryptfs page. This is done on a per-extent basis. Note
477  * that eCryptfs pages may straddle the lower pages -- for instance,
478  * if the file was created on a machine with an 8K page size
479  * (resulting in an 8K header), and then the file is copied onto a
480  * host with a 32K page size, then when reading page 0 of the eCryptfs
481  * file, 24K of page 0 of the lower file will be read and decrypted,
482  * and then 8K of page 1 of the lower file will be read and decrypted.
483  *
484  * Returns zero on success; negative on error
485  */
486 int ecryptfs_encrypt_page(struct page *page)
487 {
488         struct inode *ecryptfs_inode;
489         struct ecryptfs_crypt_stat *crypt_stat;
490         char *enc_extent_virt;
491         struct page *enc_extent_page = NULL;
492         loff_t extent_offset;
493         loff_t lower_offset;
494         int rc = 0;
495
496         ecryptfs_inode = page->mapping->host;
497         crypt_stat =
498                 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
499         BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
500         enc_extent_page = alloc_page(GFP_USER);
501         if (!enc_extent_page) {
502                 rc = -ENOMEM;
503                 ecryptfs_printk(KERN_ERR, "Error allocating memory for "
504                                 "encrypted extent\n");
505                 goto out;
506         }
507
508         for (extent_offset = 0;
509              extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size);
510              extent_offset++) {
511                 rc = ecryptfs_encrypt_extent(enc_extent_page, crypt_stat, page,
512                                              extent_offset);
513                 if (rc) {
514                         printk(KERN_ERR "%s: Error encrypting extent; "
515                                "rc = [%d]\n", __func__, rc);
516                         goto out;
517                 }
518         }
519
520         ecryptfs_lower_offset_for_extent(&lower_offset,
521                 page->index * (PAGE_CACHE_SIZE / crypt_stat->extent_size),
522                 crypt_stat);
523         enc_extent_virt = kmap(enc_extent_page);
524         rc = ecryptfs_write_lower(ecryptfs_inode, enc_extent_virt, lower_offset,
525                                   PAGE_CACHE_SIZE);
526         kunmap(enc_extent_page);
527         if (rc < 0) {
528                 ecryptfs_printk(KERN_ERR,
529                         "Error attempting to write lower page; rc = [%d]\n",
530                         rc);
531                 goto out;
532         }
533         rc = 0;
534 out:
535         if (enc_extent_page) {
536                 __free_page(enc_extent_page);
537         }
538         return rc;
539 }
540
541 static int ecryptfs_decrypt_extent(struct page *page,
542                                    struct ecryptfs_crypt_stat *crypt_stat,
543                                    struct page *enc_extent_page,
544                                    unsigned long extent_offset)
545 {
546         loff_t extent_base;
547         char extent_iv[ECRYPTFS_MAX_IV_BYTES];
548         int rc;
549
550         extent_base = (((loff_t)page->index)
551                        * (PAGE_CACHE_SIZE / crypt_stat->extent_size));
552         rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
553                                 (extent_base + extent_offset));
554         if (rc) {
555                 ecryptfs_printk(KERN_ERR, "Error attempting to derive IV for "
556                         "extent [0x%.16llx]; rc = [%d]\n",
557                         (unsigned long long)(extent_base + extent_offset), rc);
558                 goto out;
559         }
560         rc = ecryptfs_decrypt_page_offset(crypt_stat, page,
561                                         extent_offset * crypt_stat->extent_size,
562                                         enc_extent_page,
563                                         extent_offset * crypt_stat->extent_size,
564                                         crypt_stat->extent_size, extent_iv);
565         if (rc < 0) {
566                 printk(KERN_ERR "%s: Error attempting to decrypt to page with "
567                        "page->index = [%ld], extent_offset = [%ld]; "
568                        "rc = [%d]\n", __func__, page->index, extent_offset,
569                        rc);
570                 goto out;
571         }
572         rc = 0;
573 out:
574         return rc;
575 }
576
577 /**
578  * ecryptfs_decrypt_page
579  * @page: Page mapped from the eCryptfs inode for the file; data read
580  *        and decrypted from the lower file will be written into this
581  *        page
582  *
583  * Decrypt an eCryptfs page. This is done on a per-extent basis. Note
584  * that eCryptfs pages may straddle the lower pages -- for instance,
585  * if the file was created on a machine with an 8K page size
586  * (resulting in an 8K header), and then the file is copied onto a
587  * host with a 32K page size, then when reading page 0 of the eCryptfs
588  * file, 24K of page 0 of the lower file will be read and decrypted,
589  * and then 8K of page 1 of the lower file will be read and decrypted.
590  *
591  * Returns zero on success; negative on error
592  */
593 int ecryptfs_decrypt_page(struct page *page)
594 {
595         struct inode *ecryptfs_inode;
596         struct ecryptfs_crypt_stat *crypt_stat;
597         char *enc_extent_virt;
598         struct page *enc_extent_page = NULL;
599         unsigned long extent_offset;
600         loff_t lower_offset;
601         int rc = 0;
602
603         ecryptfs_inode = page->mapping->host;
604         crypt_stat =
605                 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
606         BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
607         enc_extent_page = alloc_page(GFP_USER);
608         if (!enc_extent_page) {
609                 rc = -ENOMEM;
610                 ecryptfs_printk(KERN_ERR, "Error allocating memory for "
611                                 "encrypted extent\n");
612                 goto out;
613         }
614
615         ecryptfs_lower_offset_for_extent(&lower_offset,
616                 page->index * (PAGE_CACHE_SIZE / crypt_stat->extent_size),
617                 crypt_stat);
618         enc_extent_virt = kmap(enc_extent_page);
619         rc = ecryptfs_read_lower(enc_extent_virt, lower_offset, PAGE_CACHE_SIZE,
620                                  ecryptfs_inode);
621         kunmap(enc_extent_page);
622         if (rc < 0) {
623                 ecryptfs_printk(KERN_ERR,
624                         "Error attempting to read lower page; rc = [%d]\n",
625                         rc);
626                 goto out;
627         }
628
629         for (extent_offset = 0;
630              extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size);
631              extent_offset++) {
632                 rc = ecryptfs_decrypt_extent(page, crypt_stat, enc_extent_page,
633                                              extent_offset);
634                 if (rc) {
635                         printk(KERN_ERR "%s: Error encrypting extent; "
636                                "rc = [%d]\n", __func__, rc);
637                         goto out;
638                 }
639         }
640 out:
641         if (enc_extent_page) {
642                 __free_page(enc_extent_page);
643         }
644         return rc;
645 }
646
647 /**
648  * decrypt_scatterlist
649  * @crypt_stat: Cryptographic context
650  * @dest_sg: The destination scatterlist to decrypt into
651  * @src_sg: The source scatterlist to decrypt from
652  * @size: The number of bytes to decrypt
653  * @iv: The initialization vector to use for the decryption
654  *
655  * Returns the number of bytes decrypted; negative value on error
656  */
657 static int decrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
658                                struct scatterlist *dest_sg,
659                                struct scatterlist *src_sg, int size,
660                                unsigned char *iv)
661 {
662         struct ablkcipher_request *req = NULL;
663         struct extent_crypt_result ecr;
664         int rc = 0;
665
666         BUG_ON(!crypt_stat || !crypt_stat->tfm
667                || !(crypt_stat->flags & ECRYPTFS_STRUCT_INITIALIZED));
668         if (unlikely(ecryptfs_verbosity > 0)) {
669                 ecryptfs_printk(KERN_DEBUG, "Key size [%zd]; key:\n",
670                                 crypt_stat->key_size);
671                 ecryptfs_dump_hex(crypt_stat->key,
672                                   crypt_stat->key_size);
673         }
674
675         init_completion(&ecr.completion);
676
677         mutex_lock(&crypt_stat->cs_tfm_mutex);
678         req = ablkcipher_request_alloc(crypt_stat->tfm, GFP_NOFS);
679         if (!req) {
680                 mutex_unlock(&crypt_stat->cs_tfm_mutex);
681                 rc = -ENOMEM;
682                 goto out;
683         }
684
685         ablkcipher_request_set_callback(req,
686                         CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
687                         extent_crypt_complete, &ecr);
688         /* Consider doing this once, when the file is opened */
689         if (!(crypt_stat->flags & ECRYPTFS_KEY_SET)) {
690                 rc = crypto_ablkcipher_setkey(crypt_stat->tfm, crypt_stat->key,
691                                               crypt_stat->key_size);
692                 if (rc) {
693                         ecryptfs_printk(KERN_ERR,
694                                         "Error setting key; rc = [%d]\n",
695                                         rc);
696                         mutex_unlock(&crypt_stat->cs_tfm_mutex);
697                         rc = -EINVAL;
698                         goto out;
699                 }
700                 crypt_stat->flags |= ECRYPTFS_KEY_SET;
701         }
702         mutex_unlock(&crypt_stat->cs_tfm_mutex);
703         ecryptfs_printk(KERN_DEBUG, "Decrypting [%d] bytes.\n", size);
704         ablkcipher_request_set_crypt(req, src_sg, dest_sg, size, iv);
705         rc = crypto_ablkcipher_decrypt(req);
706         if (rc == -EINPROGRESS || rc == -EBUSY) {
707                 struct extent_crypt_result *ecr = req->base.data;
708
709                 wait_for_completion(&ecr->completion);
710                 rc = ecr->rc;
711                 INIT_COMPLETION(ecr->completion);
712         }
713 out:
714         ablkcipher_request_free(req);
715         return rc;
716
717 }
718
719 /**
720  * ecryptfs_encrypt_page_offset
721  * @crypt_stat: The cryptographic context
722  * @dst_page: The page to encrypt into
723  * @dst_offset: The offset in the page to encrypt into
724  * @src_page: The page to encrypt from
725  * @src_offset: The offset in the page to encrypt from
726  * @size: The number of bytes to encrypt
727  * @iv: The initialization vector to use for the encryption
728  *
729  * Returns the number of bytes encrypted
730  */
731 static int
732 ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
733                              struct page *dst_page, int dst_offset,
734                              struct page *src_page, int src_offset, int size,
735                              unsigned char *iv)
736 {
737         struct scatterlist src_sg, dst_sg;
738
739         sg_init_table(&src_sg, 1);
740         sg_init_table(&dst_sg, 1);
741
742         sg_set_page(&src_sg, src_page, size, src_offset);
743         sg_set_page(&dst_sg, dst_page, size, dst_offset);
744         return encrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv);
745 }
746
747 /**
748  * ecryptfs_decrypt_page_offset
749  * @crypt_stat: The cryptographic context
750  * @dst_page: The page to decrypt into
751  * @dst_offset: The offset in the page to decrypt into
752  * @src_page: The page to decrypt from
753  * @src_offset: The offset in the page to decrypt from
754  * @size: The number of bytes to decrypt
755  * @iv: The initialization vector to use for the decryption
756  *
757  * Returns the number of bytes decrypted
758  */
759 static int
760 ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
761                              struct page *dst_page, int dst_offset,
762                              struct page *src_page, int src_offset, int size,
763                              unsigned char *iv)
764 {
765         struct scatterlist src_sg, dst_sg;
766
767         sg_init_table(&src_sg, 1);
768         sg_set_page(&src_sg, src_page, size, src_offset);
769
770         sg_init_table(&dst_sg, 1);
771         sg_set_page(&dst_sg, dst_page, size, dst_offset);
772
773         return decrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv);
774 }
775
776 #define ECRYPTFS_MAX_SCATTERLIST_LEN 4
777
778 /**
779  * ecryptfs_init_crypt_ctx
780  * @crypt_stat: Uninitialized crypt stats structure
781  *
782  * Initialize the crypto context.
