x86/mm: Fix {pmd,pud}_{set,clear}_flags()
[pandora-kernel.git] / fs / btrfs / transaction.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include "ctree.h"
26 #include "disk-io.h"
27 #include "transaction.h"
28 #include "locking.h"
29 #include "tree-log.h"
30 #include "inode-map.h"
31
32 #define BTRFS_ROOT_TRANS_TAG 0
33
34 static noinline void put_transaction(struct btrfs_transaction *transaction)
35 {
36         WARN_ON(atomic_read(&transaction->use_count) == 0);
37         if (atomic_dec_and_test(&transaction->use_count)) {
38                 BUG_ON(!list_empty(&transaction->list));
39                 memset(transaction, 0, sizeof(*transaction));
40                 kmem_cache_free(btrfs_transaction_cachep, transaction);
41         }
42 }
43
44 static noinline void switch_commit_root(struct btrfs_root *root)
45 {
46         free_extent_buffer(root->commit_root);
47         root->commit_root = btrfs_root_node(root);
48 }
49
50 /*
51  * either allocate a new transaction or hop into the existing one
52  */
53 static noinline int join_transaction(struct btrfs_root *root, int nofail)
54 {
55         struct btrfs_transaction *cur_trans;
56
57         spin_lock(&root->fs_info->trans_lock);
58 loop:
59         if (root->fs_info->trans_no_join) {
60                 if (!nofail) {
61                         spin_unlock(&root->fs_info->trans_lock);
62                         return -EBUSY;
63                 }
64         }
65
66         cur_trans = root->fs_info->running_transaction;
67         if (cur_trans) {
68                 atomic_inc(&cur_trans->use_count);
69                 atomic_inc(&cur_trans->num_writers);
70                 cur_trans->num_joined++;
71                 spin_unlock(&root->fs_info->trans_lock);
72                 return 0;
73         }
74         spin_unlock(&root->fs_info->trans_lock);
75
76         cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
77         if (!cur_trans)
78                 return -ENOMEM;
79
80         spin_lock(&root->fs_info->trans_lock);
81         if (root->fs_info->running_transaction) {
82                 /*
83                  * someone started a transaction after we unlocked.  Make sure
84                  * to redo the trans_no_join checks above
85                  */
86                 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
87                 cur_trans = root->fs_info->running_transaction;
88                 goto loop;
89         }
90
91         atomic_set(&cur_trans->num_writers, 1);
92         cur_trans->num_joined = 0;
93         init_waitqueue_head(&cur_trans->writer_wait);
94         init_waitqueue_head(&cur_trans->commit_wait);
95         cur_trans->in_commit = 0;
96         cur_trans->blocked = 0;
97         /*
98          * One for this trans handle, one so it will live on until we
99          * commit the transaction.
100          */
101         atomic_set(&cur_trans->use_count, 2);
102         cur_trans->commit_done = 0;
103         cur_trans->start_time = get_seconds();
104
105         cur_trans->delayed_refs.root = RB_ROOT;
106         cur_trans->delayed_refs.num_entries = 0;
107         cur_trans->delayed_refs.num_heads_ready = 0;
108         cur_trans->delayed_refs.num_heads = 0;
109         cur_trans->delayed_refs.flushing = 0;
110         cur_trans->delayed_refs.run_delayed_start = 0;
111         spin_lock_init(&cur_trans->commit_lock);
112         spin_lock_init(&cur_trans->delayed_refs.lock);
113
114         INIT_LIST_HEAD(&cur_trans->pending_snapshots);
115         list_add_tail(&cur_trans->list, &root->fs_info->trans_list);
116         extent_io_tree_init(&cur_trans->dirty_pages,
117                              root->fs_info->btree_inode->i_mapping);
118         root->fs_info->generation++;
119         cur_trans->transid = root->fs_info->generation;
120         root->fs_info->running_transaction = cur_trans;
121         spin_unlock(&root->fs_info->trans_lock);
122
123         return 0;
124 }
125
126 /*
127  * this does all the record keeping required to make sure that a reference
128  * counted root is properly recorded in a given transaction.  This is required
129  * to make sure the old root from before we joined the transaction is deleted
130  * when the transaction commits
131  */
132 static int record_root_in_trans(struct btrfs_trans_handle *trans,
133                                struct btrfs_root *root)
134 {
135         if (root->ref_cows && root->last_trans < trans->transid) {
136                 WARN_ON(root == root->fs_info->extent_root);
137                 WARN_ON(root->commit_root != root->node);
138
139                 /*
140                  * see below for in_trans_setup usage rules
141                  * we have the reloc mutex held now, so there
142                  * is only one writer in this function
143                  */
144                 root->in_trans_setup = 1;
145
146                 /* make sure readers find in_trans_setup before
147                  * they find our root->last_trans update
148                  */
149                 smp_wmb();
150
151                 spin_lock(&root->fs_info->fs_roots_radix_lock);
152                 if (root->last_trans == trans->transid) {
153                         spin_unlock(&root->fs_info->fs_roots_radix_lock);
154                         return 0;
155                 }
156                 radix_tree_tag_set(&root->fs_info->fs_roots_radix,
157                            (unsigned long)root->root_key.objectid,
158                            BTRFS_ROOT_TRANS_TAG);
159                 spin_unlock(&root->fs_info->fs_roots_radix_lock);
160                 root->last_trans = trans->transid;
161
162                 /* this is pretty tricky.  We don't want to
163                  * take the relocation lock in btrfs_record_root_in_trans
164                  * unless we're really doing the first setup for this root in
165                  * this transaction.
166                  *
167                  * Normally we'd use root->last_trans as a flag to decide
168                  * if we want to take the expensive mutex.
