[PATCH] Fix section mismatch in de2104x.c
[pandora-kernel.git] / fs / buffer.c
1 /*
2  *  linux/fs/buffer.c
3  *
4  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
5  */
6
7 /*
8  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9  *
10  * Removed a lot of unnecessary code and simplified things now that
11  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12  *
13  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
14  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
15  *
16  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17  *
18  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19  */
20
21 #include <linux/kernel.h>
22 #include <linux/syscalls.h>
23 #include <linux/fs.h>
24 #include <linux/mm.h>
25 #include <linux/percpu.h>
26 #include <linux/slab.h>
27 #include <linux/smp_lock.h>
28 #include <linux/capability.h>
29 #include <linux/blkdev.h>
30 #include <linux/file.h>
31 #include <linux/quotaops.h>
32 #include <linux/highmem.h>
33 #include <linux/module.h>
34 #include <linux/writeback.h>
35 #include <linux/hash.h>
36 #include <linux/suspend.h>
37 #include <linux/buffer_head.h>
38 #include <linux/bio.h>
39 #include <linux/notifier.h>
40 #include <linux/cpu.h>
41 #include <linux/bitops.h>
42 #include <linux/mpage.h>
43 #include <linux/bit_spinlock.h>
44
45 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
46 static void invalidate_bh_lrus(void);
47
48 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
49
50 inline void
51 init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
52 {
53         bh->b_end_io = handler;
54         bh->b_private = private;
55 }
56
57 static int sync_buffer(void *word)
58 {
59         struct block_device *bd;
60         struct buffer_head *bh
61                 = container_of(word, struct buffer_head, b_state);
62
63         smp_mb();
64         bd = bh->b_bdev;
65         if (bd)
66                 blk_run_address_space(bd->bd_inode->i_mapping);
67         io_schedule();
68         return 0;
69 }
70
71 void fastcall __lock_buffer(struct buffer_head *bh)
72 {
73         wait_on_bit_lock(&bh->b_state, BH_Lock, sync_buffer,
74                                                         TASK_UNINTERRUPTIBLE);
75 }
76 EXPORT_SYMBOL(__lock_buffer);
77
78 void fastcall unlock_buffer(struct buffer_head *bh)
79 {
80         clear_buffer_locked(bh);
81         smp_mb__after_clear_bit();
82         wake_up_bit(&bh->b_state, BH_Lock);
83 }
84
85 /*
86  * Block until a buffer comes unlocked.  This doesn't stop it
87  * from becoming locked again - you have to lock it yourself
88  * if you want to preserve its state.
89  */
90 void __wait_on_buffer(struct buffer_head * bh)
91 {
92         wait_on_bit(&bh->b_state, BH_Lock, sync_buffer, TASK_UNINTERRUPTIBLE);
93 }
94
95 static void
96 __clear_page_buffers(struct page *page)
97 {
98         ClearPagePrivate(page);
99         set_page_private(page, 0);
100         page_cache_release(page);
101 }
102
103 static void buffer_io_error(struct buffer_head *bh)
104 {
105         char b[BDEVNAME_SIZE];
106
107         printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
108                         bdevname(bh->b_bdev, b),
109                         (unsigned long long)bh->b_blocknr);
110 }
111
112 /*
113  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
114  * unlock the buffer. This is what ll_rw_block uses too.
115  */
116 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
117 {
118         if (uptodate) {
119                 set_buffer_uptodate(bh);
120         } else {
121                 /* This happens, due to failed READA attempts. */
122                 clear_buffer_uptodate(bh);
123         }
124         unlock_buffer(bh);
125         put_bh(bh);
126 }
127
128 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
129 {
130         char b[BDEVNAME_SIZE];
131
132         if (uptodate) {
133                 set_buffer_uptodate(bh);
134         } else {
135                 if (!buffer_eopnotsupp(bh) && printk_ratelimit()) {
136                         buffer_io_error(bh);
137                         printk(KERN_WARNING "lost page write due to "
138                                         "I/O error on %s\n",
139                                        bdevname(bh->b_bdev, b));
140                 }
141                 set_buffer_write_io_error(bh);
142                 clear_buffer_uptodate(bh);
143         }
144         unlock_buffer(bh);
145         put_bh(bh);
146 }
147
148 /*
149  * Write out and wait upon all the dirty data associated with a block
150  * device via its mapping.  Does not take the superblock lock.
151  */
152 int sync_blockdev(struct block_device *bdev)
153 {
154         int ret = 0;
155
156         if (bdev)
157                 ret = filemap_write_and_wait(bdev->bd_inode->i_mapping);
158         return ret;
159 }
160 EXPORT_SYMBOL(sync_blockdev);
161
162 /*
163  * Write out and wait upon all dirty data associated with this
164  * device.   Filesystem data as well as the underlying block
165  * device.  Takes the superblock lock.
166  */
167 int fsync_bdev(struct block_device *bdev)
168 {
169         struct super_block *sb = get_super(bdev);
170         if (sb) {
171                 int res = fsync_super(sb);
172                 drop_super(sb);
173                 return res;
174         }
175         return sync_blockdev(bdev);
176 }
177
178 /**
179  * freeze_bdev  --  lock a filesystem and force it into a consistent state
180  * @bdev:       blockdevice to lock
181  *
182  * This takes the block device bd_mount_mutex to make sure no new mounts
183  * happen on bdev until thaw_bdev() is called.
184  * If a superblock is found on this device, we take the s_umount semaphore
185  * on it to make sure nobody unmounts until the snapshot creation is done.
186  */
187 struct super_block *freeze_bdev(struct block_device *bdev)
188 {
189         struct super_block *sb;
190
191         mutex_lock(&bdev->bd_mount_mutex);
192         sb = get_super(bdev);
193         if (sb && !(sb->s_flags & MS_RDONLY)) {
194                 sb->s_frozen = SB_FREEZE_WRITE;
195                 smp_wmb();
196
197                 __fsync_super(sb);
198
199                 sb->s_frozen = SB_FREEZE_TRANS;
200                 smp_wmb();
201
202                 sync_blockdev(sb->s_bdev);
203
204                 if (sb->s_op->write_super_lockfs)
205                         sb->s_op->write_super_lockfs(sb);
206         }
207
208         sync_blockdev(bdev);
209         return sb;      /* thaw_bdev releases s->s_umount and bd_mount_sem */
210 }
211 EXPORT_SYMBOL(freeze_bdev);
212
213 /**
214  * thaw_bdev  -- unlock filesystem
215  * @bdev:       blockdevice to unlock
216  * @sb:         associated superblock
217  *
218  * Unlocks the filesystem and marks it writeable again after freeze_bdev().
219  */
220 void thaw_bdev(struct block_device *bdev, struct super_block *sb)
221 {
222         if (sb) {
223                 BUG_ON(sb->s_bdev != bdev);
224
225                 if (sb->s_op->unlockfs)
226                         sb->s_op->unlockfs(sb);
227                 sb->s_frozen = SB_UNFROZEN;
228                 smp_wmb();
229                 wake_up(&sb->s_wait_unfrozen);
230                 drop_super(sb);
231         }
232
233         mutex_unlock(&bdev->bd_mount_mutex);
234 }
235 EXPORT_SYMBOL(thaw_bdev);
236
237 /*
238  * Various filesystems appear to want __find_get_block to be non-blocking.
239  * But it's the page lock which protects the buffers.  To get around this,
240  * we get exclusion from try_to_free_buffers with the blockdev mapping's
241  * private_lock.
242  *
243  * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
244  * may be quite high.  This code could TryLock the page, and if that
245  * succeeds, there is no need to take private_lock. (But if
246  * private_lock is contended then so is mapping->tree_lock).
247  */
248 static struct buffer_head *
249 __find_get_block_slow(struct block_device *bdev, sector_t block)
250 {
251         struct inode *bd_inode = bdev->bd_inode;
252         struct address_space *bd_mapping = bd_inode->i_mapping;
253         struct buffer_head *ret = NULL;
254         pgoff_t index;
255         struct buffer_head *bh;
256         struct buffer_head *head;
257         struct page *page;
258         int all_mapped = 1;
259
260         index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
261         page = find_get_page(bd_mapping, index);
262         if (!page)
263                 goto out;
264
265         spin_lock(&bd_mapping->private_lock);
266         if (!page_has_buffers(page))
267                 goto out_unlock;
268         head = page_buffers(page);
269         bh = head;
270         do {
271                 if (bh->b_blocknr == block) {
272                         ret = bh;
273                         get_bh(bh);
274                         goto out_unlock;
275                 }
276                 if (!buffer_mapped(bh))
277                         all_mapped = 0;
278                 bh = bh->b_this_page;
279         } while (bh != head);
280
281         /* we might be here because some of the buffers on this page are
282          * not mapped.  This is due to various races between
283          * file io on the block device and getblk.  It gets dealt with
284          * elsewhere, don't buffer_error if we had some unmapped buffers
285          */
286         if (all_mapped) {
287                 printk("__find_get_block_slow() failed. "
288                         "block=%llu, b_blocknr=%llu\n",
289                         (unsigned long long)block,
290                         (unsigned long long)bh->b_blocknr);
291                 printk("b_state=0x%08lx, b_size=%zu\n",
292                         bh->b_state, bh->b_size);
293                 printk("device blocksize: %d\n", 1 << bd_inode->i_blkbits);
294         }
295 out_unlock:
296         spin_unlock(&bd_mapping->private_lock);
297         page_cache_release(page);
298 out:
299         return ret;
300 }
301
302 /* If invalidate_buffers() will trash dirty buffers, it means some kind
303    of fs corruption is going on. Trashing dirty data always imply losing
304    information that was supposed to be just stored on the physical layer
305    by the user.
306
307    Thus invalidate_buffers in general usage is not allwowed to trash
308    dirty buffers. For example ioctl(FLSBLKBUF) expects dirty data to
309    be preserved.  These buffers are simply skipped.
310   
311    We also skip buffers which are still in use.  For example this can
312    happen if a userspace program is reading the block device.
313
314    NOTE: In the case where the user removed a removable-media-disk even if
315    there's still dirty data not synced on disk (due a bug in the device driver
316    or due an error of the user), by not destroying the dirty buffers we could
317    generate corruption also on the next media inserted, thus a parameter is
318    necessary to handle this case in the most safe way possible (trying
319    to not corrupt also the new disk inserted with the data belonging to
320    the old now corrupted disk). Also for the ramdisk the natural thing
321    to do in order to release the ramdisk memory is to destroy dirty buffers.
322
323    These are two special cases. Normal usage imply the device driver
324    to issue a sync on the device (without waiting I/O completion) and
325    then an invalidate_buffers call that doesn't trash dirty buffers.
326
327    For handling cache coherency with the blkdev pagecache the 'update' case
328    is been introduced. It is needed to re-read from disk any pinned
329    buffer. NOTE: re-reading from disk is destructive so we can do it only
330    when we assume nobody is changing the buffercache under our I/O and when
331    we think the disk contains more recent information than the buffercache.
332    The update == 1 pass marks the buffers we need to update, the update == 2
333    pass does the actual I/O. */
334 void invalidate_bdev(struct block_device *bdev, int destroy_dirty_buffers)
335 {
336         struct address_space *mapping = bdev->bd_inode->i_mapping;
337
338         if (mapping->nrpages == 0)
339                 return;
340
341         invalidate_bh_lrus();
342         /*
343          * FIXME: what about destroy_dirty_buffers?
344          * We really want to use invalidate_inode_pages2() for
345          * that, but not until that's cleaned up.
346          */
347         invalidate_inode_pages(mapping);
348 }
349
350 /*
351  * Kick pdflush then try to free up some ZONE_NORMAL memory.
352  */
353 static void free_more_memory(void)
354 {
355         struct zone **zones;
356         pg_data_t *pgdat;
357
358         wakeup_pdflush(1024);
359         yield();
360
361         for_each_online_pgdat(pgdat) {
362                 zones = pgdat->node_zonelists[gfp_zone(GFP_NOFS)].zones;
363                 if (*zones)
364                         try_to_free_pages(zones, GFP_NOFS);
365         }
366 }
367
368 /*
369  * I/O completion handler for block_read_full_page() - pages
370  * which come unlocked at the end of I/O.
371  */
372 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
373 {
374         unsigned long flags;
375         struct buffer_head *first;
376         struct buffer_head *tmp;
377         struct page *page;
378         int page_uptodate = 1;
379
380         BUG_ON(!buffer_async_read(bh));
381
382         page = bh->b_page;
383         if (uptodate) {
384                 set_buffer_uptodate(bh);
385         } else {
386                 clear_buffer_uptodate(bh);
387                 if (printk_ratelimit())
388                         buffer_io_error(bh);
389                 SetPageError(page);
390         }
391
392         /*
393          * Be _very_ careful from here on. Bad things can happen if
394          * two buffer heads end IO at almost the same time and both
395          * decide that the page is now completely done.
