block: don't mark buffers beyond end of disk as mapped
[pandora-kernel.git] / fs / buffer.c
1 /*
2  *  linux/fs/buffer.c
3  *
4  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
5  */
6
7 /*
8  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9  *
10  * Removed a lot of unnecessary code and simplified things now that
11  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12  *
13  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
14  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
15  *
16  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17  *
18  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19  */
20
21 #include <linux/kernel.h>
22 #include <linux/syscalls.h>
23 #include <linux/fs.h>
24 #include <linux/mm.h>
25 #include <linux/percpu.h>
26 #include <linux/slab.h>
27 #include <linux/capability.h>
28 #include <linux/blkdev.h>
29 #include <linux/file.h>
30 #include <linux/quotaops.h>
31 #include <linux/highmem.h>
32 #include <linux/module.h>
33 #include <linux/writeback.h>
34 #include <linux/hash.h>
35 #include <linux/suspend.h>
36 #include <linux/buffer_head.h>
37 #include <linux/task_io_accounting_ops.h>
38 #include <linux/bio.h>
39 #include <linux/notifier.h>
40 #include <linux/cpu.h>
41 #include <linux/bitops.h>
42 #include <linux/mpage.h>
43 #include <linux/bit_spinlock.h>
44 #include <linux/cleancache.h>
45
46 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
47
48 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
49
50 inline void
51 init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
52 {
53         bh->b_end_io = handler;
54         bh->b_private = private;
55 }
56 EXPORT_SYMBOL(init_buffer);
57
58 static int sleep_on_buffer(void *word)
59 {
60         io_schedule();
61         return 0;
62 }
63
64 void __lock_buffer(struct buffer_head *bh)
65 {
66         wait_on_bit_lock(&bh->b_state, BH_Lock, sleep_on_buffer,
67                                                         TASK_UNINTERRUPTIBLE);
68 }
69 EXPORT_SYMBOL(__lock_buffer);
70
71 void unlock_buffer(struct buffer_head *bh)
72 {
73         clear_bit_unlock(BH_Lock, &bh->b_state);
74         smp_mb__after_clear_bit();
75         wake_up_bit(&bh->b_state, BH_Lock);
76 }
77 EXPORT_SYMBOL(unlock_buffer);
78
79 /*
80  * Block until a buffer comes unlocked.  This doesn't stop it
81  * from becoming locked again - you have to lock it yourself
82  * if you want to preserve its state.
83  */
84 void __wait_on_buffer(struct buffer_head * bh)
85 {
86         wait_on_bit(&bh->b_state, BH_Lock, sleep_on_buffer, TASK_UNINTERRUPTIBLE);
87 }
88 EXPORT_SYMBOL(__wait_on_buffer);
89
90 static void
91 __clear_page_buffers(struct page *page)
92 {
93         ClearPagePrivate(page);
94         set_page_private(page, 0);
95         page_cache_release(page);
96 }
97
98
99 static int quiet_error(struct buffer_head *bh)
100 {
101         if (!test_bit(BH_Quiet, &bh->b_state) && printk_ratelimit())
102                 return 0;
103         return 1;
104 }
105
106
107 static void buffer_io_error(struct buffer_head *bh)
108 {
109         char b[BDEVNAME_SIZE];
110         printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
111                         bdevname(bh->b_bdev, b),
112                         (unsigned long long)bh->b_blocknr);
113 }
114
115 /*
116  * End-of-IO handler helper function which does not touch the bh after
117  * unlocking it.
118  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
119  * a race there is benign: unlock_buffer() only use the bh's address for
120  * hashing after unlocking the buffer, so it doesn't actually touch the bh
121  * itself.
122  */
123 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
124 {
125         if (uptodate) {
126                 set_buffer_uptodate(bh);
127         } else {
128                 /* This happens, due to failed READA attempts. */
129                 clear_buffer_uptodate(bh);
130         }
131         unlock_buffer(bh);
132 }
133
134 /*
135  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
136  * unlock the buffer. This is what ll_rw_block uses too.
137  */
138 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
139 {
140         __end_buffer_read_notouch(bh, uptodate);
141         put_bh(bh);
142 }
143 EXPORT_SYMBOL(end_buffer_read_sync);
144
145 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
146 {
147         char b[BDEVNAME_SIZE];
148
149         if (uptodate) {
150                 set_buffer_uptodate(bh);
151         } else {
152                 if (!quiet_error(bh)) {
153                         buffer_io_error(bh);
154                         printk(KERN_WARNING "lost page write due to "
155                                         "I/O error on %s\n",
156                                        bdevname(bh->b_bdev, b));
157                 }
158                 set_buffer_write_io_error(bh);
159                 clear_buffer_uptodate(bh);
160         }
161         unlock_buffer(bh);
162         put_bh(bh);
163 }
164 EXPORT_SYMBOL(end_buffer_write_sync);
165
166 /*
167  * Various filesystems appear to want __find_get_block to be non-blocking.
168  * But it's the page lock which protects the buffers.  To get around this,
169  * we get exclusion from try_to_free_buffers with the blockdev mapping's
170  * private_lock.
171  *
172  * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
173  * may be quite high.  This code could TryLock the page, and if that
174  * succeeds, there is no need to take private_lock. (But if
175  * private_lock is contended then so is mapping->tree_lock).
176  */
177 static struct buffer_head *
178 __find_get_block_slow(struct block_device *bdev, sector_t block)
179 {
180         struct inode *bd_inode = bdev->bd_inode;
181         struct address_space *bd_mapping = bd_inode->i_mapping;
182         struct buffer_head *ret = NULL;
183         pgoff_t index;
184         struct buffer_head *bh;
185         struct buffer_head *head;
186         struct page *page;
187         int all_mapped = 1;
188
189         index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
190         page = find_get_page(bd_mapping, index);
191         if (!page)
192                 goto out;
193
194         spin_lock(&bd_mapping->private_lock);
195         if (!page_has_buffers(page))
196                 goto out_unlock;
197         head = page_buffers(page);
198         bh = head;
199         do {
200                 if (!buffer_mapped(bh))
201                         all_mapped = 0;
202                 else if (bh->b_blocknr == block) {
203                         ret = bh;
204                         get_bh(bh);
205                         goto out_unlock;
206                 }
207                 bh = bh->b_this_page;
208         } while (bh != head);
209
210         /* we might be here because some of the buffers on this page are
211          * not mapped.  This is due to various races between
212          * file io on the block device and getblk.  It gets dealt with
213          * elsewhere, don't buffer_error if we had some unmapped buffers
214          */
215         if (all_mapped) {
216                 char b[BDEVNAME_SIZE];
217
218                 printk("__find_get_block_slow() failed. "
219                         "block=%llu, b_blocknr=%llu\n",
220                         (unsigned long long)block,
221                         (unsigned long long)bh->b_blocknr);
222                 printk("b_state=0x%08lx, b_size=%zu\n",
223                         bh->b_state, bh->b_size);
224                 printk("device %s blocksize: %d\n", bdevname(bdev, b),
225                         1 << bd_inode->i_blkbits);
226         }
227 out_unlock:
228         spin_unlock(&bd_mapping->private_lock);
229         page_cache_release(page);
230 out:
231         return ret;
232 }
233
234 /* If invalidate_buffers() will trash dirty buffers, it means some kind
235    of fs corruption is going on. Trashing dirty data always imply losing
236    information that was supposed to be just stored on the physical layer
237    by the user.
238
239    Thus invalidate_buffers in general usage is not allwowed to trash
240    dirty buffers. For example ioctl(FLSBLKBUF) expects dirty data to
241    be preserved.  These buffers are simply skipped.
242   
243    We also skip buffers which are still in use.  For example this can
244    happen if a userspace program is reading the block device.
245
246    NOTE: In the case where the user removed a removable-media-disk even if
247    there's still dirty data not synced on disk (due a bug in the device driver
248    or due an error of the user), by not destroying the dirty buffers we could
249    generate corruption also on the next media inserted, thus a parameter is
250    necessary to handle this case in the most safe way possible (trying
251    to not corrupt also the new disk inserted with the data belonging to
252    the old now corrupted disk). Also for the ramdisk the natural thing
253    to do in order to release the ramdisk memory is to destroy dirty buffers.
254
255    These are two special cases. Normal usage imply the device driver
256    to issue a sync on the device (without waiting I/O completion) and
257    then an invalidate_buffers call that doesn't trash dirty buffers.
258
259    For handling cache coherency with the blkdev pagecache the 'update' case
260    is been introduced. It is needed to re-read from disk any pinned
261    buffer. NOTE: re-reading from disk is destructive so we can do it only
262    when we assume nobody is changing the buffercache under our I/O and when
263    we think the disk contains more recent information than the buffercache.
264    The update == 1 pass marks the buffers we need to update, the update == 2
265    pass does the actual I/O. */
266 void invalidate_bdev(struct block_device *bdev)
267 {
268         struct address_space *mapping = bdev->bd_inode->i_mapping;
269
270         if (mapping->nrpages == 0)
271                 return;
272
273         invalidate_bh_lrus();
274         lru_add_drain_all();    /* make sure all lru add caches are flushed */
275         invalidate_mapping_pages(mapping, 0, -1);
276         /* 99% of the time, we don't need to flush the cleancache on the bdev.
277          * But, for the strange corners, lets be cautious
278          */
279         cleancache_flush_inode(mapping);
280 }
281 EXPORT_SYMBOL(invalidate_bdev);
282
283 /*
284  * Kick the writeback threads then try to free up some ZONE_NORMAL memory.
285  */
286 static void free_more_memory(void)
287 {
288         struct zone *zone;
289         int nid;
290
291         wakeup_flusher_threads(1024, WB_REASON_FREE_MORE_MEM);
292         yield();
293
294         for_each_online_node(nid) {
295                 (void)first_zones_zonelist(node_zonelist(nid, GFP_NOFS),
296                                                 gfp_zone(GFP_NOFS), NULL,
297                                                 &zone);
298                 if (zone)
299                         try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0,
300                                                 GFP_NOFS, NULL);
301         }
302 }
303
304 /*
305  * I/O completion handler for block_read_full_page() - pages
306  * which come unlocked at the end of I/O.
307  */
308 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
309 {
310         unsigned long flags;
311         struct buffer_head *first;
312         struct buffer_head *tmp;
313         struct page *page;
314         int page_uptodate = 1;
315
316         BUG_ON(!buffer_async_read(bh));
317
318         page = bh->b_page;
319         if (uptodate) {
320                 set_buffer_uptodate(bh);
321         } else {
322                 clear_buffer_uptodate(bh);
323                 if (!quiet_error(bh))
324                         buffer_io_error(bh);
325                 SetPageError(page);
326         }
327
328         /*
329          * Be _very_ careful from here on. Bad things can happen if
330          * two buffer heads end IO at almost the same time and both
331          * decide that the page is now completely done.
332          */
333         first = page_buffers(page);
334         local_irq_save(flags);
335         bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
336         clear_buffer_async_read(bh);
337         unlock_buffer(bh);
338         tmp = bh;
339         do {
340                 if (!buffer_uptodate(tmp))
341                         page_uptodate = 0;
342                 if (buffer_async_read(tmp)) {
343                         BUG_ON(!buffer_locked(tmp));
344                         goto still_busy;
345                 }
346                 tmp = tmp->b_this_page;
347         } while (tmp != bh);
348         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
349         local_irq_restore(flags);
350
351         /*
352          * If none of the buffers had errors and they are all
353          * uptodate then we can set the page uptodate.
354          */
355         if (page_uptodate && !PageError(page))
356                 SetPageUptodate(page);
357         unlock_page(page);
358         return;
359
360 still_busy:
361         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
362         local_irq_restore(flags);
363         return;
364 }
365
366 /*
367  * Completion handler for block_write_full_page() - pages which are unlocked
368  * during I/O, and which have PageWriteback cleared upon I/O completion.
369  */
370 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
371 {
372         char b[BDEVNAME_SIZE];
373         unsigned long flags;
374         struct buffer_head *first;
375         struct buffer_head *tmp;
376         struct page *page;
377
378         BUG_ON(!buffer_async_write(bh));
379
380         page = bh->b_page;
381         if (uptodate) {
382                 set_buffer_uptodate(bh);
383         } else {
384                 if (!quiet_error(bh)) {
385                         buffer_io_error(bh);
386                         printk(KERN_WARNING "lost page write due to "
387                                         "I/O error on %s\n",
388                                bdevname(bh->b_bdev, b));
389                 }
390                 set_bit(AS_EIO, &page->mapping->flags);
391                 set_buffer_write_io_error(bh);
392                 clear_buffer_uptodate(bh);
393                 SetPageError(page);
394         }
395
396         first = page_buffers(page);
397         local_irq_save(flags);
398         bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
399
400         clear_buffer_async_write(bh);
401         unlock_buffer(bh);
402         tmp = bh->b_this_page;
403         while (tmp != bh) {
404                 if (buffer_async_write(tmp)) {
405                         BUG_ON(!buffer_locked(tmp));
406                         goto still_busy;
407                 }
408                 tmp = tmp->b_this_page;
409         }
410         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
411         local_irq_restore(flags);
412         end_page_writeback(page);
413         return;
414
415 still_busy:
416         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
417         local_irq_restore(flags);
418         return;
419 }
420 EXPORT_SYMBOL(end_buffer_async_write);
421
422 /*
423  * If a page's buffers are under async readin (end_buffer_async_read
424  * completion) then there is a possibility that another thread of
425  * control could lock one of the buffers after it has completed
426  * but while some of the other buffers have not completed.  This
427  * locked buffer would confuse end_buffer_async_read() into not unlocking
428  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
429  * that this buffer is not under async I/O.
430  *
431  * The page comes unlocked when it has no locked buffer_async buffers
432  * left.
433  *
434  * PageLocked prevents anyone starting new async I/O reads any of
435  * the buffers.
436  *
437  * PageWriteback is used to prevent simultaneous writeout of the same
438  * page.