169                  *
170                  * But, we have to set root->last_trans before we
171                  * init the relocation root, otherwise, we trip over warnings
172                  * in ctree.c.  The solution used here is to flag ourselves
173                  * with root->in_trans_setup.  When this is 1, we're still
174                  * fixing up the reloc trees and everyone must wait.
175                  *
176                  * When this is zero, they can trust root->last_trans and fly
177                  * through btrfs_record_root_in_trans without having to take the
178                  * lock.  smp_wmb() makes sure that all the writes above are
179                  * done before we pop in the zero below
180                  */
181                 btrfs_init_reloc_root(trans, root);
182                 smp_wmb();
183                 root->in_trans_setup = 0;
184         }
185         return 0;
186 }
187
188
189 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
190                                struct btrfs_root *root)
191 {
192         if (!root->ref_cows)
193                 return 0;
194
195         /*
196          * see record_root_in_trans for comments about in_trans_setup usage
197          * and barriers
198          */
199         smp_rmb();
200         if (root->last_trans == trans->transid &&
201             !root->in_trans_setup)
202                 return 0;
203
204         mutex_lock(&root->fs_info->reloc_mutex);
205         record_root_in_trans(trans, root);
206         mutex_unlock(&root->fs_info->reloc_mutex);
207
208         return 0;
209 }
210
211 /* wait for commit against the current transaction to become unblocked
212  * when this is done, it is safe to start a new transaction, but the current
213  * transaction might not be fully on disk.
214  */
215 static void wait_current_trans(struct btrfs_root *root)
216 {
217         struct btrfs_transaction *cur_trans;
218
219         spin_lock(&root->fs_info->trans_lock);
220         cur_trans = root->fs_info->running_transaction;
221         if (cur_trans && cur_trans->blocked) {
222                 atomic_inc(&cur_trans->use_count);
223                 spin_unlock(&root->fs_info->trans_lock);
224
225                 wait_event(root->fs_info->transaction_wait,
226                            !cur_trans->blocked);
227                 put_transaction(cur_trans);
228         } else {
229                 spin_unlock(&root->fs_info->trans_lock);
230         }
231 }
232
233 enum btrfs_trans_type {
234         TRANS_START,
235         TRANS_JOIN,
236         TRANS_USERSPACE,
237         TRANS_JOIN_NOLOCK,
238 };
239
240 static int may_wait_transaction(struct btrfs_root *root, int type)
241 {
242         if (root->fs_info->log_root_recovering)
243                 return 0;
244
245         if (type == TRANS_USERSPACE)
246                 return 1;
247
248         if (type == TRANS_START &&
249             !atomic_read(&root->fs_info->open_ioctl_trans))
250                 return 1;
251
252         return 0;
253 }
254
255 static struct btrfs_trans_handle *start_transaction(struct btrfs_root *root,
256                                                     u64 num_items, int type)
257 {
258         struct btrfs_trans_handle *h;
259         struct btrfs_transaction *cur_trans;
260         u64 num_bytes = 0;
261         int ret;
262
263         if (root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
264                 return ERR_PTR(-EROFS);
265
266         if (current->journal_info) {
267                 WARN_ON(type != TRANS_JOIN && type != TRANS_JOIN_NOLOCK);
268                 h = current->journal_info;
269                 h->use_count++;
270                 h->orig_rsv = h->block_rsv;
271                 h->block_rsv = NULL;
272                 goto got_it;
273         }
274
275         /*
276          * Do the reservation before we join the transaction so we can do all
277          * the appropriate flushing if need be.
278          */
279         if (num_items > 0 && root != root->fs_info->chunk_root) {
280                 num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
281                 ret = btrfs_block_rsv_add(root,
282                                           &root->fs_info->trans_block_rsv,
283                                           num_bytes);
284                 if (ret)
285                         return ERR_PTR(ret);
286         }
287 again:
288         h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
289         if (!h)
290                 return ERR_PTR(-ENOMEM);
291
292         if (may_wait_transaction(root, type))
293                 wait_current_trans(root);
294
295         do {
296                 ret = join_transaction(root, type == TRANS_JOIN_NOLOCK);
297                 if (ret == -EBUSY)
298                         wait_current_trans(root);
299         } while (ret == -EBUSY);
300
301         if (ret < 0) {
302                 kmem_cache_free(btrfs_trans_handle_cachep, h);
303                 return ERR_PTR(ret);
304         }
305
306         cur_trans = root->fs_info->running_transaction;
307
308         h->transid = cur_trans->transid;
309         h->transaction = cur_trans;
310         h->blocks_used = 0;
311         h->bytes_reserved = 0;
312         h->delayed_ref_updates = 0;
313         h->use_count = 1;
314         h->block_rsv = NULL;
315         h->orig_rsv = NULL;
316
317         smp_mb();
318         if (cur_trans->blocked && may_wait_transaction(root, type)) {
319                 btrfs_commit_transaction(h, root);
320                 goto again;
321         }
322
323         if (num_bytes) {
324                 h->block_rsv = &root->fs_info->trans_block_rsv;
325                 h->bytes_reserved = num_bytes;
326         }
327
328 got_it:
329         btrfs_record_root_in_trans(h, root);
330
331         if (!current->journal_info && type != TRANS_USERSPACE)
332                 current->journal_info = h;
333         return h;
334 }
335
336 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
337                                                    int num_items)
338 {
339         return start_transaction(root, num_items, TRANS_START);
340 }
341 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
342 {
343         return start_transaction(root, 0, TRANS_JOIN);
344 }
345
346 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
347 {
348         return start_transaction(root, 0, TRANS_JOIN_NOLOCK);
349 }
350
351 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
352 {
353         return start_transaction(root, 0, TRANS_USERSPACE);
354 }
355
356 /* wait for a transaction commit to be fully complete */
