Merge git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core-2.6
[pandora-kernel.git] / fs / btrfs / transaction.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/sched.h>
21 #include <linux/writeback.h>
22 #include <linux/pagemap.h>
23 #include <linux/blkdev.h>
24 #include "ctree.h"
25 #include "disk-io.h"
26 #include "transaction.h"
27 #include "locking.h"
28 #include "tree-log.h"
29
30 #define BTRFS_ROOT_TRANS_TAG 0
31
32 static noinline void put_transaction(struct btrfs_transaction *transaction)
33 {
34         WARN_ON(transaction->use_count == 0);
35         transaction->use_count--;
36         if (transaction->use_count == 0) {
37                 list_del_init(&transaction->list);
38                 memset(transaction, 0, sizeof(*transaction));
39                 kmem_cache_free(btrfs_transaction_cachep, transaction);
40         }
41 }
42
43 static noinline void switch_commit_root(struct btrfs_root *root)
44 {
45         down_write(&root->commit_root_sem);
46         free_extent_buffer(root->commit_root);
47         root->commit_root = btrfs_root_node(root);
48         up_write(&root->commit_root_sem);
49 }
50
51 /*
52  * either allocate a new transaction or hop into the existing one
53  */
54 static noinline int join_transaction(struct btrfs_root *root)
55 {
56         struct btrfs_transaction *cur_trans;
57         cur_trans = root->fs_info->running_transaction;
58         if (!cur_trans) {
59                 cur_trans = kmem_cache_alloc(btrfs_transaction_cachep,
60                                              GFP_NOFS);
61                 BUG_ON(!cur_trans);
62                 root->fs_info->generation++;
63                 cur_trans->num_writers = 1;
64                 cur_trans->num_joined = 0;
65                 cur_trans->transid = root->fs_info->generation;
66                 init_waitqueue_head(&cur_trans->writer_wait);
67                 init_waitqueue_head(&cur_trans->commit_wait);
68                 cur_trans->in_commit = 0;
69                 cur_trans->blocked = 0;
70                 cur_trans->use_count = 1;
71                 cur_trans->commit_done = 0;
72                 cur_trans->start_time = get_seconds();
73
74                 cur_trans->delayed_refs.root.rb_node = NULL;
75                 cur_trans->delayed_refs.num_entries = 0;
76                 cur_trans->delayed_refs.num_heads_ready = 0;
77                 cur_trans->delayed_refs.num_heads = 0;
78                 cur_trans->delayed_refs.flushing = 0;
79                 cur_trans->delayed_refs.run_delayed_start = 0;
80                 spin_lock_init(&cur_trans->delayed_refs.lock);
81
82                 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
83                 list_add_tail(&cur_trans->list, &root->fs_info->trans_list);
84                 extent_io_tree_init(&cur_trans->dirty_pages,
85                                      root->fs_info->btree_inode->i_mapping,
86                                      GFP_NOFS);
87                 spin_lock(&root->fs_info->new_trans_lock);
88                 root->fs_info->running_transaction = cur_trans;
89                 spin_unlock(&root->fs_info->new_trans_lock);
90         } else {
91                 cur_trans->num_writers++;
92                 cur_trans->num_joined++;
93         }
94
95         return 0;
96 }
97
98 /*
99  * this does all the record keeping required to make sure that a reference
100  * counted root is properly recorded in a given transaction.  This is required
101  * to make sure the old root from before we joined the transaction is deleted
102  * when the transaction commits
103  */
104 static noinline int record_root_in_trans(struct btrfs_trans_handle *trans,
105                                          struct btrfs_root *root)
106 {
107         if (root->ref_cows && root->last_trans < trans->transid) {
108                 WARN_ON(root == root->fs_info->extent_root);
109                 WARN_ON(root->root_item.refs == 0);
110                 WARN_ON(root->commit_root != root->node);
111
112                 radix_tree_tag_set(&root->fs_info->fs_roots_radix,
113                            (unsigned long)root->root_key.objectid,
114                            BTRFS_ROOT_TRANS_TAG);
115                 root->last_trans = trans->transid;
116                 btrfs_init_reloc_root(trans, root);
117         }
118         return 0;
119 }
120
121 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
122                                struct btrfs_root *root)
123 {
124         if (!root->ref_cows)
125                 return 0;
126
127         mutex_lock(&root->fs_info->trans_mutex);
128         if (root->last_trans == trans->transid) {
129                 mutex_unlock(&root->fs_info->trans_mutex);
130                 return 0;
131         }
132
133         record_root_in_trans(trans, root);
134         mutex_unlock(&root->fs_info->trans_mutex);
135         return 0;
136 }
137
138 /* wait for commit against the current transaction to become unblocked
139  * when this is done, it is safe to start a new transaction, but the current
140  * transaction might not be fully on disk.
