cifs: fix oops while traversing open file list (try #4)
[pandora-kernel.git] / fs / cifs / file.c
1 /*
2  *   fs/cifs/file.c
3  *
4  *   vfs operations that deal with files
5  *
6  *   Copyright (C) International Business Machines  Corp., 2002,2010
7  *   Author(s): Steve French (sfrench@us.ibm.com)
8  *              Jeremy Allison (jra@samba.org)
9  *
10  *   This library is free software; you can redistribute it and/or modify
11  *   it under the terms of the GNU Lesser General Public License as published
12  *   by the Free Software Foundation; either version 2.1 of the License, or
13  *   (at your option) any later version.
14  *
15  *   This library is distributed in the hope that it will be useful,
16  *   but WITHOUT ANY WARRANTY; without even the implied warranty of
17  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See
18  *   the GNU Lesser General Public License for more details.
19  *
20  *   You should have received a copy of the GNU Lesser General Public License
21  *   along with this library; if not, write to the Free Software
22  *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23  */
24 #include <linux/fs.h>
25 #include <linux/backing-dev.h>
26 #include <linux/stat.h>
27 #include <linux/fcntl.h>
28 #include <linux/pagemap.h>
29 #include <linux/pagevec.h>
30 #include <linux/writeback.h>
31 #include <linux/task_io_accounting_ops.h>
32 #include <linux/delay.h>
33 #include <linux/mount.h>
34 #include <linux/slab.h>
35 #include <linux/swap.h>
36 #include <asm/div64.h>
37 #include "cifsfs.h"
38 #include "cifspdu.h"
39 #include "cifsglob.h"
40 #include "cifsproto.h"
41 #include "cifs_unicode.h"
42 #include "cifs_debug.h"
43 #include "cifs_fs_sb.h"
44 #include "fscache.h"
45
46 static inline int cifs_convert_flags(unsigned int flags)
47 {
48         if ((flags & O_ACCMODE) == O_RDONLY)
49                 return GENERIC_READ;
50         else if ((flags & O_ACCMODE) == O_WRONLY)
51                 return GENERIC_WRITE;
52         else if ((flags & O_ACCMODE) == O_RDWR) {
53                 /* GENERIC_ALL is too much permission to request
54                    can cause unnecessary access denied on create */
55                 /* return GENERIC_ALL; */
56                 return (GENERIC_READ | GENERIC_WRITE);
57         }
58
59         return (READ_CONTROL | FILE_WRITE_ATTRIBUTES | FILE_READ_ATTRIBUTES |
60                 FILE_WRITE_EA | FILE_APPEND_DATA | FILE_WRITE_DATA |
61                 FILE_READ_DATA);
62 }
63
64 static u32 cifs_posix_convert_flags(unsigned int flags)
65 {
66         u32 posix_flags = 0;
67
68         if ((flags & O_ACCMODE) == O_RDONLY)
69                 posix_flags = SMB_O_RDONLY;
70         else if ((flags & O_ACCMODE) == O_WRONLY)
71                 posix_flags = SMB_O_WRONLY;
72         else if ((flags & O_ACCMODE) == O_RDWR)
73                 posix_flags = SMB_O_RDWR;
74
75         if (flags & O_CREAT)
76                 posix_flags |= SMB_O_CREAT;
77         if (flags & O_EXCL)
78                 posix_flags |= SMB_O_EXCL;
79         if (flags & O_TRUNC)
80                 posix_flags |= SMB_O_TRUNC;
81         /* be safe and imply O_SYNC for O_DSYNC */
82         if (flags & O_DSYNC)
83                 posix_flags |= SMB_O_SYNC;
84         if (flags & O_DIRECTORY)
85                 posix_flags |= SMB_O_DIRECTORY;
86         if (flags & O_NOFOLLOW)
87                 posix_flags |= SMB_O_NOFOLLOW;
88         if (flags & O_DIRECT)
89                 posix_flags |= SMB_O_DIRECT;
90
91         return posix_flags;
92 }
93
94 static inline int cifs_get_disposition(unsigned int flags)
95 {
96         if ((flags & (O_CREAT | O_EXCL)) == (O_CREAT | O_EXCL))
97                 return FILE_CREATE;
98         else if ((flags & (O_CREAT | O_TRUNC)) == (O_CREAT | O_TRUNC))
99                 return FILE_OVERWRITE_IF;
100         else if ((flags & O_CREAT) == O_CREAT)
101                 return FILE_OPEN_IF;
102         else if ((flags & O_TRUNC) == O_TRUNC)
103                 return FILE_OVERWRITE;
104         else
105                 return FILE_OPEN;
106 }
107
108 int cifs_posix_open(char *full_path, struct inode **pinode,
109                         struct super_block *sb, int mode, unsigned int f_flags,
110                         __u32 *poplock, __u16 *pnetfid, int xid)
111 {
112         int rc;
113         FILE_UNIX_BASIC_INFO *presp_data;
114         __u32 posix_flags = 0;
115         struct cifs_sb_info *cifs_sb = CIFS_SB(sb);
116         struct cifs_fattr fattr;
117         struct tcon_link *tlink;
118         struct cifs_tcon *tcon;
119
120         cFYI(1, "posix open %s", full_path);
121
122         presp_data = kzalloc(sizeof(FILE_UNIX_BASIC_INFO), GFP_KERNEL);
123         if (presp_data == NULL)
124                 return -ENOMEM;
125
126         tlink = cifs_sb_tlink(cifs_sb);
127         if (IS_ERR(tlink)) {
128                 rc = PTR_ERR(tlink);
129                 goto posix_open_ret;
130         }
131
132         tcon = tlink_tcon(tlink);
133         mode &= ~current_umask();
134
135         posix_flags = cifs_posix_convert_flags(f_flags);
136         rc = CIFSPOSIXCreate(xid, tcon, posix_flags, mode, pnetfid, presp_data,
137                              poplock, full_path, cifs_sb->local_nls,
138                              cifs_sb->mnt_cifs_flags &
139                                         CIFS_MOUNT_MAP_SPECIAL_CHR);
140         cifs_put_tlink(tlink);
141
142         if (rc)
143                 goto posix_open_ret;
144
145         if (presp_data->Type == cpu_to_le32(-1))
146                 goto posix_open_ret; /* open ok, caller does qpathinfo */
147
148         if (!pinode)
149                 goto posix_open_ret; /* caller does not need info */
150
151         cifs_unix_basic_to_fattr(&fattr, presp_data, cifs_sb);
152
153         /* get new inode and set it up */
154         if (*pinode == NULL) {
155                 cifs_fill_uniqueid(sb, &fattr);
156                 *pinode = cifs_iget(sb, &fattr);
157                 if (!*pinode) {
158                         rc = -ENOMEM;
159                         goto posix_open_ret;
160                 }
161         } else {
162                 cifs_fattr_to_inode(*pinode, &fattr);
163         }
164
165 posix_open_ret:
166         kfree(presp_data);
167         return rc;
168 }
169
170 static int
171 cifs_nt_open(char *full_path, struct inode *inode, struct cifs_sb_info *cifs_sb,
172              struct cifs_tcon *tcon, unsigned int f_flags, __u32 *poplock,
173              __u16 *pnetfid, int xid)
174 {
175         int rc;
176         int desiredAccess;
177         int disposition;
178         int create_options = CREATE_NOT_DIR;
179         FILE_ALL_INFO *buf;
180
181         desiredAccess = cifs_convert_flags(f_flags);
182
183 /*********************************************************************
184  *  open flag mapping table:
185  *
186  *      POSIX Flag            CIFS Disposition
187  *      ----------            ----------------
188  *      O_CREAT               FILE_OPEN_IF
189  *      O_CREAT | O_EXCL      FILE_CREATE
190  *      O_CREAT | O_TRUNC     FILE_OVERWRITE_IF
191  *      O_TRUNC               FILE_OVERWRITE
192  *      none of the above     FILE_OPEN
193  *
194  *      Note that there is not a direct match between disposition
195  *      FILE_SUPERSEDE (ie create whether or not file exists although
196  *      O_CREAT | O_TRUNC is similar but truncates the existing
197  *      file rather than creating a new file as FILE_SUPERSEDE does
198  *      (which uses the attributes / metadata passed in on open call)
199  *?
200  *?  O_SYNC is a reasonable match to CIFS writethrough flag
201  *?  and the read write flags match reasonably.  O_LARGEFILE
202  *?  is irrelevant because largefile support is always used
203  *?  by this client. Flags O_APPEND, O_DIRECT, O_DIRECTORY,
204  *       O_FASYNC, O_NOFOLLOW, O_NONBLOCK need further investigation
205  *********************************************************************/
206
207         disposition = cifs_get_disposition(f_flags);
208
209         /* BB pass O_SYNC flag through on file attributes .. BB */
210
211         buf = kmalloc(sizeof(FILE_ALL_INFO), GFP_KERNEL);
212         if (!buf)
213                 return -ENOMEM;
214
215         if (backup_cred(cifs_sb))
216                 create_options |= CREATE_OPEN_BACKUP_INTENT;
217
218         if (tcon->ses->capabilities & CAP_NT_SMBS)
219                 rc = CIFSSMBOpen(xid, tcon, full_path, disposition,
220                          desiredAccess, create_options, pnetfid, poplock, buf,
221                          cifs_sb->local_nls, cifs_sb->mnt_cifs_flags
222                                  & CIFS_MOUNT_MAP_SPECIAL_CHR);
223         else
224                 rc = SMBLegacyOpen(xid, tcon, full_path, disposition,
225                         desiredAccess, CREATE_NOT_DIR, pnetfid, poplock, buf,
226                         cifs_sb->local_nls, cifs_sb->mnt_cifs_flags
227                                 & CIFS_MOUNT_MAP_SPECIAL_CHR);
228
229         if (rc)
230                 goto out;
231
232         if (tcon->unix_ext)
233                 rc = cifs_get_inode_info_unix(&inode, full_path, inode->i_sb,
234                                               xid);
235         else
236                 rc = cifs_get_inode_info(&inode, full_path, buf, inode->i_sb,
237                                          xid, pnetfid);
238
239 out:
240         kfree(buf);
241         return rc;
242 }
243
244 struct cifsFileInfo *
245 cifs_new_fileinfo(__u16 fileHandle, struct file *file,
246                   struct tcon_link *tlink, __u32 oplock)
247 {
248         struct dentry *dentry = file->f_path.dentry;
249         struct inode *inode = dentry->d_inode;
250         struct cifsInodeInfo *pCifsInode = CIFS_I(inode);
251         struct cifsFileInfo *pCifsFile;
252
253         pCifsFile = kzalloc(sizeof(struct cifsFileInfo), GFP_KERNEL);
254         if (pCifsFile == NULL)
255                 return pCifsFile;
256
257         pCifsFile->count = 1;
258         pCifsFile->netfid = fileHandle;
259         pCifsFile->pid = current->tgid;
260         pCifsFile->uid = current_fsuid();
261         pCifsFile->dentry = dget(dentry);
262         pCifsFile->f_flags = file->f_flags;
263         pCifsFile->invalidHandle = false;
264         pCifsFile->tlink = cifs_get_tlink(tlink);
265         mutex_init(&pCifsFile->fh_mutex);
266         INIT_WORK(&pCifsFile->oplock_break, cifs_oplock_break);
267
268         spin_lock(&cifs_file_list_lock);
269         list_add(&pCifsFile->tlist, &(tlink_tcon(tlink)->openFileList));
270         /* if readable file instance put first in list*/
271         if (file->f_mode & FMODE_READ)
272                 list_add(&pCifsFile->flist, &pCifsInode->openFileList);
273         else
274                 list_add_tail(&pCifsFile->flist, &pCifsInode->openFileList);
275         spin_unlock(&cifs_file_list_lock);
276
277         cifs_set_oplock_level(pCifsInode, oplock);
278         pCifsInode->can_cache_brlcks = pCifsInode->clientCanCacheAll;
279
280         file->private_data = pCifsFile;
281         return pCifsFile;
282 }
283
284 static void cifs_del_lock_waiters(struct cifsLockInfo *lock);
285
286 /*
287  * Release a reference on the file private data. This may involve closing
288  * the filehandle out on the server. Must be called without holding
289  * cifs_file_list_lock.
290  */
291 void cifsFileInfo_put(struct cifsFileInfo *cifs_file)
292 {
293         struct inode *inode = cifs_file->dentry->d_inode;
294         struct cifs_tcon *tcon = tlink_tcon(cifs_file->tlink);
295         struct cifsInodeInfo *cifsi = CIFS_I(inode);
296         struct cifs_sb_info *cifs_sb = CIFS_SB(inode->i_sb);
297         struct cifsLockInfo *li, *tmp;
298
299         spin_lock(&cifs_file_list_lock);
300         if (--cifs_file->count > 0) {
301                 spin_unlock(&cifs_file_list_lock);
302                 return;
303         }
304
305         /* remove it from the lists */
306         list_del(&cifs_file->flist);
307         list_del(&cifs_file->tlist);
308
309         if (list_empty(&cifsi->openFileList)) {
310                 cFYI(1, "closing last open instance for inode %p",
311                         cifs_file->dentry->d_inode);
312
313                 /* in strict cache mode we need invalidate mapping on the last
314                    close  because it may cause a error when we open this file
315                    again and get at least level II oplock */
316                 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_STRICT_IO)
317                         CIFS_I(inode)->invalid_mapping = true;
318
319                 cifs_set_oplock_level(cifsi, 0);
320         }
321         spin_unlock(&cifs_file_list_lock);
322
323         cancel_work_sync(&cifs_file->oplock_break);
324
325         if (!tcon->need_reconnect && !cifs_file->invalidHandle) {
326                 int xid, rc;
327
328                 xid = GetXid();
329                 rc = CIFSSMBClose(xid, tcon, cifs_file->netfid);
330                 FreeXid(xid);
331         }
332
333         /* Delete any outstanding lock records. We'll lose them when the file
334          * is closed anyway.