783  *
784  * TODO: Performance: Keep a cache of initialized cipher contexts;
785  * only init if needed
786  */
787 int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat *crypt_stat)
788 {
789         char *full_alg_name;
790         int rc = -EINVAL;
791
792         if (!crypt_stat->cipher) {
793                 ecryptfs_printk(KERN_ERR, "No cipher specified\n");
794                 goto out;
795         }
796         ecryptfs_printk(KERN_DEBUG,
797                         "Initializing cipher [%s]; strlen = [%d]; "
798                         "key_size_bits = [%zd]\n",
799                         crypt_stat->cipher, (int)strlen(crypt_stat->cipher),
800                         crypt_stat->key_size << 3);
801         if (crypt_stat->tfm) {
802                 rc = 0;
803                 goto out;
804         }
805         mutex_lock(&crypt_stat->cs_tfm_mutex);
806         rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name,
807                                                     crypt_stat->cipher, "cbc");
808         if (rc)
809                 goto out_unlock;
810         crypt_stat->tfm = crypto_alloc_ablkcipher(full_alg_name, 0, 0);
811         kfree(full_alg_name);
812         if (IS_ERR(crypt_stat->tfm)) {
813                 rc = PTR_ERR(crypt_stat->tfm);
814                 crypt_stat->tfm = NULL;
815                 ecryptfs_printk(KERN_ERR, "cryptfs: init_crypt_ctx(): "
816                                 "Error initializing cipher [%s]\n",
817                                 crypt_stat->cipher);
818                 goto out_unlock;
819         }
820         crypto_ablkcipher_set_flags(crypt_stat->tfm, CRYPTO_TFM_REQ_WEAK_KEY);
821         rc = 0;
822 out_unlock:
823         mutex_unlock(&crypt_stat->cs_tfm_mutex);
824 out:
825         return rc;
826 }
827
828 static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat *crypt_stat)
829 {
830         int extent_size_tmp;
831
832         crypt_stat->extent_mask = 0xFFFFFFFF;
833         crypt_stat->extent_shift = 0;
834         if (crypt_stat->extent_size == 0)
835                 return;
836         extent_size_tmp = crypt_stat->extent_size;
837         while ((extent_size_tmp & 0x01) == 0) {
838                 extent_size_tmp >>= 1;
839                 crypt_stat->extent_mask <<= 1;
840                 crypt_stat->extent_shift++;
841         }
842 }
843
844 void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat *crypt_stat)
845 {
846         /* Default values; may be overwritten as we are parsing the
847          * packets. */
848         crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE;
849         set_extent_mask_and_shift(crypt_stat);
850         crypt_stat->iv_bytes = ECRYPTFS_DEFAULT_IV_BYTES;
851         if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
852                 crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
853         else {
854                 if (PAGE_CACHE_SIZE <= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)
855                         crypt_stat->metadata_size =
856                                 ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
857                 else
858                         crypt_stat->metadata_size = PAGE_CACHE_SIZE;
859         }
860 }
861
862 /**
863  * ecryptfs_compute_root_iv
864  * @crypt_stats
865  *
866  * On error, sets the root IV to all 0's.
867  */
868 int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat *crypt_stat)
869 {
870         int rc = 0;
871         char dst[MD5_DIGEST_SIZE];
872
873         BUG_ON(crypt_stat->iv_bytes > MD5_DIGEST_SIZE);
874         BUG_ON(crypt_stat->iv_bytes <= 0);
875         if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
876                 rc = -EINVAL;
877                 ecryptfs_printk(KERN_WARNING, "Session key not valid; "
878                                 "cannot generate root IV\n");
879                 goto out;
880         }
881         rc = ecryptfs_calculate_md5(dst, crypt_stat, crypt_stat->key,
882                                     crypt_stat->key_size);
883         if (rc) {
884                 ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
885                                 "MD5 while generating root IV\n");
886                 goto out;
887         }
888         memcpy(crypt_stat->root_iv, dst, crypt_stat->iv_bytes);
889 out:
890         if (rc) {
891                 memset(crypt_stat->root_iv, 0, crypt_stat->iv_bytes);
892                 crypt_stat->flags |= ECRYPTFS_SECURITY_WARNING;
893         }
894         return rc;
895 }
896
897 static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat *crypt_stat)
898 {
899         get_random_bytes(crypt_stat->key, crypt_stat->key_size);
900         crypt_stat->flags |= ECRYPTFS_KEY_VALID;
901         ecryptfs_compute_root_iv(crypt_stat);
902         if (unlikely(ecryptfs_verbosity > 0)) {
903                 ecryptfs_printk(KERN_DEBUG, "Generated new session key:\n");
904                 ecryptfs_dump_hex(crypt_stat->key,
905                                   crypt_stat->key_size);
906         }
907 }
908
909 /**
910  * ecryptfs_copy_mount_wide_flags_to_inode_flags
911  * @crypt_stat: The inode's cryptographic context
912  * @mount_crypt_stat: The mount point's cryptographic context
913  *
914  * This function propagates the mount-wide flags to individual inode
915  * flags.
916  */
917 static void ecryptfs_copy_mount_wide_flags_to_inode_flags(
918         struct ecryptfs_crypt_stat *crypt_stat,
919         struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
920 {
921         if (mount_crypt_stat->flags & ECRYPTFS_XATTR_METADATA_ENABLED)
922                 crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
923         if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
924                 crypt_stat->flags |= ECRYPTFS_VIEW_AS_ENCRYPTED;
925         if (mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) {
926                 crypt_stat->flags |= ECRYPTFS_ENCRYPT_FILENAMES;
927                 if (mount_crypt_stat->flags
928                     & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)
929                         crypt_stat->flags |= ECRYPTFS_ENCFN_USE_MOUNT_FNEK;
930                 else if (mount_crypt_stat->flags
931                          & ECRYPTFS_GLOBAL_ENCFN_USE_FEK)
932                         crypt_stat->flags |= ECRYPTFS_ENCFN_USE_FEK;
933         }
934 }
935
936 static int ecryptfs_copy_mount_wide_sigs_to_inode_sigs(
937         struct ecryptfs_crypt_stat *crypt_stat,
938         struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
939 {
940         struct ecryptfs_global_auth_tok *global_auth_tok;
941         int rc = 0;
942
943         mutex_lock(&crypt_stat->keysig_list_mutex);
944         mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
945
946         list_for_each_entry(global_auth_tok,
947                             &mount_crypt_stat->global_auth_tok_list,
948                             mount_crypt_stat_list) {
949                 if (global_auth_tok->flags & ECRYPTFS_AUTH_TOK_FNEK)
950                         continue;
951                 rc = ecryptfs_add_keysig(crypt_stat, global_auth_tok->sig);
952                 if (rc) {
953                         printk(KERN_ERR "Error adding keysig; rc = [%d]\n", rc);
954                         goto out;
955                 }
956         }
957
958 out:
959         mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
960         mutex_unlock(&crypt_stat->keysig_list_mutex);
961         return rc;
962 }
963
964 /**
965  * ecryptfs_set_default_crypt_stat_vals
966  * @crypt_stat: The inode's cryptographic context
967  * @mount_crypt_stat: The mount point's cryptographic context
968  *
969  * Default values in the event that policy does not override them.