357 static noinline void wait_for_commit(struct btrfs_root *root,
358                                     struct btrfs_transaction *commit)
359 {
360         wait_event(commit->commit_wait, commit->commit_done);
361 }
362
363 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
364 {
365         struct btrfs_transaction *cur_trans = NULL, *t;
366         int ret;
367
368         ret = 0;
369         if (transid) {
370                 if (transid <= root->fs_info->last_trans_committed)
371                         goto out;
372
373                 /* find specified transaction */
374                 spin_lock(&root->fs_info->trans_lock);
375                 list_for_each_entry(t, &root->fs_info->trans_list, list) {
376                         if (t->transid == transid) {
377                                 cur_trans = t;
378                                 atomic_inc(&cur_trans->use_count);
379                                 break;
380                         }
381                         if (t->transid > transid)
382                                 break;
383                 }
384                 spin_unlock(&root->fs_info->trans_lock);
385                 ret = -EINVAL;
386                 if (!cur_trans)
387                         goto out;  /* bad transid */
388         } else {
389                 /* find newest transaction that is committing | committed */
390                 spin_lock(&root->fs_info->trans_lock);
391                 list_for_each_entry_reverse(t, &root->fs_info->trans_list,
392                                             list) {
393                         if (t->in_commit) {
394                                 if (t->commit_done)
395                                         break;
396                                 cur_trans = t;
397                                 atomic_inc(&cur_trans->use_count);
398                                 break;
399                         }
400                 }
401                 spin_unlock(&root->fs_info->trans_lock);
402                 if (!cur_trans)
403                         goto out;  /* nothing committing|committed */
404         }
405
406         wait_for_commit(root, cur_trans);
407
408         put_transaction(cur_trans);
409         ret = 0;
410 out:
411         return ret;
412 }
413
414 void btrfs_throttle(struct btrfs_root *root)
415 {
416         if (!atomic_read(&root->fs_info->open_ioctl_trans))
417                 wait_current_trans(root);
418 }
419
420 static int should_end_transaction(struct btrfs_trans_handle *trans,
421                                   struct btrfs_root *root)
422 {
423         int ret;
424
425         ret = btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5);
426         return ret ? 1 : 0;
427 }
428
429 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
430                                  struct btrfs_root *root)
431 {
432         struct btrfs_transaction *cur_trans = trans->transaction;
433         struct btrfs_block_rsv *rsv = trans->block_rsv;
434         int updates;
435
436         smp_mb();
437         if (cur_trans->blocked || cur_trans->delayed_refs.flushing)
438                 return 1;
439
440         /*
441          * We need to do this in case we're deleting csums so the global block
442          * rsv get's used instead of the csum block rsv.
443          */
444         trans->block_rsv = NULL;
445
446         updates = trans->delayed_ref_updates;
447         trans->delayed_ref_updates = 0;
448         if (updates)
449                 btrfs_run_delayed_refs(trans, root, updates);
450
451         trans->block_rsv = rsv;
452
453         return should_end_transaction(trans, root);
454 }
455
456 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
457                           struct btrfs_root *root, int throttle, int lock)
458 {
459         struct btrfs_transaction *cur_trans = trans->transaction;
460         struct btrfs_fs_info *info = root->fs_info;
461         int count = 0;
462
463         if (trans->use_count > 1) {
464                 trans->use_count--;
465                 trans->block_rsv = trans->orig_rsv;
466                 return 0;
467         }
468
469         btrfs_trans_release_metadata(trans, root);
470         trans->block_rsv = NULL;
471         while (count < 4) {
472                 unsigned long cur = trans->delayed_ref_updates;
473                 trans->delayed_ref_updates = 0;
474                 if (cur &&
475                     trans->transaction->delayed_refs.num_heads_ready > 64) {
476                         trans->delayed_ref_updates = 0;
477
478                         /*
479                          * do a full flush if the transaction is trying
480                          * to close
481                          */
482                         if (trans->transaction->delayed_refs.flushing)
483                                 cur = 0;
484                         btrfs_run_delayed_refs(trans, root, cur);
485                 } else {
486                         break;
487                 }
488                 count++;
489         }
490
491         if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
492             should_end_transaction(trans, root)) {
493                 trans->transaction->blocked = 1;
494                 smp_wmb();
495         }
496
497         if (lock && cur_trans->blocked && !cur_trans->in_commit) {
498                 if (throttle)
499                         return btrfs_commit_transaction(trans, root);
500                 else
501                         wake_up_process(info->transaction_kthread);
502         }
503
504         WARN_ON(cur_trans != info->running_transaction);
505         WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
506         atomic_dec(&cur_trans->num_writers);
507
508         smp_mb();
509         if (waitqueue_active(&cur_trans->writer_wait))
510                 wake_up(&cur_trans->writer_wait);
511         put_transaction(cur_trans);
512
513         if (current->journal_info == trans)
514                 current->journal_info = NULL;
515         memset(trans, 0, sizeof(*trans));
516         kmem_cache_free(btrfs_trans_handle_cachep, trans);
517
518         if (throttle)
519                 btrfs_run_delayed_iputs(root);
520
521         return 0;
522 }
523
524 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
525                           struct btrfs_root *root)
526 {
527         int ret;
528
529         ret = __btrfs_end_transaction(trans, root, 0, 1);
530         if (ret)
531                 return ret;
532         return 0;
533 }
534
535 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
