Merge Btrfs into fs/btrfs
[pandora-kernel.git] / fs / btrfs / transaction.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/sched.h>
21 #include <linux/writeback.h>
22 #include <linux/pagemap.h>
23 #include "ctree.h"
24 #include "disk-io.h"
25 #include "transaction.h"
26 #include "locking.h"
27 #include "ref-cache.h"
28 #include "tree-log.h"
29
30 static int total_trans = 0;
31 extern struct kmem_cache *btrfs_trans_handle_cachep;
32 extern struct kmem_cache *btrfs_transaction_cachep;
33
34 #define BTRFS_ROOT_TRANS_TAG 0
35
36 static noinline void put_transaction(struct btrfs_transaction *transaction)
37 {
38         WARN_ON(transaction->use_count == 0);
39         transaction->use_count--;
40         if (transaction->use_count == 0) {
41                 WARN_ON(total_trans == 0);
42                 total_trans--;
43                 list_del_init(&transaction->list);
44                 memset(transaction, 0, sizeof(*transaction));
45                 kmem_cache_free(btrfs_transaction_cachep, transaction);
46         }
47 }
48
49 static noinline int join_transaction(struct btrfs_root *root)
50 {
51         struct btrfs_transaction *cur_trans;
52         cur_trans = root->fs_info->running_transaction;
53         if (!cur_trans) {
54                 cur_trans = kmem_cache_alloc(btrfs_transaction_cachep,
55                                              GFP_NOFS);
56                 total_trans++;
57                 BUG_ON(!cur_trans);
58                 root->fs_info->generation++;
59                 root->fs_info->last_alloc = 0;
60                 root->fs_info->last_data_alloc = 0;
61                 root->fs_info->last_log_alloc = 0;
62                 cur_trans->num_writers = 1;
63                 cur_trans->num_joined = 0;
64                 cur_trans->transid = root->fs_info->generation;
65                 init_waitqueue_head(&cur_trans->writer_wait);
66                 init_waitqueue_head(&cur_trans->commit_wait);
67                 cur_trans->in_commit = 0;
68                 cur_trans->blocked = 0;
69                 cur_trans->use_count = 1;
70                 cur_trans->commit_done = 0;
71                 cur_trans->start_time = get_seconds();
72                 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
73                 list_add_tail(&cur_trans->list, &root->fs_info->trans_list);
74                 extent_io_tree_init(&cur_trans->dirty_pages,
75                                      root->fs_info->btree_inode->i_mapping,
76                                      GFP_NOFS);
77                 spin_lock(&root->fs_info->new_trans_lock);
78                 root->fs_info->running_transaction = cur_trans;
79                 spin_unlock(&root->fs_info->new_trans_lock);
80         } else {
81                 cur_trans->num_writers++;
82                 cur_trans->num_joined++;
83         }
84
85         return 0;
86 }
87
88 noinline int btrfs_record_root_in_trans(struct btrfs_root *root)
89 {
90         struct btrfs_dirty_root *dirty;
91         u64 running_trans_id = root->fs_info->running_transaction->transid;
92         if (root->ref_cows && root->last_trans < running_trans_id) {
93                 WARN_ON(root == root->fs_info->extent_root);
94                 if (root->root_item.refs != 0) {
95                         radix_tree_tag_set(&root->fs_info->fs_roots_radix,
96                                    (unsigned long)root->root_key.objectid,
97                                    BTRFS_ROOT_TRANS_TAG);
98
99                         dirty = kmalloc(sizeof(*dirty), GFP_NOFS);
100                         BUG_ON(!dirty);
101                         dirty->root = kmalloc(sizeof(*dirty->root), GFP_NOFS);
102                         BUG_ON(!dirty->root);
103                         dirty->latest_root = root;
104                         INIT_LIST_HEAD(&dirty->list);
105
106                         root->commit_root = btrfs_root_node(root);
107
108                         memcpy(dirty->root, root, sizeof(*root));
109                         spin_lock_init(&dirty->root->node_lock);
110                         spin_lock_init(&dirty->root->list_lock);
111                         mutex_init(&dirty->root->objectid_mutex);
112                         INIT_LIST_HEAD(&dirty->root->dead_list);
113                         dirty->root->node = root->commit_root;
114                         dirty->root->commit_root = NULL;
115
116                         spin_lock(&root->list_lock);
117                         list_add(&dirty->root->dead_list, &root->dead_list);
118                         spin_unlock(&root->list_lock);
119
120                         root->dirty_root = dirty;
121                 } else {
122                         WARN_ON(1);
123                 }
124                 root->last_trans = running_trans_id;
125         }
126         return 0;
127 }
128
129 static void wait_current_trans(struct btrfs_root *root)
130 {
131         struct btrfs_transaction *cur_trans;
132
