OMAPFB: don't mark framebuffer as IO memory
[pandora-kernel.git] / fs / buffer.c
1 /*
2  *  linux/fs/buffer.c
3  *
4  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
5  */
6
7 /*
8  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9  *
10  * Removed a lot of unnecessary code and simplified things now that
11  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12  *
13  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
14  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
15  *
16  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17  *
18  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19  */
20
21 #include <linux/kernel.h>
22 #include <linux/syscalls.h>
23 #include <linux/fs.h>
24 #include <linux/mm.h>
25 #include <linux/percpu.h>
26 #include <linux/slab.h>
27 #include <linux/capability.h>
28 #include <linux/blkdev.h>
29 #include <linux/file.h>
30 #include <linux/quotaops.h>
31 #include <linux/highmem.h>
32 #include <linux/module.h>
33 #include <linux/writeback.h>
34 #include <linux/hash.h>
35 #include <linux/suspend.h>
36 #include <linux/buffer_head.h>
37 #include <linux/task_io_accounting_ops.h>
38 #include <linux/bio.h>
39 #include <linux/notifier.h>
40 #include <linux/cpu.h>
41 #include <linux/bitops.h>
42 #include <linux/mpage.h>
43 #include <linux/bit_spinlock.h>
44 #include <linux/cleancache.h>
45
46 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
47
48 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
49
50 inline void
51 init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
52 {
53         bh->b_end_io = handler;
54         bh->b_private = private;
55 }
56 EXPORT_SYMBOL(init_buffer);
57
58 static int sleep_on_buffer(void *word)
59 {
60         io_schedule();
61         return 0;
62 }
63
64 void __lock_buffer(struct buffer_head *bh)
65 {
66         wait_on_bit_lock(&bh->b_state, BH_Lock, sleep_on_buffer,
67                                                         TASK_UNINTERRUPTIBLE);
68 }
69 EXPORT_SYMBOL(__lock_buffer);
70
71 void unlock_buffer(struct buffer_head *bh)
72 {
73         clear_bit_unlock(BH_Lock, &bh->b_state);
74         smp_mb__after_clear_bit();
75         wake_up_bit(&bh->b_state, BH_Lock);
76 }
77 EXPORT_SYMBOL(unlock_buffer);
78
79 /*
80  * Block until a buffer comes unlocked.  This doesn't stop it
81  * from becoming locked again - you have to lock it yourself
82  * if you want to preserve its state.
83  */
84 void __wait_on_buffer(struct buffer_head * bh)
85 {
86         wait_on_bit(&bh->b_state, BH_Lock, sleep_on_buffer, TASK_UNINTERRUPTIBLE);
87 }
88 EXPORT_SYMBOL(__wait_on_buffer);
89
90 static void
91 __clear_page_buffers(struct page *page)
92 {
93         ClearPagePrivate(page);
94         set_page_private(page, 0);
95         page_cache_release(page);
96 }
97
98
99 static int quiet_error(struct buffer_head *bh)
100 {
101         if (!test_bit(BH_Quiet, &bh->b_state) && printk_ratelimit())
102                 return 0;
103         return 1;
104 }
105
106
107 static void buffer_io_error(struct buffer_head *bh)
108 {
109         char b[BDEVNAME_SIZE];
110         printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
111                         bdevname(bh->b_bdev, b),
112                         (unsigned long long)bh->b_blocknr);
113 }
114
115 /*
116  * End-of-IO handler helper function which does not touch the bh after
117  * unlocking it.
118  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
119  * a race there is benign: unlock_buffer() only use the bh's address for
120  * hashing after unlocking the buffer, so it doesn't actually touch the bh
121  * itself.
122  */
123 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
124 {
125         if (uptodate) {
126                 set_buffer_uptodate(bh);
127         } else {
128                 /* This happens, due to failed READA attempts. */
129                 clear_buffer_uptodate(bh);
130         }
131         unlock_buffer(bh);
132 }
133
134 /*
135  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
136  * unlock the buffer. This is what ll_rw_block uses too.
137  */
138 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
139 {
140         __end_buffer_read_notouch(bh, uptodate);
141         put_bh(bh);
142 }
143 EXPORT_SYMBOL(end_buffer_read_sync);
144
145 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
146 {
147         char b[BDEVNAME_SIZE];
148
149         if (uptodate) {
150                 set_buffer_uptodate(bh);
151         } else {
152                 if (!quiet_error(bh)) {
153                         buffer_io_error(bh);
154                         printk(KERN_WARNING "lost page write due to "
155                                         "I/O error on %s\n",
156                                        bdevname(bh->b_bdev, b));
157                 }
158                 set_buffer_write_io_error(bh);
159                 clear_buffer_uptodate(bh);
160         }
161         unlock_buffer(bh);
162         put_bh(bh);
163 }
164 EXPORT_SYMBOL(end_buffer_write_sync);
165
166 /*
167  * Various filesystems appear to want __find_get_block to be non-blocking.
168  * But it's the page lock which protects the buffers.  To get around this,
169  * we get exclusion from try_to_free_buffers with the blockdev mapping's
170  * private_lock.
171  *
172  * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
173  * may be quite high.  This code could TryLock the page, and if that
174  * succeeds, there is no need to take private_lock. (But if
175  * private_lock is contended then so is mapping->tree_lock).
176  */
177 static struct buffer_head *
178 __find_get_block_slow(struct block_device *bdev, sector_t block)
179 {
180         struct inode *bd_inode = bdev->bd_inode;
181         struct address_space *bd_mapping = bd_inode->i_mapping;
182         struct buffer_head *ret = NULL;
183         pgoff_t index;
184         struct buffer_head *bh;
185         struct buffer_head *head;
186         struct page *page;
187         int all_mapped = 1;
188
189         index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
190         page = find_get_page(bd_mapping, index);
191         if (!page)
192                 goto out;
193
194         spin_lock(&bd_mapping->private_lock);
195         if (!page_has_buffers(page))
196                 goto out_unlock;
197         head = page_buffers(page);
198         bh = head;
199         do {
200                 if (!buffer_mapped(bh))
201                         all_mapped = 0;
202                 else if (bh->b_blocknr == block) {
203                         ret = bh;
204                         get_bh(bh);
205                         goto out_unlock;
206                 }
207                 bh = bh->b_this_page;
208         } while (bh != head);
209
210         /* we might be here because some of the buffers on this page are
211          * not mapped.  This is due to various races between
212          * file io on the block device and getblk.  It gets dealt with
213          * elsewhere, don't buffer_error if we had some unmapped buffers
214          */
215         if (all_mapped) {
216                 char b[BDEVNAME_SIZE];
217
218                 printk("__find_get_block_slow() failed. "
219                         "block=%llu, b_blocknr=%llu\n",
220                         (unsigned long long)block,
221                         (unsigned long long)bh->b_blocknr);
222                 printk("b_state=0x%08lx, b_size=%zu\n",
223                         bh->b_state, bh->b_size);
224                 printk("device %s blocksize: %d\n", bdevname(bdev, b),
225                         1 << bd_inode->i_blkbits);
226         }
227 out_unlock:
228         spin_unlock(&bd_mapping->private_lock);
229         page_cache_release(page);
230 out:
231         return ret;
232 }
233
234 /* If invalidate_buffers() will trash dirty buffers, it means some kind
235    of fs corruption is going on. Trashing dirty data always imply losing
236    information that was supposed to be just stored on the physical layer
237    by the user.
238
239    Thus invalidate_buffers in general usage is not allwowed to trash
240    dirty buffers. For example ioctl(FLSBLKBUF) expects dirty data to
241    be preserved.  These buffers are simply skipped.
242   
243    We also skip buffers which are still in use.  For example this can
244    happen if a userspace program is reading the block device.
245
246    NOTE: In the case where the user removed a removable-media-disk even if
247    there's still dirty data not synced on disk (due a bug in the device driver
248    or due an error of the user), by not destroying the dirty buffers we could
249    generate corruption also on the next media inserted, thus a parameter is
250    necessary to handle this case in the most safe way possible (trying
251    to not corrupt also the new disk inserted with the data belonging to
252    the old now corrupted disk). Also for the ramdisk the natural thing
253    to do in order to release the ramdisk memory is to destroy dirty buffers.
254
255    These are two special cases. Normal usage imply the device driver
256    to issue a sync on the device (without waiting I/O completion) and
257    then an invalidate_buffers call that doesn't trash dirty buffers.
258
259    For handling cache coherency with the blkdev pagecache the 'update' case
260    is been introduced. It is needed to re-read from disk any pinned
261    buffer. NOTE: re-reading from disk is destructive so we can do it only
262    when we assume nobody is changing the buffercache under our I/O and when
263    we think the disk contains more recent information than the buffercache.
264    The update == 1 pass marks the buffers we need to update, the update == 2
265    pass does the actual I/O. */
266 void invalidate_bdev(struct block_device *bdev)
267 {
268         struct address_space *mapping = bdev->bd_inode->i_mapping;
269
270         if (mapping->nrpages == 0)
271                 return;
272
273         invalidate_bh_lrus();
274         lru_add_drain_all();    /* make sure all lru add caches are flushed */
275         invalidate_mapping_pages(mapping, 0, -1);
276         /* 99% of the time, we don't need to flush the cleancache on the bdev.
277          * But, for the strange corners, lets be cautious
278          */
279         cleancache_flush_inode(mapping);
280 }
281 EXPORT_SYMBOL(invalidate_bdev);
282
283 /*
284  * Kick the writeback threads then try to free up some ZONE_NORMAL memory.
285  */
286 static void free_more_memory(void)
287 {
288         struct zone *zone;
289         int nid;
290
291         wakeup_flusher_threads(1024, WB_REASON_FREE_MORE_MEM);
292         yield();
293
294         for_each_online_node(nid) {
295                 (void)first_zones_zonelist(node_zonelist(nid, GFP_NOFS),
296                                                 gfp_zone(GFP_NOFS), NULL,
297                                                 &zone);
298                 if (zone)
299                         try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0,
300                                                 GFP_NOFS, NULL);
301         }
302 }
303
304 /*
305  * I/O completion handler for block_read_full_page() - pages
306  * which come unlocked at the end of I/O.
307  */
308 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
309 {
310         unsigned long flags;
311         struct buffer_head *first;
312         struct buffer_head *tmp;
313         struct page *page;
314         int page_uptodate = 1;
315
316         BUG_ON(!buffer_async_read(bh));
317
318         page = bh->b_page;
319         if (uptodate) {
320                 set_buffer_uptodate(bh);
321         } else {
322                 clear_buffer_uptodate(bh);
323                 if (!quiet_error(bh))
324                         buffer_io_error(bh);
325                 SetPageError(page);
326         }
327
328         /*
329          * Be _very_ careful from here on. Bad things can happen if
330          * two buffer heads end IO at almost the same time and both
331          * decide that the page is now completely done.
332          */
333         first = page_buffers(page);
334         local_irq_save(flags);
335         bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
336         clear_buffer_async_read(bh);
337         unlock_buffer(bh);
338         tmp = bh;
339         do {
340                 if (!buffer_uptodate(tmp))
341                         page_uptodate = 0;
342                 if (buffer_async_read(tmp)) {
343                         BUG_ON(!buffer_locked(tmp));
344                         goto still_busy;
345                 }
346                 tmp = tmp->b_this_page;
347         } while (tmp != bh);
348         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
349         local_irq_restore(flags);
350
351         /*
352          * If none of the buffers had errors and they are all
353          * uptodate then we can set the page uptodate.
354          */
355         if (page_uptodate && !PageError(page))
356                 SetPageUptodate(page);
357         unlock_page(page);
358         return;
359
360 still_busy:
361         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
362         local_irq_restore(flags);
363         return;
364 }
365
366 /*
367  * Completion handler for block_write_full_page() - pages which are unlocked
368  * during I/O, and which have PageWriteback cleared upon I/O completion.
369  */
370 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
371 {
372         char b[BDEVNAME_SIZE];
373         unsigned long flags;
374         struct buffer_head *first;
375         struct buffer_head *tmp;
376         struct page *page;
377
378         BUG_ON(!buffer_async_write(bh));
379
380         page = bh->b_page;
381         if (uptodate) {
382                 set_buffer_uptodate(bh);
383         } else {
384                 if (!quiet_error(bh)) {
385                         buffer_io_error(bh);
386                         printk(KERN_WARNING "lost page write due to "
387                                         "I/O error on %s\n",
388                                bdevname(bh->b_bdev, b));
389                 }
390                 set_bit(AS_EIO, &page->mapping->flags);
391                 set_buffer_write_io_error(bh);
392                 clear_buffer_uptodate(bh);
393                 SetPageError(page);
394         }
395
396         first = page_buffers(page);
397         local_irq_save(flags);
398         bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
399
400         clear_buffer_async_write(bh);
401         unlock_buffer(bh);
402         tmp = bh->b_this_page;
403         while (tmp != bh) {
404                 if (buffer_async_write(tmp)) {
405                         BUG_ON(!buffer_locked(tmp));
406                         goto still_busy;
407                 }
408                 tmp = tmp->b_this_page;
409         }
410         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
411         local_irq_restore(flags);
412         end_page_writeback(page);
413         return;
414
415 still_busy:
416         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
417         local_irq_restore(flags);
418         return;
419 }
420 EXPORT_SYMBOL(end_buffer_async_write);
421
422 /*
423  * If a page's buffers are under async readin (end_buffer_async_read
424  * completion) then there is a possibility that another thread of
425  * control could lock one of the buffers after it has completed
426  * but while some of the other buffers have not completed.  This
427  * locked buffer would confuse end_buffer_async_read() into not unlocking
428  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
429  * that this buffer is not under async I/O.
430  *
431  * The page comes unlocked when it has no locked buffer_async buffers
432  * left.
433  *
434  * PageLocked prevents anyone starting new async I/O reads any of
435  * the buffers.
436  *
437  * PageWriteback is used to prevent simultaneous writeout of the same
438  * page.
439  *
440  * PageLocked prevents anyone from starting writeback of a page which is
441  * under read I/O (PageWriteback is only ever set against a locked page).