536                                    struct btrfs_root *root)
537 {
538         int ret;
539
540         ret = __btrfs_end_transaction(trans, root, 1, 1);
541         if (ret)
542                 return ret;
543         return 0;
544 }
545
546 int btrfs_end_transaction_nolock(struct btrfs_trans_handle *trans,
547                                  struct btrfs_root *root)
548 {
549         int ret;
550
551         ret = __btrfs_end_transaction(trans, root, 0, 0);
552         if (ret)
553                 return ret;
554         return 0;
555 }
556
557 int btrfs_end_transaction_dmeta(struct btrfs_trans_handle *trans,
558                                 struct btrfs_root *root)
559 {
560         return __btrfs_end_transaction(trans, root, 1, 1);
561 }
562
563 /*
564  * when btree blocks are allocated, they have some corresponding bits set for
565  * them in one of two extent_io trees.  This is used to make sure all of
566  * those extents are sent to disk but does not wait on them
567  */
568 int btrfs_write_marked_extents(struct btrfs_root *root,
569                                struct extent_io_tree *dirty_pages, int mark)
570 {
571         int err = 0;
572         int werr = 0;
573         struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
574         u64 start = 0;
575         u64 end;
576
577         while (!find_first_extent_bit(dirty_pages, start, &start, &end,
578                                       mark)) {
579                 convert_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT, mark,
580                                    GFP_NOFS);
581                 err = filemap_fdatawrite_range(mapping, start, end);
582                 if (err)
583                         werr = err;
584                 cond_resched();
585                 start = end + 1;
586         }
587         if (err)
588                 werr = err;
589         return werr;
590 }
591
592 /*
593  * when btree blocks are allocated, they have some corresponding bits set for
594  * them in one of two extent_io trees.  This is used to make sure all of
595  * those extents are on disk for transaction or log commit.  We wait
596  * on all the pages and clear them from the dirty pages state tree
597  */
598 int btrfs_wait_marked_extents(struct btrfs_root *root,
599                               struct extent_io_tree *dirty_pages, int mark)
600 {
601         int err = 0;
602         int werr = 0;
603         struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
604         u64 start = 0;
605         u64 end;
606
607         while (!find_first_extent_bit(dirty_pages, start, &start, &end,
608                                       EXTENT_NEED_WAIT)) {
609                 clear_extent_bits(dirty_pages, start, end, EXTENT_NEED_WAIT, GFP_NOFS);
610                 err = filemap_fdatawait_range(mapping, start, end);
611                 if (err)
612                         werr = err;
613                 cond_resched();
614                 start = end + 1;
615         }
616         if (err)
617                 werr = err;
618         return werr;
619 }
620
621 /*
622  * when btree blocks are allocated, they have some corresponding bits set for
623  * them in one of two extent_io trees.  This is used to make sure all of
624  * those extents are on disk for transaction or log commit
625  */
626 int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
627                                 struct extent_io_tree *dirty_pages, int mark)
628 {
629         int ret;
630         int ret2;
631
632         ret = btrfs_write_marked_extents(root, dirty_pages, mark);
633         ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
634
635         if (ret)
636                 return ret;
637         if (ret2)
638                 return ret2;
639         return 0;
640 }
641
642 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
643                                      struct btrfs_root *root)
644 {
645         if (!trans || !trans->transaction) {
646                 struct inode *btree_inode;
647                 btree_inode = root->fs_info->btree_inode;
648                 return filemap_write_and_wait(btree_inode->i_mapping);
649         }
650         return btrfs_write_and_wait_marked_extents(root,
651                                            &trans->transaction->dirty_pages,
652                                            EXTENT_DIRTY);
653 }
654
655 /*
656  * this is used to update the root pointer in the tree of tree roots.
657  *
658  * But, in the case of the extent allocation tree, updating the root
659  * pointer may allocate blocks which may change the root of the extent
660  * allocation tree.
661  *
662  * So, this loops and repeats and makes sure the cowonly root didn't
663  * change while the root pointer was being updated in the metadata.
664  */
665 static int update_cowonly_root(struct btrfs_trans_handle *trans,
666                                struct btrfs_root *root)
667 {
668         int ret;
669         u64 old_root_bytenr;
670         u64 old_root_used;
671         struct btrfs_root *tree_root = root->fs_info->tree_root;
672
673         old_root_used = btrfs_root_used(&root->root_item);
674         btrfs_write_dirty_block_groups(trans, root);
675
676         while (1) {
677                 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
678                 if (old_root_bytenr == root->node->start &&
679                     old_root_used == btrfs_root_used(&root->root_item))
680                         break;
681
682                 btrfs_set_root_node(&root->root_item, root->node);
683                 ret = btrfs_update_root(trans, tree_root,
684                                         &root->root_key,
685                                         &root->root_item);
686                 BUG_ON(ret);
687
688                 old_root_used = btrfs_root_used(&root->root_item);
689                 ret = btrfs_write_dirty_block_groups(trans, root);
690                 BUG_ON(ret);
691         }
692
693         if (root != root->fs_info->extent_root)
694                 switch_commit_root(root);
695
696         return 0;
697 }
698
699 /*
700  * update all the cowonly tree roots on disk
701  */
702 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
703                                          struct btrfs_root *root)
704 {
705         struct btrfs_fs_info *fs_info = root->fs_info;
706         struct list_head *next;
707         struct extent_buffer *eb;
708         int ret;
709
710         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
711         BUG_ON(ret);
712
713         eb = btrfs_lock_root_node(fs_info->tree_root);