133         cur_trans = root->fs_info->running_transaction;
134         if (cur_trans && cur_trans->blocked) {
135                 DEFINE_WAIT(wait);
136                 cur_trans->use_count++;
137                 while(1) {
138                         prepare_to_wait(&root->fs_info->transaction_wait, &wait,
139                                         TASK_UNINTERRUPTIBLE);
140                         if (cur_trans->blocked) {
141                                 mutex_unlock(&root->fs_info->trans_mutex);
142                                 schedule();
143                                 mutex_lock(&root->fs_info->trans_mutex);
144                                 finish_wait(&root->fs_info->transaction_wait,
145                                             &wait);
146                         } else {
147                                 finish_wait(&root->fs_info->transaction_wait,
148                                             &wait);
149                                 break;
150                         }
151                 }
152                 put_transaction(cur_trans);
153         }
154 }
155
156 static struct btrfs_trans_handle *start_transaction(struct btrfs_root *root,
157                                              int num_blocks, int wait)
158 {
159         struct btrfs_trans_handle *h =
160                 kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
161         int ret;
162
163         mutex_lock(&root->fs_info->trans_mutex);
164         if (!root->fs_info->log_root_recovering &&
165             ((wait == 1 && !root->fs_info->open_ioctl_trans) || wait == 2))
166                 wait_current_trans(root);
167         ret = join_transaction(root);
168         BUG_ON(ret);
169
170         btrfs_record_root_in_trans(root);
171         h->transid = root->fs_info->running_transaction->transid;
172         h->transaction = root->fs_info->running_transaction;
173         h->blocks_reserved = num_blocks;
174         h->blocks_used = 0;
175         h->block_group = NULL;
176         h->alloc_exclude_nr = 0;
177         h->alloc_exclude_start = 0;
178         root->fs_info->running_transaction->use_count++;
179         mutex_unlock(&root->fs_info->trans_mutex);
180         return h;
181 }
182
183 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
184                                                    int num_blocks)
185 {
186         return start_transaction(root, num_blocks, 1);
187 }
188 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root,
189                                                    int num_blocks)
190 {
191         return start_transaction(root, num_blocks, 0);
192 }
193
194 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *r,
195                                                          int num_blocks)
196 {
197         return start_transaction(r, num_blocks, 2);
198 }
199
200
201 static noinline int wait_for_commit(struct btrfs_root *root,
202                                     struct btrfs_transaction *commit)
203 {
204         DEFINE_WAIT(wait);
205         mutex_lock(&root->fs_info->trans_mutex);
206         while(!commit->commit_done) {
207                 prepare_to_wait(&commit->commit_wait, &wait,
208                                 TASK_UNINTERRUPTIBLE);
209                 if (commit->commit_done)
210                         break;
211                 mutex_unlock(&root->fs_info->trans_mutex);
212                 schedule();
213                 mutex_lock(&root->fs_info->trans_mutex);
214         }
215         mutex_unlock(&root->fs_info->trans_mutex);
216         finish_wait(&commit->commit_wait, &wait);
217         return 0;
218 }
219
220 static void throttle_on_drops(struct btrfs_root *root)
221 {
222         struct btrfs_fs_info *info = root->fs_info;
223         int harder_count = 0;
224
225 harder:
226         if (atomic_read(&info->throttles)) {
227                 DEFINE_WAIT(wait);
228                 int thr;
229                 thr = atomic_read(&info->throttle_gen);
230
231                 do {
232                         prepare_to_wait(&info->transaction_throttle,
233                                         &wait, TASK_UNINTERRUPTIBLE);
234                         if (!atomic_read(&info->throttles)) {
235                                 finish_wait(&info->transaction_throttle, &wait);
236                                 break;
237                         }
238                         schedule();
239                         finish_wait(&info->transaction_throttle, &wait);
240                 } while (thr == atomic_read(&info->throttle_gen));
241                 harder_count++;
242
243                 if (root->fs_info->total_ref_cache_size > 1 * 1024 * 1024 &&
244                     harder_count < 2)
245                         goto harder;
246
247                 if (root->fs_info->total_ref_cache_size > 5 * 1024 * 1024 &&
248                     harder_count < 10)
249                         goto harder;
250
