Merge branch 'master' into for-2.6.35
[pandora-kernel.git] / fs / buffer.c
1 /*
2  *  linux/fs/buffer.c
3  *
4  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
5  */
6
7 /*
8  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9  *
10  * Removed a lot of unnecessary code and simplified things now that
11  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12  *
13  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
14  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
15  *
16  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17  *
18  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19  */
20
21 #include <linux/kernel.h>
22 #include <linux/syscalls.h>
23 #include <linux/fs.h>
24 #include <linux/mm.h>
25 #include <linux/percpu.h>
26 #include <linux/slab.h>
27 #include <linux/capability.h>
28 #include <linux/blkdev.h>
29 #include <linux/file.h>
30 #include <linux/quotaops.h>
31 #include <linux/highmem.h>
32 #include <linux/module.h>
33 #include <linux/writeback.h>
34 #include <linux/hash.h>
35 #include <linux/suspend.h>
36 #include <linux/buffer_head.h>
37 #include <linux/task_io_accounting_ops.h>
38 #include <linux/bio.h>
39 #include <linux/notifier.h>
40 #include <linux/cpu.h>
41 #include <linux/bitops.h>
42 #include <linux/mpage.h>
43 #include <linux/bit_spinlock.h>
44
45 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
46
47 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
48
49 inline void
50 init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
51 {
52         bh->b_end_io = handler;
53         bh->b_private = private;
54 }
55 EXPORT_SYMBOL(init_buffer);
56
57 static int sync_buffer(void *word)
58 {
59         struct block_device *bd;
60         struct buffer_head *bh
61                 = container_of(word, struct buffer_head, b_state);
62
63         smp_mb();
64         bd = bh->b_bdev;
65         if (bd)
66                 blk_run_address_space(bd->bd_inode->i_mapping);
67         io_schedule();
68         return 0;
69 }
70
71 void __lock_buffer(struct buffer_head *bh)
72 {
73         wait_on_bit_lock(&bh->b_state, BH_Lock, sync_buffer,
74                                                         TASK_UNINTERRUPTIBLE);
75 }
76 EXPORT_SYMBOL(__lock_buffer);
77
78 void unlock_buffer(struct buffer_head *bh)
79 {
80         clear_bit_unlock(BH_Lock, &bh->b_state);
81         smp_mb__after_clear_bit();
82         wake_up_bit(&bh->b_state, BH_Lock);
83 }
84 EXPORT_SYMBOL(unlock_buffer);
85
86 /*
87  * Block until a buffer comes unlocked.  This doesn't stop it
88  * from becoming locked again - you have to lock it yourself
89  * if you want to preserve its state.
90  */
91 void __wait_on_buffer(struct buffer_head * bh)
92 {
93         wait_on_bit(&bh->b_state, BH_Lock, sync_buffer, TASK_UNINTERRUPTIBLE);
94 }
95 EXPORT_SYMBOL(__wait_on_buffer);
96
97 static void
98 __clear_page_buffers(struct page *page)
99 {
100         ClearPagePrivate(page);
101         set_page_private(page, 0);
102         page_cache_release(page);
103 }
104
105
106 static int quiet_error(struct buffer_head *bh)
107 {
108         if (!test_bit(BH_Quiet, &bh->b_state) && printk_ratelimit())
109                 return 0;
110         return 1;
111 }
112
113
114 static void buffer_io_error(struct buffer_head *bh)
115 {
116         char b[BDEVNAME_SIZE];
117         printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
118                         bdevname(bh->b_bdev, b),
119                         (unsigned long long)bh->b_blocknr);
120 }
121
122 /*
123  * End-of-IO handler helper function which does not touch the bh after
124  * unlocking it.
125  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
126  * a race there is benign: unlock_buffer() only use the bh's address for
127  * hashing after unlocking the buffer, so it doesn't actually touch the bh
128  * itself.
129  */
130 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
131 {
132         if (uptodate) {
133                 set_buffer_uptodate(bh);
134         } else {
135                 /* This happens, due to failed READA attempts. */
136                 clear_buffer_uptodate(bh);
137         }
138         unlock_buffer(bh);
139 }
140
141 /*
142  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
143  * unlock the buffer. This is what ll_rw_block uses too.
144  */
145 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
146 {
147         __end_buffer_read_notouch(bh, uptodate);
148         put_bh(bh);
149 }
150 EXPORT_SYMBOL(end_buffer_read_sync);
151
152 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
153 {
154         char b[BDEVNAME_SIZE];
155
156         if (uptodate) {
157                 set_buffer_uptodate(bh);
158         } else {
159                 if (!buffer_eopnotsupp(bh) && !quiet_error(bh)) {
160                         buffer_io_error(bh);
161                         printk(KERN_WARNING "lost page write due to "
162                                         "I/O error on %s\n",
163                                        bdevname(bh->b_bdev, b));
164                 }
165                 set_buffer_write_io_error(bh);
166                 clear_buffer_uptodate(bh);
167         }
168         unlock_buffer(bh);
169         put_bh(bh);
170 }
171 EXPORT_SYMBOL(end_buffer_write_sync);
172
173 /*
174  * Various filesystems appear to want __find_get_block to be non-blocking.
175  * But it's the page lock which protects the buffers.  To get around this,
176  * we get exclusion from try_to_free_buffers with the blockdev mapping's
177  * private_lock.
178  *
179  * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
180  * may be quite high.  This code could TryLock the page, and if that
181  * succeeds, there is no need to take private_lock. (But if
182  * private_lock is contended then so is mapping->tree_lock).
183  */
184 static struct buffer_head *
185 __find_get_block_slow(struct block_device *bdev, sector_t block)
186 {
187         struct inode *bd_inode = bdev->bd_inode;
188         struct address_space *bd_mapping = bd_inode->i_mapping;
189         struct buffer_head *ret = NULL;
190         pgoff_t index;
191         struct buffer_head *bh;
192         struct buffer_head *head;
193         struct page *page;
194         int all_mapped = 1;
195
196         index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
197         page = find_get_page(bd_mapping, index);
198         if (!page)
199                 goto out;
200
201         spin_lock(&bd_mapping->private_lock);
202         if (!page_has_buffers(page))
203                 goto out_unlock;
204         head = page_buffers(page);
205         bh = head;
206         do {
207                 if (!buffer_mapped(bh))
208                         all_mapped = 0;
209                 else if (bh->b_blocknr == block) {
210                         ret = bh;
211                         get_bh(bh);
212                         goto out_unlock;
213                 }
214                 bh = bh->b_this_page;
215         } while (bh != head);
216
217         /* we might be here because some of the buffers on this page are
218          * not mapped.  This is due to various races between
219          * file io on the block device and getblk.  It gets dealt with
220          * elsewhere, don't buffer_error if we had some unmapped buffers
221          */
222         if (all_mapped) {
223                 printk("__find_get_block_slow() failed. "
224                         "block=%llu, b_blocknr=%llu\n",
225                         (unsigned long long)block,
226                         (unsigned long long)bh->b_blocknr);
227                 printk("b_state=0x%08lx, b_size=%zu\n",
228                         bh->b_state, bh->b_size);
229                 printk("device blocksize: %d\n", 1 << bd_inode->i_blkbits);
230         }
231 out_unlock:
232         spin_unlock(&bd_mapping->private_lock);
233         page_cache_release(page);
234 out:
235         return ret;
236 }
237
238 /* If invalidate_buffers() will trash dirty buffers, it means some kind
239    of fs corruption is going on. Trashing dirty data always imply losing
240    information that was supposed to be just stored on the physical layer
241    by the user.
242
243    Thus invalidate_buffers in general usage is not allwowed to trash
244    dirty buffers. For example ioctl(FLSBLKBUF) expects dirty data to
245    be preserved.  These buffers are simply skipped.
246   
247    We also skip buffers which are still in use.  For example this can
248    happen if a userspace program is reading the block device.
249
250    NOTE: In the case where the user removed a removable-media-disk even if
251    there's still dirty data not synced on disk (due a bug in the device driver
252    or due an error of the user), by not destroying the dirty buffers we could
253    generate corruption also on the next media inserted, thus a parameter is
254    necessary to handle this case in the most safe way possible (trying
255    to not corrupt also the new disk inserted with the data belonging to
256    the old now corrupted disk). Also for the ramdisk the natural thing
257    to do in order to release the ramdisk memory is to destroy dirty buffers.
258
259    These are two special cases. Normal usage imply the device driver
260    to issue a sync on the device (without waiting I/O completion) and
261    then an invalidate_buffers call that doesn't trash dirty buffers.
262
263    For handling cache coherency with the blkdev pagecache the 'update' case
264    is been introduced. It is needed to re-read from disk any pinned
265    buffer. NOTE: re-reading from disk is destructive so we can do it only
266    when we assume nobody is changing the buffercache under our I/O and when
267    we think the disk contains more recent information than the buffercache.
268    The update == 1 pass marks the buffers we need to update, the update == 2
269    pass does the actual I/O. */
270 void invalidate_bdev(struct block_device *bdev)
271 {
272         struct address_space *mapping = bdev->bd_inode->i_mapping;
273
274         if (mapping->nrpages == 0)
275                 return;
276
277         invalidate_bh_lrus();
278         lru_add_drain_all();    /* make sure all lru add caches are flushed */
279         invalidate_mapping_pages(mapping, 0, -1);
280 }
281 EXPORT_SYMBOL(invalidate_bdev);
282
283 /*
284  * Kick the writeback threads then try to free up some ZONE_NORMAL memory.
285  */
286 static void free_more_memory(void)
287 {
288         struct zone *zone;
289         int nid;
290
291         wakeup_flusher_threads(1024);
292         yield();
293
294         for_each_online_node(nid) {
295                 (void)first_zones_zonelist(node_zonelist(nid, GFP_NOFS),
296                                                 gfp_zone(GFP_NOFS), NULL,
297                                                 &zone);
298                 if (zone)
299                         try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0,
300                                                 GFP_NOFS, NULL);
301         }
302 }
303
304 /*
305  * I/O completion handler for block_read_full_page() - pages
306  * which come unlocked at the end of I/O.
307  */
308 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
309 {
310         unsigned long flags;
311         struct buffer_head *first;
312         struct buffer_head *tmp;
313         struct page *page;
314         int page_uptodate = 1;
315
316         BUG_ON(!buffer_async_read(bh));
317
318         page = bh->b_page;
319         if (uptodate) {
320                 set_buffer_uptodate(bh);
321         } else {
322                 clear_buffer_uptodate(bh);
323                 if (!quiet_error(bh))
324                         buffer_io_error(bh);
325                 SetPageError(page);
326         }
327
328         /*
329          * Be _very_ careful from here on. Bad things can happen if
330          * two buffer heads end IO at almost the same time and both
331          * decide that the page is now completely done.
332          */
333         first = page_buffers(page);
334         local_irq_save(flags);
335         bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
336         clear_buffer_async_read(bh);
337         unlock_buffer(bh);
338         tmp = bh;
339         do {
340                 if (!buffer_uptodate(tmp))
341                         page_uptodate = 0;
342                 if (buffer_async_read(tmp)) {
343                         BUG_ON(!buffer_locked(tmp));
344                         goto still_busy;
345                 }
346                 tmp = tmp->b_this_page;
347         } while (tmp != bh);
348         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
349         local_irq_restore(flags);
350
351         /*
352          * If none of the buffers had errors and they are all
353          * uptodate then we can set the page uptodate.
354          */
355         if (page_uptodate && !PageError(page))
356                 SetPageUptodate(page);
357         unlock_page(page);
358         return;
359
360 still_busy:
361         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
362         local_irq_restore(flags);
363         return;
364 }
365
366 /*
367  * Completion handler for block_write_full_page() - pages which are unlocked
368  * during I/O, and which have PageWriteback cleared upon I/O completion.
369  */
370 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
371 {
372         char b[BDEVNAME_SIZE];
373         unsigned long flags;
374         struct buffer_head *first;
375         struct buffer_head *tmp;
376         struct page *page;
377
378         BUG_ON(!buffer_async_write(bh));
379
380         page = bh->b_page;
381         if (uptodate) {
382                 set_buffer_uptodate(bh);
383         } else {
384                 if (!quiet_error(bh)) {
385                         buffer_io_error(bh);
386                         printk(KERN_WARNING "lost page write due to "
387                                         "I/O error on %s\n",
388                                bdevname(bh->b_bdev, b));
389                 }
390                 set_bit(AS_EIO, &page->mapping->flags);
391                 set_buffer_write_io_error(bh);
392                 clear_buffer_uptodate(bh);
393                 SetPageError(page);
394         }
395
396         first = page_buffers(page);
397         local_irq_save(flags);
398         bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
399
400         clear_buffer_async_write(bh);
401         unlock_buffer(bh);
402         tmp = bh->b_this_page;
403         while (tmp != bh) {
404                 if (buffer_async_write(tmp)) {
405                         BUG_ON(!buffer_locked(tmp));
406                         goto still_busy;
407                 }
408                 tmp = tmp->b_this_page;
409         }
410         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
411         local_irq_restore(flags);
412         end_page_writeback(page);
413         return;
414
415 still_busy:
416         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
417         local_irq_restore(flags);
418         return;
419 }
420 EXPORT_SYMBOL(end_buffer_async_write);
421
422 /*
423  * If a page's buffers are under async readin (end_buffer_async_read
424  * completion) then there is a possibility that another thread of
425  * control could lock one of the buffers after it has completed
426  * but while some of the other buffers have not completed.  This
427  * locked buffer would confuse end_buffer_async_read() into not unlocking
428  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
429  * that this buffer is not under async I/O.
430  *
431  * The page comes unlocked when it has no locked buffer_async buffers
432  * left.
433  *
434  * PageLocked prevents anyone starting new async I/O reads any of
435  * the buffers.
436  *
437  * PageWriteback is used to prevent simultaneous writeout of the same
438  * page.
439  *
440  * PageLocked prevents anyone from starting writeback of a page which is
441  * under read I/O (PageWriteback is only ever set against a locked page).