714         btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 0, &eb);
715         btrfs_tree_unlock(eb);
716         free_extent_buffer(eb);
717
718         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
719         BUG_ON(ret);
720
721         while (!list_empty(&fs_info->dirty_cowonly_roots)) {
722                 next = fs_info->dirty_cowonly_roots.next;
723                 list_del_init(next);
724                 root = list_entry(next, struct btrfs_root, dirty_list);
725
726                 update_cowonly_root(trans, root);
727         }
728
729         down_write(&fs_info->extent_commit_sem);
730         switch_commit_root(fs_info->extent_root);
731         up_write(&fs_info->extent_commit_sem);
732
733         return 0;
734 }
735
736 /*
737  * dead roots are old snapshots that need to be deleted.  This allocates
738  * a dirty root struct and adds it into the list of dead roots that need to
739  * be deleted
740  */
741 int btrfs_add_dead_root(struct btrfs_root *root)
742 {
743         spin_lock(&root->fs_info->trans_lock);
744         list_add(&root->root_list, &root->fs_info->dead_roots);
745         spin_unlock(&root->fs_info->trans_lock);
746         return 0;
747 }
748
749 /*
750  * update all the cowonly tree roots on disk
751  */
752 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
753                                     struct btrfs_root *root)
754 {
755         struct btrfs_root *gang[8];
756         struct btrfs_fs_info *fs_info = root->fs_info;
757         int i;
758         int ret;
759         int err = 0;
760
761         spin_lock(&fs_info->fs_roots_radix_lock);
762         while (1) {
763                 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
764                                                  (void **)gang, 0,
765                                                  ARRAY_SIZE(gang),
766                                                  BTRFS_ROOT_TRANS_TAG);
767                 if (ret == 0)
768                         break;
769                 for (i = 0; i < ret; i++) {
770                         root = gang[i];
771                         radix_tree_tag_clear(&fs_info->fs_roots_radix,
772                                         (unsigned long)root->root_key.objectid,
773                                         BTRFS_ROOT_TRANS_TAG);
774                         spin_unlock(&fs_info->fs_roots_radix_lock);
775
776                         btrfs_free_log(trans, root);
777                         btrfs_update_reloc_root(trans, root);
778                         btrfs_orphan_commit_root(trans, root);
779
780                         btrfs_save_ino_cache(root, trans);
781
782                         /* see comments in should_cow_block() */
783                         root->force_cow = 0;
784                         smp_wmb();
785
786                         if (root->commit_root != root->node) {
787                                 mutex_lock(&root->fs_commit_mutex);
788                                 switch_commit_root(root);
789                                 btrfs_unpin_free_ino(root);
790                                 mutex_unlock(&root->fs_commit_mutex);
791
792                                 btrfs_set_root_node(&root->root_item,
793                                                     root->node);
794                         }
795
796                         err = btrfs_update_root(trans, fs_info->tree_root,
797                                                 &root->root_key,
798                                                 &root->root_item);
799                         spin_lock(&fs_info->fs_roots_radix_lock);
800                         if (err)
801                                 break;
802                 }
803         }
804         spin_unlock(&fs_info->fs_roots_radix_lock);
805         return err;
806 }
807
808 /*
809  * defrag a given btree.  If cacheonly == 1, this won't read from the disk,
810  * otherwise every leaf in the btree is read and defragged.
811  */
812 int btrfs_defrag_root(struct btrfs_root *root, int cacheonly)
813 {
814         struct btrfs_fs_info *info = root->fs_info;
815         struct btrfs_trans_handle *trans;
816         int ret;
817         unsigned long nr;
818
819         if (xchg(&root->defrag_running, 1))
820                 return 0;
821
822         while (1) {
823                 trans = btrfs_start_transaction(root, 0);
824                 if (IS_ERR(trans))
825                         return PTR_ERR(trans);
826
827                 ret = btrfs_defrag_leaves(trans, root, cacheonly);
828
829                 nr = trans->blocks_used;
830                 btrfs_end_transaction(trans, root);
831                 btrfs_btree_balance_dirty(info->tree_root, nr);
832                 cond_resched();
833
834                 if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
835                         break;
836         }
837         root->defrag_running = 0;
838         return ret;
839 }
840
841 /*
842  * new snapshots need to be created at a very specific time in the
843  * transaction commit.  This does the actual creation
844  */
845 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
846                                    struct btrfs_fs_info *fs_info,
847                                    struct btrfs_pending_snapshot *pending)
848 {
849         struct btrfs_key key;
850         struct btrfs_root_item *new_root_item;
851         struct btrfs_root *tree_root = fs_info->tree_root;
852         struct btrfs_root *root = pending->root;
853         struct btrfs_root *parent_root;
854         struct btrfs_block_rsv *rsv;
855         struct inode *parent_inode;
856         struct dentry *parent;
857         struct dentry *dentry;
858         struct extent_buffer *tmp;
859         struct extent_buffer *old;
860         int ret;
861         u64 to_reserve = 0;
862         u64 index = 0;
863         u64 objectid;
864         u64 root_flags;
865
866         rsv = trans->block_rsv;
867
868         new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
869         if (!new_root_item) {
870                 pending->error = -ENOMEM;
871                 goto fail;
872         }
873
874         ret = btrfs_find_free_objectid(tree_root, &objectid);
875         if (ret) {
876                 pending->error = ret;
877                 goto fail;
878         }
879
880         btrfs_reloc_pre_snapshot(trans, pending, &to_reserve);
881
882         if (to_reserve > 0) {
883                 ret = btrfs_block_rsv_add_noflush(root, &pending->block_rsv,
884                                                   to_reserve);