141  */
142 static void wait_current_trans(struct btrfs_root *root)
143 {
144         struct btrfs_transaction *cur_trans;
145
146         cur_trans = root->fs_info->running_transaction;
147         if (cur_trans && cur_trans->blocked) {
148                 DEFINE_WAIT(wait);
149                 cur_trans->use_count++;
150                 while (1) {
151                         prepare_to_wait(&root->fs_info->transaction_wait, &wait,
152                                         TASK_UNINTERRUPTIBLE);
153                         if (cur_trans->blocked) {
154                                 mutex_unlock(&root->fs_info->trans_mutex);
155                                 schedule();
156                                 mutex_lock(&root->fs_info->trans_mutex);
157                                 finish_wait(&root->fs_info->transaction_wait,
158                                             &wait);
159                         } else {
160                                 finish_wait(&root->fs_info->transaction_wait,
161                                             &wait);
162                                 break;
163                         }
164                 }
165                 put_transaction(cur_trans);
166         }
167 }
168
169 static struct btrfs_trans_handle *start_transaction(struct btrfs_root *root,
170                                              int num_blocks, int wait)
171 {
172         struct btrfs_trans_handle *h =
173                 kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
174         int ret;
175
176         mutex_lock(&root->fs_info->trans_mutex);
177         if (!root->fs_info->log_root_recovering &&
178             ((wait == 1 && !root->fs_info->open_ioctl_trans) || wait == 2))
179                 wait_current_trans(root);
180         ret = join_transaction(root);
181         BUG_ON(ret);
182
183         h->transid = root->fs_info->running_transaction->transid;
184         h->transaction = root->fs_info->running_transaction;
185         h->blocks_reserved = num_blocks;
186         h->blocks_used = 0;
187         h->block_group = 0;
188         h->alloc_exclude_nr = 0;
189         h->alloc_exclude_start = 0;
190         h->delayed_ref_updates = 0;
191
192         root->fs_info->running_transaction->use_count++;
193         record_root_in_trans(h, root);
194         mutex_unlock(&root->fs_info->trans_mutex);
195         return h;
196 }
197
198 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
199                                                    int num_blocks)
200 {
201         return start_transaction(root, num_blocks, 1);
202 }
203 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root,
204                                                    int num_blocks)
205 {
206         return start_transaction(root, num_blocks, 0);
207 }
208
209 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *r,
210                                                          int num_blocks)
211 {
212         return start_transaction(r, num_blocks, 2);
213 }
214
215 /* wait for a transaction commit to be fully complete */
216 static noinline int wait_for_commit(struct btrfs_root *root,
217                                     struct btrfs_transaction *commit)
218 {
219         DEFINE_WAIT(wait);
220         mutex_lock(&root->fs_info->trans_mutex);
221         while (!commit->commit_done) {
222                 prepare_to_wait(&commit->commit_wait, &wait,
223                                 TASK_UNINTERRUPTIBLE);
224                 if (commit->commit_done)
225                         break;
226                 mutex_unlock(&root->fs_info->trans_mutex);
227                 schedule();
228                 mutex_lock(&root->fs_info->trans_mutex);
229         }
230         mutex_unlock(&root->fs_info->trans_mutex);
231         finish_wait(&commit->commit_wait, &wait);
232         return 0;
233 }
234
235 #if 0
236 /*
237  * rate limit against the drop_snapshot code.  This helps to slow down new
238  * operations if the drop_snapshot code isn't able to keep up.