442  */
443 static void mark_buffer_async_read(struct buffer_head *bh)
444 {
445         bh->b_end_io = end_buffer_async_read;
446         set_buffer_async_read(bh);
447 }
448
449 static void mark_buffer_async_write_endio(struct buffer_head *bh,
450                                           bh_end_io_t *handler)
451 {
452         bh->b_end_io = handler;
453         set_buffer_async_write(bh);
454 }
455
456 void mark_buffer_async_write(struct buffer_head *bh)
457 {
458         mark_buffer_async_write_endio(bh, end_buffer_async_write);
459 }
460 EXPORT_SYMBOL(mark_buffer_async_write);
461
462
463 /*
464  * fs/buffer.c contains helper functions for buffer-backed address space's
465  * fsync functions.  A common requirement for buffer-based filesystems is
466  * that certain data from the backing blockdev needs to be written out for
467  * a successful fsync().  For example, ext2 indirect blocks need to be
468  * written back and waited upon before fsync() returns.
469  *
470  * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
471  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
472  * management of a list of dependent buffers at ->i_mapping->private_list.
473  *
474  * Locking is a little subtle: try_to_free_buffers() will remove buffers
475  * from their controlling inode's queue when they are being freed.  But
476  * try_to_free_buffers() will be operating against the *blockdev* mapping
477  * at the time, not against the S_ISREG file which depends on those buffers.
478  * So the locking for private_list is via the private_lock in the address_space
479  * which backs the buffers.  Which is different from the address_space 
480  * against which the buffers are listed.  So for a particular address_space,
481  * mapping->private_lock does *not* protect mapping->private_list!  In fact,
482  * mapping->private_list will always be protected by the backing blockdev's
483  * ->private_lock.
484  *
485  * Which introduces a requirement: all buffers on an address_space's
486  * ->private_list must be from the same address_space: the blockdev's.
487  *
488  * address_spaces which do not place buffers at ->private_list via these
489  * utility functions are free to use private_lock and private_list for
490  * whatever they want.  The only requirement is that list_empty(private_list)
491  * be true at clear_inode() time.
492  *
493  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
494  * filesystems should do that.  invalidate_inode_buffers() should just go
495  * BUG_ON(!list_empty).
496  *
497  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
498  * take an address_space, not an inode.  And it should be called
499  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
500  * queued up.
501  *
502  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
503  * list if it is already on a list.  Because if the buffer is on a list,
504  * it *must* already be on the right one.  If not, the filesystem is being
505  * silly.  This will save a ton of locking.  But first we have to ensure
506  * that buffers are taken *off* the old inode's list when they are freed
507  * (presumably in truncate).  That requires careful auditing of all
508  * filesystems (do it inside bforget()).  It could also be done by bringing
509  * b_inode back.
510  */
511
512 /*
513  * The buffer's backing address_space's private_lock must be held
514  */
515 static void __remove_assoc_queue(struct buffer_head *bh)
516 {
517         list_del_init(&bh->b_assoc_buffers);
518         WARN_ON(!bh->b_assoc_map);
519         if (buffer_write_io_error(bh))
520                 set_bit(AS_EIO, &bh->b_assoc_map->flags);
521         bh->b_assoc_map = NULL;
522 }
523
524 int inode_has_buffers(struct inode *inode)
525 {
526         return !list_empty(&inode->i_data.private_list);
527 }
528
529 /*
530  * osync is designed to support O_SYNC io.  It waits synchronously for
531  * all already-submitted IO to complete, but does not queue any new
532  * writes to the disk.
533  *
534  * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
535  * you dirty the buffers, and then use osync_inode_buffers to wait for
536  * completion.  Any other dirty buffers which are not yet queued for
537  * write will not be flushed to disk by the osync.
538  */
539 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
540 {
541         struct buffer_head *bh;
542         struct list_head *p;
543         int err = 0;
544
545         spin_lock(lock);
546 repeat:
547         list_for_each_prev(p, list) {
548                 bh = BH_ENTRY(p);
549                 if (buffer_locked(bh)) {
550                         get_bh(bh);
551                         spin_unlock(lock);
552                         wait_on_buffer(bh);
553                         if (!buffer_uptodate(bh))
554                                 err = -EIO;
555                         brelse(bh);
556                         spin_lock(lock);
557                         goto repeat;
558                 }
559         }
560         spin_unlock(lock);
561         return err;
562 }
563
564 static void do_thaw_all(struct work_struct *work)
565 {
566         struct super_block *sb;
567         char b[BDEVNAME_SIZE];
568
569         spin_lock(&sb_lock);
570 restart:
571         list_for_each_entry(sb, &super_blocks, s_list) {
572                 sb->s_count++;
573                 spin_unlock(&sb_lock);
574                 down_read(&sb->s_umount);
575                 while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
576                         printk(KERN_WARNING "Emergency Thaw on %s\n",
577                                bdevname(sb->s_bdev, b));
578                 up_read(&sb->s_umount);
579                 spin_lock(&sb_lock);
580                 if (__put_super_and_need_restart(sb))
581                         goto restart;
582         }
583         spin_unlock(&sb_lock);
584         kfree(work);
585         printk(KERN_WARNING "Emergency Thaw complete\n");
586 }
587
588 /**
589  * emergency_thaw_all -- forcibly thaw every frozen filesystem
590  *
591  * Used for emergency unfreeze of all filesystems via SysRq
592  */
593 void emergency_thaw_all(void)
594 {
595         struct work_struct *work;
596
597         work = kmalloc(sizeof(*work), GFP_ATOMIC);
598         if (work) {
599                 INIT_WORK(work, do_thaw_all);
600                 schedule_work(work);
601         }
602 }
603
604 /**
605  * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
606  * @mapping: the mapping which wants those buffers written
607  *
608  * Starts I/O against the buffers at mapping->private_list, and waits upon
609  * that I/O.
610  *
611  * Basically, this is a convenience function for fsync().
612  * @mapping is a file or directory which needs those buffers to be written for
613  * a successful fsync().
614  */
615 int sync_mapping_buffers(struct address_space *mapping)
616 {
617         struct address_space *buffer_mapping = mapping->assoc_mapping;
618
619         if (buffer_mapping == NULL || list_empty(&mapping->private_list))
620                 return 0;
621
622         return fsync_buffers_list(&buffer_mapping->private_lock,
623                                         &mapping->private_list);
624 }
625 EXPORT_SYMBOL(sync_mapping_buffers);
626
627 /*
628  * Called when we've recently written block `bblock', and it is known that
629  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
630  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
631  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
632  */
633 void write_boundary_block(struct block_device *bdev,
634                         sector_t bblock, unsigned blocksize)
635 {
636         struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
637         if (bh) {
638                 if (buffer_dirty(bh))
639                         ll_rw_block(WRITE, 1, &bh);
640                 put_bh(bh);
641         }
642 }
643
644 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
645 {
646         struct address_space *mapping = inode->i_mapping;
647         struct address_space *buffer_mapping = bh->b_page->mapping;
648
649         mark_buffer_dirty(bh);
650         if (!mapping->assoc_mapping) {
651                 mapping->assoc_mapping = buffer_mapping;
652         } else {
653                 BUG_ON(mapping->assoc_mapping != buffer_mapping);
654         }
655         if (!bh->b_assoc_map) {
656                 spin_lock(&buffer_mapping->private_lock);
657                 list_move_tail(&bh->b_assoc_buffers,
658                                 &mapping->private_list);
659                 bh->b_assoc_map = mapping;
660                 spin_unlock(&buffer_mapping->private_lock);
661         }
662 }
663 EXPORT_SYMBOL(mark_buffer_dirty_inode);
664
665 /*
666  * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
667  * dirty.
668  *
669  * If warn is true, then emit a warning if the page is not uptodate and has
670  * not been truncated.
671  */
672 static void __set_page_dirty(struct page *page,
673                 struct address_space *mapping, int warn)
674 {
675         spin_lock_irq(&mapping->tree_lock);
676         if (page->mapping) {    /* Race with truncate? */
677                 WARN_ON_ONCE(warn && !PageUptodate(page));
678                 account_page_dirtied(page, mapping);
679                 radix_tree_tag_set(&mapping->page_tree,
680                                 page_index(page), PAGECACHE_TAG_DIRTY);
681         }
682         spin_unlock_irq(&mapping->tree_lock);
683         __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
684 }
685
686 /*
687  * Add a page to the dirty page list.
688  *
689  * It is a sad fact of life that this function is called from several places
690  * deeply under spinlocking.  It may not sleep.
691  *
692  * If the page has buffers, the uptodate buffers are set dirty, to preserve
693  * dirty-state coherency between the page and the buffers.  It the page does
694  * not have buffers then when they are later attached they will all be set
695  * dirty.
696  *
697  * The buffers are dirtied before the page is dirtied.  There's a small race
698  * window in which a writepage caller may see the page cleanness but not the
699  * buffer dirtiness.  That's fine.  If this code were to set the page dirty
700  * before the buffers, a concurrent writepage caller could clear the page dirty
701  * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
702  * page on the dirty page list.
703  *
704  * We use private_lock to lock against try_to_free_buffers while using the
705  * page's buffer list.  Also use this to protect against clean buffers being
706  * added to the page after it was set dirty.
707  *
708  * FIXME: may need to call ->reservepage here as well.  That's rather up to the
709  * address_space though.
710  */
711 int __set_page_dirty_buffers(struct page *page)
712 {
713         int newly_dirty;
714         struct address_space *mapping = page_mapping(page);
715
716         if (unlikely(!mapping))
717                 return !TestSetPageDirty(page);
718
719         spin_lock(&mapping->private_lock);
720         if (page_has_buffers(page)) {
721                 struct buffer_head *head = page_buffers(page);
722                 struct buffer_head *bh = head;
723
724                 do {
725                         set_buffer_dirty(bh);
726                         bh = bh->b_this_page;
727                 } while (bh != head);
728         }
729         newly_dirty = !TestSetPageDirty(page);
730         spin_unlock(&mapping->private_lock);
731
732         if (newly_dirty)
733                 __set_page_dirty(page, mapping, 1);
734         return newly_dirty;
735 }
736 EXPORT_SYMBOL(__set_page_dirty_buffers);
737
738 /*
739  * Write out and wait upon a list of buffers.
740  *
741  * We have conflicting pressures: we want to make sure that all
742  * initially dirty buffers get waited on, but that any subsequently
743  * dirtied buffers don't.  After all, we don't want fsync to last
744  * forever if somebody is actively writing to the file.
745  *
746  * Do this in two main stages: first we copy dirty buffers to a
747  * temporary inode list, queueing the writes as we go.  Then we clean
748  * up, waiting for those writes to complete.
749  * 
750  * During this second stage, any subsequent updates to the file may end
751  * up refiling the buffer on the original inode's dirty list again, so
752  * there is a chance we will end up with a buffer queued for write but
753  * not yet completed on that list.  So, as a final cleanup we go through
754  * the osync code to catch these locked, dirty buffers without requeuing
755  * any newly dirty buffers for write.
756  */
757 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
758 {
759         struct buffer_head *bh;
760         struct list_head tmp;
761         struct address_space *mapping, *prev_mapping = NULL;
762         int err = 0, err2;
763
764         INIT_LIST_HEAD(&tmp);
765
766         spin_lock(lock);
767         while (!list_empty(list)) {
768                 bh = BH_ENTRY(list->next);
769                 mapping = bh->b_assoc_map;
770                 __remove_assoc_queue(bh);
771                 /* Avoid race with mark_buffer_dirty_inode() which does
772                  * a lockless check and we rely on seeing the dirty bit */
773                 smp_mb();
774                 if (buffer_dirty(bh) || buffer_locked(bh)) {
775                         list_add(&bh->b_assoc_buffers, &tmp);
776                         bh->b_assoc_map = mapping;
777                         if (buffer_dirty(bh)) {
778                                 get_bh(bh);
779                                 spin_unlock(lock);
780                                 /*
781                                  * Ensure any pending I/O completes so that
782                                  * ll_rw_block() actually writes the current
783                                  * contents - it is a noop if I/O is still in
784                                  * flight on potentially older contents.
785                                  */
786                                 ll_rw_block(SWRITE_SYNC_PLUG, 1, &bh);
787
788                                 /*
789                                  * Kick off IO for the previous mapping. Note
790                                  * that we will not run the very last mapping,
791                                  * wait_on_buffer() will do that for us
792                                  * through sync_buffer().
793                                  */
794                                 if (prev_mapping && prev_mapping != mapping)
795                                         blk_run_address_space(prev_mapping);
796                                 prev_mapping = mapping;
797
798                                 brelse(bh);
799                                 spin_lock(lock);
800                         }
801                 }
802         }
803
804         while (!list_empty(&tmp)) {
805                 bh = BH_ENTRY(tmp.prev);
806                 get_bh(bh);
807                 mapping = bh->b_assoc_map;
808                 __remove_assoc_queue(bh);
809                 /* Avoid race with mark_buffer_dirty_inode() which does
810                  * a lockless check and we rely on seeing the dirty bit */
811                 smp_mb();
812                 if (buffer_dirty(bh)) {
813                         list_add(&bh->b_assoc_buffers,
814                                  &mapping->private_list);
815                         bh->b_assoc_map = mapping;
816                 }
817                 spin_unlock(lock);
818                 wait_on_buffer(bh);
819                 if (!buffer_uptodate(bh))
820                         err = -EIO;
821                 brelse(bh);
822                 spin_lock(lock);
823         }
824         
825         spin_unlock(lock);
826         err2 = osync_buffers_list(lock, list);
827         if (err)
828                 return err;
829         else
830                 return err2;
831 }
832
833 /*
834  * Invalidate any and all dirty buffers on a given inode.  We are
835  * probably unmounting the fs, but that doesn't mean we have already
836  * done a sync().  Just drop the buffers from the inode list.
837  *
838  * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
839  * assumes that all the buffers are against the blockdev.  Not true
840  * for reiserfs.
841  */
842 void invalidate_inode_buffers(struct inode *inode)
843 {
844         if (inode_has_buffers(inode)) {
845                 struct address_space *mapping = &inode->i_data;
846                 struct list_head *list = &mapping->private_list;
847                 struct address_space *buffer_mapping = mapping->assoc_mapping;
848
849                 spin_lock(&buffer_mapping->private_lock);
850                 while (!list_empty(list))
851                         __remove_assoc_queue(BH_ENTRY(list->next));
852                 spin_unlock(&buffer_mapping->private_lock);
853         }
854 }
855 EXPORT_SYMBOL(invalidate_inode_buffers);
856
857 /*
858  * Remove any clean buffers from the inode's buffer list.  This is called
859  * when we're trying to free the inode itself.  Those buffers can pin it.