335          */
336         mutex_lock(&cifsi->lock_mutex);
337         list_for_each_entry_safe(li, tmp, &cifsi->llist, llist) {
338                 if (li->netfid != cifs_file->netfid)
339                         continue;
340                 list_del(&li->llist);
341                 cifs_del_lock_waiters(li);
342                 kfree(li);
343         }
344         mutex_unlock(&cifsi->lock_mutex);
345
346         cifs_put_tlink(cifs_file->tlink);
347         dput(cifs_file->dentry);
348         kfree(cifs_file);
349 }
350
351 int cifs_open(struct inode *inode, struct file *file)
352 {
353         int rc = -EACCES;
354         int xid;
355         __u32 oplock;
356         struct cifs_sb_info *cifs_sb;
357         struct cifs_tcon *tcon;
358         struct tcon_link *tlink;
359         struct cifsFileInfo *pCifsFile = NULL;
360         char *full_path = NULL;
361         bool posix_open_ok = false;
362         __u16 netfid;
363
364         xid = GetXid();
365
366         cifs_sb = CIFS_SB(inode->i_sb);
367         tlink = cifs_sb_tlink(cifs_sb);
368         if (IS_ERR(tlink)) {
369                 FreeXid(xid);
370                 return PTR_ERR(tlink);
371         }
372         tcon = tlink_tcon(tlink);
373
374         full_path = build_path_from_dentry(file->f_path.dentry);
375         if (full_path == NULL) {
376                 rc = -ENOMEM;
377                 goto out;
378         }
379
380         cFYI(1, "inode = 0x%p file flags are 0x%x for %s",
381                  inode, file->f_flags, full_path);
382
383         if (tcon->ses->server->oplocks)
384                 oplock = REQ_OPLOCK;
385         else
386                 oplock = 0;
387
388         if (!tcon->broken_posix_open && tcon->unix_ext &&
389             (tcon->ses->capabilities & CAP_UNIX) &&
390             (CIFS_UNIX_POSIX_PATH_OPS_CAP &
391                         le64_to_cpu(tcon->fsUnixInfo.Capability))) {
392                 /* can not refresh inode info since size could be stale */
393                 rc = cifs_posix_open(full_path, &inode, inode->i_sb,
394                                 cifs_sb->mnt_file_mode /* ignored */,
395                                 file->f_flags, &oplock, &netfid, xid);
396                 if (rc == 0) {
397                         cFYI(1, "posix open succeeded");
398                         posix_open_ok = true;
399                 } else if ((rc == -EINVAL) || (rc == -EOPNOTSUPP)) {
400                         if (tcon->ses->serverNOS)
401                                 cERROR(1, "server %s of type %s returned"
402                                            " unexpected error on SMB posix open"
403                                            ", disabling posix open support."
404                                            " Check if server update available.",
405                                            tcon->ses->serverName,
406                                            tcon->ses->serverNOS);
407                         tcon->broken_posix_open = true;
408                 } else if ((rc != -EIO) && (rc != -EREMOTE) &&
409                          (rc != -EOPNOTSUPP)) /* path not found or net err */
410                         goto out;
411                 /* else fallthrough to retry open the old way on network i/o
412                    or DFS errors */
413         }
414
415         if (!posix_open_ok) {
416                 rc = cifs_nt_open(full_path, inode, cifs_sb, tcon,
417                                   file->f_flags, &oplock, &netfid, xid);
418                 if (rc)
419                         goto out;
420         }
421
422         pCifsFile = cifs_new_fileinfo(netfid, file, tlink, oplock);
423         if (pCifsFile == NULL) {
424                 CIFSSMBClose(xid, tcon, netfid);
425                 rc = -ENOMEM;
426                 goto out;
427         }
428
429         cifs_fscache_set_inode_cookie(inode, file);
430
431         if ((oplock & CIFS_CREATE_ACTION) && !posix_open_ok && tcon->unix_ext) {
432                 /* time to set mode which we can not set earlier due to
433                    problems creating new read-only files */
434                 struct cifs_unix_set_info_args args = {
435                         .mode   = inode->i_mode,
436                         .uid    = NO_CHANGE_64,
437                         .gid    = NO_CHANGE_64,
438                         .ctime  = NO_CHANGE_64,
439                         .atime  = NO_CHANGE_64,
440                         .mtime  = NO_CHANGE_64,
441                         .device = 0,
442                 };
443                 CIFSSMBUnixSetFileInfo(xid, tcon, &args, netfid,
444                                         pCifsFile->pid);
445         }
446
447 out:
448         kfree(full_path);
449         FreeXid(xid);
450         cifs_put_tlink(tlink);
451         return rc;
452 }
453
454 /* Try to reacquire byte range locks that were released when session */
455 /* to server was lost */
456 static int cifs_relock_file(struct cifsFileInfo *cifsFile)
457 {
458         int rc = 0;
459
460 /* BB list all locks open on this file and relock */
461
462         return rc;
463 }
464
465 static int cifs_reopen_file(struct cifsFileInfo *pCifsFile, bool can_flush)
466 {
467         int rc = -EACCES;
468         int xid;
469         __u32 oplock;
470         struct cifs_sb_info *cifs_sb;
471         struct cifs_tcon *tcon;
472         struct cifsInodeInfo *pCifsInode;
473         struct inode *inode;
474         char *full_path = NULL;
475         int desiredAccess;
476         int disposition = FILE_OPEN;
477         int create_options = CREATE_NOT_DIR;
478         __u16 netfid;
479
480         xid = GetXid();
481         mutex_lock(&pCifsFile->fh_mutex);
482         if (!pCifsFile->invalidHandle) {
483                 mutex_unlock(&pCifsFile->fh_mutex);
484                 rc = 0;
485                 FreeXid(xid);
486                 return rc;
487         }
488
489         inode = pCifsFile->dentry->d_inode;
490         cifs_sb = CIFS_SB(inode->i_sb);
491         tcon = tlink_tcon(pCifsFile->tlink);
492
493 /* can not grab rename sem here because various ops, including
494    those that already have the rename sem can end up causing writepage
495    to get called and if the server was down that means we end up here,
496    and we can never tell if the caller already has the rename_sem */
497         full_path = build_path_from_dentry(pCifsFile->dentry);
498         if (full_path == NULL) {
499                 rc = -ENOMEM;
500                 mutex_unlock(&pCifsFile->fh_mutex);
501                 FreeXid(xid);
502                 return rc;
503         }
504
505         cFYI(1, "inode = 0x%p file flags 0x%x for %s",
506                  inode, pCifsFile->f_flags, full_path);
507
508         if (tcon->ses->server->oplocks)
509                 oplock = REQ_OPLOCK;
510         else
511                 oplock = 0;
512
513         if (tcon->unix_ext && (tcon->ses->capabilities & CAP_UNIX) &&
514             (CIFS_UNIX_POSIX_PATH_OPS_CAP &
515                         le64_to_cpu(tcon->fsUnixInfo.Capability))) {
516
517                 /*
518                  * O_CREAT, O_EXCL and O_TRUNC already had their effect on the
519                  * original open. Must mask them off for a reopen.
520                  */
521                 unsigned int oflags = pCifsFile->f_flags &
522                                                 ~(O_CREAT | O_EXCL | O_TRUNC);
523
524                 rc = cifs_posix_open(full_path, NULL, inode->i_sb,
525                                 cifs_sb->mnt_file_mode /* ignored */,
526                                 oflags, &oplock, &netfid, xid);
527                 if (rc == 0) {
528                         cFYI(1, "posix reopen succeeded");
529                         goto reopen_success;
530                 }
531                 /* fallthrough to retry open the old way on errors, especially
532                    in the reconnect path it is important to retry hard */
533         }
534
535         desiredAccess = cifs_convert_flags(pCifsFile->f_flags);
536
537         if (backup_cred(cifs_sb))
538                 create_options |= CREATE_OPEN_BACKUP_INTENT;
539
540         /* Can not refresh inode by passing in file_info buf to be returned
541            by SMBOpen and then calling get_inode_info with returned buf
542            since file might have write behind data that needs to be flushed
543            and server version of file size can be stale. If we knew for sure
544            that inode was not dirty locally we could do this */
545
546         rc = CIFSSMBOpen(xid, tcon, full_path, disposition, desiredAccess,
547                          create_options, &netfid, &oplock, NULL,
548                          cifs_sb->local_nls, cifs_sb->mnt_cifs_flags &
549                                 CIFS_MOUNT_MAP_SPECIAL_CHR);
550         if (rc) {
551                 mutex_unlock(&pCifsFile->fh_mutex);
552                 cFYI(1, "cifs_open returned 0x%x", rc);
553                 cFYI(1, "oplock: %d", oplock);
554                 goto reopen_error_exit;
555         }
556
557 reopen_success:
558         pCifsFile->netfid = netfid;
559         pCifsFile->invalidHandle = false;
560         mutex_unlock(&pCifsFile->fh_mutex);
561         pCifsInode = CIFS_I(inode);
562
563         if (can_flush) {
564                 rc = filemap_write_and_wait(inode->i_mapping);
565                 mapping_set_error(inode->i_mapping, rc);
566
567                 if (tcon->unix_ext)
568                         rc = cifs_get_inode_info_unix(&inode,
569                                 full_path, inode->i_sb, xid);
570                 else
571                         rc = cifs_get_inode_info(&inode,
572                                 full_path, NULL, inode->i_sb,
573                                 xid, NULL);
574         } /* else we are writing out data to server already
575              and could deadlock if we tried to flush data, and
576              since we do not know if we have data that would
577              invalidate the current end of file on the server
578              we can not go to the server to get the new inod
579              info */
580
581         cifs_set_oplock_level(pCifsInode, oplock);
582
583         cifs_relock_file(pCifsFile);
584
585 reopen_error_exit:
586         kfree(full_path);
587         FreeXid(xid);
588         return rc;
589 }
590
591 int cifs_close(struct inode *inode, struct file *file)
592 {
593         if (file->private_data != NULL) {
594                 cifsFileInfo_put(file->private_data);
595                 file->private_data = NULL;
596         }
597
598         /* return code from the ->release op is always ignored */
599         return 0;
600 }
601
602 int cifs_closedir(struct inode *inode, struct file *file)
603 {
604         int rc = 0;
605         int xid;
606         struct cifsFileInfo *pCFileStruct = file->private_data;
607         char *ptmp;
608
609         cFYI(1, "Closedir inode = 0x%p", inode);
610
611         xid = GetXid();
612
613         if (pCFileStruct) {
614                 struct cifs_tcon *pTcon = tlink_tcon(pCFileStruct->tlink);
615
616                 cFYI(1, "Freeing private data in close dir");
617                 spin_lock(&cifs_file_list_lock);
618                 if (!pCFileStruct->srch_inf.endOfSearch &&
619                     !pCFileStruct->invalidHandle) {
620                         pCFileStruct->invalidHandle = true;
621                         spin_unlock(&cifs_file_list_lock);
622                         rc = CIFSFindClose(xid, pTcon, pCFileStruct->netfid);
623                         cFYI(1, "Closing uncompleted readdir with rc %d",
624                                  rc);
625                         /* not much we can do if it fails anyway, ignore rc */
626                         rc = 0;
627                 } else
628                         spin_unlock(&cifs_file_list_lock);
629                 ptmp = pCFileStruct->srch_inf.ntwrk_buf_start;
630                 if (ptmp) {
631                         cFYI(1, "closedir free smb buf in srch struct");
632                         pCFileStruct->srch_inf.ntwrk_buf_start = NULL;
633                         if (pCFileStruct->srch_inf.smallBuf)
634                                 cifs_small_buf_release(ptmp);
635                         else
636                                 cifs_buf_release(ptmp);
637                 }
638                 cifs_put_tlink(pCFileStruct->tlink);
639                 kfree(file->private_data);
640                 file->private_data = NULL;
641         }
642         /* BB can we lock the filestruct while this is going on? */
643         FreeXid(xid);
644         return rc;
645 }
646
647 static struct cifsLockInfo *
648 cifs_lock_init(__u64 offset, __u64 length, __u8 type, __u16 netfid)
649 {
650         struct cifsLockInfo *lock =
651                 kmalloc(sizeof(struct cifsLockInfo), GFP_KERNEL);
652         if (!lock)
653                 return lock;
654         lock->offset = offset;
655         lock->length = length;
656         lock->type = type;
657         lock->netfid = netfid;
658         lock->pid = current->tgid;
659         INIT_LIST_HEAD(&lock->blist);
660         init_waitqueue_head(&lock->block_q);
661         return lock;
662 }
663
664 static void
665 cifs_del_lock_waiters(struct cifsLockInfo *lock)
666 {
667         struct cifsLockInfo *li, *tmp;
668         list_for_each_entry_safe(li, tmp, &lock->blist, blist) {
669                 list_del_init(&li->blist);
670                 wake_up(&li->block_q);
671         }
672 }
673
674 static bool
675 __cifs_find_lock_conflict(struct cifsInodeInfo *cinode, __u64 offset,
676                         __u64 length, __u8 type, __u16 netfid,
677                         struct cifsLockInfo **conf_lock)
678 {
679         struct cifsLockInfo *li, *tmp;
680
681         list_for_each_entry_safe(li, tmp, &cinode->llist, llist) {
682                 if (offset + length <= li->offset ||
683                     offset >= li->offset + li->length)
684                         continue;
685                 else if ((type & LOCKING_ANDX_SHARED_LOCK) &&
686                          ((netfid == li->netfid && current->tgid == li->pid) ||
687                           type == li->type))
688                         continue;
689                 else {
690                         *conf_lock = li;
691                         return true;
692                 }
693         }
694         return false;
695 }
696
697 static bool
698 cifs_find_lock_conflict(struct cifsInodeInfo *cinode, struct cifsLockInfo *lock,
699                         struct cifsLockInfo **conf_lock)
700 {
701         return __cifs_find_lock_conflict(cinode, lock->offset, lock->length,
702                                          lock->type, lock->netfid, conf_lock);
703 }
704
705 /*
706  * Check if there is another lock that prevents us to set the lock (mandatory
707  * style). If such a lock exists, update the flock structure with its
708  * properties. Otherwise, set the flock type to F_UNLCK if we can cache brlocks
709  * or leave it the same if we can't. Returns 0 if we don't need to request to
710  * the server or 1 otherwise.