239  */
240 static void throttle_on_drops(struct btrfs_root *root)
241 {
242         struct btrfs_fs_info *info = root->fs_info;
243         int harder_count = 0;
244
245 harder:
246         if (atomic_read(&info->throttles)) {
247                 DEFINE_WAIT(wait);
248                 int thr;
249                 thr = atomic_read(&info->throttle_gen);
250
251                 do {
252                         prepare_to_wait(&info->transaction_throttle,
253                                         &wait, TASK_UNINTERRUPTIBLE);
254                         if (!atomic_read(&info->throttles)) {
255                                 finish_wait(&info->transaction_throttle, &wait);
256                                 break;
257                         }
258                         schedule();
259                         finish_wait(&info->transaction_throttle, &wait);
260                 } while (thr == atomic_read(&info->throttle_gen));
261                 harder_count++;
262
263                 if (root->fs_info->total_ref_cache_size > 1 * 1024 * 1024 &&
264                     harder_count < 2)
265                         goto harder;
266
267                 if (root->fs_info->total_ref_cache_size > 5 * 1024 * 1024 &&
268                     harder_count < 10)
269                         goto harder;
270
271                 if (root->fs_info->total_ref_cache_size > 10 * 1024 * 1024 &&
272                     harder_count < 20)
273                         goto harder;
274         }
275 }
276 #endif
277
278 void btrfs_throttle(struct btrfs_root *root)
279 {
280         mutex_lock(&root->fs_info->trans_mutex);
281         if (!root->fs_info->open_ioctl_trans)
282                 wait_current_trans(root);
283         mutex_unlock(&root->fs_info->trans_mutex);
284 }
285
286 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
287                           struct btrfs_root *root, int throttle)
288 {
289         struct btrfs_transaction *cur_trans;
290         struct btrfs_fs_info *info = root->fs_info;
291         int count = 0;
292
293         while (count < 4) {
294                 unsigned long cur = trans->delayed_ref_updates;
295                 trans->delayed_ref_updates = 0;
296                 if (cur &&
297                     trans->transaction->delayed_refs.num_heads_ready > 64) {
298                         trans->delayed_ref_updates = 0;
299
300                         /*
301                          * do a full flush if the transaction is trying
302                          * to close
303                          */
304                         if (trans->transaction->delayed_refs.flushing)
305                                 cur = 0;
306                         btrfs_run_delayed_refs(trans, root, cur);
307                 } else {
308                         break;
309                 }
310                 count++;
311         }
312
313         mutex_lock(&info->trans_mutex);
314         cur_trans = info->running_transaction;
315         WARN_ON(cur_trans != trans->transaction);
316         WARN_ON(cur_trans->num_writers < 1);
317         cur_trans->num_writers--;
318
319         if (waitqueue_active(&cur_trans->writer_wait))
320                 wake_up(&cur_trans->writer_wait);
321         put_transaction(cur_trans);
322         mutex_unlock(&info->trans_mutex);
323         memset(trans, 0, sizeof(*trans));
324         kmem_cache_free(btrfs_trans_handle_cachep, trans);
325
326         return 0;
327 }
328
329 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
330                           struct btrfs_root *root)
331 {
332         return __btrfs_end_transaction(trans, root, 0);
333 }
334
335 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
336                                    struct btrfs_root *root)
337 {
338         return __btrfs_end_transaction(trans, root, 1);
339 }
340
341 /*
342  * when btree blocks are allocated, they have some corresponding bits set for
343  * them in one of two extent_io trees.  This is used to make sure all of
344  * those extents are on disk for transaction or log commit
345  */
346 int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
347                                         struct extent_io_tree *dirty_pages)
348 {
349         int ret;
350         int err = 0;
351         int werr = 0;
352         struct page *page;
353         struct inode *btree_inode = root->fs_info->btree_inode;
354         u64 start = 0;
355         u64 end;
356         unsigned long index;
357
358         while (1) {
359                 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
360                                             EXTENT_DIRTY);
361                 if (ret)
362                         break;
363                 while (start <= end) {
364                         cond_resched();
365
366                         index = start >> PAGE_CACHE_SHIFT;
367                         start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
368                         page = find_get_page(btree_inode->i_mapping, index);
369                         if (!page)
370                                 continue;
371
372                         btree_lock_page_hook(page);
373                         if (!page->mapping) {
374                                 unlock_page(page);
375                                 page_cache_release(page);
376                                 continue;
377                         }
378
379                         if (PageWriteback(page)) {
380                                 if (PageDirty(page))
381                                         wait_on_page_writeback(page);
382                                 else {
383                                         unlock_page(page);
384                                         page_cache_release(page);
385                                         continue;
386                                 }
387                         }
388                         err = write_one_page(page, 0);
389                         if (err)
390                                 werr = err;
391                         page_cache_release(page);
392                 }
393         }
394         while (1) {
395                 ret = find_first_extent_bit(dirty_pages, 0, &start, &end,
396                                             EXTENT_DIRTY);
397                 if (ret)
398                         break;
399
400                 clear_extent_dirty(dirty_pages, start, end, GFP_NOFS);
401                 while (start <= end) {
402                         index = start >> PAGE_CACHE_SHIFT;
403                         start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
404                         page = find_get_page(btree_inode->i_mapping, index);
405                         if (!page)
406                                 continue;
407                         if (PageDirty(page)) {
408                                 btree_lock_page_hook(page);
409                                 wait_on_page_writeback(page);
410                                 err = write_one_page(page, 0);
411                                 if (err)
412                                         werr = err;
413                         }
414                         wait_on_page_writeback(page);
415                         page_cache_release(page);
416                         cond_resched();
417                 }
418         }
419         if (err)
420                 werr = err;
421         return werr;
422 }
423
424 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
425                                      struct btrfs_root *root)
426 {
427         if (!trans || !trans->transaction) {
428                 struct inode *btree_inode;
429                 btree_inode = root->fs_info->btree_inode;
430                 return filemap_write_and_wait(btree_inode->i_mapping);
431         }
432         return btrfs_write_and_wait_marked_extents(root,
433                                            &trans->transaction->dirty_pages);
434 }
435
436 /*
437  * this is used to update the root pointer in the tree of tree roots.
