Merge branch 'for-linus' of git://opensource.wolfsonmicro.com/regmap
[pandora-kernel.git] / fs / btrfs / transaction.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include "ctree.h"
26 #include "disk-io.h"
27 #include "transaction.h"
28 #include "locking.h"
29 #include "tree-log.h"
30 #include "inode-map.h"
31
32 #define BTRFS_ROOT_TRANS_TAG 0
33
34 static noinline void put_transaction(struct btrfs_transaction *transaction)
35 {
36         WARN_ON(atomic_read(&transaction->use_count) == 0);
37         if (atomic_dec_and_test(&transaction->use_count)) {
38                 BUG_ON(!list_empty(&transaction->list));
39                 memset(transaction, 0, sizeof(*transaction));
40                 kmem_cache_free(btrfs_transaction_cachep, transaction);
41         }
42 }
43
44 static noinline void switch_commit_root(struct btrfs_root *root)
45 {
46         free_extent_buffer(root->commit_root);
47         root->commit_root = btrfs_root_node(root);
48 }
49
50 /*
51  * either allocate a new transaction or hop into the existing one
52  */
53 static noinline int join_transaction(struct btrfs_root *root, int nofail)
54 {
55         struct btrfs_transaction *cur_trans;
56
57         spin_lock(&root->fs_info->trans_lock);
58         if (root->fs_info->trans_no_join) {
59                 if (!nofail) {
60                         spin_unlock(&root->fs_info->trans_lock);
61                         return -EBUSY;
62                 }
63         }
64
65         cur_trans = root->fs_info->running_transaction;
66         if (cur_trans) {
67                 atomic_inc(&cur_trans->use_count);
68                 atomic_inc(&cur_trans->num_writers);
69                 cur_trans->num_joined++;
70                 spin_unlock(&root->fs_info->trans_lock);
71                 return 0;
72         }
73         spin_unlock(&root->fs_info->trans_lock);
74
75         cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
76         if (!cur_trans)
77                 return -ENOMEM;
78         spin_lock(&root->fs_info->trans_lock);
79         if (root->fs_info->running_transaction) {
80                 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
81                 cur_trans = root->fs_info->running_transaction;
82                 atomic_inc(&cur_trans->use_count);
83                 atomic_inc(&cur_trans->num_writers);
84                 cur_trans->num_joined++;
85                 spin_unlock(&root->fs_info->trans_lock);
86                 return 0;
87         }
88         atomic_set(&cur_trans->num_writers, 1);
89         cur_trans->num_joined = 0;
90         init_waitqueue_head(&cur_trans->writer_wait);
91         init_waitqueue_head(&cur_trans->commit_wait);
92         cur_trans->in_commit = 0;
93         cur_trans->blocked = 0;
94         /*
95          * One for this trans handle, one so it will live on until we
96          * commit the transaction.
97          */
98         atomic_set(&cur_trans->use_count, 2);
99         cur_trans->commit_done = 0;
100         cur_trans->start_time = get_seconds();
101
102         cur_trans->delayed_refs.root = RB_ROOT;
103         cur_trans->delayed_refs.num_entries = 0;
104         cur_trans->delayed_refs.num_heads_ready = 0;
105         cur_trans->delayed_refs.num_heads = 0;
106         cur_trans->delayed_refs.flushing = 0;
107         cur_trans->delayed_refs.run_delayed_start = 0;
108         spin_lock_init(&cur_trans->commit_lock);
109         spin_lock_init(&cur_trans->delayed_refs.lock);
110
111         INIT_LIST_HEAD(&cur_trans->pending_snapshots);
112         list_add_tail(&cur_trans->list, &root->fs_info->trans_list);
113         extent_io_tree_init(&cur_trans->dirty_pages,
114                              root->fs_info->btree_inode->i_mapping);
115         root->fs_info->generation++;
116         cur_trans->transid = root->fs_info->generation;
117         root->fs_info->running_transaction = cur_trans;
118         spin_unlock(&root->fs_info->trans_lock);
119
120         return 0;
121 }
122
123 /*
124  * this does all the record keeping required to make sure that a reference
125  * counted root is properly recorded in a given transaction.  This is required
126  * to make sure the old root from before we joined the transaction is deleted
127  * when the transaction commits
128  */
129 static int record_root_in_trans(struct btrfs_trans_handle *trans,
130                                struct btrfs_root *root)
131 {
132         if (root->ref_cows && root->last_trans < trans->transid) {
133                 WARN_ON(root == root->fs_info->extent_root);
134                 WARN_ON(root->commit_root != root->node);
135
136                 /*
137                  * see below for in_trans_setup usage rules
138                  * we have the reloc mutex held now, so there
139                  * is only one writer in this function
140                  */
141                 root->in_trans_setup = 1;
142
143                 /* make sure readers find in_trans_setup before
144                  * they find our root->last_trans update
145                  */
146                 smp_wmb();
147
148                 spin_lock(&root->fs_info->fs_roots_radix_lock);
149                 if (root->last_trans == trans->transid) {
150                         spin_unlock(&root->fs_info->fs_roots_radix_lock);
151                         return 0;
152                 }
153                 radix_tree_tag_set(&root->fs_info->fs_roots_radix,
154                            (unsigned long)root->root_key.objectid,
155                            BTRFS_ROOT_TRANS_TAG);
156                 spin_unlock(&root->fs_info->fs_roots_radix_lock);
157                 root->last_trans = trans->transid;
158
159                 /* this is pretty tricky.  We don't want to
160                  * take the relocation lock in btrfs_record_root_in_trans
161                  * unless we're really doing the first setup for this root in
162                  * this transaction.
163                  *
164                  * Normally we'd use root->last_trans as a flag to decide
165                  * if we want to take the expensive mutex.
166                  *
167                  * But, we have to set root->last_trans before we
168                  * init the relocation root, otherwise, we trip over warnings
169                  * in ctree.c.  The solution used here is to flag ourselves
170                  * with root->in_trans_setup.  When this is 1, we're still
171                  * fixing up the reloc trees and everyone must wait.