396          */
397         first = page_buffers(page);
398         local_irq_save(flags);
399         bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
400         clear_buffer_async_read(bh);
401         unlock_buffer(bh);
402         tmp = bh;
403         do {
404                 if (!buffer_uptodate(tmp))
405                         page_uptodate = 0;
406                 if (buffer_async_read(tmp)) {
407                         BUG_ON(!buffer_locked(tmp));
408                         goto still_busy;
409                 }
410                 tmp = tmp->b_this_page;
411         } while (tmp != bh);
412         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
413         local_irq_restore(flags);
414
415         /*
416          * If none of the buffers had errors and they are all
417          * uptodate then we can set the page uptodate.
418          */
419         if (page_uptodate && !PageError(page))
420                 SetPageUptodate(page);
421         unlock_page(page);
422         return;
423
424 still_busy:
425         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
426         local_irq_restore(flags);
427         return;
428 }
429
430 /*
431  * Completion handler for block_write_full_page() - pages which are unlocked
432  * during I/O, and which have PageWriteback cleared upon I/O completion.
433  */
434 static void end_buffer_async_write(struct buffer_head *bh, int uptodate)
435 {
436         char b[BDEVNAME_SIZE];
437         unsigned long flags;
438         struct buffer_head *first;
439         struct buffer_head *tmp;
440         struct page *page;
441
442         BUG_ON(!buffer_async_write(bh));
443
444         page = bh->b_page;
445         if (uptodate) {
446                 set_buffer_uptodate(bh);
447         } else {
448                 if (printk_ratelimit()) {
449                         buffer_io_error(bh);
450                         printk(KERN_WARNING "lost page write due to "
451                                         "I/O error on %s\n",
452                                bdevname(bh->b_bdev, b));
453                 }
454                 set_bit(AS_EIO, &page->mapping->flags);
455                 clear_buffer_uptodate(bh);
456                 SetPageError(page);
457         }
458
459         first = page_buffers(page);
460         local_irq_save(flags);
461         bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
462
463         clear_buffer_async_write(bh);
464         unlock_buffer(bh);
465         tmp = bh->b_this_page;
466         while (tmp != bh) {
467                 if (buffer_async_write(tmp)) {
468                         BUG_ON(!buffer_locked(tmp));
469                         goto still_busy;
470                 }
471                 tmp = tmp->b_this_page;
472         }
473         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
474         local_irq_restore(flags);
475         end_page_writeback(page);
476         return;
477
478 still_busy:
479         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
480         local_irq_restore(flags);
481         return;
482 }
483
484 /*
485  * If a page's buffers are under async readin (end_buffer_async_read
486  * completion) then there is a possibility that another thread of
487  * control could lock one of the buffers after it has completed
488  * but while some of the other buffers have not completed.  This
489  * locked buffer would confuse end_buffer_async_read() into not unlocking
490  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
491  * that this buffer is not under async I/O.
492  *
493  * The page comes unlocked when it has no locked buffer_async buffers
494  * left.
495  *
496  * PageLocked prevents anyone starting new async I/O reads any of
497  * the buffers.
498  *
499  * PageWriteback is used to prevent simultaneous writeout of the same
500  * page.
501  *
502  * PageLocked prevents anyone from starting writeback of a page which is
503  * under read I/O (PageWriteback is only ever set against a locked page).
504  */
505 static void mark_buffer_async_read(struct buffer_head *bh)
506 {
507         bh->b_end_io = end_buffer_async_read;
508         set_buffer_async_read(bh);
509 }
510
511 void mark_buffer_async_write(struct buffer_head *bh)
512 {
513         bh->b_end_io = end_buffer_async_write;
514         set_buffer_async_write(bh);
515 }
516 EXPORT_SYMBOL(mark_buffer_async_write);
517
518
519 /*
520  * fs/buffer.c contains helper functions for buffer-backed address space's
521  * fsync functions.  A common requirement for buffer-based filesystems is
522  * that certain data from the backing blockdev needs to be written out for
523  * a successful fsync().  For example, ext2 indirect blocks need to be
524  * written back and waited upon before fsync() returns.
525  *
526  * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
527  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
528  * management of a list of dependent buffers at ->i_mapping->private_list.
529  *
530  * Locking is a little subtle: try_to_free_buffers() will remove buffers
531  * from their controlling inode's queue when they are being freed.  But
532  * try_to_free_buffers() will be operating against the *blockdev* mapping
533  * at the time, not against the S_ISREG file which depends on those buffers.
534  * So the locking for private_list is via the private_lock in the address_space
535  * which backs the buffers.  Which is different from the address_space 
536  * against which the buffers are listed.  So for a particular address_space,
537  * mapping->private_lock does *not* protect mapping->private_list!  In fact,
538  * mapping->private_list will always be protected by the backing blockdev's
539  * ->private_lock.
540  *
541  * Which introduces a requirement: all buffers on an address_space's
542  * ->private_list must be from the same address_space: the blockdev's.
543  *
544  * address_spaces which do not place buffers at ->private_list via these
545  * utility functions are free to use private_lock and private_list for
546  * whatever they want.  The only requirement is that list_empty(private_list)
547  * be true at clear_inode() time.
548  *
549  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
550  * filesystems should do that.  invalidate_inode_buffers() should just go
551  * BUG_ON(!list_empty).
552  *
553  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
554  * take an address_space, not an inode.  And it should be called
555  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
556  * queued up.
557  *
558  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
559  * list if it is already on a list.  Because if the buffer is on a list,
560  * it *must* already be on the right one.  If not, the filesystem is being
561  * silly.  This will save a ton of locking.  But first we have to ensure
562  * that buffers are taken *off* the old inode's list when they are freed
563  * (presumably in truncate).  That requires careful auditing of all
564  * filesystems (do it inside bforget()).  It could also be done by bringing
565  * b_inode back.
566  */
567
568 /*
569  * The buffer's backing address_space's private_lock must be held
570  */
571 static inline void __remove_assoc_queue(struct buffer_head *bh)
572 {
573         list_del_init(&bh->b_assoc_buffers);
574 }
575
576 int inode_has_buffers(struct inode *inode)
577 {
578         return !list_empty(&inode->i_data.private_list);
579 }
580
581 /*
582  * osync is designed to support O_SYNC io.  It waits synchronously for
583  * all already-submitted IO to complete, but does not queue any new
584  * writes to the disk.
585  *
586  * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
587  * you dirty the buffers, and then use osync_inode_buffers to wait for
588  * completion.  Any other dirty buffers which are not yet queued for
589  * write will not be flushed to disk by the osync.
590  */
591 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
592 {
593         struct buffer_head *bh;
594         struct list_head *p;
595         int err = 0;
596
597         spin_lock(lock);
598 repeat:
599         list_for_each_prev(p, list) {
600                 bh = BH_ENTRY(p);
601                 if (buffer_locked(bh)) {
602                         get_bh(bh);
603                         spin_unlock(lock);
604                         wait_on_buffer(bh);
605                         if (!buffer_uptodate(bh))
606                                 err = -EIO;
607                         brelse(bh);
608                         spin_lock(lock);
609                         goto repeat;
610                 }
611         }
612         spin_unlock(lock);
613         return err;
614 }
615
616 /**
617  * sync_mapping_buffers - write out and wait upon a mapping's "associated"
618  *                        buffers
619  * @mapping: the mapping which wants those buffers written
620  *
621  * Starts I/O against the buffers at mapping->private_list, and waits upon
622  * that I/O.
623  *
624  * Basically, this is a convenience function for fsync().
625  * @mapping is a file or directory which needs those buffers to be written for
626  * a successful fsync().
627  */
628 int sync_mapping_buffers(struct address_space *mapping)
629 {
630         struct address_space *buffer_mapping = mapping->assoc_mapping;
631
632         if (buffer_mapping == NULL || list_empty(&mapping->private_list))
633                 return 0;
634
635         return fsync_buffers_list(&buffer_mapping->private_lock,
636                                         &mapping->private_list);
637 }
638 EXPORT_SYMBOL(sync_mapping_buffers);
639
640 /*
641  * Called when we've recently written block `bblock', and it is known that
642  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
643  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
644  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
645  */
646 void write_boundary_block(struct block_device *bdev,
647                         sector_t bblock, unsigned blocksize)
648 {
649         struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
650         if (bh) {
651                 if (buffer_dirty(bh))
652                         ll_rw_block(WRITE, 1, &bh);
653                 put_bh(bh);
654         }
655 }
656
657 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
658 {
659         struct address_space *mapping = inode->i_mapping;
660         struct address_space *buffer_mapping = bh->b_page->mapping;
661
662         mark_buffer_dirty(bh);
663         if (!mapping->assoc_mapping) {
664                 mapping->assoc_mapping = buffer_mapping;
665         } else {
666                 BUG_ON(mapping->assoc_mapping != buffer_mapping);
667         }
668         if (list_empty(&bh->b_assoc_buffers)) {
669                 spin_lock(&buffer_mapping->private_lock);
670                 list_move_tail(&bh->b_assoc_buffers,
671                                 &mapping->private_list);
672                 spin_unlock(&buffer_mapping->private_lock);
673         }
674 }
675 EXPORT_SYMBOL(mark_buffer_dirty_inode);
676
677 /*
678  * Add a page to the dirty page list.
679  *
680  * It is a sad fact of life that this function is called from several places
681  * deeply under spinlocking.  It may not sleep.
682  *
683  * If the page has buffers, the uptodate buffers are set dirty, to preserve
684  * dirty-state coherency between the page and the buffers.  It the page does
685  * not have buffers then when they are later attached they will all be set
686  * dirty.
687  *
688  * The buffers are dirtied before the page is dirtied.  There's a small race
689  * window in which a writepage caller may see the page cleanness but not the
690  * buffer dirtiness.  That's fine.  If this code were to set the page dirty
691  * before the buffers, a concurrent writepage caller could clear the page dirty
692  * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
693  * page on the dirty page list.
694  *
695  * We use private_lock to lock against try_to_free_buffers while using the
696  * page's buffer list.  Also use this to protect against clean buffers being
697  * added to the page after it was set dirty.
698  *
699  * FIXME: may need to call ->reservepage here as well.  That's rather up to the
700  * address_space though.
701  */
702 int __set_page_dirty_buffers(struct page *page)
703 {
704         struct address_space * const mapping = page_mapping(page);
705
706         if (unlikely(!mapping))
707                 return !TestSetPageDirty(page);
708
709         spin_lock(&mapping->private_lock);
710         if (page_has_buffers(page)) {
711                 struct buffer_head *head = page_buffers(page);
712                 struct buffer_head *bh = head;
713
714                 do {
715                         set_buffer_dirty(bh);
716                         bh = bh->b_this_page;
717                 } while (bh != head);
718         }
719         spin_unlock(&mapping->private_lock);
720
721         if (!TestSetPageDirty(page)) {
722                 write_lock_irq(&mapping->tree_lock);
723                 if (page->mapping) {    /* Race with truncate? */
724                         if (mapping_cap_account_dirty(mapping))
725                                 __inc_zone_page_state(page, NR_FILE_DIRTY);
726                         radix_tree_tag_set(&mapping->page_tree,
727                                                 page_index(page),
728                                                 PAGECACHE_TAG_DIRTY);
729                 }
730                 write_unlock_irq(&mapping->tree_lock);
731                 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
732                 return 1;
733         }
734         return 0;
735 }
736 EXPORT_SYMBOL(__set_page_dirty_buffers);
737
738 /*
739  * Write out and wait upon a list of buffers.
740  *
741  * We have conflicting pressures: we want to make sure that all
742  * initially dirty buffers get waited on, but that any subsequently
743  * dirtied buffers don't.  After all, we don't want fsync to last
744  * forever if somebody is actively writing to the file.
745  *
746  * Do this in two main stages: first we copy dirty buffers to a
747  * temporary inode list, queueing the writes as we go.  Then we clean
748  * up, waiting for those writes to complete.
749  * 
750  * During this second stage, any subsequent updates to the file may end
751  * up refiling the buffer on the original inode's dirty list again, so
752  * there is a chance we will end up with a buffer queued for write but
753  * not yet completed on that list.  So, as a final cleanup we go through
754  * the osync code to catch these locked, dirty buffers without requeuing
755  * any newly dirty buffers for write.
756  */
757 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
758 {
759         struct buffer_head *bh;
760         struct list_head tmp;
761         int err = 0, err2;
762
763         INIT_LIST_HEAD(&tmp);
764
765         spin_lock(lock);
766         while (!list_empty(list)) {
767                 bh = BH_ENTRY(list->next);
768                 list_del_init(&bh->b_assoc_buffers);
769                 if (buffer_dirty(bh) || buffer_locked(bh)) {
770                         list_add(&bh->b_assoc_buffers, &tmp);
771                         if (buffer_dirty(bh)) {
772                                 get_bh(bh);
773                                 spin_unlock(lock);
774                                 /*
775                                  * Ensure any pending I/O completes so that
776                                  * ll_rw_block() actually writes the current
777                                  * contents - it is a noop if I/O is still in
778                                  * flight on potentially older contents.