439  *
440  * PageLocked prevents anyone from starting writeback of a page which is
441  * under read I/O (PageWriteback is only ever set against a locked page).
442  */
443 static void mark_buffer_async_read(struct buffer_head *bh)
444 {
445         bh->b_end_io = end_buffer_async_read;
446         set_buffer_async_read(bh);
447 }
448
449 static void mark_buffer_async_write_endio(struct buffer_head *bh,
450                                           bh_end_io_t *handler)
451 {
452         bh->b_end_io = handler;
453         set_buffer_async_write(bh);
454 }
455
456 void mark_buffer_async_write(struct buffer_head *bh)
457 {
458         mark_buffer_async_write_endio(bh, end_buffer_async_write);
459 }
460 EXPORT_SYMBOL(mark_buffer_async_write);
461
462
463 /*
464  * fs/buffer.c contains helper functions for buffer-backed address space's
465  * fsync functions.  A common requirement for buffer-based filesystems is
466  * that certain data from the backing blockdev needs to be written out for
467  * a successful fsync().  For example, ext2 indirect blocks need to be
468  * written back and waited upon before fsync() returns.
469  *
470  * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
471  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
472  * management of a list of dependent buffers at ->i_mapping->private_list.
473  *
474  * Locking is a little subtle: try_to_free_buffers() will remove buffers
475  * from their controlling inode's queue when they are being freed.  But
476  * try_to_free_buffers() will be operating against the *blockdev* mapping
477  * at the time, not against the S_ISREG file which depends on those buffers.
478  * So the locking for private_list is via the private_lock in the address_space
479  * which backs the buffers.  Which is different from the address_space 
480  * against which the buffers are listed.  So for a particular address_space,
481  * mapping->private_lock does *not* protect mapping->private_list!  In fact,
482  * mapping->private_list will always be protected by the backing blockdev's
483  * ->private_lock.
484  *
485  * Which introduces a requirement: all buffers on an address_space's
486  * ->private_list must be from the same address_space: the blockdev's.
487  *
488  * address_spaces which do not place buffers at ->private_list via these
489  * utility functions are free to use private_lock and private_list for
490  * whatever they want.  The only requirement is that list_empty(private_list)
491  * be true at clear_inode() time.
492  *
493  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
494  * filesystems should do that.  invalidate_inode_buffers() should just go
495  * BUG_ON(!list_empty).
496  *
497  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
498  * take an address_space, not an inode.  And it should be called
499  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
500  * queued up.
501  *
502  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
503  * list if it is already on a list.  Because if the buffer is on a list,
504  * it *must* already be on the right one.  If not, the filesystem is being
505  * silly.  This will save a ton of locking.  But first we have to ensure
506  * that buffers are taken *off* the old inode's list when they are freed
507  * (presumably in truncate).  That requires careful auditing of all
508  * filesystems (do it inside bforget()).  It could also be done by bringing
509  * b_inode back.
510  */
511
512 /*
513  * The buffer's backing address_space's private_lock must be held
514  */
515 static void __remove_assoc_queue(struct buffer_head *bh)
516 {
517         list_del_init(&bh->b_assoc_buffers);
518         WARN_ON(!bh->b_assoc_map);
519         if (buffer_write_io_error(bh))
520                 set_bit(AS_EIO, &bh->b_assoc_map->flags);
521         bh->b_assoc_map = NULL;
522 }
523
524 int inode_has_buffers(struct inode *inode)
525 {
526         return !list_empty(&inode->i_data.private_list);
527 }
528
529 /*
530  * osync is designed to support O_SYNC io.  It waits synchronously for
531  * all already-submitted IO to complete, but does not queue any new
532  * writes to the disk.
533  *
534  * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
535  * you dirty the buffers, and then use osync_inode_buffers to wait for
536  * completion.  Any other dirty buffers which are not yet queued for
537  * write will not be flushed to disk by the osync.
538  */
539 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
540 {
541         struct buffer_head *bh;
542         struct list_head *p;
543         int err = 0;
544
545         spin_lock(lock);
546 repeat:
547         list_for_each_prev(p, list) {
548                 bh = BH_ENTRY(p);
549                 if (buffer_locked(bh)) {
550                         get_bh(bh);
551                         spin_unlock(lock);
552                         wait_on_buffer(bh);
553                         if (!buffer_uptodate(bh))
554                                 err = -EIO;
555                         brelse(bh);
556                         spin_lock(lock);
557                         goto repeat;
558                 }
559         }
560         spin_unlock(lock);
561         return err;
562 }
563
564 static void do_thaw_one(struct super_block *sb, void *unused)
565 {
566         char b[BDEVNAME_SIZE];
567         while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
568                 printk(KERN_WARNING "Emergency Thaw on %s\n",
569                        bdevname(sb->s_bdev, b));
570 }
571
572 static void do_thaw_all(struct work_struct *work)
573 {
574         iterate_supers(do_thaw_one, NULL);
575         kfree(work);
576         printk(KERN_WARNING "Emergency Thaw complete\n");
577 }
578
579 /**
580  * emergency_thaw_all -- forcibly thaw every frozen filesystem
581  *
582  * Used for emergency unfreeze of all filesystems via SysRq
583  */
584 void emergency_thaw_all(void)
585 {
586         struct work_struct *work;
587
588         work = kmalloc(sizeof(*work), GFP_ATOMIC);
589         if (work) {
590                 INIT_WORK(work, do_thaw_all);
591                 schedule_work(work);
592         }
593 }
594
595 /**
596  * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
597  * @mapping: the mapping which wants those buffers written
598  *
599  * Starts I/O against the buffers at mapping->private_list, and waits upon
600  * that I/O.
601  *
602  * Basically, this is a convenience function for fsync().
603  * @mapping is a file or directory which needs those buffers to be written for
604  * a successful fsync().
605  */
606 int sync_mapping_buffers(struct address_space *mapping)
607 {
608         struct address_space *buffer_mapping = mapping->assoc_mapping;
609
610         if (buffer_mapping == NULL || list_empty(&mapping->private_list))
611                 return 0;
612
613         return fsync_buffers_list(&buffer_mapping->private_lock,
614                                         &mapping->private_list);
615 }
616 EXPORT_SYMBOL(sync_mapping_buffers);
617
618 /*
619  * Called when we've recently written block `bblock', and it is known that
620  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
621  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
622  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
623  */
624 void write_boundary_block(struct block_device *bdev,
625                         sector_t bblock, unsigned blocksize)
626 {
627         struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
628         if (bh) {
629                 if (buffer_dirty(bh))
630                         ll_rw_block(WRITE, 1, &bh);
631                 put_bh(bh);
632         }
633 }
634
635 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
636 {
637         struct address_space *mapping = inode->i_mapping;
638         struct address_space *buffer_mapping = bh->b_page->mapping;
639
640         mark_buffer_dirty(bh);
641         if (!mapping->assoc_mapping) {
642                 mapping->assoc_mapping = buffer_mapping;
643         } else {
644                 BUG_ON(mapping->assoc_mapping != buffer_mapping);
645         }
646         if (!bh->b_assoc_map) {
647                 spin_lock(&buffer_mapping->private_lock);
648                 list_move_tail(&bh->b_assoc_buffers,
649                                 &mapping->private_list);
650                 bh->b_assoc_map = mapping;
651                 spin_unlock(&buffer_mapping->private_lock);
652         }
653 }
654 EXPORT_SYMBOL(mark_buffer_dirty_inode);
655
656 /*
657  * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
658  * dirty.
659  *
660  * If warn is true, then emit a warning if the page is not uptodate and has
661  * not been truncated.
662  */
663 static void __set_page_dirty(struct page *page,
664                 struct address_space *mapping, int warn)
665 {
666         spin_lock_irq(&mapping->tree_lock);
667         if (page->mapping) {    /* Race with truncate? */
668                 WARN_ON_ONCE(warn && !PageUptodate(page));
669                 account_page_dirtied(page, mapping);
670                 radix_tree_tag_set(&mapping->page_tree,
671                                 page_index(page), PAGECACHE_TAG_DIRTY);
672         }
673         spin_unlock_irq(&mapping->tree_lock);
674         __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
675 }
676
677 /*
678  * Add a page to the dirty page list.
679  *
680  * It is a sad fact of life that this function is called from several places
681  * deeply under spinlocking.  It may not sleep.
682  *
683  * If the page has buffers, the uptodate buffers are set dirty, to preserve
684  * dirty-state coherency between the page and the buffers.  It the page does
685  * not have buffers then when they are later attached they will all be set
686  * dirty.
687  *
688  * The buffers are dirtied before the page is dirtied.  There's a small race
689  * window in which a writepage caller may see the page cleanness but not the
690  * buffer dirtiness.  That's fine.  If this code were to set the page dirty
691  * before the buffers, a concurrent writepage caller could clear the page dirty
692  * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
693  * page on the dirty page list.
694  *
695  * We use private_lock to lock against try_to_free_buffers while using the
696  * page's buffer list.  Also use this to protect against clean buffers being
697  * added to the page after it was set dirty.
698  *
699  * FIXME: may need to call ->reservepage here as well.  That's rather up to the
700  * address_space though.
701  */
702 int __set_page_dirty_buffers(struct page *page)
703 {
704         int newly_dirty;
705         struct address_space *mapping = page_mapping(page);
706
707         if (unlikely(!mapping))
708                 return !TestSetPageDirty(page);
709
710         spin_lock(&mapping->private_lock);
711         if (page_has_buffers(page)) {
712                 struct buffer_head *head = page_buffers(page);
713                 struct buffer_head *bh = head;
714
715                 do {
716                         set_buffer_dirty(bh);
717                         bh = bh->b_this_page;
718                 } while (bh != head);
719         }
720         newly_dirty = !TestSetPageDirty(page);
721         spin_unlock(&mapping->private_lock);
722
723         if (newly_dirty)
724                 __set_page_dirty(page, mapping, 1);
725         return newly_dirty;
726 }
727 EXPORT_SYMBOL(__set_page_dirty_buffers);
728
729 /*
730  * Write out and wait upon a list of buffers.
731  *
732  * We have conflicting pressures: we want to make sure that all
733  * initially dirty buffers get waited on, but that any subsequently
734  * dirtied buffers don't.  After all, we don't want fsync to last
735  * forever if somebody is actively writing to the file.
736  *
737  * Do this in two main stages: first we copy dirty buffers to a
738  * temporary inode list, queueing the writes as we go.  Then we clean
739  * up, waiting for those writes to complete.
740  * 
741  * During this second stage, any subsequent updates to the file may end
742  * up refiling the buffer on the original inode's dirty list again, so
743  * there is a chance we will end up with a buffer queued for write but
744  * not yet completed on that list.  So, as a final cleanup we go through
745  * the osync code to catch these locked, dirty buffers without requeuing
746  * any newly dirty buffers for write.
747  */
748 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
749 {
750         struct buffer_head *bh;
751         struct list_head tmp;
752         struct address_space *mapping;
753         int err = 0, err2;
754         struct blk_plug plug;
755
756         INIT_LIST_HEAD(&tmp);
757         blk_start_plug(&plug);
758
759         spin_lock(lock);
760         while (!list_empty(list)) {
761                 bh = BH_ENTRY(list->next);
762                 mapping = bh->b_assoc_map;
763                 __remove_assoc_queue(bh);
764                 /* Avoid race with mark_buffer_dirty_inode() which does
765                  * a lockless check and we rely on seeing the dirty bit */
766                 smp_mb();
767                 if (buffer_dirty(bh) || buffer_locked(bh)) {
768                         list_add(&bh->b_assoc_buffers, &tmp);
769                         bh->b_assoc_map = mapping;
770                         if (buffer_dirty(bh)) {
771                                 get_bh(bh);
772                                 spin_unlock(lock);
773                                 /*
774                                  * Ensure any pending I/O completes so that
775                                  * write_dirty_buffer() actually writes the
776                                  * current contents - it is a noop if I/O is
777                                  * still in flight on potentially older
778                                  * contents.
779                                  */
780                                 write_dirty_buffer(bh, WRITE_SYNC);
781
782                                 /*
783                                  * Kick off IO for the previous mapping. Note
784                                  * that we will not run the very last mapping,
785                                  * wait_on_buffer() will do that for us
786                                  * through sync_buffer().
787                                  */
788                                 brelse(bh);
789                                 spin_lock(lock);
790                         }
791                 }
792         }
793
794         spin_unlock(lock);
795         blk_finish_plug(&plug);
796         spin_lock(lock);
797
798         while (!list_empty(&tmp)) {
799                 bh = BH_ENTRY(tmp.prev);
800                 get_bh(bh);
801                 mapping = bh->b_assoc_map;
802                 __remove_assoc_queue(bh);
803                 /* Avoid race with mark_buffer_dirty_inode() which does
804                  * a lockless check and we rely on seeing the dirty bit */
805                 smp_mb();
806                 if (buffer_dirty(bh)) {
807                         list_add(&bh->b_assoc_buffers,
808                                  &mapping->private_list);
809                         bh->b_assoc_map = mapping;
810                 }
811                 spin_unlock(lock);
812                 wait_on_buffer(bh);
813                 if (!buffer_uptodate(bh))
814                         err = -EIO;
815                 brelse(bh);
816                 spin_lock(lock);
817         }
818         
819         spin_unlock(lock);
820         err2 = osync_buffers_list(lock, list);
821         if (err)
822                 return err;
823         else
824                 return err2;
825 }
826
827 /*
828  * Invalidate any and all dirty buffers on a given inode.  We are
829  * probably unmounting the fs, but that doesn't mean we have already
830  * done a sync().  Just drop the buffers from the inode list.
831  *
832  * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
833  * assumes that all the buffers are against the blockdev.  Not true
834  * for reiserfs.