172                  *
173                  * When this is zero, they can trust root->last_trans and fly
174                  * through btrfs_record_root_in_trans without having to take the
175                  * lock.  smp_wmb() makes sure that all the writes above are
176                  * done before we pop in the zero below
177                  */
178                 btrfs_init_reloc_root(trans, root);
179                 smp_wmb();
180                 root->in_trans_setup = 0;
181         }
182         return 0;
183 }
184
185
186 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
187                                struct btrfs_root *root)
188 {
189         if (!root->ref_cows)
190                 return 0;
191
192         /*
193          * see record_root_in_trans for comments about in_trans_setup usage
194          * and barriers
195          */
196         smp_rmb();
197         if (root->last_trans == trans->transid &&
198             !root->in_trans_setup)
199                 return 0;
200
201         mutex_lock(&root->fs_info->reloc_mutex);
202         record_root_in_trans(trans, root);
203         mutex_unlock(&root->fs_info->reloc_mutex);
204
205         return 0;
206 }
207
208 /* wait for commit against the current transaction to become unblocked
209  * when this is done, it is safe to start a new transaction, but the current
210  * transaction might not be fully on disk.
211  */
212 static void wait_current_trans(struct btrfs_root *root)
213 {
214         struct btrfs_transaction *cur_trans;
215
216         spin_lock(&root->fs_info->trans_lock);
217         cur_trans = root->fs_info->running_transaction;
218         if (cur_trans && cur_trans->blocked) {
219                 atomic_inc(&cur_trans->use_count);
220                 spin_unlock(&root->fs_info->trans_lock);
221
222                 wait_event(root->fs_info->transaction_wait,
223                            !cur_trans->blocked);
224                 put_transaction(cur_trans);
225         } else {
226                 spin_unlock(&root->fs_info->trans_lock);
227         }
228 }
229
230 enum btrfs_trans_type {
231         TRANS_START,
232         TRANS_JOIN,
233         TRANS_USERSPACE,
234         TRANS_JOIN_NOLOCK,
235 };
236
237 static int may_wait_transaction(struct btrfs_root *root, int type)
238 {
239         if (root->fs_info->log_root_recovering)
240                 return 0;
241
242         if (type == TRANS_USERSPACE)
243                 return 1;
244
245         if (type == TRANS_START &&
246             !atomic_read(&root->fs_info->open_ioctl_trans))
247                 return 1;
248
249         return 0;
250 }
251
252 static struct btrfs_trans_handle *start_transaction(struct btrfs_root *root,
253                                                     u64 num_items, int type)
254 {
255         struct btrfs_trans_handle *h;
256         struct btrfs_transaction *cur_trans;
257         u64 num_bytes = 0;
258         int ret;
259
260         if (root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
261                 return ERR_PTR(-EROFS);
262
263         if (current->journal_info) {
264                 WARN_ON(type != TRANS_JOIN && type != TRANS_JOIN_NOLOCK);
265                 h = current->journal_info;
266                 h->use_count++;
267                 h->orig_rsv = h->block_rsv;
268                 h->block_rsv = NULL;
269                 goto got_it;
270         }
271
272         /*
273          * Do the reservation before we join the transaction so we can do all
274          * the appropriate flushing if need be.
275          */
276         if (num_items > 0 && root != root->fs_info->chunk_root) {
277                 num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
278                 ret = btrfs_block_rsv_add(NULL, root,
279                                           &root->fs_info->trans_block_rsv,
280                                           num_bytes);
281                 if (ret)
282                         return ERR_PTR(ret);
283         }
284 again:
285         h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
286         if (!h)
287                 return ERR_PTR(-ENOMEM);
288
289         if (may_wait_transaction(root, type))
290                 wait_current_trans(root);
291
292         do {
293                 ret = join_transaction(root, type == TRANS_JOIN_NOLOCK);
294                 if (ret == -EBUSY)
295                         wait_current_trans(root);
296         } while (ret == -EBUSY);
297
298         if (ret < 0) {
299                 kmem_cache_free(btrfs_trans_handle_cachep, h);
300                 return ERR_PTR(ret);
301         }
302
303         cur_trans = root->fs_info->running_transaction;
304
305         h->transid = cur_trans->transid;
306         h->transaction = cur_trans;
307         h->blocks_used = 0;
308         h->bytes_reserved = 0;
309         h->delayed_ref_updates = 0;
310         h->use_count = 1;
311         h->block_rsv = NULL;
312         h->orig_rsv = NULL;
313
314         smp_mb();
315         if (cur_trans->blocked && may_wait_transaction(root, type)) {
316                 btrfs_commit_transaction(h, root);
317                 goto again;
318         }
319
320         if (num_bytes) {
321                 h->block_rsv = &root->fs_info->trans_block_rsv;
322                 h->bytes_reserved = num_bytes;
323         }
324
325 got_it:
326         btrfs_record_root_in_trans(h, root);
327
328         if (!current->journal_info && type != TRANS_USERSPACE)
329                 current->journal_info = h;
330         return h;
331 }
332
333 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
334                                                    int num_items)
335 {
336         return start_transaction(root, num_items, TRANS_START);
337 }
338 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
339 {
340         return start_transaction(root, 0, TRANS_JOIN);
341 }
342
343 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
344 {
345         return start_transaction(root, 0, TRANS_JOIN_NOLOCK);
346 }
347
348 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
349 {
350         return start_transaction(root, 0, TRANS_USERSPACE);
351 }
352
353 /* wait for a transaction commit to be fully complete */
354 static noinline void wait_for_commit(struct btrfs_root *root,
355                                     struct btrfs_transaction *commit)
356 {
357         wait_event(commit->commit_wait, commit->commit_done);
358 }
359
360 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
361 {
362         struct btrfs_transaction *cur_trans = NULL, *t;
363         int ret;
364
365         ret = 0;
366         if (transid) {
367                 if (transid <= root->fs_info->last_trans_committed)
368                         goto out;
369
370                 /* find specified transaction */
371                 spin_lock(&root->fs_info->trans_lock);