251                 if (root->fs_info->total_ref_cache_size > 10 * 1024 * 1024 &&
252                     harder_count < 20)
253                         goto harder;
254         }
255 }
256
257 void btrfs_throttle(struct btrfs_root *root)
258 {
259         mutex_lock(&root->fs_info->trans_mutex);
260         if (!root->fs_info->open_ioctl_trans)
261                 wait_current_trans(root);
262         mutex_unlock(&root->fs_info->trans_mutex);
263
264         throttle_on_drops(root);
265 }
266
267 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
268                           struct btrfs_root *root, int throttle)
269 {
270         struct btrfs_transaction *cur_trans;
271         struct btrfs_fs_info *info = root->fs_info;
272
273         mutex_lock(&info->trans_mutex);
274         cur_trans = info->running_transaction;
275         WARN_ON(cur_trans != trans->transaction);
276         WARN_ON(cur_trans->num_writers < 1);
277         cur_trans->num_writers--;
278
279         if (waitqueue_active(&cur_trans->writer_wait))
280                 wake_up(&cur_trans->writer_wait);
281         put_transaction(cur_trans);
282         mutex_unlock(&info->trans_mutex);
283         memset(trans, 0, sizeof(*trans));
284         kmem_cache_free(btrfs_trans_handle_cachep, trans);
285
286         if (throttle)
287                 throttle_on_drops(root);
288
289         return 0;
290 }
291
292 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
293                           struct btrfs_root *root)
294 {
295         return __btrfs_end_transaction(trans, root, 0);
296 }
297
298 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
299                                    struct btrfs_root *root)
300 {
301         return __btrfs_end_transaction(trans, root, 1);
302 }
303
304
305 int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
306                                         struct extent_io_tree *dirty_pages)
307 {
308         int ret;
309         int err = 0;
310         int werr = 0;
311         struct page *page;
312         struct inode *btree_inode = root->fs_info->btree_inode;
313         u64 start = 0;
314         u64 end;
315         unsigned long index;
316
317         while(1) {
318                 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
319                                             EXTENT_DIRTY);
320                 if (ret)
321                         break;
322                 while(start <= end) {
323                         cond_resched();
324
325                         index = start >> PAGE_CACHE_SHIFT;
326                         start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
327                         page = find_get_page(btree_inode->i_mapping, index);
328                         if (!page)
329                                 continue;
330
331                         btree_lock_page_hook(page);
332                         if (!page->mapping) {
333                                 unlock_page(page);
334                                 page_cache_release(page);
335                                 continue;
336                         }
337
338                         if (PageWriteback(page)) {
339                                 if (PageDirty(page))
340                                         wait_on_page_writeback(page);
341                                 else {
342                                         unlock_page(page);
343                                         page_cache_release(page);
344                                         continue;
345                                 }
346                         }
347                         err = write_one_page(page, 0);
348                         if (err)
349                                 werr = err;
350                         page_cache_release(page);
351                 }
352         }
353         while(1) {
354                 ret = find_first_extent_bit(dirty_pages, 0, &start, &end,
355                                             EXTENT_DIRTY);
356                 if (ret)
357                         break;
358
359                 clear_extent_dirty(dirty_pages, start, end, GFP_NOFS);
360                 while(start <= end) {
361                         index = start >> PAGE_CACHE_SHIFT;
362                         start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
363                         page = find_get_page(btree_inode->i_mapping, index);
364                         if (!page)
365                                 continue;
366                         if (PageDirty(page)) {
367                                 btree_lock_page_hook(page);
368                                 wait_on_page_writeback(page);
369                                 err = write_one_page(page, 0);
370                                 if (err)
371                                         werr = err;
372                         }
373                         wait_on_page_writeback(page);
374                         page_cache_release(page);