711  */
712 static int
713 cifs_lock_test(struct cifsInodeInfo *cinode, __u64 offset, __u64 length,
714                __u8 type, __u16 netfid, struct file_lock *flock)
715 {
716         int rc = 0;
717         struct cifsLockInfo *conf_lock;
718         bool exist;
719
720         mutex_lock(&cinode->lock_mutex);
721
722         exist = __cifs_find_lock_conflict(cinode, offset, length, type, netfid,
723                                           &conf_lock);
724         if (exist) {
725                 flock->fl_start = conf_lock->offset;
726                 flock->fl_end = conf_lock->offset + conf_lock->length - 1;
727                 flock->fl_pid = conf_lock->pid;
728                 if (conf_lock->type & LOCKING_ANDX_SHARED_LOCK)
729                         flock->fl_type = F_RDLCK;
730                 else
731                         flock->fl_type = F_WRLCK;
732         } else if (!cinode->can_cache_brlcks)
733                 rc = 1;
734         else
735                 flock->fl_type = F_UNLCK;
736
737         mutex_unlock(&cinode->lock_mutex);
738         return rc;
739 }
740
741 static void
742 cifs_lock_add(struct cifsInodeInfo *cinode, struct cifsLockInfo *lock)
743 {
744         mutex_lock(&cinode->lock_mutex);
745         list_add_tail(&lock->llist, &cinode->llist);
746         mutex_unlock(&cinode->lock_mutex);
747 }
748
749 /*
750  * Set the byte-range lock (mandatory style). Returns:
751  * 1) 0, if we set the lock and don't need to request to the server;
752  * 2) 1, if no locks prevent us but we need to request to the server;
753  * 3) -EACCESS, if there is a lock that prevents us and wait is false.
754  */
755 static int
756 cifs_lock_add_if(struct cifsInodeInfo *cinode, struct cifsLockInfo *lock,
757                  bool wait)
758 {
759         struct cifsLockInfo *conf_lock;
760         bool exist;
761         int rc = 0;
762
763 try_again:
764         exist = false;
765         mutex_lock(&cinode->lock_mutex);
766
767         exist = cifs_find_lock_conflict(cinode, lock, &conf_lock);
768         if (!exist && cinode->can_cache_brlcks) {
769                 list_add_tail(&lock->llist, &cinode->llist);
770                 mutex_unlock(&cinode->lock_mutex);
771                 return rc;
772         }
773
774         if (!exist)
775                 rc = 1;
776         else if (!wait)
777                 rc = -EACCES;
778         else {
779                 list_add_tail(&lock->blist, &conf_lock->blist);
780                 mutex_unlock(&cinode->lock_mutex);
781                 rc = wait_event_interruptible(lock->block_q,
782                                         (lock->blist.prev == &lock->blist) &&
783                                         (lock->blist.next == &lock->blist));
784                 if (!rc)
785                         goto try_again;
786                 mutex_lock(&cinode->lock_mutex);
787                 list_del_init(&lock->blist);
788         }
789
790         mutex_unlock(&cinode->lock_mutex);
791         return rc;
792 }
793
794 /*
795  * Check if there is another lock that prevents us to set the lock (posix
796  * style). If such a lock exists, update the flock structure with its
797  * properties. Otherwise, set the flock type to F_UNLCK if we can cache brlocks
798  * or leave it the same if we can't. Returns 0 if we don't need to request to
799  * the server or 1 otherwise.
800  */
801 static int
802 cifs_posix_lock_test(struct file *file, struct file_lock *flock)
803 {
804         int rc = 0;
805         struct cifsInodeInfo *cinode = CIFS_I(file->f_path.dentry->d_inode);
806         unsigned char saved_type = flock->fl_type;
807
808         if ((flock->fl_flags & FL_POSIX) == 0)
809                 return 1;
810
811         mutex_lock(&cinode->lock_mutex);
812         posix_test_lock(file, flock);
813
814         if (flock->fl_type == F_UNLCK && !cinode->can_cache_brlcks) {
815                 flock->fl_type = saved_type;
816                 rc = 1;
817         }
818
819         mutex_unlock(&cinode->lock_mutex);
820         return rc;
821 }
822
823 /*
824  * Set the byte-range lock (posix style). Returns:
825  * 1) 0, if we set the lock and don't need to request to the server;
826  * 2) 1, if we need to request to the server;
827  * 3) <0, if the error occurs while setting the lock.
828  */
829 static int
830 cifs_posix_lock_set(struct file *file, struct file_lock *flock)
831 {
832         struct cifsInodeInfo *cinode = CIFS_I(file->f_path.dentry->d_inode);
833         int rc = 1;
834
835         if ((flock->fl_flags & FL_POSIX) == 0)
836                 return rc;
837
838 try_again:
839         mutex_lock(&cinode->lock_mutex);
840         if (!cinode->can_cache_brlcks) {
841                 mutex_unlock(&cinode->lock_mutex);
842                 return rc;
843         }
844
845         rc = posix_lock_file(file, flock, NULL);
846         mutex_unlock(&cinode->lock_mutex);
847         if (rc == FILE_LOCK_DEFERRED) {
848                 rc = wait_event_interruptible(flock->fl_wait, !flock->fl_next);
849                 if (!rc)
850                         goto try_again;
851                 locks_delete_block(flock);
852         }
853         return rc;
854 }
855
856 static int
857 cifs_push_mandatory_locks(struct cifsFileInfo *cfile)
858 {
859         int xid, rc = 0, stored_rc;
860         struct cifsLockInfo *li, *tmp;
861         struct cifs_tcon *tcon;
862         struct cifsInodeInfo *cinode = CIFS_I(cfile->dentry->d_inode);
863         unsigned int num, max_num;
864         LOCKING_ANDX_RANGE *buf, *cur;
865         int types[] = {LOCKING_ANDX_LARGE_FILES,
866                        LOCKING_ANDX_SHARED_LOCK | LOCKING_ANDX_LARGE_FILES};
867         int i;
868
869         xid = GetXid();
870         tcon = tlink_tcon(cfile->tlink);
871
872         mutex_lock(&cinode->lock_mutex);
873         if (!cinode->can_cache_brlcks) {
874                 mutex_unlock(&cinode->lock_mutex);
875                 FreeXid(xid);
876                 return rc;
877         }
878
879         max_num = (tcon->ses->server->maxBuf - sizeof(struct smb_hdr)) /
880                   sizeof(LOCKING_ANDX_RANGE);
881         buf = kzalloc(max_num * sizeof(LOCKING_ANDX_RANGE), GFP_KERNEL);
882         if (!buf) {
883                 mutex_unlock(&cinode->lock_mutex);
884                 FreeXid(xid);
885                 return rc;
886         }
887
888         for (i = 0; i < 2; i++) {
889                 cur = buf;
890                 num = 0;
891                 list_for_each_entry_safe(li, tmp, &cinode->llist, llist) {
892                         if (li->type != types[i])
893                                 continue;
894                         cur->Pid = cpu_to_le16(li->pid);
895                         cur->LengthLow = cpu_to_le32((u32)li->length);
896                         cur->LengthHigh = cpu_to_le32((u32)(li->length>>32));
897                         cur->OffsetLow = cpu_to_le32((u32)li->offset);
898                         cur->OffsetHigh = cpu_to_le32((u32)(li->offset>>32));
899                         if (++num == max_num) {
900                                 stored_rc = cifs_lockv(xid, tcon, cfile->netfid,
901                                                        li->type, 0, num, buf);
902                                 if (stored_rc)
903                                         rc = stored_rc;
904                                 cur = buf;
905                                 num = 0;
906                         } else
907                                 cur++;
908                 }
909
910                 if (num) {
911                         stored_rc = cifs_lockv(xid, tcon, cfile->netfid,
912                                                types[i], 0, num, buf);
913                         if (stored_rc)
914                                 rc = stored_rc;
915                 }
916         }
917
918         cinode->can_cache_brlcks = false;
919         mutex_unlock(&cinode->lock_mutex);
920
921         kfree(buf);
922         FreeXid(xid);
923         return rc;
924 }
925
926 /* copied from fs/locks.c with a name change */
927 #define cifs_for_each_lock(inode, lockp) \
928         for (lockp = &inode->i_flock; *lockp != NULL; \
929              lockp = &(*lockp)->fl_next)
930
931 struct lock_to_push {
932         struct list_head llist;
933         __u64 offset;
934         __u64 length;
935         __u32 pid;
936         __u16 netfid;
937         __u8 type;
938 };
939
940 static int
941 cifs_push_posix_locks(struct cifsFileInfo *cfile)
942 {
943         struct cifsInodeInfo *cinode = CIFS_I(cfile->dentry->d_inode);
944         struct cifs_tcon *tcon = tlink_tcon(cfile->tlink);
945         struct file_lock *flock, **before;
946         unsigned int count = 0, i = 0;
947         int rc = 0, xid, type;
948         struct list_head locks_to_send, *el;
949         struct lock_to_push *lck, *tmp;
950         __u64 length;
951
952         xid = GetXid();
953
954         mutex_lock(&cinode->lock_mutex);
955         if (!cinode->can_cache_brlcks) {
956                 mutex_unlock(&cinode->lock_mutex);
957                 FreeXid(xid);
958                 return rc;
959         }
960
961         lock_flocks();
962         cifs_for_each_lock(cfile->dentry->d_inode, before) {
963                 if ((*before)->fl_flags & FL_POSIX)
964                         count++;
965         }
966         unlock_flocks();
967
968         INIT_LIST_HEAD(&locks_to_send);
969
970         /*
971          * Allocating count locks is enough because no FL_POSIX locks can be
972          * added to the list while we are holding cinode->lock_mutex that
973          * protects locking operations of this inode.
974          */
975         for (; i < count; i++) {
976                 lck = kmalloc(sizeof(struct lock_to_push), GFP_KERNEL);
977                 if (!lck) {
978                         rc = -ENOMEM;
979                         goto err_out;
980                 }
981                 list_add_tail(&lck->llist, &locks_to_send);
982         }
983
984         el = locks_to_send.next;
985         lock_flocks();
986         cifs_for_each_lock(cfile->dentry->d_inode, before) {
987                 flock = *before;
988                 if ((flock->fl_flags & FL_POSIX) == 0)
989                         continue;
990                 if (el == &locks_to_send) {
991                         /*
992                          * The list ended. We don't have enough allocated
993                          * structures - something is really wrong.