372                 list_for_each_entry(t, &root->fs_info->trans_list, list) {
373                         if (t->transid == transid) {
374                                 cur_trans = t;
375                                 atomic_inc(&cur_trans->use_count);
376                                 break;
377                         }
378                         if (t->transid > transid)
379                                 break;
380                 }
381                 spin_unlock(&root->fs_info->trans_lock);
382                 ret = -EINVAL;
383                 if (!cur_trans)
384                         goto out;  /* bad transid */
385         } else {
386                 /* find newest transaction that is committing | committed */
387                 spin_lock(&root->fs_info->trans_lock);
388                 list_for_each_entry_reverse(t, &root->fs_info->trans_list,
389                                             list) {
390                         if (t->in_commit) {
391                                 if (t->commit_done)
392                                         break;
393                                 cur_trans = t;
394                                 atomic_inc(&cur_trans->use_count);
395                                 break;
396                         }
397                 }
398                 spin_unlock(&root->fs_info->trans_lock);
399                 if (!cur_trans)
400                         goto out;  /* nothing committing|committed */
401         }
402
403         wait_for_commit(root, cur_trans);
404
405         put_transaction(cur_trans);
406         ret = 0;
407 out:
408         return ret;
409 }
410
411 void btrfs_throttle(struct btrfs_root *root)
412 {
413         if (!atomic_read(&root->fs_info->open_ioctl_trans))
414                 wait_current_trans(root);
415 }
416
417 static int should_end_transaction(struct btrfs_trans_handle *trans,
418                                   struct btrfs_root *root)
419 {
420         int ret;
421         ret = btrfs_block_rsv_check(trans, root,
422                                     &root->fs_info->global_block_rsv, 0, 5);
423         return ret ? 1 : 0;
424 }
425
426 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
427                                  struct btrfs_root *root)
428 {
429         struct btrfs_transaction *cur_trans = trans->transaction;
430         int updates;
431
432         smp_mb();
433         if (cur_trans->blocked || cur_trans->delayed_refs.flushing)
434                 return 1;
435
436         updates = trans->delayed_ref_updates;
437         trans->delayed_ref_updates = 0;
438         if (updates)
439                 btrfs_run_delayed_refs(trans, root, updates);
440
441         return should_end_transaction(trans, root);
442 }
443
444 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
445                           struct btrfs_root *root, int throttle, int lock)
446 {
447         struct btrfs_transaction *cur_trans = trans->transaction;
448         struct btrfs_fs_info *info = root->fs_info;
449         int count = 0;
450
451         if (--trans->use_count) {
452                 trans->block_rsv = trans->orig_rsv;
453                 return 0;
454         }
455
456         while (count < 4) {
457                 unsigned long cur = trans->delayed_ref_updates;
458                 trans->delayed_ref_updates = 0;
459                 if (cur &&
460                     trans->transaction->delayed_refs.num_heads_ready > 64) {
461                         trans->delayed_ref_updates = 0;
462
463                         /*
464                          * do a full flush if the transaction is trying
465                          * to close
466                          */
467                         if (trans->transaction->delayed_refs.flushing)
468                                 cur = 0;
469                         btrfs_run_delayed_refs(trans, root, cur);
470                 } else {
471                         break;
472                 }
473                 count++;
474         }
475
476         btrfs_trans_release_metadata(trans, root);
477
478         if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
479             should_end_transaction(trans, root)) {
480                 trans->transaction->blocked = 1;
481                 smp_wmb();
482         }
483
484         if (lock && cur_trans->blocked && !cur_trans->in_commit) {
485                 if (throttle) {
486                         /*
487                          * We may race with somebody else here so end up having
488                          * to call end_transaction on ourselves again, so inc
489                          * our use_count.
490                          */
491                         trans->use_count++;
492                         return btrfs_commit_transaction(trans, root);
493                 } else {
494                         wake_up_process(info->transaction_kthread);
495                 }
496         }
497
498         WARN_ON(cur_trans != info->running_transaction);
499         WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
500         atomic_dec(&cur_trans->num_writers);
501
502         smp_mb();
503         if (waitqueue_active(&cur_trans->writer_wait))
504                 wake_up(&cur_trans->writer_wait);
505         put_transaction(cur_trans);
506
507         if (current->journal_info == trans)
508                 current->journal_info = NULL;
509         memset(trans, 0, sizeof(*trans));
510         kmem_cache_free(btrfs_trans_handle_cachep, trans);
511
512         if (throttle)
513                 btrfs_run_delayed_iputs(root);
514
515         return 0;
516 }
517
518 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
519                           struct btrfs_root *root)
520 {
521         int ret;
522
523         ret = __btrfs_end_transaction(trans, root, 0, 1);
524         if (ret)
525                 return ret;
526         return 0;
527 }
528
529 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
530                                    struct btrfs_root *root)
531 {
532         int ret;
533
534         ret = __btrfs_end_transaction(trans, root, 1, 1);
535         if (ret)
536                 return ret;
537         return 0;
538 }
539
540 int btrfs_end_transaction_nolock(struct btrfs_trans_handle *trans,
541                                  struct btrfs_root *root)
542 {
543         int ret;
544
545         ret = __btrfs_end_transaction(trans, root, 0, 0);
546         if (ret)
547                 return ret;
548         return 0;
549 }
550
551 int btrfs_end_transaction_dmeta(struct btrfs_trans_handle *trans,
552                                 struct btrfs_root *root)
553 {
554         return __btrfs_end_transaction(trans, root, 1, 1);
555 }
556
557 /*
558  * when btree blocks are allocated, they have some corresponding bits set for
559  * them in one of two extent_io trees.  This is used to make sure all of