442  */
443 static void mark_buffer_async_read(struct buffer_head *bh)
444 {
445         bh->b_end_io = end_buffer_async_read;
446         set_buffer_async_read(bh);
447 }
448
449 static void mark_buffer_async_write_endio(struct buffer_head *bh,
450                                           bh_end_io_t *handler)
451 {
452         bh->b_end_io = handler;
453         set_buffer_async_write(bh);
454 }
455
456 void mark_buffer_async_write(struct buffer_head *bh)
457 {
458         mark_buffer_async_write_endio(bh, end_buffer_async_write);
459 }
460 EXPORT_SYMBOL(mark_buffer_async_write);
461
462
463 /*
464  * fs/buffer.c contains helper functions for buffer-backed address space's
465  * fsync functions.  A common requirement for buffer-based filesystems is
466  * that certain data from the backing blockdev needs to be written out for
467  * a successful fsync().  For example, ext2 indirect blocks need to be
468  * written back and waited upon before fsync() returns.
469  *
470  * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
471  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
472  * management of a list of dependent buffers at ->i_mapping->private_list.
473  *
474  * Locking is a little subtle: try_to_free_buffers() will remove buffers
475  * from their controlling inode's queue when they are being freed.  But
476  * try_to_free_buffers() will be operating against the *blockdev* mapping
477  * at the time, not against the S_ISREG file which depends on those buffers.
478  * So the locking for private_list is via the private_lock in the address_space
479  * which backs the buffers.  Which is different from the address_space 
480  * against which the buffers are listed.  So for a particular address_space,
481  * mapping->private_lock does *not* protect mapping->private_list!  In fact,
482  * mapping->private_list will always be protected by the backing blockdev's
483  * ->private_lock.
484  *
485  * Which introduces a requirement: all buffers on an address_space's
486  * ->private_list must be from the same address_space: the blockdev's.
487  *
488  * address_spaces which do not place buffers at ->private_list via these
489  * utility functions are free to use private_lock and private_list for
490  * whatever they want.  The only requirement is that list_empty(private_list)
491  * be true at clear_inode() time.
492  *
493  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
494  * filesystems should do that.  invalidate_inode_buffers() should just go
495  * BUG_ON(!list_empty).
496  *
497  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
498  * take an address_space, not an inode.  And it should be called
499  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
500  * queued up.
501  *
502  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
503  * list if it is already on a list.  Because if the buffer is on a list,
504  * it *must* already be on the right one.  If not, the filesystem is being
505  * silly.  This will save a ton of locking.  But first we have to ensure
506  * that buffers are taken *off* the old inode's list when they are freed
507  * (presumably in truncate).  That requires careful auditing of all
508  * filesystems (do it inside bforget()).  It could also be done by bringing
509  * b_inode back.
510  */
511
512 /*
513  * The buffer's backing address_space's private_lock must be held
514  */
515 static void __remove_assoc_queue(struct buffer_head *bh)
516 {
517         list_del_init(&bh->b_assoc_buffers);
518         WARN_ON(!bh->b_assoc_map);
519         if (buffer_write_io_error(bh))
520                 set_bit(AS_EIO, &bh->b_assoc_map->flags);
521         bh->b_assoc_map = NULL;
522 }
523
524 int inode_has_buffers(struct inode *inode)
525 {
526         return !list_empty(&inode->i_data.private_list);
527 }
528
529 /*
530  * osync is designed to support O_SYNC io.  It waits synchronously for
531  * all already-submitted IO to complete, but does not queue any new
532  * writes to the disk.
533  *
534  * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
535  * you dirty the buffers, and then use osync_inode_buffers to wait for
536  * completion.  Any other dirty buffers which are not yet queued for
537  * write will not be flushed to disk by the osync.
538  */
539 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
540 {
541         struct buffer_head *bh;
542         struct list_head *p;
543         int err = 0;
544
545         spin_lock(lock);
546 repeat:
547         list_for_each_prev(p, list) {
548                 bh = BH_ENTRY(p);
549                 if (buffer_locked(bh)) {
550                         get_bh(bh);
551                         spin_unlock(lock);
552                         wait_on_buffer(bh);
553                         if (!buffer_uptodate(bh))
554                                 err = -EIO;
555                         brelse(bh);
556                         spin_lock(lock);
557                         goto repeat;
558                 }
559         }
560         spin_unlock(lock);
561         return err;
562 }
563
564 static void do_thaw_one(struct super_block *sb, void *unused)
565 {
566         char b[BDEVNAME_SIZE];
567         while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
568                 printk(KERN_WARNING "Emergency Thaw on %s\n",
569                        bdevname(sb->s_bdev, b));
570 }
571
572 static void do_thaw_all(struct work_struct *work)
573 {
574         iterate_supers(do_thaw_one, NULL);
575         kfree(work);
576         printk(KERN_WARNING "Emergency Thaw complete\n");
577 }
578
579 /**
580  * emergency_thaw_all -- forcibly thaw every frozen filesystem
581  *
582  * Used for emergency unfreeze of all filesystems via SysRq
583  */
584 void emergency_thaw_all(void)
585 {
586         struct work_struct *work;
587
588         work = kmalloc(sizeof(*work), GFP_ATOMIC);
589         if (work) {
590                 INIT_WORK(work, do_thaw_all);
591                 schedule_work(work);
592         }
593 }
594
595 /**
596  * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
597  * @mapping: the mapping which wants those buffers written
598  *
599  * Starts I/O against the buffers at mapping->private_list, and waits upon
600  * that I/O.
601  *
602  * Basically, this is a convenience function for fsync().
603  * @mapping is a file or directory which needs those buffers to be written for
604  * a successful fsync().
605  */
606 int sync_mapping_buffers(struct address_space *mapping)
607 {
608         struct address_space *buffer_mapping = mapping->assoc_mapping;
609
610         if (buffer_mapping == NULL || list_empty(&mapping->private_list))
611                 return 0;
612
613         return fsync_buffers_list(&buffer_mapping->private_lock,
614                                         &mapping->private_list);
615 }
616 EXPORT_SYMBOL(sync_mapping_buffers);
617
618 /*
619  * Called when we've recently written block `bblock', and it is known that
620  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
621  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
622  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
623  */
624 void write_boundary_block(struct block_device *bdev,
625                         sector_t bblock, unsigned blocksize)
626 {
627         struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
628         if (bh) {
629                 if (buffer_dirty(bh))
630                         ll_rw_block(WRITE, 1, &bh);
631                 put_bh(bh);
632         }
633 }
634
635 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
636 {
637         struct address_space *mapping = inode->i_mapping;
638         struct address_space *buffer_mapping = bh->b_page->mapping;
639
640         mark_buffer_dirty(bh);
641         if (!mapping->assoc_mapping) {
642                 mapping->assoc_mapping = buffer_mapping;
643         } else {
644                 BUG_ON(mapping->assoc_mapping != buffer_mapping);
645         }
646         if (!bh->b_assoc_map) {
647                 spin_lock(&buffer_mapping->private_lock);
648                 list_move_tail(&bh->b_assoc_buffers,
649                                 &mapping->private_list);
650                 bh->b_assoc_map = mapping;
651                 spin_unlock(&buffer_mapping->private_lock);
652         }
653 }
654 EXPORT_SYMBOL(mark_buffer_dirty_inode);
655
656 /*
657  * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
658  * dirty.
659  *
660  * If warn is true, then emit a warning if the page is not uptodate and has
661  * not been truncated.
662  */
663 static void __set_page_dirty(struct page *page,
664                 struct address_space *mapping, int warn)
665 {
666         unsigned long flags;
667
668         spin_lock_irqsave(&mapping->tree_lock, flags);
669         if (page->mapping) {    /* Race with truncate? */
670                 WARN_ON_ONCE(warn && !PageUptodate(page));
671                 account_page_dirtied(page, mapping);
672                 radix_tree_tag_set(&mapping->page_tree,
673                                 page_index(page), PAGECACHE_TAG_DIRTY);
674         }
675         spin_unlock_irqrestore(&mapping->tree_lock, flags);
676         __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
677 }
678
679 /*
680  * Add a page to the dirty page list.
681  *
682  * It is a sad fact of life that this function is called from several places
683  * deeply under spinlocking.  It may not sleep.
684  *
685  * If the page has buffers, the uptodate buffers are set dirty, to preserve
686  * dirty-state coherency between the page and the buffers.  It the page does
687  * not have buffers then when they are later attached they will all be set
688  * dirty.
689  *
690  * The buffers are dirtied before the page is dirtied.  There's a small race
691  * window in which a writepage caller may see the page cleanness but not the
692  * buffer dirtiness.  That's fine.  If this code were to set the page dirty
693  * before the buffers, a concurrent writepage caller could clear the page dirty
694  * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
695  * page on the dirty page list.
696  *
697  * We use private_lock to lock against try_to_free_buffers while using the
698  * page's buffer list.  Also use this to protect against clean buffers being
699  * added to the page after it was set dirty.
700  *
701  * FIXME: may need to call ->reservepage here as well.  That's rather up to the
702  * address_space though.
703  */
704 int __set_page_dirty_buffers(struct page *page)
705 {
706         int newly_dirty;
707         struct address_space *mapping = page_mapping(page);
708
709         if (unlikely(!mapping))
710                 return !TestSetPageDirty(page);
711
712         spin_lock(&mapping->private_lock);
713         if (page_has_buffers(page)) {
714                 struct buffer_head *head = page_buffers(page);
715                 struct buffer_head *bh = head;
716
717                 do {
718                         set_buffer_dirty(bh);
719                         bh = bh->b_this_page;
720                 } while (bh != head);
721         }
722         newly_dirty = !TestSetPageDirty(page);
723         spin_unlock(&mapping->private_lock);
724
725         if (newly_dirty)
726                 __set_page_dirty(page, mapping, 1);
727         return newly_dirty;
728 }
729 EXPORT_SYMBOL(__set_page_dirty_buffers);
730
731 /*
732  * Write out and wait upon a list of buffers.
733  *
734  * We have conflicting pressures: we want to make sure that all
735  * initially dirty buffers get waited on, but that any subsequently
736  * dirtied buffers don't.  After all, we don't want fsync to last
737  * forever if somebody is actively writing to the file.
738  *
739  * Do this in two main stages: first we copy dirty buffers to a
740  * temporary inode list, queueing the writes as we go.  Then we clean
741  * up, waiting for those writes to complete.
742  * 
743  * During this second stage, any subsequent updates to the file may end
744  * up refiling the buffer on the original inode's dirty list again, so
745  * there is a chance we will end up with a buffer queued for write but
746  * not yet completed on that list.  So, as a final cleanup we go through
747  * the osync code to catch these locked, dirty buffers without requeuing
748  * any newly dirty buffers for write.
749  */
750 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
751 {
752         struct buffer_head *bh;
753         struct list_head tmp;
754         struct address_space *mapping;
755         int err = 0, err2;
756         struct blk_plug plug;
757
758         INIT_LIST_HEAD(&tmp);
759         blk_start_plug(&plug);
760
761         spin_lock(lock);
762         while (!list_empty(list)) {
763                 bh = BH_ENTRY(list->next);
764                 mapping = bh->b_assoc_map;
765                 __remove_assoc_queue(bh);
766                 /* Avoid race with mark_buffer_dirty_inode() which does
767                  * a lockless check and we rely on seeing the dirty bit */
768                 smp_mb();
769                 if (buffer_dirty(bh) || buffer_locked(bh)) {
770                         list_add(&bh->b_assoc_buffers, &tmp);
771                         bh->b_assoc_map = mapping;
772                         if (buffer_dirty(bh)) {
773                                 get_bh(bh);
774                                 spin_unlock(lock);
775                                 /*
776                                  * Ensure any pending I/O completes so that
777                                  * write_dirty_buffer() actually writes the
778                                  * current contents - it is a noop if I/O is
779                                  * still in flight on potentially older
780                                  * contents.
781                                  */
782                                 write_dirty_buffer(bh, WRITE_SYNC);
783
784                                 /*
785                                  * Kick off IO for the previous mapping. Note
786                                  * that we will not run the very last mapping,
787                                  * wait_on_buffer() will do that for us
788                                  * through sync_buffer().
789                                  */
790                                 brelse(bh);
791                                 spin_lock(lock);
792                         }
793                 }
794         }
795
796         spin_unlock(lock);
797         blk_finish_plug(&plug);
798         spin_lock(lock);
799
800         while (!list_empty(&tmp)) {
801                 bh = BH_ENTRY(tmp.prev);
802                 get_bh(bh);
803                 mapping = bh->b_assoc_map;
804                 __remove_assoc_queue(bh);
805                 /* Avoid race with mark_buffer_dirty_inode() which does
806                  * a lockless check and we rely on seeing the dirty bit */
807                 smp_mb();
808                 if (buffer_dirty(bh)) {
809                         list_add(&bh->b_assoc_buffers,
810                                  &mapping->private_list);
811                         bh->b_assoc_map = mapping;
812                 }
813                 spin_unlock(lock);
814                 wait_on_buffer(bh);
815                 if (!buffer_uptodate(bh))
816                         err = -EIO;
817                 brelse(bh);
818                 spin_lock(lock);
819         }
820         
821         spin_unlock(lock);
822         err2 = osync_buffers_list(lock, list);
823         if (err)
824                 return err;
825         else
826                 return err2;
827 }
828
829 /*
830  * Invalidate any and all dirty buffers on a given inode.  We are
831  * probably unmounting the fs, but that doesn't mean we have already
832  * done a sync().  Just drop the buffers from the inode list.
833  *
834  * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
835  * assumes that all the buffers are against the blockdev.  Not true
836  * for reiserfs.