779                                  */
780                                 ll_rw_block(SWRITE, 1, &bh);
781                                 brelse(bh);
782                                 spin_lock(lock);
783                         }
784                 }
785         }
786
787         while (!list_empty(&tmp)) {
788                 bh = BH_ENTRY(tmp.prev);
789                 __remove_assoc_queue(bh);
790                 get_bh(bh);
791                 spin_unlock(lock);
792                 wait_on_buffer(bh);
793                 if (!buffer_uptodate(bh))
794                         err = -EIO;
795                 brelse(bh);
796                 spin_lock(lock);
797         }
798         
799         spin_unlock(lock);
800         err2 = osync_buffers_list(lock, list);
801         if (err)
802                 return err;
803         else
804                 return err2;
805 }
806
807 /*
808  * Invalidate any and all dirty buffers on a given inode.  We are
809  * probably unmounting the fs, but that doesn't mean we have already
810  * done a sync().  Just drop the buffers from the inode list.
811  *
812  * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
813  * assumes that all the buffers are against the blockdev.  Not true
814  * for reiserfs.
815  */
816 void invalidate_inode_buffers(struct inode *inode)
817 {
818         if (inode_has_buffers(inode)) {
819                 struct address_space *mapping = &inode->i_data;
820                 struct list_head *list = &mapping->private_list;
821                 struct address_space *buffer_mapping = mapping->assoc_mapping;
822
823                 spin_lock(&buffer_mapping->private_lock);
824                 while (!list_empty(list))
825                         __remove_assoc_queue(BH_ENTRY(list->next));
826                 spin_unlock(&buffer_mapping->private_lock);
827         }
828 }
829
830 /*
831  * Remove any clean buffers from the inode's buffer list.  This is called
832  * when we're trying to free the inode itself.  Those buffers can pin it.
833  *
834  * Returns true if all buffers were removed.
835  */
836 int remove_inode_buffers(struct inode *inode)
837 {
838         int ret = 1;
839
840         if (inode_has_buffers(inode)) {
841                 struct address_space *mapping = &inode->i_data;
842                 struct list_head *list = &mapping->private_list;
843                 struct address_space *buffer_mapping = mapping->assoc_mapping;
844
845                 spin_lock(&buffer_mapping->private_lock);
846                 while (!list_empty(list)) {
847                         struct buffer_head *bh = BH_ENTRY(list->next);
848                         if (buffer_dirty(bh)) {
849                                 ret = 0;
850                                 break;
851                         }
852                         __remove_assoc_queue(bh);
853                 }
854                 spin_unlock(&buffer_mapping->private_lock);
855         }
856         return ret;
857 }
858
859 /*
860  * Create the appropriate buffers when given a page for data area and
861  * the size of each buffer.. Use the bh->b_this_page linked list to
862  * follow the buffers created.  Return NULL if unable to create more
863  * buffers.
864  *
865  * The retry flag is used to differentiate async IO (paging, swapping)
866  * which may not fail from ordinary buffer allocations.
867  */
868 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
869                 int retry)
870 {
871         struct buffer_head *bh, *head;
872         long offset;
873
874 try_again:
875         head = NULL;
876         offset = PAGE_SIZE;
877         while ((offset -= size) >= 0) {
878                 bh = alloc_buffer_head(GFP_NOFS);
879                 if (!bh)
880                         goto no_grow;
881
882                 bh->b_bdev = NULL;
883                 bh->b_this_page = head;
884                 bh->b_blocknr = -1;
885                 head = bh;
886
887                 bh->b_state = 0;
888                 atomic_set(&bh->b_count, 0);
889                 bh->b_private = NULL;
890                 bh->b_size = size;
891
892                 /* Link the buffer to its page */
893                 set_bh_page(bh, page, offset);
894
895                 init_buffer(bh, NULL, NULL);
896         }
897         return head;
898 /*
899  * In case anything failed, we just free everything we got.
900  */
901 no_grow:
902         if (head) {
903                 do {
904                         bh = head;
905                         head = head->b_this_page;
906                         free_buffer_head(bh);
907                 } while (head);
908         }
909
910         /*
911          * Return failure for non-async IO requests.  Async IO requests
912          * are not allowed to fail, so we have to wait until buffer heads
913          * become available.  But we don't want tasks sleeping with 
914          * partially complete buffers, so all were released above.
915          */
916         if (!retry)
917                 return NULL;
918
919         /* We're _really_ low on memory. Now we just
920          * wait for old buffer heads to become free due to
921          * finishing IO.  Since this is an async request and
922          * the reserve list is empty, we're sure there are 
923          * async buffer heads in use.
924          */
925         free_more_memory();
926         goto try_again;
927 }
928 EXPORT_SYMBOL_GPL(alloc_page_buffers);
929
930 static inline void
931 link_dev_buffers(struct page *page, struct buffer_head *head)
932 {
933         struct buffer_head *bh, *tail;
934
935         bh = head;
936         do {
937                 tail = bh;
938                 bh = bh->b_this_page;
939         } while (bh);
940         tail->b_this_page = head;
941         attach_page_buffers(page, head);
942 }
943
944 /*
945  * Initialise the state of a blockdev page's buffers.
946  */ 
947 static void
948 init_page_buffers(struct page *page, struct block_device *bdev,
949                         sector_t block, int size)
950 {
951         struct buffer_head *head = page_buffers(page);
952         struct buffer_head *bh = head;
953         int uptodate = PageUptodate(page);
954
955         do {
956                 if (!buffer_mapped(bh)) {
957                         init_buffer(bh, NULL, NULL);
958                         bh->b_bdev = bdev;
959                         bh->b_blocknr = block;
960                         if (uptodate)
961                                 set_buffer_uptodate(bh);
962                         set_buffer_mapped(bh);
963                 }
964                 block++;
965                 bh = bh->b_this_page;
966         } while (bh != head);
967 }
968
969 /*
970  * Create the page-cache page that contains the requested block.
971  *
972  * This is user purely for blockdev mappings.
973  */
974 static struct page *
975 grow_dev_page(struct block_device *bdev, sector_t block,
976                 pgoff_t index, int size)
977 {
978         struct inode *inode = bdev->bd_inode;
979         struct page *page;
980         struct buffer_head *bh;
981
982         page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
983         if (!page)
984                 return NULL;
985
986         BUG_ON(!PageLocked(page));
987
988         if (page_has_buffers(page)) {
989                 bh = page_buffers(page);
990                 if (bh->b_size == size) {
991                         init_page_buffers(page, bdev, block, size);
992                         return page;
993                 }
994                 if (!try_to_free_buffers(page))
995                         goto failed;
996         }
997
998         /*
999          * Allocate some buffers for this page
1000          */
1001         bh = alloc_page_buffers(page, size, 0);
1002         if (!bh)
1003                 goto failed;
1004
1005         /*
1006          * Link the page to the buffers and initialise them.  Take the
1007          * lock to be atomic wrt __find_get_block(), which does not
1008          * run under the page lock.
1009          */
1010         spin_lock(&inode->i_mapping->private_lock);
1011         link_dev_buffers(page, bh);
1012         init_page_buffers(page, bdev, block, size);
1013         spin_unlock(&inode->i_mapping->private_lock);
1014         return page;
1015
1016 failed:
1017         BUG();
1018         unlock_page(page);
1019         page_cache_release(page);
1020         return NULL;
1021 }
1022
1023 /*
1024  * Create buffers for the specified block device block's page.  If
1025  * that page was dirty, the buffers are set dirty also.
1026  *
1027  * Except that's a bug.  Attaching dirty buffers to a dirty
1028  * blockdev's page can result in filesystem corruption, because
1029  * some of those buffers may be aliases of filesystem data.
1030  * grow_dev_page() will go BUG() if this happens.
1031  */
1032 static int
1033 grow_buffers(struct block_device *bdev, sector_t block, int size)
1034 {
1035         struct page *page;
1036         pgoff_t index;
1037         int sizebits;
1038
1039         sizebits = -1;
1040         do {
1041                 sizebits++;
1042         } while ((size << sizebits) < PAGE_SIZE);
1043
1044         index = block >> sizebits;
1045         block = index << sizebits;
1046
1047         /* Create a page with the proper size buffers.. */
1048         page = grow_dev_page(bdev, block, index, size);
1049         if (!page)
1050                 return 0;
1051         unlock_page(page);
1052         page_cache_release(page);
1053         return 1;
1054 }
1055
1056 static struct buffer_head *
1057 __getblk_slow(struct block_device *bdev, sector_t block, int size)
1058 {
1059         /* Size must be multiple of hard sectorsize */
1060         if (unlikely(size & (bdev_hardsect_size(bdev)-1) ||
1061                         (size < 512 || size > PAGE_SIZE))) {
1062                 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1063                                         size);
1064                 printk(KERN_ERR "hardsect size: %d\n",
1065                                         bdev_hardsect_size(bdev));
1066
1067                 dump_stack();
1068                 return NULL;
1069         }
1070
1071         for (;;) {
1072                 struct buffer_head * bh;
1073
1074                 bh = __find_get_block(bdev, block, size);
1075                 if (bh)
1076                         return bh;
1077
1078                 if (!grow_buffers(bdev, block, size))
1079                         free_more_memory();
1080         }
1081 }
1082
1083 /*
1084  * The relationship between dirty buffers and dirty pages:
1085  *
1086  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1087  * the page is tagged dirty in its radix tree.
1088  *
1089  * At all times, the dirtiness of the buffers represents the dirtiness of
1090  * subsections of the page.  If the page has buffers, the page dirty bit is
1091  * merely a hint about the true dirty state.
1092  *
1093  * When a page is set dirty in its entirety, all its buffers are marked dirty
1094  * (if the page has buffers).
1095  *
1096  * When a buffer is marked dirty, its page is dirtied, but the page's other
1097  * buffers are not.
1098  *
1099  * Also.  When blockdev buffers are explicitly read with bread(), they
1100  * individually become uptodate.  But their backing page remains not
1101  * uptodate - even if all of its buffers are uptodate.  A subsequent
1102  * block_read_full_page() against that page will discover all the uptodate
1103  * buffers, will set the page uptodate and will perform no I/O.
1104  */
1105
1106 /**
1107  * mark_buffer_dirty - mark a buffer_head as needing writeout
1108  * @bh: the buffer_head to mark dirty
1109  *
1110  * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1111  * backing page dirty, then tag the page as dirty in its address_space's radix
1112  * tree and then attach the address_space's inode to its superblock's dirty
1113  * inode list.
1114  *
1115  * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1116  * mapping->tree_lock and the global inode_lock.
1117  */
1118 void fastcall mark_buffer_dirty(struct buffer_head *bh)
1119 {
1120         if (!buffer_dirty(bh) && !test_set_buffer_dirty(bh))
1121                 __set_page_dirty_nobuffers(bh->b_page);
1122 }
1123
1124 /*
1125  * Decrement a buffer_head's reference count.  If all buffers against a page
1126  * have zero reference count, are clean and unlocked, and if the page is clean
1127  * and unlocked then try_to_free_buffers() may strip the buffers from the page
1128  * in preparation for freeing it (sometimes, rarely, buffers are removed from
1129  * a page but it ends up not being freed, and buffers may later be reattached).
1130  */
1131 void __brelse(struct buffer_head * buf)
1132 {
1133         if (atomic_read(&buf->b_count)) {
1134                 put_bh(buf);
1135                 return;
1136         }
1137         printk(KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1138         WARN_ON(1);
1139 }
1140
1141 /*
1142  * bforget() is like brelse(), except it discards any
1143  * potentially dirty data.
1144  */
1145 void __bforget(struct buffer_head *bh)
1146 {
1147         clear_buffer_dirty(bh);
1148         if (!list_empty(&bh->b_assoc_buffers)) {
1149                 struct address_space *buffer_mapping = bh->b_page->mapping;
1150
1151                 spin_lock(&buffer_mapping->private_lock);
1152                 list_del_init(&bh->b_assoc_buffers);
1153                 spin_unlock(&buffer_mapping->private_lock);
1154         }
1155         __brelse(bh);
1156 }
1157
1158 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1159 {
1160         lock_buffer(bh);
1161         if (buffer_uptodate(bh)) {
1162                 unlock_buffer(bh);
1163                 return bh;
1164         } else {
1165                 get_bh(bh);
1166                 bh->b_end_io = end_buffer_read_sync;
1167                 submit_bh(READ, bh);
1168                 wait_on_buffer(bh);
1169                 if (buffer_uptodate(bh))
1170                         return bh;
1171         }
1172         brelse(bh);
1173         return NULL;
1174 }
1175
1176 /*
1177  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1178  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1179  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1180  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1181  * CPU's LRUs at the same time.
1182  *
1183  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1184  * sb_find_get_block().
1185  *
1186  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1187  * a local interrupt disable for that.