860  *
861  * Returns true if all buffers were removed.
862  */
863 int remove_inode_buffers(struct inode *inode)
864 {
865         int ret = 1;
866
867         if (inode_has_buffers(inode)) {
868                 struct address_space *mapping = &inode->i_data;
869                 struct list_head *list = &mapping->private_list;
870                 struct address_space *buffer_mapping = mapping->assoc_mapping;
871
872                 spin_lock(&buffer_mapping->private_lock);
873                 while (!list_empty(list)) {
874                         struct buffer_head *bh = BH_ENTRY(list->next);
875                         if (buffer_dirty(bh)) {
876                                 ret = 0;
877                                 break;
878                         }
879                         __remove_assoc_queue(bh);
880                 }
881                 spin_unlock(&buffer_mapping->private_lock);
882         }
883         return ret;
884 }
885
886 /*
887  * Create the appropriate buffers when given a page for data area and
888  * the size of each buffer.. Use the bh->b_this_page linked list to
889  * follow the buffers created.  Return NULL if unable to create more
890  * buffers.
891  *
892  * The retry flag is used to differentiate async IO (paging, swapping)
893  * which may not fail from ordinary buffer allocations.
894  */
895 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
896                 int retry)
897 {
898         struct buffer_head *bh, *head;
899         long offset;
900
901 try_again:
902         head = NULL;
903         offset = PAGE_SIZE;
904         while ((offset -= size) >= 0) {
905                 bh = alloc_buffer_head(GFP_NOFS);
906                 if (!bh)
907                         goto no_grow;
908
909                 bh->b_bdev = NULL;
910                 bh->b_this_page = head;
911                 bh->b_blocknr = -1;
912                 head = bh;
913
914                 bh->b_state = 0;
915                 atomic_set(&bh->b_count, 0);
916                 bh->b_private = NULL;
917                 bh->b_size = size;
918
919                 /* Link the buffer to its page */
920                 set_bh_page(bh, page, offset);
921
922                 init_buffer(bh, NULL, NULL);
923         }
924         return head;
925 /*
926  * In case anything failed, we just free everything we got.
927  */
928 no_grow:
929         if (head) {
930                 do {
931                         bh = head;
932                         head = head->b_this_page;
933                         free_buffer_head(bh);
934                 } while (head);
935         }
936
937         /*
938          * Return failure for non-async IO requests.  Async IO requests
939          * are not allowed to fail, so we have to wait until buffer heads
940          * become available.  But we don't want tasks sleeping with 
941          * partially complete buffers, so all were released above.
942          */
943         if (!retry)
944                 return NULL;
945
946         /* We're _really_ low on memory. Now we just
947          * wait for old buffer heads to become free due to
948          * finishing IO.  Since this is an async request and
949          * the reserve list is empty, we're sure there are 
950          * async buffer heads in use.
951          */
952         free_more_memory();
953         goto try_again;
954 }
955 EXPORT_SYMBOL_GPL(alloc_page_buffers);
956
957 static inline void
958 link_dev_buffers(struct page *page, struct buffer_head *head)
959 {
960         struct buffer_head *bh, *tail;
961
962         bh = head;
963         do {
964                 tail = bh;
965                 bh = bh->b_this_page;
966         } while (bh);
967         tail->b_this_page = head;
968         attach_page_buffers(page, head);
969 }
970
971 /*
972  * Initialise the state of a blockdev page's buffers.
973  */ 
974 static void
975 init_page_buffers(struct page *page, struct block_device *bdev,
976                         sector_t block, int size)
977 {
978         struct buffer_head *head = page_buffers(page);
979         struct buffer_head *bh = head;
980         int uptodate = PageUptodate(page);
981
982         do {
983                 if (!buffer_mapped(bh)) {
984                         init_buffer(bh, NULL, NULL);
985                         bh->b_bdev = bdev;
986                         bh->b_blocknr = block;
987                         if (uptodate)
988                                 set_buffer_uptodate(bh);
989                         set_buffer_mapped(bh);
990                 }
991                 block++;
992                 bh = bh->b_this_page;
993         } while (bh != head);
994 }
995
996 /*
997  * Create the page-cache page that contains the requested block.
998  *
999  * This is user purely for blockdev mappings.
1000  */
1001 static struct page *
1002 grow_dev_page(struct block_device *bdev, sector_t block,
1003                 pgoff_t index, int size)
1004 {
1005         struct inode *inode = bdev->bd_inode;
1006         struct page *page;
1007         struct buffer_head *bh;
1008
1009         page = find_or_create_page(inode->i_mapping, index,
1010                 (mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS)|__GFP_MOVABLE);
1011         if (!page)
1012                 return NULL;
1013
1014         BUG_ON(!PageLocked(page));
1015
1016         if (page_has_buffers(page)) {
1017                 bh = page_buffers(page);
1018                 if (bh->b_size == size) {
1019                         init_page_buffers(page, bdev, block, size);
1020                         return page;
1021                 }
1022                 if (!try_to_free_buffers(page))
1023                         goto failed;
1024         }
1025
1026         /*
1027          * Allocate some buffers for this page
1028          */
1029         bh = alloc_page_buffers(page, size, 0);
1030         if (!bh)
1031                 goto failed;
1032
1033         /*
1034          * Link the page to the buffers and initialise them.  Take the
1035          * lock to be atomic wrt __find_get_block(), which does not
1036          * run under the page lock.
1037          */
1038         spin_lock(&inode->i_mapping->private_lock);
1039         link_dev_buffers(page, bh);
1040         init_page_buffers(page, bdev, block, size);
1041         spin_unlock(&inode->i_mapping->private_lock);
1042         return page;
1043
1044 failed:
1045         BUG();
1046         unlock_page(page);
1047         page_cache_release(page);
1048         return NULL;
1049 }
1050
1051 /*
1052  * Create buffers for the specified block device block's page.  If
1053  * that page was dirty, the buffers are set dirty also.
1054  */
1055 static int
1056 grow_buffers(struct block_device *bdev, sector_t block, int size)
1057 {
1058         struct page *page;
1059         pgoff_t index;
1060         int sizebits;
1061
1062         sizebits = -1;
1063         do {
1064                 sizebits++;
1065         } while ((size << sizebits) < PAGE_SIZE);
1066
1067         index = block >> sizebits;
1068
1069         /*
1070          * Check for a block which wants to lie outside our maximum possible
1071          * pagecache index.  (this comparison is done using sector_t types).
1072          */
1073         if (unlikely(index != block >> sizebits)) {
1074                 char b[BDEVNAME_SIZE];
1075
1076                 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1077                         "device %s\n",
1078                         __func__, (unsigned long long)block,
1079                         bdevname(bdev, b));
1080                 return -EIO;
1081         }
1082         block = index << sizebits;
1083         /* Create a page with the proper size buffers.. */
1084         page = grow_dev_page(bdev, block, index, size);
1085         if (!page)
1086                 return 0;
1087         unlock_page(page);
1088         page_cache_release(page);
1089         return 1;
1090 }
1091
1092 static struct buffer_head *
1093 __getblk_slow(struct block_device *bdev, sector_t block, int size)
1094 {
1095         /* Size must be multiple of hard sectorsize */
1096         if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1097                         (size < 512 || size > PAGE_SIZE))) {
1098                 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1099                                         size);
1100                 printk(KERN_ERR "logical block size: %d\n",
1101                                         bdev_logical_block_size(bdev));
1102
1103                 dump_stack();
1104                 return NULL;
1105         }
1106
1107         for (;;) {
1108                 struct buffer_head * bh;
1109                 int ret;
1110
1111                 bh = __find_get_block(bdev, block, size);
1112                 if (bh)
1113                         return bh;
1114
1115                 ret = grow_buffers(bdev, block, size);
1116                 if (ret < 0)
1117                         return NULL;
1118                 if (ret == 0)
1119                         free_more_memory();
1120         }
1121 }
1122
1123 /*
1124  * The relationship between dirty buffers and dirty pages:
1125  *
1126  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1127  * the page is tagged dirty in its radix tree.
1128  *
1129  * At all times, the dirtiness of the buffers represents the dirtiness of
1130  * subsections of the page.  If the page has buffers, the page dirty bit is
1131  * merely a hint about the true dirty state.
1132  *
1133  * When a page is set dirty in its entirety, all its buffers are marked dirty
1134  * (if the page has buffers).
1135  *
1136  * When a buffer is marked dirty, its page is dirtied, but the page's other
1137  * buffers are not.
1138  *
1139  * Also.  When blockdev buffers are explicitly read with bread(), they
1140  * individually become uptodate.  But their backing page remains not
1141  * uptodate - even if all of its buffers are uptodate.  A subsequent
1142  * block_read_full_page() against that page will discover all the uptodate
1143  * buffers, will set the page uptodate and will perform no I/O.
1144  */
1145
1146 /**
1147  * mark_buffer_dirty - mark a buffer_head as needing writeout
1148  * @bh: the buffer_head to mark dirty
1149  *
1150  * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1151  * backing page dirty, then tag the page as dirty in its address_space's radix
1152  * tree and then attach the address_space's inode to its superblock's dirty
1153  * inode list.
1154  *
1155  * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1156  * mapping->tree_lock and the global inode_lock.
1157  */
1158 void mark_buffer_dirty(struct buffer_head *bh)
1159 {
1160         WARN_ON_ONCE(!buffer_uptodate(bh));
1161
1162         /*
1163          * Very *carefully* optimize the it-is-already-dirty case.
1164          *
1165          * Don't let the final "is it dirty" escape to before we
1166          * perhaps modified the buffer.
1167          */
1168         if (buffer_dirty(bh)) {
1169                 smp_mb();
1170                 if (buffer_dirty(bh))
1171                         return;
1172         }
1173
1174         if (!test_set_buffer_dirty(bh)) {
1175                 struct page *page = bh->b_page;
1176                 if (!TestSetPageDirty(page)) {
1177                         struct address_space *mapping = page_mapping(page);
1178                         if (mapping)
1179                                 __set_page_dirty(page, mapping, 0);
1180                 }
1181         }
1182 }
1183 EXPORT_SYMBOL(mark_buffer_dirty);
1184
1185 /*
1186  * Decrement a buffer_head's reference count.  If all buffers against a page
1187  * have zero reference count, are clean and unlocked, and if the page is clean
1188  * and unlocked then try_to_free_buffers() may strip the buffers from the page
1189  * in preparation for freeing it (sometimes, rarely, buffers are removed from
1190  * a page but it ends up not being freed, and buffers may later be reattached).
1191  */
1192 void __brelse(struct buffer_head * buf)
1193 {
1194         if (atomic_read(&buf->b_count)) {
1195                 put_bh(buf);
1196                 return;
1197         }
1198         WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1199 }
1200 EXPORT_SYMBOL(__brelse);
1201
1202 /*
1203  * bforget() is like brelse(), except it discards any
1204  * potentially dirty data.
1205  */
1206 void __bforget(struct buffer_head *bh)
1207 {
1208         clear_buffer_dirty(bh);
1209         if (bh->b_assoc_map) {
1210                 struct address_space *buffer_mapping = bh->b_page->mapping;
1211
1212                 spin_lock(&buffer_mapping->private_lock);
1213                 list_del_init(&bh->b_assoc_buffers);
1214                 bh->b_assoc_map = NULL;
1215                 spin_unlock(&buffer_mapping->private_lock);
1216         }
1217         __brelse(bh);
1218 }
1219 EXPORT_SYMBOL(__bforget);
1220
1221 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1222 {
1223         lock_buffer(bh);
1224         if (buffer_uptodate(bh)) {
1225                 unlock_buffer(bh);
1226                 return bh;
1227         } else {
1228                 get_bh(bh);
1229                 bh->b_end_io = end_buffer_read_sync;
1230                 submit_bh(READ, bh);
1231                 wait_on_buffer(bh);
1232                 if (buffer_uptodate(bh))
1233                         return bh;
1234         }
1235         brelse(bh);
1236         return NULL;
1237 }
1238
1239 /*
1240  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1241  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1242  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1243  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1244  * CPU's LRUs at the same time.
1245  *
1246  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1247  * sb_find_get_block().
1248  *
1249  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1250  * a local interrupt disable for that.
1251  */
1252
1253 #define BH_LRU_SIZE     8
1254
1255 struct bh_lru {
1256         struct buffer_head *bhs[BH_LRU_SIZE];
1257 };
1258
1259 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1260
1261 #ifdef CONFIG_SMP
1262 #define bh_lru_lock()   local_irq_disable()
1263 #define bh_lru_unlock() local_irq_enable()
1264 #else
1265 #define bh_lru_lock()   preempt_disable()
1266 #define bh_lru_unlock() preempt_enable()
1267 #endif
1268
1269 static inline void check_irqs_on(void)
1270 {
1271 #ifdef irqs_disabled
1272         BUG_ON(irqs_disabled());
1273 #endif
1274 }
1275
1276 /*
1277  * The LRU management algorithm is dopey-but-simple.  Sorry.