438  *
439  * But, in the case of the extent allocation tree, updating the root
440  * pointer may allocate blocks which may change the root of the extent
441  * allocation tree.
442  *
443  * So, this loops and repeats and makes sure the cowonly root didn't
444  * change while the root pointer was being updated in the metadata.
445  */
446 static int update_cowonly_root(struct btrfs_trans_handle *trans,
447                                struct btrfs_root *root)
448 {
449         int ret;
450         u64 old_root_bytenr;
451         struct btrfs_root *tree_root = root->fs_info->tree_root;
452
453         btrfs_write_dirty_block_groups(trans, root);
454
455         while (1) {
456                 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
457                 if (old_root_bytenr == root->node->start)
458                         break;
459
460                 btrfs_set_root_node(&root->root_item, root->node);
461                 ret = btrfs_update_root(trans, tree_root,
462                                         &root->root_key,
463                                         &root->root_item);
464                 BUG_ON(ret);
465
466                 ret = btrfs_write_dirty_block_groups(trans, root);
467                 BUG_ON(ret);
468         }
469         switch_commit_root(root);
470         return 0;
471 }
472
473 /*
474  * update all the cowonly tree roots on disk
475  */
476 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
477                                          struct btrfs_root *root)
478 {
479         struct btrfs_fs_info *fs_info = root->fs_info;
480         struct list_head *next;
481         struct extent_buffer *eb;
482         int ret;
483
484         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
485         BUG_ON(ret);
486
487         eb = btrfs_lock_root_node(fs_info->tree_root);
488         btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 0, &eb);
489         btrfs_tree_unlock(eb);
490         free_extent_buffer(eb);
491
492         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
493         BUG_ON(ret);
494
495         while (!list_empty(&fs_info->dirty_cowonly_roots)) {
496                 next = fs_info->dirty_cowonly_roots.next;
497                 list_del_init(next);
498                 root = list_entry(next, struct btrfs_root, dirty_list);
499
500                 update_cowonly_root(trans, root);
501         }
502         return 0;
503 }
504
505 /*
506  * dead roots are old snapshots that need to be deleted.  This allocates
507  * a dirty root struct and adds it into the list of dead roots that need to
508  * be deleted
509  */
510 int btrfs_add_dead_root(struct btrfs_root *root)
511 {
512         mutex_lock(&root->fs_info->trans_mutex);
513         list_add(&root->root_list, &root->fs_info->dead_roots);
514         mutex_unlock(&root->fs_info->trans_mutex);
515         return 0;
516 }
517
518 /*
519  * update all the cowonly tree roots on disk
520  */
521 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
522                                     struct btrfs_root *root)
523 {
524         struct btrfs_root *gang[8];
525         struct btrfs_fs_info *fs_info = root->fs_info;
526         int i;
527         int ret;
528         int err = 0;
529
530         while (1) {
531                 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
532                                                  (void **)gang, 0,
533                                                  ARRAY_SIZE(gang),
534                                                  BTRFS_ROOT_TRANS_TAG);
535                 if (ret == 0)
536                         break;
537                 for (i = 0; i < ret; i++) {
538                         root = gang[i];
539                         radix_tree_tag_clear(&fs_info->fs_roots_radix,
540                                         (unsigned long)root->root_key.objectid,
541                                         BTRFS_ROOT_TRANS_TAG);
542
543                         btrfs_free_log(trans, root);
544                         btrfs_update_reloc_root(trans, root);
545
546                         if (root->commit_root != root->node) {
547                                 switch_commit_root(root);
548                                 btrfs_set_root_node(&root->root_item,
549                                                     root->node);
550                         }
551
552                         err = btrfs_update_root(trans, fs_info->tree_root,
553                                                 &root->root_key,
554                                                 &root->root_item);
555                         if (err)
556                                 break;
557                 }
558         }
559         return err;
560 }
561
562 /*
563  * defrag a given btree.  If cacheonly == 1, this won't read from the disk,
564  * otherwise every leaf in the btree is read and defragged.