837  */
838 void invalidate_inode_buffers(struct inode *inode)
839 {
840         if (inode_has_buffers(inode)) {
841                 struct address_space *mapping = &inode->i_data;
842                 struct list_head *list = &mapping->private_list;
843                 struct address_space *buffer_mapping = mapping->assoc_mapping;
844
845                 spin_lock(&buffer_mapping->private_lock);
846                 while (!list_empty(list))
847                         __remove_assoc_queue(BH_ENTRY(list->next));
848                 spin_unlock(&buffer_mapping->private_lock);
849         }
850 }
851 EXPORT_SYMBOL(invalidate_inode_buffers);
852
853 /*
854  * Remove any clean buffers from the inode's buffer list.  This is called
855  * when we're trying to free the inode itself.  Those buffers can pin it.
856  *
857  * Returns true if all buffers were removed.
858  */
859 int remove_inode_buffers(struct inode *inode)
860 {
861         int ret = 1;
862
863         if (inode_has_buffers(inode)) {
864                 struct address_space *mapping = &inode->i_data;
865                 struct list_head *list = &mapping->private_list;
866                 struct address_space *buffer_mapping = mapping->assoc_mapping;
867
868                 spin_lock(&buffer_mapping->private_lock);
869                 while (!list_empty(list)) {
870                         struct buffer_head *bh = BH_ENTRY(list->next);
871                         if (buffer_dirty(bh)) {
872                                 ret = 0;
873                                 break;
874                         }
875                         __remove_assoc_queue(bh);
876                 }
877                 spin_unlock(&buffer_mapping->private_lock);
878         }
879         return ret;
880 }
881
882 /*
883  * Create the appropriate buffers when given a page for data area and
884  * the size of each buffer.. Use the bh->b_this_page linked list to
885  * follow the buffers created.  Return NULL if unable to create more
886  * buffers.
887  *
888  * The retry flag is used to differentiate async IO (paging, swapping)
889  * which may not fail from ordinary buffer allocations.
890  */
891 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
892                 int retry)
893 {
894         struct buffer_head *bh, *head;
895         long offset;
896
897 try_again:
898         head = NULL;
899         offset = PAGE_SIZE;
900         while ((offset -= size) >= 0) {
901                 bh = alloc_buffer_head(GFP_NOFS);
902                 if (!bh)
903                         goto no_grow;
904
905                 bh->b_bdev = NULL;
906                 bh->b_this_page = head;
907                 bh->b_blocknr = -1;
908                 head = bh;
909
910                 bh->b_state = 0;
911                 atomic_set(&bh->b_count, 0);
912                 bh->b_size = size;
913
914                 /* Link the buffer to its page */
915                 set_bh_page(bh, page, offset);
916
917                 init_buffer(bh, NULL, NULL);
918         }
919         return head;
920 /*
921  * In case anything failed, we just free everything we got.
922  */
923 no_grow:
924         if (head) {
925                 do {
926                         bh = head;
927                         head = head->b_this_page;
928                         free_buffer_head(bh);
929                 } while (head);
930         }
931
932         /*
933          * Return failure for non-async IO requests.  Async IO requests
934          * are not allowed to fail, so we have to wait until buffer heads
935          * become available.  But we don't want tasks sleeping with 
936          * partially complete buffers, so all were released above.
937          */
938         if (!retry)
939                 return NULL;
940
941         /* We're _really_ low on memory. Now we just
942          * wait for old buffer heads to become free due to
943          * finishing IO.  Since this is an async request and
944          * the reserve list is empty, we're sure there are 
945          * async buffer heads in use.
946          */
947         free_more_memory();
948         goto try_again;
949 }
950 EXPORT_SYMBOL_GPL(alloc_page_buffers);
951
952 static inline void
953 link_dev_buffers(struct page *page, struct buffer_head *head)
954 {
955         struct buffer_head *bh, *tail;
956
957         bh = head;
958         do {
959                 tail = bh;
960                 bh = bh->b_this_page;
961         } while (bh);
962         tail->b_this_page = head;
963         attach_page_buffers(page, head);
964 }
965
966 /*
967  * Initialise the state of a blockdev page's buffers.
968  */ 
969 static sector_t
970 init_page_buffers(struct page *page, struct block_device *bdev,
971                         sector_t block, int size)
972 {
973         struct buffer_head *head = page_buffers(page);
974         struct buffer_head *bh = head;
975         int uptodate = PageUptodate(page);
976         sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode));
977
978         do {
979                 if (!buffer_mapped(bh)) {
980                         init_buffer(bh, NULL, NULL);
981                         bh->b_bdev = bdev;
982                         bh->b_blocknr = block;
983                         if (uptodate)
984                                 set_buffer_uptodate(bh);
985                         if (block < end_block)
986                                 set_buffer_mapped(bh);
987                 }
988                 block++;
989                 bh = bh->b_this_page;
990         } while (bh != head);
991
992         /*
993          * Caller needs to validate requested block against end of device.
994          */
995         return end_block;
996 }
997
998 /*
999  * Create the page-cache page that contains the requested block.
1000  *
1001  * This is used purely for blockdev mappings.
1002  */
1003 static int
1004 grow_dev_page(struct block_device *bdev, sector_t block,
1005                 pgoff_t index, int size, int sizebits)
1006 {
1007         struct inode *inode = bdev->bd_inode;
1008         struct page *page;
1009         struct buffer_head *bh;
1010         sector_t end_block;
1011         int ret = 0;            /* Will call free_more_memory() */
1012
1013         page = find_or_create_page(inode->i_mapping, index,
1014                 (mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS)|__GFP_MOVABLE);
1015         if (!page)
1016                 return ret;
1017
1018         BUG_ON(!PageLocked(page));
1019
1020         if (page_has_buffers(page)) {
1021                 bh = page_buffers(page);
1022                 if (bh->b_size == size) {
1023                         end_block = init_page_buffers(page, bdev,
1024                                                 (sector_t)index << sizebits,
1025                                                 size);
1026                         goto done;
1027                 }
1028                 if (!try_to_free_buffers(page))
1029                         goto failed;
1030         }
1031
1032         /*
1033          * Allocate some buffers for this page
1034          */
1035         bh = alloc_page_buffers(page, size, 0);
1036         if (!bh)
1037                 goto failed;
1038
1039         /*
1040          * Link the page to the buffers and initialise them.  Take the
1041          * lock to be atomic wrt __find_get_block(), which does not
1042          * run under the page lock.
1043          */
1044         spin_lock(&inode->i_mapping->private_lock);
1045         link_dev_buffers(page, bh);
1046         end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits,
1047                         size);
1048         spin_unlock(&inode->i_mapping->private_lock);
1049 done:
1050         ret = (block < end_block) ? 1 : -ENXIO;
1051 failed:
1052         unlock_page(page);
1053         page_cache_release(page);
1054         return ret;
1055 }
1056
1057 /*
1058  * Create buffers for the specified block device block's page.  If
1059  * that page was dirty, the buffers are set dirty also.
1060  */
1061 static int
1062 grow_buffers(struct block_device *bdev, sector_t block, int size)
1063 {
1064         pgoff_t index;
1065         int sizebits;
1066
1067         sizebits = -1;
1068         do {
1069                 sizebits++;
1070         } while ((size << sizebits) < PAGE_SIZE);
1071
1072         index = block >> sizebits;
1073
1074         /*
1075          * Check for a block which wants to lie outside our maximum possible
1076          * pagecache index.  (this comparison is done using sector_t types).
1077          */
1078         if (unlikely(index != block >> sizebits)) {
1079                 char b[BDEVNAME_SIZE];
1080
1081                 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1082                         "device %s\n",
1083                         __func__, (unsigned long long)block,
1084                         bdevname(bdev, b));
1085                 return -EIO;
1086         }
1087
1088         /* Create a page with the proper size buffers.. */
1089         return grow_dev_page(bdev, block, index, size, sizebits);
1090 }
1091
1092 static struct buffer_head *
1093 __getblk_slow(struct block_device *bdev, sector_t block, int size)
1094 {
1095         /* Size must be multiple of hard sectorsize */
1096         if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1097                         (size < 512 || size > PAGE_SIZE))) {
1098                 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1099                                         size);
1100                 printk(KERN_ERR "logical block size: %d\n",
1101                                         bdev_logical_block_size(bdev));
1102
1103                 dump_stack();
1104                 return NULL;
1105         }
1106
1107         for (;;) {
1108                 struct buffer_head *bh;
1109                 int ret;
1110
1111                 bh = __find_get_block(bdev, block, size);
1112                 if (bh)
1113                         return bh;
1114
1115                 ret = grow_buffers(bdev, block, size);
1116                 if (ret < 0)
1117                         return NULL;
1118                 if (ret == 0)
1119                         free_more_memory();
1120         }
1121 }
1122
1123 /*
1124  * The relationship between dirty buffers and dirty pages:
1125  *
1126  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1127  * the page is tagged dirty in its radix tree.
1128  *
1129  * At all times, the dirtiness of the buffers represents the dirtiness of
1130  * subsections of the page.  If the page has buffers, the page dirty bit is
1131  * merely a hint about the true dirty state.
1132  *
1133  * When a page is set dirty in its entirety, all its buffers are marked dirty
1134  * (if the page has buffers).
1135  *
1136  * When a buffer is marked dirty, its page is dirtied, but the page's other
1137  * buffers are not.
1138  *
1139  * Also.  When blockdev buffers are explicitly read with bread(), they
1140  * individually become uptodate.  But their backing page remains not
1141  * uptodate - even if all of its buffers are uptodate.  A subsequent
1142  * block_read_full_page() against that page will discover all the uptodate
1143  * buffers, will set the page uptodate and will perform no I/O.
1144  */
1145
1146 /**
1147  * mark_buffer_dirty - mark a buffer_head as needing writeout
1148  * @bh: the buffer_head to mark dirty
1149  *
1150  * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1151  * backing page dirty, then tag the page as dirty in its address_space's radix
1152  * tree and then attach the address_space's inode to its superblock's dirty
1153  * inode list.
1154  *
1155  * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1156  * mapping->tree_lock and mapping->host->i_lock.
1157  */
1158 void mark_buffer_dirty(struct buffer_head *bh)
1159 {
1160         WARN_ON_ONCE(!buffer_uptodate(bh));
1161
1162         /*
1163          * Very *carefully* optimize the it-is-already-dirty case.
1164          *
1165          * Don't let the final "is it dirty" escape to before we
1166          * perhaps modified the buffer.
1167          */
1168         if (buffer_dirty(bh)) {
1169                 smp_mb();
1170                 if (buffer_dirty(bh))
1171                         return;
1172         }
1173
1174         if (!test_set_buffer_dirty(bh)) {
1175                 struct page *page = bh->b_page;
1176                 if (!TestSetPageDirty(page)) {
1177                         struct address_space *mapping = page_mapping(page);
1178                         if (mapping)
1179                                 __set_page_dirty(page, mapping, 0);
1180                 }
1181         }
1182 }
1183 EXPORT_SYMBOL(mark_buffer_dirty);
1184
1185 /*
1186  * Decrement a buffer_head's reference count.  If all buffers against a page
1187  * have zero reference count, are clean and unlocked, and if the page is clean
1188  * and unlocked then try_to_free_buffers() may strip the buffers from the page
1189  * in preparation for freeing it (sometimes, rarely, buffers are removed from
1190  * a page but it ends up not being freed, and buffers may later be reattached).
1191  */
1192 void __brelse(struct buffer_head * buf)
1193 {
1194         if (atomic_read(&buf->b_count)) {
1195                 put_bh(buf);
1196                 return;
1197         }
1198         WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1199 }
1200 EXPORT_SYMBOL(__brelse);
1201
1202 /*
1203  * bforget() is like brelse(), except it discards any
1204  * potentially dirty data.
1205  */
1206 void __bforget(struct buffer_head *bh)
1207 {
1208         clear_buffer_dirty(bh);
1209         if (bh->b_assoc_map) {
1210                 struct address_space *buffer_mapping = bh->b_page->mapping;
1211
1212                 spin_lock(&buffer_mapping->private_lock);
1213                 list_del_init(&bh->b_assoc_buffers);
1214                 bh->b_assoc_map = NULL;
1215                 spin_unlock(&buffer_mapping->private_lock);
1216         }
1217         __brelse(bh);
1218 }
1219 EXPORT_SYMBOL(__bforget);
1220
1221 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1222 {
1223         lock_buffer(bh);
1224         if (buffer_uptodate(bh)) {
1225                 unlock_buffer(bh);
1226                 return bh;
1227         } else {
1228                 get_bh(bh);
1229                 bh->b_end_io = end_buffer_read_sync;
1230                 submit_bh(READ, bh);
1231                 wait_on_buffer(bh);
1232                 if (buffer_uptodate(bh))
1233                         return bh;
1234         }
1235         brelse(bh);
1236         return NULL;
1237 }
1238
1239 /*
1240  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1241  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1242  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1243  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1244  * CPU's LRUs at the same time.
1245  *
1246  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1247  * sb_find_get_block().
1248  *
1249  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1250  * a local interrupt disable for that.
1251  */
1252
1253 #define BH_LRU_SIZE     8
1254
1255 struct bh_lru {
1256         struct buffer_head *bhs[BH_LRU_SIZE];
1257 };
1258
1259 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1260
1261 #ifdef CONFIG_SMP
1262 #define bh_lru_lock()   local_irq_disable()
1263 #define bh_lru_unlock() local_irq_enable()
1264 #else
1265 #define bh_lru_lock()   preempt_disable()
1266 #define bh_lru_unlock() preempt_enable()
1267 #endif
1268
1269 static inline void check_irqs_on(void)
1270 {
1271 #ifdef irqs_disabled
1272         BUG_ON(irqs_disabled());
1273 #endif
1274 }
1275
1276 /*
1277  * The LRU management algorithm is dopey-but-simple.  Sorry.