560  * those extents are sent to disk but does not wait on them
561  */
562 int btrfs_write_marked_extents(struct btrfs_root *root,
563                                struct extent_io_tree *dirty_pages, int mark)
564 {
565         int ret;
566         int err = 0;
567         int werr = 0;
568         struct page *page;
569         struct inode *btree_inode = root->fs_info->btree_inode;
570         u64 start = 0;
571         u64 end;
572         unsigned long index;
573
574         while (1) {
575                 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
576                                             mark);
577                 if (ret)
578                         break;
579                 while (start <= end) {
580                         cond_resched();
581
582                         index = start >> PAGE_CACHE_SHIFT;
583                         start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
584                         page = find_get_page(btree_inode->i_mapping, index);
585                         if (!page)
586                                 continue;
587
588                         btree_lock_page_hook(page);
589                         if (!page->mapping) {
590                                 unlock_page(page);
591                                 page_cache_release(page);
592                                 continue;
593                         }
594
595                         if (PageWriteback(page)) {
596                                 if (PageDirty(page))
597                                         wait_on_page_writeback(page);
598                                 else {
599                                         unlock_page(page);
600                                         page_cache_release(page);
601                                         continue;
602                                 }
603                         }
604                         err = write_one_page(page, 0);
605                         if (err)
606                                 werr = err;
607                         page_cache_release(page);
608                 }
609         }
610         if (err)
611                 werr = err;
612         return werr;
613 }
614
615 /*
616  * when btree blocks are allocated, they have some corresponding bits set for
617  * them in one of two extent_io trees.  This is used to make sure all of
618  * those extents are on disk for transaction or log commit.  We wait
619  * on all the pages and clear them from the dirty pages state tree
620  */
621 int btrfs_wait_marked_extents(struct btrfs_root *root,
622                               struct extent_io_tree *dirty_pages, int mark)
623 {
624         int ret;
625         int err = 0;
626         int werr = 0;
627         struct page *page;
628         struct inode *btree_inode = root->fs_info->btree_inode;
629         u64 start = 0;
630         u64 end;
631         unsigned long index;
632
633         while (1) {
634                 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
635                                             mark);
636                 if (ret)
637                         break;
638
639                 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
640                 while (start <= end) {
641                         index = start >> PAGE_CACHE_SHIFT;
642                         start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
643                         page = find_get_page(btree_inode->i_mapping, index);
644                         if (!page)
645                                 continue;
646                         if (PageDirty(page)) {
647                                 btree_lock_page_hook(page);
648                                 wait_on_page_writeback(page);
649                                 err = write_one_page(page, 0);
650                                 if (err)
651                                         werr = err;
652                         }
653                         wait_on_page_writeback(page);
654                         page_cache_release(page);
655                         cond_resched();
656                 }
657         }
658         if (err)
659                 werr = err;
660         return werr;
661 }
662
663 /*
664  * when btree blocks are allocated, they have some corresponding bits set for
665  * them in one of two extent_io trees.  This is used to make sure all of
666  * those extents are on disk for transaction or log commit
667  */
668 int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
669                                 struct extent_io_tree *dirty_pages, int mark)
670 {
671         int ret;
672         int ret2;
673
674         ret = btrfs_write_marked_extents(root, dirty_pages, mark);
675         ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
676         return ret || ret2;
677 }
678
679 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
680                                      struct btrfs_root *root)
681 {
682         if (!trans || !trans->transaction) {
683                 struct inode *btree_inode;
684                 btree_inode = root->fs_info->btree_inode;
685                 return filemap_write_and_wait(btree_inode->i_mapping);
686         }
687         return btrfs_write_and_wait_marked_extents(root,
688                                            &trans->transaction->dirty_pages,
689                                            EXTENT_DIRTY);
690 }
691
692 /*
693  * this is used to update the root pointer in the tree of tree roots.
694  *
695  * But, in the case of the extent allocation tree, updating the root
696  * pointer may allocate blocks which may change the root of the extent
697  * allocation tree.
698  *
699  * So, this loops and repeats and makes sure the cowonly root didn't
700  * change while the root pointer was being updated in the metadata.
701  */
702 static int update_cowonly_root(struct btrfs_trans_handle *trans,
703                                struct btrfs_root *root)
704 {
705         int ret;
706         u64 old_root_bytenr;
707         u64 old_root_used;
708         struct btrfs_root *tree_root = root->fs_info->tree_root;
709
710         old_root_used = btrfs_root_used(&root->root_item);
711         btrfs_write_dirty_block_groups(trans, root);
712
713         while (1) {
714                 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
715                 if (old_root_bytenr == root->node->start &&
716                     old_root_used == btrfs_root_used(&root->root_item))
717                         break;
718
719                 btrfs_set_root_node(&root->root_item, root->node);
720                 ret = btrfs_update_root(trans, tree_root,
721                                         &root->root_key,
722                                         &root->root_item);
723                 BUG_ON(ret);
724
725                 old_root_used = btrfs_root_used(&root->root_item);