835  */
836 void invalidate_inode_buffers(struct inode *inode)
837 {
838         if (inode_has_buffers(inode)) {
839                 struct address_space *mapping = &inode->i_data;
840                 struct list_head *list = &mapping->private_list;
841                 struct address_space *buffer_mapping = mapping->assoc_mapping;
842
843                 spin_lock(&buffer_mapping->private_lock);
844                 while (!list_empty(list))
845                         __remove_assoc_queue(BH_ENTRY(list->next));
846                 spin_unlock(&buffer_mapping->private_lock);
847         }
848 }
849 EXPORT_SYMBOL(invalidate_inode_buffers);
850
851 /*
852  * Remove any clean buffers from the inode's buffer list.  This is called
853  * when we're trying to free the inode itself.  Those buffers can pin it.
854  *
855  * Returns true if all buffers were removed.
856  */
857 int remove_inode_buffers(struct inode *inode)
858 {
859         int ret = 1;
860
861         if (inode_has_buffers(inode)) {
862                 struct address_space *mapping = &inode->i_data;
863                 struct list_head *list = &mapping->private_list;
864                 struct address_space *buffer_mapping = mapping->assoc_mapping;
865
866                 spin_lock(&buffer_mapping->private_lock);
867                 while (!list_empty(list)) {
868                         struct buffer_head *bh = BH_ENTRY(list->next);
869                         if (buffer_dirty(bh)) {
870                                 ret = 0;
871                                 break;
872                         }
873                         __remove_assoc_queue(bh);
874                 }
875                 spin_unlock(&buffer_mapping->private_lock);
876         }
877         return ret;
878 }
879
880 /*
881  * Create the appropriate buffers when given a page for data area and
882  * the size of each buffer.. Use the bh->b_this_page linked list to
883  * follow the buffers created.  Return NULL if unable to create more
884  * buffers.
885  *
886  * The retry flag is used to differentiate async IO (paging, swapping)
887  * which may not fail from ordinary buffer allocations.
888  */
889 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
890                 int retry)
891 {
892         struct buffer_head *bh, *head;
893         long offset;
894
895 try_again:
896         head = NULL;
897         offset = PAGE_SIZE;
898         while ((offset -= size) >= 0) {
899                 bh = alloc_buffer_head(GFP_NOFS);
900                 if (!bh)
901                         goto no_grow;
902
903                 bh->b_bdev = NULL;
904                 bh->b_this_page = head;
905                 bh->b_blocknr = -1;
906                 head = bh;
907
908                 bh->b_state = 0;
909                 atomic_set(&bh->b_count, 0);
910                 bh->b_size = size;
911
912                 /* Link the buffer to its page */
913                 set_bh_page(bh, page, offset);
914
915                 init_buffer(bh, NULL, NULL);
916         }
917         return head;
918 /*
919  * In case anything failed, we just free everything we got.
920  */
921 no_grow:
922         if (head) {
923                 do {
924                         bh = head;
925                         head = head->b_this_page;
926                         free_buffer_head(bh);
927                 } while (head);
928         }
929
930         /*
931          * Return failure for non-async IO requests.  Async IO requests
932          * are not allowed to fail, so we have to wait until buffer heads
933          * become available.  But we don't want tasks sleeping with 
934          * partially complete buffers, so all were released above.
935          */
936         if (!retry)
937                 return NULL;
938
939         /* We're _really_ low on memory. Now we just
940          * wait for old buffer heads to become free due to
941          * finishing IO.  Since this is an async request and
942          * the reserve list is empty, we're sure there are 
943          * async buffer heads in use.
944          */
945         free_more_memory();
946         goto try_again;
947 }
948 EXPORT_SYMBOL_GPL(alloc_page_buffers);
949
950 static inline void
951 link_dev_buffers(struct page *page, struct buffer_head *head)
952 {
953         struct buffer_head *bh, *tail;
954
955         bh = head;
956         do {
957                 tail = bh;
958                 bh = bh->b_this_page;
959         } while (bh);
960         tail->b_this_page = head;
961         attach_page_buffers(page, head);
962 }
963
964 /*
965  * Initialise the state of a blockdev page's buffers.
966  */ 
967 static void
968 init_page_buffers(struct page *page, struct block_device *bdev,
969                         sector_t block, int size)
970 {
971         struct buffer_head *head = page_buffers(page);
972         struct buffer_head *bh = head;
973         int uptodate = PageUptodate(page);
974         sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode));
975
976         do {
977                 if (!buffer_mapped(bh)) {
978                         init_buffer(bh, NULL, NULL);
979                         bh->b_bdev = bdev;
980                         bh->b_blocknr = block;
981                         if (uptodate)
982                                 set_buffer_uptodate(bh);
983                         if (block < end_block)
984                                 set_buffer_mapped(bh);
985                 }
986                 block++;
987                 bh = bh->b_this_page;
988         } while (bh != head);
989 }
990
991 /*
992  * Create the page-cache page that contains the requested block.
993  *
994  * This is user purely for blockdev mappings.
995  */
996 static struct page *
997 grow_dev_page(struct block_device *bdev, sector_t block,
998                 pgoff_t index, int size)
999 {
1000         struct inode *inode = bdev->bd_inode;
1001         struct page *page;
1002         struct buffer_head *bh;
1003
1004         page = find_or_create_page(inode->i_mapping, index,
1005                 (mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS)|__GFP_MOVABLE);
1006         if (!page)
1007                 return NULL;
1008
1009         BUG_ON(!PageLocked(page));
1010
1011         if (page_has_buffers(page)) {
1012                 bh = page_buffers(page);
1013                 if (bh->b_size == size) {
1014                         init_page_buffers(page, bdev, block, size);
1015                         return page;
1016                 }
1017                 if (!try_to_free_buffers(page))
1018                         goto failed;
1019         }
1020
1021         /*
1022          * Allocate some buffers for this page
1023          */
1024         bh = alloc_page_buffers(page, size, 0);
1025         if (!bh)
1026                 goto failed;
1027
1028         /*
1029          * Link the page to the buffers and initialise them.  Take the
1030          * lock to be atomic wrt __find_get_block(), which does not
1031          * run under the page lock.
1032          */
1033         spin_lock(&inode->i_mapping->private_lock);
1034         link_dev_buffers(page, bh);
1035         init_page_buffers(page, bdev, block, size);
1036         spin_unlock(&inode->i_mapping->private_lock);
1037         return page;
1038
1039 failed:
1040         BUG();
1041         unlock_page(page);
1042         page_cache_release(page);
1043         return NULL;
1044 }
1045
1046 /*
1047  * Create buffers for the specified block device block's page.  If
1048  * that page was dirty, the buffers are set dirty also.
1049  */
1050 static int
1051 grow_buffers(struct block_device *bdev, sector_t block, int size)
1052 {
1053         struct page *page;
1054         pgoff_t index;
1055         int sizebits;
1056
1057         sizebits = -1;
1058         do {
1059                 sizebits++;
1060         } while ((size << sizebits) < PAGE_SIZE);
1061
1062         index = block >> sizebits;
1063
1064         /*
1065          * Check for a block which wants to lie outside our maximum possible
1066          * pagecache index.  (this comparison is done using sector_t types).
1067          */
1068         if (unlikely(index != block >> sizebits)) {
1069                 char b[BDEVNAME_SIZE];
1070
1071                 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1072                         "device %s\n",
1073                         __func__, (unsigned long long)block,
1074                         bdevname(bdev, b));
1075                 return -EIO;
1076         }
1077         block = index << sizebits;
1078         /* Create a page with the proper size buffers.. */
1079         page = grow_dev_page(bdev, block, index, size);
1080         if (!page)
1081                 return 0;
1082         unlock_page(page);
1083         page_cache_release(page);
1084         return 1;
1085 }
1086
1087 static struct buffer_head *
1088 __getblk_slow(struct block_device *bdev, sector_t block, int size)
1089 {
1090         /* Size must be multiple of hard sectorsize */
1091         if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1092                         (size < 512 || size > PAGE_SIZE))) {
1093                 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1094                                         size);
1095                 printk(KERN_ERR "logical block size: %d\n",
1096                                         bdev_logical_block_size(bdev));
1097
1098                 dump_stack();
1099                 return NULL;
1100         }
1101
1102         for (;;) {
1103                 struct buffer_head * bh;
1104                 int ret;
1105
1106                 bh = __find_get_block(bdev, block, size);
1107                 if (bh)
1108                         return bh;
1109
1110                 ret = grow_buffers(bdev, block, size);
1111                 if (ret < 0)
1112                         return NULL;
1113                 if (ret == 0)
1114                         free_more_memory();
1115         }
1116 }
1117
1118 /*
1119  * The relationship between dirty buffers and dirty pages:
1120  *
1121  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1122  * the page is tagged dirty in its radix tree.
1123  *
1124  * At all times, the dirtiness of the buffers represents the dirtiness of
1125  * subsections of the page.  If the page has buffers, the page dirty bit is
1126  * merely a hint about the true dirty state.
1127  *
1128  * When a page is set dirty in its entirety, all its buffers are marked dirty
1129  * (if the page has buffers).
1130  *
1131  * When a buffer is marked dirty, its page is dirtied, but the page's other
1132  * buffers are not.
1133  *
1134  * Also.  When blockdev buffers are explicitly read with bread(), they
1135  * individually become uptodate.  But their backing page remains not
1136  * uptodate - even if all of its buffers are uptodate.  A subsequent
1137  * block_read_full_page() against that page will discover all the uptodate
1138  * buffers, will set the page uptodate and will perform no I/O.
1139  */
1140
1141 /**
1142  * mark_buffer_dirty - mark a buffer_head as needing writeout
1143  * @bh: the buffer_head to mark dirty
1144  *
1145  * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1146  * backing page dirty, then tag the page as dirty in its address_space's radix
1147  * tree and then attach the address_space's inode to its superblock's dirty
1148  * inode list.
1149  *
1150  * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1151  * mapping->tree_lock and mapping->host->i_lock.
1152  */
1153 void mark_buffer_dirty(struct buffer_head *bh)
1154 {
1155         WARN_ON_ONCE(!buffer_uptodate(bh));
1156
1157         /*
1158          * Very *carefully* optimize the it-is-already-dirty case.
1159          *
1160          * Don't let the final "is it dirty" escape to before we
1161          * perhaps modified the buffer.
1162          */
1163         if (buffer_dirty(bh)) {
1164                 smp_mb();
1165                 if (buffer_dirty(bh))
1166                         return;
1167         }
1168
1169         if (!test_set_buffer_dirty(bh)) {
1170                 struct page *page = bh->b_page;
1171                 if (!TestSetPageDirty(page)) {
1172                         struct address_space *mapping = page_mapping(page);
1173                         if (mapping)
1174                                 __set_page_dirty(page, mapping, 0);
1175                 }
1176         }
1177 }
1178 EXPORT_SYMBOL(mark_buffer_dirty);
1179
1180 /*
1181  * Decrement a buffer_head's reference count.  If all buffers against a page
1182  * have zero reference count, are clean and unlocked, and if the page is clean
1183  * and unlocked then try_to_free_buffers() may strip the buffers from the page
1184  * in preparation for freeing it (sometimes, rarely, buffers are removed from
1185  * a page but it ends up not being freed, and buffers may later be reattached).
1186  */
1187 void __brelse(struct buffer_head * buf)
1188 {
1189         if (atomic_read(&buf->b_count)) {
1190                 put_bh(buf);
1191                 return;
1192         }
1193         WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1194 }
1195 EXPORT_SYMBOL(__brelse);
1196
1197 /*
1198  * bforget() is like brelse(), except it discards any
1199  * potentially dirty data.
1200  */
1201 void __bforget(struct buffer_head *bh)
1202 {
1203         clear_buffer_dirty(bh);
1204         if (bh->b_assoc_map) {
1205                 struct address_space *buffer_mapping = bh->b_page->mapping;
1206
1207                 spin_lock(&buffer_mapping->private_lock);
1208                 list_del_init(&bh->b_assoc_buffers);
1209                 bh->b_assoc_map = NULL;
1210                 spin_unlock(&buffer_mapping->private_lock);
1211         }
1212         __brelse(bh);
1213 }
1214 EXPORT_SYMBOL(__bforget);
1215
1216 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1217 {
1218         lock_buffer(bh);
1219         if (buffer_uptodate(bh)) {
1220                 unlock_buffer(bh);
1221                 return bh;
1222         } else {
1223                 get_bh(bh);
1224                 bh->b_end_io = end_buffer_read_sync;
1225                 submit_bh(READ, bh);
1226                 wait_on_buffer(bh);
1227                 if (buffer_uptodate(bh))
1228                         return bh;
1229         }
1230         brelse(bh);
1231         return NULL;
1232 }
1233
1234 /*
1235  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1236  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1237  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1238  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1239  * CPU's LRUs at the same time.
1240  *
1241  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1242  * sb_find_get_block().
1243  *
1244  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1245  * a local interrupt disable for that.
1246  */
1247
1248 #define BH_LRU_SIZE     8
1249
1250 struct bh_lru {
1251         struct buffer_head *bhs[BH_LRU_SIZE];
1252 };
1253
1254 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1255
1256 #ifdef CONFIG_SMP
1257 #define bh_lru_lock()   local_irq_disable()
1258 #define bh_lru_unlock() local_irq_enable()
1259 #else
1260 #define bh_lru_lock()   preempt_disable()
1261 #define bh_lru_unlock() preempt_enable()
1262 #endif
1263
1264 static inline void check_irqs_on(void)
1265 {
1266 #ifdef irqs_disabled
1267         BUG_ON(irqs_disabled());
1268 #endif
1269 }
1270
1271 /*
1272  * The LRU management algorithm is dopey-but-simple.  Sorry.