375                         cond_resched();
376                 }
377         }
378         if (err)
379                 werr = err;
380         return werr;
381 }
382
383 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
384                                      struct btrfs_root *root)
385 {
386         if (!trans || !trans->transaction) {
387                 struct inode *btree_inode;
388                 btree_inode = root->fs_info->btree_inode;
389                 return filemap_write_and_wait(btree_inode->i_mapping);
390         }
391         return btrfs_write_and_wait_marked_extents(root,
392                                            &trans->transaction->dirty_pages);
393 }
394
395 static int update_cowonly_root(struct btrfs_trans_handle *trans,
396                                struct btrfs_root *root)
397 {
398         int ret;
399         u64 old_root_bytenr;
400         struct btrfs_root *tree_root = root->fs_info->tree_root;
401
402         btrfs_write_dirty_block_groups(trans, root);
403         while(1) {
404                 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
405                 if (old_root_bytenr == root->node->start)
406                         break;
407                 btrfs_set_root_bytenr(&root->root_item,
408                                        root->node->start);
409                 btrfs_set_root_level(&root->root_item,
410                                      btrfs_header_level(root->node));
411                 ret = btrfs_update_root(trans, tree_root,
412                                         &root->root_key,
413                                         &root->root_item);
414                 BUG_ON(ret);
415                 btrfs_write_dirty_block_groups(trans, root);
416         }
417         return 0;
418 }
419
420 int btrfs_commit_tree_roots(struct btrfs_trans_handle *trans,
421                             struct btrfs_root *root)
422 {
423         struct btrfs_fs_info *fs_info = root->fs_info;
424         struct list_head *next;
425
426         while(!list_empty(&fs_info->dirty_cowonly_roots)) {
427                 next = fs_info->dirty_cowonly_roots.next;
428                 list_del_init(next);
429                 root = list_entry(next, struct btrfs_root, dirty_list);
430                 update_cowonly_root(trans, root);
431         }
432         return 0;
433 }
434
435 int btrfs_add_dead_root(struct btrfs_root *root, struct btrfs_root *latest)
436 {
437         struct btrfs_dirty_root *dirty;
438
439         dirty = kmalloc(sizeof(*dirty), GFP_NOFS);
440         if (!dirty)
441                 return -ENOMEM;
442         dirty->root = root;
443         dirty->latest_root = latest;
444
445         mutex_lock(&root->fs_info->trans_mutex);
446         list_add(&dirty->list, &latest->fs_info->dead_roots);
447         mutex_unlock(&root->fs_info->trans_mutex);
448         return 0;
449 }
450
451 static noinline int add_dirty_roots(struct btrfs_trans_handle *trans,
452                                     struct radix_tree_root *radix,
453                                     struct list_head *list)
454 {
455         struct btrfs_dirty_root *dirty;
456         struct btrfs_root *gang[8];
457         struct btrfs_root *root;
458         int i;
459         int ret;
460         int err = 0;
461         u32 refs;
462
463         while(1) {
464                 ret = radix_tree_gang_lookup_tag(radix, (void **)gang, 0,
465                                                  ARRAY_SIZE(gang),
466                                                  BTRFS_ROOT_TRANS_TAG);
467                 if (ret == 0)
468                         break;
469                 for (i = 0; i < ret; i++) {
470                         root = gang[i];
471                         radix_tree_tag_clear(radix,
472                                      (unsigned long)root->root_key.objectid,
473                                      BTRFS_ROOT_TRANS_TAG);
474
475                         BUG_ON(!root->ref_tree);
476                         dirty = root->dirty_root;
477
478                         btrfs_free_log(trans, root);
479
480                         if (root->commit_root == root->node) {
481                                 WARN_ON(root->node->start !=
482                                         btrfs_root_bytenr(&root->root_item));
483
484                                 free_extent_buffer(root->commit_root);
485                                 root->commit_root = NULL;
486                                 root->dirty_root = NULL;
487
488                                 spin_lock(&root->list_lock);
489                                 list_del_init(&dirty->root->dead_list);
490                                 spin_unlock(&root->list_lock);
491
492                                 kfree(dirty->root);
493                                 kfree(dirty);
494
495                                 /* make sure to update the root on disk