970  */
971 static void ecryptfs_set_default_crypt_stat_vals(
972         struct ecryptfs_crypt_stat *crypt_stat,
973         struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
974 {
975         ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
976                                                       mount_crypt_stat);
977         ecryptfs_set_default_sizes(crypt_stat);
978         strcpy(crypt_stat->cipher, ECRYPTFS_DEFAULT_CIPHER);
979         crypt_stat->key_size = ECRYPTFS_DEFAULT_KEY_BYTES;
980         crypt_stat->flags &= ~(ECRYPTFS_KEY_VALID);
981         crypt_stat->file_version = ECRYPTFS_FILE_VERSION;
982         crypt_stat->mount_crypt_stat = mount_crypt_stat;
983 }
984
985 /**
986  * ecryptfs_new_file_context
987  * @ecryptfs_inode: The eCryptfs inode
988  *
989  * If the crypto context for the file has not yet been established,
990  * this is where we do that.  Establishing a new crypto context
991  * involves the following decisions:
992  *  - What cipher to use?
993  *  - What set of authentication tokens to use?
994  * Here we just worry about getting enough information into the
995  * authentication tokens so that we know that they are available.
996  * We associate the available authentication tokens with the new file
997  * via the set of signatures in the crypt_stat struct.  Later, when
998  * the headers are actually written out, we may again defer to
999  * userspace to perform the encryption of the session key; for the
1000  * foreseeable future, this will be the case with public key packets.
1001  *
1002  * Returns zero on success; non-zero otherwise
1003  */
1004 int ecryptfs_new_file_context(struct inode *ecryptfs_inode)
1005 {
1006         struct ecryptfs_crypt_stat *crypt_stat =
1007             &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1008         struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
1009             &ecryptfs_superblock_to_private(
1010                     ecryptfs_inode->i_sb)->mount_crypt_stat;
1011         int cipher_name_len;
1012         int rc = 0;
1013
1014         ecryptfs_set_default_crypt_stat_vals(crypt_stat, mount_crypt_stat);
1015         crypt_stat->flags |= (ECRYPTFS_ENCRYPTED | ECRYPTFS_KEY_VALID);
1016         ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
1017                                                       mount_crypt_stat);
1018         rc = ecryptfs_copy_mount_wide_sigs_to_inode_sigs(crypt_stat,
1019                                                          mount_crypt_stat);
1020         if (rc) {
1021                 printk(KERN_ERR "Error attempting to copy mount-wide key sigs "
1022                        "to the inode key sigs; rc = [%d]\n", rc);
1023                 goto out;
1024         }
1025         cipher_name_len =
1026                 strlen(mount_crypt_stat->global_default_cipher_name);
1027         memcpy(crypt_stat->cipher,
1028                mount_crypt_stat->global_default_cipher_name,
1029                cipher_name_len);
1030         crypt_stat->cipher[cipher_name_len] = '\0';
1031         crypt_stat->key_size =
1032                 mount_crypt_stat->global_default_cipher_key_size;
1033         ecryptfs_generate_new_key(crypt_stat);
1034         rc = ecryptfs_init_crypt_ctx(crypt_stat);
1035         if (rc)
1036                 ecryptfs_printk(KERN_ERR, "Error initializing cryptographic "
1037                                 "context for cipher [%s]: rc = [%d]\n",
1038                                 crypt_stat->cipher, rc);
1039 out:
1040         return rc;
1041 }
1042
1043 /**
1044  * ecryptfs_validate_marker - check for the ecryptfs marker
1045  * @data: The data block in which to check
1046  *
1047  * Returns zero if marker found; -EINVAL if not found
1048  */
1049 static int ecryptfs_validate_marker(char *data)
1050 {
1051         u32 m_1, m_2;
1052
1053         m_1 = get_unaligned_be32(data);
1054         m_2 = get_unaligned_be32(data + 4);
1055         if ((m_1 ^ MAGIC_ECRYPTFS_MARKER) == m_2)
1056                 return 0;
1057         ecryptfs_printk(KERN_DEBUG, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; "
1058                         "MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1, m_2,
1059                         MAGIC_ECRYPTFS_MARKER);
1060         ecryptfs_printk(KERN_DEBUG, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = "
1061                         "[0x%.8x]\n", (m_1 ^ MAGIC_ECRYPTFS_MARKER));
1062         return -EINVAL;
1063 }
1064
1065 struct ecryptfs_flag_map_elem {
1066         u32 file_flag;
1067         u32 local_flag;
1068 };
1069
1070 /* Add support for additional flags by adding elements here. */
1071 static struct ecryptfs_flag_map_elem ecryptfs_flag_map[] = {
1072         {0x00000001, ECRYPTFS_ENABLE_HMAC},
1073         {0x00000002, ECRYPTFS_ENCRYPTED},
1074         {0x00000004, ECRYPTFS_METADATA_IN_XATTR},
1075         {0x00000008, ECRYPTFS_ENCRYPT_FILENAMES}
1076 };
1077
1078 /**
1079  * ecryptfs_process_flags
1080  * @crypt_stat: The cryptographic context
1081  * @page_virt: Source data to be parsed
1082  * @bytes_read: Updated with the number of bytes read
1083  *
1084  * Returns zero on success; non-zero if the flag set is invalid
1085  */
1086 static int ecryptfs_process_flags(struct ecryptfs_crypt_stat *crypt_stat,
1087                                   char *page_virt, int *bytes_read)
1088 {
1089         int rc = 0;
1090         int i;
1091         u32 flags;
1092
1093         flags = get_unaligned_be32(page_virt);
1094         for (i = 0; i < ((sizeof(ecryptfs_flag_map)
1095                           / sizeof(struct ecryptfs_flag_map_elem))); i++)
1096                 if (flags & ecryptfs_flag_map[i].file_flag) {
1097                         crypt_stat->flags |= ecryptfs_flag_map[i].local_flag;
1098                 } else
1099                         crypt_stat->flags &= ~(ecryptfs_flag_map[i].local_flag);
1100         /* Version is in top 8 bits of the 32-bit flag vector */
1101         crypt_stat->file_version = ((flags >> 24) & 0xFF);
1102         (*bytes_read) = 4;
1103         return rc;
1104 }
1105
1106 /**
1107  * write_ecryptfs_marker
1108  * @page_virt: The pointer to in a page to begin writing the marker
1109  * @written: Number of bytes written
1110  *
1111  * Marker = 0x3c81b7f5
1112  */
1113 static void write_ecryptfs_marker(char *page_virt, size_t *written)
1114 {
1115         u32 m_1, m_2;
1116
1117         get_random_bytes(&m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
1118         m_2 = (m_1 ^ MAGIC_ECRYPTFS_MARKER);
1119         put_unaligned_be32(m_1, page_virt);
1120         page_virt += (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2);
1121         put_unaligned_be32(m_2, page_virt);
1122         (*written) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
1123 }
1124
1125 void ecryptfs_write_crypt_stat_flags(char *page_virt,
1126                                      struct ecryptfs_crypt_stat *crypt_stat,
1127                                      size_t *written)
1128 {
1129         u32 flags = 0;
1130         int i;
1131
1132         for (i = 0; i < ((sizeof(ecryptfs_flag_map)
1133                           / sizeof(struct ecryptfs_flag_map_elem))); i++)
1134                 if (crypt_stat->flags & ecryptfs_flag_map[i].local_flag)
1135                         flags |= ecryptfs_flag_map[i].file_flag;
1136         /* Version is in top 8 bits of the 32-bit flag vector */
1137         flags |= ((((u8)crypt_stat->file_version) << 24) & 0xFF000000);
1138         put_unaligned_be32(flags, page_virt);
1139         (*written) = 4;
1140 }
1141
1142 struct ecryptfs_cipher_code_str_map_elem {
1143         char cipher_str[16];
1144         u8 cipher_code;
1145 };
1146
1147 /* Add support for additional ciphers by adding elements here. The
1148  * cipher_code is whatever OpenPGP applicatoins use to identify the
1149  * ciphers. List in order of probability. */
1150 static struct ecryptfs_cipher_code_str_map_elem
1151 ecryptfs_cipher_code_str_map[] = {
1152         {"aes",RFC2440_CIPHER_AES_128 },
1153         {"blowfish", RFC2440_CIPHER_BLOWFISH},
1154         {"des3_ede", RFC2440_CIPHER_DES3_EDE},
1155         {"cast5", RFC2440_CIPHER_CAST_5},
1156         {"twofish", RFC2440_CIPHER_TWOFISH},
1157         {"cast6", RFC2440_CIPHER_CAST_6},
1158         {"aes", RFC2440_CIPHER_AES_192},
1159         {"aes", RFC2440_CIPHER_AES_256}
1160 };
1161
1162 /**
1163  * ecryptfs_code_for_cipher_string
1164  * @cipher_name: The string alias for the cipher
1165  * @key_bytes: Length of key in bytes; used for AES code selection
1166  *
1167  * Returns zero on no match, or the cipher code on match
1168  */
1169 u8 ecryptfs_code_for_cipher_string(char *cipher_name, size_t key_bytes)
1170 {
1171         int i;
1172         u8 code = 0;
1173         struct ecryptfs_cipher_code_str_map_elem *map =
1174                 ecryptfs_cipher_code_str_map;
1175
1176         if (strcmp(cipher_name, "aes") == 0) {
1177                 switch (key_bytes) {
1178                 case 16:
1179                         code = RFC2440_CIPHER_AES_128;
1180                         break;
1181                 case 24:
1182                         code = RFC2440_CIPHER_AES_192;
1183                         break;
1184                 case 32:
1185                         code = RFC2440_CIPHER_AES_256;
1186                 }
1187         } else {
1188                 for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
1189                         if (strcmp(cipher_name, map[i].cipher_str) == 0) {
1190                                 code = map[i].cipher_code;
1191                                 break;
1192                         }
1193         }
1194         return code;
1195 }
1196
1197 /**
1198  * ecryptfs_cipher_code_to_string
1199  * @str: Destination to write out the cipher name
1200  * @cipher_code: The code to convert to cipher name string
1201  *
1202  * Returns zero on success
1203  */
1204 int ecryptfs_cipher_code_to_string(char *str, u8 cipher_code)
1205 {
1206         int rc = 0;
1207         int i;
1208
1209         str[0] = '\0';
1210         for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
1211                 if (cipher_code == ecryptfs_cipher_code_str_map[i].cipher_code)