726                 ret = btrfs_write_dirty_block_groups(trans, root);
727                 BUG_ON(ret);
728         }
729
730         if (root != root->fs_info->extent_root)
731                 switch_commit_root(root);
732
733         return 0;
734 }
735
736 /*
737  * update all the cowonly tree roots on disk
738  */
739 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
740                                          struct btrfs_root *root)
741 {
742         struct btrfs_fs_info *fs_info = root->fs_info;
743         struct list_head *next;
744         struct extent_buffer *eb;
745         int ret;
746
747         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
748         BUG_ON(ret);
749
750         eb = btrfs_lock_root_node(fs_info->tree_root);
751         btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 0, &eb);
752         btrfs_tree_unlock(eb);
753         free_extent_buffer(eb);
754
755         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
756         BUG_ON(ret);
757
758         while (!list_empty(&fs_info->dirty_cowonly_roots)) {
759                 next = fs_info->dirty_cowonly_roots.next;
760                 list_del_init(next);
761                 root = list_entry(next, struct btrfs_root, dirty_list);
762
763                 update_cowonly_root(trans, root);
764         }
765
766         down_write(&fs_info->extent_commit_sem);
767         switch_commit_root(fs_info->extent_root);
768         up_write(&fs_info->extent_commit_sem);
769
770         return 0;
771 }
772
773 /*
774  * dead roots are old snapshots that need to be deleted.  This allocates
775  * a dirty root struct and adds it into the list of dead roots that need to
776  * be deleted
777  */
778 int btrfs_add_dead_root(struct btrfs_root *root)
779 {
780         spin_lock(&root->fs_info->trans_lock);
781         list_add(&root->root_list, &root->fs_info->dead_roots);
782         spin_unlock(&root->fs_info->trans_lock);
783         return 0;
784 }
785
786 /*
787  * update all the cowonly tree roots on disk
788  */
789 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
790                                     struct btrfs_root *root)
791 {
792         struct btrfs_root *gang[8];
793         struct btrfs_fs_info *fs_info = root->fs_info;
794         int i;
795         int ret;
796         int err = 0;
797
798         spin_lock(&fs_info->fs_roots_radix_lock);
799         while (1) {
800                 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
801                                                  (void **)gang, 0,
802                                                  ARRAY_SIZE(gang),
803                                                  BTRFS_ROOT_TRANS_TAG);
804                 if (ret == 0)
805                         break;
806                 for (i = 0; i < ret; i++) {
807                         root = gang[i];
808                         radix_tree_tag_clear(&fs_info->fs_roots_radix,
809                                         (unsigned long)root->root_key.objectid,
810                                         BTRFS_ROOT_TRANS_TAG);
811                         spin_unlock(&fs_info->fs_roots_radix_lock);
812
813                         btrfs_free_log(trans, root);
814                         btrfs_update_reloc_root(trans, root);
815                         btrfs_orphan_commit_root(trans, root);
816
817                         btrfs_save_ino_cache(root, trans);
818
819                         if (root->commit_root != root->node) {
820                                 mutex_lock(&root->fs_commit_mutex);
821                                 switch_commit_root(root);
822                                 btrfs_unpin_free_ino(root);
823                                 mutex_unlock(&root->fs_commit_mutex);
824
825                                 btrfs_set_root_node(&root->root_item,
826                                                     root->node);
827                         }
828
829                         err = btrfs_update_root(trans, fs_info->tree_root,
830                                                 &root->root_key,
831                                                 &root->root_item);
832                         spin_lock(&fs_info->fs_roots_radix_lock);
833                         if (err)
834                                 break;
835                 }
836         }
837         spin_unlock(&fs_info->fs_roots_radix_lock);
838         return err;
839 }
840
841 /*
842  * defrag a given btree.  If cacheonly == 1, this won't read from the disk,
843  * otherwise every leaf in the btree is read and defragged.
844  */
845 int btrfs_defrag_root(struct btrfs_root *root, int cacheonly)
846 {
847         struct btrfs_fs_info *info = root->fs_info;
848         struct btrfs_trans_handle *trans;
849         int ret;
850         unsigned long nr;
851
852         if (xchg(&root->defrag_running, 1))
853                 return 0;
854
855         while (1) {
856                 trans = btrfs_start_transaction(root, 0);
857                 if (IS_ERR(trans))
858                         return PTR_ERR(trans);
859
860                 ret = btrfs_defrag_leaves(trans, root, cacheonly);
861
862                 nr = trans->blocks_used;
863                 btrfs_end_transaction(trans, root);
864                 btrfs_btree_balance_dirty(info->tree_root, nr);
865                 cond_resched();
866
867                 if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
868                         break;
869         }
870         root->defrag_running = 0;
871         return ret;
872 }
873
874 /*
875  * new snapshots need to be created at a very specific time in the
876  * transaction commit.  This does the actual creation
877  */
878 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
879                                    struct btrfs_fs_info *fs_info,
880                                    struct btrfs_pending_snapshot *pending)
881 {
882         struct btrfs_key key;
883         struct btrfs_root_item *new_root_item;
884         struct btrfs_root *tree_root = fs_info->tree_root;
885         struct btrfs_root *root = pending->root;
886         struct btrfs_root *parent_root;
887         struct inode *parent_inode;
888         struct dentry *parent;
889         struct dentry *dentry;
890         struct extent_buffer *tmp;
891         struct extent_buffer *old;
892         int ret;
893         u64 to_reserve = 0;
894         u64 index = 0;
895         u64 objectid;
896         u64 root_flags;
897
898         new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
899         if (!new_root_item) {
900                 pending->error = -ENOMEM;
901                 goto fail;
902         }
903
904         ret = btrfs_find_free_objectid(tree_root, &objectid);
905         if (ret) {
906                 pending->error = ret;
907                 goto fail;
908         }
909