496                                  * so we get any updates to the block used
497                                  * counts
498                                  */
499                                 err = btrfs_update_root(trans,
500                                                 root->fs_info->tree_root,
501                                                 &root->root_key,
502                                                 &root->root_item);
503                                 continue;
504                         }
505
506                         memset(&root->root_item.drop_progress, 0,
507                                sizeof(struct btrfs_disk_key));
508                         root->root_item.drop_level = 0;
509                         root->commit_root = NULL;
510                         root->dirty_root = NULL;
511                         root->root_key.offset = root->fs_info->generation;
512                         btrfs_set_root_bytenr(&root->root_item,
513                                               root->node->start);
514                         btrfs_set_root_level(&root->root_item,
515                                              btrfs_header_level(root->node));
516                         err = btrfs_insert_root(trans, root->fs_info->tree_root,
517                                                 &root->root_key,
518                                                 &root->root_item);
519                         if (err)
520                                 break;
521
522                         refs = btrfs_root_refs(&dirty->root->root_item);
523                         btrfs_set_root_refs(&dirty->root->root_item, refs - 1);
524                         err = btrfs_update_root(trans, root->fs_info->tree_root,
525                                                 &dirty->root->root_key,
526                                                 &dirty->root->root_item);
527
528                         BUG_ON(err);
529                         if (refs == 1) {
530                                 list_add(&dirty->list, list);
531                         } else {
532                                 WARN_ON(1);
533                                 free_extent_buffer(dirty->root->node);
534                                 kfree(dirty->root);
535                                 kfree(dirty);
536                         }
537                 }
538         }
539         return err;
540 }
541
542 int btrfs_defrag_root(struct btrfs_root *root, int cacheonly)
543 {
544         struct btrfs_fs_info *info = root->fs_info;
545         int ret;
546         struct btrfs_trans_handle *trans;
547         unsigned long nr;
548
549         smp_mb();
550         if (root->defrag_running)
551                 return 0;
552         trans = btrfs_start_transaction(root, 1);
553         while (1) {
554                 root->defrag_running = 1;
555                 ret = btrfs_defrag_leaves(trans, root, cacheonly);
556                 nr = trans->blocks_used;
557                 btrfs_end_transaction(trans, root);
558                 btrfs_btree_balance_dirty(info->tree_root, nr);
559                 cond_resched();
560
561                 trans = btrfs_start_transaction(root, 1);
562                 if (root->fs_info->closing || ret != -EAGAIN)
563                         break;
564         }
565         root->defrag_running = 0;
566         smp_mb();
567         btrfs_end_transaction(trans, root);
568         return 0;
569 }
570
571 static noinline int drop_dirty_roots(struct btrfs_root *tree_root,
572                                      struct list_head *list)
573 {
574         struct btrfs_dirty_root *dirty;
575         struct btrfs_trans_handle *trans;
576         unsigned long nr;
577         u64 num_bytes;
578         u64 bytes_used;
579         u64 max_useless;
580         int ret = 0;
581         int err;
582
583         while(!list_empty(list)) {
584                 struct btrfs_root *root;
585
586                 dirty = list_entry(list->prev, struct btrfs_dirty_root, list);
587                 list_del_init(&dirty->list);
588
589                 num_bytes = btrfs_root_used(&dirty->root->root_item);
590                 root = dirty->latest_root;
591                 atomic_inc(&root->fs_info->throttles);
592
593                 mutex_lock(&root->fs_info->drop_mutex);
594                 while(1) {
595                         trans = btrfs_start_transaction(tree_root, 1);
596                         ret = btrfs_drop_snapshot(trans, dirty->root);
597                         if (ret != -EAGAIN) {
598                                 break;
599                         }
600
601                         err = btrfs_update_root(trans,
602                                         tree_root,
603                                         &dirty->root->root_key,
604                                         &dirty->root->root_item);
605                         if (err)
606                                 ret = err;