1278  */
1279 static void bh_lru_install(struct buffer_head *bh)
1280 {
1281         struct buffer_head *evictee = NULL;
1282         struct bh_lru *lru;
1283
1284         check_irqs_on();
1285         bh_lru_lock();
1286         lru = &__get_cpu_var(bh_lrus);
1287         if (lru->bhs[0] != bh) {
1288                 struct buffer_head *bhs[BH_LRU_SIZE];
1289                 int in;
1290                 int out = 0;
1291
1292                 get_bh(bh);
1293                 bhs[out++] = bh;
1294                 for (in = 0; in < BH_LRU_SIZE; in++) {
1295                         struct buffer_head *bh2 = lru->bhs[in];
1296
1297                         if (bh2 == bh) {
1298                                 __brelse(bh2);
1299                         } else {
1300                                 if (out >= BH_LRU_SIZE) {
1301                                         BUG_ON(evictee != NULL);
1302                                         evictee = bh2;
1303                                 } else {
1304                                         bhs[out++] = bh2;
1305                                 }
1306                         }
1307                 }
1308                 while (out < BH_LRU_SIZE)
1309                         bhs[out++] = NULL;
1310                 memcpy(lru->bhs, bhs, sizeof(bhs));
1311         }
1312         bh_lru_unlock();
1313
1314         if (evictee)
1315                 __brelse(evictee);
1316 }
1317
1318 /*
1319  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1320  */
1321 static struct buffer_head *
1322 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1323 {
1324         struct buffer_head *ret = NULL;
1325         struct bh_lru *lru;
1326         unsigned int i;
1327
1328         check_irqs_on();
1329         bh_lru_lock();
1330         lru = &__get_cpu_var(bh_lrus);
1331         for (i = 0; i < BH_LRU_SIZE; i++) {
1332                 struct buffer_head *bh = lru->bhs[i];
1333
1334                 if (bh && bh->b_bdev == bdev &&
1335                                 bh->b_blocknr == block && bh->b_size == size) {
1336                         if (i) {
1337                                 while (i) {
1338                                         lru->bhs[i] = lru->bhs[i - 1];
1339                                         i--;
1340                                 }
1341                                 lru->bhs[0] = bh;
1342                         }
1343                         get_bh(bh);
1344                         ret = bh;
1345                         break;
1346                 }
1347         }
1348         bh_lru_unlock();
1349         return ret;
1350 }
1351
1352 /*
1353  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1354  * it in the LRU and mark it as accessed.  If it is not present then return
1355  * NULL
1356  */
1357 struct buffer_head *
1358 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1359 {
1360         struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1361
1362         if (bh == NULL) {
1363                 bh = __find_get_block_slow(bdev, block);
1364                 if (bh)
1365                         bh_lru_install(bh);
1366         }
1367         if (bh)
1368                 touch_buffer(bh);
1369         return bh;
1370 }
1371 EXPORT_SYMBOL(__find_get_block);
1372
1373 /*
1374  * __getblk will locate (and, if necessary, create) the buffer_head
1375  * which corresponds to the passed block_device, block and size. The
1376  * returned buffer has its reference count incremented.
1377  *
1378  * __getblk() cannot fail - it just keeps trying.  If you pass it an
1379  * illegal block number, __getblk() will happily return a buffer_head
1380  * which represents the non-existent block.  Very weird.
1381  *
1382  * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1383  * attempt is failing.  FIXME, perhaps?
1384  */
1385 struct buffer_head *
1386 __getblk(struct block_device *bdev, sector_t block, unsigned size)
1387 {
1388         struct buffer_head *bh = __find_get_block(bdev, block, size);
1389
1390         might_sleep();
1391         if (bh == NULL)
1392                 bh = __getblk_slow(bdev, block, size);
1393         return bh;
1394 }
1395 EXPORT_SYMBOL(__getblk);
1396
1397 /*
1398  * Do async read-ahead on a buffer..
1399  */
1400 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1401 {
1402         struct buffer_head *bh = __getblk(bdev, block, size);
1403         if (likely(bh)) {
1404                 ll_rw_block(READA, 1, &bh);
1405                 brelse(bh);
1406         }
1407 }
1408 EXPORT_SYMBOL(__breadahead);
1409
1410 /**
1411  *  __bread() - reads a specified block and returns the bh
1412  *  @bdev: the block_device to read from
1413  *  @block: number of block
1414  *  @size: size (in bytes) to read
1415  * 
1416  *  Reads a specified block, and returns buffer head that contains it.
1417  *  It returns NULL if the block was unreadable.
1418  */
1419 struct buffer_head *
1420 __bread(struct block_device *bdev, sector_t block, unsigned size)
1421 {
1422         struct buffer_head *bh = __getblk(bdev, block, size);
1423
1424         if (likely(bh) && !buffer_uptodate(bh))
1425                 bh = __bread_slow(bh);
1426         return bh;
1427 }
1428 EXPORT_SYMBOL(__bread);
1429
1430 /*
1431  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1432  * This doesn't race because it runs in each cpu either in irq
1433  * or with preempt disabled.
1434  */
1435 static void invalidate_bh_lru(void *arg)
1436 {
1437         struct bh_lru *b = &get_cpu_var(bh_lrus);
1438         int i;
1439
1440         for (i = 0; i < BH_LRU_SIZE; i++) {
1441                 brelse(b->bhs[i]);
1442                 b->bhs[i] = NULL;
1443         }
1444         put_cpu_var(bh_lrus);
1445 }
1446         
1447 void invalidate_bh_lrus(void)
1448 {
1449         on_each_cpu(invalidate_bh_lru, NULL, 1);
1450 }
1451 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1452
1453 void set_bh_page(struct buffer_head *bh,
1454                 struct page *page, unsigned long offset)
1455 {
1456         bh->b_page = page;
1457         BUG_ON(offset >= PAGE_SIZE);
1458         if (PageHighMem(page))
1459                 /*
1460                  * This catches illegal uses and preserves the offset:
1461                  */
1462                 bh->b_data = (char *)(0 + offset);
1463         else
1464                 bh->b_data = page_address(page) + offset;
1465 }
1466 EXPORT_SYMBOL(set_bh_page);
1467
1468 /*
1469  * Called when truncating a buffer on a page completely.
1470  */
1471 static void discard_buffer(struct buffer_head * bh)
1472 {
1473         lock_buffer(bh);
1474         clear_buffer_dirty(bh);
1475         bh->b_bdev = NULL;
1476         clear_buffer_mapped(bh);
1477         clear_buffer_req(bh);
1478         clear_buffer_new(bh);
1479         clear_buffer_delay(bh);
1480         clear_buffer_unwritten(bh);
1481         unlock_buffer(bh);
1482 }
1483
1484 /**
1485  * block_invalidatepage - invalidate part of all of a buffer-backed page
1486  *
1487  * @page: the page which is affected
1488  * @offset: the index of the truncation point
1489  *
1490  * block_invalidatepage() is called when all or part of the page has become
1491  * invalidatedby a truncate operation.
1492  *
1493  * block_invalidatepage() does not have to release all buffers, but it must
1494  * ensure that no dirty buffer is left outside @offset and that no I/O
1495  * is underway against any of the blocks which are outside the truncation
1496  * point.  Because the caller is about to free (and possibly reuse) those
1497  * blocks on-disk.
1498  */
1499 void block_invalidatepage(struct page *page, unsigned long offset)
1500 {
1501         struct buffer_head *head, *bh, *next;
1502         unsigned int curr_off = 0;
1503
1504         BUG_ON(!PageLocked(page));
1505         if (!page_has_buffers(page))
1506                 goto out;
1507
1508         head = page_buffers(page);
1509         bh = head;
1510         do {
1511                 unsigned int next_off = curr_off + bh->b_size;
1512                 next = bh->b_this_page;
1513
1514                 /*
1515                  * is this block fully invalidated?
1516                  */
1517                 if (offset <= curr_off)
1518                         discard_buffer(bh);
1519                 curr_off = next_off;
1520                 bh = next;
1521         } while (bh != head);
1522
1523         /*
1524          * We release buffers only if the entire page is being invalidated.
1525          * The get_block cached value has been unconditionally invalidated,
1526          * so real IO is not possible anymore.
1527          */
1528         if (offset == 0)
1529                 try_to_release_page(page, 0);
1530 out:
1531         return;
1532 }
1533 EXPORT_SYMBOL(block_invalidatepage);
1534
1535 /*
1536  * We attach and possibly dirty the buffers atomically wrt
1537  * __set_page_dirty_buffers() via private_lock.  try_to_free_buffers
1538  * is already excluded via the page lock.
1539  */
1540 void create_empty_buffers(struct page *page,
1541                         unsigned long blocksize, unsigned long b_state)
1542 {
1543         struct buffer_head *bh, *head, *tail;
1544
1545         head = alloc_page_buffers(page, blocksize, 1);
1546         bh = head;
1547         do {
1548                 bh->b_state |= b_state;
1549                 tail = bh;
1550                 bh = bh->b_this_page;
1551         } while (bh);
1552         tail->b_this_page = head;
1553
1554         spin_lock(&page->mapping->private_lock);
1555         if (PageUptodate(page) || PageDirty(page)) {
1556                 bh = head;
1557                 do {
1558                         if (PageDirty(page))
1559                                 set_buffer_dirty(bh);
1560                         if (PageUptodate(page))
1561                                 set_buffer_uptodate(bh);
1562                         bh = bh->b_this_page;
1563                 } while (bh != head);
1564         }
1565         attach_page_buffers(page, head);
1566         spin_unlock(&page->mapping->private_lock);
1567 }
1568 EXPORT_SYMBOL(create_empty_buffers);
1569
1570 /*
1571  * We are taking a block for data and we don't want any output from any
1572  * buffer-cache aliases starting from return from that function and
1573  * until the moment when something will explicitly mark the buffer
1574  * dirty (hopefully that will not happen until we will free that block ;-)
1575  * We don't even need to mark it not-uptodate - nobody can expect
1576  * anything from a newly allocated buffer anyway. We used to used
1577  * unmap_buffer() for such invalidation, but that was wrong. We definitely
1578  * don't want to mark the alias unmapped, for example - it would confuse
1579  * anyone who might pick it with bread() afterwards...
1580  *
1581  * Also..  Note that bforget() doesn't lock the buffer.  So there can
1582  * be writeout I/O going on against recently-freed buffers.  We don't
1583  * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1584  * only if we really need to.  That happens here.
1585  */
1586 void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1587 {
1588         struct buffer_head *old_bh;
1589
1590         might_sleep();
1591
1592         old_bh = __find_get_block_slow(bdev, block);
1593         if (old_bh) {
1594                 clear_buffer_dirty(old_bh);
1595                 wait_on_buffer(old_bh);
1596                 clear_buffer_req(old_bh);
1597                 __brelse(old_bh);
1598         }
1599 }
1600 EXPORT_SYMBOL(unmap_underlying_metadata);
1601
1602 /*
1603  * NOTE! All mapped/uptodate combinations are valid:
1604  *
1605  *      Mapped  Uptodate        Meaning
1606  *
1607  *      No      No              "unknown" - must do get_block()
1608  *      No      Yes             "hole" - zero-filled
1609  *      Yes     No              "allocated" - allocated on disk, not read in
1610  *      Yes     Yes             "valid" - allocated and up-to-date in memory.
1611  *
1612  * "Dirty" is valid only with the last case (mapped+uptodate).
1613  */
1614
1615 /*
1616  * While block_write_full_page is writing back the dirty buffers under
1617  * the page lock, whoever dirtied the buffers may decide to clean them
1618  * again at any time.  We handle that by only looking at the buffer
1619  * state inside lock_buffer().
1620  *
1621  * If block_write_full_page() is called for regular writeback
1622  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1623  * locked buffer.   This only can happen if someone has written the buffer
1624  * directly, with submit_bh().  At the address_space level PageWriteback
1625  * prevents this contention from occurring.
1626  *
1627  * If block_write_full_page() is called with wbc->sync_mode ==
1628  * WB_SYNC_ALL, the writes are posted using WRITE_SYNC_PLUG; this
1629  * causes the writes to be flagged as synchronous writes, but the
1630  * block device queue will NOT be unplugged, since usually many pages
1631  * will be pushed to the out before the higher-level caller actually
1632  * waits for the writes to be completed.  The various wait functions,
1633  * such as wait_on_writeback_range() will ultimately call sync_page()
1634  * which will ultimately call blk_run_backing_dev(), which will end up
1635  * unplugging the device queue.
1636  */
1637 static int __block_write_full_page(struct inode *inode, struct page *page,
1638                         get_block_t *get_block, struct writeback_control *wbc,
1639                         bh_end_io_t *handler)
1640 {
1641         int err;
1642         sector_t block;
1643         sector_t last_block;
1644         struct buffer_head *bh, *head;
1645         const unsigned blocksize = 1 << inode->i_blkbits;
1646         int nr_underway = 0;
1647         int write_op = (wbc->sync_mode == WB_SYNC_ALL ?
1648                         WRITE_SYNC_PLUG : WRITE);
1649
1650         BUG_ON(!PageLocked(page));
1651
1652         last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
1653
1654         if (!page_has_buffers(page)) {
1655                 create_empty_buffers(page, blocksize,
1656                                         (1 << BH_Dirty)|(1 << BH_Uptodate));
1657         }
1658
1659         /*
1660          * Be very careful.  We have no exclusion from __set_page_dirty_buffers
1661          * here, and the (potentially unmapped) buffers may become dirty at
1662          * any time.  If a buffer becomes dirty here after we've inspected it
1663          * then we just miss that fact, and the page stays dirty.
1664          *
1665          * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1666          * handle that here by just cleaning them.
1667          */
1668
1669         block = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1670         head = page_buffers(page);
1671         bh = head;
1672
1673         /*
1674          * Get all the dirty buffers mapped to disk addresses and
1675          * handle any aliases from the underlying blockdev's mapping.
1676          */
1677         do {
1678                 if (block > last_block) {
1679                         /*
1680                          * mapped buffers outside i_size will occur, because
1681                          * this page can be outside i_size when there is a
1682                          * truncate in progress.
1683                          */
1684                         /*
1685                          * The buffer was zeroed by block_write_full_page()
1686                          */
1687                         clear_buffer_dirty(bh);
1688                         set_buffer_uptodate(bh);
1689                 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1690                            buffer_dirty(bh)) {
1691                         WARN_ON(bh->b_size != blocksize);
1692                         err = get_block(inode, block, bh, 1);
1693                         if (err)
1694                                 goto recover;
1695                         clear_buffer_delay(bh);
1696                         if (buffer_new(bh)) {
1697                                 /* blockdev mappings never come here */
1698                                 clear_buffer_new(bh);
1699                                 unmap_underlying_metadata(bh->b_bdev,
1700                                                         bh->b_blocknr);
1701                         }
1702                 }
1703                 bh = bh->b_this_page;
1704                 block++;
1705         } while (bh != head);
1706
1707         do {
1708                 if (!buffer_mapped(bh))
1709                         continue;
1710                 /*
1711                  * If it's a fully non-blocking write attempt and we cannot
1712                  * lock the buffer then redirty the page.  Note that this can
1713                  * potentially cause a busy-wait loop from writeback threads
1714                  * and kswapd activity, but those code paths have their own
1715                  * higher-level throttling.