1188  */
1189
1190 #define BH_LRU_SIZE     8
1191
1192 struct bh_lru {
1193         struct buffer_head *bhs[BH_LRU_SIZE];
1194 };
1195
1196 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1197
1198 #ifdef CONFIG_SMP
1199 #define bh_lru_lock()   local_irq_disable()
1200 #define bh_lru_unlock() local_irq_enable()
1201 #else
1202 #define bh_lru_lock()   preempt_disable()
1203 #define bh_lru_unlock() preempt_enable()
1204 #endif
1205
1206 static inline void check_irqs_on(void)
1207 {
1208 #ifdef irqs_disabled
1209         BUG_ON(irqs_disabled());
1210 #endif
1211 }
1212
1213 /*
1214  * The LRU management algorithm is dopey-but-simple.  Sorry.
1215  */
1216 static void bh_lru_install(struct buffer_head *bh)
1217 {
1218         struct buffer_head *evictee = NULL;
1219         struct bh_lru *lru;
1220
1221         check_irqs_on();
1222         bh_lru_lock();
1223         lru = &__get_cpu_var(bh_lrus);
1224         if (lru->bhs[0] != bh) {
1225                 struct buffer_head *bhs[BH_LRU_SIZE];
1226                 int in;
1227                 int out = 0;
1228
1229                 get_bh(bh);
1230                 bhs[out++] = bh;
1231                 for (in = 0; in < BH_LRU_SIZE; in++) {
1232                         struct buffer_head *bh2 = lru->bhs[in];
1233
1234                         if (bh2 == bh) {
1235                                 __brelse(bh2);
1236                         } else {
1237                                 if (out >= BH_LRU_SIZE) {
1238                                         BUG_ON(evictee != NULL);
1239                                         evictee = bh2;
1240                                 } else {
1241                                         bhs[out++] = bh2;
1242                                 }
1243                         }
1244                 }
1245                 while (out < BH_LRU_SIZE)
1246                         bhs[out++] = NULL;
1247                 memcpy(lru->bhs, bhs, sizeof(bhs));
1248         }
1249         bh_lru_unlock();
1250
1251         if (evictee)
1252                 __brelse(evictee);
1253 }
1254
1255 /*
1256  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1257  */
1258 static struct buffer_head *
1259 lookup_bh_lru(struct block_device *bdev, sector_t block, int size)
1260 {
1261         struct buffer_head *ret = NULL;
1262         struct bh_lru *lru;
1263         int i;
1264
1265         check_irqs_on();
1266         bh_lru_lock();
1267         lru = &__get_cpu_var(bh_lrus);
1268         for (i = 0; i < BH_LRU_SIZE; i++) {
1269                 struct buffer_head *bh = lru->bhs[i];
1270
1271                 if (bh && bh->b_bdev == bdev &&
1272                                 bh->b_blocknr == block && bh->b_size == size) {
1273                         if (i) {
1274                                 while (i) {
1275                                         lru->bhs[i] = lru->bhs[i - 1];
1276                                         i--;
1277                                 }
1278                                 lru->bhs[0] = bh;
1279                         }
1280                         get_bh(bh);
1281                         ret = bh;
1282                         break;
1283                 }
1284         }
1285         bh_lru_unlock();
1286         return ret;
1287 }
1288
1289 /*
1290  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1291  * it in the LRU and mark it as accessed.  If it is not present then return
1292  * NULL
1293  */
1294 struct buffer_head *
1295 __find_get_block(struct block_device *bdev, sector_t block, int size)
1296 {
1297         struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1298
1299         if (bh == NULL) {
1300                 bh = __find_get_block_slow(bdev, block);
1301                 if (bh)
1302                         bh_lru_install(bh);
1303         }
1304         if (bh)
1305                 touch_buffer(bh);
1306         return bh;
1307 }
1308 EXPORT_SYMBOL(__find_get_block);
1309
1310 /*
1311  * __getblk will locate (and, if necessary, create) the buffer_head
1312  * which corresponds to the passed block_device, block and size. The
1313  * returned buffer has its reference count incremented.
1314  *
1315  * __getblk() cannot fail - it just keeps trying.  If you pass it an
1316  * illegal block number, __getblk() will happily return a buffer_head
1317  * which represents the non-existent block.  Very weird.
1318  *
1319  * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1320  * attempt is failing.  FIXME, perhaps?
1321  */
1322 struct buffer_head *
1323 __getblk(struct block_device *bdev, sector_t block, int size)
1324 {
1325         struct buffer_head *bh = __find_get_block(bdev, block, size);
1326
1327         might_sleep();
1328         if (bh == NULL)
1329                 bh = __getblk_slow(bdev, block, size);
1330         return bh;
1331 }
1332 EXPORT_SYMBOL(__getblk);
1333
1334 /*
1335  * Do async read-ahead on a buffer..
1336  */
1337 void __breadahead(struct block_device *bdev, sector_t block, int size)
1338 {
1339         struct buffer_head *bh = __getblk(bdev, block, size);
1340         if (likely(bh)) {
1341                 ll_rw_block(READA, 1, &bh);
1342                 brelse(bh);
1343         }
1344 }
1345 EXPORT_SYMBOL(__breadahead);
1346
1347 /**
1348  *  __bread() - reads a specified block and returns the bh
1349  *  @bdev: the block_device to read from
1350  *  @block: number of block
1351  *  @size: size (in bytes) to read
1352  * 
1353  *  Reads a specified block, and returns buffer head that contains it.
1354  *  It returns NULL if the block was unreadable.
1355  */
1356 struct buffer_head *
1357 __bread(struct block_device *bdev, sector_t block, int size)
1358 {
1359         struct buffer_head *bh = __getblk(bdev, block, size);
1360
1361         if (likely(bh) && !buffer_uptodate(bh))
1362                 bh = __bread_slow(bh);
1363         return bh;
1364 }
1365 EXPORT_SYMBOL(__bread);
1366
1367 /*
1368  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1369  * This doesn't race because it runs in each cpu either in irq
1370  * or with preempt disabled.
1371  */
1372 static void invalidate_bh_lru(void *arg)
1373 {
1374         struct bh_lru *b = &get_cpu_var(bh_lrus);
1375         int i;
1376
1377         for (i = 0; i < BH_LRU_SIZE; i++) {
1378                 brelse(b->bhs[i]);
1379                 b->bhs[i] = NULL;
1380         }
1381         put_cpu_var(bh_lrus);
1382 }
1383         
1384 static void invalidate_bh_lrus(void)
1385 {
1386         on_each_cpu(invalidate_bh_lru, NULL, 1, 1);
1387 }
1388
1389 void set_bh_page(struct buffer_head *bh,
1390                 struct page *page, unsigned long offset)
1391 {
1392         bh->b_page = page;
1393         BUG_ON(offset >= PAGE_SIZE);
1394         if (PageHighMem(page))
1395                 /*
1396                  * This catches illegal uses and preserves the offset:
1397                  */
1398                 bh->b_data = (char *)(0 + offset);
1399         else
1400                 bh->b_data = page_address(page) + offset;
1401 }
1402 EXPORT_SYMBOL(set_bh_page);
1403
1404 /*
1405  * Called when truncating a buffer on a page completely.
1406  */
1407 static void discard_buffer(struct buffer_head * bh)
1408 {
1409         lock_buffer(bh);
1410         clear_buffer_dirty(bh);
1411         bh->b_bdev = NULL;
1412         clear_buffer_mapped(bh);
1413         clear_buffer_req(bh);
1414         clear_buffer_new(bh);
1415         clear_buffer_delay(bh);
1416         unlock_buffer(bh);
1417 }
1418
1419 /**
1420  * block_invalidatepage - invalidate part of all of a buffer-backed page
1421  *
1422  * @page: the page which is affected
1423  * @offset: the index of the truncation point
1424  *
1425  * block_invalidatepage() is called when all or part of the page has become
1426  * invalidatedby a truncate operation.
1427  *
1428  * block_invalidatepage() does not have to release all buffers, but it must
1429  * ensure that no dirty buffer is left outside @offset and that no I/O
1430  * is underway against any of the blocks which are outside the truncation
1431  * point.  Because the caller is about to free (and possibly reuse) those
1432  * blocks on-disk.
1433  */
1434 void block_invalidatepage(struct page *page, unsigned long offset)
1435 {
1436         struct buffer_head *head, *bh, *next;
1437         unsigned int curr_off = 0;
1438
1439         BUG_ON(!PageLocked(page));
1440         if (!page_has_buffers(page))
1441                 goto out;
1442
1443         head = page_buffers(page);
1444         bh = head;
1445         do {
1446                 unsigned int next_off = curr_off + bh->b_size;
1447                 next = bh->b_this_page;
1448
1449                 /*
1450                  * is this block fully invalidated?
1451                  */
1452                 if (offset <= curr_off)
1453                         discard_buffer(bh);
1454                 curr_off = next_off;
1455                 bh = next;
1456         } while (bh != head);
1457
1458         /*
1459          * We release buffers only if the entire page is being invalidated.
1460          * The get_block cached value has been unconditionally invalidated,
1461          * so real IO is not possible anymore.
1462          */
1463         if (offset == 0)
1464                 try_to_release_page(page, 0);
1465 out:
1466         return;
1467 }
1468 EXPORT_SYMBOL(block_invalidatepage);
1469
1470 /*
1471  * We attach and possibly dirty the buffers atomically wrt
1472  * __set_page_dirty_buffers() via private_lock.  try_to_free_buffers
1473  * is already excluded via the page lock.
1474  */
1475 void create_empty_buffers(struct page *page,
1476                         unsigned long blocksize, unsigned long b_state)
1477 {
1478         struct buffer_head *bh, *head, *tail;
1479
1480         head = alloc_page_buffers(page, blocksize, 1);
1481         bh = head;
1482         do {
1483                 bh->b_state |= b_state;
1484                 tail = bh;
1485                 bh = bh->b_this_page;
1486         } while (bh);
1487         tail->b_this_page = head;
1488
1489         spin_lock(&page->mapping->private_lock);
1490         if (PageUptodate(page) || PageDirty(page)) {
1491                 bh = head;
1492                 do {
1493                         if (PageDirty(page))
1494                                 set_buffer_dirty(bh);
1495                         if (PageUptodate(page))
1496                                 set_buffer_uptodate(bh);
1497                         bh = bh->b_this_page;
1498                 } while (bh != head);
1499         }
1500         attach_page_buffers(page, head);
1501         spin_unlock(&page->mapping->private_lock);
1502 }
1503 EXPORT_SYMBOL(create_empty_buffers);
1504
1505 /*
1506  * We are taking a block for data and we don't want any output from any
1507  * buffer-cache aliases starting from return from that function and
1508  * until the moment when something will explicitly mark the buffer
1509  * dirty (hopefully that will not happen until we will free that block ;-)
1510  * We don't even need to mark it not-uptodate - nobody can expect
1511  * anything from a newly allocated buffer anyway. We used to used
1512  * unmap_buffer() for such invalidation, but that was wrong. We definitely
1513  * don't want to mark the alias unmapped, for example - it would confuse
1514  * anyone who might pick it with bread() afterwards...
1515  *
1516  * Also..  Note that bforget() doesn't lock the buffer.  So there can
1517  * be writeout I/O going on against recently-freed buffers.  We don't
1518  * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1519  * only if we really need to.  That happens here.
1520  */
1521 void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1522 {
1523         struct buffer_head *old_bh;
1524
1525         might_sleep();
1526
1527         old_bh = __find_get_block_slow(bdev, block);
1528         if (old_bh) {
1529                 clear_buffer_dirty(old_bh);
1530                 wait_on_buffer(old_bh);
1531                 clear_buffer_req(old_bh);
1532                 __brelse(old_bh);
1533         }
1534 }
1535 EXPORT_SYMBOL(unmap_underlying_metadata);
1536
1537 /*
1538  * NOTE! All mapped/uptodate combinations are valid:
1539  *
1540  *      Mapped  Uptodate        Meaning
1541  *
1542  *      No      No              "unknown" - must do get_block()
1543  *      No      Yes             "hole" - zero-filled
1544  *      Yes     No              "allocated" - allocated on disk, not read in
1545  *      Yes     Yes             "valid" - allocated and up-to-date in memory.
1546  *
1547  * "Dirty" is valid only with the last case (mapped+uptodate).
1548  */
1549
1550 /*
1551  * While block_write_full_page is writing back the dirty buffers under
1552  * the page lock, whoever dirtied the buffers may decide to clean them
1553  * again at any time.  We handle that by only looking at the buffer
1554  * state inside lock_buffer().
1555  *
1556  * If block_write_full_page() is called for regular writeback
1557  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1558  * locked buffer.   This only can happen if someone has written the buffer
1559  * directly, with submit_bh().  At the address_space level PageWriteback
1560  * prevents this contention from occurring.
1561  */
1562 static int __block_write_full_page(struct inode *inode, struct page *page,
1563                         get_block_t *get_block, struct writeback_control *wbc)
1564 {
1565         int err;
1566         sector_t block;
1567         sector_t last_block;
1568         struct buffer_head *bh, *head;
1569         const unsigned blocksize = 1 << inode->i_blkbits;
1570         int nr_underway = 0;
1571
1572         BUG_ON(!PageLocked(page));
1573
1574         last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
1575
1576         if (!page_has_buffers(page)) {
1577                 create_empty_buffers(page, blocksize,
1578                                         (1 << BH_Dirty)|(1 << BH_Uptodate));
1579         }
1580
1581         /*
1582          * Be very careful.  We have no exclusion from __set_page_dirty_buffers
1583          * here, and the (potentially unmapped) buffers may become dirty at
1584          * any time.  If a buffer becomes dirty here after we've inspected it
1585          * then we just miss that fact, and the page stays dirty.