994                          */
995                         cERROR(1, "Can't push all brlocks!");
996                         break;
997                 }
998                 length = 1 + flock->fl_end - flock->fl_start;
999                 if (flock->fl_type == F_RDLCK || flock->fl_type == F_SHLCK)
1000                         type = CIFS_RDLCK;
1001                 else
1002                         type = CIFS_WRLCK;
1003                 lck = list_entry(el, struct lock_to_push, llist);
1004                 lck->pid = flock->fl_pid;
1005                 lck->netfid = cfile->netfid;
1006                 lck->length = length;
1007                 lck->type = type;
1008                 lck->offset = flock->fl_start;
1009                 el = el->next;
1010         }
1011         unlock_flocks();
1012
1013         list_for_each_entry_safe(lck, tmp, &locks_to_send, llist) {
1014                 struct file_lock tmp_lock;
1015                 int stored_rc;
1016
1017                 tmp_lock.fl_start = lck->offset;
1018                 stored_rc = CIFSSMBPosixLock(xid, tcon, lck->netfid, lck->pid,
1019                                              0, lck->length, &tmp_lock,
1020                                              lck->type, 0);
1021                 if (stored_rc)
1022                         rc = stored_rc;
1023                 list_del(&lck->llist);
1024                 kfree(lck);
1025         }
1026
1027 out:
1028         cinode->can_cache_brlcks = false;
1029         mutex_unlock(&cinode->lock_mutex);
1030
1031         FreeXid(xid);
1032         return rc;
1033 err_out:
1034         list_for_each_entry_safe(lck, tmp, &locks_to_send, llist) {
1035                 list_del(&lck->llist);
1036                 kfree(lck);
1037         }
1038         goto out;
1039 }
1040
1041 static int
1042 cifs_push_locks(struct cifsFileInfo *cfile)
1043 {
1044         struct cifs_sb_info *cifs_sb = CIFS_SB(cfile->dentry->d_sb);
1045         struct cifs_tcon *tcon = tlink_tcon(cfile->tlink);
1046
1047         if ((tcon->ses->capabilities & CAP_UNIX) &&
1048             (CIFS_UNIX_FCNTL_CAP & le64_to_cpu(tcon->fsUnixInfo.Capability)) &&
1049             ((cifs_sb->mnt_cifs_flags & CIFS_MOUNT_NOPOSIXBRL) == 0))
1050                 return cifs_push_posix_locks(cfile);
1051
1052         return cifs_push_mandatory_locks(cfile);
1053 }
1054
1055 static void
1056 cifs_read_flock(struct file_lock *flock, __u8 *type, int *lock, int *unlock,
1057                 bool *wait_flag)
1058 {
1059         if (flock->fl_flags & FL_POSIX)
1060                 cFYI(1, "Posix");
1061         if (flock->fl_flags & FL_FLOCK)
1062                 cFYI(1, "Flock");
1063         if (flock->fl_flags & FL_SLEEP) {
1064                 cFYI(1, "Blocking lock");
1065                 *wait_flag = true;
1066         }
1067         if (flock->fl_flags & FL_ACCESS)
1068                 cFYI(1, "Process suspended by mandatory locking - "
1069                         "not implemented yet");
1070         if (flock->fl_flags & FL_LEASE)
1071                 cFYI(1, "Lease on file - not implemented yet");
1072         if (flock->fl_flags &
1073             (~(FL_POSIX | FL_FLOCK | FL_SLEEP | FL_ACCESS | FL_LEASE)))
1074                 cFYI(1, "Unknown lock flags 0x%x", flock->fl_flags);
1075
1076         *type = LOCKING_ANDX_LARGE_FILES;
1077         if (flock->fl_type == F_WRLCK) {
1078                 cFYI(1, "F_WRLCK ");
1079                 *lock = 1;
1080         } else if (flock->fl_type == F_UNLCK) {
1081                 cFYI(1, "F_UNLCK");
1082                 *unlock = 1;
1083                 /* Check if unlock includes more than one lock range */
1084         } else if (flock->fl_type == F_RDLCK) {
1085                 cFYI(1, "F_RDLCK");
1086                 *type |= LOCKING_ANDX_SHARED_LOCK;
1087                 *lock = 1;
1088         } else if (flock->fl_type == F_EXLCK) {
1089                 cFYI(1, "F_EXLCK");
1090                 *lock = 1;
1091         } else if (flock->fl_type == F_SHLCK) {
1092                 cFYI(1, "F_SHLCK");
1093                 *type |= LOCKING_ANDX_SHARED_LOCK;
1094                 *lock = 1;
1095         } else
1096                 cFYI(1, "Unknown type of lock");
1097 }
1098
1099 static int
1100 cifs_getlk(struct file *file, struct file_lock *flock, __u8 type,
1101            bool wait_flag, bool posix_lck, int xid)
1102 {
1103         int rc = 0;
1104         __u64 length = 1 + flock->fl_end - flock->fl_start;
1105         struct cifsFileInfo *cfile = (struct cifsFileInfo *)file->private_data;
1106         struct cifs_tcon *tcon = tlink_tcon(cfile->tlink);
1107         struct cifsInodeInfo *cinode = CIFS_I(cfile->dentry->d_inode);
1108         __u16 netfid = cfile->netfid;
1109
1110         if (posix_lck) {
1111                 int posix_lock_type;
1112
1113                 rc = cifs_posix_lock_test(file, flock);
1114                 if (!rc)
1115                         return rc;
1116
1117                 if (type & LOCKING_ANDX_SHARED_LOCK)
1118                         posix_lock_type = CIFS_RDLCK;
1119                 else
1120                         posix_lock_type = CIFS_WRLCK;
1121                 rc = CIFSSMBPosixLock(xid, tcon, netfid, current->tgid,
1122                                       1 /* get */, length, flock,
1123                                       posix_lock_type, wait_flag);
1124                 return rc;
1125         }
1126
1127         rc = cifs_lock_test(cinode, flock->fl_start, length, type, netfid,
1128                             flock);
1129         if (!rc)
1130                 return rc;
1131
1132         /* BB we could chain these into one lock request BB */
1133         rc = CIFSSMBLock(xid, tcon, netfid, current->tgid, length,
1134                          flock->fl_start, 0, 1, type, 0, 0);
1135         if (rc == 0) {
1136                 rc = CIFSSMBLock(xid, tcon, netfid, current->tgid,
1137                                  length, flock->fl_start, 1, 0,
1138                                  type, 0, 0);
1139                 flock->fl_type = F_UNLCK;
1140                 if (rc != 0)
1141                         cERROR(1, "Error unlocking previously locked "
1142                                    "range %d during test of lock", rc);
1143                 return 0;
1144         }
1145
1146         if (type & LOCKING_ANDX_SHARED_LOCK) {
1147                 flock->fl_type = F_WRLCK;
1148                 return 0;
1149         }
1150
1151         rc = CIFSSMBLock(xid, tcon, netfid, current->tgid, length,
1152                          flock->fl_start, 0, 1,
1153                          type | LOCKING_ANDX_SHARED_LOCK, 0, 0);
1154         if (rc == 0) {
1155                 rc = CIFSSMBLock(xid, tcon, netfid, current->tgid,
1156                                  length, flock->fl_start, 1, 0,
1157                                  type | LOCKING_ANDX_SHARED_LOCK,
1158                                  0, 0);
1159                 flock->fl_type = F_RDLCK;
1160                 if (rc != 0)
1161                         cERROR(1, "Error unlocking previously locked "
1162                                   "range %d during test of lock", rc);
1163         } else
1164                 flock->fl_type = F_WRLCK;
1165
1166         return 0;
1167 }
1168
1169 static void
1170 cifs_move_llist(struct list_head *source, struct list_head *dest)
1171 {
1172         struct list_head *li, *tmp;
1173         list_for_each_safe(li, tmp, source)
1174                 list_move(li, dest);
1175 }
1176
1177 static void
1178 cifs_free_llist(struct list_head *llist)
1179 {
1180         struct cifsLockInfo *li, *tmp;
1181         list_for_each_entry_safe(li, tmp, llist, llist) {
1182                 cifs_del_lock_waiters(li);
1183                 list_del(&li->llist);
1184                 kfree(li);
1185         }
1186 }
1187
1188 static int
1189 cifs_unlock_range(struct cifsFileInfo *cfile, struct file_lock *flock, int xid)
1190 {
1191         int rc = 0, stored_rc;
1192         int types[] = {LOCKING_ANDX_LARGE_FILES,
1193                        LOCKING_ANDX_SHARED_LOCK | LOCKING_ANDX_LARGE_FILES};
1194         unsigned int i;
1195         unsigned int max_num, num;
1196         LOCKING_ANDX_RANGE *buf, *cur;
1197         struct cifs_tcon *tcon = tlink_tcon(cfile->tlink);
1198         struct cifsInodeInfo *cinode = CIFS_I(cfile->dentry->d_inode);
1199         struct cifsLockInfo *li, *tmp;
1200         __u64 length = 1 + flock->fl_end - flock->fl_start;
1201         struct list_head tmp_llist;
1202
1203         INIT_LIST_HEAD(&tmp_llist);
1204
1205         max_num = (tcon->ses->server->maxBuf - sizeof(struct smb_hdr)) /
1206                   sizeof(LOCKING_ANDX_RANGE);
1207         buf = kzalloc(max_num * sizeof(LOCKING_ANDX_RANGE), GFP_KERNEL);
1208         if (!buf)
1209                 return -ENOMEM;
1210
1211         mutex_lock(&cinode->lock_mutex);
1212         for (i = 0; i < 2; i++) {
1213                 cur = buf;
1214                 num = 0;
1215                 list_for_each_entry_safe(li, tmp, &cinode->llist, llist) {
1216                         if (flock->fl_start > li->offset ||
1217                             (flock->fl_start + length) <
1218                             (li->offset + li->length))
1219                                 continue;
1220                         if (current->tgid != li->pid)
1221                                 continue;
1222                         if (cfile->netfid != li->netfid)
1223                                 continue;
1224                         if (types[i] != li->type)
1225                                 continue;
1226                         if (!cinode->can_cache_brlcks) {
1227                                 cur->Pid = cpu_to_le16(li->pid);
1228                                 cur->LengthLow = cpu_to_le32((u32)li->length);
1229                                 cur->LengthHigh =
1230                                         cpu_to_le32((u32)(li->length>>32));
1231                                 cur->OffsetLow = cpu_to_le32((u32)li->offset);
1232                                 cur->OffsetHigh =
1233                                         cpu_to_le32((u32)(li->offset>>32));
1234                                 /*
1235                                  * We need to save a lock here to let us add
1236                                  * it again to the inode list if the unlock
1237                                  * range request fails on the server.
1238                                  */
1239                                 list_move(&li->llist, &tmp_llist);
1240                                 if (++num == max_num) {
1241                                         stored_rc = cifs_lockv(xid, tcon,
1242                                                                cfile->netfid,
1243                                                                li->type, num,
1244                                                                0, buf);
1245                                         if (stored_rc) {
1246                                                 /*
1247                                                  * We failed on the unlock range
1248                                                  * request - add all locks from
1249                                                  * the tmp list to the head of
1250                                                  * the inode list.
1251                                                  */
1252                                                 cifs_move_llist(&tmp_llist,
1253                                                                 &cinode->llist);
1254                                                 rc = stored_rc;
1255                                         } else
1256                                                 /*
1257                                                  * The unlock range request
1258                                                  * succeed - free the tmp list.
1259                                                  */
1260                                                 cifs_free_llist(&tmp_llist);
1261                                         cur = buf;
1262                                         num = 0;
1263                                 } else
1264                                         cur++;
1265                         } else {
1266                                 /*
1267                                  * We can cache brlock requests - simply remove
1268                                  * a lock from the inode list.
1269                                  */
1270                                 list_del(&li->llist);
1271                                 cifs_del_lock_waiters(li);
1272                                 kfree(li);
1273                         }
1274                 }
1275                 if (num) {
1276                         stored_rc = cifs_lockv(xid, tcon, cfile->netfid,
1277                                                types[i], num, 0, buf);
1278                         if (stored_rc) {
1279                                 cifs_move_llist(&tmp_llist, &cinode->llist);
1280                                 rc = stored_rc;
1281                         } else
1282                                 cifs_free_llist(&tmp_llist);
1283                 }
1284         }
1285
1286         mutex_unlock(&cinode->lock_mutex);
1287         kfree(buf);
1288         return rc;
1289 }
1290
1291 static int
1292 cifs_setlk(struct file *file,  struct file_lock *flock, __u8 type,
1293            bool wait_flag, bool posix_lck, int lock, int unlock, int xid)
1294 {
1295         int rc = 0;
1296         __u64 length = 1 + flock->fl_end - flock->fl_start;
1297         struct cifsFileInfo *cfile = (struct cifsFileInfo *)file->private_data;
1298         struct cifs_tcon *tcon = tlink_tcon(cfile->tlink);
1299         struct cifsInodeInfo *cinode = CIFS_I(file->f_path.dentry->d_inode);
1300         __u16 netfid = cfile->netfid;
1301
1302         if (posix_lck) {
1303                 int posix_lock_type;
1304
1305                 rc = cifs_posix_lock_set(file, flock);
1306                 if (!rc || rc < 0)
1307                         return rc;
1308
1309                 if (type & LOCKING_ANDX_SHARED_LOCK)
1310                         posix_lock_type = CIFS_RDLCK;
1311                 else
1312                         posix_lock_type = CIFS_WRLCK;
1313
1314                 if (unlock == 1)
1315                         posix_lock_type = CIFS_UNLCK;
1316
1317                 rc = CIFSSMBPosixLock(xid, tcon, netfid, current->tgid,
1318                                       0 /* set */, length, flock,
1319                                       posix_lock_type, wait_flag);
1320                 goto out;
1321         }
1322
1323         if (lock) {
1324                 struct cifsLockInfo *lock;
1325
1326                 lock = cifs_lock_init(flock->fl_start, length, type, netfid);
1327                 if (!lock)
1328                         return -ENOMEM;
1329
1330                 rc = cifs_lock_add_if(cinode, lock, wait_flag);
1331                 if (rc < 0)
1332                         kfree(lock);
1333                 if (rc <= 0)
1334                         goto out;
1335
1336                 rc = CIFSSMBLock(xid, tcon, netfid, current->tgid, length,
1337                                  flock->fl_start, 0, 1, type, wait_flag, 0);
1338                 if (rc) {
1339                         kfree(lock);
1340                         goto out;
1341                 }
1342
1343                 cifs_lock_add(cinode, lock);
1344         } else if (unlock)
1345                 rc = cifs_unlock_range(cfile, flock, xid);
1346
1347 out:
1348         if (flock->fl_flags & FL_POSIX)
1349                 posix_lock_file_wait(file, flock);
1350         return rc;
1351 }
1352
1353 int cifs_lock(struct file *file, int cmd, struct file_lock *flock)
1354 {
1355         int rc, xid;
1356         int lock = 0, unlock = 0;
1357         bool wait_flag = false;
1358         bool posix_lck = false;
1359         struct cifs_sb_info *cifs_sb;
1360         struct cifs_tcon *tcon;
1361         struct cifsInodeInfo *cinode;
1362         struct cifsFileInfo *cfile;
1363         __u16 netfid;
1364         __u8 type;
1365
1366         rc = -EACCES;
1367         xid = GetXid();
1368
1369         cFYI(1, "Lock parm: 0x%x flockflags: 0x%x flocktype: 0x%x start: %lld "
1370                 "end: %lld", cmd, flock->fl_flags, flock->fl_type,
1371                 flock->fl_start, flock->fl_end);
1372
1373         cifs_read_flock(flock, &type, &lock, &unlock, &wait_flag);
1374
1375         cifs_sb = CIFS_SB(file->f_path.dentry->d_sb);
1376         cfile = (struct cifsFileInfo *)file->private_data;
1377         tcon = tlink_tcon(cfile->tlink);
1378         netfid = cfile->netfid;
1379         cinode = CIFS_I(file->f_path.dentry->d_inode);
1380
1381         if ((tcon->ses->capabilities & CAP_UNIX) &&
1382             (CIFS_UNIX_FCNTL_CAP & le64_to_cpu(tcon->fsUnixInfo.Capability)) &&
1383             ((cifs_sb->mnt_cifs_flags & CIFS_MOUNT_NOPOSIXBRL) == 0))
1384                 posix_lck = true;
1385         /*
1386          * BB add code here to normalize offset and length to account for
1387          * negative length which we can not accept over the wire.