1212                         strcpy(str, ecryptfs_cipher_code_str_map[i].cipher_str);
1213         if (str[0] == '\0') {
1214                 ecryptfs_printk(KERN_WARNING, "Cipher code not recognized: "
1215                                 "[%d]\n", cipher_code);
1216                 rc = -EINVAL;
1217         }
1218         return rc;
1219 }
1220
1221 int ecryptfs_read_and_validate_header_region(struct inode *inode)
1222 {
1223         u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES];
1224         u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES;
1225         int rc;
1226
1227         rc = ecryptfs_read_lower(file_size, 0, ECRYPTFS_SIZE_AND_MARKER_BYTES,
1228                                  inode);
1229         if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES)
1230                 return rc >= 0 ? -EINVAL : rc;
1231         rc = ecryptfs_validate_marker(marker);
1232         if (!rc)
1233                 ecryptfs_i_size_init(file_size, inode);
1234         return rc;
1235 }
1236
1237 void
1238 ecryptfs_write_header_metadata(char *virt,
1239                                struct ecryptfs_crypt_stat *crypt_stat,
1240                                size_t *written)
1241 {
1242         u32 header_extent_size;
1243         u16 num_header_extents_at_front;
1244
1245         header_extent_size = (u32)crypt_stat->extent_size;
1246         num_header_extents_at_front =
1247                 (u16)(crypt_stat->metadata_size / crypt_stat->extent_size);
1248         put_unaligned_be32(header_extent_size, virt);
1249         virt += 4;
1250         put_unaligned_be16(num_header_extents_at_front, virt);
1251         (*written) = 6;
1252 }
1253
1254 struct kmem_cache *ecryptfs_header_cache;
1255
1256 /**
1257  * ecryptfs_write_headers_virt
1258  * @page_virt: The virtual address to write the headers to
1259  * @max: The size of memory allocated at page_virt
1260  * @size: Set to the number of bytes written by this function
1261  * @crypt_stat: The cryptographic context
1262  * @ecryptfs_dentry: The eCryptfs dentry
1263  *
1264  * Format version: 1
1265  *
1266  *   Header Extent:
1267  *     Octets 0-7:        Unencrypted file size (big-endian)
1268  *     Octets 8-15:       eCryptfs special marker
1269  *     Octets 16-19:      Flags
1270  *      Octet 16:         File format version number (between 0 and 255)
1271  *      Octets 17-18:     Reserved
1272  *      Octet 19:         Bit 1 (lsb): Reserved
1273  *                        Bit 2: Encrypted?
1274  *                        Bits 3-8: Reserved
1275  *     Octets 20-23:      Header extent size (big-endian)
1276  *     Octets 24-25:      Number of header extents at front of file
1277  *                        (big-endian)
1278  *     Octet  26:         Begin RFC 2440 authentication token packet set
1279  *   Data Extent 0:
1280  *     Lower data (CBC encrypted)
1281  *   Data Extent 1:
1282  *     Lower data (CBC encrypted)
1283  *   ...
1284  *
1285  * Returns zero on success
1286  */
1287 static int ecryptfs_write_headers_virt(char *page_virt, size_t max,
1288                                        size_t *size,
1289                                        struct ecryptfs_crypt_stat *crypt_stat,
1290                                        struct dentry *ecryptfs_dentry)
1291 {
1292         int rc;
1293         size_t written;
1294         size_t offset;
1295
1296         offset = ECRYPTFS_FILE_SIZE_BYTES;
1297         write_ecryptfs_marker((page_virt + offset), &written);
1298         offset += written;
1299         ecryptfs_write_crypt_stat_flags((page_virt + offset), crypt_stat,
1300                                         &written);
1301         offset += written;
1302         ecryptfs_write_header_metadata((page_virt + offset), crypt_stat,
1303                                        &written);
1304         offset += written;
1305         rc = ecryptfs_generate_key_packet_set((page_virt + offset), crypt_stat,
1306                                               ecryptfs_dentry, &written,
1307                                               max - offset);
1308         if (rc)
1309                 ecryptfs_printk(KERN_WARNING, "Error generating key packet "
1310                                 "set; rc = [%d]\n", rc);
1311         if (size) {
1312                 offset += written;
1313                 *size = offset;
1314         }
1315         return rc;
1316 }
1317
1318 static int
1319 ecryptfs_write_metadata_to_contents(struct inode *ecryptfs_inode,
1320                                     char *virt, size_t virt_len)
1321 {
1322         int rc;
1323
1324         rc = ecryptfs_write_lower(ecryptfs_inode, virt,
1325                                   0, virt_len);
1326         if (rc < 0)
1327                 printk(KERN_ERR "%s: Error attempting to write header "
1328                        "information to lower file; rc = [%d]\n", __func__, rc);
1329         else
1330                 rc = 0;
1331         return rc;
1332 }
1333
1334 static int
1335 ecryptfs_write_metadata_to_xattr(struct dentry *ecryptfs_dentry,
1336                                  char *page_virt, size_t size)
1337 {
1338         int rc;
1339
1340         rc = ecryptfs_setxattr(ecryptfs_dentry, ECRYPTFS_XATTR_NAME, page_virt,
1341                                size, 0);
1342         return rc;
1343 }
1344
1345 static unsigned long ecryptfs_get_zeroed_pages(gfp_t gfp_mask,
1346                                                unsigned int order)
1347 {
1348         struct page *page;
1349
1350         page = alloc_pages(gfp_mask | __GFP_ZERO, order);
1351         if (page)
1352                 return (unsigned long) page_address(page);
1353         return 0;
1354 }
1355
1356 /**
1357  * ecryptfs_write_metadata
1358  * @ecryptfs_dentry: The eCryptfs dentry, which should be negative
1359  * @ecryptfs_inode: The newly created eCryptfs inode
1360  *
1361  * Write the file headers out.  This will likely involve a userspace
1362  * callout, in which the session key is encrypted with one or more
1363  * public keys and/or the passphrase necessary to do the encryption is
1364  * retrieved via a prompt.  Exactly what happens at this point should
1365  * be policy-dependent.
1366  *
1367  * Returns zero on success; non-zero on error
1368  */
1369 int ecryptfs_write_metadata(struct dentry *ecryptfs_dentry,
1370                             struct inode *ecryptfs_inode)
1371 {
1372         struct ecryptfs_crypt_stat *crypt_stat =
1373                 &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1374         unsigned int order;
1375         char *virt;
1376         size_t virt_len;
1377         size_t size = 0;
1378         int rc = 0;
1379
1380         if (likely(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
1381                 if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
1382                         printk(KERN_ERR "Key is invalid; bailing out\n");
1383                         rc = -EINVAL;
1384                         goto out;
1385                 }
1386         } else {
1387                 printk(KERN_WARNING "%s: Encrypted flag not set\n",
1388                        __func__);
1389                 rc = -EINVAL;
1390                 goto out;
1391         }
1392         virt_len = crypt_stat->metadata_size;
1393         order = get_order(virt_len);
1394         /* Released in this function */
1395         virt = (char *)ecryptfs_get_zeroed_pages(GFP_KERNEL, order);
1396         if (!virt) {
1397                 printk(KERN_ERR "%s: Out of memory\n", __func__);
1398                 rc = -ENOMEM;
1399                 goto out;
1400         }
1401         /* Zeroed page ensures the in-header unencrypted i_size is set to 0 */
1402         rc = ecryptfs_write_headers_virt(virt, virt_len, &size, crypt_stat,
1403                                          ecryptfs_dentry);
1404         if (unlikely(rc)) {
1405                 printk(KERN_ERR "%s: Error whilst writing headers; rc = [%d]\n",
1406                        __func__, rc);
1407                 goto out_free;
1408         }
1409         if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1410                 rc = ecryptfs_write_metadata_to_xattr(ecryptfs_dentry, virt,
1411                                                       size);
1412         else
1413                 rc = ecryptfs_write_metadata_to_contents(ecryptfs_inode, virt,
1414                                                          virt_len);
1415         if (rc) {
1416                 printk(KERN_ERR "%s: Error writing metadata out to lower file; "
1417                        "rc = [%d]\n", __func__, rc);
1418                 goto out_free;
1419         }
1420 out_free:
1421         free_pages((unsigned long)virt, order);
1422 out:
1423         return rc;
1424 }
1425
1426 #define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0
1427 #define ECRYPTFS_VALIDATE_HEADER_SIZE 1
1428 static int parse_header_metadata(struct ecryptfs_crypt_stat *crypt_stat,
1429                                  char *virt, int *bytes_read,
1430                                  int validate_header_size)
1431 {
1432         int rc = 0;
1433         u32 header_extent_size;
1434         u16 num_header_extents_at_front;
1435
1436         header_extent_size = get_unaligned_be32(virt);
1437         virt += sizeof(__be32);
1438         num_header_extents_at_front = get_unaligned_be16(virt);
1439         crypt_stat->metadata_size = (((size_t)num_header_extents_at_front
1440                                      * (size_t)header_extent_size));
1441         (*bytes_read) = (sizeof(__be32) + sizeof(__be16));
1442         if ((validate_header_size == ECRYPTFS_VALIDATE_HEADER_SIZE)
1443             && (crypt_stat->metadata_size
1444                 < ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)) {
1445                 rc = -EINVAL;
1446                 printk(KERN_WARNING "Invalid header size: [%zd]\n",
1447                        crypt_stat->metadata_size);
1448         }
1449         return rc;
1450 }
1451
1452 /**
1453  * set_default_header_data
1454  * @crypt_stat: The cryptographic context
1455  *
1456  * For version 0 file format; this function is only for backwards
1457  * compatibility for files created with the prior versions of
1458  * eCryptfs.