1586          *
1587          * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1588          * handle that here by just cleaning them.
1589          */
1590
1591         block = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1592         head = page_buffers(page);
1593         bh = head;
1594
1595         /*
1596          * Get all the dirty buffers mapped to disk addresses and
1597          * handle any aliases from the underlying blockdev's mapping.
1598          */
1599         do {
1600                 if (block > last_block) {
1601                         /*
1602                          * mapped buffers outside i_size will occur, because
1603                          * this page can be outside i_size when there is a
1604                          * truncate in progress.
1605                          */
1606                         /*
1607                          * The buffer was zeroed by block_write_full_page()
1608                          */
1609                         clear_buffer_dirty(bh);
1610                         set_buffer_uptodate(bh);
1611                 } else if (!buffer_mapped(bh) && buffer_dirty(bh)) {
1612                         WARN_ON(bh->b_size != blocksize);
1613                         err = get_block(inode, block, bh, 1);
1614                         if (err)
1615                                 goto recover;
1616                         if (buffer_new(bh)) {
1617                                 /* blockdev mappings never come here */
1618                                 clear_buffer_new(bh);
1619                                 unmap_underlying_metadata(bh->b_bdev,
1620                                                         bh->b_blocknr);
1621                         }
1622                 }
1623                 bh = bh->b_this_page;
1624                 block++;
1625         } while (bh != head);
1626
1627         do {
1628                 if (!buffer_mapped(bh))
1629                         continue;
1630                 /*
1631                  * If it's a fully non-blocking write attempt and we cannot
1632                  * lock the buffer then redirty the page.  Note that this can
1633                  * potentially cause a busy-wait loop from pdflush and kswapd
1634                  * activity, but those code paths have their own higher-level
1635                  * throttling.
1636                  */
1637                 if (wbc->sync_mode != WB_SYNC_NONE || !wbc->nonblocking) {
1638                         lock_buffer(bh);
1639                 } else if (test_set_buffer_locked(bh)) {
1640                         redirty_page_for_writepage(wbc, page);
1641                         continue;
1642                 }
1643                 if (test_clear_buffer_dirty(bh)) {
1644                         mark_buffer_async_write(bh);
1645                 } else {
1646                         unlock_buffer(bh);
1647                 }
1648         } while ((bh = bh->b_this_page) != head);
1649
1650         /*
1651          * The page and its buffers are protected by PageWriteback(), so we can
1652          * drop the bh refcounts early.
1653          */
1654         BUG_ON(PageWriteback(page));
1655         set_page_writeback(page);
1656
1657         do {
1658                 struct buffer_head *next = bh->b_this_page;
1659                 if (buffer_async_write(bh)) {
1660                         submit_bh(WRITE, bh);
1661                         nr_underway++;
1662                 }
1663                 bh = next;
1664         } while (bh != head);
1665         unlock_page(page);
1666
1667         err = 0;
1668 done:
1669         if (nr_underway == 0) {
1670                 /*
1671                  * The page was marked dirty, but the buffers were
1672                  * clean.  Someone wrote them back by hand with
1673                  * ll_rw_block/submit_bh.  A rare case.
1674                  */
1675                 int uptodate = 1;
1676                 do {
1677                         if (!buffer_uptodate(bh)) {
1678                                 uptodate = 0;
1679                                 break;
1680                         }
1681                         bh = bh->b_this_page;
1682                 } while (bh != head);
1683                 if (uptodate)
1684                         SetPageUptodate(page);
1685                 end_page_writeback(page);
1686                 /*
1687                  * The page and buffer_heads can be released at any time from
1688                  * here on.
1689                  */
1690                 wbc->pages_skipped++;   /* We didn't write this page */
1691         }
1692         return err;
1693
1694 recover:
1695         /*
1696          * ENOSPC, or some other error.  We may already have added some
1697          * blocks to the file, so we need to write these out to avoid
1698          * exposing stale data.
1699          * The page is currently locked and not marked for writeback
1700          */
1701         bh = head;
1702         /* Recovery: lock and submit the mapped buffers */
1703         do {
1704                 if (buffer_mapped(bh) && buffer_dirty(bh)) {
1705                         lock_buffer(bh);
1706                         mark_buffer_async_write(bh);
1707                 } else {
1708                         /*
1709                          * The buffer may have been set dirty during
1710                          * attachment to a dirty page.
1711                          */
1712                         clear_buffer_dirty(bh);
1713                 }
1714         } while ((bh = bh->b_this_page) != head);
1715         SetPageError(page);
1716         BUG_ON(PageWriteback(page));
1717         set_page_writeback(page);
1718         unlock_page(page);
1719         do {
1720                 struct buffer_head *next = bh->b_this_page;
1721                 if (buffer_async_write(bh)) {
1722                         clear_buffer_dirty(bh);
1723                         submit_bh(WRITE, bh);
1724                         nr_underway++;
1725                 }
1726                 bh = next;
1727         } while (bh != head);
1728         goto done;
1729 }
1730
1731 static int __block_prepare_write(struct inode *inode, struct page *page,
1732                 unsigned from, unsigned to, get_block_t *get_block)
1733 {
1734         unsigned block_start, block_end;
1735         sector_t block;
1736         int err = 0;
1737         unsigned blocksize, bbits;
1738         struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1739
1740         BUG_ON(!PageLocked(page));
1741         BUG_ON(from > PAGE_CACHE_SIZE);
1742         BUG_ON(to > PAGE_CACHE_SIZE);
1743         BUG_ON(from > to);
1744
1745         blocksize = 1 << inode->i_blkbits;
1746         if (!page_has_buffers(page))
1747                 create_empty_buffers(page, blocksize, 0);
1748         head = page_buffers(page);
1749
1750         bbits = inode->i_blkbits;
1751         block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1752
1753         for(bh = head, block_start = 0; bh != head || !block_start;
1754             block++, block_start=block_end, bh = bh->b_this_page) {
1755                 block_end = block_start + blocksize;
1756                 if (block_end <= from || block_start >= to) {
1757                         if (PageUptodate(page)) {
1758                                 if (!buffer_uptodate(bh))
1759                                         set_buffer_uptodate(bh);
1760                         }
1761                         continue;
1762                 }
1763                 if (buffer_new(bh))
1764                         clear_buffer_new(bh);
1765                 if (!buffer_mapped(bh)) {
1766                         WARN_ON(bh->b_size != blocksize);
1767                         err = get_block(inode, block, bh, 1);
1768                         if (err)
1769                                 break;
1770                         if (buffer_new(bh)) {
1771                                 unmap_underlying_metadata(bh->b_bdev,
1772                                                         bh->b_blocknr);
1773                                 if (PageUptodate(page)) {
1774                                         set_buffer_uptodate(bh);
1775                                         continue;
1776                                 }
1777                                 if (block_end > to || block_start < from) {
1778                                         void *kaddr;
1779
1780                                         kaddr = kmap_atomic(page, KM_USER0);
1781                                         if (block_end > to)
1782                                                 memset(kaddr+to, 0,
1783                                                         block_end-to);
1784                                         if (block_start < from)
1785                                                 memset(kaddr+block_start,
1786                                                         0, from-block_start);
1787                                         flush_dcache_page(page);
1788                                         kunmap_atomic(kaddr, KM_USER0);
1789                                 }
1790                                 continue;
1791                         }
1792                 }
1793                 if (PageUptodate(page)) {
1794                         if (!buffer_uptodate(bh))
1795                                 set_buffer_uptodate(bh);
1796                         continue; 
1797                 }
1798                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1799                      (block_start < from || block_end > to)) {
1800                         ll_rw_block(READ, 1, &bh);
1801                         *wait_bh++=bh;
1802                 }
1803         }
1804         /*
1805          * If we issued read requests - let them complete.
1806          */
1807         while(wait_bh > wait) {
1808                 wait_on_buffer(*--wait_bh);
1809                 if (!buffer_uptodate(*wait_bh))
1810                         err = -EIO;
1811         }
1812         if (!err) {
1813                 bh = head;
1814                 do {
1815                         if (buffer_new(bh))
1816                                 clear_buffer_new(bh);
1817                 } while ((bh = bh->b_this_page) != head);
1818                 return 0;
1819         }
1820         /* Error case: */
1821         /*
1822          * Zero out any newly allocated blocks to avoid exposing stale
1823          * data.  If BH_New is set, we know that the block was newly
1824          * allocated in the above loop.
1825          */
1826         bh = head;
1827         block_start = 0;
1828         do {
1829                 block_end = block_start+blocksize;
1830                 if (block_end <= from)
1831                         goto next_bh;
1832                 if (block_start >= to)
1833                         break;
1834                 if (buffer_new(bh)) {
1835                         void *kaddr;
1836
1837                         clear_buffer_new(bh);
1838                         kaddr = kmap_atomic(page, KM_USER0);
1839                         memset(kaddr+block_start, 0, bh->b_size);
1840                         kunmap_atomic(kaddr, KM_USER0);
1841                         set_buffer_uptodate(bh);
1842                         mark_buffer_dirty(bh);
1843                 }
1844 next_bh:
1845                 block_start = block_end;
1846                 bh = bh->b_this_page;
1847         } while (bh != head);
1848         return err;
1849 }
1850
1851 static int __block_commit_write(struct inode *inode, struct page *page,
1852                 unsigned from, unsigned to)
1853 {
1854         unsigned block_start, block_end;
1855         int partial = 0;
1856         unsigned blocksize;
1857         struct buffer_head *bh, *head;
1858
1859         blocksize = 1 << inode->i_blkbits;
1860
1861         for(bh = head = page_buffers(page), block_start = 0;
1862             bh != head || !block_start;
1863             block_start=block_end, bh = bh->b_this_page) {
1864                 block_end = block_start + blocksize;
1865                 if (block_end <= from || block_start >= to) {
1866                         if (!buffer_uptodate(bh))
1867                                 partial = 1;
1868                 } else {
1869                         set_buffer_uptodate(bh);
1870                         mark_buffer_dirty(bh);
1871                 }
1872         }
1873
1874         /*
1875          * If this is a partial write which happened to make all buffers
1876          * uptodate then we can optimize away a bogus readpage() for
1877          * the next read(). Here we 'discover' whether the page went
1878          * uptodate as a result of this (potentially partial) write.
1879          */
1880         if (!partial)
1881                 SetPageUptodate(page);
1882         return 0;
1883 }
1884
1885 /*
1886  * Generic "read page" function for block devices that have the normal
1887  * get_block functionality. This is most of the block device filesystems.
1888  * Reads the page asynchronously --- the unlock_buffer() and
1889  * set/clear_buffer_uptodate() functions propagate buffer state into the
1890  * page struct once IO has completed.
1891  */
1892 int block_read_full_page(struct page *page, get_block_t *get_block)
1893 {
1894         struct inode *inode = page->mapping->host;
1895         sector_t iblock, lblock;
1896         struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
1897         unsigned int blocksize;
1898         int nr, i;
1899         int fully_mapped = 1;
1900
1901         BUG_ON(!PageLocked(page));
1902         blocksize = 1 << inode->i_blkbits;
1903         if (!page_has_buffers(page))
1904                 create_empty_buffers(page, blocksize, 0);
1905         head = page_buffers(page);
1906
1907         iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1908         lblock = (i_size_read(inode)+blocksize-1) >> inode->i_blkbits;
1909         bh = head;
1910         nr = 0;
1911         i = 0;
1912
1913         do {
1914                 if (buffer_uptodate(bh))
1915                         continue;
1916
1917                 if (!buffer_mapped(bh)) {
1918                         int err = 0;
1919
1920                         fully_mapped = 0;
1921                         if (iblock < lblock) {
1922                                 WARN_ON(bh->b_size != blocksize);
1923                                 err = get_block(inode, iblock, bh, 0);
1924                                 if (err)
1925                                         SetPageError(page);
1926                         }
1927                         if (!buffer_mapped(bh)) {
1928                                 void *kaddr = kmap_atomic(page, KM_USER0);
1929                                 memset(kaddr + i * blocksize, 0, blocksize);
1930                                 flush_dcache_page(page);
1931                                 kunmap_atomic(kaddr, KM_USER0);
1932                                 if (!err)
1933                                         set_buffer_uptodate(bh);
1934                                 continue;
1935                         }
1936                         /*
1937                          * get_block() might have updated the buffer
1938                          * synchronously
1939                          */
1940                         if (buffer_uptodate(bh))
1941                                 continue;
1942                 }
1943                 arr[nr++] = bh;
1944         } while (i++, iblock++, (bh = bh->b_this_page) != head);
1945
1946         if (fully_mapped)
1947                 SetPageMappedToDisk(page);
1948
1949         if (!nr) {
1950                 /*
1951                  * All buffers are uptodate - we can set the page uptodate
1952                  * as well. But not if get_block() returned an error.