1388          */
1389         if (IS_GETLK(cmd)) {
1390                 rc = cifs_getlk(file, flock, type, wait_flag, posix_lck, xid);
1391                 FreeXid(xid);
1392                 return rc;
1393         }
1394
1395         if (!lock && !unlock) {
1396                 /*
1397                  * if no lock or unlock then nothing to do since we do not
1398                  * know what it is
1399                  */
1400                 FreeXid(xid);
1401                 return -EOPNOTSUPP;
1402         }
1403
1404         rc = cifs_setlk(file, flock, type, wait_flag, posix_lck, lock, unlock,
1405                         xid);
1406         FreeXid(xid);
1407         return rc;
1408 }
1409
1410 /* update the file size (if needed) after a write */
1411 void
1412 cifs_update_eof(struct cifsInodeInfo *cifsi, loff_t offset,
1413                       unsigned int bytes_written)
1414 {
1415         loff_t end_of_write = offset + bytes_written;
1416
1417         if (end_of_write > cifsi->server_eof)
1418                 cifsi->server_eof = end_of_write;
1419 }
1420
1421 static ssize_t cifs_write(struct cifsFileInfo *open_file, __u32 pid,
1422                           const char *write_data, size_t write_size,
1423                           loff_t *poffset)
1424 {
1425         int rc = 0;
1426         unsigned int bytes_written = 0;
1427         unsigned int total_written;
1428         struct cifs_sb_info *cifs_sb;
1429         struct cifs_tcon *pTcon;
1430         int xid;
1431         struct dentry *dentry = open_file->dentry;
1432         struct cifsInodeInfo *cifsi = CIFS_I(dentry->d_inode);
1433         struct cifs_io_parms io_parms;
1434
1435         cifs_sb = CIFS_SB(dentry->d_sb);
1436
1437         cFYI(1, "write %zd bytes to offset %lld of %s", write_size,
1438            *poffset, dentry->d_name.name);
1439
1440         pTcon = tlink_tcon(open_file->tlink);
1441
1442         xid = GetXid();
1443
1444         for (total_written = 0; write_size > total_written;
1445              total_written += bytes_written) {
1446                 rc = -EAGAIN;
1447                 while (rc == -EAGAIN) {
1448                         struct kvec iov[2];
1449                         unsigned int len;
1450
1451                         if (open_file->invalidHandle) {
1452                                 /* we could deadlock if we called
1453                                    filemap_fdatawait from here so tell
1454                                    reopen_file not to flush data to
1455                                    server now */
1456                                 rc = cifs_reopen_file(open_file, false);
1457                                 if (rc != 0)
1458                                         break;
1459                         }
1460
1461                         len = min((size_t)cifs_sb->wsize,
1462                                   write_size - total_written);
1463                         /* iov[0] is reserved for smb header */
1464                         iov[1].iov_base = (char *)write_data + total_written;
1465                         iov[1].iov_len = len;
1466                         io_parms.netfid = open_file->netfid;
1467                         io_parms.pid = pid;
1468                         io_parms.tcon = pTcon;
1469                         io_parms.offset = *poffset;
1470                         io_parms.length = len;
1471                         rc = CIFSSMBWrite2(xid, &io_parms, &bytes_written, iov,
1472                                            1, 0);
1473                 }
1474                 if (rc || (bytes_written == 0)) {
1475                         if (total_written)
1476                                 break;
1477                         else {
1478                                 FreeXid(xid);
1479                                 return rc;
1480                         }
1481                 } else {
1482                         cifs_update_eof(cifsi, *poffset, bytes_written);
1483                         *poffset += bytes_written;
1484                 }
1485         }
1486
1487         cifs_stats_bytes_written(pTcon, total_written);
1488
1489         if (total_written > 0) {
1490                 spin_lock(&dentry->d_inode->i_lock);
1491                 if (*poffset > dentry->d_inode->i_size)
1492                         i_size_write(dentry->d_inode, *poffset);
1493                 spin_unlock(&dentry->d_inode->i_lock);
1494         }
1495         mark_inode_dirty_sync(dentry->d_inode);
1496         FreeXid(xid);
1497         return total_written;
1498 }
1499
1500 struct cifsFileInfo *find_readable_file(struct cifsInodeInfo *cifs_inode,
1501                                         bool fsuid_only)
1502 {
1503         struct cifsFileInfo *open_file = NULL;
1504         struct cifs_sb_info *cifs_sb = CIFS_SB(cifs_inode->vfs_inode.i_sb);
1505
1506         /* only filter by fsuid on multiuser mounts */
1507         if (!(cifs_sb->mnt_cifs_flags & CIFS_MOUNT_MULTIUSER))
1508                 fsuid_only = false;
1509
1510         spin_lock(&cifs_file_list_lock);
1511         /* we could simply get the first_list_entry since write-only entries
1512            are always at the end of the list but since the first entry might
1513            have a close pending, we go through the whole list */
1514         list_for_each_entry(open_file, &cifs_inode->openFileList, flist) {
1515                 if (fsuid_only && open_file->uid != current_fsuid())
1516                         continue;
1517                 if (OPEN_FMODE(open_file->f_flags) & FMODE_READ) {
1518                         if (!open_file->invalidHandle) {
1519                                 /* found a good file */
1520                                 /* lock it so it will not be closed on us */
1521                                 cifsFileInfo_get(open_file);
1522                                 spin_unlock(&cifs_file_list_lock);
1523                                 return open_file;
1524                         } /* else might as well continue, and look for
1525                              another, or simply have the caller reopen it
1526                              again rather than trying to fix this handle */
1527                 } else /* write only file */
1528                         break; /* write only files are last so must be done */
1529         }
1530         spin_unlock(&cifs_file_list_lock);
1531         return NULL;
1532 }
1533
1534 struct cifsFileInfo *find_writable_file(struct cifsInodeInfo *cifs_inode,
1535                                         bool fsuid_only)
1536 {
1537         struct cifsFileInfo *open_file, *inv_file = NULL;
1538         struct cifs_sb_info *cifs_sb;
1539         bool any_available = false;
1540         int rc;
1541         unsigned int refind = 0;
1542
1543         /* Having a null inode here (because mapping->host was set to zero by
1544         the VFS or MM) should not happen but we had reports of on oops (due to
1545         it being zero) during stress testcases so we need to check for it */
1546
1547         if (cifs_inode == NULL) {
1548                 cERROR(1, "Null inode passed to cifs_writeable_file");
1549                 dump_stack();
1550                 return NULL;
1551         }
1552
1553         cifs_sb = CIFS_SB(cifs_inode->vfs_inode.i_sb);
1554
1555         /* only filter by fsuid on multiuser mounts */
1556         if (!(cifs_sb->mnt_cifs_flags & CIFS_MOUNT_MULTIUSER))
1557                 fsuid_only = false;
1558
1559         spin_lock(&cifs_file_list_lock);
1560 refind_writable:
1561         if (refind > MAX_REOPEN_ATT) {
1562                 spin_unlock(&cifs_file_list_lock);
1563                 return NULL;
1564         }
1565         list_for_each_entry(open_file, &cifs_inode->openFileList, flist) {
1566                 if (!any_available && open_file->pid != current->tgid)
1567                         continue;
1568                 if (fsuid_only && open_file->uid != current_fsuid())
1569                         continue;
1570                 if (OPEN_FMODE(open_file->f_flags) & FMODE_WRITE) {
1571                         if (!open_file->invalidHandle) {
1572                                 /* found a good writable file */
1573                                 cifsFileInfo_get(open_file);
1574                                 spin_unlock(&cifs_file_list_lock);
1575                                 return open_file;
1576                         } else {
1577                                 if (!inv_file)
1578                                         inv_file = open_file;
1579                         }
1580                 }
1581         }
1582         /* couldn't find useable FH with same pid, try any available */
1583         if (!any_available) {
1584                 any_available = true;
1585                 goto refind_writable;
1586         }
1587
1588         if (inv_file) {
1589                 any_available = false;
1590                 cifsFileInfo_get(inv_file);
1591         }
1592
1593         spin_unlock(&cifs_file_list_lock);
1594
1595         if (inv_file) {
1596                 rc = cifs_reopen_file(inv_file, false);
1597                 if (!rc)
1598                         return inv_file;
1599                 else {
1600                         spin_lock(&cifs_file_list_lock);
1601                         list_move_tail(&inv_file->flist,
1602                                         &cifs_inode->openFileList);
1603                         spin_unlock(&cifs_file_list_lock);
1604                         cifsFileInfo_put(inv_file);
1605                         spin_lock(&cifs_file_list_lock);
1606                         ++refind;
1607                         goto refind_writable;
1608                 }
1609         }
1610
1611         return NULL;
1612 }
1613
1614 static int cifs_partialpagewrite(struct page *page, unsigned from, unsigned to)
1615 {
1616         struct address_space *mapping = page->mapping;
1617         loff_t offset = (loff_t)page->index << PAGE_CACHE_SHIFT;
1618         char *write_data;
1619         int rc = -EFAULT;
1620         int bytes_written = 0;
1621         struct inode *inode;
1622         struct cifsFileInfo *open_file;
1623
1624         if (!mapping || !mapping->host)
1625                 return -EFAULT;
1626
1627         inode = page->mapping->host;
1628
1629         offset += (loff_t)from;
1630         write_data = kmap(page);
1631         write_data += from;
1632
1633         if ((to > PAGE_CACHE_SIZE) || (from > to)) {
1634                 kunmap(page);
1635                 return -EIO;
1636         }
1637
1638         /* racing with truncate? */
1639         if (offset > mapping->host->i_size) {
1640                 kunmap(page);
1641                 return 0; /* don't care */
1642         }
1643
1644         /* check to make sure that we are not extending the file */
1645         if (mapping->host->i_size - offset < (loff_t)to)
1646                 to = (unsigned)(mapping->host->i_size - offset);
1647
1648         open_file = find_writable_file(CIFS_I(mapping->host), false);
1649         if (open_file) {
1650                 bytes_written = cifs_write(open_file, open_file->pid,
1651                                            write_data, to - from, &offset);
1652                 cifsFileInfo_put(open_file);
1653                 /* Does mm or vfs already set times? */
1654                 inode->i_atime = inode->i_mtime = current_fs_time(inode->i_sb);
1655                 if ((bytes_written > 0) && (offset))
1656                         rc = 0;
1657                 else if (bytes_written < 0)
1658                         rc = bytes_written;
1659         } else {
1660                 cFYI(1, "No writeable filehandles for inode");
1661                 rc = -EIO;
1662         }
1663
1664         kunmap(page);
1665         return rc;
1666 }
1667
1668 static int cifs_writepages(struct address_space *mapping,
1669                            struct writeback_control *wbc)
1670 {
1671         struct cifs_sb_info *cifs_sb = CIFS_SB(mapping->host->i_sb);
1672         bool done = false, scanned = false, range_whole = false;
1673         pgoff_t end, index;
1674         struct cifs_writedata *wdata;
1675         struct page *page;
1676         int rc = 0;
1677
1678         /*
1679          * If wsize is smaller than the page cache size, default to writing
1680          * one page at a time via cifs_writepage
1681          */
1682         if (cifs_sb->wsize < PAGE_CACHE_SIZE)
1683                 return generic_writepages(mapping, wbc);
1684
1685         if (wbc->range_cyclic) {
1686                 index = mapping->writeback_index; /* Start from prev offset */
1687                 end = -1;
1688         } else {
1689                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
1690                 end = wbc->range_end >> PAGE_CACHE_SHIFT;
1691                 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
1692                         range_whole = true;
1693                 scanned = true;
1694         }
1695 retry:
1696         while (!done && index <= end) {
1697                 unsigned int i, nr_pages, found_pages;
1698                 pgoff_t next = 0, tofind;
1699                 struct page **pages;
1700
1701                 tofind = min((cifs_sb->wsize / PAGE_CACHE_SIZE) - 1,
1702                                 end - index) + 1;
1703
1704                 wdata = cifs_writedata_alloc((unsigned int)tofind);
1705                 if (!wdata) {
1706                         rc = -ENOMEM;
1707                         break;
1708                 }
1709
1710                 /*
1711                  * find_get_pages_tag seems to return a max of 256 on each
1712                  * iteration, so we must call it several times in order to
1713                  * fill the array or the wsize is effectively limited to
1714                  * 256 * PAGE_CACHE_SIZE.
1715                  */
1716                 found_pages = 0;
1717                 pages = wdata->pages;
1718                 do {
1719                         nr_pages = find_get_pages_tag(mapping, &index,
1720                                                         PAGECACHE_TAG_DIRTY,
1721                                                         tofind, pages);
1722                         found_pages += nr_pages;
1723                         tofind -= nr_pages;
1724                         pages += nr_pages;
1725                 } while (nr_pages && tofind && index <= end);
1726
1727                 if (found_pages == 0) {
1728                         kref_put(&wdata->refcount, cifs_writedata_release);
1729                         break;
1730                 }
1731
1732                 nr_pages = 0;
1733                 for (i = 0; i < found_pages; i++) {
1734                         page = wdata->pages[i];
1735                         /*
1736                          * At this point we hold neither mapping->tree_lock nor
1737                          * lock on the page itself: the page may be truncated or
1738                          * invalidated (changing page->mapping to NULL), or even
1739                          * swizzled back from swapper_space to tmpfs file
1740                          * mapping
1741                          */
1742
1743                         if (nr_pages == 0)
1744                                 lock_page(page);
1745                         else if (!trylock_page(page))
1746                                 break;
1747
1748                         if (unlikely(page->mapping != mapping)) {
1749                                 unlock_page(page);
1750                                 break;
1751                         }
1752
1753                         if (!wbc->range_cyclic && page->index > end) {
1754                                 done = true;
1755                                 unlock_page(page);
1756                                 break;
1757                         }
1758
1759                         if (next && (page->index != next)) {
1760                                 /* Not next consecutive page */
1761                                 unlock_page(page);
1762                                 break;
1763                         }
1764
1765                         if (wbc->sync_mode != WB_SYNC_NONE)
1766                                 wait_on_page_writeback(page);
1767
1768                         if (PageWriteback(page) ||
1769                                         !clear_page_dirty_for_io(page)) {
1770                                 unlock_page(page);
1771                                 break;
1772                         }
1773
1774                         /*
1775                          * This actually clears the dirty bit in the radix tree.
1776                          * See cifs_writepage() for more commentary.