1459  */
1460 static void set_default_header_data(struct ecryptfs_crypt_stat *crypt_stat)
1461 {
1462         crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
1463 }
1464
1465 void ecryptfs_i_size_init(const char *page_virt, struct inode *inode)
1466 {
1467         struct ecryptfs_mount_crypt_stat *mount_crypt_stat;
1468         struct ecryptfs_crypt_stat *crypt_stat;
1469         u64 file_size;
1470
1471         crypt_stat = &ecryptfs_inode_to_private(inode)->crypt_stat;
1472         mount_crypt_stat =
1473                 &ecryptfs_superblock_to_private(inode->i_sb)->mount_crypt_stat;
1474         if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED) {
1475                 file_size = i_size_read(ecryptfs_inode_to_lower(inode));
1476                 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1477                         file_size += crypt_stat->metadata_size;
1478         } else
1479                 file_size = get_unaligned_be64(page_virt);
1480         i_size_write(inode, (loff_t)file_size);
1481         crypt_stat->flags |= ECRYPTFS_I_SIZE_INITIALIZED;
1482 }
1483
1484 /**
1485  * ecryptfs_read_headers_virt
1486  * @page_virt: The virtual address into which to read the headers
1487  * @crypt_stat: The cryptographic context
1488  * @ecryptfs_dentry: The eCryptfs dentry
1489  * @validate_header_size: Whether to validate the header size while reading
1490  *
1491  * Read/parse the header data. The header format is detailed in the
1492  * comment block for the ecryptfs_write_headers_virt() function.
1493  *
1494  * Returns zero on success
1495  */
1496 static int ecryptfs_read_headers_virt(char *page_virt,
1497                                       struct ecryptfs_crypt_stat *crypt_stat,
1498                                       struct dentry *ecryptfs_dentry,
1499                                       int validate_header_size)
1500 {
1501         int rc = 0;
1502         int offset;
1503         int bytes_read;
1504
1505         ecryptfs_set_default_sizes(crypt_stat);
1506         crypt_stat->mount_crypt_stat = &ecryptfs_superblock_to_private(
1507                 ecryptfs_dentry->d_sb)->mount_crypt_stat;
1508         offset = ECRYPTFS_FILE_SIZE_BYTES;
1509         rc = ecryptfs_validate_marker(page_virt + offset);
1510         if (rc)
1511                 goto out;
1512         if (!(crypt_stat->flags & ECRYPTFS_I_SIZE_INITIALIZED))
1513                 ecryptfs_i_size_init(page_virt, ecryptfs_dentry->d_inode);
1514         offset += MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
1515         rc = ecryptfs_process_flags(crypt_stat, (page_virt + offset),
1516                                     &bytes_read);
1517         if (rc) {
1518                 ecryptfs_printk(KERN_WARNING, "Error processing flags\n");
1519                 goto out;
1520         }
1521         if (crypt_stat->file_version > ECRYPTFS_SUPPORTED_FILE_VERSION) {
1522                 ecryptfs_printk(KERN_WARNING, "File version is [%d]; only "
1523                                 "file version [%d] is supported by this "
1524                                 "version of eCryptfs\n",
1525                                 crypt_stat->file_version,
1526                                 ECRYPTFS_SUPPORTED_FILE_VERSION);
1527                 rc = -EINVAL;
1528                 goto out;
1529         }
1530         offset += bytes_read;
1531         if (crypt_stat->file_version >= 1) {
1532                 rc = parse_header_metadata(crypt_stat, (page_virt + offset),
1533                                            &bytes_read, validate_header_size);
1534                 if (rc) {
1535                         ecryptfs_printk(KERN_WARNING, "Error reading header "
1536                                         "metadata; rc = [%d]\n", rc);
1537                 }
1538                 offset += bytes_read;
1539         } else
1540                 set_default_header_data(crypt_stat);
1541         rc = ecryptfs_parse_packet_set(crypt_stat, (page_virt + offset),
1542                                        ecryptfs_dentry);
1543 out:
1544         return rc;
1545 }
1546
1547 /**
1548  * ecryptfs_read_xattr_region
1549  * @page_virt: The vitual address into which to read the xattr data
1550  * @ecryptfs_inode: The eCryptfs inode
1551  *
1552  * Attempts to read the crypto metadata from the extended attribute
1553  * region of the lower file.
1554  *
1555  * Returns zero on success; non-zero on error
1556  */
1557 int ecryptfs_read_xattr_region(char *page_virt, struct inode *ecryptfs_inode)
1558 {
1559         struct dentry *lower_dentry =
1560                 ecryptfs_inode_to_private(ecryptfs_inode)->lower_file->f_dentry;
1561         ssize_t size;
1562         int rc = 0;
1563
1564         size = ecryptfs_getxattr_lower(lower_dentry, ECRYPTFS_XATTR_NAME,
1565                                        page_virt, ECRYPTFS_DEFAULT_EXTENT_SIZE);
1566         if (size < 0) {
1567                 if (unlikely(ecryptfs_verbosity > 0))
1568                         printk(KERN_INFO "Error attempting to read the [%s] "
1569                                "xattr from the lower file; return value = "
1570                                "[%zd]\n", ECRYPTFS_XATTR_NAME, size);
1571                 rc = -EINVAL;
1572                 goto out;
1573         }
1574 out:
1575         return rc;
1576 }
1577
1578 int ecryptfs_read_and_validate_xattr_region(struct dentry *dentry,
1579                                             struct inode *inode)
1580 {
1581         u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES];
1582         u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES;
1583         int rc;
1584
1585         rc = ecryptfs_getxattr_lower(ecryptfs_dentry_to_lower(dentry),
1586                                      ECRYPTFS_XATTR_NAME, file_size,
1587                                      ECRYPTFS_SIZE_AND_MARKER_BYTES);
1588         if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES)
1589                 return rc >= 0 ? -EINVAL : rc;
1590         rc = ecryptfs_validate_marker(marker);
1591         if (!rc)
1592                 ecryptfs_i_size_init(file_size, inode);
1593         return rc;
1594 }
1595
1596 /**
1597  * ecryptfs_read_metadata
1598  *
1599  * Common entry point for reading file metadata. From here, we could
1600  * retrieve the header information from the header region of the file,
1601  * the xattr region of the file, or some other repostory that is
1602  * stored separately from the file itself. The current implementation
1603  * supports retrieving the metadata information from the file contents
1604  * and from the xattr region.
1605  *
1606  * Returns zero if valid headers found and parsed; non-zero otherwise
1607  */
1608 int ecryptfs_read_metadata(struct dentry *ecryptfs_dentry)
1609 {
1610         int rc;
1611         char *page_virt;
1612         struct inode *ecryptfs_inode = ecryptfs_dentry->d_inode;
1613         struct ecryptfs_crypt_stat *crypt_stat =
1614             &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1615         struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
1616                 &ecryptfs_superblock_to_private(
1617                         ecryptfs_dentry->d_sb)->mount_crypt_stat;
1618
1619         ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
1620                                                       mount_crypt_stat);
1621         /* Read the first page from the underlying file */
1622         page_virt = kmem_cache_alloc(ecryptfs_header_cache, GFP_USER);
1623         if (!page_virt) {
1624                 rc = -ENOMEM;
1625                 printk(KERN_ERR "%s: Unable to allocate page_virt\n",
1626                        __func__);
1627                 goto out;
1628         }
1629         rc = ecryptfs_read_lower(page_virt, 0, crypt_stat->extent_size,
1630                                  ecryptfs_inode);
1631         if (rc >= 0)
1632                 rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1633                                                 ecryptfs_dentry,
1634                                                 ECRYPTFS_VALIDATE_HEADER_SIZE);
1635         if (rc) {
1636                 /* metadata is not in the file header, so try xattrs */
1637                 memset(page_virt, 0, PAGE_CACHE_SIZE);
1638                 rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_inode);
1639                 if (rc) {
1640                         printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1641                                "file header region or xattr region, inode %lu\n",
1642                                 ecryptfs_inode->i_ino);
1643                         rc = -EINVAL;
1644                         goto out;
1645                 }
1646                 rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1647                                                 ecryptfs_dentry,
1648                                                 ECRYPTFS_DONT_VALIDATE_HEADER_SIZE);
1649                 if (rc) {
1650                         printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1651                                "file xattr region either, inode %lu\n",
1652                                 ecryptfs_inode->i_ino);
1653                         rc = -EINVAL;
1654                 }
1655                 if (crypt_stat->mount_crypt_stat->flags
1656                     & ECRYPTFS_XATTR_METADATA_ENABLED) {
1657                         crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
1658                 } else {
1659                         printk(KERN_WARNING "Attempt to access file with "
1660                                "crypto metadata only in the extended attribute "
1661                                "region, but eCryptfs was mounted without "
1662                                "xattr support enabled. eCryptfs will not treat "
1663                                "this like an encrypted file, inode %lu\n",
1664                                 ecryptfs_inode->i_ino);
1665                         rc = -EINVAL;
1666                 }
1667         }
1668 out:
1669         if (page_virt) {
1670                 memset(page_virt, 0, PAGE_CACHE_SIZE);
1671                 kmem_cache_free(ecryptfs_header_cache, page_virt);
1672         }
1673         return rc;
1674 }
1675
1676 /**
1677  * ecryptfs_encrypt_filename - encrypt filename
1678  *
1679  * CBC-encrypts the filename. We do not want to encrypt the same
1680  * filename with the same key and IV, which may happen with hard
1681  * links, so we prepend random bits to each filename.