565  */
566 int btrfs_defrag_root(struct btrfs_root *root, int cacheonly)
567 {
568         struct btrfs_fs_info *info = root->fs_info;
569         int ret;
570         struct btrfs_trans_handle *trans;
571         unsigned long nr;
572
573         smp_mb();
574         if (root->defrag_running)
575                 return 0;
576         trans = btrfs_start_transaction(root, 1);
577         while (1) {
578                 root->defrag_running = 1;
579                 ret = btrfs_defrag_leaves(trans, root, cacheonly);
580                 nr = trans->blocks_used;
581                 btrfs_end_transaction(trans, root);
582                 btrfs_btree_balance_dirty(info->tree_root, nr);
583                 cond_resched();
584
585                 trans = btrfs_start_transaction(root, 1);
586                 if (root->fs_info->closing || ret != -EAGAIN)
587                         break;
588         }
589         root->defrag_running = 0;
590         smp_mb();
591         btrfs_end_transaction(trans, root);
592         return 0;
593 }
594
595 #if 0
596 /*
597  * when dropping snapshots, we generate a ton of delayed refs, and it makes
598  * sense not to join the transaction while it is trying to flush the current
599  * queue of delayed refs out.
600  *
601  * This is used by the drop snapshot code only
602  */
603 static noinline int wait_transaction_pre_flush(struct btrfs_fs_info *info)
604 {
605         DEFINE_WAIT(wait);
606
607         mutex_lock(&info->trans_mutex);
608         while (info->running_transaction &&
609                info->running_transaction->delayed_refs.flushing) {
610                 prepare_to_wait(&info->transaction_wait, &wait,
611                                 TASK_UNINTERRUPTIBLE);
612                 mutex_unlock(&info->trans_mutex);
613
614                 schedule();
615
616                 mutex_lock(&info->trans_mutex);
617                 finish_wait(&info->transaction_wait, &wait);
618         }
619         mutex_unlock(&info->trans_mutex);
620         return 0;
621 }
622
623 /*
624  * Given a list of roots that need to be deleted, call btrfs_drop_snapshot on
625  * all of them
626  */
627 int btrfs_drop_dead_root(struct btrfs_root *root)
628 {
629         struct btrfs_trans_handle *trans;
630         struct btrfs_root *tree_root = root->fs_info->tree_root;
631         unsigned long nr;
632         int ret;
633
634         while (1) {
635                 /*
636                  * we don't want to jump in and create a bunch of
637                  * delayed refs if the transaction is starting to close
638                  */
639                 wait_transaction_pre_flush(tree_root->fs_info);
640                 trans = btrfs_start_transaction(tree_root, 1);
641
642                 /*
643                  * we've joined a transaction, make sure it isn't
644                  * closing right now
645                  */
646                 if (trans->transaction->delayed_refs.flushing) {
647                         btrfs_end_transaction(trans, tree_root);
648                         continue;
649                 }
650
651                 ret = btrfs_drop_snapshot(trans, root);
652                 if (ret != -EAGAIN)
653                         break;
654
655                 ret = btrfs_update_root(trans, tree_root,
656                                         &root->root_key,
657                                         &root->root_item);
658                 if (ret)
659                         break;
660
661                 nr = trans->blocks_used;
662                 ret = btrfs_end_transaction(trans, tree_root);
663                 BUG_ON(ret);
664
665                 btrfs_btree_balance_dirty(tree_root, nr);
666                 cond_resched();
667         }
668         BUG_ON(ret);
669
670         ret = btrfs_del_root(trans, tree_root, &root->root_key);
671         BUG_ON(ret);
672
673         nr = trans->blocks_used;
674         ret = btrfs_end_transaction(trans, tree_root);
675         BUG_ON(ret);
676
677         free_extent_buffer(root->node);
678         free_extent_buffer(root->commit_root);
679         kfree(root);
680
681         btrfs_btree_balance_dirty(tree_root, nr);
682         return ret;
683 }
684 #endif
685
686 /*
687  * new snapshots need to be created at a very specific time in the
688  * transaction commit.  This does the actual creation
689  */
690 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
691                                    struct btrfs_fs_info *fs_info,
692                                    struct btrfs_pending_snapshot *pending)
693 {
694         struct btrfs_key key;
695         struct btrfs_root_item *new_root_item;
696         struct btrfs_root *tree_root = fs_info->tree_root;
697         struct btrfs_root *root = pending->root;
698         struct extent_buffer *tmp;
699         struct extent_buffer *old;
700         int ret;
701         u64 objectid;
702
703         new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
704         if (!new_root_item) {
705                 ret = -ENOMEM;
706                 goto fail;
707         }
708         ret = btrfs_find_free_objectid(trans, tree_root, 0, &objectid);
709         if (ret)
710                 goto fail;
711
712         record_root_in_trans(trans, root);
713         btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
714         memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
715
716         key.objectid = objectid;
717         key.offset = 0;
718         btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
719
720         old = btrfs_lock_root_node(root);
721         btrfs_cow_block(trans, root, old, NULL, 0, &old);
722         btrfs_set_lock_blocking(old);
723
724         btrfs_copy_root(trans, root, old, &tmp, objectid);
725         btrfs_tree_unlock(old);
726         free_extent_buffer(old);
727
728         btrfs_set_root_node(new_root_item, tmp);