1716                  */
1717                 if (wbc->sync_mode != WB_SYNC_NONE || !wbc->nonblocking) {
1718                         lock_buffer(bh);
1719                 } else if (!trylock_buffer(bh)) {
1720                         redirty_page_for_writepage(wbc, page);
1721                         continue;
1722                 }
1723                 if (test_clear_buffer_dirty(bh)) {
1724                         mark_buffer_async_write_endio(bh, handler);
1725                 } else {
1726                         unlock_buffer(bh);
1727                 }
1728         } while ((bh = bh->b_this_page) != head);
1729
1730         /*
1731          * The page and its buffers are protected by PageWriteback(), so we can
1732          * drop the bh refcounts early.
1733          */
1734         BUG_ON(PageWriteback(page));
1735         set_page_writeback(page);
1736
1737         do {
1738                 struct buffer_head *next = bh->b_this_page;
1739                 if (buffer_async_write(bh)) {
1740                         submit_bh(write_op, bh);
1741                         nr_underway++;
1742                 }
1743                 bh = next;
1744         } while (bh != head);
1745         unlock_page(page);
1746
1747         err = 0;
1748 done:
1749         if (nr_underway == 0) {
1750                 /*
1751                  * The page was marked dirty, but the buffers were
1752                  * clean.  Someone wrote them back by hand with
1753                  * ll_rw_block/submit_bh.  A rare case.
1754                  */
1755                 end_page_writeback(page);
1756
1757                 /*
1758                  * The page and buffer_heads can be released at any time from
1759                  * here on.
1760                  */
1761         }
1762         return err;
1763
1764 recover:
1765         /*
1766          * ENOSPC, or some other error.  We may already have added some
1767          * blocks to the file, so we need to write these out to avoid
1768          * exposing stale data.
1769          * The page is currently locked and not marked for writeback
1770          */
1771         bh = head;
1772         /* Recovery: lock and submit the mapped buffers */
1773         do {
1774                 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1775                     !buffer_delay(bh)) {
1776                         lock_buffer(bh);
1777                         mark_buffer_async_write_endio(bh, handler);
1778                 } else {
1779                         /*
1780                          * The buffer may have been set dirty during
1781                          * attachment to a dirty page.
1782                          */
1783                         clear_buffer_dirty(bh);
1784                 }
1785         } while ((bh = bh->b_this_page) != head);
1786         SetPageError(page);
1787         BUG_ON(PageWriteback(page));
1788         mapping_set_error(page->mapping, err);
1789         set_page_writeback(page);
1790         do {
1791                 struct buffer_head *next = bh->b_this_page;
1792                 if (buffer_async_write(bh)) {
1793                         clear_buffer_dirty(bh);
1794                         submit_bh(write_op, bh);
1795                         nr_underway++;
1796                 }
1797                 bh = next;
1798         } while (bh != head);
1799         unlock_page(page);
1800         goto done;
1801 }
1802
1803 /*
1804  * If a page has any new buffers, zero them out here, and mark them uptodate
1805  * and dirty so they'll be written out (in order to prevent uninitialised
1806  * block data from leaking). And clear the new bit.
1807  */
1808 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1809 {
1810         unsigned int block_start, block_end;
1811         struct buffer_head *head, *bh;
1812
1813         BUG_ON(!PageLocked(page));
1814         if (!page_has_buffers(page))
1815                 return;
1816
1817         bh = head = page_buffers(page);
1818         block_start = 0;
1819         do {
1820                 block_end = block_start + bh->b_size;
1821
1822                 if (buffer_new(bh)) {
1823                         if (block_end > from && block_start < to) {
1824                                 if (!PageUptodate(page)) {
1825                                         unsigned start, size;
1826
1827                                         start = max(from, block_start);
1828                                         size = min(to, block_end) - start;
1829
1830                                         zero_user(page, start, size);
1831                                         set_buffer_uptodate(bh);
1832                                 }
1833
1834                                 clear_buffer_new(bh);
1835                                 mark_buffer_dirty(bh);
1836                         }
1837                 }
1838
1839                 block_start = block_end;
1840                 bh = bh->b_this_page;
1841         } while (bh != head);
1842 }
1843 EXPORT_SYMBOL(page_zero_new_buffers);
1844
1845 static int __block_prepare_write(struct inode *inode, struct page *page,
1846                 unsigned from, unsigned to, get_block_t *get_block)
1847 {
1848         unsigned block_start, block_end;
1849         sector_t block;
1850         int err = 0;
1851         unsigned blocksize, bbits;
1852         struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1853
1854         BUG_ON(!PageLocked(page));
1855         BUG_ON(from > PAGE_CACHE_SIZE);
1856         BUG_ON(to > PAGE_CACHE_SIZE);
1857         BUG_ON(from > to);
1858
1859         blocksize = 1 << inode->i_blkbits;
1860         if (!page_has_buffers(page))
1861                 create_empty_buffers(page, blocksize, 0);
1862         head = page_buffers(page);
1863
1864         bbits = inode->i_blkbits;
1865         block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1866
1867         for(bh = head, block_start = 0; bh != head || !block_start;
1868             block++, block_start=block_end, bh = bh->b_this_page) {
1869                 block_end = block_start + blocksize;
1870                 if (block_end <= from || block_start >= to) {
1871                         if (PageUptodate(page)) {
1872                                 if (!buffer_uptodate(bh))
1873                                         set_buffer_uptodate(bh);
1874                         }
1875                         continue;
1876                 }
1877                 if (buffer_new(bh))
1878                         clear_buffer_new(bh);
1879                 if (!buffer_mapped(bh)) {
1880                         WARN_ON(bh->b_size != blocksize);
1881                         err = get_block(inode, block, bh, 1);
1882                         if (err)
1883                                 break;
1884                         if (buffer_new(bh)) {
1885                                 unmap_underlying_metadata(bh->b_bdev,
1886                                                         bh->b_blocknr);
1887                                 if (PageUptodate(page)) {
1888                                         clear_buffer_new(bh);
1889                                         set_buffer_uptodate(bh);
1890                                         mark_buffer_dirty(bh);
1891                                         continue;
1892                                 }
1893                                 if (block_end > to || block_start < from)
1894                                         zero_user_segments(page,
1895                                                 to, block_end,
1896                                                 block_start, from);
1897                                 continue;
1898                         }
1899                 }
1900                 if (PageUptodate(page)) {
1901                         if (!buffer_uptodate(bh))
1902                                 set_buffer_uptodate(bh);
1903                         continue; 
1904                 }
1905                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1906                     !buffer_unwritten(bh) &&
1907                      (block_start < from || block_end > to)) {
1908                         ll_rw_block(READ, 1, &bh);
1909                         *wait_bh++=bh;
1910                 }
1911         }
1912         /*
1913          * If we issued read requests - let them complete.
1914          */
1915         while(wait_bh > wait) {
1916                 wait_on_buffer(*--wait_bh);
1917                 if (!buffer_uptodate(*wait_bh))
1918                         err = -EIO;
1919         }
1920         if (unlikely(err))
1921                 page_zero_new_buffers(page, from, to);
1922         return err;
1923 }
1924
1925 static int __block_commit_write(struct inode *inode, struct page *page,
1926                 unsigned from, unsigned to)
1927 {
1928         unsigned block_start, block_end;
1929         int partial = 0;
1930         unsigned blocksize;
1931         struct buffer_head *bh, *head;
1932
1933         blocksize = 1 << inode->i_blkbits;
1934
1935         for(bh = head = page_buffers(page), block_start = 0;
1936             bh != head || !block_start;
1937             block_start=block_end, bh = bh->b_this_page) {
1938                 block_end = block_start + blocksize;
1939                 if (block_end <= from || block_start >= to) {
1940                         if (!buffer_uptodate(bh))
1941                                 partial = 1;
1942                 } else {
1943                         set_buffer_uptodate(bh);
1944                         mark_buffer_dirty(bh);
1945                 }
1946                 clear_buffer_new(bh);
1947         }
1948
1949         /*
1950          * If this is a partial write which happened to make all buffers
1951          * uptodate then we can optimize away a bogus readpage() for
1952          * the next read(). Here we 'discover' whether the page went
1953          * uptodate as a result of this (potentially partial) write.
1954          */
1955         if (!partial)
1956                 SetPageUptodate(page);
1957         return 0;
1958 }
1959
1960 /*
1961  * block_write_begin takes care of the basic task of block allocation and
1962  * bringing partial write blocks uptodate first.
1963  *
1964  * If *pagep is not NULL, then block_write_begin uses the locked page
1965  * at *pagep rather than allocating its own. In this case, the page will
1966  * not be unlocked or deallocated on failure.
1967  */
1968 int block_write_begin(struct file *file, struct address_space *mapping,
1969                         loff_t pos, unsigned len, unsigned flags,
1970                         struct page **pagep, void **fsdata,
1971                         get_block_t *get_block)
1972 {
1973         struct inode *inode = mapping->host;
1974         int status = 0;
1975         struct page *page;
1976         pgoff_t index;
1977         unsigned start, end;
1978         int ownpage = 0;
1979
1980         index = pos >> PAGE_CACHE_SHIFT;
1981         start = pos & (PAGE_CACHE_SIZE - 1);
1982         end = start + len;
1983
1984         page = *pagep;
1985         if (page == NULL) {
1986                 ownpage = 1;
1987                 page = grab_cache_page_write_begin(mapping, index, flags);
1988                 if (!page) {
1989                         status = -ENOMEM;
1990                         goto out;
1991                 }
1992                 *pagep = page;
1993         } else
1994                 BUG_ON(!PageLocked(page));
1995
1996         status = __block_prepare_write(inode, page, start, end, get_block);
1997         if (unlikely(status)) {
1998                 ClearPageUptodate(page);
1999
2000                 if (ownpage) {
2001                         unlock_page(page);
2002                         page_cache_release(page);
2003                         *pagep = NULL;
2004
2005                         /*
2006                          * prepare_write() may have instantiated a few blocks
2007                          * outside i_size.  Trim these off again. Don't need
2008                          * i_size_read because we hold i_mutex.
2009                          */
2010                         if (pos + len > inode->i_size)
2011                                 vmtruncate(inode, inode->i_size);
2012                 }
2013         }
2014
2015 out:
2016         return status;
2017 }
2018 EXPORT_SYMBOL(block_write_begin);
2019
2020 int block_write_end(struct file *file, struct address_space *mapping,
2021                         loff_t pos, unsigned len, unsigned copied,
2022                         struct page *page, void *fsdata)
2023 {
2024         struct inode *inode = mapping->host;
2025         unsigned start;
2026
2027         start = pos & (PAGE_CACHE_SIZE - 1);
2028
2029         if (unlikely(copied < len)) {
2030                 /*
2031                  * The buffers that were written will now be uptodate, so we
2032                  * don't have to worry about a readpage reading them and
2033                  * overwriting a partial write. However if we have encountered
2034                  * a short write and only partially written into a buffer, it
2035                  * will not be marked uptodate, so a readpage might come in and
2036                  * destroy our partial write.
2037                  *
2038                  * Do the simplest thing, and just treat any short write to a
2039                  * non uptodate page as a zero-length write, and force the
2040                  * caller to redo the whole thing.
2041                  */
2042                 if (!PageUptodate(page))
2043                         copied = 0;
2044
2045                 page_zero_new_buffers(page, start+copied, start+len);
2046         }
2047         flush_dcache_page(page);
2048
2049         /* This could be a short (even 0-length) commit */
2050         __block_commit_write(inode, page, start, start+copied);
2051
2052         return copied;
2053 }
2054 EXPORT_SYMBOL(block_write_end);
2055
2056 int generic_write_end(struct file *file, struct address_space *mapping,
2057                         loff_t pos, unsigned len, unsigned copied,
2058                         struct page *page, void *fsdata)
2059 {
2060         struct inode *inode = mapping->host;
2061         int i_size_changed = 0;
2062
2063         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2064
2065         /*
2066          * No need to use i_size_read() here, the i_size
2067          * cannot change under us because we hold i_mutex.
2068          *
2069          * But it's important to update i_size while still holding page lock:
2070          * page writeout could otherwise come in and zero beyond i_size.
2071          */
2072         if (pos+copied > inode->i_size) {
2073                 i_size_write(inode, pos+copied);
2074                 i_size_changed = 1;
2075         }
2076
2077         unlock_page(page);
2078         page_cache_release(page);
2079
2080         /*
2081          * Don't mark the inode dirty under page lock. First, it unnecessarily
2082          * makes the holding time of page lock longer. Second, it forces lock
2083          * ordering of page lock and transaction start for journaling
2084          * filesystems.
2085          */
2086         if (i_size_changed)
2087                 mark_inode_dirty(inode);
2088
2089         return copied;
2090 }
2091 EXPORT_SYMBOL(generic_write_end);
2092
2093 /*
2094  * block_is_partially_uptodate checks whether buffers within a page are
2095  * uptodate or not.
2096  *
2097  * Returns true if all buffers which correspond to a file portion
2098  * we want to read are uptodate.
2099  */
2100 int block_is_partially_uptodate(struct page *page, read_descriptor_t *desc,
2101                                         unsigned long from)
2102 {
2103         struct inode *inode = page->mapping->host;
2104         unsigned block_start, block_end, blocksize;
2105         unsigned to;
2106         struct buffer_head *bh, *head;
2107         int ret = 1;
2108
2109         if (!page_has_buffers(page))
2110                 return 0;
2111
2112         blocksize = 1 << inode->i_blkbits;
2113         to = min_t(unsigned, PAGE_CACHE_SIZE - from, desc->count);
2114         to = from + to;
2115         if (from < blocksize && to > PAGE_CACHE_SIZE - blocksize)
2116                 return 0;
2117
2118         head = page_buffers(page);
2119         bh = head;
2120         block_start = 0;
2121         do {
2122                 block_end = block_start + blocksize;
2123                 if (block_end > from && block_start < to) {
2124                         if (!buffer_uptodate(bh)) {
2125                                 ret = 0;
2126                                 break;
2127                         }
2128                         if (block_end >= to)
2129                                 break;
2130                 }
2131                 block_start = block_end;
2132                 bh = bh->b_this_page;
2133         } while (bh != head);
2134
2135         return ret;
2136 }
2137 EXPORT_SYMBOL(block_is_partially_uptodate);
2138
2139 /*
2140  * Generic "read page" function for block devices that have the normal
2141  * get_block functionality. This is most of the block device filesystems.