1682  *
1683  * Returns zero on success; non-zero otherwise
1684  */
1685 static int
1686 ecryptfs_encrypt_filename(struct ecryptfs_filename *filename,
1687                           struct ecryptfs_crypt_stat *crypt_stat,
1688                           struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
1689 {
1690         int rc = 0;
1691
1692         filename->encrypted_filename = NULL;
1693         filename->encrypted_filename_size = 0;
1694         if ((crypt_stat && (crypt_stat->flags & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
1695             || (mount_crypt_stat && (mount_crypt_stat->flags
1696                                      & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))) {
1697                 size_t packet_size;
1698                 size_t remaining_bytes;
1699
1700                 rc = ecryptfs_write_tag_70_packet(
1701                         NULL, NULL,
1702                         &filename->encrypted_filename_size,
1703                         mount_crypt_stat, NULL,
1704                         filename->filename_size);
1705                 if (rc) {
1706                         printk(KERN_ERR "%s: Error attempting to get packet "
1707                                "size for tag 72; rc = [%d]\n", __func__,
1708                                rc);
1709                         filename->encrypted_filename_size = 0;
1710                         goto out;
1711                 }
1712                 filename->encrypted_filename =
1713                         kmalloc(filename->encrypted_filename_size, GFP_KERNEL);
1714                 if (!filename->encrypted_filename) {
1715                         printk(KERN_ERR "%s: Out of memory whilst attempting "
1716                                "to kmalloc [%zd] bytes\n", __func__,
1717                                filename->encrypted_filename_size);
1718                         rc = -ENOMEM;
1719                         goto out;
1720                 }
1721                 remaining_bytes = filename->encrypted_filename_size;
1722                 rc = ecryptfs_write_tag_70_packet(filename->encrypted_filename,
1723                                                   &remaining_bytes,
1724                                                   &packet_size,
1725                                                   mount_crypt_stat,
1726                                                   filename->filename,
1727                                                   filename->filename_size);
1728                 if (rc) {
1729                         printk(KERN_ERR "%s: Error attempting to generate "
1730                                "tag 70 packet; rc = [%d]\n", __func__,
1731                                rc);
1732                         kfree(filename->encrypted_filename);
1733                         filename->encrypted_filename = NULL;
1734                         filename->encrypted_filename_size = 0;
1735                         goto out;
1736                 }
1737                 filename->encrypted_filename_size = packet_size;
1738         } else {
1739                 printk(KERN_ERR "%s: No support for requested filename "
1740                        "encryption method in this release\n", __func__);
1741                 rc = -EOPNOTSUPP;
1742                 goto out;
1743         }
1744 out:
1745         return rc;
1746 }
1747
1748 static int ecryptfs_copy_filename(char **copied_name, size_t *copied_name_size,
1749                                   const char *name, size_t name_size)
1750 {
1751         int rc = 0;
1752
1753         (*copied_name) = kmalloc((name_size + 1), GFP_KERNEL);
1754         if (!(*copied_name)) {
1755                 rc = -ENOMEM;
1756                 goto out;
1757         }
1758         memcpy((void *)(*copied_name), (void *)name, name_size);
1759         (*copied_name)[(name_size)] = '\0';     /* Only for convenience
1760                                                  * in printing out the
1761                                                  * string in debug
1762                                                  * messages */
1763         (*copied_name_size) = name_size;
1764 out:
1765         return rc;
1766 }
1767
1768 /**
1769  * ecryptfs_process_key_cipher - Perform key cipher initialization.
1770  * @key_tfm: Crypto context for key material, set by this function
1771  * @cipher_name: Name of the cipher
1772  * @key_size: Size of the key in bytes
1773  *
1774  * Returns zero on success. Any crypto_tfm structs allocated here
1775  * should be released by other functions, such as on a superblock put
1776  * event, regardless of whether this function succeeds for fails.
1777  */
1778 static int
1779 ecryptfs_process_key_cipher(struct crypto_blkcipher **key_tfm,
1780                             char *cipher_name, size_t *key_size)
1781 {
1782         char dummy_key[ECRYPTFS_MAX_KEY_BYTES];
1783         char *full_alg_name = NULL;
1784         int rc;
1785
1786         *key_tfm = NULL;
1787         if (*key_size > ECRYPTFS_MAX_KEY_BYTES) {
1788                 rc = -EINVAL;
1789                 printk(KERN_ERR "Requested key size is [%zd] bytes; maximum "
1790                       "allowable is [%d]\n", *key_size, ECRYPTFS_MAX_KEY_BYTES);
1791                 goto out;
1792         }
1793         rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, cipher_name,
1794                                                     "ecb");
1795         if (rc)
1796                 goto out;
1797         *key_tfm = crypto_alloc_blkcipher(full_alg_name, 0, CRYPTO_ALG_ASYNC);
1798         if (IS_ERR(*key_tfm)) {
1799                 rc = PTR_ERR(*key_tfm);
1800                 printk(KERN_ERR "Unable to allocate crypto cipher with name "
1801                        "[%s]; rc = [%d]\n", full_alg_name, rc);
1802                 goto out;
1803         }
1804         crypto_blkcipher_set_flags(*key_tfm, CRYPTO_TFM_REQ_WEAK_KEY);
1805         if (*key_size == 0) {
1806                 struct blkcipher_alg *alg = crypto_blkcipher_alg(*key_tfm);
1807
1808                 *key_size = alg->max_keysize;
1809         }
1810         get_random_bytes(dummy_key, *key_size);
1811         rc = crypto_blkcipher_setkey(*key_tfm, dummy_key, *key_size);
1812         if (rc) {
1813                 printk(KERN_ERR "Error attempting to set key of size [%zd] for "
1814                        "cipher [%s]; rc = [%d]\n", *key_size, full_alg_name,
1815                        rc);
1816                 rc = -EINVAL;
1817                 goto out;
1818         }
1819 out:
1820         kfree(full_alg_name);
1821         return rc;
1822 }
1823
1824 struct kmem_cache *ecryptfs_key_tfm_cache;
1825 static struct list_head key_tfm_list;
1826 struct mutex key_tfm_list_mutex;
1827
1828 int __init ecryptfs_init_crypto(void)
1829 {
1830         mutex_init(&key_tfm_list_mutex);
1831         INIT_LIST_HEAD(&key_tfm_list);
1832         return 0;
1833 }
1834
1835 /**
1836  * ecryptfs_destroy_crypto - free all cached key_tfms on key_tfm_list
1837  *
1838  * Called only at module unload time
1839  */
1840 int ecryptfs_destroy_crypto(void)
1841 {
1842         struct ecryptfs_key_tfm *key_tfm, *key_tfm_tmp;
1843
1844         mutex_lock(&key_tfm_list_mutex);
1845         list_for_each_entry_safe(key_tfm, key_tfm_tmp, &key_tfm_list,
1846                                  key_tfm_list) {
1847                 list_del(&key_tfm->key_tfm_list);
1848                 if (key_tfm->key_tfm)
1849                         crypto_free_blkcipher(key_tfm->key_tfm);
1850                 kmem_cache_free(ecryptfs_key_tfm_cache, key_tfm);
1851         }
1852         mutex_unlock(&key_tfm_list_mutex);
1853         return 0;
1854 }
1855
1856 int
1857 ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm **key_tfm, char *cipher_name,
1858                          size_t key_size)
1859 {
1860         struct ecryptfs_key_tfm *tmp_tfm;
1861         int rc = 0;
1862
1863         BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1864
1865         tmp_tfm = kmem_cache_alloc(ecryptfs_key_tfm_cache, GFP_KERNEL);
1866         if (key_tfm != NULL)
1867                 (*key_tfm) = tmp_tfm;
1868         if (!tmp_tfm) {
1869                 rc = -ENOMEM;
1870                 printk(KERN_ERR "Error attempting to allocate from "
1871                        "ecryptfs_key_tfm_cache\n");
1872                 goto out;
1873         }
1874         mutex_init(&tmp_tfm->key_tfm_mutex);
1875         strncpy(tmp_tfm->cipher_name, cipher_name,
1876                 ECRYPTFS_MAX_CIPHER_NAME_SIZE);
1877         tmp_tfm->cipher_name[ECRYPTFS_MAX_CIPHER_NAME_SIZE] = '\0';
1878         tmp_tfm->key_size = key_size;
1879         rc = ecryptfs_process_key_cipher(&tmp_tfm->key_tfm,
1880                                          tmp_tfm->cipher_name,
1881                                          &tmp_tfm->key_size);
1882         if (rc) {
1883                 printk(KERN_ERR "Error attempting to initialize key TFM "
1884                        "cipher with name = [%s]; rc = [%d]\n",
1885                        tmp_tfm->cipher_name, rc);
1886                 kmem_cache_free(ecryptfs_key_tfm_cache, tmp_tfm);
1887                 if (key_tfm != NULL)
1888                         (*key_tfm) = NULL;
1889                 goto out;
1890         }
1891         list_add(&tmp_tfm->key_tfm_list, &key_tfm_list);
1892 out:
1893         return rc;
1894 }
1895
1896 /**
1897  * ecryptfs_tfm_exists - Search for existing tfm for cipher_name.