607                         nr = trans->blocks_used;
608                         ret = btrfs_end_transaction(trans, tree_root);
609                         BUG_ON(ret);
610
611                         mutex_unlock(&root->fs_info->drop_mutex);
612                         btrfs_btree_balance_dirty(tree_root, nr);
613                         cond_resched();
614                         mutex_lock(&root->fs_info->drop_mutex);
615                 }
616                 BUG_ON(ret);
617                 atomic_dec(&root->fs_info->throttles);
618                 wake_up(&root->fs_info->transaction_throttle);
619
620                 mutex_lock(&root->fs_info->alloc_mutex);
621                 num_bytes -= btrfs_root_used(&dirty->root->root_item);
622                 bytes_used = btrfs_root_used(&root->root_item);
623                 if (num_bytes) {
624                         btrfs_record_root_in_trans(root);
625                         btrfs_set_root_used(&root->root_item,
626                                             bytes_used - num_bytes);
627                 }
628                 mutex_unlock(&root->fs_info->alloc_mutex);
629
630                 ret = btrfs_del_root(trans, tree_root, &dirty->root->root_key);
631                 if (ret) {
632                         BUG();
633                         break;
634                 }
635                 mutex_unlock(&root->fs_info->drop_mutex);
636
637                 spin_lock(&root->list_lock);
638                 list_del_init(&dirty->root->dead_list);
639                 if (!list_empty(&root->dead_list)) {
640                         struct btrfs_root *oldest;
641                         oldest = list_entry(root->dead_list.prev,
642                                             struct btrfs_root, dead_list);
643                         max_useless = oldest->root_key.offset - 1;
644                 } else {
645                         max_useless = root->root_key.offset - 1;
646                 }
647                 spin_unlock(&root->list_lock);
648
649                 nr = trans->blocks_used;
650                 ret = btrfs_end_transaction(trans, tree_root);
651                 BUG_ON(ret);
652
653                 ret = btrfs_remove_leaf_refs(root, max_useless);
654                 BUG_ON(ret);
655
656                 free_extent_buffer(dirty->root->node);
657                 kfree(dirty->root);
658                 kfree(dirty);
659
660                 btrfs_btree_balance_dirty(tree_root, nr);
661                 cond_resched();
662         }
663         return ret;
664 }
665
666 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
667                                    struct btrfs_fs_info *fs_info,
668                                    struct btrfs_pending_snapshot *pending)
669 {
670         struct btrfs_key key;
671         struct btrfs_root_item *new_root_item;
672         struct btrfs_root *tree_root = fs_info->tree_root;
673         struct btrfs_root *root = pending->root;
674         struct extent_buffer *tmp;
675         struct extent_buffer *old;
676         int ret;
677         int namelen;
678         u64 objectid;
679
680         new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
681         if (!new_root_item) {
682                 ret = -ENOMEM;
683                 goto fail;
684         }
685         ret = btrfs_find_free_objectid(trans, tree_root, 0, &objectid);
686         if (ret)
687                 goto fail;
688
689         memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
690
691         key.objectid = objectid;
692         key.offset = 1;
693         btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
694
695         old = btrfs_lock_root_node(root);
696         btrfs_cow_block(trans, root, old, NULL, 0, &old, 0);
697
698         btrfs_copy_root(trans, root, old, &tmp, objectid);
699         btrfs_tree_unlock(old);
700         free_extent_buffer(old);
701
702         btrfs_set_root_bytenr(new_root_item, tmp->start);
703         btrfs_set_root_level(new_root_item, btrfs_header_level(tmp));
704         ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key,
705                                 new_root_item);
706         btrfs_tree_unlock(tmp);
707         free_extent_buffer(tmp);
708         if (ret)
709                 goto fail;
710
711         /*
712          * insert the directory item
713          */
714         key.offset = (u64)-1;
715         namelen = strlen(pending->name);
716         ret = btrfs_insert_dir_item(trans, root->fs_info->tree_root,
717                                     pending->name, namelen,
718                                     root->fs_info->sb->s_root->d_inode->i_ino,
719                                     &key, BTRFS_FT_DIR, 0);
720
721         if (ret)
722                 goto fail;
723
724         ret = btrfs_insert_inode_ref(trans, root->fs_info->tree_root,
725                              pending->name, strlen(pending->name), objectid,