1273  */
1274 static void bh_lru_install(struct buffer_head *bh)
1275 {
1276         struct buffer_head *evictee = NULL;
1277
1278         check_irqs_on();
1279         bh_lru_lock();
1280         if (__this_cpu_read(bh_lrus.bhs[0]) != bh) {
1281                 struct buffer_head *bhs[BH_LRU_SIZE];
1282                 int in;
1283                 int out = 0;
1284
1285                 get_bh(bh);
1286                 bhs[out++] = bh;
1287                 for (in = 0; in < BH_LRU_SIZE; in++) {
1288                         struct buffer_head *bh2 =
1289                                 __this_cpu_read(bh_lrus.bhs[in]);
1290
1291                         if (bh2 == bh) {
1292                                 __brelse(bh2);
1293                         } else {
1294                                 if (out >= BH_LRU_SIZE) {
1295                                         BUG_ON(evictee != NULL);
1296                                         evictee = bh2;
1297                                 } else {
1298                                         bhs[out++] = bh2;
1299                                 }
1300                         }
1301                 }
1302                 while (out < BH_LRU_SIZE)
1303                         bhs[out++] = NULL;
1304                 memcpy(__this_cpu_ptr(&bh_lrus.bhs), bhs, sizeof(bhs));
1305         }
1306         bh_lru_unlock();
1307
1308         if (evictee)
1309                 __brelse(evictee);
1310 }
1311
1312 /*
1313  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1314  */
1315 static struct buffer_head *
1316 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1317 {
1318         struct buffer_head *ret = NULL;
1319         unsigned int i;
1320
1321         check_irqs_on();
1322         bh_lru_lock();
1323         for (i = 0; i < BH_LRU_SIZE; i++) {
1324                 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1325
1326                 if (bh && bh->b_bdev == bdev &&
1327                                 bh->b_blocknr == block && bh->b_size == size) {
1328                         if (i) {
1329                                 while (i) {
1330                                         __this_cpu_write(bh_lrus.bhs[i],
1331                                                 __this_cpu_read(bh_lrus.bhs[i - 1]));
1332                                         i--;
1333                                 }
1334                                 __this_cpu_write(bh_lrus.bhs[0], bh);
1335                         }
1336                         get_bh(bh);
1337                         ret = bh;
1338                         break;
1339                 }
1340         }
1341         bh_lru_unlock();
1342         return ret;
1343 }
1344
1345 /*
1346  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1347  * it in the LRU and mark it as accessed.  If it is not present then return
1348  * NULL
1349  */
1350 struct buffer_head *
1351 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1352 {
1353         struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1354
1355         if (bh == NULL) {
1356                 bh = __find_get_block_slow(bdev, block);
1357                 if (bh)
1358                         bh_lru_install(bh);
1359         }
1360         if (bh)
1361                 touch_buffer(bh);
1362         return bh;
1363 }
1364 EXPORT_SYMBOL(__find_get_block);
1365
1366 /*
1367  * __getblk will locate (and, if necessary, create) the buffer_head
1368  * which corresponds to the passed block_device, block and size. The
1369  * returned buffer has its reference count incremented.
1370  *
1371  * __getblk() cannot fail - it just keeps trying.  If you pass it an
1372  * illegal block number, __getblk() will happily return a buffer_head
1373  * which represents the non-existent block.  Very weird.
1374  *
1375  * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1376  * attempt is failing.  FIXME, perhaps?
1377  */
1378 struct buffer_head *
1379 __getblk(struct block_device *bdev, sector_t block, unsigned size)
1380 {
1381         struct buffer_head *bh = __find_get_block(bdev, block, size);
1382
1383         might_sleep();
1384         if (bh == NULL)
1385                 bh = __getblk_slow(bdev, block, size);
1386         return bh;
1387 }
1388 EXPORT_SYMBOL(__getblk);
1389
1390 /*
1391  * Do async read-ahead on a buffer..
1392  */
1393 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1394 {
1395         struct buffer_head *bh = __getblk(bdev, block, size);
1396         if (likely(bh)) {
1397                 ll_rw_block(READA, 1, &bh);
1398                 brelse(bh);
1399         }
1400 }
1401 EXPORT_SYMBOL(__breadahead);
1402
1403 /**
1404  *  __bread() - reads a specified block and returns the bh
1405  *  @bdev: the block_device to read from
1406  *  @block: number of block
1407  *  @size: size (in bytes) to read
1408  * 
1409  *  Reads a specified block, and returns buffer head that contains it.
1410  *  It returns NULL if the block was unreadable.
1411  */
1412 struct buffer_head *
1413 __bread(struct block_device *bdev, sector_t block, unsigned size)
1414 {
1415         struct buffer_head *bh = __getblk(bdev, block, size);
1416
1417         if (likely(bh) && !buffer_uptodate(bh))
1418                 bh = __bread_slow(bh);
1419         return bh;
1420 }
1421 EXPORT_SYMBOL(__bread);
1422
1423 /*
1424  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1425  * This doesn't race because it runs in each cpu either in irq
1426  * or with preempt disabled.
1427  */
1428 static void invalidate_bh_lru(void *arg)
1429 {
1430         struct bh_lru *b = &get_cpu_var(bh_lrus);
1431         int i;
1432
1433         for (i = 0; i < BH_LRU_SIZE; i++) {
1434                 brelse(b->bhs[i]);
1435                 b->bhs[i] = NULL;
1436         }
1437         put_cpu_var(bh_lrus);
1438 }
1439         
1440 void invalidate_bh_lrus(void)
1441 {
1442         on_each_cpu(invalidate_bh_lru, NULL, 1);
1443 }
1444 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1445
1446 void set_bh_page(struct buffer_head *bh,
1447                 struct page *page, unsigned long offset)
1448 {
1449         bh->b_page = page;
1450         BUG_ON(offset >= PAGE_SIZE);
1451         if (PageHighMem(page))
1452                 /*
1453                  * This catches illegal uses and preserves the offset:
1454                  */
1455                 bh->b_data = (char *)(0 + offset);
1456         else
1457                 bh->b_data = page_address(page) + offset;
1458 }
1459 EXPORT_SYMBOL(set_bh_page);
1460
1461 /*
1462  * Called when truncating a buffer on a page completely.
1463  */
1464 static void discard_buffer(struct buffer_head * bh)
1465 {
1466         lock_buffer(bh);
1467         clear_buffer_dirty(bh);
1468         bh->b_bdev = NULL;
1469         clear_buffer_mapped(bh);
1470         clear_buffer_req(bh);
1471         clear_buffer_new(bh);
1472         clear_buffer_delay(bh);
1473         clear_buffer_unwritten(bh);
1474         unlock_buffer(bh);
1475 }
1476
1477 /**
1478  * block_invalidatepage - invalidate part or all of a buffer-backed page
1479  *
1480  * @page: the page which is affected
1481  * @offset: the index of the truncation point
1482  *
1483  * block_invalidatepage() is called when all or part of the page has become
1484  * invalidated by a truncate operation.
1485  *
1486  * block_invalidatepage() does not have to release all buffers, but it must
1487  * ensure that no dirty buffer is left outside @offset and that no I/O
1488  * is underway against any of the blocks which are outside the truncation
1489  * point.  Because the caller is about to free (and possibly reuse) those
1490  * blocks on-disk.
1491  */
1492 void block_invalidatepage(struct page *page, unsigned long offset)
1493 {
1494         struct buffer_head *head, *bh, *next;
1495         unsigned int curr_off = 0;
1496
1497         BUG_ON(!PageLocked(page));
1498         if (!page_has_buffers(page))
1499                 goto out;
1500
1501         head = page_buffers(page);
1502         bh = head;
1503         do {
1504                 unsigned int next_off = curr_off + bh->b_size;
1505                 next = bh->b_this_page;
1506
1507                 /*
1508                  * is this block fully invalidated?
1509                  */
1510                 if (offset <= curr_off)
1511                         discard_buffer(bh);
1512                 curr_off = next_off;
1513                 bh = next;
1514         } while (bh != head);
1515
1516         /*
1517          * We release buffers only if the entire page is being invalidated.
1518          * The get_block cached value has been unconditionally invalidated,
1519          * so real IO is not possible anymore.
1520          */
1521         if (offset == 0)
1522                 try_to_release_page(page, 0);
1523 out:
1524         return;
1525 }
1526 EXPORT_SYMBOL(block_invalidatepage);
1527
1528 /*
1529  * We attach and possibly dirty the buffers atomically wrt
1530  * __set_page_dirty_buffers() via private_lock.  try_to_free_buffers
1531  * is already excluded via the page lock.
1532  */
1533 void create_empty_buffers(struct page *page,
1534                         unsigned long blocksize, unsigned long b_state)
1535 {
1536         struct buffer_head *bh, *head, *tail;
1537
1538         head = alloc_page_buffers(page, blocksize, 1);
1539         bh = head;
1540         do {
1541                 bh->b_state |= b_state;
1542                 tail = bh;
1543                 bh = bh->b_this_page;
1544         } while (bh);
1545         tail->b_this_page = head;
1546
1547         spin_lock(&page->mapping->private_lock);
1548         if (PageUptodate(page) || PageDirty(page)) {
1549                 bh = head;
1550                 do {
1551                         if (PageDirty(page))
1552                                 set_buffer_dirty(bh);
1553                         if (PageUptodate(page))
1554                                 set_buffer_uptodate(bh);
1555                         bh = bh->b_this_page;
1556                 } while (bh != head);
1557         }
1558         attach_page_buffers(page, head);
1559         spin_unlock(&page->mapping->private_lock);
1560 }
1561 EXPORT_SYMBOL(create_empty_buffers);
1562
1563 /*
1564  * We are taking a block for data and we don't want any output from any
1565  * buffer-cache aliases starting from return from that function and
1566  * until the moment when something will explicitly mark the buffer
1567  * dirty (hopefully that will not happen until we will free that block ;-)
1568  * We don't even need to mark it not-uptodate - nobody can expect
1569  * anything from a newly allocated buffer anyway. We used to used
1570  * unmap_buffer() for such invalidation, but that was wrong. We definitely
1571  * don't want to mark the alias unmapped, for example - it would confuse
1572  * anyone who might pick it with bread() afterwards...
1573  *
1574  * Also..  Note that bforget() doesn't lock the buffer.  So there can
1575  * be writeout I/O going on against recently-freed buffers.  We don't
1576  * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1577  * only if we really need to.  That happens here.
1578  */
1579 void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1580 {
1581         struct buffer_head *old_bh;
1582
1583         might_sleep();
1584
1585         old_bh = __find_get_block_slow(bdev, block);
1586         if (old_bh) {
1587                 clear_buffer_dirty(old_bh);
1588                 wait_on_buffer(old_bh);
1589                 clear_buffer_req(old_bh);
1590                 __brelse(old_bh);
1591         }
1592 }
1593 EXPORT_SYMBOL(unmap_underlying_metadata);
1594
1595 /*
1596  * NOTE! All mapped/uptodate combinations are valid:
1597  *
1598  *      Mapped  Uptodate        Meaning
1599  *
1600  *      No      No              "unknown" - must do get_block()
1601  *      No      Yes             "hole" - zero-filled
1602  *      Yes     No              "allocated" - allocated on disk, not read in
1603  *      Yes     Yes             "valid" - allocated and up-to-date in memory.
1604  *
1605  * "Dirty" is valid only with the last case (mapped+uptodate).
1606  */
1607
1608 /*
1609  * While block_write_full_page is writing back the dirty buffers under
1610  * the page lock, whoever dirtied the buffers may decide to clean them
1611  * again at any time.  We handle that by only looking at the buffer
1612  * state inside lock_buffer().
1613  *
1614  * If block_write_full_page() is called for regular writeback
1615  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1616  * locked buffer.   This only can happen if someone has written the buffer
1617  * directly, with submit_bh().  At the address_space level PageWriteback
1618  * prevents this contention from occurring.
1619  *
1620  * If block_write_full_page() is called with wbc->sync_mode ==
1621  * WB_SYNC_ALL, the writes are posted using WRITE_SYNC; this
1622  * causes the writes to be flagged as synchronous writes.
1623  */
1624 static int __block_write_full_page(struct inode *inode, struct page *page,
1625                         get_block_t *get_block, struct writeback_control *wbc,
1626                         bh_end_io_t *handler)
1627 {
1628         int err;
1629         sector_t block;
1630         sector_t last_block;
1631         struct buffer_head *bh, *head;
1632         const unsigned blocksize = 1 << inode->i_blkbits;
1633         int nr_underway = 0;
1634         int write_op = (wbc->sync_mode == WB_SYNC_ALL ?
1635                         WRITE_SYNC : WRITE);
1636
1637         BUG_ON(!PageLocked(page));
1638
1639         last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
1640
1641         if (!page_has_buffers(page)) {
1642                 create_empty_buffers(page, blocksize,
1643                                         (1 << BH_Dirty)|(1 << BH_Uptodate));
1644         }
1645
1646         /*
1647          * Be very careful.  We have no exclusion from __set_page_dirty_buffers
1648          * here, and the (potentially unmapped) buffers may become dirty at
1649          * any time.  If a buffer becomes dirty here after we've inspected it
1650          * then we just miss that fact, and the page stays dirty.
1651          *
1652          * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1653          * handle that here by just cleaning them.
1654          */
1655
1656         block = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1657         head = page_buffers(page);
1658         bh = head;
1659
1660         /*
1661          * Get all the dirty buffers mapped to disk addresses and
1662          * handle any aliases from the underlying blockdev's mapping.
1663          */
1664         do {
1665                 if (block > last_block) {
1666                         /*
1667                          * mapped buffers outside i_size will occur, because
1668                          * this page can be outside i_size when there is a
1669                          * truncate in progress.
1670                          */
1671                         /*
1672                          * The buffer was zeroed by block_write_full_page()
1673                          */
1674                         clear_buffer_dirty(bh);
1675                         set_buffer_uptodate(bh);
1676                 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1677                            buffer_dirty(bh)) {
1678                         WARN_ON(bh->b_size != blocksize);
1679                         err = get_block(inode, block, bh, 1);
1680                         if (err)
1681                                 goto recover;
1682                         clear_buffer_delay(bh);
1683                         if (buffer_new(bh)) {
1684                                 /* blockdev mappings never come here */
1685                                 clear_buffer_new(bh);
1686                                 unmap_underlying_metadata(bh->b_bdev,
1687                                                         bh->b_blocknr);
1688                         }
1689                 }
1690                 bh = bh->b_this_page;
1691                 block++;
1692         } while (bh != head);
1693
1694         do {
1695                 if (!buffer_mapped(bh))
1696                         continue;
1697                 /*
1698                  * If it's a fully non-blocking write attempt and we cannot
1699                  * lock the buffer then redirty the page.  Note that this can
1700                  * potentially cause a busy-wait loop from writeback threads
1701                  * and kswapd activity, but those code paths have their own
1702                  * higher-level throttling.