910         btrfs_reloc_pre_snapshot(trans, pending, &to_reserve);
911         btrfs_orphan_pre_snapshot(trans, pending, &to_reserve);
912
913         if (to_reserve > 0) {
914                 ret = btrfs_block_rsv_add(trans, root, &pending->block_rsv,
915                                           to_reserve);
916                 if (ret) {
917                         pending->error = ret;
918                         goto fail;
919                 }
920         }
921
922         key.objectid = objectid;
923         key.offset = (u64)-1;
924         key.type = BTRFS_ROOT_ITEM_KEY;
925
926         trans->block_rsv = &pending->block_rsv;
927
928         dentry = pending->dentry;
929         parent = dget_parent(dentry);
930         parent_inode = parent->d_inode;
931         parent_root = BTRFS_I(parent_inode)->root;
932         record_root_in_trans(trans, parent_root);
933
934         /*
935          * insert the directory item
936          */
937         ret = btrfs_set_inode_index(parent_inode, &index);
938         BUG_ON(ret);
939         ret = btrfs_insert_dir_item(trans, parent_root,
940                                 dentry->d_name.name, dentry->d_name.len,
941                                 parent_inode, &key,
942                                 BTRFS_FT_DIR, index);
943         BUG_ON(ret);
944
945         btrfs_i_size_write(parent_inode, parent_inode->i_size +
946                                          dentry->d_name.len * 2);
947         ret = btrfs_update_inode(trans, parent_root, parent_inode);
948         BUG_ON(ret);
949
950         /*
951          * pull in the delayed directory update
952          * and the delayed inode item
953          * otherwise we corrupt the FS during
954          * snapshot
955          */
956         ret = btrfs_run_delayed_items(trans, root);
957         BUG_ON(ret);
958
959         record_root_in_trans(trans, root);
960         btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
961         memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
962         btrfs_check_and_init_root_item(new_root_item);
963
964         root_flags = btrfs_root_flags(new_root_item);
965         if (pending->readonly)
966                 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
967         else
968                 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
969         btrfs_set_root_flags(new_root_item, root_flags);
970
971         old = btrfs_lock_root_node(root);
972         btrfs_cow_block(trans, root, old, NULL, 0, &old);
973         btrfs_set_lock_blocking(old);
974
975         btrfs_copy_root(trans, root, old, &tmp, objectid);
976         btrfs_tree_unlock(old);
977         free_extent_buffer(old);
978
979         btrfs_set_root_node(new_root_item, tmp);
980         /* record when the snapshot was created in key.offset */
981         key.offset = trans->transid;
982         ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
983         btrfs_tree_unlock(tmp);
984         free_extent_buffer(tmp);
985         BUG_ON(ret);
986
987         /*
988          * insert root back/forward references
989          */
990         ret = btrfs_add_root_ref(trans, tree_root, objectid,
991                                  parent_root->root_key.objectid,
992                                  btrfs_ino(parent_inode), index,
993                                  dentry->d_name.name, dentry->d_name.len);
994         BUG_ON(ret);
995         dput(parent);
996
997         key.offset = (u64)-1;
998         pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
999         BUG_ON(IS_ERR(pending->snap));
1000
1001         btrfs_reloc_post_snapshot(trans, pending);
1002         btrfs_orphan_post_snapshot(trans, pending);
1003 fail:
1004         kfree(new_root_item);
1005         btrfs_block_rsv_release(root, &pending->block_rsv, (u64)-1);
1006         return 0;
1007 }
1008
1009 /*
1010  * create all the snapshots we've scheduled for creation
1011  */
1012 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1013                                              struct btrfs_fs_info *fs_info)
1014 {
1015         struct btrfs_pending_snapshot *pending;
1016         struct list_head *head = &trans->transaction->pending_snapshots;
1017         int ret;
1018
1019         list_for_each_entry(pending, head, list) {
1020                 ret = create_pending_snapshot(trans, fs_info, pending);
1021                 BUG_ON(ret);
1022         }
1023         return 0;
1024 }
1025
1026 static void update_super_roots(struct btrfs_root *root)
1027 {
1028         struct btrfs_root_item *root_item;
1029         struct btrfs_super_block *super;
1030
1031         super = &root->fs_info->super_copy;
1032
1033         root_item = &root->fs_info->chunk_root->root_item;
1034         super->chunk_root = root_item->bytenr;
1035         super->chunk_root_generation = root_item->generation;
1036         super->chunk_root_level = root_item->level;
1037
1038         root_item = &root->fs_info->tree_root->root_item;
1039         super->root = root_item->bytenr;
1040         super->generation = root_item->generation;
1041         super->root_level = root_item->level;
1042         if (super->cache_generation != 0 || btrfs_test_opt(root, SPACE_CACHE))
1043                 super->cache_generation = root_item->generation;
1044 }
1045
1046 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1047 {
1048         int ret = 0;
1049         spin_lock(&info->trans_lock);
1050         if (info->running_transaction)
1051                 ret = info->running_transaction->in_commit;
1052         spin_unlock(&info->trans_lock);
1053         return ret;
1054 }
1055
1056 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1057 {
1058         int ret = 0;
1059         spin_lock(&info->trans_lock);
1060         if (info->running_transaction)
1061                 ret = info->running_transaction->blocked;
1062         spin_unlock(&info->trans_lock);
1063         return ret;
1064 }
1065
1066 /*
1067  * wait for the current transaction commit to start and block subsequent
1068  * transaction joins
1069  */
1070 static void wait_current_trans_commit_start(struct btrfs_root *root,
1071                                             struct btrfs_transaction *trans)
1072 {
1073         wait_event(root->fs_info->transaction_blocked_wait, trans->in_commit);
1074 }
1075
1076 /*
1077  * wait for the current transaction to start and then become unblocked.
1078  * caller holds ref.
1079  */
1080 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1081                                          struct btrfs_transaction *trans)
1082 {
1083         wait_event(root->fs_info->transaction_wait,
1084                    trans->commit_done || (trans->in_commit && !trans->blocked));
1085 }
1086
1087 /*
1088  * commit transactions asynchronously. once btrfs_commit_transaction_async
1089  * returns, any subsequent transaction will not be allowed to join.