885                 if (ret) {
886                         pending->error = ret;
887                         goto fail;
888                 }
889         }
890
891         key.objectid = objectid;
892         key.offset = (u64)-1;
893         key.type = BTRFS_ROOT_ITEM_KEY;
894
895         trans->block_rsv = &pending->block_rsv;
896
897         dentry = pending->dentry;
898         parent = dget_parent(dentry);
899         parent_inode = parent->d_inode;
900         parent_root = BTRFS_I(parent_inode)->root;
901         record_root_in_trans(trans, parent_root);
902
903         /*
904          * insert the directory item
905          */
906         ret = btrfs_set_inode_index(parent_inode, &index);
907         BUG_ON(ret);
908         ret = btrfs_insert_dir_item(trans, parent_root,
909                                 dentry->d_name.name, dentry->d_name.len,
910                                 parent_inode, &key,
911                                 BTRFS_FT_DIR, index);
912         BUG_ON(ret);
913
914         btrfs_i_size_write(parent_inode, parent_inode->i_size +
915                                          dentry->d_name.len * 2);
916         ret = btrfs_update_inode(trans, parent_root, parent_inode);
917         BUG_ON(ret);
918
919         /*
920          * pull in the delayed directory update
921          * and the delayed inode item
922          * otherwise we corrupt the FS during
923          * snapshot
924          */
925         ret = btrfs_run_delayed_items(trans, root);
926         BUG_ON(ret);
927
928         record_root_in_trans(trans, root);
929         btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
930         memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
931         btrfs_check_and_init_root_item(new_root_item);
932
933         root_flags = btrfs_root_flags(new_root_item);
934         if (pending->readonly)
935                 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
936         else
937                 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
938         btrfs_set_root_flags(new_root_item, root_flags);
939
940         old = btrfs_lock_root_node(root);
941         btrfs_cow_block(trans, root, old, NULL, 0, &old);
942         btrfs_set_lock_blocking(old);
943
944         btrfs_copy_root(trans, root, old, &tmp, objectid);
945         btrfs_tree_unlock(old);
946         free_extent_buffer(old);
947
948         /* see comments in should_cow_block() */
949         root->force_cow = 1;
950         smp_wmb();
951
952         btrfs_set_root_node(new_root_item, tmp);
953         /* record when the snapshot was created in key.offset */
954         key.offset = trans->transid;
955         ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
956         btrfs_tree_unlock(tmp);
957         free_extent_buffer(tmp);
958         BUG_ON(ret);
959
960         /*
961          * insert root back/forward references
962          */
963         ret = btrfs_add_root_ref(trans, tree_root, objectid,
964                                  parent_root->root_key.objectid,
965                                  btrfs_ino(parent_inode), index,
966                                  dentry->d_name.name, dentry->d_name.len);
967         BUG_ON(ret);
968         dput(parent);
969
970         key.offset = (u64)-1;
971         pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
972         BUG_ON(IS_ERR(pending->snap));
973
974         btrfs_reloc_post_snapshot(trans, pending);
975 fail:
976         kfree(new_root_item);
977         trans->block_rsv = rsv;
978         btrfs_block_rsv_release(root, &pending->block_rsv, (u64)-1);
979         return 0;
980 }
981
982 /*
983  * create all the snapshots we've scheduled for creation
984  */
985 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
986                                              struct btrfs_fs_info *fs_info)
987 {
988         struct btrfs_pending_snapshot *pending;
989         struct list_head *head = &trans->transaction->pending_snapshots;
990         int ret;
991
992         list_for_each_entry(pending, head, list) {
993                 ret = create_pending_snapshot(trans, fs_info, pending);
994                 BUG_ON(ret);
995         }
996         return 0;
997 }
998
999 static void update_super_roots(struct btrfs_root *root)
1000 {
1001         struct btrfs_root_item *root_item;
1002         struct btrfs_super_block *super;
1003
1004         super = root->fs_info->super_copy;
1005
1006         root_item = &root->fs_info->chunk_root->root_item;
1007         super->chunk_root = root_item->bytenr;
1008         super->chunk_root_generation = root_item->generation;
1009         super->chunk_root_level = root_item->level;
1010
1011         root_item = &root->fs_info->tree_root->root_item;
1012         super->root = root_item->bytenr;
1013         super->generation = root_item->generation;
1014         super->root_level = root_item->level;
1015         if (btrfs_test_opt(root, SPACE_CACHE))
1016                 super->cache_generation = root_item->generation;
1017 }
1018
1019 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1020 {
1021         int ret = 0;
1022         spin_lock(&info->trans_lock);
1023         if (info->running_transaction)
1024                 ret = info->running_transaction->in_commit;
1025         spin_unlock(&info->trans_lock);
1026         return ret;
1027 }
1028
1029 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1030 {
1031         int ret = 0;
1032         spin_lock(&info->trans_lock);
1033         if (info->running_transaction)
1034                 ret = info->running_transaction->blocked;
1035         spin_unlock(&info->trans_lock);
1036         return ret;
1037 }
1038
1039 /*
1040  * wait for the current transaction commit to start and block subsequent
1041  * transaction joins
1042  */
1043 static void wait_current_trans_commit_start(struct btrfs_root *root,
1044                                             struct btrfs_transaction *trans)
1045 {
1046         wait_event(root->fs_info->transaction_blocked_wait, trans->in_commit);
1047 }
1048
1049 /*
1050  * wait for the current transaction to start and then become unblocked.
1051  * caller holds ref.
1052  */
1053 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1054                                          struct btrfs_transaction *trans)
1055 {
1056         wait_event(root->fs_info->transaction_wait,
1057                    trans->commit_done || (trans->in_commit && !trans->blocked));
1058 }
1059
1060 /*
1061  * commit transactions asynchronously. once btrfs_commit_transaction_async
1062  * returns, any subsequent transaction will not be allowed to join.