1777                          */
1778                         set_page_writeback(page);
1779
1780                         if (page_offset(page) >= mapping->host->i_size) {
1781                                 done = true;
1782                                 unlock_page(page);
1783                                 end_page_writeback(page);
1784                                 break;
1785                         }
1786
1787                         wdata->pages[i] = page;
1788                         next = page->index + 1;
1789                         ++nr_pages;
1790                 }
1791
1792                 /* reset index to refind any pages skipped */
1793                 if (nr_pages == 0)
1794                         index = wdata->pages[0]->index + 1;
1795
1796                 /* put any pages we aren't going to use */
1797                 for (i = nr_pages; i < found_pages; i++) {
1798                         page_cache_release(wdata->pages[i]);
1799                         wdata->pages[i] = NULL;
1800                 }
1801
1802                 /* nothing to write? */
1803                 if (nr_pages == 0) {
1804                         kref_put(&wdata->refcount, cifs_writedata_release);
1805                         continue;
1806                 }
1807
1808                 wdata->sync_mode = wbc->sync_mode;
1809                 wdata->nr_pages = nr_pages;
1810                 wdata->offset = page_offset(wdata->pages[0]);
1811
1812                 do {
1813                         if (wdata->cfile != NULL)
1814                                 cifsFileInfo_put(wdata->cfile);
1815                         wdata->cfile = find_writable_file(CIFS_I(mapping->host),
1816                                                           false);
1817                         if (!wdata->cfile) {
1818                                 cERROR(1, "No writable handles for inode");
1819                                 rc = -EBADF;
1820                                 break;
1821                         }
1822                         rc = cifs_async_writev(wdata);
1823                 } while (wbc->sync_mode == WB_SYNC_ALL && rc == -EAGAIN);
1824
1825                 for (i = 0; i < nr_pages; ++i)
1826                         unlock_page(wdata->pages[i]);
1827
1828                 /* send failure -- clean up the mess */
1829                 if (rc != 0) {
1830                         for (i = 0; i < nr_pages; ++i) {
1831                                 if (rc == -EAGAIN)
1832                                         redirty_page_for_writepage(wbc,
1833                                                            wdata->pages[i]);
1834                                 else
1835                                         SetPageError(wdata->pages[i]);
1836                                 end_page_writeback(wdata->pages[i]);
1837                                 page_cache_release(wdata->pages[i]);
1838                         }
1839                         if (rc != -EAGAIN)
1840                                 mapping_set_error(mapping, rc);
1841                 }
1842                 kref_put(&wdata->refcount, cifs_writedata_release);
1843
1844                 wbc->nr_to_write -= nr_pages;
1845                 if (wbc->nr_to_write <= 0)
1846                         done = true;
1847
1848                 index = next;
1849         }
1850
1851         if (!scanned && !done) {
1852                 /*
1853                  * We hit the last page and there is more work to be done: wrap
1854                  * back to the start of the file
1855                  */
1856                 scanned = true;
1857                 index = 0;
1858                 goto retry;
1859         }
1860
1861         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
1862                 mapping->writeback_index = index;
1863
1864         return rc;
1865 }
1866
1867 static int
1868 cifs_writepage_locked(struct page *page, struct writeback_control *wbc)
1869 {
1870         int rc;
1871         int xid;
1872
1873         xid = GetXid();
1874 /* BB add check for wbc flags */
1875         page_cache_get(page);
1876         if (!PageUptodate(page))
1877                 cFYI(1, "ppw - page not up to date");
1878
1879         /*
1880          * Set the "writeback" flag, and clear "dirty" in the radix tree.
1881          *
1882          * A writepage() implementation always needs to do either this,
1883          * or re-dirty the page with "redirty_page_for_writepage()" in
1884          * the case of a failure.
1885          *
1886          * Just unlocking the page will cause the radix tree tag-bits
1887          * to fail to update with the state of the page correctly.
1888          */
1889         set_page_writeback(page);
1890 retry_write:
1891         rc = cifs_partialpagewrite(page, 0, PAGE_CACHE_SIZE);
1892         if (rc == -EAGAIN && wbc->sync_mode == WB_SYNC_ALL)
1893                 goto retry_write;
1894         else if (rc == -EAGAIN)
1895                 redirty_page_for_writepage(wbc, page);
1896         else if (rc != 0)
1897                 SetPageError(page);
1898         else
1899                 SetPageUptodate(page);
1900         end_page_writeback(page);
1901         page_cache_release(page);
1902         FreeXid(xid);
1903         return rc;
1904 }
1905
1906 static int cifs_writepage(struct page *page, struct writeback_control *wbc)
1907 {
1908         int rc = cifs_writepage_locked(page, wbc);
1909         unlock_page(page);
1910         return rc;
1911 }
1912
1913 static int cifs_write_end(struct file *file, struct address_space *mapping,
1914                         loff_t pos, unsigned len, unsigned copied,
1915                         struct page *page, void *fsdata)
1916 {
1917         int rc;
1918         struct inode *inode = mapping->host;
1919         struct cifsFileInfo *cfile = file->private_data;
1920         struct cifs_sb_info *cifs_sb = CIFS_SB(cfile->dentry->d_sb);
1921         __u32 pid;
1922
1923         if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_RWPIDFORWARD)
1924                 pid = cfile->pid;
1925         else
1926                 pid = current->tgid;
1927
1928         cFYI(1, "write_end for page %p from pos %lld with %d bytes",
1929                  page, pos, copied);
1930
1931         if (PageChecked(page)) {
1932                 if (copied == len)
1933                         SetPageUptodate(page);
1934                 ClearPageChecked(page);
1935         } else if (!PageUptodate(page) && copied == PAGE_CACHE_SIZE)
1936                 SetPageUptodate(page);
1937
1938         if (!PageUptodate(page)) {
1939                 char *page_data;
1940                 unsigned offset = pos & (PAGE_CACHE_SIZE - 1);
1941                 int xid;
1942
1943                 xid = GetXid();
1944                 /* this is probably better than directly calling
1945                    partialpage_write since in this function the file handle is
1946                    known which we might as well leverage */
1947                 /* BB check if anything else missing out of ppw
1948                    such as updating last write time */
1949                 page_data = kmap(page);
1950                 rc = cifs_write(cfile, pid, page_data + offset, copied, &pos);
1951                 /* if (rc < 0) should we set writebehind rc? */
1952                 kunmap(page);
1953
1954                 FreeXid(xid);
1955         } else {
1956                 rc = copied;
1957                 pos += copied;
1958                 set_page_dirty(page);
1959         }
1960
1961         if (rc > 0) {
1962                 spin_lock(&inode->i_lock);
1963                 if (pos > inode->i_size)
1964                         i_size_write(inode, pos);
1965                 spin_unlock(&inode->i_lock);
1966         }
1967
1968         unlock_page(page);
1969         page_cache_release(page);
1970
1971         return rc;
1972 }
1973
1974 int cifs_strict_fsync(struct file *file, loff_t start, loff_t end,
1975                       int datasync)
1976 {
1977         int xid;
1978         int rc = 0;
1979         struct cifs_tcon *tcon;
1980         struct cifsFileInfo *smbfile = file->private_data;
1981         struct inode *inode = file->f_path.dentry->d_inode;
1982         struct cifs_sb_info *cifs_sb = CIFS_SB(inode->i_sb);
1983
1984         rc = filemap_write_and_wait_range(inode->i_mapping, start, end);
1985         if (rc)
1986                 return rc;
1987         mutex_lock(&inode->i_mutex);
1988
1989         xid = GetXid();
1990
1991         cFYI(1, "Sync file - name: %s datasync: 0x%x",
1992                 file->f_path.dentry->d_name.name, datasync);
1993
1994         if (!CIFS_I(inode)->clientCanCacheRead) {
1995                 rc = cifs_invalidate_mapping(inode);
1996                 if (rc) {
1997                         cFYI(1, "rc: %d during invalidate phase", rc);
1998                         rc = 0; /* don't care about it in fsync */
1999                 }
2000         }
2001
2002         tcon = tlink_tcon(smbfile->tlink);
2003         if (!(cifs_sb->mnt_cifs_flags & CIFS_MOUNT_NOSSYNC))
2004                 rc = CIFSSMBFlush(xid, tcon, smbfile->netfid);
2005
2006         FreeXid(xid);
2007         mutex_unlock(&inode->i_mutex);
2008         return rc;
2009 }
2010
2011 int cifs_fsync(struct file *file, loff_t start, loff_t end, int datasync)
2012 {
2013         int xid;
2014         int rc = 0;
2015         struct cifs_tcon *tcon;
2016         struct cifsFileInfo *smbfile = file->private_data;
2017         struct cifs_sb_info *cifs_sb = CIFS_SB(file->f_path.dentry->d_sb);
2018         struct inode *inode = file->f_mapping->host;
2019
2020         rc = filemap_write_and_wait_range(inode->i_mapping, start, end);
2021         if (rc)
2022                 return rc;
2023         mutex_lock(&inode->i_mutex);
2024
2025         xid = GetXid();
2026
2027         cFYI(1, "Sync file - name: %s datasync: 0x%x",
2028                 file->f_path.dentry->d_name.name, datasync);
2029
2030         tcon = tlink_tcon(smbfile->tlink);
2031         if (!(cifs_sb->mnt_cifs_flags & CIFS_MOUNT_NOSSYNC))
2032                 rc = CIFSSMBFlush(xid, tcon, smbfile->netfid);
2033
2034         FreeXid(xid);
2035         mutex_unlock(&inode->i_mutex);
2036         return rc;
2037 }
2038
2039 /*
2040  * As file closes, flush all cached write data for this inode checking
2041  * for write behind errors.
2042  */
2043 int cifs_flush(struct file *file, fl_owner_t id)
2044 {
2045         struct inode *inode = file->f_path.dentry->d_inode;
2046         int rc = 0;
2047
2048         if (file->f_mode & FMODE_WRITE)
2049                 rc = filemap_write_and_wait(inode->i_mapping);
2050
2051         cFYI(1, "Flush inode %p file %p rc %d", inode, file, rc);
2052
2053         return rc;
2054 }
2055
2056 static int
2057 cifs_write_allocate_pages(struct page **pages, unsigned long num_pages)
2058 {
2059         int rc = 0;
2060         unsigned long i;
2061
2062         for (i = 0; i < num_pages; i++) {
2063                 pages[i] = alloc_page(__GFP_HIGHMEM);
2064                 if (!pages[i]) {
2065                         /*
2066                          * save number of pages we have already allocated and
2067                          * return with ENOMEM error
2068                          */
2069                         num_pages = i;
2070                         rc = -ENOMEM;
2071                         goto error;
2072                 }
2073         }
2074
2075         return rc;
2076
2077 error:
2078         for (i = 0; i < num_pages; i++)
2079                 put_page(pages[i]);
2080         return rc;
2081 }
2082
2083 static inline
2084 size_t get_numpages(const size_t wsize, const size_t len, size_t *cur_len)
2085 {
2086         size_t num_pages;
2087         size_t clen;
2088
2089         clen = min_t(const size_t, len, wsize);
2090         num_pages = clen / PAGE_CACHE_SIZE;
2091         if (clen % PAGE_CACHE_SIZE)
2092                 num_pages++;
2093
2094         if (cur_len)
2095                 *cur_len = clen;
2096
2097         return num_pages;
2098 }
2099
2100 static ssize_t
2101 cifs_iovec_write(struct file *file, const struct iovec *iov,
2102                  unsigned long nr_segs, loff_t *poffset)
2103 {
2104         unsigned int written;
2105         unsigned long num_pages, npages, i;
2106         size_t copied, len, cur_len;
2107         ssize_t total_written = 0;
2108         struct kvec *to_send;
2109         struct page **pages;
2110         struct iov_iter it;
2111         struct inode *inode;
2112         struct cifsFileInfo *open_file;
2113         struct cifs_tcon *pTcon;
2114         struct cifs_sb_info *cifs_sb;
2115         struct cifs_io_parms io_parms;
2116         int xid, rc;
2117         __u32 pid;
2118
2119         len = iov_length(iov, nr_segs);
2120         if (!len)
2121                 return 0;
2122
2123         rc = generic_write_checks(file, poffset, &len, 0);
2124         if (rc)
2125                 return rc;
2126
2127         cifs_sb = CIFS_SB(file->f_path.dentry->d_sb);
2128         num_pages = get_numpages(cifs_sb->wsize, len, &cur_len);
2129
2130         pages = kmalloc(sizeof(struct pages *)*num_pages, GFP_KERNEL);
2131         if (!pages)
2132                 return -ENOMEM;
2133
2134         to_send = kmalloc(sizeof(struct kvec)*(num_pages + 1), GFP_KERNEL);
2135         if (!to_send) {
2136                 kfree(pages);
2137                 return -ENOMEM;
2138         }
2139
2140         rc = cifs_write_allocate_pages(pages, num_pages);
2141         if (rc) {
2142                 kfree(pages);
2143                 kfree(to_send);
2144                 return rc;
2145         }
2146
2147         xid = GetXid();
2148         open_file = file->private_data;
2149
2150         if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_RWPIDFORWARD)
2151                 pid = open_file->pid;
2152         else
2153                 pid = current->tgid;
2154
2155         pTcon = tlink_tcon(open_file->tlink);
2156         inode = file->f_path.dentry->d_inode;
2157
2158         iov_iter_init(&it, iov, nr_segs, len, 0);
2159         npages = num_pages;
2160
2161         do {
2162                 size_t save_len = cur_len;
2163                 for (i = 0; i < npages; i++) {
2164                         copied = min_t(const size_t, cur_len, PAGE_CACHE_SIZE);
2165                         copied = iov_iter_copy_from_user(pages[i], &it, 0,
2166                                                          copied);
2167                         cur_len -= copied;
2168                         iov_iter_advance(&it, copied);
2169                         to_send[i+1].iov_base = kmap(pages[i]);
2170                         to_send[i+1].iov_len = copied;
2171                 }
2172
2173                 cur_len = save_len - cur_len;
2174
2175                 do {
2176                         if (open_file->invalidHandle) {
2177                                 rc = cifs_reopen_file(open_file, false);
2178                                 if (rc != 0)
2179                                         break;
2180                         }
2181                         io_parms.netfid = open_file->netfid;
2182                         io_parms.pid = pid;
2183                         io_parms.tcon = pTcon;
2184                         io_parms.offset = *poffset;
2185                         io_parms.length = cur_len;
2186                         rc = CIFSSMBWrite2(xid, &io_parms, &written, to_send,
2187                                            npages, 0);
2188                 } while (rc == -EAGAIN);
2189
2190                 for (i = 0; i < npages; i++)
2191                         kunmap(pages[i]);
2192
2193                 if (written) {
2194                         len -= written;
2195                         total_written += written;
2196                         cifs_update_eof(CIFS_I(inode), *poffset, written);
2197                         *poffset += written;
2198                 } else if (rc < 0) {
2199                         if (!total_written)
2200                                 total_written = rc;
2201                         break;
2202                 }
2203
2204                 /* get length and number of kvecs of the next write */
2205                 npages = get_numpages(cifs_sb->wsize, len, &cur_len);
2206         } while (len > 0);
2207
2208         if (total_written > 0) {
2209                 spin_lock(&inode->i_lock);
2210                 if (*poffset > inode->i_size)
2211                         i_size_write(inode, *poffset);
2212                 spin_unlock(&inode->i_lock);
2213         }
2214
2215         cifs_stats_bytes_written(pTcon, total_written);
2216         mark_inode_dirty_sync(inode);
2217
2218         for (i = 0; i < num_pages; i++)
2219                 put_page(pages[i]);
2220         kfree(to_send);
2221         kfree(pages);
2222         FreeXid(xid);
2223         return total_written;
2224 }
2225
2226 ssize_t cifs_user_writev(struct kiocb *iocb, const struct iovec *iov,
2227                                 unsigned long nr_segs, loff_t pos)
2228 {
2229         ssize_t written;
2230         struct inode *inode;
2231
2232         inode = iocb->ki_filp->f_path.dentry->d_inode;
2233
2234         /*
2235          * BB - optimize the way when signing is disabled. We can drop this
2236          * extra memory-to-memory copying and use iovec buffers for constructing
2237          * write request.