1090  */
1091 struct btrfs_async_commit {
1092         struct btrfs_trans_handle *newtrans;
1093         struct btrfs_root *root;
1094         struct delayed_work work;
1095 };
1096
1097 static void do_async_commit(struct work_struct *work)
1098 {
1099         struct btrfs_async_commit *ac =
1100                 container_of(work, struct btrfs_async_commit, work.work);
1101
1102         btrfs_commit_transaction(ac->newtrans, ac->root);
1103         kfree(ac);
1104 }
1105
1106 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1107                                    struct btrfs_root *root,
1108                                    int wait_for_unblock)
1109 {
1110         struct btrfs_async_commit *ac;
1111         struct btrfs_transaction *cur_trans;
1112
1113         ac = kmalloc(sizeof(*ac), GFP_NOFS);
1114         if (!ac)
1115                 return -ENOMEM;
1116
1117         INIT_DELAYED_WORK(&ac->work, do_async_commit);
1118         ac->root = root;
1119         ac->newtrans = btrfs_join_transaction(root);
1120         if (IS_ERR(ac->newtrans)) {
1121                 int err = PTR_ERR(ac->newtrans);
1122                 kfree(ac);
1123                 return err;
1124         }
1125
1126         /* take transaction reference */
1127         cur_trans = trans->transaction;
1128         atomic_inc(&cur_trans->use_count);
1129
1130         btrfs_end_transaction(trans, root);
1131         schedule_delayed_work(&ac->work, 0);
1132
1133         /* wait for transaction to start and unblock */
1134         if (wait_for_unblock)
1135                 wait_current_trans_commit_start_and_unblock(root, cur_trans);
1136         else
1137                 wait_current_trans_commit_start(root, cur_trans);
1138
1139         if (current->journal_info == trans)
1140                 current->journal_info = NULL;
1141
1142         put_transaction(cur_trans);
1143         return 0;
1144 }
1145
1146 /*
1147  * btrfs_transaction state sequence:
1148  *    in_commit = 0, blocked = 0  (initial)
1149  *    in_commit = 1, blocked = 1
1150  *    blocked = 0
1151  *    commit_done = 1
1152  */
1153 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1154                              struct btrfs_root *root)
1155 {
1156         unsigned long joined = 0;
1157         struct btrfs_transaction *cur_trans;
1158         struct btrfs_transaction *prev_trans = NULL;
1159         DEFINE_WAIT(wait);
1160         int ret;
1161         int should_grow = 0;
1162         unsigned long now = get_seconds();
1163         int flush_on_commit = btrfs_test_opt(root, FLUSHONCOMMIT);
1164
1165         btrfs_run_ordered_operations(root, 0);
1166
1167         /* make a pass through all the delayed refs we have so far
1168          * any runnings procs may add more while we are here
1169          */
1170         ret = btrfs_run_delayed_refs(trans, root, 0);
1171         BUG_ON(ret);
1172
1173         btrfs_trans_release_metadata(trans, root);
1174
1175         cur_trans = trans->transaction;
1176         /*
1177          * set the flushing flag so procs in this transaction have to
1178          * start sending their work down.
1179          */
1180         cur_trans->delayed_refs.flushing = 1;
1181
1182         ret = btrfs_run_delayed_refs(trans, root, 0);
1183         BUG_ON(ret);
1184
1185         spin_lock(&cur_trans->commit_lock);
1186         if (cur_trans->in_commit) {
1187                 spin_unlock(&cur_trans->commit_lock);
1188                 atomic_inc(&cur_trans->use_count);
1189                 btrfs_end_transaction(trans, root);
1190
1191                 wait_for_commit(root, cur_trans);
1192
1193                 put_transaction(cur_trans);
1194
1195                 return 0;
1196         }
1197
1198         trans->transaction->in_commit = 1;
1199         trans->transaction->blocked = 1;
1200         spin_unlock(&cur_trans->commit_lock);
1201         wake_up(&root->fs_info->transaction_blocked_wait);
1202
1203         spin_lock(&root->fs_info->trans_lock);
1204         if (cur_trans->list.prev != &root->fs_info->trans_list) {
1205                 prev_trans = list_entry(cur_trans->list.prev,
1206                                         struct btrfs_transaction, list);
1207                 if (!prev_trans->commit_done) {
1208                         atomic_inc(&prev_trans->use_count);
1209                         spin_unlock(&root->fs_info->trans_lock);
1210
1211                         wait_for_commit(root, prev_trans);
1212
1213                         put_transaction(prev_trans);
1214                 } else {
1215                         spin_unlock(&root->fs_info->trans_lock);
1216                 }
1217         } else {
1218                 spin_unlock(&root->fs_info->trans_lock);
1219         }
1220
1221         if (now < cur_trans->start_time || now - cur_trans->start_time < 1)
1222                 should_grow = 1;
1223
1224         do {
1225                 int snap_pending = 0;
1226
1227                 joined = cur_trans->num_joined;
1228                 if (!list_empty(&trans->transaction->pending_snapshots))
1229                         snap_pending = 1;
1230
1231                 WARN_ON(cur_trans != trans->transaction);
1232
1233                 if (flush_on_commit || snap_pending) {
1234                         btrfs_start_delalloc_inodes(root, 1);
1235                         ret = btrfs_wait_ordered_extents(root, 0, 1);
1236                         BUG_ON(ret);
1237                 }
1238
1239                 ret = btrfs_run_delayed_items(trans, root);
1240                 BUG_ON(ret);
1241
1242                 /*
1243                  * rename don't use btrfs_join_transaction, so, once we
1244                  * set the transaction to blocked above, we aren't going
1245                  * to get any new ordered operations.  We can safely run
1246                  * it here and no for sure that nothing new will be added
1247                  * to the list
1248                  */
1249                 btrfs_run_ordered_operations(root, 1);
1250
1251                 prepare_to_wait(&cur_trans->writer_wait, &wait,
1252                                 TASK_UNINTERRUPTIBLE);
1253
1254                 if (atomic_read(&cur_trans->num_writers) > 1)
1255                         schedule_timeout(MAX_SCHEDULE_TIMEOUT);
1256                 else if (should_grow)
1257                         schedule_timeout(1);
1258
1259                 finish_wait(&cur_trans->writer_wait, &wait);
1260         } while (atomic_read(&cur_trans->num_writers) > 1 ||
1261                  (should_grow && cur_trans->num_joined != joined));
1262
1263         /*
1264          * Ok now we need to make sure to block out any other joins while we
1265          * commit the transaction.  We could have started a join before setting
1266          * no_join so make sure to wait for num_writers to == 1 again.