1278  */
1279 static void bh_lru_install(struct buffer_head *bh)
1280 {
1281         struct buffer_head *evictee = NULL;
1282
1283         check_irqs_on();
1284         bh_lru_lock();
1285         if (__this_cpu_read(bh_lrus.bhs[0]) != bh) {
1286                 struct buffer_head *bhs[BH_LRU_SIZE];
1287                 int in;
1288                 int out = 0;
1289
1290                 get_bh(bh);
1291                 bhs[out++] = bh;
1292                 for (in = 0; in < BH_LRU_SIZE; in++) {
1293                         struct buffer_head *bh2 =
1294                                 __this_cpu_read(bh_lrus.bhs[in]);
1295
1296                         if (bh2 == bh) {
1297                                 __brelse(bh2);
1298                         } else {
1299                                 if (out >= BH_LRU_SIZE) {
1300                                         BUG_ON(evictee != NULL);
1301                                         evictee = bh2;
1302                                 } else {
1303                                         bhs[out++] = bh2;
1304                                 }
1305                         }
1306                 }
1307                 while (out < BH_LRU_SIZE)
1308                         bhs[out++] = NULL;
1309                 memcpy(__this_cpu_ptr(&bh_lrus.bhs), bhs, sizeof(bhs));
1310         }
1311         bh_lru_unlock();
1312
1313         if (evictee)
1314                 __brelse(evictee);
1315 }
1316
1317 /*
1318  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1319  */
1320 static struct buffer_head *
1321 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1322 {
1323         struct buffer_head *ret = NULL;
1324         unsigned int i;
1325
1326         check_irqs_on();
1327         bh_lru_lock();
1328         for (i = 0; i < BH_LRU_SIZE; i++) {
1329                 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1330
1331                 if (bh && bh->b_bdev == bdev &&
1332                                 bh->b_blocknr == block && bh->b_size == size) {
1333                         if (i) {
1334                                 while (i) {
1335                                         __this_cpu_write(bh_lrus.bhs[i],
1336                                                 __this_cpu_read(bh_lrus.bhs[i - 1]));
1337                                         i--;
1338                                 }
1339                                 __this_cpu_write(bh_lrus.bhs[0], bh);
1340                         }
1341                         get_bh(bh);
1342                         ret = bh;
1343                         break;
1344                 }
1345         }
1346         bh_lru_unlock();
1347         return ret;
1348 }
1349
1350 /*
1351  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1352  * it in the LRU and mark it as accessed.  If it is not present then return
1353  * NULL
1354  */
1355 struct buffer_head *
1356 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1357 {
1358         struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1359
1360         if (bh == NULL) {
1361                 bh = __find_get_block_slow(bdev, block);
1362                 if (bh)
1363                         bh_lru_install(bh);
1364         }
1365         if (bh)
1366                 touch_buffer(bh);
1367         return bh;
1368 }
1369 EXPORT_SYMBOL(__find_get_block);
1370
1371 /*
1372  * __getblk will locate (and, if necessary, create) the buffer_head
1373  * which corresponds to the passed block_device, block and size. The
1374  * returned buffer has its reference count incremented.
1375  *
1376  * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1377  * attempt is failing.  FIXME, perhaps?
1378  */
1379 struct buffer_head *
1380 __getblk(struct block_device *bdev, sector_t block, unsigned size)
1381 {
1382         struct buffer_head *bh = __find_get_block(bdev, block, size);
1383
1384         might_sleep();
1385         if (bh == NULL)
1386                 bh = __getblk_slow(bdev, block, size);
1387         return bh;
1388 }
1389 EXPORT_SYMBOL(__getblk);
1390
1391 /*
1392  * Do async read-ahead on a buffer..
1393  */
1394 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1395 {
1396         struct buffer_head *bh = __getblk(bdev, block, size);
1397         if (likely(bh)) {
1398                 ll_rw_block(READA, 1, &bh);
1399                 brelse(bh);
1400         }
1401 }
1402 EXPORT_SYMBOL(__breadahead);
1403
1404 /**
1405  *  __bread() - reads a specified block and returns the bh
1406  *  @bdev: the block_device to read from
1407  *  @block: number of block
1408  *  @size: size (in bytes) to read
1409  * 
1410  *  Reads a specified block, and returns buffer head that contains it.
1411  *  It returns NULL if the block was unreadable.
1412  */
1413 struct buffer_head *
1414 __bread(struct block_device *bdev, sector_t block, unsigned size)
1415 {
1416         struct buffer_head *bh = __getblk(bdev, block, size);
1417
1418         if (likely(bh) && !buffer_uptodate(bh))
1419                 bh = __bread_slow(bh);
1420         return bh;
1421 }
1422 EXPORT_SYMBOL(__bread);
1423
1424 /*
1425  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1426  * This doesn't race because it runs in each cpu either in irq
1427  * or with preempt disabled.
1428  */
1429 static void invalidate_bh_lru(void *arg)
1430 {
1431         struct bh_lru *b = &get_cpu_var(bh_lrus);
1432         int i;
1433
1434         for (i = 0; i < BH_LRU_SIZE; i++) {
1435                 brelse(b->bhs[i]);
1436                 b->bhs[i] = NULL;
1437         }
1438         put_cpu_var(bh_lrus);
1439 }
1440         
1441 void invalidate_bh_lrus(void)
1442 {
1443         on_each_cpu(invalidate_bh_lru, NULL, 1);
1444 }
1445 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1446
1447 void set_bh_page(struct buffer_head *bh,
1448                 struct page *page, unsigned long offset)
1449 {
1450         bh->b_page = page;
1451         BUG_ON(offset >= PAGE_SIZE);
1452         if (PageHighMem(page))
1453                 /*
1454                  * This catches illegal uses and preserves the offset:
1455                  */
1456                 bh->b_data = (char *)(0 + offset);
1457         else
1458                 bh->b_data = page_address(page) + offset;
1459 }
1460 EXPORT_SYMBOL(set_bh_page);
1461
1462 /*
1463  * Called when truncating a buffer on a page completely.
1464  */
1465 static void discard_buffer(struct buffer_head * bh)
1466 {
1467         lock_buffer(bh);
1468         clear_buffer_dirty(bh);
1469         bh->b_bdev = NULL;
1470         clear_buffer_mapped(bh);
1471         clear_buffer_req(bh);
1472         clear_buffer_new(bh);
1473         clear_buffer_delay(bh);
1474         clear_buffer_unwritten(bh);
1475         unlock_buffer(bh);
1476 }
1477
1478 /**
1479  * block_invalidatepage - invalidate part or all of a buffer-backed page
1480  *
1481  * @page: the page which is affected
1482  * @offset: the index of the truncation point
1483  *
1484  * block_invalidatepage() is called when all or part of the page has become
1485  * invalidated by a truncate operation.
1486  *
1487  * block_invalidatepage() does not have to release all buffers, but it must
1488  * ensure that no dirty buffer is left outside @offset and that no I/O
1489  * is underway against any of the blocks which are outside the truncation
1490  * point.  Because the caller is about to free (and possibly reuse) those
1491  * blocks on-disk.
1492  */
1493 void block_invalidatepage(struct page *page, unsigned long offset)
1494 {
1495         struct buffer_head *head, *bh, *next;
1496         unsigned int curr_off = 0;
1497
1498         BUG_ON(!PageLocked(page));
1499         if (!page_has_buffers(page))
1500                 goto out;
1501
1502         head = page_buffers(page);
1503         bh = head;
1504         do {
1505                 unsigned int next_off = curr_off + bh->b_size;
1506                 next = bh->b_this_page;
1507
1508                 /*
1509                  * is this block fully invalidated?
1510                  */
1511                 if (offset <= curr_off)
1512                         discard_buffer(bh);
1513                 curr_off = next_off;
1514                 bh = next;
1515         } while (bh != head);
1516
1517         /*
1518          * We release buffers only if the entire page is being invalidated.
1519          * The get_block cached value has been unconditionally invalidated,
1520          * so real IO is not possible anymore.
1521          */
1522         if (offset == 0)
1523                 try_to_release_page(page, 0);
1524 out:
1525         return;
1526 }
1527 EXPORT_SYMBOL(block_invalidatepage);
1528
1529 /*
1530  * We attach and possibly dirty the buffers atomically wrt
1531  * __set_page_dirty_buffers() via private_lock.  try_to_free_buffers
1532  * is already excluded via the page lock.
1533  */
1534 void create_empty_buffers(struct page *page,
1535                         unsigned long blocksize, unsigned long b_state)
1536 {
1537         struct buffer_head *bh, *head, *tail;
1538
1539         head = alloc_page_buffers(page, blocksize, 1);
1540         bh = head;
1541         do {
1542                 bh->b_state |= b_state;
1543                 tail = bh;
1544                 bh = bh->b_this_page;
1545         } while (bh);
1546         tail->b_this_page = head;
1547
1548         spin_lock(&page->mapping->private_lock);
1549         if (PageUptodate(page) || PageDirty(page)) {
1550                 bh = head;
1551                 do {
1552                         if (PageDirty(page))
1553                                 set_buffer_dirty(bh);
1554                         if (PageUptodate(page))
1555                                 set_buffer_uptodate(bh);
1556                         bh = bh->b_this_page;
1557                 } while (bh != head);
1558         }
1559         attach_page_buffers(page, head);
1560         spin_unlock(&page->mapping->private_lock);
1561 }
1562 EXPORT_SYMBOL(create_empty_buffers);
1563
1564 /*
1565  * We are taking a block for data and we don't want any output from any
1566  * buffer-cache aliases starting from return from that function and
1567  * until the moment when something will explicitly mark the buffer
1568  * dirty (hopefully that will not happen until we will free that block ;-)
1569  * We don't even need to mark it not-uptodate - nobody can expect
1570  * anything from a newly allocated buffer anyway. We used to used
1571  * unmap_buffer() for such invalidation, but that was wrong. We definitely
1572  * don't want to mark the alias unmapped, for example - it would confuse
1573  * anyone who might pick it with bread() afterwards...
1574  *
1575  * Also..  Note that bforget() doesn't lock the buffer.  So there can
1576  * be writeout I/O going on against recently-freed buffers.  We don't
1577  * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1578  * only if we really need to.  That happens here.
1579  */
1580 void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1581 {
1582         struct buffer_head *old_bh;
1583
1584         might_sleep();
1585
1586         old_bh = __find_get_block_slow(bdev, block);
1587         if (old_bh) {
1588                 clear_buffer_dirty(old_bh);
1589                 wait_on_buffer(old_bh);
1590                 clear_buffer_req(old_bh);
1591                 __brelse(old_bh);
1592         }
1593 }
1594 EXPORT_SYMBOL(unmap_underlying_metadata);
1595
1596 /*
1597  * NOTE! All mapped/uptodate combinations are valid:
1598  *
1599  *      Mapped  Uptodate        Meaning
1600  *
1601  *      No      No              "unknown" - must do get_block()
1602  *      No      Yes             "hole" - zero-filled
1603  *      Yes     No              "allocated" - allocated on disk, not read in
1604  *      Yes     Yes             "valid" - allocated and up-to-date in memory.
1605  *
1606  * "Dirty" is valid only with the last case (mapped+uptodate).
1607  */
1608
1609 /*
1610  * While block_write_full_page is writing back the dirty buffers under
1611  * the page lock, whoever dirtied the buffers may decide to clean them
1612  * again at any time.  We handle that by only looking at the buffer
1613  * state inside lock_buffer().
1614  *
1615  * If block_write_full_page() is called for regular writeback
1616  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1617  * locked buffer.   This only can happen if someone has written the buffer
1618  * directly, with submit_bh().  At the address_space level PageWriteback
1619  * prevents this contention from occurring.
1620  *
1621  * If block_write_full_page() is called with wbc->sync_mode ==
1622  * WB_SYNC_ALL, the writes are posted using WRITE_SYNC; this
1623  * causes the writes to be flagged as synchronous writes.
1624  */
1625 static int __block_write_full_page(struct inode *inode, struct page *page,
1626                         get_block_t *get_block, struct writeback_control *wbc,
1627                         bh_end_io_t *handler)
1628 {
1629         int err;
1630         sector_t block;
1631         sector_t last_block;
1632         struct buffer_head *bh, *head;
1633         const unsigned blocksize = 1 << inode->i_blkbits;
1634         int nr_underway = 0;
1635         int write_op = (wbc->sync_mode == WB_SYNC_ALL ?
1636                         WRITE_SYNC : WRITE);
1637
1638         BUG_ON(!PageLocked(page));
1639
1640         last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
1641
1642         if (!page_has_buffers(page)) {
1643                 create_empty_buffers(page, blocksize,
1644                                         (1 << BH_Dirty)|(1 << BH_Uptodate));
1645         }
1646
1647         /*
1648          * Be very careful.  We have no exclusion from __set_page_dirty_buffers
1649          * here, and the (potentially unmapped) buffers may become dirty at
1650          * any time.  If a buffer becomes dirty here after we've inspected it
1651          * then we just miss that fact, and the page stays dirty.
1652          *
1653          * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1654          * handle that here by just cleaning them.
1655          */
1656
1657         block = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1658         head = page_buffers(page);
1659         bh = head;
1660
1661         /*
1662          * Get all the dirty buffers mapped to disk addresses and
1663          * handle any aliases from the underlying blockdev's mapping.
1664          */
1665         do {
1666                 if (block > last_block) {
1667                         /*
1668                          * mapped buffers outside i_size will occur, because
1669                          * this page can be outside i_size when there is a
1670                          * truncate in progress.
1671                          */
1672                         /*
1673                          * The buffer was zeroed by block_write_full_page()
1674                          */
1675                         clear_buffer_dirty(bh);
1676                         set_buffer_uptodate(bh);
1677                 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1678                            buffer_dirty(bh)) {
1679                         WARN_ON(bh->b_size != blocksize);
1680                         err = get_block(inode, block, bh, 1);
1681                         if (err)
1682                                 goto recover;
1683                         clear_buffer_delay(bh);
1684                         if (buffer_new(bh)) {
1685                                 /* blockdev mappings never come here */
1686                                 clear_buffer_new(bh);
1687                                 unmap_underlying_metadata(bh->b_bdev,
1688                                                         bh->b_blocknr);
1689                         }
1690                 }
1691                 bh = bh->b_this_page;
1692                 block++;
1693         } while (bh != head);
1694
1695         do {
1696                 if (!buffer_mapped(bh))
1697                         continue;
1698                 /*
1699                  * If it's a fully non-blocking write attempt and we cannot
1700                  * lock the buffer then redirty the page.  Note that this can
1701                  * potentially cause a busy-wait loop from writeback threads
1702                  * and kswapd activity, but those code paths have their own
1703                  * higher-level throttling.