726                              root->fs_info->sb->s_root->d_inode->i_ino, 0);
727
728         /* Invalidate existing dcache entry for new snapshot. */
729         btrfs_invalidate_dcache_root(root, pending->name, namelen);
730
731 fail:
732         kfree(new_root_item);
733         return ret;
734 }
735
736 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
737                                              struct btrfs_fs_info *fs_info)
738 {
739         struct btrfs_pending_snapshot *pending;
740         struct list_head *head = &trans->transaction->pending_snapshots;
741         int ret;
742
743         while(!list_empty(head)) {
744                 pending = list_entry(head->next,
745                                      struct btrfs_pending_snapshot, list);
746                 ret = create_pending_snapshot(trans, fs_info, pending);
747                 BUG_ON(ret);
748                 list_del(&pending->list);
749                 kfree(pending->name);
750                 kfree(pending);
751         }
752         return 0;
753 }
754
755 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
756                              struct btrfs_root *root)
757 {
758         unsigned long joined = 0;
759         unsigned long timeout = 1;
760         struct btrfs_transaction *cur_trans;
761         struct btrfs_transaction *prev_trans = NULL;
762         struct btrfs_root *chunk_root = root->fs_info->chunk_root;
763         struct list_head dirty_fs_roots;
764         struct extent_io_tree *pinned_copy;
765         DEFINE_WAIT(wait);
766         int ret;
767
768         INIT_LIST_HEAD(&dirty_fs_roots);
769         mutex_lock(&root->fs_info->trans_mutex);
770         if (trans->transaction->in_commit) {
771                 cur_trans = trans->transaction;
772                 trans->transaction->use_count++;
773                 mutex_unlock(&root->fs_info->trans_mutex);
774                 btrfs_end_transaction(trans, root);
775
776                 ret = wait_for_commit(root, cur_trans);
777                 BUG_ON(ret);
778
779                 mutex_lock(&root->fs_info->trans_mutex);
780                 put_transaction(cur_trans);
781                 mutex_unlock(&root->fs_info->trans_mutex);
782
783                 return 0;
784         }
785
786         pinned_copy = kmalloc(sizeof(*pinned_copy), GFP_NOFS);
787         if (!pinned_copy)
788                 return -ENOMEM;
789
790         extent_io_tree_init(pinned_copy,
791                              root->fs_info->btree_inode->i_mapping, GFP_NOFS);
792
793         trans->transaction->in_commit = 1;
794         trans->transaction->blocked = 1;
795         cur_trans = trans->transaction;
796         if (cur_trans->list.prev != &root->fs_info->trans_list) {
797                 prev_trans = list_entry(cur_trans->list.prev,
798                                         struct btrfs_transaction, list);
799                 if (!prev_trans->commit_done) {
800                         prev_trans->use_count++;
801                         mutex_unlock(&root->fs_info->trans_mutex);
802
803                         wait_for_commit(root, prev_trans);
804
805                         mutex_lock(&root->fs_info->trans_mutex);
806                         put_transaction(prev_trans);
807                 }
808         }
809
810         do {
811                 int snap_pending = 0;
812                 joined = cur_trans->num_joined;
813                 if (!list_empty(&trans->transaction->pending_snapshots))
814                         snap_pending = 1;
815
816                 WARN_ON(cur_trans != trans->transaction);
817                 prepare_to_wait(&cur_trans->writer_wait, &wait,
818                                 TASK_UNINTERRUPTIBLE);
819
820                 if (cur_trans->num_writers > 1)
821                         timeout = MAX_SCHEDULE_TIMEOUT;
822                 else
823                         timeout = 1;
824
825                 mutex_unlock(&root->fs_info->trans_mutex);
826
827                 if (snap_pending) {
828                         ret = btrfs_wait_ordered_extents(root, 1);
829                         BUG_ON(ret);
830                 }
831
832                 schedule_timeout(timeout);
833
834                 mutex_lock(&root->fs_info->trans_mutex);
835                 finish_wait(&cur_trans->writer_wait, &wait);
836         } while (cur_trans->num_writers > 1 ||
837                  (cur_trans->num_joined != joined));
838
839         ret = create_pending_snapshots(trans, root->fs_info);
840         BUG_ON(ret);
841
842         WARN_ON(cur_trans != trans->transaction);
843
844         /* btrfs_commit_tree_roots is responsible for getting the
845          * various roots consistent with each other.  Every pointer
846          * in the tree of tree roots has to point to the most up to date
847          * root for every subvolume and other tree.  So, we have to keep
848          * the tree logging code from jumping in and changing any
849          * of the trees.