1063  */
1064 struct btrfs_async_commit {
1065         struct btrfs_trans_handle *newtrans;
1066         struct btrfs_root *root;
1067         struct delayed_work work;
1068 };
1069
1070 static void do_async_commit(struct work_struct *work)
1071 {
1072         struct btrfs_async_commit *ac =
1073                 container_of(work, struct btrfs_async_commit, work.work);
1074
1075         btrfs_commit_transaction(ac->newtrans, ac->root);
1076         kfree(ac);
1077 }
1078
1079 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1080                                    struct btrfs_root *root,
1081                                    int wait_for_unblock)
1082 {
1083         struct btrfs_async_commit *ac;
1084         struct btrfs_transaction *cur_trans;
1085
1086         ac = kmalloc(sizeof(*ac), GFP_NOFS);
1087         if (!ac)
1088                 return -ENOMEM;
1089
1090         INIT_DELAYED_WORK(&ac->work, do_async_commit);
1091         ac->root = root;
1092         ac->newtrans = btrfs_join_transaction(root);
1093         if (IS_ERR(ac->newtrans)) {
1094                 int err = PTR_ERR(ac->newtrans);
1095                 kfree(ac);
1096                 return err;
1097         }
1098
1099         /* take transaction reference */
1100         cur_trans = trans->transaction;
1101         atomic_inc(&cur_trans->use_count);
1102
1103         btrfs_end_transaction(trans, root);
1104         schedule_delayed_work(&ac->work, 0);
1105
1106         /* wait for transaction to start and unblock */
1107         if (wait_for_unblock)
1108                 wait_current_trans_commit_start_and_unblock(root, cur_trans);
1109         else
1110                 wait_current_trans_commit_start(root, cur_trans);
1111
1112         if (current->journal_info == trans)
1113                 current->journal_info = NULL;
1114
1115         put_transaction(cur_trans);
1116         return 0;
1117 }
1118
1119 /*
1120  * btrfs_transaction state sequence:
1121  *    in_commit = 0, blocked = 0  (initial)
1122  *    in_commit = 1, blocked = 1
1123  *    blocked = 0
1124  *    commit_done = 1
1125  */
1126 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1127                              struct btrfs_root *root)
1128 {
1129         unsigned long joined = 0;
1130         struct btrfs_transaction *cur_trans;
1131         struct btrfs_transaction *prev_trans = NULL;
1132         DEFINE_WAIT(wait);
1133         int ret;
1134         int should_grow = 0;
1135         unsigned long now = get_seconds();
1136         int flush_on_commit = btrfs_test_opt(root, FLUSHONCOMMIT);
1137
1138         btrfs_run_ordered_operations(root, 0);
1139
1140         btrfs_trans_release_metadata(trans, root);
1141         trans->block_rsv = NULL;
1142
1143         /* make a pass through all the delayed refs we have so far
1144          * any runnings procs may add more while we are here
1145          */
1146         ret = btrfs_run_delayed_refs(trans, root, 0);
1147         BUG_ON(ret);
1148
1149         cur_trans = trans->transaction;
1150         /*
1151          * set the flushing flag so procs in this transaction have to
1152          * start sending their work down.
1153          */
1154         cur_trans->delayed_refs.flushing = 1;
1155
1156         ret = btrfs_run_delayed_refs(trans, root, 0);
1157         BUG_ON(ret);
1158
1159         spin_lock(&cur_trans->commit_lock);
1160         if (cur_trans->in_commit) {
1161                 spin_unlock(&cur_trans->commit_lock);
1162                 atomic_inc(&cur_trans->use_count);
1163                 btrfs_end_transaction(trans, root);
1164
1165                 wait_for_commit(root, cur_trans);
1166
1167                 put_transaction(cur_trans);
1168
1169                 return 0;
1170         }
1171
1172         trans->transaction->in_commit = 1;
1173         trans->transaction->blocked = 1;
1174         spin_unlock(&cur_trans->commit_lock);
1175         wake_up(&root->fs_info->transaction_blocked_wait);
1176
1177         spin_lock(&root->fs_info->trans_lock);
1178         if (cur_trans->list.prev != &root->fs_info->trans_list) {
1179                 prev_trans = list_entry(cur_trans->list.prev,
1180                                         struct btrfs_transaction, list);
1181                 if (!prev_trans->commit_done) {
1182                         atomic_inc(&prev_trans->use_count);
1183                         spin_unlock(&root->fs_info->trans_lock);
1184
1185                         wait_for_commit(root, prev_trans);
1186
1187                         put_transaction(prev_trans);
1188                 } else {
1189                         spin_unlock(&root->fs_info->trans_lock);
1190                 }
1191         } else {
1192                 spin_unlock(&root->fs_info->trans_lock);
1193         }
1194
1195         if (now < cur_trans->start_time || now - cur_trans->start_time < 1)
1196                 should_grow = 1;
1197
1198         do {
1199                 int snap_pending = 0;
1200
1201                 joined = cur_trans->num_joined;
1202                 if (!list_empty(&trans->transaction->pending_snapshots))
1203                         snap_pending = 1;
1204
1205                 WARN_ON(cur_trans != trans->transaction);
1206
1207                 if (flush_on_commit || snap_pending) {
1208                         btrfs_start_delalloc_inodes(root, 1);
1209                         ret = btrfs_wait_ordered_extents(root, 0, 1);
1210                         BUG_ON(ret);
1211                 }
1212
1213                 ret = btrfs_run_delayed_items(trans, root);
1214                 BUG_ON(ret);
1215
1216                 /*
1217                  * rename don't use btrfs_join_transaction, so, once we
1218                  * set the transaction to blocked above, we aren't going
1219                  * to get any new ordered operations.  We can safely run
1220                  * it here and no for sure that nothing new will be added
1221                  * to the list
1222                  */
1223                 btrfs_run_ordered_operations(root, 1);
1224
1225                 prepare_to_wait(&cur_trans->writer_wait, &wait,
1226                                 TASK_UNINTERRUPTIBLE);
1227
1228                 if (atomic_read(&cur_trans->num_writers) > 1)
1229                         schedule_timeout(MAX_SCHEDULE_TIMEOUT);
1230                 else if (should_grow)
1231                         schedule_timeout(1);
1232
1233                 finish_wait(&cur_trans->writer_wait, &wait);
1234         } while (atomic_read(&cur_trans->num_writers) > 1 ||
1235                  (should_grow && cur_trans->num_joined != joined));
1236
1237         /*
1238          * Ok now we need to make sure to block out any other joins while we
1239          * commit the transaction.  We could have started a join before setting
1240          * no_join so make sure to wait for num_writers to == 1 again.