2142  * Reads the page asynchronously --- the unlock_buffer() and
2143  * set/clear_buffer_uptodate() functions propagate buffer state into the
2144  * page struct once IO has completed.
2145  */
2146 int block_read_full_page(struct page *page, get_block_t *get_block)
2147 {
2148         struct inode *inode = page->mapping->host;
2149         sector_t iblock, lblock;
2150         struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2151         unsigned int blocksize;
2152         int nr, i;
2153         int fully_mapped = 1;
2154
2155         BUG_ON(!PageLocked(page));
2156         blocksize = 1 << inode->i_blkbits;
2157         if (!page_has_buffers(page))
2158                 create_empty_buffers(page, blocksize, 0);
2159         head = page_buffers(page);
2160
2161         iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2162         lblock = (i_size_read(inode)+blocksize-1) >> inode->i_blkbits;
2163         bh = head;
2164         nr = 0;
2165         i = 0;
2166
2167         do {
2168                 if (buffer_uptodate(bh))
2169                         continue;
2170
2171                 if (!buffer_mapped(bh)) {
2172                         int err = 0;
2173
2174                         fully_mapped = 0;
2175                         if (iblock < lblock) {
2176                                 WARN_ON(bh->b_size != blocksize);
2177                                 err = get_block(inode, iblock, bh, 0);
2178                                 if (err)
2179                                         SetPageError(page);
2180                         }
2181                         if (!buffer_mapped(bh)) {
2182                                 zero_user(page, i * blocksize, blocksize);
2183                                 if (!err)
2184                                         set_buffer_uptodate(bh);
2185                                 continue;
2186                         }
2187                         /*
2188                          * get_block() might have updated the buffer
2189                          * synchronously
2190                          */
2191                         if (buffer_uptodate(bh))
2192                                 continue;
2193                 }
2194                 arr[nr++] = bh;
2195         } while (i++, iblock++, (bh = bh->b_this_page) != head);
2196
2197         if (fully_mapped)
2198                 SetPageMappedToDisk(page);
2199
2200         if (!nr) {
2201                 /*
2202                  * All buffers are uptodate - we can set the page uptodate
2203                  * as well. But not if get_block() returned an error.
2204                  */
2205                 if (!PageError(page))
2206                         SetPageUptodate(page);
2207                 unlock_page(page);
2208                 return 0;
2209         }
2210
2211         /* Stage two: lock the buffers */
2212         for (i = 0; i < nr; i++) {
2213                 bh = arr[i];
2214                 lock_buffer(bh);
2215                 mark_buffer_async_read(bh);
2216         }
2217
2218         /*
2219          * Stage 3: start the IO.  Check for uptodateness
2220          * inside the buffer lock in case another process reading
2221          * the underlying blockdev brought it uptodate (the sct fix).
2222          */
2223         for (i = 0; i < nr; i++) {
2224                 bh = arr[i];
2225                 if (buffer_uptodate(bh))
2226                         end_buffer_async_read(bh, 1);
2227                 else
2228                         submit_bh(READ, bh);
2229         }
2230         return 0;
2231 }
2232 EXPORT_SYMBOL(block_read_full_page);
2233
2234 /* utility function for filesystems that need to do work on expanding
2235  * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2236  * deal with the hole.  
2237  */
2238 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2239 {
2240         struct address_space *mapping = inode->i_mapping;
2241         struct page *page;
2242         void *fsdata;
2243         int err;
2244
2245         err = inode_newsize_ok(inode, size);
2246         if (err)
2247                 goto out;
2248
2249         err = pagecache_write_begin(NULL, mapping, size, 0,
2250                                 AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND,
2251                                 &page, &fsdata);
2252         if (err)
2253                 goto out;
2254
2255         err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2256         BUG_ON(err > 0);
2257
2258 out:
2259         return err;
2260 }
2261 EXPORT_SYMBOL(generic_cont_expand_simple);
2262
2263 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2264                             loff_t pos, loff_t *bytes)
2265 {
2266         struct inode *inode = mapping->host;
2267         unsigned blocksize = 1 << inode->i_blkbits;
2268         struct page *page;
2269         void *fsdata;
2270         pgoff_t index, curidx;
2271         loff_t curpos;
2272         unsigned zerofrom, offset, len;
2273         int err = 0;
2274
2275         index = pos >> PAGE_CACHE_SHIFT;
2276         offset = pos & ~PAGE_CACHE_MASK;
2277
2278         while (index > (curidx = (curpos = *bytes)>>PAGE_CACHE_SHIFT)) {
2279                 zerofrom = curpos & ~PAGE_CACHE_MASK;
2280                 if (zerofrom & (blocksize-1)) {
2281                         *bytes |= (blocksize-1);
2282                         (*bytes)++;
2283                 }
2284                 len = PAGE_CACHE_SIZE - zerofrom;
2285
2286                 err = pagecache_write_begin(file, mapping, curpos, len,
2287                                                 AOP_FLAG_UNINTERRUPTIBLE,
2288                                                 &page, &fsdata);
2289                 if (err)
2290                         goto out;
2291                 zero_user(page, zerofrom, len);
2292                 err = pagecache_write_end(file, mapping, curpos, len, len,
2293                                                 page, fsdata);
2294                 if (err < 0)
2295                         goto out;
2296                 BUG_ON(err != len);
2297                 err = 0;
2298
2299                 balance_dirty_pages_ratelimited(mapping);
2300         }
2301
2302         /* page covers the boundary, find the boundary offset */
2303         if (index == curidx) {
2304                 zerofrom = curpos & ~PAGE_CACHE_MASK;
2305                 /* if we will expand the thing last block will be filled */
2306                 if (offset <= zerofrom) {
2307                         goto out;
2308                 }
2309                 if (zerofrom & (blocksize-1)) {
2310                         *bytes |= (blocksize-1);
2311                         (*bytes)++;
2312                 }
2313                 len = offset - zerofrom;
2314
2315                 err = pagecache_write_begin(file, mapping, curpos, len,
2316                                                 AOP_FLAG_UNINTERRUPTIBLE,
2317                                                 &page, &fsdata);
2318                 if (err)
2319                         goto out;
2320                 zero_user(page, zerofrom, len);
2321                 err = pagecache_write_end(file, mapping, curpos, len, len,
2322                                                 page, fsdata);
2323                 if (err < 0)
2324                         goto out;
2325                 BUG_ON(err != len);
2326                 err = 0;
2327         }
2328 out:
2329         return err;
2330 }
2331
2332 /*
2333  * For moronic filesystems that do not allow holes in file.
2334  * We may have to extend the file.
2335  */
2336 int cont_write_begin(struct file *file, struct address_space *mapping,
2337                         loff_t pos, unsigned len, unsigned flags,
2338                         struct page **pagep, void **fsdata,
2339                         get_block_t *get_block, loff_t *bytes)
2340 {
2341         struct inode *inode = mapping->host;
2342         unsigned blocksize = 1 << inode->i_blkbits;
2343         unsigned zerofrom;
2344         int err;
2345
2346         err = cont_expand_zero(file, mapping, pos, bytes);
2347         if (err)
2348                 goto out;
2349
2350         zerofrom = *bytes & ~PAGE_CACHE_MASK;
2351         if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2352                 *bytes |= (blocksize-1);
2353                 (*bytes)++;
2354         }
2355
2356         *pagep = NULL;
2357         err = block_write_begin(file, mapping, pos, len,
2358                                 flags, pagep, fsdata, get_block);
2359 out:
2360         return err;
2361 }
2362 EXPORT_SYMBOL(cont_write_begin);
2363
2364 int block_prepare_write(struct page *page, unsigned from, unsigned to,
2365                         get_block_t *get_block)
2366 {
2367         struct inode *inode = page->mapping->host;
2368         int err = __block_prepare_write(inode, page, from, to, get_block);
2369         if (err)
2370                 ClearPageUptodate(page);
2371         return err;
2372 }
2373 EXPORT_SYMBOL(block_prepare_write);
2374
2375 int block_commit_write(struct page *page, unsigned from, unsigned to)
2376 {
2377         struct inode *inode = page->mapping->host;
2378         __block_commit_write(inode,page,from,to);
2379         return 0;
2380 }
2381 EXPORT_SYMBOL(block_commit_write);
2382
2383 /*
2384  * block_page_mkwrite() is not allowed to change the file size as it gets
2385  * called from a page fault handler when a page is first dirtied. Hence we must
2386  * be careful to check for EOF conditions here. We set the page up correctly
2387  * for a written page which means we get ENOSPC checking when writing into
2388  * holes and correct delalloc and unwritten extent mapping on filesystems that
2389  * support these features.
2390  *
2391  * We are not allowed to take the i_mutex here so we have to play games to
2392  * protect against truncate races as the page could now be beyond EOF.  Because
2393  * vmtruncate() writes the inode size before removing pages, once we have the
2394  * page lock we can determine safely if the page is beyond EOF. If it is not
2395  * beyond EOF, then the page is guaranteed safe against truncation until we
2396  * unlock the page.
2397  */
2398 int
2399 block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2400                    get_block_t get_block)
2401 {
2402         struct page *page = vmf->page;
2403         struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
2404         unsigned long end;
2405         loff_t size;
2406         int ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
2407
2408         lock_page(page);
2409         size = i_size_read(inode);
2410         if ((page->mapping != inode->i_mapping) ||
2411             (page_offset(page) > size)) {
2412                 /* page got truncated out from underneath us */
2413                 unlock_page(page);
2414                 goto out;
2415         }
2416
2417         /* page is wholly or partially inside EOF */
2418         if (((page->index + 1) << PAGE_CACHE_SHIFT) > size)
2419                 end = size & ~PAGE_CACHE_MASK;
2420         else
2421                 end = PAGE_CACHE_SIZE;
2422
2423         ret = block_prepare_write(page, 0, end, get_block);
2424         if (!ret)
2425                 ret = block_commit_write(page, 0, end);
2426
2427         if (unlikely(ret)) {
2428                 unlock_page(page);
2429                 if (ret == -ENOMEM)
2430                         ret = VM_FAULT_OOM;
2431                 else /* -ENOSPC, -EIO, etc */
2432                         ret = VM_FAULT_SIGBUS;
2433         } else
2434                 ret = VM_FAULT_LOCKED;
2435
2436 out:
2437         return ret;
2438 }
2439 EXPORT_SYMBOL(block_page_mkwrite);
2440
2441 /*
2442  * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2443  * immediately, while under the page lock.  So it needs a special end_io
2444  * handler which does not touch the bh after unlocking it.
2445  */
2446 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2447 {
2448         __end_buffer_read_notouch(bh, uptodate);
2449 }
2450
2451 /*
2452  * Attach the singly-linked list of buffers created by nobh_write_begin, to
2453  * the page (converting it to circular linked list and taking care of page
2454  * dirty races).
2455  */
2456 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2457 {
2458         struct buffer_head *bh;
2459
2460         BUG_ON(!PageLocked(page));
2461
2462         spin_lock(&page->mapping->private_lock);
2463         bh = head;
2464         do {
2465                 if (PageDirty(page))
2466                         set_buffer_dirty(bh);
2467                 if (!bh->b_this_page)
2468                         bh->b_this_page = head;
2469                 bh = bh->b_this_page;
2470         } while (bh != head);
2471         attach_page_buffers(page, head);
2472         spin_unlock(&page->mapping->private_lock);
2473 }
2474
2475 /*
2476  * On entry, the page is fully not uptodate.
2477  * On exit the page is fully uptodate in the areas outside (from,to)
2478  */
2479 int nobh_write_begin(struct file *file, struct address_space *mapping,
2480                         loff_t pos, unsigned len, unsigned flags,
2481                         struct page **pagep, void **fsdata,
2482                         get_block_t *get_block)
2483 {
2484         struct inode *inode = mapping->host;
2485         const unsigned blkbits = inode->i_blkbits;
2486         const unsigned blocksize = 1 << blkbits;
2487         struct buffer_head *head, *bh;
2488         struct page *page;
2489         pgoff_t index;
2490         unsigned from, to;
2491         unsigned block_in_page;
2492         unsigned block_start, block_end;
2493         sector_t block_in_file;
2494         int nr_reads = 0;
2495         int ret = 0;
2496         int is_mapped_to_disk = 1;
2497
2498         index = pos >> PAGE_CACHE_SHIFT;
2499         from = pos & (PAGE_CACHE_SIZE - 1);
2500         to = from + len;
2501
2502         page = grab_cache_page_write_begin(mapping, index, flags);
2503         if (!page)
2504                 return -ENOMEM;
2505         *pagep = page;
2506         *fsdata = NULL;
2507
2508         if (page_has_buffers(page)) {
2509                 unlock_page(page);
2510                 page_cache_release(page);
2511                 *pagep = NULL;
2512                 return block_write_begin(file, mapping, pos, len, flags, pagep,
2513                                         fsdata, get_block);
2514         }
2515
2516         if (PageMappedToDisk(page))
2517                 return 0;
2518
2519         /*
2520          * Allocate buffers so that we can keep track of state, and potentially
2521          * attach them to the page if an error occurs. In the common case of
2522          * no error, they will just be freed again without ever being attached
2523          * to the page (which is all OK, because we're under the page lock).
2524          *
2525          * Be careful: the buffer linked list is a NULL terminated one, rather
2526          * than the circular one we're used to.
2527          */
2528         head = alloc_page_buffers(page, blocksize, 0);
2529         if (!head) {
2530                 ret = -ENOMEM;
2531                 goto out_release;
2532         }
2533
2534         block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
2535
2536         /*
2537          * We loop across all blocks in the page, whether or not they are
2538          * part of the affected region.  This is so we can discover if the
2539          * page is fully mapped-to-disk.