1267          */
1268         spin_lock(&root->fs_info->trans_lock);
1269         root->fs_info->trans_no_join = 1;
1270         spin_unlock(&root->fs_info->trans_lock);
1271         wait_event(cur_trans->writer_wait,
1272                    atomic_read(&cur_trans->num_writers) == 1);
1273
1274         /*
1275          * the reloc mutex makes sure that we stop
1276          * the balancing code from coming in and moving
1277          * extents around in the middle of the commit
1278          */
1279         mutex_lock(&root->fs_info->reloc_mutex);
1280
1281         ret = btrfs_run_delayed_items(trans, root);
1282         BUG_ON(ret);
1283
1284         ret = create_pending_snapshots(trans, root->fs_info);
1285         BUG_ON(ret);
1286
1287         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1288         BUG_ON(ret);
1289
1290         /*
1291          * make sure none of the code above managed to slip in a
1292          * delayed item
1293          */
1294         btrfs_assert_delayed_root_empty(root);
1295
1296         WARN_ON(cur_trans != trans->transaction);
1297
1298         btrfs_scrub_pause(root);
1299         /* btrfs_commit_tree_roots is responsible for getting the
1300          * various roots consistent with each other.  Every pointer
1301          * in the tree of tree roots has to point to the most up to date
1302          * root for every subvolume and other tree.  So, we have to keep
1303          * the tree logging code from jumping in and changing any
1304          * of the trees.
1305          *
1306          * At this point in the commit, there can't be any tree-log
1307          * writers, but a little lower down we drop the trans mutex
1308          * and let new people in.  By holding the tree_log_mutex
1309          * from now until after the super is written, we avoid races
1310          * with the tree-log code.
1311          */
1312         mutex_lock(&root->fs_info->tree_log_mutex);
1313
1314         ret = commit_fs_roots(trans, root);
1315         BUG_ON(ret);
1316
1317         /* commit_fs_roots gets rid of all the tree log roots, it is now
1318          * safe to free the root of tree log roots
1319          */
1320         btrfs_free_log_root_tree(trans, root->fs_info);
1321
1322         ret = commit_cowonly_roots(trans, root);
1323         BUG_ON(ret);
1324
1325         btrfs_prepare_extent_commit(trans, root);
1326
1327         cur_trans = root->fs_info->running_transaction;
1328
1329         btrfs_set_root_node(&root->fs_info->tree_root->root_item,
1330                             root->fs_info->tree_root->node);
1331         switch_commit_root(root->fs_info->tree_root);
1332
1333         btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
1334                             root->fs_info->chunk_root->node);
1335         switch_commit_root(root->fs_info->chunk_root);
1336
1337         update_super_roots(root);
1338
1339         if (!root->fs_info->log_root_recovering) {
1340                 btrfs_set_super_log_root(&root->fs_info->super_copy, 0);
1341                 btrfs_set_super_log_root_level(&root->fs_info->super_copy, 0);
1342         }
1343
1344         memcpy(&root->fs_info->super_for_commit, &root->fs_info->super_copy,
1345                sizeof(root->fs_info->super_copy));
1346
1347         trans->transaction->blocked = 0;
1348         spin_lock(&root->fs_info->trans_lock);
1349         root->fs_info->running_transaction = NULL;
1350         root->fs_info->trans_no_join = 0;
1351         spin_unlock(&root->fs_info->trans_lock);
1352         mutex_unlock(&root->fs_info->reloc_mutex);
1353
1354         wake_up(&root->fs_info->transaction_wait);
1355
1356         ret = btrfs_write_and_wait_transaction(trans, root);
1357         BUG_ON(ret);
1358         write_ctree_super(trans, root, 0);
1359
1360         /*
1361          * the super is written, we can safely allow the tree-loggers
1362          * to go about their business
1363          */
1364         mutex_unlock(&root->fs_info->tree_log_mutex);
1365
1366         btrfs_finish_extent_commit(trans, root);
1367
1368         cur_trans->commit_done = 1;
1369
1370         root->fs_info->last_trans_committed = cur_trans->transid;
1371
1372         wake_up(&cur_trans->commit_wait);
1373
1374         spin_lock(&root->fs_info->trans_lock);
1375         list_del_init(&cur_trans->list);
1376         spin_unlock(&root->fs_info->trans_lock);
1377
1378         put_transaction(cur_trans);
1379         put_transaction(cur_trans);
1380
1381         trace_btrfs_transaction_commit(root);
1382
1383         btrfs_scrub_continue(root);
1384
1385         if (current->journal_info == trans)
1386                 current->journal_info = NULL;
1387
1388         kmem_cache_free(btrfs_trans_handle_cachep, trans);
1389
1390         if (current != root->fs_info->transaction_kthread)
1391                 btrfs_run_delayed_iputs(root);
1392
1393         return ret;
1394 }
1395
1396 /*
1397  * interface function to delete all the snapshots we have scheduled for deletion
1398  */
1399 int btrfs_clean_old_snapshots(struct btrfs_root *root)
1400 {
1401         LIST_HEAD(list);
1402         struct btrfs_fs_info *fs_info = root->fs_info;
1403
1404         spin_lock(&fs_info->trans_lock);
1405         list_splice_init(&fs_info->dead_roots, &list);
1406         spin_unlock(&fs_info->trans_lock);
1407
1408         while (!list_empty(&list)) {
1409                 root = list_entry(list.next, struct btrfs_root, root_list);
1410                 list_del(&root->root_list);
1411
1412                 btrfs_kill_all_delayed_nodes(root);
1413
1414                 if (btrfs_header_backref_rev(root->node) <
1415                     BTRFS_MIXED_BACKREF_REV)
1416                         btrfs_drop_snapshot(root, NULL, 0);
1417                 else
1418                         btrfs_drop_snapshot(root, NULL, 1);
1419         }
1420         return 0;
1421 }