1703                  */
1704                 if (wbc->sync_mode != WB_SYNC_NONE) {
1705                         lock_buffer(bh);
1706                 } else if (!trylock_buffer(bh)) {
1707                         redirty_page_for_writepage(wbc, page);
1708                         continue;
1709                 }
1710                 if (test_clear_buffer_dirty(bh)) {
1711                         mark_buffer_async_write_endio(bh, handler);
1712                 } else {
1713                         unlock_buffer(bh);
1714                 }
1715         } while ((bh = bh->b_this_page) != head);
1716
1717         /*
1718          * The page and its buffers are protected by PageWriteback(), so we can
1719          * drop the bh refcounts early.
1720          */
1721         BUG_ON(PageWriteback(page));
1722         set_page_writeback(page);
1723
1724         do {
1725                 struct buffer_head *next = bh->b_this_page;
1726                 if (buffer_async_write(bh)) {
1727                         submit_bh(write_op, bh);
1728                         nr_underway++;
1729                 }
1730                 bh = next;
1731         } while (bh != head);
1732         unlock_page(page);
1733
1734         err = 0;
1735 done:
1736         if (nr_underway == 0) {
1737                 /*
1738                  * The page was marked dirty, but the buffers were
1739                  * clean.  Someone wrote them back by hand with
1740                  * ll_rw_block/submit_bh.  A rare case.
1741                  */
1742                 end_page_writeback(page);
1743
1744                 /*
1745                  * The page and buffer_heads can be released at any time from
1746                  * here on.
1747                  */
1748         }
1749         return err;
1750
1751 recover:
1752         /*
1753          * ENOSPC, or some other error.  We may already have added some
1754          * blocks to the file, so we need to write these out to avoid
1755          * exposing stale data.
1756          * The page is currently locked and not marked for writeback
1757          */
1758         bh = head;
1759         /* Recovery: lock and submit the mapped buffers */
1760         do {
1761                 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1762                     !buffer_delay(bh)) {
1763                         lock_buffer(bh);
1764                         mark_buffer_async_write_endio(bh, handler);
1765                 } else {
1766                         /*
1767                          * The buffer may have been set dirty during
1768                          * attachment to a dirty page.
1769                          */
1770                         clear_buffer_dirty(bh);
1771                 }
1772         } while ((bh = bh->b_this_page) != head);
1773         SetPageError(page);
1774         BUG_ON(PageWriteback(page));
1775         mapping_set_error(page->mapping, err);
1776         set_page_writeback(page);
1777         do {
1778                 struct buffer_head *next = bh->b_this_page;
1779                 if (buffer_async_write(bh)) {
1780                         clear_buffer_dirty(bh);
1781                         submit_bh(write_op, bh);
1782                         nr_underway++;
1783                 }
1784                 bh = next;
1785         } while (bh != head);
1786         unlock_page(page);
1787         goto done;
1788 }
1789
1790 /*
1791  * If a page has any new buffers, zero them out here, and mark them uptodate
1792  * and dirty so they'll be written out (in order to prevent uninitialised
1793  * block data from leaking). And clear the new bit.
1794  */
1795 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1796 {
1797         unsigned int block_start, block_end;
1798         struct buffer_head *head, *bh;
1799
1800         BUG_ON(!PageLocked(page));
1801         if (!page_has_buffers(page))
1802                 return;
1803
1804         bh = head = page_buffers(page);
1805         block_start = 0;
1806         do {
1807                 block_end = block_start + bh->b_size;
1808
1809                 if (buffer_new(bh)) {
1810                         if (block_end > from && block_start < to) {
1811                                 if (!PageUptodate(page)) {
1812                                         unsigned start, size;
1813
1814                                         start = max(from, block_start);
1815                                         size = min(to, block_end) - start;
1816
1817                                         zero_user(page, start, size);
1818                                         set_buffer_uptodate(bh);
1819                                 }
1820
1821                                 clear_buffer_new(bh);
1822                                 mark_buffer_dirty(bh);
1823                         }
1824                 }
1825
1826                 block_start = block_end;
1827                 bh = bh->b_this_page;
1828         } while (bh != head);
1829 }
1830 EXPORT_SYMBOL(page_zero_new_buffers);
1831
1832 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
1833                 get_block_t *get_block)
1834 {
1835         unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1836         unsigned to = from + len;
1837         struct inode *inode = page->mapping->host;
1838         unsigned block_start, block_end;
1839         sector_t block;
1840         int err = 0;
1841         unsigned blocksize, bbits;
1842         struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1843
1844         BUG_ON(!PageLocked(page));
1845         BUG_ON(from > PAGE_CACHE_SIZE);
1846         BUG_ON(to > PAGE_CACHE_SIZE);
1847         BUG_ON(from > to);
1848
1849         blocksize = 1 << inode->i_blkbits;
1850         if (!page_has_buffers(page))
1851                 create_empty_buffers(page, blocksize, 0);
1852         head = page_buffers(page);
1853
1854         bbits = inode->i_blkbits;
1855         block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1856
1857         for(bh = head, block_start = 0; bh != head || !block_start;
1858             block++, block_start=block_end, bh = bh->b_this_page) {
1859                 block_end = block_start + blocksize;
1860                 if (block_end <= from || block_start >= to) {
1861                         if (PageUptodate(page)) {
1862                                 if (!buffer_uptodate(bh))
1863                                         set_buffer_uptodate(bh);
1864                         }
1865                         continue;
1866                 }
1867                 if (buffer_new(bh))
1868                         clear_buffer_new(bh);
1869                 if (!buffer_mapped(bh)) {
1870                         WARN_ON(bh->b_size != blocksize);
1871                         err = get_block(inode, block, bh, 1);
1872                         if (err)
1873                                 break;
1874                         if (buffer_new(bh)) {
1875                                 unmap_underlying_metadata(bh->b_bdev,
1876                                                         bh->b_blocknr);
1877                                 if (PageUptodate(page)) {
1878                                         clear_buffer_new(bh);
1879                                         set_buffer_uptodate(bh);
1880                                         mark_buffer_dirty(bh);
1881                                         continue;
1882                                 }
1883                                 if (block_end > to || block_start < from)
1884                                         zero_user_segments(page,
1885                                                 to, block_end,
1886                                                 block_start, from);
1887                                 continue;
1888                         }
1889                 }
1890                 if (PageUptodate(page)) {
1891                         if (!buffer_uptodate(bh))
1892                                 set_buffer_uptodate(bh);
1893                         continue; 
1894                 }
1895                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1896                     !buffer_unwritten(bh) &&
1897                      (block_start < from || block_end > to)) {
1898                         ll_rw_block(READ, 1, &bh);
1899                         *wait_bh++=bh;
1900                 }
1901         }
1902         /*
1903          * If we issued read requests - let them complete.
1904          */
1905         while(wait_bh > wait) {
1906                 wait_on_buffer(*--wait_bh);
1907                 if (!buffer_uptodate(*wait_bh))
1908                         err = -EIO;
1909         }
1910         if (unlikely(err))
1911                 page_zero_new_buffers(page, from, to);
1912         return err;
1913 }
1914 EXPORT_SYMBOL(__block_write_begin);
1915
1916 static int __block_commit_write(struct inode *inode, struct page *page,
1917                 unsigned from, unsigned to)
1918 {
1919         unsigned block_start, block_end;
1920         int partial = 0;
1921         unsigned blocksize;
1922         struct buffer_head *bh, *head;
1923
1924         blocksize = 1 << inode->i_blkbits;
1925
1926         for(bh = head = page_buffers(page), block_start = 0;
1927             bh != head || !block_start;
1928             block_start=block_end, bh = bh->b_this_page) {
1929                 block_end = block_start + blocksize;
1930                 if (block_end <= from || block_start >= to) {
1931                         if (!buffer_uptodate(bh))
1932                                 partial = 1;
1933                 } else {
1934                         set_buffer_uptodate(bh);
1935                         mark_buffer_dirty(bh);
1936                 }
1937                 clear_buffer_new(bh);
1938         }
1939
1940         /*
1941          * If this is a partial write which happened to make all buffers
1942          * uptodate then we can optimize away a bogus readpage() for
1943          * the next read(). Here we 'discover' whether the page went
1944          * uptodate as a result of this (potentially partial) write.
1945          */
1946         if (!partial)
1947                 SetPageUptodate(page);
1948         return 0;
1949 }
1950
1951 /*
1952  * block_write_begin takes care of the basic task of block allocation and
1953  * bringing partial write blocks uptodate first.
1954  *
1955  * The filesystem needs to handle block truncation upon failure.
1956  */
1957 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
1958                 unsigned flags, struct page **pagep, get_block_t *get_block)
1959 {
1960         pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1961         struct page *page;
1962         int status;
1963
1964         page = grab_cache_page_write_begin(mapping, index, flags);
1965         if (!page)
1966                 return -ENOMEM;
1967
1968         status = __block_write_begin(page, pos, len, get_block);
1969         if (unlikely(status)) {
1970                 unlock_page(page);
1971                 page_cache_release(page);
1972                 page = NULL;
1973         }
1974
1975         *pagep = page;
1976         return status;
1977 }
1978 EXPORT_SYMBOL(block_write_begin);
1979
1980 int block_write_end(struct file *file, struct address_space *mapping,
1981                         loff_t pos, unsigned len, unsigned copied,
1982                         struct page *page, void *fsdata)
1983 {
1984         struct inode *inode = mapping->host;
1985         unsigned start;
1986
1987         start = pos & (PAGE_CACHE_SIZE - 1);
1988
1989         if (unlikely(copied < len)) {
1990                 /*
1991                  * The buffers that were written will now be uptodate, so we
1992                  * don't have to worry about a readpage reading them and
1993                  * overwriting a partial write. However if we have encountered
1994                  * a short write and only partially written into a buffer, it
1995                  * will not be marked uptodate, so a readpage might come in and
1996                  * destroy our partial write.
1997                  *
1998                  * Do the simplest thing, and just treat any short write to a
1999                  * non uptodate page as a zero-length write, and force the
2000                  * caller to redo the whole thing.
2001                  */
2002                 if (!PageUptodate(page))
2003                         copied = 0;
2004
2005                 page_zero_new_buffers(page, start+copied, start+len);
2006         }
2007         flush_dcache_page(page);
2008
2009         /* This could be a short (even 0-length) commit */
2010         __block_commit_write(inode, page, start, start+copied);
2011
2012         return copied;
2013 }
2014 EXPORT_SYMBOL(block_write_end);
2015
2016 int generic_write_end(struct file *file, struct address_space *mapping,
2017                         loff_t pos, unsigned len, unsigned copied,
2018                         struct page *page, void *fsdata)
2019 {
2020         struct inode *inode = mapping->host;
2021         int i_size_changed = 0;
2022
2023         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2024
2025         /*
2026          * No need to use i_size_read() here, the i_size
2027          * cannot change under us because we hold i_mutex.
2028          *
2029          * But it's important to update i_size while still holding page lock:
2030          * page writeout could otherwise come in and zero beyond i_size.
2031          */
2032         if (pos+copied > inode->i_size) {
2033                 i_size_write(inode, pos+copied);
2034                 i_size_changed = 1;
2035         }
2036
2037         unlock_page(page);
2038         page_cache_release(page);
2039
2040         /*
2041          * Don't mark the inode dirty under page lock. First, it unnecessarily
2042          * makes the holding time of page lock longer. Second, it forces lock
2043          * ordering of page lock and transaction start for journaling
2044          * filesystems.
2045          */
2046         if (i_size_changed)
2047                 mark_inode_dirty(inode);
2048
2049         return copied;
2050 }
2051 EXPORT_SYMBOL(generic_write_end);
2052
2053 /*
2054  * block_is_partially_uptodate checks whether buffers within a page are
2055  * uptodate or not.
2056  *
2057  * Returns true if all buffers which correspond to a file portion
2058  * we want to read are uptodate.
2059  */
2060 int block_is_partially_uptodate(struct page *page, read_descriptor_t *desc,
2061                                         unsigned long from)
2062 {
2063         struct inode *inode = page->mapping->host;
2064         unsigned block_start, block_end, blocksize;
2065         unsigned to;
2066         struct buffer_head *bh, *head;
2067         int ret = 1;
2068
2069         if (!page_has_buffers(page))
2070                 return 0;
2071
2072         blocksize = 1 << inode->i_blkbits;
2073         to = min_t(unsigned, PAGE_CACHE_SIZE - from, desc->count);
2074         to = from + to;
2075         if (from < blocksize && to > PAGE_CACHE_SIZE - blocksize)
2076                 return 0;
2077
2078         head = page_buffers(page);
2079         bh = head;
2080         block_start = 0;
2081         do {
2082                 block_end = block_start + blocksize;
2083                 if (block_end > from && block_start < to) {
2084                         if (!buffer_uptodate(bh)) {
2085                                 ret = 0;
2086                                 break;
2087                         }
2088                         if (block_end >= to)
2089                                 break;
2090                 }
2091                 block_start = block_end;
2092                 bh = bh->b_this_page;
2093         } while (bh != head);
2094
2095         return ret;
2096 }
2097 EXPORT_SYMBOL(block_is_partially_uptodate);
2098
2099 /*
2100  * Generic "read page" function for block devices that have the normal
2101  * get_block functionality. This is most of the block device filesystems.
2102  * Reads the page asynchronously --- the unlock_buffer() and
2103  * set/clear_buffer_uptodate() functions propagate buffer state into the
2104  * page struct once IO has completed.