2540          */
2541         for (block_start = 0, block_in_page = 0, bh = head;
2542                   block_start < PAGE_CACHE_SIZE;
2543                   block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2544                 int create;
2545
2546                 block_end = block_start + blocksize;
2547                 bh->b_state = 0;
2548                 create = 1;
2549                 if (block_start >= to)
2550                         create = 0;
2551                 ret = get_block(inode, block_in_file + block_in_page,
2552                                         bh, create);
2553                 if (ret)
2554                         goto failed;
2555                 if (!buffer_mapped(bh))
2556                         is_mapped_to_disk = 0;
2557                 if (buffer_new(bh))
2558                         unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
2559                 if (PageUptodate(page)) {
2560                         set_buffer_uptodate(bh);
2561                         continue;
2562                 }
2563                 if (buffer_new(bh) || !buffer_mapped(bh)) {
2564                         zero_user_segments(page, block_start, from,
2565                                                         to, block_end);
2566                         continue;
2567                 }
2568                 if (buffer_uptodate(bh))
2569                         continue;       /* reiserfs does this */
2570                 if (block_start < from || block_end > to) {
2571                         lock_buffer(bh);
2572                         bh->b_end_io = end_buffer_read_nobh;
2573                         submit_bh(READ, bh);
2574                         nr_reads++;
2575                 }
2576         }
2577
2578         if (nr_reads) {
2579                 /*
2580                  * The page is locked, so these buffers are protected from
2581                  * any VM or truncate activity.  Hence we don't need to care
2582                  * for the buffer_head refcounts.
2583                  */
2584                 for (bh = head; bh; bh = bh->b_this_page) {
2585                         wait_on_buffer(bh);
2586                         if (!buffer_uptodate(bh))
2587                                 ret = -EIO;
2588                 }
2589                 if (ret)
2590                         goto failed;
2591         }
2592
2593         if (is_mapped_to_disk)
2594                 SetPageMappedToDisk(page);
2595
2596         *fsdata = head; /* to be released by nobh_write_end */
2597
2598         return 0;
2599
2600 failed:
2601         BUG_ON(!ret);
2602         /*
2603          * Error recovery is a bit difficult. We need to zero out blocks that
2604          * were newly allocated, and dirty them to ensure they get written out.
2605          * Buffers need to be attached to the page at this point, otherwise
2606          * the handling of potential IO errors during writeout would be hard
2607          * (could try doing synchronous writeout, but what if that fails too?)
2608          */
2609         attach_nobh_buffers(page, head);
2610         page_zero_new_buffers(page, from, to);
2611
2612 out_release:
2613         unlock_page(page);
2614         page_cache_release(page);
2615         *pagep = NULL;
2616
2617         if (pos + len > inode->i_size)
2618                 vmtruncate(inode, inode->i_size);
2619
2620         return ret;
2621 }
2622 EXPORT_SYMBOL(nobh_write_begin);
2623
2624 int nobh_write_end(struct file *file, struct address_space *mapping,
2625                         loff_t pos, unsigned len, unsigned copied,
2626                         struct page *page, void *fsdata)
2627 {
2628         struct inode *inode = page->mapping->host;
2629         struct buffer_head *head = fsdata;
2630         struct buffer_head *bh;
2631         BUG_ON(fsdata != NULL && page_has_buffers(page));
2632
2633         if (unlikely(copied < len) && head)
2634                 attach_nobh_buffers(page, head);
2635         if (page_has_buffers(page))
2636                 return generic_write_end(file, mapping, pos, len,
2637                                         copied, page, fsdata);
2638
2639         SetPageUptodate(page);
2640         set_page_dirty(page);
2641         if (pos+copied > inode->i_size) {
2642                 i_size_write(inode, pos+copied);
2643                 mark_inode_dirty(inode);
2644         }
2645
2646         unlock_page(page);
2647         page_cache_release(page);
2648
2649         while (head) {
2650                 bh = head;
2651                 head = head->b_this_page;
2652                 free_buffer_head(bh);
2653         }
2654
2655         return copied;
2656 }
2657 EXPORT_SYMBOL(nobh_write_end);
2658
2659 /*
2660  * nobh_writepage() - based on block_full_write_page() except
2661  * that it tries to operate without attaching bufferheads to
2662  * the page.
2663  */
2664 int nobh_writepage(struct page *page, get_block_t *get_block,
2665                         struct writeback_control *wbc)
2666 {
2667         struct inode * const inode = page->mapping->host;
2668         loff_t i_size = i_size_read(inode);
2669         const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2670         unsigned offset;
2671         int ret;
2672
2673         /* Is the page fully inside i_size? */
2674         if (page->index < end_index)
2675                 goto out;
2676
2677         /* Is the page fully outside i_size? (truncate in progress) */
2678         offset = i_size & (PAGE_CACHE_SIZE-1);
2679         if (page->index >= end_index+1 || !offset) {
2680                 /*
2681                  * The page may have dirty, unmapped buffers.  For example,
2682                  * they may have been added in ext3_writepage().  Make them
2683                  * freeable here, so the page does not leak.
2684                  */
2685 #if 0
2686                 /* Not really sure about this  - do we need this ? */
2687                 if (page->mapping->a_ops->invalidatepage)
2688                         page->mapping->a_ops->invalidatepage(page, offset);
2689 #endif
2690                 unlock_page(page);
2691                 return 0; /* don't care */
2692         }
2693
2694         /*
2695          * The page straddles i_size.  It must be zeroed out on each and every
2696          * writepage invocation because it may be mmapped.  "A file is mapped
2697          * in multiples of the page size.  For a file that is not a multiple of
2698          * the  page size, the remaining memory is zeroed when mapped, and
2699          * writes to that region are not written out to the file."
2700          */
2701         zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2702 out:
2703         ret = mpage_writepage(page, get_block, wbc);
2704         if (ret == -EAGAIN)
2705                 ret = __block_write_full_page(inode, page, get_block, wbc,
2706                                               end_buffer_async_write);
2707         return ret;
2708 }
2709 EXPORT_SYMBOL(nobh_writepage);
2710
2711 int nobh_truncate_page(struct address_space *mapping,
2712                         loff_t from, get_block_t *get_block)
2713 {
2714         pgoff_t index = from >> PAGE_CACHE_SHIFT;
2715         unsigned offset = from & (PAGE_CACHE_SIZE-1);
2716         unsigned blocksize;
2717         sector_t iblock;
2718         unsigned length, pos;
2719         struct inode *inode = mapping->host;
2720         struct page *page;
2721         struct buffer_head map_bh;
2722         int err;
2723
2724         blocksize = 1 << inode->i_blkbits;
2725         length = offset & (blocksize - 1);
2726
2727         /* Block boundary? Nothing to do */
2728         if (!length)
2729                 return 0;
2730
2731         length = blocksize - length;
2732         iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2733
2734         page = grab_cache_page(mapping, index);
2735         err = -ENOMEM;
2736         if (!page)
2737                 goto out;
2738
2739         if (page_has_buffers(page)) {
2740 has_buffers:
2741                 unlock_page(page);
2742                 page_cache_release(page);
2743                 return block_truncate_page(mapping, from, get_block);
2744         }
2745
2746         /* Find the buffer that contains "offset" */
2747         pos = blocksize;
2748         while (offset >= pos) {
2749                 iblock++;
2750                 pos += blocksize;
2751         }
2752
2753         map_bh.b_size = blocksize;
2754         map_bh.b_state = 0;
2755         err = get_block(inode, iblock, &map_bh, 0);
2756         if (err)
2757                 goto unlock;
2758         /* unmapped? It's a hole - nothing to do */
2759         if (!buffer_mapped(&map_bh))
2760                 goto unlock;
2761
2762         /* Ok, it's mapped. Make sure it's up-to-date */
2763         if (!PageUptodate(page)) {
2764                 err = mapping->a_ops->readpage(NULL, page);
2765                 if (err) {
2766                         page_cache_release(page);
2767                         goto out;
2768                 }
2769                 lock_page(page);
2770                 if (!PageUptodate(page)) {
2771                         err = -EIO;
2772                         goto unlock;
2773                 }
2774                 if (page_has_buffers(page))
2775                         goto has_buffers;
2776         }
2777         zero_user(page, offset, length);
2778         set_page_dirty(page);
2779         err = 0;
2780
2781 unlock:
2782         unlock_page(page);
2783         page_cache_release(page);
2784 out:
2785         return err;
2786 }
2787 EXPORT_SYMBOL(nobh_truncate_page);
2788
2789 int block_truncate_page(struct address_space *mapping,
2790                         loff_t from, get_block_t *get_block)
2791 {
2792         pgoff_t index = from >> PAGE_CACHE_SHIFT;
2793         unsigned offset = from & (PAGE_CACHE_SIZE-1);
2794         unsigned blocksize;
2795         sector_t iblock;
2796         unsigned length, pos;
2797         struct inode *inode = mapping->host;
2798         struct page *page;
2799         struct buffer_head *bh;
2800         int err;
2801
2802         blocksize = 1 << inode->i_blkbits;
2803         length = offset & (blocksize - 1);
2804
2805         /* Block boundary? Nothing to do */
2806         if (!length)
2807                 return 0;
2808
2809         length = blocksize - length;
2810         iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2811         
2812         page = grab_cache_page(mapping, index);
2813         err = -ENOMEM;
2814         if (!page)
2815                 goto out;
2816
2817         if (!page_has_buffers(page))
2818                 create_empty_buffers(page, blocksize, 0);
2819
2820         /* Find the buffer that contains "offset" */
2821         bh = page_buffers(page);
2822         pos = blocksize;
2823         while (offset >= pos) {
2824                 bh = bh->b_this_page;
2825                 iblock++;
2826                 pos += blocksize;
2827         }
2828
2829         err = 0;
2830         if (!buffer_mapped(bh)) {
2831                 WARN_ON(bh->b_size != blocksize);
2832                 err = get_block(inode, iblock, bh, 0);
2833                 if (err)
2834                         goto unlock;
2835                 /* unmapped? It's a hole - nothing to do */
2836                 if (!buffer_mapped(bh))
2837                         goto unlock;
2838         }
2839
2840         /* Ok, it's mapped. Make sure it's up-to-date */
2841         if (PageUptodate(page))
2842                 set_buffer_uptodate(bh);
2843
2844         if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2845                 err = -EIO;
2846                 ll_rw_block(READ, 1, &bh);
2847                 wait_on_buffer(bh);
2848                 /* Uhhuh. Read error. Complain and punt. */
2849                 if (!buffer_uptodate(bh))
2850                         goto unlock;
2851         }
2852
2853         zero_user(page, offset, length);
2854         mark_buffer_dirty(bh);
2855         err = 0;
2856
2857 unlock:
2858         unlock_page(page);
2859         page_cache_release(page);
2860 out:
2861         return err;
2862 }
2863 EXPORT_SYMBOL(block_truncate_page);
2864
2865 /*
2866  * The generic ->writepage function for buffer-backed address_spaces
2867  * this form passes in the end_io handler used to finish the IO.
2868  */
2869 int block_write_full_page_endio(struct page *page, get_block_t *get_block,
2870                         struct writeback_control *wbc, bh_end_io_t *handler)
2871 {
2872         struct inode * const inode = page->mapping->host;
2873         loff_t i_size = i_size_read(inode);
2874         const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2875         unsigned offset;
2876
2877         /* Is the page fully inside i_size? */
2878         if (page->index < end_index)
2879                 return __block_write_full_page(inode, page, get_block, wbc,
2880                                                handler);
2881
2882         /* Is the page fully outside i_size? (truncate in progress) */
2883         offset = i_size & (PAGE_CACHE_SIZE-1);
2884         if (page->index >= end_index+1 || !offset) {
2885                 /*
2886                  * The page may have dirty, unmapped buffers.  For example,
2887                  * they may have been added in ext3_writepage().  Make them
2888                  * freeable here, so the page does not leak.
2889                  */
2890                 do_invalidatepage(page, 0);
2891                 unlock_page(page);
2892                 return 0; /* don't care */
2893         }
2894
2895         /*
2896          * The page straddles i_size.  It must be zeroed out on each and every
2897          * writepage invocation because it may be mmapped.  "A file is mapped
2898          * in multiples of the page size.  For a file that is not a multiple of
2899          * the  page size, the remaining memory is zeroed when mapped, and
2900          * writes to that region are not written out to the file."
2901          */
2902         zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2903         return __block_write_full_page(inode, page, get_block, wbc, handler);
2904 }
2905 EXPORT_SYMBOL(block_write_full_page_endio);
2906
2907 /*
2908  * The generic ->writepage function for buffer-backed address_spaces
2909  */
2910 int block_write_full_page(struct page *page, get_block_t *get_block,
2911                         struct writeback_control *wbc)
2912 {
2913         return block_write_full_page_endio(page, get_block, wbc,
2914                                            end_buffer_async_write);
2915 }
2916 EXPORT_SYMBOL(block_write_full_page);
2917
2918 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2919                             get_block_t *get_block)
2920 {
2921         struct buffer_head tmp;
2922         struct inode *inode = mapping->host;
2923         tmp.b_state = 0;
2924         tmp.b_blocknr = 0;
2925         tmp.b_size = 1 << inode->i_blkbits;
2926         get_block(inode, block, &tmp, 0);
2927         return tmp.b_blocknr;
2928 }
2929 EXPORT_SYMBOL(generic_block_bmap);
2930
2931 static void end_bio_bh_io_sync(struct bio *bio, int err)
2932 {
2933         struct buffer_head *bh = bio->bi_private;
2934
2935         if (err == -EOPNOTSUPP) {
2936                 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2937                 set_bit(BH_Eopnotsupp, &bh->b_state);
2938         }
2939
2940         if (unlikely (test_bit(BIO_QUIET,&bio->bi_flags)))
2941                 set_bit(BH_Quiet, &bh->b_state);
2942
2943         bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2944         bio_put(bio);
2945 }
2946
2947 int submit_bh(int rw, struct buffer_head * bh)
2948 {
2949         struct bio *bio;
2950         int ret = 0;
2951
2952         BUG_ON(!buffer_locked(bh));
2953         BUG_ON(!buffer_mapped(bh));
2954         BUG_ON(!bh->b_end_io);
2955         BUG_ON(buffer_delay(bh));
2956         BUG_ON(buffer_unwritten(bh));
2957
2958         /*
2959          * Mask in barrier bit for a write (could be either a WRITE or a
2960          * WRITE_SYNC
2961          */
2962         if (buffer_ordered(bh) && (rw & WRITE))
2963                 rw |= WRITE_BARRIER;
2964
2965         /*
2966          * Only clear out a write error when rewriting
2967          */
2968         if (test_set_buffer_req(bh) && (rw & WRITE))
2969                 clear_buffer_write_io_error(bh);
2970
2971         /*
2972          * from here on down, it's all bio -- do the initial mapping,
2973          * submit_bio -> generic_make_request may further map this bio around
2974          */
2975         bio = bio_alloc(GFP_NOIO, 1);
2976
2977         bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2978         bio->bi_bdev = bh->b_bdev;
2979         bio->bi_io_vec[0].bv_page = bh->b_page;
2980         bio->bi_io_vec[0].bv_len = bh->b_size;
2981         bio->bi_io_vec[0].bv_offset = bh_offset(bh);
2982
2983         bio->bi_vcnt = 1;
2984         bio->bi_idx = 0;
2985         bio->bi_size = bh->b_size;
2986
2987         bio->bi_end_io = end_bio_bh_io_sync;
2988         bio->bi_private = bh;
2989
2990         bio_get(bio);
2991         submit_bio(rw, bio);
2992
2993         if (bio_flagged(bio, BIO_EOPNOTSUPP))
2994                 ret = -EOPNOTSUPP;
2995
2996         bio_put(bio);
2997         return ret;
2998 }
2999 EXPORT_SYMBOL(submit_bh);
3000
3001 /**
3002  * ll_rw_block: low-level access to block devices (DEPRECATED)
3003  * @rw: whether to %READ or %WRITE or %SWRITE or maybe %READA (readahead)
3004  * @nr: number of &struct buffer_heads in the array
3005  * @bhs: array of pointers to &struct buffer_head
3006  *
3007  * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3008  * requests an I/O operation on them, either a %READ or a %WRITE.  The third
3009  * %SWRITE is like %WRITE only we make sure that the *current* data in buffers
3010  * are sent to disk. The fourth %READA option is described in the documentation
3011  * for generic_make_request() which ll_rw_block() calls.