2238          */
2239
2240         written = cifs_iovec_write(iocb->ki_filp, iov, nr_segs, &pos);
2241         if (written > 0) {
2242                 CIFS_I(inode)->invalid_mapping = true;
2243                 iocb->ki_pos = pos;
2244         }
2245
2246         return written;
2247 }
2248
2249 ssize_t cifs_strict_writev(struct kiocb *iocb, const struct iovec *iov,
2250                            unsigned long nr_segs, loff_t pos)
2251 {
2252         struct inode *inode;
2253
2254         inode = iocb->ki_filp->f_path.dentry->d_inode;
2255
2256         if (CIFS_I(inode)->clientCanCacheAll)
2257                 return generic_file_aio_write(iocb, iov, nr_segs, pos);
2258
2259         /*
2260          * In strict cache mode we need to write the data to the server exactly
2261          * from the pos to pos+len-1 rather than flush all affected pages
2262          * because it may cause a error with mandatory locks on these pages but
2263          * not on the region from pos to ppos+len-1.
2264          */
2265
2266         return cifs_user_writev(iocb, iov, nr_segs, pos);
2267 }
2268
2269 static ssize_t
2270 cifs_iovec_read(struct file *file, const struct iovec *iov,
2271                  unsigned long nr_segs, loff_t *poffset)
2272 {
2273         int rc;
2274         int xid;
2275         ssize_t total_read;
2276         unsigned int bytes_read = 0;
2277         size_t len, cur_len;
2278         int iov_offset = 0;
2279         struct cifs_sb_info *cifs_sb;
2280         struct cifs_tcon *pTcon;
2281         struct cifsFileInfo *open_file;
2282         struct smb_com_read_rsp *pSMBr;
2283         struct cifs_io_parms io_parms;
2284         char *read_data;
2285         unsigned int rsize;
2286         __u32 pid;
2287
2288         if (!nr_segs)
2289                 return 0;
2290
2291         len = iov_length(iov, nr_segs);
2292         if (!len)
2293                 return 0;
2294
2295         xid = GetXid();
2296         cifs_sb = CIFS_SB(file->f_path.dentry->d_sb);
2297
2298         /* FIXME: set up handlers for larger reads and/or convert to async */
2299         rsize = min_t(unsigned int, cifs_sb->rsize, CIFSMaxBufSize);
2300
2301         open_file = file->private_data;
2302         pTcon = tlink_tcon(open_file->tlink);
2303
2304         if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_RWPIDFORWARD)
2305                 pid = open_file->pid;
2306         else
2307                 pid = current->tgid;
2308
2309         if ((file->f_flags & O_ACCMODE) == O_WRONLY)
2310                 cFYI(1, "attempting read on write only file instance");
2311
2312         for (total_read = 0; total_read < len; total_read += bytes_read) {
2313                 cur_len = min_t(const size_t, len - total_read, rsize);
2314                 rc = -EAGAIN;
2315                 read_data = NULL;
2316
2317                 while (rc == -EAGAIN) {
2318                         int buf_type = CIFS_NO_BUFFER;
2319                         if (open_file->invalidHandle) {
2320                                 rc = cifs_reopen_file(open_file, true);
2321                                 if (rc != 0)
2322                                         break;
2323                         }
2324                         io_parms.netfid = open_file->netfid;
2325                         io_parms.pid = pid;
2326                         io_parms.tcon = pTcon;
2327                         io_parms.offset = *poffset;
2328                         io_parms.length = cur_len;
2329                         rc = CIFSSMBRead(xid, &io_parms, &bytes_read,
2330                                          &read_data, &buf_type);
2331                         pSMBr = (struct smb_com_read_rsp *)read_data;
2332                         if (read_data) {
2333                                 char *data_offset = read_data + 4 +
2334                                                 le16_to_cpu(pSMBr->DataOffset);
2335                                 if (memcpy_toiovecend(iov, data_offset,
2336                                                       iov_offset, bytes_read))
2337                                         rc = -EFAULT;
2338                                 if (buf_type == CIFS_SMALL_BUFFER)
2339                                         cifs_small_buf_release(read_data);
2340                                 else if (buf_type == CIFS_LARGE_BUFFER)
2341                                         cifs_buf_release(read_data);
2342                                 read_data = NULL;
2343                                 iov_offset += bytes_read;
2344                         }
2345                 }
2346
2347                 if (rc || (bytes_read == 0)) {
2348                         if (total_read) {
2349                                 break;
2350                         } else {
2351                                 FreeXid(xid);
2352                                 return rc;
2353                         }
2354                 } else {
2355                         cifs_stats_bytes_read(pTcon, bytes_read);
2356                         *poffset += bytes_read;
2357                 }
2358         }
2359
2360         FreeXid(xid);
2361         return total_read;
2362 }
2363
2364 ssize_t cifs_user_readv(struct kiocb *iocb, const struct iovec *iov,
2365                                unsigned long nr_segs, loff_t pos)
2366 {
2367         ssize_t read;
2368
2369         read = cifs_iovec_read(iocb->ki_filp, iov, nr_segs, &pos);
2370         if (read > 0)
2371                 iocb->ki_pos = pos;
2372
2373         return read;
2374 }
2375
2376 ssize_t cifs_strict_readv(struct kiocb *iocb, const struct iovec *iov,
2377                           unsigned long nr_segs, loff_t pos)
2378 {
2379         struct inode *inode;
2380
2381         inode = iocb->ki_filp->f_path.dentry->d_inode;
2382
2383         if (CIFS_I(inode)->clientCanCacheRead)
2384                 return generic_file_aio_read(iocb, iov, nr_segs, pos);
2385
2386         /*
2387          * In strict cache mode we need to read from the server all the time
2388          * if we don't have level II oplock because the server can delay mtime
2389          * change - so we can't make a decision about inode invalidating.
2390          * And we can also fail with pagereading if there are mandatory locks
2391          * on pages affected by this read but not on the region from pos to
2392          * pos+len-1.
2393          */
2394
2395         return cifs_user_readv(iocb, iov, nr_segs, pos);
2396 }
2397
2398 static ssize_t cifs_read(struct file *file, char *read_data, size_t read_size,
2399                          loff_t *poffset)
2400 {
2401         int rc = -EACCES;
2402         unsigned int bytes_read = 0;
2403         unsigned int total_read;
2404         unsigned int current_read_size;
2405         unsigned int rsize;
2406         struct cifs_sb_info *cifs_sb;
2407         struct cifs_tcon *pTcon;
2408         int xid;
2409         char *current_offset;
2410         struct cifsFileInfo *open_file;
2411         struct cifs_io_parms io_parms;
2412         int buf_type = CIFS_NO_BUFFER;
2413         __u32 pid;
2414
2415         xid = GetXid();
2416         cifs_sb = CIFS_SB(file->f_path.dentry->d_sb);
2417
2418         /* FIXME: set up handlers for larger reads and/or convert to async */
2419         rsize = min_t(unsigned int, cifs_sb->rsize, CIFSMaxBufSize);
2420
2421         if (file->private_data == NULL) {
2422                 rc = -EBADF;
2423                 FreeXid(xid);
2424                 return rc;
2425         }
2426         open_file = file->private_data;
2427         pTcon = tlink_tcon(open_file->tlink);
2428
2429         if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_RWPIDFORWARD)
2430                 pid = open_file->pid;
2431         else
2432                 pid = current->tgid;
2433
2434         if ((file->f_flags & O_ACCMODE) == O_WRONLY)
2435                 cFYI(1, "attempting read on write only file instance");
2436
2437         for (total_read = 0, current_offset = read_data;
2438              read_size > total_read;
2439              total_read += bytes_read, current_offset += bytes_read) {
2440                 current_read_size = min_t(uint, read_size - total_read, rsize);
2441
2442                 /* For windows me and 9x we do not want to request more
2443                 than it negotiated since it will refuse the read then */
2444                 if ((pTcon->ses) &&
2445                         !(pTcon->ses->capabilities & CAP_LARGE_FILES)) {
2446                         current_read_size = min_t(uint, current_read_size,
2447                                         CIFSMaxBufSize);
2448                 }
2449                 rc = -EAGAIN;
2450                 while (rc == -EAGAIN) {
2451                         if (open_file->invalidHandle) {
2452                                 rc = cifs_reopen_file(open_file, true);
2453                                 if (rc != 0)
2454                                         break;
2455                         }
2456                         io_parms.netfid = open_file->netfid;
2457                         io_parms.pid = pid;
2458                         io_parms.tcon = pTcon;
2459                         io_parms.offset = *poffset;
2460                         io_parms.length = current_read_size;
2461                         rc = CIFSSMBRead(xid, &io_parms, &bytes_read,
2462                                          &current_offset, &buf_type);
2463                 }
2464                 if (rc || (bytes_read == 0)) {
2465                         if (total_read) {
2466                                 break;
2467                         } else {
2468                                 FreeXid(xid);
2469                                 return rc;
2470                         }
2471                 } else {
2472                         cifs_stats_bytes_read(pTcon, total_read);
2473                         *poffset += bytes_read;
2474                 }
2475         }
2476         FreeXid(xid);
2477         return total_read;
2478 }
2479
2480 /*
2481  * If the page is mmap'ed into a process' page tables, then we need to make
2482  * sure that it doesn't change while being written back.
2483  */
2484 static int
2485 cifs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2486 {
2487         struct page *page = vmf->page;
2488
2489         lock_page(page);
2490         return VM_FAULT_LOCKED;
2491 }
2492
2493 static struct vm_operations_struct cifs_file_vm_ops = {
2494         .fault = filemap_fault,
2495         .page_mkwrite = cifs_page_mkwrite,
2496 };
2497
2498 int cifs_file_strict_mmap(struct file *file, struct vm_area_struct *vma)
2499 {
2500         int rc, xid;
2501         struct inode *inode = file->f_path.dentry->d_inode;
2502
2503         xid = GetXid();
2504
2505         if (!CIFS_I(inode)->clientCanCacheRead) {
2506                 rc = cifs_invalidate_mapping(inode);
2507                 if (rc)
2508                         return rc;
2509         }
2510
2511         rc = generic_file_mmap(file, vma);
2512         if (rc == 0)
2513                 vma->vm_ops = &cifs_file_vm_ops;
2514         FreeXid(xid);
2515         return rc;
2516 }
2517
2518 int cifs_file_mmap(struct file *file, struct vm_area_struct *vma)
2519 {
2520         int rc, xid;
2521
2522         xid = GetXid();
2523         rc = cifs_revalidate_file(file);
2524         if (rc) {
2525                 cFYI(1, "Validation prior to mmap failed, error=%d", rc);
2526                 FreeXid(xid);
2527                 return rc;
2528         }
2529         rc = generic_file_mmap(file, vma);
2530         if (rc == 0)
2531                 vma->vm_ops = &cifs_file_vm_ops;
2532         FreeXid(xid);
2533         return rc;
2534 }
2535
2536 static int cifs_readpages(struct file *file, struct address_space *mapping,
2537         struct list_head *page_list, unsigned num_pages)
2538 {
2539         int rc;
2540         struct list_head tmplist;
2541         struct cifsFileInfo *open_file = file->private_data;
2542         struct cifs_sb_info *cifs_sb = CIFS_SB(file->f_path.dentry->d_sb);
2543         unsigned int rsize = cifs_sb->rsize;
2544         pid_t pid;
2545
2546         /*
2547          * Give up immediately if rsize is too small to read an entire page.
2548          * The VFS will fall back to readpage. We should never reach this
2549          * point however since we set ra_pages to 0 when the rsize is smaller
2550          * than a cache page.
2551          */
2552         if (unlikely(rsize < PAGE_CACHE_SIZE))
2553                 return 0;
2554
2555         /*
2556          * Reads as many pages as possible from fscache. Returns -ENOBUFS
2557          * immediately if the cookie is negative
2558          */
2559         rc = cifs_readpages_from_fscache(mapping->host, mapping, page_list,
2560                                          &num_pages);
2561         if (rc == 0)
2562                 return rc;
2563
2564         if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_RWPIDFORWARD)
2565                 pid = open_file->pid;
2566         else
2567                 pid = current->tgid;
2568
2569         rc = 0;
2570         INIT_LIST_HEAD(&tmplist);
2571
2572         cFYI(1, "%s: file=%p mapping=%p num_pages=%u", __func__, file,
2573                 mapping, num_pages);
2574
2575         /*
2576          * Start with the page at end of list and move it to private
2577          * list. Do the same with any following pages until we hit
2578          * the rsize limit, hit an index discontinuity, or run out of
2579          * pages. Issue the async read and then start the loop again
2580          * until the list is empty.
2581          *
2582          * Note that list order is important. The page_list is in
2583          * the order of declining indexes. When we put the pages in
2584          * the rdata->pages, then we want them in increasing order.
2585          */
2586         while (!list_empty(page_list)) {
2587                 unsigned int bytes = PAGE_CACHE_SIZE;
2588                 unsigned int expected_index;
2589                 unsigned int nr_pages = 1;
2590                 loff_t offset;
2591                 struct page *page, *tpage;
2592                 struct cifs_readdata *rdata;
2593
2594                 page = list_entry(page_list->prev, struct page, lru);
2595
2596                 /*
2597                  * Lock the page and put it in the cache. Since no one else
2598                  * should have access to this page, we're safe to simply set
2599                  * PG_locked without checking it first.