2105  */
2106 int block_read_full_page(struct page *page, get_block_t *get_block)
2107 {
2108         struct inode *inode = page->mapping->host;
2109         sector_t iblock, lblock;
2110         struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2111         unsigned int blocksize;
2112         int nr, i;
2113         int fully_mapped = 1;
2114
2115         BUG_ON(!PageLocked(page));
2116         blocksize = 1 << inode->i_blkbits;
2117         if (!page_has_buffers(page))
2118                 create_empty_buffers(page, blocksize, 0);
2119         head = page_buffers(page);
2120
2121         iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2122         lblock = (i_size_read(inode)+blocksize-1) >> inode->i_blkbits;
2123         bh = head;
2124         nr = 0;
2125         i = 0;
2126
2127         do {
2128                 if (buffer_uptodate(bh))
2129                         continue;
2130
2131                 if (!buffer_mapped(bh)) {
2132                         int err = 0;
2133
2134                         fully_mapped = 0;
2135                         if (iblock < lblock) {
2136                                 WARN_ON(bh->b_size != blocksize);
2137                                 err = get_block(inode, iblock, bh, 0);
2138                                 if (err)
2139                                         SetPageError(page);
2140                         }
2141                         if (!buffer_mapped(bh)) {
2142                                 zero_user(page, i * blocksize, blocksize);
2143                                 if (!err)
2144                                         set_buffer_uptodate(bh);
2145                                 continue;
2146                         }
2147                         /*
2148                          * get_block() might have updated the buffer
2149                          * synchronously
2150                          */
2151                         if (buffer_uptodate(bh))
2152                                 continue;
2153                 }
2154                 arr[nr++] = bh;
2155         } while (i++, iblock++, (bh = bh->b_this_page) != head);
2156
2157         if (fully_mapped)
2158                 SetPageMappedToDisk(page);
2159
2160         if (!nr) {
2161                 /*
2162                  * All buffers are uptodate - we can set the page uptodate
2163                  * as well. But not if get_block() returned an error.
2164                  */
2165                 if (!PageError(page))
2166                         SetPageUptodate(page);
2167                 unlock_page(page);
2168                 return 0;
2169         }
2170
2171         /* Stage two: lock the buffers */
2172         for (i = 0; i < nr; i++) {
2173                 bh = arr[i];
2174                 lock_buffer(bh);
2175                 mark_buffer_async_read(bh);
2176         }
2177
2178         /*
2179          * Stage 3: start the IO.  Check for uptodateness
2180          * inside the buffer lock in case another process reading
2181          * the underlying blockdev brought it uptodate (the sct fix).
2182          */
2183         for (i = 0; i < nr; i++) {
2184                 bh = arr[i];
2185                 if (buffer_uptodate(bh))
2186                         end_buffer_async_read(bh, 1);
2187                 else
2188                         submit_bh(READ, bh);
2189         }
2190         return 0;
2191 }
2192 EXPORT_SYMBOL(block_read_full_page);
2193
2194 /* utility function for filesystems that need to do work on expanding
2195  * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2196  * deal with the hole.  
2197  */
2198 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2199 {
2200         struct address_space *mapping = inode->i_mapping;
2201         struct page *page;
2202         void *fsdata;
2203         int err;
2204
2205         err = inode_newsize_ok(inode, size);
2206         if (err)
2207                 goto out;
2208
2209         err = pagecache_write_begin(NULL, mapping, size, 0,
2210                                 AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND,
2211                                 &page, &fsdata);
2212         if (err)
2213                 goto out;
2214
2215         err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2216         BUG_ON(err > 0);
2217
2218 out:
2219         return err;
2220 }
2221 EXPORT_SYMBOL(generic_cont_expand_simple);
2222
2223 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2224                             loff_t pos, loff_t *bytes)
2225 {
2226         struct inode *inode = mapping->host;
2227         unsigned blocksize = 1 << inode->i_blkbits;
2228         struct page *page;
2229         void *fsdata;
2230         pgoff_t index, curidx;
2231         loff_t curpos;
2232         unsigned zerofrom, offset, len;
2233         int err = 0;
2234
2235         index = pos >> PAGE_CACHE_SHIFT;
2236         offset = pos & ~PAGE_CACHE_MASK;
2237
2238         while (index > (curidx = (curpos = *bytes)>>PAGE_CACHE_SHIFT)) {
2239                 zerofrom = curpos & ~PAGE_CACHE_MASK;
2240                 if (zerofrom & (blocksize-1)) {
2241                         *bytes |= (blocksize-1);
2242                         (*bytes)++;
2243                 }
2244                 len = PAGE_CACHE_SIZE - zerofrom;
2245
2246                 err = pagecache_write_begin(file, mapping, curpos, len,
2247                                                 AOP_FLAG_UNINTERRUPTIBLE,
2248                                                 &page, &fsdata);
2249                 if (err)
2250                         goto out;
2251                 zero_user(page, zerofrom, len);
2252                 err = pagecache_write_end(file, mapping, curpos, len, len,
2253                                                 page, fsdata);
2254                 if (err < 0)
2255                         goto out;
2256                 BUG_ON(err != len);
2257                 err = 0;
2258
2259                 balance_dirty_pages_ratelimited(mapping);
2260         }
2261
2262         /* page covers the boundary, find the boundary offset */
2263         if (index == curidx) {
2264                 zerofrom = curpos & ~PAGE_CACHE_MASK;
2265                 /* if we will expand the thing last block will be filled */
2266                 if (offset <= zerofrom) {
2267                         goto out;
2268                 }
2269                 if (zerofrom & (blocksize-1)) {
2270                         *bytes |= (blocksize-1);
2271                         (*bytes)++;
2272                 }
2273                 len = offset - zerofrom;
2274
2275                 err = pagecache_write_begin(file, mapping, curpos, len,
2276                                                 AOP_FLAG_UNINTERRUPTIBLE,
2277                                                 &page, &fsdata);
2278                 if (err)
2279                         goto out;
2280                 zero_user(page, zerofrom, len);
2281                 err = pagecache_write_end(file, mapping, curpos, len, len,
2282                                                 page, fsdata);
2283                 if (err < 0)
2284                         goto out;
2285                 BUG_ON(err != len);
2286                 err = 0;
2287         }
2288 out:
2289         return err;
2290 }
2291
2292 /*
2293  * For moronic filesystems that do not allow holes in file.
2294  * We may have to extend the file.
2295  */
2296 int cont_write_begin(struct file *file, struct address_space *mapping,
2297                         loff_t pos, unsigned len, unsigned flags,
2298                         struct page **pagep, void **fsdata,
2299                         get_block_t *get_block, loff_t *bytes)
2300 {
2301         struct inode *inode = mapping->host;
2302         unsigned blocksize = 1 << inode->i_blkbits;
2303         unsigned zerofrom;
2304         int err;
2305
2306         err = cont_expand_zero(file, mapping, pos, bytes);
2307         if (err)
2308                 return err;
2309
2310         zerofrom = *bytes & ~PAGE_CACHE_MASK;
2311         if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2312                 *bytes |= (blocksize-1);
2313                 (*bytes)++;
2314         }
2315
2316         return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2317 }
2318 EXPORT_SYMBOL(cont_write_begin);
2319
2320 int block_commit_write(struct page *page, unsigned from, unsigned to)
2321 {
2322         struct inode *inode = page->mapping->host;
2323         __block_commit_write(inode,page,from,to);
2324         return 0;
2325 }
2326 EXPORT_SYMBOL(block_commit_write);
2327
2328 /*
2329  * block_page_mkwrite() is not allowed to change the file size as it gets
2330  * called from a page fault handler when a page is first dirtied. Hence we must
2331  * be careful to check for EOF conditions here. We set the page up correctly
2332  * for a written page which means we get ENOSPC checking when writing into
2333  * holes and correct delalloc and unwritten extent mapping on filesystems that
2334  * support these features.
2335  *
2336  * We are not allowed to take the i_mutex here so we have to play games to
2337  * protect against truncate races as the page could now be beyond EOF.  Because
2338  * truncate writes the inode size before removing pages, once we have the
2339  * page lock we can determine safely if the page is beyond EOF. If it is not
2340  * beyond EOF, then the page is guaranteed safe against truncation until we
2341  * unlock the page.
2342  *
2343  * Direct callers of this function should call vfs_check_frozen() so that page
2344  * fault does not busyloop until the fs is thawed.
2345  */
2346 int __block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2347                          get_block_t get_block)
2348 {
2349         struct page *page = vmf->page;
2350         struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
2351         unsigned long end;
2352         loff_t size;
2353         int ret;
2354
2355         lock_page(page);
2356         size = i_size_read(inode);
2357         if ((page->mapping != inode->i_mapping) ||
2358             (page_offset(page) > size)) {
2359                 /* We overload EFAULT to mean page got truncated */
2360                 ret = -EFAULT;
2361                 goto out_unlock;
2362         }
2363
2364         /* page is wholly or partially inside EOF */
2365         if (((page->index + 1) << PAGE_CACHE_SHIFT) > size)
2366                 end = size & ~PAGE_CACHE_MASK;
2367         else
2368                 end = PAGE_CACHE_SIZE;
2369
2370         ret = __block_write_begin(page, 0, end, get_block);
2371         if (!ret)
2372                 ret = block_commit_write(page, 0, end);
2373
2374         if (unlikely(ret < 0))
2375                 goto out_unlock;
2376         /*
2377          * Freezing in progress? We check after the page is marked dirty and
2378          * with page lock held so if the test here fails, we are sure freezing
2379          * code will wait during syncing until the page fault is done - at that
2380          * point page will be dirty and unlocked so freezing code will write it
2381          * and writeprotect it again.
2382          */
2383         set_page_dirty(page);
2384         if (inode->i_sb->s_frozen != SB_UNFROZEN) {
2385                 ret = -EAGAIN;
2386                 goto out_unlock;
2387         }
2388         wait_on_page_writeback(page);
2389         return 0;
2390 out_unlock:
2391         unlock_page(page);
2392         return ret;
2393 }
2394 EXPORT_SYMBOL(__block_page_mkwrite);
2395
2396 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2397                    get_block_t get_block)
2398 {
2399         int ret;
2400         struct super_block *sb = vma->vm_file->f_path.dentry->d_inode->i_sb;
2401
2402         /*
2403          * This check is racy but catches the common case. The check in
2404          * __block_page_mkwrite() is reliable.
2405          */
2406         vfs_check_frozen(sb, SB_FREEZE_WRITE);
2407         ret = __block_page_mkwrite(vma, vmf, get_block);
2408         return block_page_mkwrite_return(ret);
2409 }
2410 EXPORT_SYMBOL(block_page_mkwrite);
2411
2412 /*
2413  * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2414  * immediately, while under the page lock.  So it needs a special end_io
2415  * handler which does not touch the bh after unlocking it.
2416  */
2417 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2418 {
2419         __end_buffer_read_notouch(bh, uptodate);
2420 }
2421
2422 /*
2423  * Attach the singly-linked list of buffers created by nobh_write_begin, to
2424  * the page (converting it to circular linked list and taking care of page
2425  * dirty races).
2426  */
2427 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2428 {
2429         struct buffer_head *bh;
2430
2431         BUG_ON(!PageLocked(page));
2432
2433         spin_lock(&page->mapping->private_lock);
2434         bh = head;
2435         do {
2436                 if (PageDirty(page))
2437                         set_buffer_dirty(bh);
2438                 if (!bh->b_this_page)
2439                         bh->b_this_page = head;
2440                 bh = bh->b_this_page;
2441         } while (bh != head);
2442         attach_page_buffers(page, head);
2443         spin_unlock(&page->mapping->private_lock);
2444 }
2445
2446 /*
2447  * On entry, the page is fully not uptodate.
2448  * On exit the page is fully uptodate in the areas outside (from,to)
2449  * The filesystem needs to handle block truncation upon failure.
2450  */
2451 int nobh_write_begin(struct address_space *mapping,
2452                         loff_t pos, unsigned len, unsigned flags,
2453                         struct page **pagep, void **fsdata,
2454                         get_block_t *get_block)
2455 {
2456         struct inode *inode = mapping->host;
2457         const unsigned blkbits = inode->i_blkbits;
2458         const unsigned blocksize = 1 << blkbits;
2459         struct buffer_head *head, *bh;
2460         struct page *page;
2461         pgoff_t index;
2462         unsigned from, to;
2463         unsigned block_in_page;
2464         unsigned block_start, block_end;
2465         sector_t block_in_file;
2466         int nr_reads = 0;
2467         int ret = 0;
2468         int is_mapped_to_disk = 1;
2469
2470         index = pos >> PAGE_CACHE_SHIFT;
2471         from = pos & (PAGE_CACHE_SIZE - 1);
2472         to = from + len;
2473
2474         page = grab_cache_page_write_begin(mapping, index, flags);
2475         if (!page)
2476                 return -ENOMEM;
2477         *pagep = page;
2478         *fsdata = NULL;
2479
2480         if (page_has_buffers(page)) {
2481                 ret = __block_write_begin(page, pos, len, get_block);
2482                 if (unlikely(ret))
2483                         goto out_release;
2484                 return ret;
2485         }
2486
2487         if (PageMappedToDisk(page))
2488                 return 0;
2489
2490         /*
2491          * Allocate buffers so that we can keep track of state, and potentially
2492          * attach them to the page if an error occurs. In the common case of
2493          * no error, they will just be freed again without ever being attached
2494          * to the page (which is all OK, because we're under the page lock).
2495          *
2496          * Be careful: the buffer linked list is a NULL terminated one, rather
2497          * than the circular one we're used to.
2498          */
2499         head = alloc_page_buffers(page, blocksize, 0);
2500         if (!head) {
2501                 ret = -ENOMEM;
2502                 goto out_release;
2503         }
2504
2505         block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
2506
2507         /*
2508          * We loop across all blocks in the page, whether or not they are
2509          * part of the affected region.  This is so we can discover if the
2510          * page is fully mapped-to-disk.