1241          */
1242         spin_lock(&root->fs_info->trans_lock);
1243         root->fs_info->trans_no_join = 1;
1244         spin_unlock(&root->fs_info->trans_lock);
1245         wait_event(cur_trans->writer_wait,
1246                    atomic_read(&cur_trans->num_writers) == 1);
1247
1248         /*
1249          * the reloc mutex makes sure that we stop
1250          * the balancing code from coming in and moving
1251          * extents around in the middle of the commit
1252          */
1253         mutex_lock(&root->fs_info->reloc_mutex);
1254
1255         ret = btrfs_run_delayed_items(trans, root);
1256         BUG_ON(ret);
1257
1258         ret = create_pending_snapshots(trans, root->fs_info);
1259         BUG_ON(ret);
1260
1261         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1262         BUG_ON(ret);
1263
1264         /*
1265          * make sure none of the code above managed to slip in a
1266          * delayed item
1267          */
1268         btrfs_assert_delayed_root_empty(root);
1269
1270         WARN_ON(cur_trans != trans->transaction);
1271
1272         btrfs_scrub_pause(root);
1273         /* btrfs_commit_tree_roots is responsible for getting the
1274          * various roots consistent with each other.  Every pointer
1275          * in the tree of tree roots has to point to the most up to date
1276          * root for every subvolume and other tree.  So, we have to keep
1277          * the tree logging code from jumping in and changing any
1278          * of the trees.
1279          *
1280          * At this point in the commit, there can't be any tree-log
1281          * writers, but a little lower down we drop the trans mutex
1282          * and let new people in.  By holding the tree_log_mutex
1283          * from now until after the super is written, we avoid races
1284          * with the tree-log code.
1285          */
1286         mutex_lock(&root->fs_info->tree_log_mutex);
1287
1288         ret = commit_fs_roots(trans, root);
1289         BUG_ON(ret);
1290
1291         /* commit_fs_roots gets rid of all the tree log roots, it is now
1292          * safe to free the root of tree log roots
1293          */
1294         btrfs_free_log_root_tree(trans, root->fs_info);
1295
1296         ret = commit_cowonly_roots(trans, root);
1297         BUG_ON(ret);
1298
1299         btrfs_prepare_extent_commit(trans, root);
1300
1301         cur_trans = root->fs_info->running_transaction;
1302
1303         btrfs_set_root_node(&root->fs_info->tree_root->root_item,
1304                             root->fs_info->tree_root->node);
1305         switch_commit_root(root->fs_info->tree_root);
1306
1307         btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
1308                             root->fs_info->chunk_root->node);
1309         switch_commit_root(root->fs_info->chunk_root);
1310
1311         update_super_roots(root);
1312
1313         if (!root->fs_info->log_root_recovering) {
1314                 btrfs_set_super_log_root(root->fs_info->super_copy, 0);
1315                 btrfs_set_super_log_root_level(root->fs_info->super_copy, 0);
1316         }
1317
1318         memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy,
1319                sizeof(*root->fs_info->super_copy));
1320
1321         trans->transaction->blocked = 0;
1322         spin_lock(&root->fs_info->trans_lock);
1323         root->fs_info->running_transaction = NULL;
1324         root->fs_info->trans_no_join = 0;
1325         spin_unlock(&root->fs_info->trans_lock);
1326         mutex_unlock(&root->fs_info->reloc_mutex);
1327
1328         wake_up(&root->fs_info->transaction_wait);
1329
1330         ret = btrfs_write_and_wait_transaction(trans, root);
1331         BUG_ON(ret);
1332         write_ctree_super(trans, root, 0);
1333
1334         /*
1335          * the super is written, we can safely allow the tree-loggers
1336          * to go about their business
1337          */
1338         mutex_unlock(&root->fs_info->tree_log_mutex);
1339
1340         btrfs_finish_extent_commit(trans, root);
1341
1342         cur_trans->commit_done = 1;
1343
1344         root->fs_info->last_trans_committed = cur_trans->transid;
1345
1346         wake_up(&cur_trans->commit_wait);
1347
1348         spin_lock(&root->fs_info->trans_lock);
1349         list_del_init(&cur_trans->list);
1350         spin_unlock(&root->fs_info->trans_lock);
1351
1352         put_transaction(cur_trans);
1353         put_transaction(cur_trans);
1354
1355         trace_btrfs_transaction_commit(root);
1356
1357         btrfs_scrub_continue(root);
1358
1359         if (current->journal_info == trans)
1360                 current->journal_info = NULL;
1361
1362         kmem_cache_free(btrfs_trans_handle_cachep, trans);
1363
1364         if (current != root->fs_info->transaction_kthread)
1365                 btrfs_run_delayed_iputs(root);
1366
1367         return ret;
1368 }
1369
1370 /*
1371  * interface function to delete all the snapshots we have scheduled for deletion
1372  */
1373 int btrfs_clean_old_snapshots(struct btrfs_root *root)
1374 {
1375         LIST_HEAD(list);
1376         struct btrfs_fs_info *fs_info = root->fs_info;
1377
1378         spin_lock(&fs_info->trans_lock);
1379         list_splice_init(&fs_info->dead_roots, &list);
1380         spin_unlock(&fs_info->trans_lock);
1381
1382         while (!list_empty(&list)) {
1383                 root = list_entry(list.next, struct btrfs_root, root_list);
1384                 list_del(&root->root_list);
1385
1386                 btrfs_kill_all_delayed_nodes(root);
1387
1388                 if (btrfs_header_backref_rev(root->node) <
1389                     BTRFS_MIXED_BACKREF_REV)
1390                         btrfs_drop_snapshot(root, NULL, 0);
1391                 else
1392                         btrfs_drop_snapshot(root, NULL, 1);
1393         }
1394         return 0;
1395 }