1953                  */
1954                 if (!PageError(page))
1955                         SetPageUptodate(page);
1956                 unlock_page(page);
1957                 return 0;
1958         }
1959
1960         /* Stage two: lock the buffers */
1961         for (i = 0; i < nr; i++) {
1962                 bh = arr[i];
1963                 lock_buffer(bh);
1964                 mark_buffer_async_read(bh);
1965         }
1966
1967         /*
1968          * Stage 3: start the IO.  Check for uptodateness
1969          * inside the buffer lock in case another process reading
1970          * the underlying blockdev brought it uptodate (the sct fix).
1971          */
1972         for (i = 0; i < nr; i++) {
1973                 bh = arr[i];
1974                 if (buffer_uptodate(bh))
1975                         end_buffer_async_read(bh, 1);
1976                 else
1977                         submit_bh(READ, bh);
1978         }
1979         return 0;
1980 }
1981
1982 /* utility function for filesystems that need to do work on expanding
1983  * truncates.  Uses prepare/commit_write to allow the filesystem to
1984  * deal with the hole.  
1985  */
1986 static int __generic_cont_expand(struct inode *inode, loff_t size,
1987                                  pgoff_t index, unsigned int offset)
1988 {
1989         struct address_space *mapping = inode->i_mapping;
1990         struct page *page;
1991         unsigned long limit;
1992         int err;
1993
1994         err = -EFBIG;
1995         limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1996         if (limit != RLIM_INFINITY && size > (loff_t)limit) {
1997                 send_sig(SIGXFSZ, current, 0);
1998                 goto out;
1999         }
2000         if (size > inode->i_sb->s_maxbytes)
2001                 goto out;
2002
2003         err = -ENOMEM;
2004         page = grab_cache_page(mapping, index);
2005         if (!page)
2006                 goto out;
2007         err = mapping->a_ops->prepare_write(NULL, page, offset, offset);
2008         if (err) {
2009                 /*
2010                  * ->prepare_write() may have instantiated a few blocks
2011                  * outside i_size.  Trim these off again.
2012                  */
2013                 unlock_page(page);
2014                 page_cache_release(page);
2015                 vmtruncate(inode, inode->i_size);
2016                 goto out;
2017         }
2018
2019         err = mapping->a_ops->commit_write(NULL, page, offset, offset);
2020
2021         unlock_page(page);
2022         page_cache_release(page);
2023         if (err > 0)
2024                 err = 0;
2025 out:
2026         return err;
2027 }
2028
2029 int generic_cont_expand(struct inode *inode, loff_t size)
2030 {
2031         pgoff_t index;
2032         unsigned int offset;
2033
2034         offset = (size & (PAGE_CACHE_SIZE - 1)); /* Within page */
2035
2036         /* ugh.  in prepare/commit_write, if from==to==start of block, we
2037         ** skip the prepare.  make sure we never send an offset for the start
2038         ** of a block
2039         */
2040         if ((offset & (inode->i_sb->s_blocksize - 1)) == 0) {
2041                 /* caller must handle this extra byte. */
2042                 offset++;
2043         }
2044         index = size >> PAGE_CACHE_SHIFT;
2045
2046         return __generic_cont_expand(inode, size, index, offset);
2047 }
2048
2049 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2050 {
2051         loff_t pos = size - 1;
2052         pgoff_t index = pos >> PAGE_CACHE_SHIFT;
2053         unsigned int offset = (pos & (PAGE_CACHE_SIZE - 1)) + 1;
2054
2055         /* prepare/commit_write can handle even if from==to==start of block. */
2056         return __generic_cont_expand(inode, size, index, offset);
2057 }
2058
2059 /*
2060  * For moronic filesystems that do not allow holes in file.
2061  * We may have to extend the file.
2062  */
2063
2064 int cont_prepare_write(struct page *page, unsigned offset,
2065                 unsigned to, get_block_t *get_block, loff_t *bytes)
2066 {
2067         struct address_space *mapping = page->mapping;
2068         struct inode *inode = mapping->host;
2069         struct page *new_page;
2070         pgoff_t pgpos;
2071         long status;
2072         unsigned zerofrom;
2073         unsigned blocksize = 1 << inode->i_blkbits;
2074         void *kaddr;
2075
2076         while(page->index > (pgpos = *bytes>>PAGE_CACHE_SHIFT)) {
2077                 status = -ENOMEM;
2078                 new_page = grab_cache_page(mapping, pgpos);
2079                 if (!new_page)
2080                         goto out;
2081                 /* we might sleep */
2082                 if (*bytes>>PAGE_CACHE_SHIFT != pgpos) {
2083                         unlock_page(new_page);
2084                         page_cache_release(new_page);
2085                         continue;
2086                 }
2087                 zerofrom = *bytes & ~PAGE_CACHE_MASK;
2088                 if (zerofrom & (blocksize-1)) {
2089                         *bytes |= (blocksize-1);
2090                         (*bytes)++;
2091                 }
2092                 status = __block_prepare_write(inode, new_page, zerofrom,
2093                                                 PAGE_CACHE_SIZE, get_block);
2094                 if (status)
2095                         goto out_unmap;
2096                 kaddr = kmap_atomic(new_page, KM_USER0);
2097                 memset(kaddr+zerofrom, 0, PAGE_CACHE_SIZE-zerofrom);
2098                 flush_dcache_page(new_page);
2099                 kunmap_atomic(kaddr, KM_USER0);
2100                 generic_commit_write(NULL, new_page, zerofrom, PAGE_CACHE_SIZE);
2101                 unlock_page(new_page);
2102                 page_cache_release(new_page);
2103         }
2104
2105         if (page->index < pgpos) {
2106                 /* completely inside the area */
2107                 zerofrom = offset;
2108         } else {
2109                 /* page covers the boundary, find the boundary offset */
2110                 zerofrom = *bytes & ~PAGE_CACHE_MASK;
2111
2112                 /* if we will expand the thing last block will be filled */
2113                 if (to > zerofrom && (zerofrom & (blocksize-1))) {
2114                         *bytes |= (blocksize-1);
2115                         (*bytes)++;
2116                 }
2117
2118                 /* starting below the boundary? Nothing to zero out */
2119                 if (offset <= zerofrom)
2120                         zerofrom = offset;
2121         }
2122         status = __block_prepare_write(inode, page, zerofrom, to, get_block);
2123         if (status)
2124                 goto out1;
2125         if (zerofrom < offset) {
2126                 kaddr = kmap_atomic(page, KM_USER0);
2127                 memset(kaddr+zerofrom, 0, offset-zerofrom);
2128                 flush_dcache_page(page);
2129                 kunmap_atomic(kaddr, KM_USER0);
2130                 __block_commit_write(inode, page, zerofrom, offset);
2131         }
2132         return 0;
2133 out1:
2134         ClearPageUptodate(page);
2135         return status;
2136
2137 out_unmap:
2138         ClearPageUptodate(new_page);
2139         unlock_page(new_page);
2140         page_cache_release(new_page);
2141 out:
2142         return status;
2143 }
2144
2145 int block_prepare_write(struct page *page, unsigned from, unsigned to,
2146                         get_block_t *get_block)
2147 {
2148         struct inode *inode = page->mapping->host;
2149         int err = __block_prepare_write(inode, page, from, to, get_block);
2150         if (err)
2151                 ClearPageUptodate(page);
2152         return err;
2153 }
2154
2155 int block_commit_write(struct page *page, unsigned from, unsigned to)
2156 {
2157         struct inode *inode = page->mapping->host;
2158         __block_commit_write(inode,page,from,to);
2159         return 0;
2160 }
2161
2162 int generic_commit_write(struct file *file, struct page *page,
2163                 unsigned from, unsigned to)
2164 {
2165         struct inode *inode = page->mapping->host;
2166         loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2167         __block_commit_write(inode,page,from,to);
2168         /*
2169          * No need to use i_size_read() here, the i_size
2170          * cannot change under us because we hold i_mutex.
2171          */
2172         if (pos > inode->i_size) {
2173                 i_size_write(inode, pos);
2174                 mark_inode_dirty(inode);
2175         }
2176         return 0;
2177 }
2178
2179
2180 /*
2181  * nobh_prepare_write()'s prereads are special: the buffer_heads are freed
2182  * immediately, while under the page lock.  So it needs a special end_io
2183  * handler which does not touch the bh after unlocking it.
2184  *
2185  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
2186  * a race there is benign: unlock_buffer() only use the bh's address for
2187  * hashing after unlocking the buffer, so it doesn't actually touch the bh
2188  * itself.
2189  */
2190 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2191 {
2192         if (uptodate) {
2193                 set_buffer_uptodate(bh);
2194         } else {
2195                 /* This happens, due to failed READA attempts. */
2196                 clear_buffer_uptodate(bh);
2197         }
2198         unlock_buffer(bh);
2199 }
2200
2201 /*
2202  * On entry, the page is fully not uptodate.
2203  * On exit the page is fully uptodate in the areas outside (from,to)
2204  */
2205 int nobh_prepare_write(struct page *page, unsigned from, unsigned to,
2206                         get_block_t *get_block)
2207 {
2208         struct inode *inode = page->mapping->host;
2209         const unsigned blkbits = inode->i_blkbits;
2210         const unsigned blocksize = 1 << blkbits;
2211         struct buffer_head map_bh;
2212         struct buffer_head *read_bh[MAX_BUF_PER_PAGE];
2213         unsigned block_in_page;
2214         unsigned block_start;
2215         sector_t block_in_file;
2216         char *kaddr;
2217         int nr_reads = 0;
2218         int i;
2219         int ret = 0;
2220         int is_mapped_to_disk = 1;
2221         int dirtied_it = 0;
2222
2223         if (PageMappedToDisk(page))
2224                 return 0;
2225
2226         block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
2227         map_bh.b_page = page;
2228
2229         /*
2230          * We loop across all blocks in the page, whether or not they are
2231          * part of the affected region.  This is so we can discover if the
2232          * page is fully mapped-to-disk.
2233          */
2234         for (block_start = 0, block_in_page = 0;
2235                   block_start < PAGE_CACHE_SIZE;
2236                   block_in_page++, block_start += blocksize) {
2237                 unsigned block_end = block_start + blocksize;
2238                 int create;
2239
2240                 map_bh.b_state = 0;
2241                 create = 1;
2242                 if (block_start >= to)
2243                         create = 0;
2244                 map_bh.b_size = blocksize;
2245                 ret = get_block(inode, block_in_file + block_in_page,
2246                                         &map_bh, create);
2247                 if (ret)
2248                         goto failed;
2249                 if (!buffer_mapped(&map_bh))
2250                         is_mapped_to_disk = 0;
2251                 if (buffer_new(&map_bh))
2252                         unmap_underlying_metadata(map_bh.b_bdev,
2253                                                         map_bh.b_blocknr);
2254                 if (PageUptodate(page))
2255                         continue;
2256                 if (buffer_new(&map_bh) || !buffer_mapped(&map_bh)) {
2257                         kaddr = kmap_atomic(page, KM_USER0);
2258                         if (block_start < from) {
2259                                 memset(kaddr+block_start, 0, from-block_start);
2260                                 dirtied_it = 1;
2261                         }
2262                         if (block_end > to) {
2263                                 memset(kaddr + to, 0, block_end - to);
2264                                 dirtied_it = 1;
2265                         }
2266                         flush_dcache_page(page);
2267                         kunmap_atomic(kaddr, KM_USER0);
2268                         continue;
2269                 }
2270                 if (buffer_uptodate(&map_bh))
2271                         continue;       /* reiserfs does this */
2272                 if (block_start < from || block_end > to) {
2273                         struct buffer_head *bh = alloc_buffer_head(GFP_NOFS);
2274
2275                         if (!bh) {
2276                                 ret = -ENOMEM;
2277                                 goto failed;
2278                         }
2279                         bh->b_state = map_bh.b_state;
2280                         atomic_set(&bh->b_count, 0);
2281                         bh->b_this_page = NULL;
2282                         bh->b_page = page;
2283                         bh->b_blocknr = map_bh.b_blocknr;
2284                         bh->b_size = blocksize;
2285                         bh->b_data = (char *)(long)block_start;
2286                         bh->b_bdev = map_bh.b_bdev;
2287                         bh->b_private = NULL;
2288                         read_bh[nr_reads++] = bh;
2289                 }
2290         }
2291
2292         if (nr_reads) {
2293                 struct buffer_head *bh;
2294
2295                 /*
2296                  * The page is locked, so these buffers are protected from
2297                  * any VM or truncate activity.  Hence we don't need to care
2298                  * for the buffer_head refcounts.