1898  * @cipher_name: the name of the cipher to search for
1899  * @key_tfm: set to corresponding tfm if found
1900  *
1901  * Searches for cached key_tfm matching @cipher_name
1902  * Must be called with &key_tfm_list_mutex held
1903  * Returns 1 if found, with @key_tfm set
1904  * Returns 0 if not found, with @key_tfm set to NULL
1905  */
1906 int ecryptfs_tfm_exists(char *cipher_name, struct ecryptfs_key_tfm **key_tfm)
1907 {
1908         struct ecryptfs_key_tfm *tmp_key_tfm;
1909
1910         BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1911
1912         list_for_each_entry(tmp_key_tfm, &key_tfm_list, key_tfm_list) {
1913                 if (strcmp(tmp_key_tfm->cipher_name, cipher_name) == 0) {
1914                         if (key_tfm)
1915                                 (*key_tfm) = tmp_key_tfm;
1916                         return 1;
1917                 }
1918         }
1919         if (key_tfm)
1920                 (*key_tfm) = NULL;
1921         return 0;
1922 }
1923
1924 /**
1925  * ecryptfs_get_tfm_and_mutex_for_cipher_name
1926  *
1927  * @tfm: set to cached tfm found, or new tfm created
1928  * @tfm_mutex: set to mutex for cached tfm found, or new tfm created
1929  * @cipher_name: the name of the cipher to search for and/or add
1930  *
1931  * Sets pointers to @tfm & @tfm_mutex matching @cipher_name.
1932  * Searches for cached item first, and creates new if not found.
1933  * Returns 0 on success, non-zero if adding new cipher failed
1934  */
1935 int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_blkcipher **tfm,
1936                                                struct mutex **tfm_mutex,
1937                                                char *cipher_name)
1938 {
1939         struct ecryptfs_key_tfm *key_tfm;
1940         int rc = 0;
1941
1942         (*tfm) = NULL;
1943         (*tfm_mutex) = NULL;
1944
1945         mutex_lock(&key_tfm_list_mutex);
1946         if (!ecryptfs_tfm_exists(cipher_name, &key_tfm)) {
1947                 rc = ecryptfs_add_new_key_tfm(&key_tfm, cipher_name, 0);
1948                 if (rc) {
1949                         printk(KERN_ERR "Error adding new key_tfm to list; "
1950                                         "rc = [%d]\n", rc);
1951                         goto out;
1952                 }
1953         }
1954         (*tfm) = key_tfm->key_tfm;
1955         (*tfm_mutex) = &key_tfm->key_tfm_mutex;
1956 out:
1957         mutex_unlock(&key_tfm_list_mutex);
1958         return rc;
1959 }
1960
1961 /* 64 characters forming a 6-bit target field */
1962 static unsigned char *portable_filename_chars = ("-.0123456789ABCD"
1963                                                  "EFGHIJKLMNOPQRST"
1964                                                  "UVWXYZabcdefghij"
1965                                                  "klmnopqrstuvwxyz");
1966
1967 /* We could either offset on every reverse map or just pad some 0x00's
1968  * at the front here */
1969 static const unsigned char filename_rev_map[256] = {
1970         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 7 */
1971         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 15 */
1972         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 23 */
1973         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 31 */
1974         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 39 */
1975         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, /* 47 */
1976         0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, /* 55 */
1977         0x0A, 0x0B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 63 */
1978         0x00, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, /* 71 */
1979         0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, /* 79 */
1980         0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x21, 0x22, /* 87 */
1981         0x23, 0x24, 0x25, 0x00, 0x00, 0x00, 0x00, 0x00, /* 95 */
1982         0x00, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, /* 103 */
1983         0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, 0x34, /* 111 */
1984         0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, /* 119 */
1985         0x3D, 0x3E, 0x3F /* 123 - 255 initialized to 0x00 */
1986 };
1987
1988 /**
1989  * ecryptfs_encode_for_filename
1990  * @dst: Destination location for encoded filename
1991  * @dst_size: Size of the encoded filename in bytes
1992  * @src: Source location for the filename to encode
1993  * @src_size: Size of the source in bytes
1994  */
1995 static void ecryptfs_encode_for_filename(unsigned char *dst, size_t *dst_size,
1996                                   unsigned char *src, size_t src_size)
1997 {
1998         size_t num_blocks;
1999         size_t block_num = 0;
2000         size_t dst_offset = 0;
2001         unsigned char last_block[3];
2002
2003         if (src_size == 0) {
2004                 (*dst_size) = 0;
2005                 goto out;
2006         }
2007         num_blocks = (src_size / 3);
2008         if ((src_size % 3) == 0) {
2009                 memcpy(last_block, (&src[src_size - 3]), 3);
2010         } else {
2011                 num_blocks++;
2012                 last_block[2] = 0x00;
2013                 switch (src_size % 3) {
2014                 case 1:
2015                         last_block[0] = src[src_size - 1];
2016                         last_block[1] = 0x00;
2017                         break;
2018                 case 2:
2019                         last_block[0] = src[src_size - 2];
2020                         last_block[1] = src[src_size - 1];
2021                 }
2022         }
2023         (*dst_size) = (num_blocks * 4);
2024         if (!dst)
2025                 goto out;
2026         while (block_num < num_blocks) {
2027                 unsigned char *src_block;
2028                 unsigned char dst_block[4];
2029
2030                 if (block_num == (num_blocks - 1))
2031                         src_block = last_block;
2032                 else
2033                         src_block = &src[block_num * 3];
2034                 dst_block[0] = ((src_block[0] >> 2) & 0x3F);
2035                 dst_block[1] = (((src_block[0] << 4) & 0x30)
2036                                 | ((src_block[1] >> 4) & 0x0F));
2037                 dst_block[2] = (((src_block[1] << 2) & 0x3C)
2038                                 | ((src_block[2] >> 6) & 0x03));
2039                 dst_block[3] = (src_block[2] & 0x3F);
2040                 dst[dst_offset++] = portable_filename_chars[dst_block[0]];
2041                 dst[dst_offset++] = portable_filename_chars[dst_block[1]];
2042                 dst[dst_offset++] = portable_filename_chars[dst_block[2]];
2043                 dst[dst_offset++] = portable_filename_chars[dst_block[3]];
2044                 block_num++;
2045         }
2046 out:
2047         return;
2048 }
2049
2050 static size_t ecryptfs_max_decoded_size(size_t encoded_size)
2051 {
2052         /* Not exact; conservatively long. Every block of 4
2053          * encoded characters decodes into a block of 3
2054          * decoded characters. This segment of code provides
2055          * the caller with the maximum amount of allocated
2056          * space that @dst will need to point to in a
2057          * subsequent call. */
2058         return ((encoded_size + 1) * 3) / 4;
2059 }
2060
2061 /**
2062  * ecryptfs_decode_from_filename
2063  * @dst: If NULL, this function only sets @dst_size and returns. If
2064  *       non-NULL, this function decodes the encoded octets in @src
2065  *       into the memory that @dst points to.
2066  * @dst_size: Set to the size of the decoded string.
2067  * @src: The encoded set of octets to decode.
2068  * @src_size: The size of the encoded set of octets to decode.
2069  */
2070 static void
2071 ecryptfs_decode_from_filename(unsigned char *dst, size_t *dst_size,
2072                               const unsigned char *src, size_t src_size)
2073 {
2074         u8 current_bit_offset = 0;
2075         size_t src_byte_offset = 0;
2076         size_t dst_byte_offset = 0;
2077
2078         if (dst == NULL) {
2079                 (*dst_size) = ecryptfs_max_decoded_size(src_size);
2080                 goto out;
2081         }
2082         while (src_byte_offset < src_size) {
2083                 unsigned char src_byte =
2084                                 filename_rev_map[(int)src[src_byte_offset]];
2085
2086                 switch (current_bit_offset) {
2087                 case 0:
2088                         dst[dst_byte_offset] = (src_byte << 2);
2089                         current_bit_offset = 6;
2090                         break;
2091                 case 6:
2092                         dst[dst_byte_offset++] |= (src_byte >> 4);
2093                         dst[dst_byte_offset] = ((src_byte & 0xF)
2094                                                  << 4);
2095                         current_bit_offset = 4;
2096                         break;
2097                 case 4:
2098                         dst[dst_byte_offset++] |= (src_byte >> 2);
2099                         dst[dst_byte_offset] = (src_byte << 6);
2100                         current_bit_offset = 2;
2101                         break;
2102                 case 2:
2103                         dst[dst_byte_offset++] |= (src_byte);
2104                         dst[dst_byte_offset] = 0;
2105                         current_bit_offset = 0;
2106                         break;
2107                 }
2108                 src_byte_offset++;
2109         }
2110         (*dst_size) = dst_byte_offset;
2111 out:
2112         return;
2113 }
2114
2115 /**
2116  * ecryptfs_encrypt_and_encode_filename - converts a plaintext file name to cipher text
2117  * @crypt_stat: The crypt_stat struct associated with the file anem to encode
2118  * @name: The plaintext name
2119  * @length: The length of the plaintext
2120  * @encoded_name: The encypted name
2121  *
2122  * Encrypts and encodes a filename into something that constitutes a
2123  * valid filename for a filesystem, with printable characters.