2511          */
2512         for (block_start = 0, block_in_page = 0, bh = head;
2513                   block_start < PAGE_CACHE_SIZE;
2514                   block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2515                 int create;
2516
2517                 block_end = block_start + blocksize;
2518                 bh->b_state = 0;
2519                 create = 1;
2520                 if (block_start >= to)
2521                         create = 0;
2522                 ret = get_block(inode, block_in_file + block_in_page,
2523                                         bh, create);
2524                 if (ret)
2525                         goto failed;
2526                 if (!buffer_mapped(bh))
2527                         is_mapped_to_disk = 0;
2528                 if (buffer_new(bh))
2529                         unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
2530                 if (PageUptodate(page)) {
2531                         set_buffer_uptodate(bh);
2532                         continue;
2533                 }
2534                 if (buffer_new(bh) || !buffer_mapped(bh)) {
2535                         zero_user_segments(page, block_start, from,
2536                                                         to, block_end);
2537                         continue;
2538                 }
2539                 if (buffer_uptodate(bh))
2540                         continue;       /* reiserfs does this */
2541                 if (block_start < from || block_end > to) {
2542                         lock_buffer(bh);
2543                         bh->b_end_io = end_buffer_read_nobh;
2544                         submit_bh(READ, bh);
2545                         nr_reads++;
2546                 }
2547         }
2548
2549         if (nr_reads) {
2550                 /*
2551                  * The page is locked, so these buffers are protected from
2552                  * any VM or truncate activity.  Hence we don't need to care
2553                  * for the buffer_head refcounts.
2554                  */
2555                 for (bh = head; bh; bh = bh->b_this_page) {
2556                         wait_on_buffer(bh);
2557                         if (!buffer_uptodate(bh))
2558                                 ret = -EIO;
2559                 }
2560                 if (ret)
2561                         goto failed;
2562         }
2563
2564         if (is_mapped_to_disk)
2565                 SetPageMappedToDisk(page);
2566
2567         *fsdata = head; /* to be released by nobh_write_end */
2568
2569         return 0;
2570
2571 failed:
2572         BUG_ON(!ret);
2573         /*
2574          * Error recovery is a bit difficult. We need to zero out blocks that
2575          * were newly allocated, and dirty them to ensure they get written out.
2576          * Buffers need to be attached to the page at this point, otherwise
2577          * the handling of potential IO errors during writeout would be hard
2578          * (could try doing synchronous writeout, but what if that fails too?)
2579          */
2580         attach_nobh_buffers(page, head);
2581         page_zero_new_buffers(page, from, to);
2582
2583 out_release:
2584         unlock_page(page);
2585         page_cache_release(page);
2586         *pagep = NULL;
2587
2588         return ret;
2589 }
2590 EXPORT_SYMBOL(nobh_write_begin);
2591
2592 int nobh_write_end(struct file *file, struct address_space *mapping,
2593                         loff_t pos, unsigned len, unsigned copied,
2594                         struct page *page, void *fsdata)
2595 {
2596         struct inode *inode = page->mapping->host;
2597         struct buffer_head *head = fsdata;
2598         struct buffer_head *bh;
2599         BUG_ON(fsdata != NULL && page_has_buffers(page));
2600
2601         if (unlikely(copied < len) && head)
2602                 attach_nobh_buffers(page, head);
2603         if (page_has_buffers(page))
2604                 return generic_write_end(file, mapping, pos, len,
2605                                         copied, page, fsdata);
2606
2607         SetPageUptodate(page);
2608         set_page_dirty(page);
2609         if (pos+copied > inode->i_size) {
2610                 i_size_write(inode, pos+copied);
2611                 mark_inode_dirty(inode);
2612         }
2613
2614         unlock_page(page);
2615         page_cache_release(page);
2616
2617         while (head) {
2618                 bh = head;
2619                 head = head->b_this_page;
2620                 free_buffer_head(bh);
2621         }
2622
2623         return copied;
2624 }
2625 EXPORT_SYMBOL(nobh_write_end);
2626
2627 /*
2628  * nobh_writepage() - based on block_full_write_page() except
2629  * that it tries to operate without attaching bufferheads to
2630  * the page.
2631  */
2632 int nobh_writepage(struct page *page, get_block_t *get_block,
2633                         struct writeback_control *wbc)
2634 {
2635         struct inode * const inode = page->mapping->host;
2636         loff_t i_size = i_size_read(inode);
2637         const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2638         unsigned offset;
2639         int ret;
2640
2641         /* Is the page fully inside i_size? */
2642         if (page->index < end_index)
2643                 goto out;
2644
2645         /* Is the page fully outside i_size? (truncate in progress) */
2646         offset = i_size & (PAGE_CACHE_SIZE-1);
2647         if (page->index >= end_index+1 || !offset) {
2648                 /*
2649                  * The page may have dirty, unmapped buffers.  For example,
2650                  * they may have been added in ext3_writepage().  Make them
2651                  * freeable here, so the page does not leak.
2652                  */
2653 #if 0
2654                 /* Not really sure about this  - do we need this ? */
2655                 if (page->mapping->a_ops->invalidatepage)
2656                         page->mapping->a_ops->invalidatepage(page, offset);
2657 #endif
2658                 unlock_page(page);
2659                 return 0; /* don't care */
2660         }
2661
2662         /*
2663          * The page straddles i_size.  It must be zeroed out on each and every
2664          * writepage invocation because it may be mmapped.  "A file is mapped
2665          * in multiples of the page size.  For a file that is not a multiple of
2666          * the  page size, the remaining memory is zeroed when mapped, and
2667          * writes to that region are not written out to the file."
2668          */
2669         zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2670 out:
2671         ret = mpage_writepage(page, get_block, wbc);
2672         if (ret == -EAGAIN)
2673                 ret = __block_write_full_page(inode, page, get_block, wbc,
2674                                               end_buffer_async_write);
2675         return ret;
2676 }
2677 EXPORT_SYMBOL(nobh_writepage);
2678
2679 int nobh_truncate_page(struct address_space *mapping,
2680                         loff_t from, get_block_t *get_block)
2681 {
2682         pgoff_t index = from >> PAGE_CACHE_SHIFT;
2683         unsigned offset = from & (PAGE_CACHE_SIZE-1);
2684         unsigned blocksize;
2685         sector_t iblock;
2686         unsigned length, pos;
2687         struct inode *inode = mapping->host;
2688         struct page *page;
2689         struct buffer_head map_bh;
2690         int err;
2691
2692         blocksize = 1 << inode->i_blkbits;
2693         length = offset & (blocksize - 1);
2694
2695         /* Block boundary? Nothing to do */
2696         if (!length)
2697                 return 0;
2698
2699         length = blocksize - length;
2700         iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2701
2702         page = grab_cache_page(mapping, index);
2703         err = -ENOMEM;
2704         if (!page)
2705                 goto out;
2706
2707         if (page_has_buffers(page)) {
2708 has_buffers:
2709                 unlock_page(page);
2710                 page_cache_release(page);
2711                 return block_truncate_page(mapping, from, get_block);
2712         }
2713
2714         /* Find the buffer that contains "offset" */
2715         pos = blocksize;
2716         while (offset >= pos) {
2717                 iblock++;
2718                 pos += blocksize;
2719         }
2720
2721         map_bh.b_size = blocksize;
2722         map_bh.b_state = 0;
2723         err = get_block(inode, iblock, &map_bh, 0);
2724         if (err)
2725                 goto unlock;
2726         /* unmapped? It's a hole - nothing to do */
2727         if (!buffer_mapped(&map_bh))
2728                 goto unlock;
2729
2730         /* Ok, it's mapped. Make sure it's up-to-date */
2731         if (!PageUptodate(page)) {
2732                 err = mapping->a_ops->readpage(NULL, page);
2733                 if (err) {
2734                         page_cache_release(page);
2735                         goto out;
2736                 }
2737                 lock_page(page);
2738                 if (!PageUptodate(page)) {
2739                         err = -EIO;
2740                         goto unlock;
2741                 }
2742                 if (page_has_buffers(page))
2743                         goto has_buffers;
2744         }
2745         zero_user(page, offset, length);
2746         set_page_dirty(page);
2747         err = 0;
2748
2749 unlock:
2750         unlock_page(page);
2751         page_cache_release(page);
2752 out:
2753         return err;
2754 }
2755 EXPORT_SYMBOL(nobh_truncate_page);
2756
2757 int block_truncate_page(struct address_space *mapping,
2758                         loff_t from, get_block_t *get_block)
2759 {
2760         pgoff_t index = from >> PAGE_CACHE_SHIFT;
2761         unsigned offset = from & (PAGE_CACHE_SIZE-1);
2762         unsigned blocksize;
2763         sector_t iblock;
2764         unsigned length, pos;
2765         struct inode *inode = mapping->host;
2766         struct page *page;
2767         struct buffer_head *bh;
2768         int err;
2769
2770         blocksize = 1 << inode->i_blkbits;
2771         length = offset & (blocksize - 1);
2772
2773         /* Block boundary? Nothing to do */
2774         if (!length)
2775                 return 0;
2776
2777         length = blocksize - length;
2778         iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2779         
2780         page = grab_cache_page(mapping, index);
2781         err = -ENOMEM;
2782         if (!page)
2783                 goto out;
2784
2785         if (!page_has_buffers(page))
2786                 create_empty_buffers(page, blocksize, 0);
2787
2788         /* Find the buffer that contains "offset" */
2789         bh = page_buffers(page);
2790         pos = blocksize;
2791         while (offset >= pos) {
2792                 bh = bh->b_this_page;
2793                 iblock++;
2794                 pos += blocksize;
2795         }
2796
2797         err = 0;
2798         if (!buffer_mapped(bh)) {
2799                 WARN_ON(bh->b_size != blocksize);
2800                 err = get_block(inode, iblock, bh, 0);
2801                 if (err)
2802                         goto unlock;
2803                 /* unmapped? It's a hole - nothing to do */
2804                 if (!buffer_mapped(bh))
2805                         goto unlock;
2806         }
2807
2808         /* Ok, it's mapped. Make sure it's up-to-date */
2809         if (PageUptodate(page))
2810                 set_buffer_uptodate(bh);
2811
2812         if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2813                 err = -EIO;
2814                 ll_rw_block(READ, 1, &bh);
2815                 wait_on_buffer(bh);
2816                 /* Uhhuh. Read error. Complain and punt. */
2817                 if (!buffer_uptodate(bh))
2818                         goto unlock;
2819         }
2820
2821         zero_user(page, offset, length);
2822         mark_buffer_dirty(bh);
2823         err = 0;
2824
2825 unlock:
2826         unlock_page(page);
2827         page_cache_release(page);
2828 out:
2829         return err;
2830 }
2831 EXPORT_SYMBOL(block_truncate_page);
2832
2833 /*
2834  * The generic ->writepage function for buffer-backed address_spaces
2835  * this form passes in the end_io handler used to finish the IO.
2836  */
2837 int block_write_full_page_endio(struct page *page, get_block_t *get_block,
2838                         struct writeback_control *wbc, bh_end_io_t *handler)
2839 {
2840         struct inode * const inode = page->mapping->host;
2841         loff_t i_size = i_size_read(inode);
2842         const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2843         unsigned offset;
2844
2845         /* Is the page fully inside i_size? */
2846         if (page->index < end_index)
2847                 return __block_write_full_page(inode, page, get_block, wbc,
2848                                                handler);
2849
2850         /* Is the page fully outside i_size? (truncate in progress) */
2851         offset = i_size & (PAGE_CACHE_SIZE-1);
2852         if (page->index >= end_index+1 || !offset) {
2853                 /*
2854                  * The page may have dirty, unmapped buffers.  For example,
2855                  * they may have been added in ext3_writepage().  Make them
2856                  * freeable here, so the page does not leak.
2857                  */
2858                 do_invalidatepage(page, 0);
2859                 unlock_page(page);
2860                 return 0; /* don't care */
2861         }
2862
2863         /*
2864          * The page straddles i_size.  It must be zeroed out on each and every
2865          * writepage invocation because it may be mmapped.  "A file is mapped
2866          * in multiples of the page size.  For a file that is not a multiple of
2867          * the  page size, the remaining memory is zeroed when mapped, and
2868          * writes to that region are not written out to the file."
2869          */
2870         zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2871         return __block_write_full_page(inode, page, get_block, wbc, handler);
2872 }
2873 EXPORT_SYMBOL(block_write_full_page_endio);
2874
2875 /*
2876  * The generic ->writepage function for buffer-backed address_spaces
2877  */
2878 int block_write_full_page(struct page *page, get_block_t *get_block,
2879                         struct writeback_control *wbc)
2880 {
2881         return block_write_full_page_endio(page, get_block, wbc,
2882                                            end_buffer_async_write);
2883 }
2884 EXPORT_SYMBOL(block_write_full_page);
2885
2886 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2887                             get_block_t *get_block)
2888 {
2889         struct buffer_head tmp;
2890         struct inode *inode = mapping->host;
2891         tmp.b_state = 0;
2892         tmp.b_blocknr = 0;
2893         tmp.b_size = 1 << inode->i_blkbits;
2894         get_block(inode, block, &tmp, 0);
2895         return tmp.b_blocknr;
2896 }
2897 EXPORT_SYMBOL(generic_block_bmap);
2898
2899 static void end_bio_bh_io_sync(struct bio *bio, int err)
2900 {
2901         struct buffer_head *bh = bio->bi_private;
2902
2903         if (err == -EOPNOTSUPP) {
2904                 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2905         }
2906
2907         if (unlikely (test_bit(BIO_QUIET,&bio->bi_flags)))
2908                 set_bit(BH_Quiet, &bh->b_state);
2909
2910         bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2911         bio_put(bio);
2912 }
2913
2914 int submit_bh(int rw, struct buffer_head * bh)
2915 {
2916         struct bio *bio;
2917         int ret = 0;
2918
2919         BUG_ON(!buffer_locked(bh));
2920         BUG_ON(!buffer_mapped(bh));
2921         BUG_ON(!bh->b_end_io);
2922         BUG_ON(buffer_delay(bh));
2923         BUG_ON(buffer_unwritten(bh));
2924
2925         /*
2926          * Only clear out a write error when rewriting
2927          */
2928         if (test_set_buffer_req(bh) && (rw & WRITE))
2929                 clear_buffer_write_io_error(bh);
2930
2931         /*
2932          * from here on down, it's all bio -- do the initial mapping,
2933          * submit_bio -> generic_make_request may further map this bio around
2934          */
2935         bio = bio_alloc(GFP_NOIO, 1);
2936
2937         bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2938         bio->bi_bdev = bh->b_bdev;
2939         bio->bi_io_vec[0].bv_page = bh->b_page;
2940         bio->bi_io_vec[0].bv_len = bh->b_size;
2941         bio->bi_io_vec[0].bv_offset = bh_offset(bh);
2942
2943         bio->bi_vcnt = 1;
2944         bio->bi_idx = 0;
2945         bio->bi_size = bh->b_size;
2946
2947         bio->bi_end_io = end_bio_bh_io_sync;
2948         bio->bi_private = bh;
2949
2950         bio_get(bio);
2951         submit_bio(rw, bio);
2952
2953         if (bio_flagged(bio, BIO_EOPNOTSUPP))
2954                 ret = -EOPNOTSUPP;
2955
2956         bio_put(bio);
2957         return ret;
2958 }
2959 EXPORT_SYMBOL(submit_bh);
2960
2961 /**
2962  * ll_rw_block: low-level access to block devices (DEPRECATED)
2963  * @rw: whether to %READ or %WRITE or maybe %READA (readahead)
2964  * @nr: number of &struct buffer_heads in the array
2965  * @bhs: array of pointers to &struct buffer_head
2966  *
2967  * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
2968  * requests an I/O operation on them, either a %READ or a %WRITE.  The third
2969  * %READA option is described in the documentation for generic_make_request()
2970  * which ll_rw_block() calls.