2299                  */
2300                 for (i = 0; i < nr_reads; i++) {
2301                         bh = read_bh[i];
2302                         lock_buffer(bh);
2303                         bh->b_end_io = end_buffer_read_nobh;
2304                         submit_bh(READ, bh);
2305                 }
2306                 for (i = 0; i < nr_reads; i++) {
2307                         bh = read_bh[i];
2308                         wait_on_buffer(bh);
2309                         if (!buffer_uptodate(bh))
2310                                 ret = -EIO;
2311                         free_buffer_head(bh);
2312                         read_bh[i] = NULL;
2313                 }
2314                 if (ret)
2315                         goto failed;
2316         }
2317
2318         if (is_mapped_to_disk)
2319                 SetPageMappedToDisk(page);
2320         SetPageUptodate(page);
2321
2322         /*
2323          * Setting the page dirty here isn't necessary for the prepare_write
2324          * function - commit_write will do that.  But if/when this function is
2325          * used within the pagefault handler to ensure that all mmapped pages
2326          * have backing space in the filesystem, we will need to dirty the page
2327          * if its contents were altered.
2328          */
2329         if (dirtied_it)
2330                 set_page_dirty(page);
2331
2332         return 0;
2333
2334 failed:
2335         for (i = 0; i < nr_reads; i++) {
2336                 if (read_bh[i])
2337                         free_buffer_head(read_bh[i]);
2338         }
2339
2340         /*
2341          * Error recovery is pretty slack.  Clear the page and mark it dirty
2342          * so we'll later zero out any blocks which _were_ allocated.
2343          */
2344         kaddr = kmap_atomic(page, KM_USER0);
2345         memset(kaddr, 0, PAGE_CACHE_SIZE);
2346         kunmap_atomic(kaddr, KM_USER0);
2347         SetPageUptodate(page);
2348         set_page_dirty(page);
2349         return ret;
2350 }
2351 EXPORT_SYMBOL(nobh_prepare_write);
2352
2353 int nobh_commit_write(struct file *file, struct page *page,
2354                 unsigned from, unsigned to)
2355 {
2356         struct inode *inode = page->mapping->host;
2357         loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2358
2359         set_page_dirty(page);
2360         if (pos > inode->i_size) {
2361                 i_size_write(inode, pos);
2362                 mark_inode_dirty(inode);
2363         }
2364         return 0;
2365 }
2366 EXPORT_SYMBOL(nobh_commit_write);
2367
2368 /*
2369  * nobh_writepage() - based on block_full_write_page() except
2370  * that it tries to operate without attaching bufferheads to
2371  * the page.
2372  */
2373 int nobh_writepage(struct page *page, get_block_t *get_block,
2374                         struct writeback_control *wbc)
2375 {
2376         struct inode * const inode = page->mapping->host;
2377         loff_t i_size = i_size_read(inode);
2378         const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2379         unsigned offset;
2380         void *kaddr;
2381         int ret;
2382
2383         /* Is the page fully inside i_size? */
2384         if (page->index < end_index)
2385                 goto out;
2386
2387         /* Is the page fully outside i_size? (truncate in progress) */
2388         offset = i_size & (PAGE_CACHE_SIZE-1);
2389         if (page->index >= end_index+1 || !offset) {
2390                 /*
2391                  * The page may have dirty, unmapped buffers.  For example,
2392                  * they may have been added in ext3_writepage().  Make them
2393                  * freeable here, so the page does not leak.
2394                  */
2395 #if 0
2396                 /* Not really sure about this  - do we need this ? */
2397                 if (page->mapping->a_ops->invalidatepage)
2398                         page->mapping->a_ops->invalidatepage(page, offset);
2399 #endif
2400                 unlock_page(page);
2401                 return 0; /* don't care */
2402         }
2403
2404         /*
2405          * The page straddles i_size.  It must be zeroed out on each and every
2406          * writepage invocation because it may be mmapped.  "A file is mapped
2407          * in multiples of the page size.  For a file that is not a multiple of
2408          * the  page size, the remaining memory is zeroed when mapped, and
2409          * writes to that region are not written out to the file."
2410          */
2411         kaddr = kmap_atomic(page, KM_USER0);
2412         memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2413         flush_dcache_page(page);
2414         kunmap_atomic(kaddr, KM_USER0);
2415 out:
2416         ret = mpage_writepage(page, get_block, wbc);
2417         if (ret == -EAGAIN)
2418                 ret = __block_write_full_page(inode, page, get_block, wbc);
2419         return ret;
2420 }
2421 EXPORT_SYMBOL(nobh_writepage);
2422
2423 /*
2424  * This function assumes that ->prepare_write() uses nobh_prepare_write().
2425  */
2426 int nobh_truncate_page(struct address_space *mapping, loff_t from)
2427 {
2428         struct inode *inode = mapping->host;
2429         unsigned blocksize = 1 << inode->i_blkbits;
2430         pgoff_t index = from >> PAGE_CACHE_SHIFT;
2431         unsigned offset = from & (PAGE_CACHE_SIZE-1);
2432         unsigned to;
2433         struct page *page;
2434         const struct address_space_operations *a_ops = mapping->a_ops;
2435         char *kaddr;
2436         int ret = 0;
2437
2438         if ((offset & (blocksize - 1)) == 0)
2439                 goto out;
2440
2441         ret = -ENOMEM;
2442         page = grab_cache_page(mapping, index);
2443         if (!page)
2444                 goto out;
2445
2446         to = (offset + blocksize) & ~(blocksize - 1);
2447         ret = a_ops->prepare_write(NULL, page, offset, to);
2448         if (ret == 0) {
2449                 kaddr = kmap_atomic(page, KM_USER0);
2450                 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2451                 flush_dcache_page(page);
2452                 kunmap_atomic(kaddr, KM_USER0);
2453                 set_page_dirty(page);
2454         }
2455         unlock_page(page);
2456         page_cache_release(page);
2457 out:
2458         return ret;
2459 }
2460 EXPORT_SYMBOL(nobh_truncate_page);
2461
2462 int block_truncate_page(struct address_space *mapping,
2463                         loff_t from, get_block_t *get_block)
2464 {
2465         pgoff_t index = from >> PAGE_CACHE_SHIFT;
2466         unsigned offset = from & (PAGE_CACHE_SIZE-1);
2467         unsigned blocksize;
2468         sector_t iblock;
2469         unsigned length, pos;
2470         struct inode *inode = mapping->host;
2471         struct page *page;
2472         struct buffer_head *bh;
2473         void *kaddr;
2474         int err;
2475
2476         blocksize = 1 << inode->i_blkbits;
2477         length = offset & (blocksize - 1);
2478
2479         /* Block boundary? Nothing to do */
2480         if (!length)
2481                 return 0;
2482
2483         length = blocksize - length;
2484         iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2485         
2486         page = grab_cache_page(mapping, index);
2487         err = -ENOMEM;
2488         if (!page)
2489                 goto out;
2490
2491         if (!page_has_buffers(page))
2492                 create_empty_buffers(page, blocksize, 0);
2493
2494         /* Find the buffer that contains "offset" */
2495         bh = page_buffers(page);
2496         pos = blocksize;
2497         while (offset >= pos) {
2498                 bh = bh->b_this_page;
2499                 iblock++;
2500                 pos += blocksize;
2501         }
2502
2503         err = 0;
2504         if (!buffer_mapped(bh)) {
2505                 WARN_ON(bh->b_size != blocksize);
2506                 err = get_block(inode, iblock, bh, 0);
2507                 if (err)
2508                         goto unlock;
2509                 /* unmapped? It's a hole - nothing to do */
2510                 if (!buffer_mapped(bh))
2511                         goto unlock;
2512         }
2513
2514         /* Ok, it's mapped. Make sure it's up-to-date */
2515         if (PageUptodate(page))
2516                 set_buffer_uptodate(bh);
2517
2518         if (!buffer_uptodate(bh) && !buffer_delay(bh)) {
2519                 err = -EIO;
2520                 ll_rw_block(READ, 1, &bh);
2521                 wait_on_buffer(bh);
2522                 /* Uhhuh. Read error. Complain and punt. */
2523                 if (!buffer_uptodate(bh))
2524                         goto unlock;
2525         }
2526
2527         kaddr = kmap_atomic(page, KM_USER0);
2528         memset(kaddr + offset, 0, length);
2529         flush_dcache_page(page);
2530         kunmap_atomic(kaddr, KM_USER0);
2531
2532         mark_buffer_dirty(bh);
2533         err = 0;
2534
2535 unlock:
2536         unlock_page(page);
2537         page_cache_release(page);
2538 out:
2539         return err;
2540 }
2541
2542 /*
2543  * The generic ->writepage function for buffer-backed address_spaces
2544  */
2545 int block_write_full_page(struct page *page, get_block_t *get_block,
2546                         struct writeback_control *wbc)
2547 {
2548         struct inode * const inode = page->mapping->host;
2549         loff_t i_size = i_size_read(inode);
2550         const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2551         unsigned offset;
2552         void *kaddr;
2553
2554         /* Is the page fully inside i_size? */
2555         if (page->index < end_index)
2556                 return __block_write_full_page(inode, page, get_block, wbc);
2557
2558         /* Is the page fully outside i_size? (truncate in progress) */
2559         offset = i_size & (PAGE_CACHE_SIZE-1);
2560         if (page->index >= end_index+1 || !offset) {
2561                 /*
2562                  * The page may have dirty, unmapped buffers.  For example,
2563                  * they may have been added in ext3_writepage().  Make them
2564                  * freeable here, so the page does not leak.
2565                  */
2566                 do_invalidatepage(page, 0);
2567                 unlock_page(page);
2568                 return 0; /* don't care */
2569         }
2570
2571         /*
2572          * The page straddles i_size.  It must be zeroed out on each and every
2573          * writepage invokation because it may be mmapped.  "A file is mapped
2574          * in multiples of the page size.  For a file that is not a multiple of
2575          * the  page size, the remaining memory is zeroed when mapped, and
2576          * writes to that region are not written out to the file."
2577          */
2578         kaddr = kmap_atomic(page, KM_USER0);
2579         memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2580         flush_dcache_page(page);
2581         kunmap_atomic(kaddr, KM_USER0);
2582         return __block_write_full_page(inode, page, get_block, wbc);
2583 }
2584
2585 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2586                             get_block_t *get_block)
2587 {
2588         struct buffer_head tmp;
2589         struct inode *inode = mapping->host;
2590         tmp.b_state = 0;
2591         tmp.b_blocknr = 0;
2592         tmp.b_size = 1 << inode->i_blkbits;
2593         get_block(inode, block, &tmp, 0);
2594         return tmp.b_blocknr;
2595 }
2596
2597 static int end_bio_bh_io_sync(struct bio *bio, unsigned int bytes_done, int err)
2598 {
2599         struct buffer_head *bh = bio->bi_private;
2600
2601         if (bio->bi_size)
2602                 return 1;
2603
2604         if (err == -EOPNOTSUPP) {
2605                 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2606                 set_bit(BH_Eopnotsupp, &bh->b_state);
2607         }
2608
2609         bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2610         bio_put(bio);
2611         return 0;
2612 }
2613
2614 int submit_bh(int rw, struct buffer_head * bh)
2615 {
2616         struct bio *bio;
2617         int ret = 0;
2618
2619         BUG_ON(!buffer_locked(bh));
2620         BUG_ON(!buffer_mapped(bh));
2621         BUG_ON(!bh->b_end_io);
2622
2623         if (buffer_ordered(bh) && (rw == WRITE))
2624                 rw = WRITE_BARRIER;
2625
2626         /*
2627          * Only clear out a write error when rewriting, should this
2628          * include WRITE_SYNC as well?
2629          */
2630         if (test_set_buffer_req(bh) && (rw == WRITE || rw == WRITE_BARRIER))
2631                 clear_buffer_write_io_error(bh);
2632
2633         /*
2634          * from here on down, it's all bio -- do the initial mapping,
2635          * submit_bio -> generic_make_request may further map this bio around
2636          */
2637         bio = bio_alloc(GFP_NOIO, 1);
2638
2639         bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2640         bio->bi_bdev = bh->b_bdev;
2641         bio->bi_io_vec[0].bv_page = bh->b_page;
2642         bio->bi_io_vec[0].bv_len = bh->b_size;
2643         bio->bi_io_vec[0].bv_offset = bh_offset(bh);
2644
2645         bio->bi_vcnt = 1;
2646         bio->bi_idx = 0;
2647         bio->bi_size = bh->b_size;
2648
2649         bio->bi_end_io = end_bio_bh_io_sync;
2650         bio->bi_private = bh;
2651
2652         bio_get(bio);
2653         submit_bio(rw, bio);
2654
2655         if (bio_flagged(bio, BIO_EOPNOTSUPP))
2656                 ret = -EOPNOTSUPP;
2657
2658         bio_put(bio);
2659         return ret;
2660 }
2661
2662 /**
2663  * ll_rw_block: low-level access to block devices (DEPRECATED)
2664  * @rw: whether to %READ or %WRITE or %SWRITE or maybe %READA (readahead)
2665  * @nr: number of &struct buffer_heads in the array
2666  * @bhs: array of pointers to &struct buffer_head
2667  *
2668  * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
2669  * requests an I/O operation on them, either a %READ or a %WRITE.  The third
2670  * %SWRITE is like %WRITE only we make sure that the *current* data in buffers
2671  * are sent to disk. The fourth %READA option is described in the documentation
2672  * for generic_make_request() which ll_rw_block() calls.