850          *
851          * At this point in the commit, there can't be any tree-log
852          * writers, but a little lower down we drop the trans mutex
853          * and let new people in.  By holding the tree_log_mutex
854          * from now until after the super is written, we avoid races
855          * with the tree-log code.
856          */
857         mutex_lock(&root->fs_info->tree_log_mutex);
858
859         ret = add_dirty_roots(trans, &root->fs_info->fs_roots_radix,
860                               &dirty_fs_roots);
861         BUG_ON(ret);
862
863         /* add_dirty_roots gets rid of all the tree log roots, it is now
864          * safe to free the root of tree log roots
865          */
866         btrfs_free_log_root_tree(trans, root->fs_info);
867
868         ret = btrfs_commit_tree_roots(trans, root);
869         BUG_ON(ret);
870
871         cur_trans = root->fs_info->running_transaction;
872         spin_lock(&root->fs_info->new_trans_lock);
873         root->fs_info->running_transaction = NULL;
874         spin_unlock(&root->fs_info->new_trans_lock);
875         btrfs_set_super_generation(&root->fs_info->super_copy,
876                                    cur_trans->transid);
877         btrfs_set_super_root(&root->fs_info->super_copy,
878                              root->fs_info->tree_root->node->start);
879         btrfs_set_super_root_level(&root->fs_info->super_copy,
880                            btrfs_header_level(root->fs_info->tree_root->node));
881
882         btrfs_set_super_chunk_root(&root->fs_info->super_copy,
883                                    chunk_root->node->start);
884         btrfs_set_super_chunk_root_level(&root->fs_info->super_copy,
885                                          btrfs_header_level(chunk_root->node));
886
887         if (!root->fs_info->log_root_recovering) {
888                 btrfs_set_super_log_root(&root->fs_info->super_copy, 0);
889                 btrfs_set_super_log_root_level(&root->fs_info->super_copy, 0);
890         }
891
892         memcpy(&root->fs_info->super_for_commit, &root->fs_info->super_copy,
893                sizeof(root->fs_info->super_copy));
894
895         btrfs_copy_pinned(root, pinned_copy);
896
897         trans->transaction->blocked = 0;
898         wake_up(&root->fs_info->transaction_throttle);
899         wake_up(&root->fs_info->transaction_wait);
900
901         mutex_unlock(&root->fs_info->trans_mutex);
902         ret = btrfs_write_and_wait_transaction(trans, root);
903         BUG_ON(ret);
904         write_ctree_super(trans, root);
905
906         /*
907          * the super is written, we can safely allow the tree-loggers
908          * to go about their business
909          */
910         mutex_unlock(&root->fs_info->tree_log_mutex);
911
912         btrfs_finish_extent_commit(trans, root, pinned_copy);
913         mutex_lock(&root->fs_info->trans_mutex);
914
915         kfree(pinned_copy);
916
917         cur_trans->commit_done = 1;
918         root->fs_info->last_trans_committed = cur_trans->transid;
919         wake_up(&cur_trans->commit_wait);
920         put_transaction(cur_trans);
921         put_transaction(cur_trans);
922
923         list_splice_init(&dirty_fs_roots, &root->fs_info->dead_roots);
924         if (root->fs_info->closing)
925                 list_splice_init(&root->fs_info->dead_roots, &dirty_fs_roots);
926
927         mutex_unlock(&root->fs_info->trans_mutex);
928         kmem_cache_free(btrfs_trans_handle_cachep, trans);
929
930         if (root->fs_info->closing) {
931                 drop_dirty_roots(root->fs_info->tree_root, &dirty_fs_roots);
932         }
933         return ret;
934 }
935
936 int btrfs_clean_old_snapshots(struct btrfs_root *root)
937 {
938         struct list_head dirty_roots;
939         INIT_LIST_HEAD(&dirty_roots);
940 again:
941         mutex_lock(&root->fs_info->trans_mutex);
942         list_splice_init(&root->fs_info->dead_roots, &dirty_roots);
943         mutex_unlock(&root->fs_info->trans_mutex);
944
945         if (!list_empty(&dirty_roots)) {
946                 drop_dirty_roots(root, &dirty_roots);
947                 goto again;
948         }
949         return 0;
950 }