2971  *
2972  * This function drops any buffer that it cannot get a lock on (with the
2973  * BH_Lock state bit), any buffer that appears to be clean when doing a write
2974  * request, and any buffer that appears to be up-to-date when doing read
2975  * request.  Further it marks as clean buffers that are processed for
2976  * writing (the buffer cache won't assume that they are actually clean
2977  * until the buffer gets unlocked).
2978  *
2979  * ll_rw_block sets b_end_io to simple completion handler that marks
2980  * the buffer up-to-date (if approriate), unlocks the buffer and wakes
2981  * any waiters. 
2982  *
2983  * All of the buffers must be for the same device, and must also be a
2984  * multiple of the current approved size for the device.
2985  */
2986 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
2987 {
2988         int i;
2989
2990         for (i = 0; i < nr; i++) {
2991                 struct buffer_head *bh = bhs[i];
2992
2993                 if (!trylock_buffer(bh))
2994                         continue;
2995                 if (rw == WRITE) {
2996                         if (test_clear_buffer_dirty(bh)) {
2997                                 bh->b_end_io = end_buffer_write_sync;
2998                                 get_bh(bh);
2999                                 submit_bh(WRITE, bh);
3000                                 continue;
3001                         }
3002                 } else {
3003                         if (!buffer_uptodate(bh)) {
3004                                 bh->b_end_io = end_buffer_read_sync;
3005                                 get_bh(bh);
3006                                 submit_bh(rw, bh);
3007                                 continue;
3008                         }
3009                 }
3010                 unlock_buffer(bh);
3011         }
3012 }
3013 EXPORT_SYMBOL(ll_rw_block);
3014
3015 void write_dirty_buffer(struct buffer_head *bh, int rw)
3016 {
3017         lock_buffer(bh);
3018         if (!test_clear_buffer_dirty(bh)) {
3019                 unlock_buffer(bh);
3020                 return;
3021         }
3022         bh->b_end_io = end_buffer_write_sync;
3023         get_bh(bh);
3024         submit_bh(rw, bh);
3025 }
3026 EXPORT_SYMBOL(write_dirty_buffer);
3027
3028 /*
3029  * For a data-integrity writeout, we need to wait upon any in-progress I/O
3030  * and then start new I/O and then wait upon it.  The caller must have a ref on
3031  * the buffer_head.
3032  */
3033 int __sync_dirty_buffer(struct buffer_head *bh, int rw)
3034 {
3035         int ret = 0;
3036
3037         WARN_ON(atomic_read(&bh->b_count) < 1);
3038         lock_buffer(bh);
3039         if (test_clear_buffer_dirty(bh)) {
3040                 get_bh(bh);
3041                 bh->b_end_io = end_buffer_write_sync;
3042                 ret = submit_bh(rw, bh);
3043                 wait_on_buffer(bh);
3044                 if (!ret && !buffer_uptodate(bh))
3045                         ret = -EIO;
3046         } else {
3047                 unlock_buffer(bh);
3048         }
3049         return ret;
3050 }
3051 EXPORT_SYMBOL(__sync_dirty_buffer);
3052
3053 int sync_dirty_buffer(struct buffer_head *bh)
3054 {
3055         return __sync_dirty_buffer(bh, WRITE_SYNC);
3056 }
3057 EXPORT_SYMBOL(sync_dirty_buffer);
3058
3059 /*
3060  * try_to_free_buffers() checks if all the buffers on this particular page
3061  * are unused, and releases them if so.
3062  *
3063  * Exclusion against try_to_free_buffers may be obtained by either
3064  * locking the page or by holding its mapping's private_lock.
3065  *
3066  * If the page is dirty but all the buffers are clean then we need to
3067  * be sure to mark the page clean as well.  This is because the page
3068  * may be against a block device, and a later reattachment of buffers
3069  * to a dirty page will set *all* buffers dirty.  Which would corrupt
3070  * filesystem data on the same device.
3071  *
3072  * The same applies to regular filesystem pages: if all the buffers are
3073  * clean then we set the page clean and proceed.  To do that, we require
3074  * total exclusion from __set_page_dirty_buffers().  That is obtained with
3075  * private_lock.
3076  *
3077  * try_to_free_buffers() is non-blocking.
3078  */
3079 static inline int buffer_busy(struct buffer_head *bh)
3080 {
3081         return atomic_read(&bh->b_count) |
3082                 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3083 }
3084
3085 static int
3086 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3087 {
3088         struct buffer_head *head = page_buffers(page);
3089         struct buffer_head *bh;
3090
3091         bh = head;
3092         do {
3093                 if (buffer_write_io_error(bh) && page->mapping)
3094                         set_bit(AS_EIO, &page->mapping->flags);
3095                 if (buffer_busy(bh))
3096                         goto failed;
3097                 bh = bh->b_this_page;
3098         } while (bh != head);
3099
3100         do {
3101                 struct buffer_head *next = bh->b_this_page;
3102
3103                 if (bh->b_assoc_map)
3104                         __remove_assoc_queue(bh);
3105                 bh = next;
3106         } while (bh != head);
3107         *buffers_to_free = head;
3108         __clear_page_buffers(page);
3109         return 1;
3110 failed:
3111         return 0;
3112 }
3113
3114 int try_to_free_buffers(struct page *page)
3115 {
3116         struct address_space * const mapping = page->mapping;
3117         struct buffer_head *buffers_to_free = NULL;
3118         int ret = 0;
3119
3120         BUG_ON(!PageLocked(page));
3121         if (PageWriteback(page))
3122                 return 0;
3123
3124         if (mapping == NULL) {          /* can this still happen? */
3125                 ret = drop_buffers(page, &buffers_to_free);
3126                 goto out;
3127         }
3128
3129         spin_lock(&mapping->private_lock);
3130         ret = drop_buffers(page, &buffers_to_free);
3131
3132         /*
3133          * If the filesystem writes its buffers by hand (eg ext3)
3134          * then we can have clean buffers against a dirty page.  We
3135          * clean the page here; otherwise the VM will never notice
3136          * that the filesystem did any IO at all.
3137          *
3138          * Also, during truncate, discard_buffer will have marked all
3139          * the page's buffers clean.  We discover that here and clean
3140          * the page also.
3141          *
3142          * private_lock must be held over this entire operation in order
3143          * to synchronise against __set_page_dirty_buffers and prevent the
3144          * dirty bit from being lost.
3145          */
3146         if (ret)
3147                 cancel_dirty_page(page, PAGE_CACHE_SIZE);
3148         spin_unlock(&mapping->private_lock);
3149 out:
3150         if (buffers_to_free) {
3151                 struct buffer_head *bh = buffers_to_free;
3152
3153                 do {
3154                         struct buffer_head *next = bh->b_this_page;
3155                         free_buffer_head(bh);
3156                         bh = next;
3157                 } while (bh != buffers_to_free);
3158         }
3159         return ret;
3160 }
3161 EXPORT_SYMBOL(try_to_free_buffers);
3162
3163 /*
3164  * There are no bdflush tunables left.  But distributions are
3165  * still running obsolete flush daemons, so we terminate them here.
3166  *
3167  * Use of bdflush() is deprecated and will be removed in a future kernel.
3168  * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3169  */
3170 SYSCALL_DEFINE2(bdflush, int, func, long, data)
3171 {
3172         static int msg_count;
3173
3174         if (!capable(CAP_SYS_ADMIN))
3175                 return -EPERM;
3176
3177         if (msg_count < 5) {
3178                 msg_count++;
3179                 printk(KERN_INFO
3180                         "warning: process `%s' used the obsolete bdflush"
3181                         " system call\n", current->comm);
3182                 printk(KERN_INFO "Fix your initscripts?\n");
3183         }
3184
3185         if (func == 1)
3186                 do_exit(0);
3187         return 0;
3188 }
3189
3190 /*
3191  * Buffer-head allocation
3192  */
3193 static struct kmem_cache *bh_cachep;
3194
3195 /*
3196  * Once the number of bh's in the machine exceeds this level, we start
3197  * stripping them in writeback.
3198  */
3199 static int max_buffer_heads;
3200
3201 int buffer_heads_over_limit;
3202
3203 struct bh_accounting {
3204         int nr;                 /* Number of live bh's */
3205         int ratelimit;          /* Limit cacheline bouncing */
3206 };
3207
3208 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3209
3210 static void recalc_bh_state(void)
3211 {
3212         int i;
3213         int tot = 0;
3214
3215         if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3216                 return;
3217         __this_cpu_write(bh_accounting.ratelimit, 0);
3218         for_each_online_cpu(i)
3219                 tot += per_cpu(bh_accounting, i).nr;
3220         buffer_heads_over_limit = (tot > max_buffer_heads);
3221 }
3222
3223 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3224 {
3225         struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3226         if (ret) {
3227                 INIT_LIST_HEAD(&ret->b_assoc_buffers);
3228                 preempt_disable();
3229                 __this_cpu_inc(bh_accounting.nr);
3230                 recalc_bh_state();
3231                 preempt_enable();
3232         }
3233         return ret;
3234 }
3235 EXPORT_SYMBOL(alloc_buffer_head);
3236
3237 void free_buffer_head(struct buffer_head *bh)
3238 {
3239         BUG_ON(!list_empty(&bh->b_assoc_buffers));
3240         kmem_cache_free(bh_cachep, bh);
3241         preempt_disable();
3242         __this_cpu_dec(bh_accounting.nr);
3243         recalc_bh_state();
3244         preempt_enable();
3245 }
3246 EXPORT_SYMBOL(free_buffer_head);
3247
3248 static void buffer_exit_cpu(int cpu)
3249 {
3250         int i;
3251         struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3252
3253         for (i = 0; i < BH_LRU_SIZE; i++) {
3254                 brelse(b->bhs[i]);
3255                 b->bhs[i] = NULL;
3256         }
3257         this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3258         per_cpu(bh_accounting, cpu).nr = 0;
3259 }
3260
3261 static int buffer_cpu_notify(struct notifier_block *self,
3262                               unsigned long action, void *hcpu)
3263 {
3264         if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
3265                 buffer_exit_cpu((unsigned long)hcpu);
3266         return NOTIFY_OK;
3267 }
3268
3269 /**
3270  * bh_uptodate_or_lock - Test whether the buffer is uptodate
3271  * @bh: struct buffer_head
3272  *
3273  * Return true if the buffer is up-to-date and false,
3274  * with the buffer locked, if not.
3275  */
3276 int bh_uptodate_or_lock(struct buffer_head *bh)
3277 {
3278         if (!buffer_uptodate(bh)) {
3279                 lock_buffer(bh);
3280                 if (!buffer_uptodate(bh))
3281                         return 0;
3282                 unlock_buffer(bh);
3283         }
3284         return 1;
3285 }
3286 EXPORT_SYMBOL(bh_uptodate_or_lock);
3287
3288 /**
3289  * bh_submit_read - Submit a locked buffer for reading
3290  * @bh: struct buffer_head
3291  *
3292  * Returns zero on success and -EIO on error.
3293  */
3294 int bh_submit_read(struct buffer_head *bh)
3295 {
3296         BUG_ON(!buffer_locked(bh));
3297
3298         if (buffer_uptodate(bh)) {
3299                 unlock_buffer(bh);
3300                 return 0;
3301         }
3302
3303         get_bh(bh);
3304         bh->b_end_io = end_buffer_read_sync;
3305         submit_bh(READ, bh);
3306         wait_on_buffer(bh);
3307         if (buffer_uptodate(bh))
3308                 return 0;
3309         return -EIO;
3310 }
3311 EXPORT_SYMBOL(bh_submit_read);
3312
3313 void __init buffer_init(void)
3314 {
3315         int nrpages;
3316
3317         bh_cachep = kmem_cache_create("buffer_head",
3318                         sizeof(struct buffer_head), 0,
3319                                 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3320                                 SLAB_MEM_SPREAD),
3321                                 NULL);
3322
3323         /*
3324          * Limit the bh occupancy to 10% of ZONE_NORMAL
3325          */
3326         nrpages = (nr_free_buffer_pages() * 10) / 100;
3327         max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3328         hotcpu_notifier(buffer_cpu_notify, 0);
3329 }