1704                  */
1705                 if (wbc->sync_mode != WB_SYNC_NONE) {
1706                         lock_buffer(bh);
1707                 } else if (!trylock_buffer(bh)) {
1708                         redirty_page_for_writepage(wbc, page);
1709                         continue;
1710                 }
1711                 if (test_clear_buffer_dirty(bh)) {
1712                         mark_buffer_async_write_endio(bh, handler);
1713                 } else {
1714                         unlock_buffer(bh);
1715                 }
1716         } while ((bh = bh->b_this_page) != head);
1717
1718         /*
1719          * The page and its buffers are protected by PageWriteback(), so we can
1720          * drop the bh refcounts early.
1721          */
1722         BUG_ON(PageWriteback(page));
1723         set_page_writeback(page);
1724
1725         do {
1726                 struct buffer_head *next = bh->b_this_page;
1727                 if (buffer_async_write(bh)) {
1728                         submit_bh(write_op, bh);
1729                         nr_underway++;
1730                 }
1731                 bh = next;
1732         } while (bh != head);
1733         unlock_page(page);
1734
1735         err = 0;
1736 done:
1737         if (nr_underway == 0) {
1738                 /*
1739                  * The page was marked dirty, but the buffers were
1740                  * clean.  Someone wrote them back by hand with
1741                  * ll_rw_block/submit_bh.  A rare case.
1742                  */
1743                 end_page_writeback(page);
1744
1745                 /*
1746                  * The page and buffer_heads can be released at any time from
1747                  * here on.
1748                  */
1749         }
1750         return err;
1751
1752 recover:
1753         /*
1754          * ENOSPC, or some other error.  We may already have added some
1755          * blocks to the file, so we need to write these out to avoid
1756          * exposing stale data.
1757          * The page is currently locked and not marked for writeback
1758          */
1759         bh = head;
1760         /* Recovery: lock and submit the mapped buffers */
1761         do {
1762                 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1763                     !buffer_delay(bh)) {
1764                         lock_buffer(bh);
1765                         mark_buffer_async_write_endio(bh, handler);
1766                 } else {
1767                         /*
1768                          * The buffer may have been set dirty during
1769                          * attachment to a dirty page.
1770                          */
1771                         clear_buffer_dirty(bh);
1772                 }
1773         } while ((bh = bh->b_this_page) != head);
1774         SetPageError(page);
1775         BUG_ON(PageWriteback(page));
1776         mapping_set_error(page->mapping, err);
1777         set_page_writeback(page);
1778         do {
1779                 struct buffer_head *next = bh->b_this_page;
1780                 if (buffer_async_write(bh)) {
1781                         clear_buffer_dirty(bh);
1782                         submit_bh(write_op, bh);
1783                         nr_underway++;
1784                 }
1785                 bh = next;
1786         } while (bh != head);
1787         unlock_page(page);
1788         goto done;
1789 }
1790
1791 /*
1792  * If a page has any new buffers, zero them out here, and mark them uptodate
1793  * and dirty so they'll be written out (in order to prevent uninitialised
1794  * block data from leaking). And clear the new bit.
1795  */
1796 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1797 {
1798         unsigned int block_start, block_end;
1799         struct buffer_head *head, *bh;
1800
1801         BUG_ON(!PageLocked(page));
1802         if (!page_has_buffers(page))
1803                 return;
1804
1805         bh = head = page_buffers(page);
1806         block_start = 0;
1807         do {
1808                 block_end = block_start + bh->b_size;
1809
1810                 if (buffer_new(bh)) {
1811                         if (block_end > from && block_start < to) {
1812                                 if (!PageUptodate(page)) {
1813                                         unsigned start, size;
1814
1815                                         start = max(from, block_start);
1816                                         size = min(to, block_end) - start;
1817
1818                                         zero_user(page, start, size);
1819                                         set_buffer_uptodate(bh);
1820                                 }
1821
1822                                 clear_buffer_new(bh);
1823                                 mark_buffer_dirty(bh);
1824                         }
1825                 }
1826
1827                 block_start = block_end;
1828                 bh = bh->b_this_page;
1829         } while (bh != head);
1830 }
1831 EXPORT_SYMBOL(page_zero_new_buffers);
1832
1833 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
1834                 get_block_t *get_block)
1835 {
1836         unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1837         unsigned to = from + len;
1838         struct inode *inode = page->mapping->host;
1839         unsigned block_start, block_end;
1840         sector_t block;
1841         int err = 0;
1842         unsigned blocksize, bbits;
1843         struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1844
1845         BUG_ON(!PageLocked(page));
1846         BUG_ON(from > PAGE_CACHE_SIZE);
1847         BUG_ON(to > PAGE_CACHE_SIZE);
1848         BUG_ON(from > to);
1849
1850         blocksize = 1 << inode->i_blkbits;
1851         if (!page_has_buffers(page))
1852                 create_empty_buffers(page, blocksize, 0);
1853         head = page_buffers(page);
1854
1855         bbits = inode->i_blkbits;
1856         block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1857
1858         for(bh = head, block_start = 0; bh != head || !block_start;
1859             block++, block_start=block_end, bh = bh->b_this_page) {
1860                 block_end = block_start + blocksize;
1861                 if (block_end <= from || block_start >= to) {
1862                         if (PageUptodate(page)) {
1863                                 if (!buffer_uptodate(bh))
1864                                         set_buffer_uptodate(bh);
1865                         }
1866                         continue;
1867                 }
1868                 if (buffer_new(bh))
1869                         clear_buffer_new(bh);
1870                 if (!buffer_mapped(bh)) {
1871                         WARN_ON(bh->b_size != blocksize);
1872                         err = get_block(inode, block, bh, 1);
1873                         if (err)
1874                                 break;
1875                         if (buffer_new(bh)) {
1876                                 unmap_underlying_metadata(bh->b_bdev,
1877                                                         bh->b_blocknr);
1878                                 if (PageUptodate(page)) {
1879                                         clear_buffer_new(bh);
1880                                         set_buffer_uptodate(bh);
1881                                         mark_buffer_dirty(bh);
1882                                         continue;
1883                                 }
1884                                 if (block_end > to || block_start < from)
1885                                         zero_user_segments(page,
1886                                                 to, block_end,
1887                                                 block_start, from);
1888                                 continue;
1889                         }
1890                 }
1891                 if (PageUptodate(page)) {
1892                         if (!buffer_uptodate(bh))
1893                                 set_buffer_uptodate(bh);
1894                         continue; 
1895                 }
1896                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1897                     !buffer_unwritten(bh) &&
1898                      (block_start < from || block_end > to)) {
1899                         ll_rw_block(READ, 1, &bh);
1900                         *wait_bh++=bh;
1901                 }
1902         }
1903         /*
1904          * If we issued read requests - let them complete.
1905          */
1906         while(wait_bh > wait) {
1907                 wait_on_buffer(*--wait_bh);
1908                 if (!buffer_uptodate(*wait_bh))
1909                         err = -EIO;
1910         }
1911         if (unlikely(err))
1912                 page_zero_new_buffers(page, from, to);
1913         return err;
1914 }
1915 EXPORT_SYMBOL(__block_write_begin);
1916
1917 static int __block_commit_write(struct inode *inode, struct page *page,
1918                 unsigned from, unsigned to)
1919 {
1920         unsigned block_start, block_end;
1921         int partial = 0;
1922         unsigned blocksize;
1923         struct buffer_head *bh, *head;
1924
1925         blocksize = 1 << inode->i_blkbits;
1926
1927         for(bh = head = page_buffers(page), block_start = 0;
1928             bh != head || !block_start;
1929             block_start=block_end, bh = bh->b_this_page) {
1930                 block_end = block_start + blocksize;
1931                 if (block_end <= from || block_start >= to) {
1932                         if (!buffer_uptodate(bh))
1933                                 partial = 1;
1934                 } else {
1935                         set_buffer_uptodate(bh);
1936                         mark_buffer_dirty(bh);
1937                 }
1938                 clear_buffer_new(bh);
1939         }
1940
1941         /*
1942          * If this is a partial write which happened to make all buffers
1943          * uptodate then we can optimize away a bogus readpage() for
1944          * the next read(). Here we 'discover' whether the page went
1945          * uptodate as a result of this (potentially partial) write.
1946          */
1947         if (!partial)
1948                 SetPageUptodate(page);
1949         return 0;
1950 }
1951
1952 /*
1953  * block_write_begin takes care of the basic task of block allocation and
1954  * bringing partial write blocks uptodate first.
1955  *
1956  * The filesystem needs to handle block truncation upon failure.
1957  */
1958 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
1959                 unsigned flags, struct page **pagep, get_block_t *get_block)
1960 {
1961         pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1962         struct page *page;
1963         int status;
1964
1965         page = grab_cache_page_write_begin(mapping, index, flags);
1966         if (!page)
1967                 return -ENOMEM;
1968
1969         status = __block_write_begin(page, pos, len, get_block);
1970         if (unlikely(status)) {
1971                 unlock_page(page);
1972                 page_cache_release(page);
1973                 page = NULL;
1974         }
1975
1976         *pagep = page;
1977         return status;
1978 }
1979 EXPORT_SYMBOL(block_write_begin);
1980
1981 int block_write_end(struct file *file, struct address_space *mapping,
1982                         loff_t pos, unsigned len, unsigned copied,
1983                         struct page *page, void *fsdata)
1984 {
1985         struct inode *inode = mapping->host;
1986         unsigned start;
1987
1988         start = pos & (PAGE_CACHE_SIZE - 1);
1989
1990         if (unlikely(copied < len)) {
1991                 /*
1992                  * The buffers that were written will now be uptodate, so we
1993                  * don't have to worry about a readpage reading them and
1994                  * overwriting a partial write. However if we have encountered
1995                  * a short write and only partially written into a buffer, it
1996                  * will not be marked uptodate, so a readpage might come in and
1997                  * destroy our partial write.
1998                  *
1999                  * Do the simplest thing, and just treat any short write to a
2000                  * non uptodate page as a zero-length write, and force the
2001                  * caller to redo the whole thing.
2002                  */
2003                 if (!PageUptodate(page))
2004                         copied = 0;
2005
2006                 page_zero_new_buffers(page, start+copied, start+len);
2007         }
2008         flush_dcache_page(page);
2009
2010         /* This could be a short (even 0-length) commit */
2011         __block_commit_write(inode, page, start, start+copied);
2012
2013         return copied;
2014 }
2015 EXPORT_SYMBOL(block_write_end);
2016
2017 int generic_write_end(struct file *file, struct address_space *mapping,
2018                         loff_t pos, unsigned len, unsigned copied,
2019                         struct page *page, void *fsdata)
2020 {
2021         struct inode *inode = mapping->host;
2022         loff_t old_size = inode->i_size;
2023         int i_size_changed = 0;
2024
2025         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2026
2027         /*
2028          * No need to use i_size_read() here, the i_size
2029          * cannot change under us because we hold i_mutex.
2030          *
2031          * But it's important to update i_size while still holding page lock:
2032          * page writeout could otherwise come in and zero beyond i_size.
2033          */
2034         if (pos+copied > inode->i_size) {
2035                 i_size_write(inode, pos+copied);
2036                 i_size_changed = 1;
2037         }
2038
2039         unlock_page(page);
2040         page_cache_release(page);
2041
2042         if (old_size < pos)
2043                 pagecache_isize_extended(inode, old_size, pos);
2044         /*
2045          * Don't mark the inode dirty under page lock. First, it unnecessarily
2046          * makes the holding time of page lock longer. Second, it forces lock
2047          * ordering of page lock and transaction start for journaling
2048          * filesystems.
2049          */
2050         if (i_size_changed)
2051                 mark_inode_dirty(inode);
2052
2053         return copied;
2054 }
2055 EXPORT_SYMBOL(generic_write_end);
2056
2057 /*
2058  * block_is_partially_uptodate checks whether buffers within a page are
2059  * uptodate or not.
2060  *
2061  * Returns true if all buffers which correspond to a file portion
2062  * we want to read are uptodate.
2063  */
2064 int block_is_partially_uptodate(struct page *page, read_descriptor_t *desc,
2065                                         unsigned long from)
2066 {
2067         struct inode *inode = page->mapping->host;
2068         unsigned block_start, block_end, blocksize;
2069         unsigned to;
2070         struct buffer_head *bh, *head;
2071         int ret = 1;
2072
2073         if (!page_has_buffers(page))
2074                 return 0;
2075
2076         blocksize = 1 << inode->i_blkbits;
2077         to = min_t(unsigned, PAGE_CACHE_SIZE - from, desc->count);
2078         to = from + to;
2079         if (from < blocksize && to > PAGE_CACHE_SIZE - blocksize)
2080                 return 0;
2081
2082         head = page_buffers(page);
2083         bh = head;
2084         block_start = 0;
2085         do {
2086                 block_end = block_start + blocksize;
2087                 if (block_end > from && block_start < to) {
2088                         if (!buffer_uptodate(bh)) {
2089                                 ret = 0;
2090                                 break;
2091                         }
2092                         if (block_end >= to)
2093                                 break;
2094                 }
2095                 block_start = block_end;
2096                 bh = bh->b_this_page;
2097         } while (bh != head);
2098
2099         return ret;
2100 }
2101 EXPORT_SYMBOL(block_is_partially_uptodate);
2102
2103 /*
2104  * Generic "read page" function for block devices that have the normal
2105  * get_block functionality. This is most of the block device filesystems.
2106  * Reads the page asynchronously --- the unlock_buffer() and
2107  * set/clear_buffer_uptodate() functions propagate buffer state into the
2108  * page struct once IO has completed.