2600                  */
2601                 __set_page_locked(page);
2602                 rc = add_to_page_cache_locked(page, mapping,
2603                                               page->index, GFP_KERNEL);
2604
2605                 /* give up if we can't stick it in the cache */
2606                 if (rc) {
2607                         __clear_page_locked(page);
2608                         break;
2609                 }
2610
2611                 /* move first page to the tmplist */
2612                 offset = (loff_t)page->index << PAGE_CACHE_SHIFT;
2613                 list_move_tail(&page->lru, &tmplist);
2614
2615                 /* now try and add more pages onto the request */
2616                 expected_index = page->index + 1;
2617                 list_for_each_entry_safe_reverse(page, tpage, page_list, lru) {
2618                         /* discontinuity ? */
2619                         if (page->index != expected_index)
2620                                 break;
2621
2622                         /* would this page push the read over the rsize? */
2623                         if (bytes + PAGE_CACHE_SIZE > rsize)
2624                                 break;
2625
2626                         __set_page_locked(page);
2627                         if (add_to_page_cache_locked(page, mapping,
2628                                                 page->index, GFP_KERNEL)) {
2629                                 __clear_page_locked(page);
2630                                 break;
2631                         }
2632                         list_move_tail(&page->lru, &tmplist);
2633                         bytes += PAGE_CACHE_SIZE;
2634                         expected_index++;
2635                         nr_pages++;
2636                 }
2637
2638                 rdata = cifs_readdata_alloc(nr_pages);
2639                 if (!rdata) {
2640                         /* best to give up if we're out of mem */
2641                         list_for_each_entry_safe(page, tpage, &tmplist, lru) {
2642                                 list_del(&page->lru);
2643                                 lru_cache_add_file(page);
2644                                 unlock_page(page);
2645                                 page_cache_release(page);
2646                         }
2647                         rc = -ENOMEM;
2648                         break;
2649                 }
2650
2651                 spin_lock(&cifs_file_list_lock);
2652                 cifsFileInfo_get(open_file);
2653                 spin_unlock(&cifs_file_list_lock);
2654                 rdata->cfile = open_file;
2655                 rdata->mapping = mapping;
2656                 rdata->offset = offset;
2657                 rdata->bytes = bytes;
2658                 rdata->pid = pid;
2659                 list_splice_init(&tmplist, &rdata->pages);
2660
2661                 do {
2662                         if (open_file->invalidHandle) {
2663                                 rc = cifs_reopen_file(open_file, true);
2664                                 if (rc != 0)
2665                                         continue;
2666                         }
2667                         rc = cifs_async_readv(rdata);
2668                 } while (rc == -EAGAIN);
2669
2670                 if (rc != 0) {
2671                         list_for_each_entry_safe(page, tpage, &rdata->pages,
2672                                                  lru) {
2673                                 list_del(&page->lru);
2674                                 lru_cache_add_file(page);
2675                                 unlock_page(page);
2676                                 page_cache_release(page);
2677                         }
2678                         cifs_readdata_free(rdata);
2679                         break;
2680                 }
2681         }
2682
2683         return rc;
2684 }
2685
2686 static int cifs_readpage_worker(struct file *file, struct page *page,
2687         loff_t *poffset)
2688 {
2689         char *read_data;
2690         int rc;
2691
2692         /* Is the page cached? */
2693         rc = cifs_readpage_from_fscache(file->f_path.dentry->d_inode, page);
2694         if (rc == 0)
2695                 goto read_complete;
2696
2697         page_cache_get(page);
2698         read_data = kmap(page);
2699         /* for reads over a certain size could initiate async read ahead */
2700
2701         rc = cifs_read(file, read_data, PAGE_CACHE_SIZE, poffset);
2702
2703         if (rc < 0)
2704                 goto io_error;
2705         else
2706                 cFYI(1, "Bytes read %d", rc);
2707
2708         file->f_path.dentry->d_inode->i_atime =
2709                 current_fs_time(file->f_path.dentry->d_inode->i_sb);
2710
2711         if (PAGE_CACHE_SIZE > rc)
2712                 memset(read_data + rc, 0, PAGE_CACHE_SIZE - rc);
2713
2714         flush_dcache_page(page);
2715         SetPageUptodate(page);
2716
2717         /* send this page to the cache */
2718         cifs_readpage_to_fscache(file->f_path.dentry->d_inode, page);
2719
2720         rc = 0;
2721
2722 io_error:
2723         kunmap(page);
2724         page_cache_release(page);
2725
2726 read_complete:
2727         return rc;
2728 }
2729
2730 static int cifs_readpage(struct file *file, struct page *page)
2731 {
2732         loff_t offset = (loff_t)page->index << PAGE_CACHE_SHIFT;
2733         int rc = -EACCES;
2734         int xid;
2735
2736         xid = GetXid();
2737
2738         if (file->private_data == NULL) {
2739                 rc = -EBADF;
2740                 FreeXid(xid);
2741                 return rc;
2742         }
2743
2744         cFYI(1, "readpage %p at offset %d 0x%x\n",
2745                  page, (int)offset, (int)offset);
2746
2747         rc = cifs_readpage_worker(file, page, &offset);
2748
2749         unlock_page(page);
2750
2751         FreeXid(xid);
2752         return rc;
2753 }
2754
2755 static int is_inode_writable(struct cifsInodeInfo *cifs_inode)
2756 {
2757         struct cifsFileInfo *open_file;
2758
2759         spin_lock(&cifs_file_list_lock);
2760         list_for_each_entry(open_file, &cifs_inode->openFileList, flist) {
2761                 if (OPEN_FMODE(open_file->f_flags) & FMODE_WRITE) {
2762                         spin_unlock(&cifs_file_list_lock);
2763                         return 1;
2764                 }
2765         }
2766         spin_unlock(&cifs_file_list_lock);
2767         return 0;
2768 }
2769
2770 /* We do not want to update the file size from server for inodes
2771    open for write - to avoid races with writepage extending
2772    the file - in the future we could consider allowing
2773    refreshing the inode only on increases in the file size
2774    but this is tricky to do without racing with writebehind
2775    page caching in the current Linux kernel design */
2776 bool is_size_safe_to_change(struct cifsInodeInfo *cifsInode, __u64 end_of_file)
2777 {
2778         if (!cifsInode)
2779                 return true;
2780
2781         if (is_inode_writable(cifsInode)) {
2782                 /* This inode is open for write at least once */
2783                 struct cifs_sb_info *cifs_sb;
2784
2785                 cifs_sb = CIFS_SB(cifsInode->vfs_inode.i_sb);
2786                 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_DIRECT_IO) {
2787                         /* since no page cache to corrupt on directio
2788                         we can change size safely */
2789                         return true;
2790                 }
2791
2792                 if (i_size_read(&cifsInode->vfs_inode) < end_of_file)
2793                         return true;
2794
2795                 return false;
2796         } else
2797                 return true;
2798 }
2799
2800 static int cifs_write_begin(struct file *file, struct address_space *mapping,
2801                         loff_t pos, unsigned len, unsigned flags,
2802                         struct page **pagep, void **fsdata)
2803 {
2804         pgoff_t index = pos >> PAGE_CACHE_SHIFT;
2805         loff_t offset = pos & (PAGE_CACHE_SIZE - 1);
2806         loff_t page_start = pos & PAGE_MASK;
2807         loff_t i_size;
2808         struct page *page;
2809         int rc = 0;
2810
2811         cFYI(1, "write_begin from %lld len %d", (long long)pos, len);
2812
2813         page = grab_cache_page_write_begin(mapping, index, flags);
2814         if (!page) {
2815                 rc = -ENOMEM;
2816                 goto out;
2817         }
2818
2819         if (PageUptodate(page))
2820                 goto out;
2821
2822         /*
2823          * If we write a full page it will be up to date, no need to read from
2824          * the server. If the write is short, we'll end up doing a sync write
2825          * instead.
2826          */
2827         if (len == PAGE_CACHE_SIZE)
2828                 goto out;
2829
2830         /*
2831          * optimize away the read when we have an oplock, and we're not
2832          * expecting to use any of the data we'd be reading in. That
2833          * is, when the page lies beyond the EOF, or straddles the EOF
2834          * and the write will cover all of the existing data.
2835          */
2836         if (CIFS_I(mapping->host)->clientCanCacheRead) {
2837                 i_size = i_size_read(mapping->host);
2838                 if (page_start >= i_size ||
2839                     (offset == 0 && (pos + len) >= i_size)) {
2840                         zero_user_segments(page, 0, offset,
2841                                            offset + len,
2842                                            PAGE_CACHE_SIZE);
2843                         /*
2844                          * PageChecked means that the parts of the page
2845                          * to which we're not writing are considered up
2846                          * to date. Once the data is copied to the
2847                          * page, it can be set uptodate.
2848                          */
2849                         SetPageChecked(page);
2850                         goto out;
2851                 }
2852         }
2853
2854         if ((file->f_flags & O_ACCMODE) != O_WRONLY) {
2855                 /*
2856                  * might as well read a page, it is fast enough. If we get
2857                  * an error, we don't need to return it. cifs_write_end will
2858                  * do a sync write instead since PG_uptodate isn't set.
2859                  */
2860                 cifs_readpage_worker(file, page, &page_start);
2861         } else {
2862                 /* we could try using another file handle if there is one -
2863                    but how would we lock it to prevent close of that handle
2864                    racing with this read? In any case
2865                    this will be written out by write_end so is fine */
2866         }
2867 out:
2868         *pagep = page;
2869         return rc;
2870 }
2871
2872 static int cifs_release_page(struct page *page, gfp_t gfp)
2873 {
2874         if (PagePrivate(page))
2875                 return 0;
2876
2877         return cifs_fscache_release_page(page, gfp);
2878 }
2879
2880 static void cifs_invalidate_page(struct page *page, unsigned long offset)
2881 {
2882         struct cifsInodeInfo *cifsi = CIFS_I(page->mapping->host);
2883
2884         if (offset == 0)
2885                 cifs_fscache_invalidate_page(page, &cifsi->vfs_inode);
2886 }
2887
2888 static int cifs_launder_page(struct page *page)
2889 {
2890         int rc = 0;
2891         loff_t range_start = page_offset(page);
2892         loff_t range_end = range_start + (loff_t)(PAGE_CACHE_SIZE - 1);
2893         struct writeback_control wbc = {
2894                 .sync_mode = WB_SYNC_ALL,
2895                 .nr_to_write = 0,
2896                 .range_start = range_start,
2897                 .range_end = range_end,
2898         };
2899
2900         cFYI(1, "Launder page: %p", page);
2901
2902         if (clear_page_dirty_for_io(page))
2903                 rc = cifs_writepage_locked(page, &wbc);
2904
2905         cifs_fscache_invalidate_page(page, page->mapping->host);
2906         return rc;
2907 }
2908
2909 void cifs_oplock_break(struct work_struct *work)
2910 {
2911         struct cifsFileInfo *cfile = container_of(work, struct cifsFileInfo,
2912                                                   oplock_break);
2913         struct inode *inode = cfile->dentry->d_inode;
2914         struct cifsInodeInfo *cinode = CIFS_I(inode);
2915         int rc = 0;
2916
2917         if (inode && S_ISREG(inode->i_mode)) {
2918                 if (cinode->clientCanCacheRead)
2919                         break_lease(inode, O_RDONLY);
2920                 else
2921                         break_lease(inode, O_WRONLY);
2922                 rc = filemap_fdatawrite(inode->i_mapping);
2923                 if (cinode->clientCanCacheRead == 0) {
2924                         rc = filemap_fdatawait(inode->i_mapping);
2925                         mapping_set_error(inode->i_mapping, rc);
2926                         invalidate_remote_inode(inode);
2927                 }
2928                 cFYI(1, "Oplock flush inode %p rc %d", inode, rc);
2929         }
2930
2931         rc = cifs_push_locks(cfile);
2932         if (rc)
2933                 cERROR(1, "Push locks rc = %d", rc);
2934
2935         /*
2936          * releasing stale oplock after recent reconnect of smb session using
2937          * a now incorrect file handle is not a data integrity issue but do
2938          * not bother sending an oplock release if session to server still is
2939          * disconnected since oplock already released by the server
2940          */
2941         if (!cfile->oplock_break_cancelled) {
2942                 rc = CIFSSMBLock(0, tlink_tcon(cfile->tlink), cfile->netfid,
2943                                  current->tgid, 0, 0, 0, 0,
2944                                  LOCKING_ANDX_OPLOCK_RELEASE, false,
2945                                  cinode->clientCanCacheRead ? 1 : 0);
2946                 cFYI(1, "Oplock release rc = %d", rc);
2947         }
2948 }
2949
2950 const struct address_space_operations cifs_addr_ops = {
2951         .readpage = cifs_readpage,
2952         .readpages = cifs_readpages,
2953         .writepage = cifs_writepage,
2954         .writepages = cifs_writepages,
2955         .write_begin = cifs_write_begin,
2956         .write_end = cifs_write_end,
2957         .set_page_dirty = __set_page_dirty_nobuffers,
2958         .releasepage = cifs_release_page,
2959         .invalidatepage = cifs_invalidate_page,
2960         .launder_page = cifs_launder_page,
2961 };
2962
2963 /*
2964  * cifs_readpages requires the server to support a buffer large enough to
2965  * contain the header plus one complete page of data.  Otherwise, we need
2966  * to leave cifs_readpages out of the address space operations.
2967  */
2968 const struct address_space_operations cifs_addr_ops_smallbuf = {
2969         .readpage = cifs_readpage,
2970         .writepage = cifs_writepage,
2971         .writepages = cifs_writepages,
2972         .write_begin = cifs_write_begin,
2973         .write_end = cifs_write_end,
2974         .set_page_dirty = __set_page_dirty_nobuffers,
2975         .releasepage = cifs_release_page,
2976         .invalidatepage = cifs_invalidate_page,
2977         .launder_page = cifs_launder_page,
2978 };