3012  *
3013  * This function drops any buffer that it cannot get a lock on (with the
3014  * BH_Lock state bit) unless SWRITE is required, any buffer that appears to be
3015  * clean when doing a write request, and any buffer that appears to be
3016  * up-to-date when doing read request.  Further it marks as clean buffers that
3017  * are processed for writing (the buffer cache won't assume that they are
3018  * actually clean until the buffer gets unlocked).
3019  *
3020  * ll_rw_block sets b_end_io to simple completion handler that marks
3021  * the buffer up-to-date (if approriate), unlocks the buffer and wakes
3022  * any waiters. 
3023  *
3024  * All of the buffers must be for the same device, and must also be a
3025  * multiple of the current approved size for the device.
3026  */
3027 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
3028 {
3029         int i;
3030
3031         for (i = 0; i < nr; i++) {
3032                 struct buffer_head *bh = bhs[i];
3033
3034                 if (rw == SWRITE || rw == SWRITE_SYNC || rw == SWRITE_SYNC_PLUG)
3035                         lock_buffer(bh);
3036                 else if (!trylock_buffer(bh))
3037                         continue;
3038
3039                 if (rw == WRITE || rw == SWRITE || rw == SWRITE_SYNC ||
3040                     rw == SWRITE_SYNC_PLUG) {
3041                         if (test_clear_buffer_dirty(bh)) {
3042                                 bh->b_end_io = end_buffer_write_sync;
3043                                 get_bh(bh);
3044                                 if (rw == SWRITE_SYNC)
3045                                         submit_bh(WRITE_SYNC, bh);
3046                                 else
3047                                         submit_bh(WRITE, bh);
3048                                 continue;
3049                         }
3050                 } else {
3051                         if (!buffer_uptodate(bh)) {
3052                                 bh->b_end_io = end_buffer_read_sync;
3053                                 get_bh(bh);
3054                                 submit_bh(rw, bh);
3055                                 continue;
3056                         }
3057                 }
3058                 unlock_buffer(bh);
3059         }
3060 }
3061 EXPORT_SYMBOL(ll_rw_block);
3062
3063 /*
3064  * For a data-integrity writeout, we need to wait upon any in-progress I/O
3065  * and then start new I/O and then wait upon it.  The caller must have a ref on
3066  * the buffer_head.
3067  */
3068 int sync_dirty_buffer(struct buffer_head *bh)
3069 {
3070         int ret = 0;
3071
3072         WARN_ON(atomic_read(&bh->b_count) < 1);
3073         lock_buffer(bh);
3074         if (test_clear_buffer_dirty(bh)) {
3075                 get_bh(bh);
3076                 bh->b_end_io = end_buffer_write_sync;
3077                 ret = submit_bh(WRITE_SYNC, bh);
3078                 wait_on_buffer(bh);
3079                 if (buffer_eopnotsupp(bh)) {
3080                         clear_buffer_eopnotsupp(bh);
3081                         ret = -EOPNOTSUPP;
3082                 }
3083                 if (!ret && !buffer_uptodate(bh))
3084                         ret = -EIO;
3085         } else {
3086                 unlock_buffer(bh);
3087         }
3088         return ret;
3089 }
3090 EXPORT_SYMBOL(sync_dirty_buffer);
3091
3092 /*
3093  * try_to_free_buffers() checks if all the buffers on this particular page
3094  * are unused, and releases them if so.
3095  *
3096  * Exclusion against try_to_free_buffers may be obtained by either
3097  * locking the page or by holding its mapping's private_lock.
3098  *
3099  * If the page is dirty but all the buffers are clean then we need to
3100  * be sure to mark the page clean as well.  This is because the page
3101  * may be against a block device, and a later reattachment of buffers
3102  * to a dirty page will set *all* buffers dirty.  Which would corrupt
3103  * filesystem data on the same device.
3104  *
3105  * The same applies to regular filesystem pages: if all the buffers are
3106  * clean then we set the page clean and proceed.  To do that, we require
3107  * total exclusion from __set_page_dirty_buffers().  That is obtained with
3108  * private_lock.
3109  *
3110  * try_to_free_buffers() is non-blocking.
3111  */
3112 static inline int buffer_busy(struct buffer_head *bh)
3113 {
3114         return atomic_read(&bh->b_count) |
3115                 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3116 }
3117
3118 static int
3119 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3120 {
3121         struct buffer_head *head = page_buffers(page);
3122         struct buffer_head *bh;
3123
3124         bh = head;
3125         do {
3126                 if (buffer_write_io_error(bh) && page->mapping)
3127                         set_bit(AS_EIO, &page->mapping->flags);
3128                 if (buffer_busy(bh))
3129                         goto failed;
3130                 bh = bh->b_this_page;
3131         } while (bh != head);
3132
3133         do {
3134                 struct buffer_head *next = bh->b_this_page;
3135
3136                 if (bh->b_assoc_map)
3137                         __remove_assoc_queue(bh);
3138                 bh = next;
3139         } while (bh != head);
3140         *buffers_to_free = head;
3141         __clear_page_buffers(page);
3142         return 1;
3143 failed:
3144         return 0;
3145 }
3146
3147 int try_to_free_buffers(struct page *page)
3148 {
3149         struct address_space * const mapping = page->mapping;
3150         struct buffer_head *buffers_to_free = NULL;
3151         int ret = 0;
3152
3153         BUG_ON(!PageLocked(page));
3154         if (PageWriteback(page))
3155                 return 0;
3156
3157         if (mapping == NULL) {          /* can this still happen? */
3158                 ret = drop_buffers(page, &buffers_to_free);
3159                 goto out;
3160         }
3161
3162         spin_lock(&mapping->private_lock);
3163         ret = drop_buffers(page, &buffers_to_free);
3164
3165         /*
3166          * If the filesystem writes its buffers by hand (eg ext3)
3167          * then we can have clean buffers against a dirty page.  We
3168          * clean the page here; otherwise the VM will never notice
3169          * that the filesystem did any IO at all.
3170          *
3171          * Also, during truncate, discard_buffer will have marked all
3172          * the page's buffers clean.  We discover that here and clean
3173          * the page also.
3174          *
3175          * private_lock must be held over this entire operation in order
3176          * to synchronise against __set_page_dirty_buffers and prevent the
3177          * dirty bit from being lost.
3178          */
3179         if (ret)
3180                 cancel_dirty_page(page, PAGE_CACHE_SIZE);
3181         spin_unlock(&mapping->private_lock);
3182 out:
3183         if (buffers_to_free) {
3184                 struct buffer_head *bh = buffers_to_free;
3185
3186                 do {
3187                         struct buffer_head *next = bh->b_this_page;
3188                         free_buffer_head(bh);
3189                         bh = next;
3190                 } while (bh != buffers_to_free);
3191         }
3192         return ret;
3193 }
3194 EXPORT_SYMBOL(try_to_free_buffers);
3195
3196 void block_sync_page(struct page *page)
3197 {
3198         struct address_space *mapping;
3199
3200         smp_mb();
3201         mapping = page_mapping(page);
3202         if (mapping)
3203                 blk_run_backing_dev(mapping->backing_dev_info, page);
3204 }
3205 EXPORT_SYMBOL(block_sync_page);
3206
3207 /*
3208  * There are no bdflush tunables left.  But distributions are
3209  * still running obsolete flush daemons, so we terminate them here.
3210  *
3211  * Use of bdflush() is deprecated and will be removed in a future kernel.
3212  * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3213  */
3214 SYSCALL_DEFINE2(bdflush, int, func, long, data)
3215 {
3216         static int msg_count;
3217
3218         if (!capable(CAP_SYS_ADMIN))
3219                 return -EPERM;
3220
3221         if (msg_count < 5) {
3222                 msg_count++;
3223                 printk(KERN_INFO
3224                         "warning: process `%s' used the obsolete bdflush"
3225                         " system call\n", current->comm);
3226                 printk(KERN_INFO "Fix your initscripts?\n");
3227         }
3228
3229         if (func == 1)
3230                 do_exit(0);
3231         return 0;
3232 }
3233
3234 /*
3235  * Buffer-head allocation
3236  */
3237 static struct kmem_cache *bh_cachep;
3238
3239 /*
3240  * Once the number of bh's in the machine exceeds this level, we start
3241  * stripping them in writeback.
3242  */
3243 static int max_buffer_heads;
3244
3245 int buffer_heads_over_limit;
3246
3247 struct bh_accounting {
3248         int nr;                 /* Number of live bh's */
3249         int ratelimit;          /* Limit cacheline bouncing */
3250 };
3251
3252 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3253
3254 static void recalc_bh_state(void)
3255 {
3256         int i;
3257         int tot = 0;
3258
3259         if (__get_cpu_var(bh_accounting).ratelimit++ < 4096)
3260                 return;
3261         __get_cpu_var(bh_accounting).ratelimit = 0;
3262         for_each_online_cpu(i)
3263                 tot += per_cpu(bh_accounting, i).nr;
3264         buffer_heads_over_limit = (tot > max_buffer_heads);
3265 }
3266         
3267 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3268 {
3269         struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3270         if (ret) {
3271                 INIT_LIST_HEAD(&ret->b_assoc_buffers);
3272                 get_cpu_var(bh_accounting).nr++;
3273                 recalc_bh_state();
3274                 put_cpu_var(bh_accounting);
3275         }
3276         return ret;
3277 }
3278 EXPORT_SYMBOL(alloc_buffer_head);
3279
3280 void free_buffer_head(struct buffer_head *bh)
3281 {
3282         BUG_ON(!list_empty(&bh->b_assoc_buffers));
3283         kmem_cache_free(bh_cachep, bh);
3284         get_cpu_var(bh_accounting).nr--;
3285         recalc_bh_state();
3286         put_cpu_var(bh_accounting);
3287 }
3288 EXPORT_SYMBOL(free_buffer_head);
3289
3290 static void buffer_exit_cpu(int cpu)
3291 {
3292         int i;
3293         struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3294
3295         for (i = 0; i < BH_LRU_SIZE; i++) {
3296                 brelse(b->bhs[i]);
3297                 b->bhs[i] = NULL;
3298         }
3299         get_cpu_var(bh_accounting).nr += per_cpu(bh_accounting, cpu).nr;
3300         per_cpu(bh_accounting, cpu).nr = 0;
3301         put_cpu_var(bh_accounting);
3302 }
3303
3304 static int buffer_cpu_notify(struct notifier_block *self,
3305                               unsigned long action, void *hcpu)
3306 {
3307         if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
3308                 buffer_exit_cpu((unsigned long)hcpu);
3309         return NOTIFY_OK;
3310 }
3311
3312 /**
3313  * bh_uptodate_or_lock - Test whether the buffer is uptodate
3314  * @bh: struct buffer_head
3315  *
3316  * Return true if the buffer is up-to-date and false,
3317  * with the buffer locked, if not.
3318  */
3319 int bh_uptodate_or_lock(struct buffer_head *bh)
3320 {
3321         if (!buffer_uptodate(bh)) {
3322                 lock_buffer(bh);
3323                 if (!buffer_uptodate(bh))
3324                         return 0;
3325                 unlock_buffer(bh);
3326         }
3327         return 1;
3328 }
3329 EXPORT_SYMBOL(bh_uptodate_or_lock);
3330
3331 /**
3332  * bh_submit_read - Submit a locked buffer for reading
3333  * @bh: struct buffer_head
3334  *
3335  * Returns zero on success and -EIO on error.
3336  */
3337 int bh_submit_read(struct buffer_head *bh)
3338 {
3339         BUG_ON(!buffer_locked(bh));
3340
3341         if (buffer_uptodate(bh)) {
3342                 unlock_buffer(bh);
3343                 return 0;
3344         }
3345
3346         get_bh(bh);
3347         bh->b_end_io = end_buffer_read_sync;
3348         submit_bh(READ, bh);
3349         wait_on_buffer(bh);
3350         if (buffer_uptodate(bh))
3351                 return 0;
3352         return -EIO;
3353 }
3354 EXPORT_SYMBOL(bh_submit_read);
3355
3356 void __init buffer_init(void)
3357 {
3358         int nrpages;
3359
3360         bh_cachep = kmem_cache_create("buffer_head",
3361                         sizeof(struct buffer_head), 0,
3362                                 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3363                                 SLAB_MEM_SPREAD),
3364                                 NULL);
3365
3366         /*
3367          * Limit the bh occupancy to 10% of ZONE_NORMAL
3368          */
3369         nrpages = (nr_free_buffer_pages() * 10) / 100;
3370         max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3371         hotcpu_notifier(buffer_cpu_notify, 0);
3372 }