2109  */
2110 int block_read_full_page(struct page *page, get_block_t *get_block)
2111 {
2112         struct inode *inode = page->mapping->host;
2113         sector_t iblock, lblock;
2114         struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2115         unsigned int blocksize;
2116         int nr, i;
2117         int fully_mapped = 1;
2118
2119         BUG_ON(!PageLocked(page));
2120         blocksize = 1 << inode->i_blkbits;
2121         if (!page_has_buffers(page))
2122                 create_empty_buffers(page, blocksize, 0);
2123         head = page_buffers(page);
2124
2125         iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2126         lblock = (i_size_read(inode)+blocksize-1) >> inode->i_blkbits;
2127         bh = head;
2128         nr = 0;
2129         i = 0;
2130
2131         do {
2132                 if (buffer_uptodate(bh))
2133                         continue;
2134
2135                 if (!buffer_mapped(bh)) {
2136                         int err = 0;
2137
2138                         fully_mapped = 0;
2139                         if (iblock < lblock) {
2140                                 WARN_ON(bh->b_size != blocksize);
2141                                 err = get_block(inode, iblock, bh, 0);
2142                                 if (err)
2143                                         SetPageError(page);
2144                         }
2145                         if (!buffer_mapped(bh)) {
2146                                 zero_user(page, i * blocksize, blocksize);
2147                                 if (!err)
2148                                         set_buffer_uptodate(bh);
2149                                 continue;
2150                         }
2151                         /*
2152                          * get_block() might have updated the buffer
2153                          * synchronously
2154                          */
2155                         if (buffer_uptodate(bh))
2156                                 continue;
2157                 }
2158                 arr[nr++] = bh;
2159         } while (i++, iblock++, (bh = bh->b_this_page) != head);
2160
2161         if (fully_mapped)
2162                 SetPageMappedToDisk(page);
2163
2164         if (!nr) {
2165                 /*
2166                  * All buffers are uptodate - we can set the page uptodate
2167                  * as well. But not if get_block() returned an error.
2168                  */
2169                 if (!PageError(page))
2170                         SetPageUptodate(page);
2171                 unlock_page(page);
2172                 return 0;
2173         }
2174
2175         /* Stage two: lock the buffers */
2176         for (i = 0; i < nr; i++) {
2177                 bh = arr[i];
2178                 lock_buffer(bh);
2179                 mark_buffer_async_read(bh);
2180         }
2181
2182         /*
2183          * Stage 3: start the IO.  Check for uptodateness
2184          * inside the buffer lock in case another process reading
2185          * the underlying blockdev brought it uptodate (the sct fix).
2186          */
2187         for (i = 0; i < nr; i++) {
2188                 bh = arr[i];
2189                 if (buffer_uptodate(bh))
2190                         end_buffer_async_read(bh, 1);
2191                 else
2192                         submit_bh(READ, bh);
2193         }
2194         return 0;
2195 }
2196 EXPORT_SYMBOL(block_read_full_page);
2197
2198 /* utility function for filesystems that need to do work on expanding
2199  * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2200  * deal with the hole.  
2201  */
2202 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2203 {
2204         struct address_space *mapping = inode->i_mapping;
2205         struct page *page;
2206         void *fsdata;
2207         int err;
2208
2209         err = inode_newsize_ok(inode, size);
2210         if (err)
2211                 goto out;
2212
2213         err = pagecache_write_begin(NULL, mapping, size, 0,
2214                                 AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND,
2215                                 &page, &fsdata);
2216         if (err)
2217                 goto out;
2218
2219         err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2220         BUG_ON(err > 0);
2221
2222 out:
2223         return err;
2224 }
2225 EXPORT_SYMBOL(generic_cont_expand_simple);
2226
2227 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2228                             loff_t pos, loff_t *bytes)
2229 {
2230         struct inode *inode = mapping->host;
2231         unsigned blocksize = 1 << inode->i_blkbits;
2232         struct page *page;
2233         void *fsdata;
2234         pgoff_t index, curidx;
2235         loff_t curpos;
2236         unsigned zerofrom, offset, len;
2237         int err = 0;
2238
2239         index = pos >> PAGE_CACHE_SHIFT;
2240         offset = pos & ~PAGE_CACHE_MASK;
2241
2242         while (index > (curidx = (curpos = *bytes)>>PAGE_CACHE_SHIFT)) {
2243                 zerofrom = curpos & ~PAGE_CACHE_MASK;
2244                 if (zerofrom & (blocksize-1)) {
2245                         *bytes |= (blocksize-1);
2246                         (*bytes)++;
2247                 }
2248                 len = PAGE_CACHE_SIZE - zerofrom;
2249
2250                 err = pagecache_write_begin(file, mapping, curpos, len,
2251                                                 AOP_FLAG_UNINTERRUPTIBLE,
2252                                                 &page, &fsdata);
2253                 if (err)
2254                         goto out;
2255                 zero_user(page, zerofrom, len);
2256                 err = pagecache_write_end(file, mapping, curpos, len, len,
2257                                                 page, fsdata);
2258                 if (err < 0)
2259                         goto out;
2260                 BUG_ON(err != len);
2261                 err = 0;
2262
2263                 balance_dirty_pages_ratelimited(mapping);
2264
2265                 if (unlikely(fatal_signal_pending(current))) {
2266                         err = -EINTR;
2267                         goto out;
2268                 }
2269         }
2270
2271         /* page covers the boundary, find the boundary offset */
2272         if (index == curidx) {
2273                 zerofrom = curpos & ~PAGE_CACHE_MASK;
2274                 /* if we will expand the thing last block will be filled */
2275                 if (offset <= zerofrom) {
2276                         goto out;
2277                 }
2278                 if (zerofrom & (blocksize-1)) {
2279                         *bytes |= (blocksize-1);
2280                         (*bytes)++;
2281                 }
2282                 len = offset - zerofrom;
2283
2284                 err = pagecache_write_begin(file, mapping, curpos, len,
2285                                                 AOP_FLAG_UNINTERRUPTIBLE,
2286                                                 &page, &fsdata);
2287                 if (err)
2288                         goto out;
2289                 zero_user(page, zerofrom, len);
2290                 err = pagecache_write_end(file, mapping, curpos, len, len,
2291                                                 page, fsdata);
2292                 if (err < 0)
2293                         goto out;
2294                 BUG_ON(err != len);
2295                 err = 0;
2296         }
2297 out:
2298         return err;
2299 }
2300
2301 /*
2302  * For moronic filesystems that do not allow holes in file.
2303  * We may have to extend the file.
2304  */
2305 int cont_write_begin(struct file *file, struct address_space *mapping,
2306                         loff_t pos, unsigned len, unsigned flags,
2307                         struct page **pagep, void **fsdata,
2308                         get_block_t *get_block, loff_t *bytes)
2309 {
2310         struct inode *inode = mapping->host;
2311         unsigned blocksize = 1 << inode->i_blkbits;
2312         unsigned zerofrom;
2313         int err;
2314
2315         err = cont_expand_zero(file, mapping, pos, bytes);
2316         if (err)
2317                 return err;
2318
2319         zerofrom = *bytes & ~PAGE_CACHE_MASK;
2320         if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2321                 *bytes |= (blocksize-1);
2322                 (*bytes)++;
2323         }
2324
2325         return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2326 }
2327 EXPORT_SYMBOL(cont_write_begin);
2328
2329 int block_commit_write(struct page *page, unsigned from, unsigned to)
2330 {
2331         struct inode *inode = page->mapping->host;
2332         __block_commit_write(inode,page,from,to);
2333         return 0;
2334 }
2335 EXPORT_SYMBOL(block_commit_write);
2336
2337 /*
2338  * block_page_mkwrite() is not allowed to change the file size as it gets
2339  * called from a page fault handler when a page is first dirtied. Hence we must
2340  * be careful to check for EOF conditions here. We set the page up correctly
2341  * for a written page which means we get ENOSPC checking when writing into
2342  * holes and correct delalloc and unwritten extent mapping on filesystems that
2343  * support these features.
2344  *
2345  * We are not allowed to take the i_mutex here so we have to play games to
2346  * protect against truncate races as the page could now be beyond EOF.  Because
2347  * truncate writes the inode size before removing pages, once we have the
2348  * page lock we can determine safely if the page is beyond EOF. If it is not
2349  * beyond EOF, then the page is guaranteed safe against truncation until we
2350  * unlock the page.
2351  *
2352  * Direct callers of this function should call vfs_check_frozen() so that page
2353  * fault does not busyloop until the fs is thawed.
2354  */
2355 int __block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2356                          get_block_t get_block)
2357 {
2358         struct page *page = vmf->page;
2359         struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
2360         unsigned long end;
2361         loff_t size;
2362         int ret;
2363
2364         lock_page(page);
2365         size = i_size_read(inode);
2366         if ((page->mapping != inode->i_mapping) ||
2367             (page_offset(page) > size)) {
2368                 /* We overload EFAULT to mean page got truncated */
2369                 ret = -EFAULT;
2370                 goto out_unlock;
2371         }
2372
2373         /* page is wholly or partially inside EOF */
2374         if (((page->index + 1) << PAGE_CACHE_SHIFT) > size)
2375                 end = size & ~PAGE_CACHE_MASK;
2376         else
2377                 end = PAGE_CACHE_SIZE;
2378
2379         ret = __block_write_begin(page, 0, end, get_block);
2380         if (!ret)
2381                 ret = block_commit_write(page, 0, end);
2382
2383         if (unlikely(ret < 0))
2384                 goto out_unlock;
2385         /*
2386          * Freezing in progress? We check after the page is marked dirty and
2387          * with page lock held so if the test here fails, we are sure freezing
2388          * code will wait during syncing until the page fault is done - at that
2389          * point page will be dirty and unlocked so freezing code will write it
2390          * and writeprotect it again.
2391          */
2392         set_page_dirty(page);
2393         if (inode->i_sb->s_frozen != SB_UNFROZEN) {
2394                 ret = -EAGAIN;
2395                 goto out_unlock;
2396         }
2397         wait_on_page_writeback(page);
2398         return 0;
2399 out_unlock:
2400         unlock_page(page);
2401         return ret;
2402 }
2403 EXPORT_SYMBOL(__block_page_mkwrite);
2404
2405 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2406                    get_block_t get_block)
2407 {
2408         int ret;
2409         struct super_block *sb = vma->vm_file->f_path.dentry->d_inode->i_sb;
2410
2411         /*
2412          * This check is racy but catches the common case. The check in
2413          * __block_page_mkwrite() is reliable.
2414          */
2415         vfs_check_frozen(sb, SB_FREEZE_WRITE);
2416         ret = __block_page_mkwrite(vma, vmf, get_block);
2417         return block_page_mkwrite_return(ret);
2418 }
2419 EXPORT_SYMBOL(block_page_mkwrite);
2420
2421 /*
2422  * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2423  * immediately, while under the page lock.  So it needs a special end_io
2424  * handler which does not touch the bh after unlocking it.
2425  */
2426 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2427 {
2428         __end_buffer_read_notouch(bh, uptodate);
2429 }
2430
2431 /*
2432  * Attach the singly-linked list of buffers created by nobh_write_begin, to
2433  * the page (converting it to circular linked list and taking care of page
2434  * dirty races).
2435  */
2436 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2437 {
2438         struct buffer_head *bh;
2439
2440         BUG_ON(!PageLocked(page));
2441
2442         spin_lock(&page->mapping->private_lock);
2443         bh = head;
2444         do {
2445                 if (PageDirty(page))
2446                         set_buffer_dirty(bh);
2447                 if (!bh->b_this_page)
2448                         bh->b_this_page = head;
2449                 bh = bh->b_this_page;
2450         } while (bh != head);
2451         attach_page_buffers(page, head);
2452         spin_unlock(&page->mapping->private_lock);
2453 }
2454
2455 /*
2456  * On entry, the page is fully not uptodate.
2457  * On exit the page is fully uptodate in the areas outside (from,to)
2458  * The filesystem needs to handle block truncation upon failure.
2459  */
2460 int nobh_write_begin(struct address_space *mapping,
2461                         loff_t pos, unsigned len, unsigned flags,
2462                         struct page **pagep, void **fsdata,
2463                         get_block_t *get_block)
2464 {
2465         struct inode *inode = mapping->host;
2466         const unsigned blkbits = inode->i_blkbits;
2467         const unsigned blocksize = 1 << blkbits;
2468         struct buffer_head *head, *bh;
2469         struct page *page;
2470         pgoff_t index;
2471         unsigned from, to;
2472         unsigned block_in_page;
2473         unsigned block_start, block_end;
2474         sector_t block_in_file;
2475         int nr_reads = 0;
2476         int ret = 0;
2477         int is_mapped_to_disk = 1;
2478
2479         index = pos >> PAGE_CACHE_SHIFT;
2480         from = pos & (PAGE_CACHE_SIZE - 1);
2481         to = from + len;
2482
2483         page = grab_cache_page_write_begin(mapping, index, flags);
2484         if (!page)
2485                 return -ENOMEM;
2486         *pagep = page;
2487         *fsdata = NULL;
2488
2489         if (page_has_buffers(page)) {
2490                 ret = __block_write_begin(page, pos, len, get_block);
2491                 if (unlikely(ret))
2492                         goto out_release;
2493                 return ret;
2494         }
2495
2496         if (PageMappedToDisk(page))
2497                 return 0;
2498
2499         /*
2500          * Allocate buffers so that we can keep track of state, and potentially
2501          * attach them to the page if an error occurs. In the common case of
2502          * no error, they will just be freed again without ever being attached
2503          * to the page (which is all OK, because we're under the page lock).
2504          *
2505          * Be careful: the buffer linked list is a NULL terminated one, rather
2506          * than the circular one we're used to.
2507          */
2508         head = alloc_page_buffers(page, blocksize, 0);
2509         if (!head) {
2510                 ret = -ENOMEM;
2511                 goto out_release;
2512         }
2513
2514         block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
2515
2516         /*
2517          * We loop across all blocks in the page, whether or not they are
2518          * part of the affected region.  This is so we can discover if the
2519          * page is fully mapped-to-disk.