729         ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key,
730                                 new_root_item);
731         btrfs_tree_unlock(tmp);
732         free_extent_buffer(tmp);
733         if (ret)
734                 goto fail;
735
736         key.offset = (u64)-1;
737         memcpy(&pending->root_key, &key, sizeof(key));
738 fail:
739         kfree(new_root_item);
740         return ret;
741 }
742
743 static noinline int finish_pending_snapshot(struct btrfs_fs_info *fs_info,
744                                    struct btrfs_pending_snapshot *pending)
745 {
746         int ret;
747         int namelen;
748         u64 index = 0;
749         struct btrfs_trans_handle *trans;
750         struct inode *parent_inode;
751         struct inode *inode;
752         struct btrfs_root *parent_root;
753
754         parent_inode = pending->dentry->d_parent->d_inode;
755         parent_root = BTRFS_I(parent_inode)->root;
756         trans = btrfs_join_transaction(parent_root, 1);
757
758         /*
759          * insert the directory item
760          */
761         namelen = strlen(pending->name);
762         ret = btrfs_set_inode_index(parent_inode, &index);
763         ret = btrfs_insert_dir_item(trans, parent_root,
764                             pending->name, namelen,
765                             parent_inode->i_ino,
766                             &pending->root_key, BTRFS_FT_DIR, index);
767
768         if (ret)
769                 goto fail;
770
771         btrfs_i_size_write(parent_inode, parent_inode->i_size + namelen * 2);
772         ret = btrfs_update_inode(trans, parent_root, parent_inode);
773         BUG_ON(ret);
774
775         /* add the backref first */
776         ret = btrfs_add_root_ref(trans, parent_root->fs_info->tree_root,
777                                  pending->root_key.objectid,
778                                  BTRFS_ROOT_BACKREF_KEY,
779                                  parent_root->root_key.objectid,
780                                  parent_inode->i_ino, index, pending->name,
781                                  namelen);
782
783         BUG_ON(ret);
784
785         /* now add the forward ref */
786         ret = btrfs_add_root_ref(trans, parent_root->fs_info->tree_root,
787                                  parent_root->root_key.objectid,
788                                  BTRFS_ROOT_REF_KEY,
789                                  pending->root_key.objectid,
790                                  parent_inode->i_ino, index, pending->name,
791                                  namelen);
792
793         inode = btrfs_lookup_dentry(parent_inode, pending->dentry);
794         d_instantiate(pending->dentry, inode);
795 fail:
796         btrfs_end_transaction(trans, fs_info->fs_root);
797         return ret;
798 }
799
800 /*
801  * create all the snapshots we've scheduled for creation
802  */
803 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
804                                              struct btrfs_fs_info *fs_info)
805 {
806         struct btrfs_pending_snapshot *pending;
807         struct list_head *head = &trans->transaction->pending_snapshots;
808         int ret;
809
810         list_for_each_entry(pending, head, list) {
811                 ret = create_pending_snapshot(trans, fs_info, pending);
812                 BUG_ON(ret);
813         }
814         return 0;
815 }
816
817 static noinline int finish_pending_snapshots(struct btrfs_trans_handle *trans,
818                                              struct btrfs_fs_info *fs_info)
819 {
820         struct btrfs_pending_snapshot *pending;
821         struct list_head *head = &trans->transaction->pending_snapshots;
822         int ret;
823
824         while (!list_empty(head)) {
825                 pending = list_entry(head->next,
826                                      struct btrfs_pending_snapshot, list);
827                 ret = finish_pending_snapshot(fs_info, pending);
828                 BUG_ON(ret);
829                 list_del(&pending->list);
830                 kfree(pending->name);
831                 kfree(pending);
832         }
833         return 0;
834 }
835
836 static void update_super_roots(struct btrfs_root *root)
837 {
838         struct btrfs_root_item *root_item;
839         struct btrfs_super_block *super;
840
841         super = &root->fs_info->super_copy;
842
843         root_item = &root->fs_info->chunk_root->root_item;
844         super->chunk_root = root_item->bytenr;
845         super->chunk_root_generation = root_item->generation;
846         super->chunk_root_level = root_item->level;
847
848         root_item = &root->fs_info->tree_root->root_item;
849         super->root = root_item->bytenr;
850         super->generation = root_item->generation;
851         super->root_level = root_item->level;
852 }
853
854 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
855                              struct btrfs_root *root)
856 {
857         unsigned long joined = 0;
858         unsigned long timeout = 1;
859         struct btrfs_transaction *cur_trans;
860         struct btrfs_transaction *prev_trans = NULL;
861         struct extent_io_tree *pinned_copy;
862         DEFINE_WAIT(wait);
863         int ret;
864         int should_grow = 0;
865         unsigned long now = get_seconds();
866         int flush_on_commit = btrfs_test_opt(root, FLUSHONCOMMIT);
867
868         btrfs_run_ordered_operations(root, 0);
869
870         /* make a pass through all the delayed refs we have so far
871          * any runnings procs may add more while we are here
872          */
873         ret = btrfs_run_delayed_refs(trans, root, 0);
874         BUG_ON(ret);
875
876         cur_trans = trans->transaction;
877         /*
878          * set the flushing flag so procs in this transaction have to
879          * start sending their work down.