2673  *
2674  * This function drops any buffer that it cannot get a lock on (with the
2675  * BH_Lock state bit) unless SWRITE is required, any buffer that appears to be
2676  * clean when doing a write request, and any buffer that appears to be
2677  * up-to-date when doing read request.  Further it marks as clean buffers that
2678  * are processed for writing (the buffer cache won't assume that they are
2679  * actually clean until the buffer gets unlocked).
2680  *
2681  * ll_rw_block sets b_end_io to simple completion handler that marks
2682  * the buffer up-to-date (if approriate), unlocks the buffer and wakes
2683  * any waiters. 
2684  *
2685  * All of the buffers must be for the same device, and must also be a
2686  * multiple of the current approved size for the device.
2687  */
2688 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
2689 {
2690         int i;
2691
2692         for (i = 0; i < nr; i++) {
2693                 struct buffer_head *bh = bhs[i];
2694
2695                 if (rw == SWRITE)
2696                         lock_buffer(bh);
2697                 else if (test_set_buffer_locked(bh))
2698                         continue;
2699
2700                 if (rw == WRITE || rw == SWRITE) {
2701                         if (test_clear_buffer_dirty(bh)) {
2702                                 bh->b_end_io = end_buffer_write_sync;
2703                                 get_bh(bh);
2704                                 submit_bh(WRITE, bh);
2705                                 continue;
2706                         }
2707                 } else {
2708                         if (!buffer_uptodate(bh)) {
2709                                 bh->b_end_io = end_buffer_read_sync;
2710                                 get_bh(bh);
2711                                 submit_bh(rw, bh);
2712                                 continue;
2713                         }
2714                 }
2715                 unlock_buffer(bh);
2716         }
2717 }
2718
2719 /*
2720  * For a data-integrity writeout, we need to wait upon any in-progress I/O
2721  * and then start new I/O and then wait upon it.  The caller must have a ref on
2722  * the buffer_head.
2723  */
2724 int sync_dirty_buffer(struct buffer_head *bh)
2725 {
2726         int ret = 0;
2727
2728         WARN_ON(atomic_read(&bh->b_count) < 1);
2729         lock_buffer(bh);
2730         if (test_clear_buffer_dirty(bh)) {
2731                 get_bh(bh);
2732                 bh->b_end_io = end_buffer_write_sync;
2733                 ret = submit_bh(WRITE, bh);
2734                 wait_on_buffer(bh);
2735                 if (buffer_eopnotsupp(bh)) {
2736                         clear_buffer_eopnotsupp(bh);
2737                         ret = -EOPNOTSUPP;
2738                 }
2739                 if (!ret && !buffer_uptodate(bh))
2740                         ret = -EIO;
2741         } else {
2742                 unlock_buffer(bh);
2743         }
2744         return ret;
2745 }
2746
2747 /*
2748  * try_to_free_buffers() checks if all the buffers on this particular page
2749  * are unused, and releases them if so.
2750  *
2751  * Exclusion against try_to_free_buffers may be obtained by either
2752  * locking the page or by holding its mapping's private_lock.
2753  *
2754  * If the page is dirty but all the buffers are clean then we need to
2755  * be sure to mark the page clean as well.  This is because the page
2756  * may be against a block device, and a later reattachment of buffers
2757  * to a dirty page will set *all* buffers dirty.  Which would corrupt
2758  * filesystem data on the same device.
2759  *
2760  * The same applies to regular filesystem pages: if all the buffers are
2761  * clean then we set the page clean and proceed.  To do that, we require
2762  * total exclusion from __set_page_dirty_buffers().  That is obtained with
2763  * private_lock.
2764  *
2765  * try_to_free_buffers() is non-blocking.
2766  */
2767 static inline int buffer_busy(struct buffer_head *bh)
2768 {
2769         return atomic_read(&bh->b_count) |
2770                 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
2771 }
2772
2773 static int
2774 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
2775 {
2776         struct buffer_head *head = page_buffers(page);
2777         struct buffer_head *bh;
2778
2779         bh = head;
2780         do {
2781                 if (buffer_write_io_error(bh) && page->mapping)
2782                         set_bit(AS_EIO, &page->mapping->flags);
2783                 if (buffer_busy(bh))
2784                         goto failed;
2785                 bh = bh->b_this_page;
2786         } while (bh != head);
2787
2788         do {
2789                 struct buffer_head *next = bh->b_this_page;
2790
2791                 if (!list_empty(&bh->b_assoc_buffers))
2792                         __remove_assoc_queue(bh);
2793                 bh = next;
2794         } while (bh != head);
2795         *buffers_to_free = head;
2796         __clear_page_buffers(page);
2797         return 1;
2798 failed:
2799         return 0;
2800 }
2801
2802 int try_to_free_buffers(struct page *page)
2803 {
2804         struct address_space * const mapping = page->mapping;
2805         struct buffer_head *buffers_to_free = NULL;
2806         int ret = 0;
2807
2808         BUG_ON(!PageLocked(page));
2809         if (PageWriteback(page))
2810                 return 0;
2811
2812         if (mapping == NULL) {          /* can this still happen? */
2813                 ret = drop_buffers(page, &buffers_to_free);
2814                 goto out;
2815         }
2816
2817         spin_lock(&mapping->private_lock);
2818         ret = drop_buffers(page, &buffers_to_free);
2819         spin_unlock(&mapping->private_lock);
2820         if (ret) {
2821                 /*
2822                  * If the filesystem writes its buffers by hand (eg ext3)
2823                  * then we can have clean buffers against a dirty page.  We
2824                  * clean the page here; otherwise later reattachment of buffers
2825                  * could encounter a non-uptodate page, which is unresolvable.
2826                  * This only applies in the rare case where try_to_free_buffers
2827                  * succeeds but the page is not freed.
2828                  */
2829                 clear_page_dirty(page);
2830         }
2831 out:
2832         if (buffers_to_free) {
2833                 struct buffer_head *bh = buffers_to_free;
2834
2835                 do {
2836                         struct buffer_head *next = bh->b_this_page;
2837                         free_buffer_head(bh);
2838                         bh = next;
2839                 } while (bh != buffers_to_free);
2840         }
2841         return ret;
2842 }
2843 EXPORT_SYMBOL(try_to_free_buffers);
2844
2845 void block_sync_page(struct page *page)
2846 {
2847         struct address_space *mapping;
2848
2849         smp_mb();
2850         mapping = page_mapping(page);
2851         if (mapping)
2852                 blk_run_backing_dev(mapping->backing_dev_info, page);
2853 }
2854
2855 /*
2856  * There are no bdflush tunables left.  But distributions are
2857  * still running obsolete flush daemons, so we terminate them here.
2858  *
2859  * Use of bdflush() is deprecated and will be removed in a future kernel.
2860  * The `pdflush' kernel threads fully replace bdflush daemons and this call.
2861  */
2862 asmlinkage long sys_bdflush(int func, long data)
2863 {
2864         static int msg_count;
2865
2866         if (!capable(CAP_SYS_ADMIN))
2867                 return -EPERM;
2868
2869         if (msg_count < 5) {
2870                 msg_count++;
2871                 printk(KERN_INFO
2872                         "warning: process `%s' used the obsolete bdflush"
2873                         " system call\n", current->comm);
2874                 printk(KERN_INFO "Fix your initscripts?\n");
2875         }
2876
2877         if (func == 1)
2878                 do_exit(0);
2879         return 0;
2880 }
2881
2882 /*
2883  * Buffer-head allocation
2884  */
2885 static kmem_cache_t *bh_cachep;
2886
2887 /*
2888  * Once the number of bh's in the machine exceeds this level, we start
2889  * stripping them in writeback.
2890  */
2891 static int max_buffer_heads;
2892
2893 int buffer_heads_over_limit;
2894
2895 struct bh_accounting {
2896         int nr;                 /* Number of live bh's */
2897         int ratelimit;          /* Limit cacheline bouncing */
2898 };
2899
2900 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
2901
2902 static void recalc_bh_state(void)
2903 {
2904         int i;
2905         int tot = 0;
2906
2907         if (__get_cpu_var(bh_accounting).ratelimit++ < 4096)
2908                 return;
2909         __get_cpu_var(bh_accounting).ratelimit = 0;
2910         for_each_online_cpu(i)
2911                 tot += per_cpu(bh_accounting, i).nr;
2912         buffer_heads_over_limit = (tot > max_buffer_heads);
2913 }
2914         
2915 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
2916 {
2917         struct buffer_head *ret = kmem_cache_alloc(bh_cachep, gfp_flags);
2918         if (ret) {
2919                 get_cpu_var(bh_accounting).nr++;
2920                 recalc_bh_state();
2921                 put_cpu_var(bh_accounting);
2922         }
2923         return ret;
2924 }
2925 EXPORT_SYMBOL(alloc_buffer_head);
2926
2927 void free_buffer_head(struct buffer_head *bh)
2928 {
2929         BUG_ON(!list_empty(&bh->b_assoc_buffers));
2930         kmem_cache_free(bh_cachep, bh);
2931         get_cpu_var(bh_accounting).nr--;
2932         recalc_bh_state();
2933         put_cpu_var(bh_accounting);
2934 }
2935 EXPORT_SYMBOL(free_buffer_head);
2936
2937 static void
2938 init_buffer_head(void *data, kmem_cache_t *cachep, unsigned long flags)
2939 {
2940         if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) ==
2941                             SLAB_CTOR_CONSTRUCTOR) {
2942                 struct buffer_head * bh = (struct buffer_head *)data;
2943
2944                 memset(bh, 0, sizeof(*bh));
2945                 INIT_LIST_HEAD(&bh->b_assoc_buffers);
2946         }
2947 }
2948
2949 #ifdef CONFIG_HOTPLUG_CPU
2950 static void buffer_exit_cpu(int cpu)
2951 {
2952         int i;
2953         struct bh_lru *b = &per_cpu(bh_lrus, cpu);
2954
2955         for (i = 0; i < BH_LRU_SIZE; i++) {
2956                 brelse(b->bhs[i]);
2957                 b->bhs[i] = NULL;
2958         }
2959         get_cpu_var(bh_accounting).nr += per_cpu(bh_accounting, cpu).nr;
2960         per_cpu(bh_accounting, cpu).nr = 0;
2961         put_cpu_var(bh_accounting);
2962 }
2963
2964 static int buffer_cpu_notify(struct notifier_block *self,
2965                               unsigned long action, void *hcpu)
2966 {
2967         if (action == CPU_DEAD)
2968                 buffer_exit_cpu((unsigned long)hcpu);
2969         return NOTIFY_OK;
2970 }
2971 #endif /* CONFIG_HOTPLUG_CPU */
2972
2973 void __init buffer_init(void)
2974 {
2975         int nrpages;
2976
2977         bh_cachep = kmem_cache_create("buffer_head",
2978                                         sizeof(struct buffer_head), 0,
2979                                         (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
2980                                         SLAB_MEM_SPREAD),
2981                                         init_buffer_head,
2982                                         NULL);
2983
2984         /*
2985          * Limit the bh occupancy to 10% of ZONE_NORMAL
2986          */
2987         nrpages = (nr_free_buffer_pages() * 10) / 100;
2988         max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
2989         hotcpu_notifier(buffer_cpu_notify, 0);
2990 }
2991
2992 EXPORT_SYMBOL(__bforget);
2993 EXPORT_SYMBOL(__brelse);
2994 EXPORT_SYMBOL(__wait_on_buffer);
2995 EXPORT_SYMBOL(block_commit_write);
2996 EXPORT_SYMBOL(block_prepare_write);
2997 EXPORT_SYMBOL(block_read_full_page);
2998 EXPORT_SYMBOL(block_sync_page);
2999 EXPORT_SYMBOL(block_truncate_page);
3000 EXPORT_SYMBOL(block_write_full_page);
3001 EXPORT_SYMBOL(cont_prepare_write);
3002 EXPORT_SYMBOL(end_buffer_read_sync);
3003 EXPORT_SYMBOL(end_buffer_write_sync);
3004 EXPORT_SYMBOL(file_fsync);
3005 EXPORT_SYMBOL(fsync_bdev);
3006 EXPORT_SYMBOL(generic_block_bmap);
3007 EXPORT_SYMBOL(generic_commit_write);
3008 EXPORT_SYMBOL(generic_cont_expand);
3009 EXPORT_SYMBOL(generic_cont_expand_simple);
3010 EXPORT_SYMBOL(init_buffer);
3011 EXPORT_SYMBOL(invalidate_bdev);
3012 EXPORT_SYMBOL(ll_rw_block);
3013 EXPORT_SYMBOL(mark_buffer_dirty);
3014 EXPORT_SYMBOL(submit_bh);
3015 EXPORT_SYMBOL(sync_dirty_buffer);
3016 EXPORT_SYMBOL(unlock_buffer);