2520          */
2521         for (block_start = 0, block_in_page = 0, bh = head;
2522                   block_start < PAGE_CACHE_SIZE;
2523                   block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2524                 int create;
2525
2526                 block_end = block_start + blocksize;
2527                 bh->b_state = 0;
2528                 create = 1;
2529                 if (block_start >= to)
2530                         create = 0;
2531                 ret = get_block(inode, block_in_file + block_in_page,
2532                                         bh, create);
2533                 if (ret)
2534                         goto failed;
2535                 if (!buffer_mapped(bh))
2536                         is_mapped_to_disk = 0;
2537                 if (buffer_new(bh))
2538                         unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
2539                 if (PageUptodate(page)) {
2540                         set_buffer_uptodate(bh);
2541                         continue;
2542                 }
2543                 if (buffer_new(bh) || !buffer_mapped(bh)) {
2544                         zero_user_segments(page, block_start, from,
2545                                                         to, block_end);
2546                         continue;
2547                 }
2548                 if (buffer_uptodate(bh))
2549                         continue;       /* reiserfs does this */
2550                 if (block_start < from || block_end > to) {
2551                         lock_buffer(bh);
2552                         bh->b_end_io = end_buffer_read_nobh;
2553                         submit_bh(READ, bh);
2554                         nr_reads++;
2555                 }
2556         }
2557
2558         if (nr_reads) {
2559                 /*
2560                  * The page is locked, so these buffers are protected from
2561                  * any VM or truncate activity.  Hence we don't need to care
2562                  * for the buffer_head refcounts.
2563                  */
2564                 for (bh = head; bh; bh = bh->b_this_page) {
2565                         wait_on_buffer(bh);
2566                         if (!buffer_uptodate(bh))
2567                                 ret = -EIO;
2568                 }
2569                 if (ret)
2570                         goto failed;
2571         }
2572
2573         if (is_mapped_to_disk)
2574                 SetPageMappedToDisk(page);
2575
2576         *fsdata = head; /* to be released by nobh_write_end */
2577
2578         return 0;
2579
2580 failed:
2581         BUG_ON(!ret);
2582         /*
2583          * Error recovery is a bit difficult. We need to zero out blocks that
2584          * were newly allocated, and dirty them to ensure they get written out.
2585          * Buffers need to be attached to the page at this point, otherwise
2586          * the handling of potential IO errors during writeout would be hard
2587          * (could try doing synchronous writeout, but what if that fails too?)
2588          */
2589         attach_nobh_buffers(page, head);
2590         page_zero_new_buffers(page, from, to);
2591
2592 out_release:
2593         unlock_page(page);
2594         page_cache_release(page);
2595         *pagep = NULL;
2596
2597         return ret;
2598 }
2599 EXPORT_SYMBOL(nobh_write_begin);
2600
2601 int nobh_write_end(struct file *file, struct address_space *mapping,
2602                         loff_t pos, unsigned len, unsigned copied,
2603                         struct page *page, void *fsdata)
2604 {
2605         struct inode *inode = page->mapping->host;
2606         struct buffer_head *head = fsdata;
2607         struct buffer_head *bh;
2608         BUG_ON(fsdata != NULL && page_has_buffers(page));
2609
2610         if (unlikely(copied < len) && head)
2611                 attach_nobh_buffers(page, head);
2612         if (page_has_buffers(page))
2613                 return generic_write_end(file, mapping, pos, len,
2614                                         copied, page, fsdata);
2615
2616         SetPageUptodate(page);
2617         set_page_dirty(page);
2618         if (pos+copied > inode->i_size) {
2619                 i_size_write(inode, pos+copied);
2620                 mark_inode_dirty(inode);
2621         }
2622
2623         unlock_page(page);
2624         page_cache_release(page);
2625
2626         while (head) {
2627                 bh = head;
2628                 head = head->b_this_page;
2629                 free_buffer_head(bh);
2630         }
2631
2632         return copied;
2633 }
2634 EXPORT_SYMBOL(nobh_write_end);
2635
2636 /*
2637  * nobh_writepage() - based on block_full_write_page() except
2638  * that it tries to operate without attaching bufferheads to
2639  * the page.
2640  */
2641 int nobh_writepage(struct page *page, get_block_t *get_block,
2642                         struct writeback_control *wbc)
2643 {
2644         struct inode * const inode = page->mapping->host;
2645         loff_t i_size = i_size_read(inode);
2646         const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2647         unsigned offset;
2648         int ret;
2649
2650         /* Is the page fully inside i_size? */
2651         if (page->index < end_index)
2652                 goto out;
2653
2654         /* Is the page fully outside i_size? (truncate in progress) */
2655         offset = i_size & (PAGE_CACHE_SIZE-1);
2656         if (page->index >= end_index+1 || !offset) {
2657                 /*
2658                  * The page may have dirty, unmapped buffers.  For example,
2659                  * they may have been added in ext3_writepage().  Make them
2660                  * freeable here, so the page does not leak.
2661                  */
2662 #if 0
2663                 /* Not really sure about this  - do we need this ? */
2664                 if (page->mapping->a_ops->invalidatepage)
2665                         page->mapping->a_ops->invalidatepage(page, offset);
2666 #endif
2667                 unlock_page(page);
2668                 return 0; /* don't care */
2669         }
2670
2671         /*
2672          * The page straddles i_size.  It must be zeroed out on each and every
2673          * writepage invocation because it may be mmapped.  "A file is mapped
2674          * in multiples of the page size.  For a file that is not a multiple of
2675          * the  page size, the remaining memory is zeroed when mapped, and
2676          * writes to that region are not written out to the file."
2677          */
2678         zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2679 out:
2680         ret = mpage_writepage(page, get_block, wbc);
2681         if (ret == -EAGAIN)
2682                 ret = __block_write_full_page(inode, page, get_block, wbc,
2683                                               end_buffer_async_write);
2684         return ret;
2685 }
2686 EXPORT_SYMBOL(nobh_writepage);
2687
2688 int nobh_truncate_page(struct address_space *mapping,
2689                         loff_t from, get_block_t *get_block)
2690 {
2691         pgoff_t index = from >> PAGE_CACHE_SHIFT;
2692         unsigned offset = from & (PAGE_CACHE_SIZE-1);
2693         unsigned blocksize;
2694         sector_t iblock;
2695         unsigned length, pos;
2696         struct inode *inode = mapping->host;
2697         struct page *page;
2698         struct buffer_head map_bh;
2699         int err;
2700
2701         blocksize = 1 << inode->i_blkbits;
2702         length = offset & (blocksize - 1);
2703
2704         /* Block boundary? Nothing to do */
2705         if (!length)
2706                 return 0;
2707
2708         length = blocksize - length;
2709         iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2710
2711         page = grab_cache_page(mapping, index);
2712         err = -ENOMEM;
2713         if (!page)
2714                 goto out;
2715
2716         if (page_has_buffers(page)) {
2717 has_buffers:
2718                 unlock_page(page);
2719                 page_cache_release(page);
2720                 return block_truncate_page(mapping, from, get_block);
2721         }
2722
2723         /* Find the buffer that contains "offset" */
2724         pos = blocksize;
2725         while (offset >= pos) {
2726                 iblock++;
2727                 pos += blocksize;
2728         }
2729
2730         map_bh.b_size = blocksize;
2731         map_bh.b_state = 0;
2732         err = get_block(inode, iblock, &map_bh, 0);
2733         if (err)
2734                 goto unlock;
2735         /* unmapped? It's a hole - nothing to do */
2736         if (!buffer_mapped(&map_bh))
2737                 goto unlock;
2738
2739         /* Ok, it's mapped. Make sure it's up-to-date */
2740         if (!PageUptodate(page)) {
2741                 err = mapping->a_ops->readpage(NULL, page);
2742                 if (err) {
2743                         page_cache_release(page);
2744                         goto out;
2745                 }
2746                 lock_page(page);
2747                 if (!PageUptodate(page)) {
2748                         err = -EIO;
2749                         goto unlock;
2750                 }
2751                 if (page_has_buffers(page))
2752                         goto has_buffers;
2753         }
2754         zero_user(page, offset, length);
2755         set_page_dirty(page);
2756         err = 0;
2757
2758 unlock:
2759         unlock_page(page);
2760         page_cache_release(page);
2761 out:
2762         return err;
2763 }
2764 EXPORT_SYMBOL(nobh_truncate_page);
2765
2766 int block_truncate_page(struct address_space *mapping,
2767                         loff_t from, get_block_t *get_block)
2768 {
2769         pgoff_t index = from >> PAGE_CACHE_SHIFT;
2770         unsigned offset = from & (PAGE_CACHE_SIZE-1);
2771         unsigned blocksize;
2772         sector_t iblock;
2773         unsigned length, pos;
2774         struct inode *inode = mapping->host;
2775         struct page *page;
2776         struct buffer_head *bh;
2777         int err;
2778
2779         blocksize = 1 << inode->i_blkbits;
2780         length = offset & (blocksize - 1);
2781
2782         /* Block boundary? Nothing to do */
2783         if (!length)
2784                 return 0;
2785
2786         length = blocksize - length;
2787         iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2788         
2789         page = grab_cache_page(mapping, index);
2790         err = -ENOMEM;
2791         if (!page)
2792                 goto out;
2793
2794         if (!page_has_buffers(page))
2795                 create_empty_buffers(page, blocksize, 0);
2796
2797         /* Find the buffer that contains "offset" */
2798         bh = page_buffers(page);
2799         pos = blocksize;
2800         while (offset >= pos) {
2801                 bh = bh->b_this_page;
2802                 iblock++;
2803                 pos += blocksize;
2804         }
2805
2806         err = 0;
2807         if (!buffer_mapped(bh)) {
2808                 WARN_ON(bh->b_size != blocksize);
2809                 err = get_block(inode, iblock, bh, 0);
2810                 if (err)
2811                         goto unlock;
2812                 /* unmapped? It's a hole - nothing to do */
2813                 if (!buffer_mapped(bh))
2814                         goto unlock;
2815         }
2816
2817         /* Ok, it's mapped. Make sure it's up-to-date */
2818         if (PageUptodate(page))
2819                 set_buffer_uptodate(bh);
2820
2821         if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2822                 err = -EIO;
2823                 ll_rw_block(READ, 1, &bh);
2824                 wait_on_buffer(bh);
2825                 /* Uhhuh. Read error. Complain and punt. */
2826                 if (!buffer_uptodate(bh))
2827                         goto unlock;
2828         }
2829
2830         zero_user(page, offset, length);
2831         mark_buffer_dirty(bh);
2832         err = 0;
2833
2834 unlock:
2835         unlock_page(page);
2836         page_cache_release(page);
2837 out:
2838         return err;
2839 }
2840 EXPORT_SYMBOL(block_truncate_page);
2841
2842 /*
2843  * The generic ->writepage function for buffer-backed address_spaces
2844  * this form passes in the end_io handler used to finish the IO.
2845  */
2846 int block_write_full_page_endio(struct page *page, get_block_t *get_block,
2847                         struct writeback_control *wbc, bh_end_io_t *handler)
2848 {
2849         struct inode * const inode = page->mapping->host;
2850         loff_t i_size = i_size_read(inode);
2851         const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2852         unsigned offset;
2853
2854         /* Is the page fully inside i_size? */
2855         if (page->index < end_index)
2856                 return __block_write_full_page(inode, page, get_block, wbc,
2857                                                handler);
2858
2859         /* Is the page fully outside i_size? (truncate in progress) */
2860         offset = i_size & (PAGE_CACHE_SIZE-1);
2861         if (page->index >= end_index+1 || !offset) {
2862                 /*
2863                  * The page may have dirty, unmapped buffers.  For example,
2864                  * they may have been added in ext3_writepage().  Make them
2865                  * freeable here, so the page does not leak.
2866                  */
2867                 do_invalidatepage(page, 0);
2868                 unlock_page(page);
2869                 return 0; /* don't care */
2870         }
2871
2872         /*
2873          * The page straddles i_size.  It must be zeroed out on each and every
2874          * writepage invocation because it may be mmapped.  "A file is mapped
2875          * in multiples of the page size.  For a file that is not a multiple of
2876          * the  page size, the remaining memory is zeroed when mapped, and
2877          * writes to that region are not written out to the file."