880          */
881         cur_trans->delayed_refs.flushing = 1;
882
883         ret = btrfs_run_delayed_refs(trans, root, 0);
884         BUG_ON(ret);
885
886         mutex_lock(&root->fs_info->trans_mutex);
887         if (cur_trans->in_commit) {
888                 cur_trans->use_count++;
889                 mutex_unlock(&root->fs_info->trans_mutex);
890                 btrfs_end_transaction(trans, root);
891
892                 ret = wait_for_commit(root, cur_trans);
893                 BUG_ON(ret);
894
895                 mutex_lock(&root->fs_info->trans_mutex);
896                 put_transaction(cur_trans);
897                 mutex_unlock(&root->fs_info->trans_mutex);
898
899                 return 0;
900         }
901
902         pinned_copy = kmalloc(sizeof(*pinned_copy), GFP_NOFS);
903         if (!pinned_copy)
904                 return -ENOMEM;
905
906         extent_io_tree_init(pinned_copy,
907                              root->fs_info->btree_inode->i_mapping, GFP_NOFS);
908
909         trans->transaction->in_commit = 1;
910         trans->transaction->blocked = 1;
911         if (cur_trans->list.prev != &root->fs_info->trans_list) {
912                 prev_trans = list_entry(cur_trans->list.prev,
913                                         struct btrfs_transaction, list);
914                 if (!prev_trans->commit_done) {
915                         prev_trans->use_count++;
916                         mutex_unlock(&root->fs_info->trans_mutex);
917
918                         wait_for_commit(root, prev_trans);
919
920                         mutex_lock(&root->fs_info->trans_mutex);
921                         put_transaction(prev_trans);
922                 }
923         }
924
925         if (now < cur_trans->start_time || now - cur_trans->start_time < 1)
926                 should_grow = 1;
927
928         do {
929                 int snap_pending = 0;
930                 joined = cur_trans->num_joined;
931                 if (!list_empty(&trans->transaction->pending_snapshots))
932                         snap_pending = 1;
933
934                 WARN_ON(cur_trans != trans->transaction);
935                 prepare_to_wait(&cur_trans->writer_wait, &wait,
936                                 TASK_UNINTERRUPTIBLE);
937
938                 if (cur_trans->num_writers > 1)
939                         timeout = MAX_SCHEDULE_TIMEOUT;
940                 else if (should_grow)
941                         timeout = 1;
942
943                 mutex_unlock(&root->fs_info->trans_mutex);
944
945                 if (flush_on_commit) {
946                         btrfs_start_delalloc_inodes(root);
947                         ret = btrfs_wait_ordered_extents(root, 0);
948                         BUG_ON(ret);
949                 } else if (snap_pending) {
950                         ret = btrfs_wait_ordered_extents(root, 1);
951                         BUG_ON(ret);
952                 }
953
954                 /*
955                  * rename don't use btrfs_join_transaction, so, once we
956                  * set the transaction to blocked above, we aren't going
957                  * to get any new ordered operations.  We can safely run
958                  * it here and no for sure that nothing new will be added
959                  * to the list
960                  */
961                 btrfs_run_ordered_operations(root, 1);
962
963                 smp_mb();
964                 if (cur_trans->num_writers > 1 || should_grow)
965                         schedule_timeout(timeout);
966
967                 mutex_lock(&root->fs_info->trans_mutex);
968                 finish_wait(&cur_trans->writer_wait, &wait);
969         } while (cur_trans->num_writers > 1 ||
970                  (should_grow && cur_trans->num_joined != joined));
971
972         ret = create_pending_snapshots(trans, root->fs_info);
973         BUG_ON(ret);
974
975         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
976         BUG_ON(ret);
977
978         WARN_ON(cur_trans != trans->transaction);
979
980         /* btrfs_commit_tree_roots is responsible for getting the
981          * various roots consistent with each other.  Every pointer
982          * in the tree of tree roots has to point to the most up to date
983          * root for every subvolume and other tree.  So, we have to keep
984          * the tree logging code from jumping in and changing any
985          * of the trees.