2124  *
2125  * We assume that we have a properly initialized crypto context,
2126  * pointed to by crypt_stat->tfm.
2127  *
2128  * Returns zero on success; non-zero on otherwise
2129  */
2130 int ecryptfs_encrypt_and_encode_filename(
2131         char **encoded_name,
2132         size_t *encoded_name_size,
2133         struct ecryptfs_crypt_stat *crypt_stat,
2134         struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
2135         const char *name, size_t name_size)
2136 {
2137         size_t encoded_name_no_prefix_size;
2138         int rc = 0;
2139
2140         (*encoded_name) = NULL;
2141         (*encoded_name_size) = 0;
2142         if ((crypt_stat && (crypt_stat->flags & ECRYPTFS_ENCRYPT_FILENAMES))
2143             || (mount_crypt_stat && (mount_crypt_stat->flags
2144                                      & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES))) {
2145                 struct ecryptfs_filename *filename;
2146
2147                 filename = kzalloc(sizeof(*filename), GFP_KERNEL);
2148                 if (!filename) {
2149                         printk(KERN_ERR "%s: Out of memory whilst attempting "
2150                                "to kzalloc [%zd] bytes\n", __func__,
2151                                sizeof(*filename));
2152                         rc = -ENOMEM;
2153                         goto out;
2154                 }
2155                 filename->filename = (char *)name;
2156                 filename->filename_size = name_size;
2157                 rc = ecryptfs_encrypt_filename(filename, crypt_stat,
2158                                                mount_crypt_stat);
2159                 if (rc) {
2160                         printk(KERN_ERR "%s: Error attempting to encrypt "
2161                                "filename; rc = [%d]\n", __func__, rc);
2162                         kfree(filename);
2163                         goto out;
2164                 }
2165                 ecryptfs_encode_for_filename(
2166                         NULL, &encoded_name_no_prefix_size,
2167                         filename->encrypted_filename,
2168                         filename->encrypted_filename_size);
2169                 if ((crypt_stat && (crypt_stat->flags
2170                                     & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
2171                     || (mount_crypt_stat
2172                         && (mount_crypt_stat->flags
2173                             & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)))
2174                         (*encoded_name_size) =
2175                                 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
2176                                  + encoded_name_no_prefix_size);
2177                 else
2178                         (*encoded_name_size) =
2179                                 (ECRYPTFS_FEK_ENCRYPTED_FILENAME_PREFIX_SIZE
2180                                  + encoded_name_no_prefix_size);
2181                 (*encoded_name) = kmalloc((*encoded_name_size) + 1, GFP_KERNEL);
2182                 if (!(*encoded_name)) {
2183                         printk(KERN_ERR "%s: Out of memory whilst attempting "
2184                                "to kzalloc [%zd] bytes\n", __func__,
2185                                (*encoded_name_size));
2186                         rc = -ENOMEM;
2187                         kfree(filename->encrypted_filename);
2188                         kfree(filename);
2189                         goto out;
2190                 }
2191                 if ((crypt_stat && (crypt_stat->flags
2192                                     & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
2193                     || (mount_crypt_stat
2194                         && (mount_crypt_stat->flags
2195                             & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))) {
2196                         memcpy((*encoded_name),
2197                                ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
2198                                ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE);
2199                         ecryptfs_encode_for_filename(
2200                             ((*encoded_name)
2201                              + ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE),
2202                             &encoded_name_no_prefix_size,
2203                             filename->encrypted_filename,
2204                             filename->encrypted_filename_size);
2205                         (*encoded_name_size) =
2206                                 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
2207                                  + encoded_name_no_prefix_size);
2208                         (*encoded_name)[(*encoded_name_size)] = '\0';
2209                 } else {
2210                         rc = -EOPNOTSUPP;
2211                 }
2212                 if (rc) {
2213                         printk(KERN_ERR "%s: Error attempting to encode "
2214                                "encrypted filename; rc = [%d]\n", __func__,
2215                                rc);
2216                         kfree((*encoded_name));
2217                         (*encoded_name) = NULL;
2218                         (*encoded_name_size) = 0;
2219                 }
2220                 kfree(filename->encrypted_filename);
2221                 kfree(filename);
2222         } else {
2223                 rc = ecryptfs_copy_filename(encoded_name,
2224                                             encoded_name_size,
2225                                             name, name_size);
2226         }
2227 out:
2228         return rc;
2229 }
2230
2231 /**
2232  * ecryptfs_decode_and_decrypt_filename - converts the encoded cipher text name to decoded plaintext
2233  * @plaintext_name: The plaintext name
2234  * @plaintext_name_size: The plaintext name size
2235  * @ecryptfs_dir_dentry: eCryptfs directory dentry
2236  * @name: The filename in cipher text
2237  * @name_size: The cipher text name size
2238  *
2239  * Decrypts and decodes the filename.
2240  *
2241  * Returns zero on error; non-zero otherwise
2242  */
2243 int ecryptfs_decode_and_decrypt_filename(char **plaintext_name,
2244                                          size_t *plaintext_name_size,
2245                                          struct dentry *ecryptfs_dir_dentry,
2246                                          const char *name, size_t name_size)
2247 {
2248         struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
2249                 &ecryptfs_superblock_to_private(
2250                         ecryptfs_dir_dentry->d_sb)->mount_crypt_stat;
2251         char *decoded_name;
2252         size_t decoded_name_size;
2253         size_t packet_size;
2254         int rc = 0;
2255
2256         if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)
2257             && !(mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
2258             && (name_size > ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE)
2259             && (strncmp(name, ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
2260                         ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE) == 0)) {
2261                 const char *orig_name = name;
2262                 size_t orig_name_size = name_size;
2263
2264                 name += ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2265                 name_size -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2266                 ecryptfs_decode_from_filename(NULL, &decoded_name_size,
2267                                               name, name_size);
2268                 decoded_name = kmalloc(decoded_name_size, GFP_KERNEL);
2269                 if (!decoded_name) {
2270                         printk(KERN_ERR "%s: Out of memory whilst attempting "
2271                                "to kmalloc [%zd] bytes\n", __func__,
2272                                decoded_name_size);
2273                         rc = -ENOMEM;
2274                         goto out;
2275                 }
2276                 ecryptfs_decode_from_filename(decoded_name, &decoded_name_size,
2277                                               name, name_size);
2278                 rc = ecryptfs_parse_tag_70_packet(plaintext_name,
2279                                                   plaintext_name_size,
2280                                                   &packet_size,
2281                                                   mount_crypt_stat,
2282                                                   decoded_name,
2283                                                   decoded_name_size);
2284                 if (rc) {
2285                         printk(KERN_INFO "%s: Could not parse tag 70 packet "
2286                                "from filename; copying through filename "
2287                                "as-is\n", __func__);
2288                         rc = ecryptfs_copy_filename(plaintext_name,
2289                                                     plaintext_name_size,
2290                                                     orig_name, orig_name_size);
2291                         goto out_free;
2292                 }
2293         } else {
2294                 rc = ecryptfs_copy_filename(plaintext_name,
2295                                             plaintext_name_size,
2296                                             name, name_size);
2297                 goto out;
2298         }
2299 out_free:
2300         kfree(decoded_name);
2301 out:
2302         return rc;
2303 }
2304
2305 #define ENC_NAME_MAX_BLOCKLEN_8_OR_16   143
2306
2307 int ecryptfs_set_f_namelen(long *namelen, long lower_namelen,
2308                            struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
2309 {
2310         struct blkcipher_desc desc;
2311         struct mutex *tfm_mutex;
2312         size_t cipher_blocksize;
2313         int rc;
2314
2315         if (!(mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)) {
2316                 (*namelen) = lower_namelen;
2317                 return 0;
2318         }
2319
2320         rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&desc.tfm, &tfm_mutex,
2321                         mount_crypt_stat->global_default_fn_cipher_name);
2322         if (unlikely(rc)) {
2323                 (*namelen) = 0;
2324                 return rc;
2325         }
2326
2327         mutex_lock(tfm_mutex);
2328         cipher_blocksize = crypto_blkcipher_blocksize(desc.tfm);
2329         mutex_unlock(tfm_mutex);
2330
2331         /* Return an exact amount for the common cases */
2332         if (lower_namelen == NAME_MAX
2333             && (cipher_blocksize == 8 || cipher_blocksize == 16)) {
2334                 (*namelen) = ENC_NAME_MAX_BLOCKLEN_8_OR_16;
2335                 return 0;
2336         }
2337
2338         /* Return a safe estimate for the uncommon cases */
2339         (*namelen) = lower_namelen;
2340         (*namelen) -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2341         /* Since this is the max decoded size, subtract 1 "decoded block" len */
2342         (*namelen) = ecryptfs_max_decoded_size(*namelen) - 3;
2343         (*namelen) -= ECRYPTFS_TAG_70_MAX_METADATA_SIZE;
2344         (*namelen) -= ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES;
2345         /* Worst case is that the filename is padded nearly a full block size */
2346         (*namelen) -= cipher_blocksize - 1;
2347
2348         if ((*namelen) < 0)
2349                 (*namelen) = 0;
2350
2351         return 0;
2352 }