2878          */
2879         zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2880         return __block_write_full_page(inode, page, get_block, wbc, handler);
2881 }
2882 EXPORT_SYMBOL(block_write_full_page_endio);
2883
2884 /*
2885  * The generic ->writepage function for buffer-backed address_spaces
2886  */
2887 int block_write_full_page(struct page *page, get_block_t *get_block,
2888                         struct writeback_control *wbc)
2889 {
2890         return block_write_full_page_endio(page, get_block, wbc,
2891                                            end_buffer_async_write);
2892 }
2893 EXPORT_SYMBOL(block_write_full_page);
2894
2895 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2896                             get_block_t *get_block)
2897 {
2898         struct buffer_head tmp;
2899         struct inode *inode = mapping->host;
2900         tmp.b_state = 0;
2901         tmp.b_blocknr = 0;
2902         tmp.b_size = 1 << inode->i_blkbits;
2903         get_block(inode, block, &tmp, 0);
2904         return tmp.b_blocknr;
2905 }
2906 EXPORT_SYMBOL(generic_block_bmap);
2907
2908 static void end_bio_bh_io_sync(struct bio *bio, int err)
2909 {
2910         struct buffer_head *bh = bio->bi_private;
2911
2912         if (err == -EOPNOTSUPP) {
2913                 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2914         }
2915
2916         if (unlikely (test_bit(BIO_QUIET,&bio->bi_flags)))
2917                 set_bit(BH_Quiet, &bh->b_state);
2918
2919         bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2920         bio_put(bio);
2921 }
2922
2923 int submit_bh(int rw, struct buffer_head * bh)
2924 {
2925         struct bio *bio;
2926         int ret = 0;
2927
2928         BUG_ON(!buffer_locked(bh));
2929         BUG_ON(!buffer_mapped(bh));
2930         BUG_ON(!bh->b_end_io);
2931         BUG_ON(buffer_delay(bh));
2932         BUG_ON(buffer_unwritten(bh));
2933
2934         /*
2935          * Only clear out a write error when rewriting
2936          */
2937         if (test_set_buffer_req(bh) && (rw & WRITE))
2938                 clear_buffer_write_io_error(bh);
2939
2940         /*
2941          * from here on down, it's all bio -- do the initial mapping,
2942          * submit_bio -> generic_make_request may further map this bio around
2943          */
2944         bio = bio_alloc(GFP_NOIO, 1);
2945
2946         bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2947         bio->bi_bdev = bh->b_bdev;
2948         bio->bi_io_vec[0].bv_page = bh->b_page;
2949         bio->bi_io_vec[0].bv_len = bh->b_size;
2950         bio->bi_io_vec[0].bv_offset = bh_offset(bh);
2951
2952         bio->bi_vcnt = 1;
2953         bio->bi_idx = 0;
2954         bio->bi_size = bh->b_size;
2955
2956         bio->bi_end_io = end_bio_bh_io_sync;
2957         bio->bi_private = bh;
2958
2959         bio_get(bio);
2960         submit_bio(rw, bio);
2961
2962         if (bio_flagged(bio, BIO_EOPNOTSUPP))
2963                 ret = -EOPNOTSUPP;
2964
2965         bio_put(bio);
2966         return ret;
2967 }
2968 EXPORT_SYMBOL(submit_bh);
2969
2970 /**
2971  * ll_rw_block: low-level access to block devices (DEPRECATED)
2972  * @rw: whether to %READ or %WRITE or maybe %READA (readahead)
2973  * @nr: number of &struct buffer_heads in the array
2974  * @bhs: array of pointers to &struct buffer_head
2975  *
2976  * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
2977  * requests an I/O operation on them, either a %READ or a %WRITE.  The third
2978  * %READA option is described in the documentation for generic_make_request()
2979  * which ll_rw_block() calls.
2980  *
2981  * This function drops any buffer that it cannot get a lock on (with the
2982  * BH_Lock state bit), any buffer that appears to be clean when doing a write
2983  * request, and any buffer that appears to be up-to-date when doing read
2984  * request.  Further it marks as clean buffers that are processed for
2985  * writing (the buffer cache won't assume that they are actually clean
2986  * until the buffer gets unlocked).
2987  *
2988  * ll_rw_block sets b_end_io to simple completion handler that marks
2989  * the buffer up-to-date (if approriate), unlocks the buffer and wakes
2990  * any waiters. 
2991  *
2992  * All of the buffers must be for the same device, and must also be a
2993  * multiple of the current approved size for the device.
2994  */
2995 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
2996 {
2997         int i;
2998
2999         for (i = 0; i < nr; i++) {
3000                 struct buffer_head *bh = bhs[i];
3001
3002                 if (!trylock_buffer(bh))
3003                         continue;
3004                 if (rw == WRITE) {
3005                         if (test_clear_buffer_dirty(bh)) {
3006                                 bh->b_end_io = end_buffer_write_sync;
3007                                 get_bh(bh);
3008                                 submit_bh(WRITE, bh);
3009                                 continue;
3010                         }
3011                 } else {
3012                         if (!buffer_uptodate(bh)) {
3013                                 bh->b_end_io = end_buffer_read_sync;
3014                                 get_bh(bh);
3015                                 submit_bh(rw, bh);
3016                                 continue;
3017                         }
3018                 }
3019                 unlock_buffer(bh);
3020         }
3021 }
3022 EXPORT_SYMBOL(ll_rw_block);
3023
3024 void write_dirty_buffer(struct buffer_head *bh, int rw)
3025 {
3026         lock_buffer(bh);
3027         if (!test_clear_buffer_dirty(bh)) {
3028                 unlock_buffer(bh);
3029                 return;
3030         }
3031         bh->b_end_io = end_buffer_write_sync;
3032         get_bh(bh);
3033         submit_bh(rw, bh);
3034 }
3035 EXPORT_SYMBOL(write_dirty_buffer);
3036
3037 /*
3038  * For a data-integrity writeout, we need to wait upon any in-progress I/O
3039  * and then start new I/O and then wait upon it.  The caller must have a ref on
3040  * the buffer_head.
3041  */
3042 int __sync_dirty_buffer(struct buffer_head *bh, int rw)
3043 {
3044         int ret = 0;
3045
3046         WARN_ON(atomic_read(&bh->b_count) < 1);
3047         lock_buffer(bh);
3048         if (test_clear_buffer_dirty(bh)) {
3049                 get_bh(bh);
3050                 bh->b_end_io = end_buffer_write_sync;
3051                 ret = submit_bh(rw, bh);
3052                 wait_on_buffer(bh);
3053                 if (!ret && !buffer_uptodate(bh))
3054                         ret = -EIO;
3055         } else {
3056                 unlock_buffer(bh);
3057         }
3058         return ret;
3059 }
3060 EXPORT_SYMBOL(__sync_dirty_buffer);
3061
3062 int sync_dirty_buffer(struct buffer_head *bh)
3063 {
3064         return __sync_dirty_buffer(bh, WRITE_SYNC);
3065 }
3066 EXPORT_SYMBOL(sync_dirty_buffer);
3067
3068 /*
3069  * try_to_free_buffers() checks if all the buffers on this particular page
3070  * are unused, and releases them if so.
3071  *
3072  * Exclusion against try_to_free_buffers may be obtained by either
3073  * locking the page or by holding its mapping's private_lock.
3074  *
3075  * If the page is dirty but all the buffers are clean then we need to
3076  * be sure to mark the page clean as well.  This is because the page
3077  * may be against a block device, and a later reattachment of buffers
3078  * to a dirty page will set *all* buffers dirty.  Which would corrupt
3079  * filesystem data on the same device.
3080  *
3081  * The same applies to regular filesystem pages: if all the buffers are
3082  * clean then we set the page clean and proceed.  To do that, we require
3083  * total exclusion from __set_page_dirty_buffers().  That is obtained with
3084  * private_lock.
3085  *
3086  * try_to_free_buffers() is non-blocking.
3087  */
3088 static inline int buffer_busy(struct buffer_head *bh)
3089 {
3090         return atomic_read(&bh->b_count) |
3091                 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3092 }
3093
3094 static int
3095 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3096 {
3097         struct buffer_head *head = page_buffers(page);
3098         struct buffer_head *bh;
3099
3100         bh = head;
3101         do {
3102                 if (buffer_write_io_error(bh) && page->mapping)
3103                         set_bit(AS_EIO, &page->mapping->flags);
3104                 if (buffer_busy(bh))
3105                         goto failed;
3106                 bh = bh->b_this_page;
3107         } while (bh != head);
3108
3109         do {
3110                 struct buffer_head *next = bh->b_this_page;
3111
3112                 if (bh->b_assoc_map)
3113                         __remove_assoc_queue(bh);
3114                 bh = next;
3115         } while (bh != head);
3116         *buffers_to_free = head;
3117         __clear_page_buffers(page);
3118         return 1;
3119 failed:
3120         return 0;
3121 }
3122
3123 int try_to_free_buffers(struct page *page)
3124 {
3125         struct address_space * const mapping = page->mapping;
3126         struct buffer_head *buffers_to_free = NULL;
3127         int ret = 0;
3128
3129         BUG_ON(!PageLocked(page));
3130         if (PageWriteback(page))
3131                 return 0;
3132
3133         if (mapping == NULL) {          /* can this still happen? */
3134                 ret = drop_buffers(page, &buffers_to_free);
3135                 goto out;
3136         }
3137
3138         spin_lock(&mapping->private_lock);
3139         ret = drop_buffers(page, &buffers_to_free);
3140
3141         /*
3142          * If the filesystem writes its buffers by hand (eg ext3)
3143          * then we can have clean buffers against a dirty page.  We
3144          * clean the page here; otherwise the VM will never notice
3145          * that the filesystem did any IO at all.
3146          *
3147          * Also, during truncate, discard_buffer will have marked all
3148          * the page's buffers clean.  We discover that here and clean
3149          * the page also.
3150          *
3151          * private_lock must be held over this entire operation in order
3152          * to synchronise against __set_page_dirty_buffers and prevent the
3153          * dirty bit from being lost.
3154          */
3155         if (ret)
3156                 cancel_dirty_page(page, PAGE_CACHE_SIZE);
3157         spin_unlock(&mapping->private_lock);
3158 out:
3159         if (buffers_to_free) {
3160                 struct buffer_head *bh = buffers_to_free;
3161
3162                 do {
3163                         struct buffer_head *next = bh->b_this_page;
3164                         free_buffer_head(bh);
3165                         bh = next;
3166                 } while (bh != buffers_to_free);
3167         }
3168         return ret;
3169 }
3170 EXPORT_SYMBOL(try_to_free_buffers);
3171
3172 /*
3173  * There are no bdflush tunables left.  But distributions are
3174  * still running obsolete flush daemons, so we terminate them here.
3175  *
3176  * Use of bdflush() is deprecated and will be removed in a future kernel.
3177  * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3178  */
3179 SYSCALL_DEFINE2(bdflush, int, func, long, data)
3180 {
3181         static int msg_count;
3182
3183         if (!capable(CAP_SYS_ADMIN))
3184                 return -EPERM;
3185
3186         if (msg_count < 5) {
3187                 msg_count++;
3188                 printk(KERN_INFO
3189                         "warning: process `%s' used the obsolete bdflush"
3190                         " system call\n", current->comm);
3191                 printk(KERN_INFO "Fix your initscripts?\n");
3192         }
3193
3194         if (func == 1)
3195                 do_exit(0);
3196         return 0;
3197 }
3198
3199 /*
3200  * Buffer-head allocation
3201  */
3202 static struct kmem_cache *bh_cachep;
3203
3204 /*
3205  * Once the number of bh's in the machine exceeds this level, we start
3206  * stripping them in writeback.
3207  */
3208 static int max_buffer_heads;
3209
3210 int buffer_heads_over_limit;
3211
3212 struct bh_accounting {
3213         int nr;                 /* Number of live bh's */
3214         int ratelimit;          /* Limit cacheline bouncing */
3215 };
3216
3217 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3218
3219 static void recalc_bh_state(void)
3220 {
3221         int i;
3222         int tot = 0;
3223
3224         if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3225                 return;
3226         __this_cpu_write(bh_accounting.ratelimit, 0);
3227         for_each_online_cpu(i)
3228                 tot += per_cpu(bh_accounting, i).nr;
3229         buffer_heads_over_limit = (tot > max_buffer_heads);
3230 }
3231
3232 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3233 {
3234         struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3235         if (ret) {
3236                 INIT_LIST_HEAD(&ret->b_assoc_buffers);
3237                 preempt_disable();
3238                 __this_cpu_inc(bh_accounting.nr);
3239                 recalc_bh_state();
3240                 preempt_enable();
3241         }
3242         return ret;
3243 }
3244 EXPORT_SYMBOL(alloc_buffer_head);
3245
3246 void free_buffer_head(struct buffer_head *bh)
3247 {
3248         BUG_ON(!list_empty(&bh->b_assoc_buffers));
3249         kmem_cache_free(bh_cachep, bh);
3250         preempt_disable();
3251         __this_cpu_dec(bh_accounting.nr);
3252         recalc_bh_state();
3253         preempt_enable();
3254 }
3255 EXPORT_SYMBOL(free_buffer_head);
3256
3257 static void buffer_exit_cpu(int cpu)
3258 {
3259         int i;
3260         struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3261
3262         for (i = 0; i < BH_LRU_SIZE; i++) {
3263                 brelse(b->bhs[i]);
3264                 b->bhs[i] = NULL;
3265         }
3266         this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3267         per_cpu(bh_accounting, cpu).nr = 0;
3268 }
3269
3270 static int buffer_cpu_notify(struct notifier_block *self,
3271                               unsigned long action, void *hcpu)
3272 {
3273         if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
3274                 buffer_exit_cpu((unsigned long)hcpu);
3275         return NOTIFY_OK;
3276 }
3277
3278 /**
3279  * bh_uptodate_or_lock - Test whether the buffer is uptodate
3280  * @bh: struct buffer_head
3281  *
3282  * Return true if the buffer is up-to-date and false,
3283  * with the buffer locked, if not.
3284  */
3285 int bh_uptodate_or_lock(struct buffer_head *bh)
3286 {
3287         if (!buffer_uptodate(bh)) {
3288                 lock_buffer(bh);
3289                 if (!buffer_uptodate(bh))
3290                         return 0;
3291                 unlock_buffer(bh);
3292         }
3293         return 1;
3294 }
3295 EXPORT_SYMBOL(bh_uptodate_or_lock);
3296
3297 /**
3298  * bh_submit_read - Submit a locked buffer for reading
3299  * @bh: struct buffer_head
3300  *
3301  * Returns zero on success and -EIO on error.
3302  */
3303 int bh_submit_read(struct buffer_head *bh)
3304 {
3305         BUG_ON(!buffer_locked(bh));
3306
3307         if (buffer_uptodate(bh)) {
3308                 unlock_buffer(bh);
3309                 return 0;
3310         }
3311
3312         get_bh(bh);
3313         bh->b_end_io = end_buffer_read_sync;
3314         submit_bh(READ, bh);
3315         wait_on_buffer(bh);
3316         if (buffer_uptodate(bh))
3317                 return 0;
3318         return -EIO;
3319 }
3320 EXPORT_SYMBOL(bh_submit_read);
3321
3322 void __init buffer_init(void)
3323 {
3324         int nrpages;
3325
3326         bh_cachep = kmem_cache_create("buffer_head",
3327                         sizeof(struct buffer_head), 0,
3328                                 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3329                                 SLAB_MEM_SPREAD),
3330                                 NULL);
3331
3332         /*
3333          * Limit the bh occupancy to 10% of ZONE_NORMAL
3334          */
3335         nrpages = (nr_free_buffer_pages() * 10) / 100;
3336         max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3337         hotcpu_notifier(buffer_cpu_notify, 0);
3338 }