986          *
987          * At this point in the commit, there can't be any tree-log
988          * writers, but a little lower down we drop the trans mutex
989          * and let new people in.  By holding the tree_log_mutex
990          * from now until after the super is written, we avoid races
991          * with the tree-log code.
992          */
993         mutex_lock(&root->fs_info->tree_log_mutex);
994
995         ret = commit_fs_roots(trans, root);
996         BUG_ON(ret);
997
998         /* commit_fs_roots gets rid of all the tree log roots, it is now
999          * safe to free the root of tree log roots
1000          */
1001         btrfs_free_log_root_tree(trans, root->fs_info);
1002
1003         ret = commit_cowonly_roots(trans, root);
1004         BUG_ON(ret);
1005
1006         cur_trans = root->fs_info->running_transaction;
1007         spin_lock(&root->fs_info->new_trans_lock);
1008         root->fs_info->running_transaction = NULL;
1009         spin_unlock(&root->fs_info->new_trans_lock);
1010
1011         btrfs_set_root_node(&root->fs_info->tree_root->root_item,
1012                             root->fs_info->tree_root->node);
1013         switch_commit_root(root->fs_info->tree_root);
1014
1015         btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
1016                             root->fs_info->chunk_root->node);
1017         switch_commit_root(root->fs_info->chunk_root);
1018
1019         update_super_roots(root);
1020
1021         if (!root->fs_info->log_root_recovering) {
1022                 btrfs_set_super_log_root(&root->fs_info->super_copy, 0);
1023                 btrfs_set_super_log_root_level(&root->fs_info->super_copy, 0);
1024         }
1025
1026         memcpy(&root->fs_info->super_for_commit, &root->fs_info->super_copy,
1027                sizeof(root->fs_info->super_copy));
1028
1029         btrfs_copy_pinned(root, pinned_copy);
1030
1031         trans->transaction->blocked = 0;
1032
1033         wake_up(&root->fs_info->transaction_wait);
1034
1035         mutex_unlock(&root->fs_info->trans_mutex);
1036         ret = btrfs_write_and_wait_transaction(trans, root);
1037         BUG_ON(ret);
1038         write_ctree_super(trans, root, 0);
1039
1040         /*
1041          * the super is written, we can safely allow the tree-loggers
1042          * to go about their business
1043          */
1044         mutex_unlock(&root->fs_info->tree_log_mutex);
1045
1046         btrfs_finish_extent_commit(trans, root, pinned_copy);
1047         kfree(pinned_copy);
1048
1049         /* do the directory inserts of any pending snapshot creations */
1050         finish_pending_snapshots(trans, root->fs_info);
1051
1052         mutex_lock(&root->fs_info->trans_mutex);
1053
1054         cur_trans->commit_done = 1;
1055
1056         root->fs_info->last_trans_committed = cur_trans->transid;
1057
1058         wake_up(&cur_trans->commit_wait);
1059
1060         put_transaction(cur_trans);
1061         put_transaction(cur_trans);
1062
1063         mutex_unlock(&root->fs_info->trans_mutex);
1064
1065         kmem_cache_free(btrfs_trans_handle_cachep, trans);
1066         return ret;
1067 }
1068
1069 /*
1070  * interface function to delete all the snapshots we have scheduled for deletion
1071  */
1072 int btrfs_clean_old_snapshots(struct btrfs_root *root)
1073 {
1074         LIST_HEAD(list);
1075         struct btrfs_fs_info *fs_info = root->fs_info;
1076
1077         mutex_lock(&fs_info->trans_mutex);
1078         list_splice_init(&fs_info->dead_roots, &list);
1079         mutex_unlock(&fs_info->trans_mutex);
1080
1081         while (!list_empty(&list)) {
1082                 root = list_entry(list.next, struct btrfs_root, root_list);
1083                 list_del_init(&root->root_list);
1084                 btrfs_drop_snapshot(root, 0);
1085         }
1086         return 0;
1087 }