btrfs: use readahead API for scrub
[pandora-kernel.git] / fs / btrfs / scrub.c
1 /*
2  * Copyright (C) 2011 STRATO.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/blkdev.h>
20 #include "ctree.h"
21 #include "volumes.h"
22 #include "disk-io.h"
23 #include "ordered-data.h"
24
25 /*
26  * This is only the first step towards a full-features scrub. It reads all
27  * extent and super block and verifies the checksums. In case a bad checksum
28  * is found or the extent cannot be read, good data will be written back if
29  * any can be found.
30  *
31  * Future enhancements:
32  *  - In case an unrepairable extent is encountered, track which files are
33  *    affected and report them
34  *  - In case of a read error on files with nodatasum, map the file and read
35  *    the extent to trigger a writeback of the good copy
36  *  - track and record media errors, throw out bad devices
37  *  - add a mode to also read unallocated space
38  */
39
40 struct scrub_bio;
41 struct scrub_page;
42 struct scrub_dev;
43 static void scrub_bio_end_io(struct bio *bio, int err);
44 static void scrub_checksum(struct btrfs_work *work);
45 static int scrub_checksum_data(struct scrub_dev *sdev,
46                                struct scrub_page *spag, void *buffer);
47 static int scrub_checksum_tree_block(struct scrub_dev *sdev,
48                                      struct scrub_page *spag, u64 logical,
49                                      void *buffer);
50 static int scrub_checksum_super(struct scrub_bio *sbio, void *buffer);
51 static int scrub_fixup_check(struct scrub_bio *sbio, int ix);
52 static void scrub_fixup_end_io(struct bio *bio, int err);
53 static int scrub_fixup_io(int rw, struct block_device *bdev, sector_t sector,
54                           struct page *page);
55 static void scrub_fixup(struct scrub_bio *sbio, int ix);
56
57 #define SCRUB_PAGES_PER_BIO     16      /* 64k per bio */
58 #define SCRUB_BIOS_PER_DEV      16      /* 1 MB per device in flight */
59
60 struct scrub_page {
61         u64                     flags;  /* extent flags */
62         u64                     generation;
63         u64                     mirror_num;
64         int                     have_csum;
65         u8                      csum[BTRFS_CSUM_SIZE];
66 };
67
68 struct scrub_bio {
69         int                     index;
70         struct scrub_dev        *sdev;
71         struct bio              *bio;
72         int                     err;
73         u64                     logical;
74         u64                     physical;
75         struct scrub_page       spag[SCRUB_PAGES_PER_BIO];
76         u64                     count;
77         int                     next_free;
78         struct btrfs_work       work;
79 };
80
81 struct scrub_dev {
82         struct scrub_bio        *bios[SCRUB_BIOS_PER_DEV];
83         struct btrfs_device     *dev;
84         int                     first_free;
85         int                     curr;
86         atomic_t                in_flight;
87         spinlock_t              list_lock;
88         wait_queue_head_t       list_wait;
89         u16                     csum_size;
90         struct list_head        csum_list;
91         atomic_t                cancel_req;
92         int                     readonly;
93         /*
94          * statistics
95          */
96         struct btrfs_scrub_progress stat;
97         spinlock_t              stat_lock;
98 };
99
100 static void scrub_free_csums(struct scrub_dev *sdev)
101 {
102         while (!list_empty(&sdev->csum_list)) {
103                 struct btrfs_ordered_sum *sum;
104                 sum = list_first_entry(&sdev->csum_list,
105                                        struct btrfs_ordered_sum, list);
106                 list_del(&sum->list);
107                 kfree(sum);
108         }
109 }
110
111 static void scrub_free_bio(struct bio *bio)
112 {
113         int i;
114         struct page *last_page = NULL;
115
116         if (!bio)
117                 return;
118
119         for (i = 0; i < bio->bi_vcnt; ++i) {
120                 if (bio->bi_io_vec[i].bv_page == last_page)
121                         continue;
122                 last_page = bio->bi_io_vec[i].bv_page;
123                 __free_page(last_page);
124         }
125         bio_put(bio);
126 }
127
128 static noinline_for_stack void scrub_free_dev(struct scrub_dev *sdev)
129 {
130         int i;
131
132         if (!sdev)
133                 return;
134
135         for (i = 0; i < SCRUB_BIOS_PER_DEV; ++i) {
136                 struct scrub_bio *sbio = sdev->bios[i];
137
138                 if (!sbio)
139                         break;
140
141                 scrub_free_bio(sbio->bio);
142                 kfree(sbio);
143         }
144
145         scrub_free_csums(sdev);
146         kfree(sdev);
147 }
148
149 static noinline_for_stack
150 struct scrub_dev *scrub_setup_dev(struct btrfs_device *dev)
151 {
152         struct scrub_dev *sdev;
153         int             i;
154         struct btrfs_fs_info *fs_info = dev->dev_root->fs_info;
155
156         sdev = kzalloc(sizeof(*sdev), GFP_NOFS);
157         if (!sdev)
158                 goto nomem;
159         sdev->dev = dev;
160         for (i = 0; i < SCRUB_BIOS_PER_DEV; ++i) {
161                 struct scrub_bio *sbio;
162
163                 sbio = kzalloc(sizeof(*sbio), GFP_NOFS);
164                 if (!sbio)
165                         goto nomem;
166                 sdev->bios[i] = sbio;
167
168                 sbio->index = i;
169                 sbio->sdev = sdev;
170                 sbio->count = 0;
171                 sbio->work.func = scrub_checksum;
172
173                 if (i != SCRUB_BIOS_PER_DEV-1)
174                         sdev->bios[i]->next_free = i + 1;
175                  else
176                         sdev->bios[i]->next_free = -1;
177         }
178         sdev->first_free = 0;
179         sdev->curr = -1;
180         atomic_set(&sdev->in_flight, 0);
181         atomic_set(&sdev->cancel_req, 0);
182         sdev->csum_size = btrfs_super_csum_size(&fs_info->super_copy);
183         INIT_LIST_HEAD(&sdev->csum_list);
184
185         spin_lock_init(&sdev->list_lock);
186         spin_lock_init(&sdev->stat_lock);
187         init_waitqueue_head(&sdev->list_wait);
188         return sdev;
189
190 nomem:
191         scrub_free_dev(sdev);
192         return ERR_PTR(-ENOMEM);
193 }
194
195 /*
196  * scrub_recheck_error gets called when either verification of the page
197  * failed or the bio failed to read, e.g. with EIO. In the latter case,
198  * recheck_error gets called for every page in the bio, even though only
199  * one may be bad
200  */
201 static void scrub_recheck_error(struct scrub_bio *sbio, int ix)
202 {
203         if (sbio->err) {
204                 if (scrub_fixup_io(READ, sbio->sdev->dev->bdev,
205                                    (sbio->physical + ix * PAGE_SIZE) >> 9,
206                                    sbio->bio->bi_io_vec[ix].bv_page) == 0) {
207                         if (scrub_fixup_check(sbio, ix) == 0)
208                                 return;
209                 }
210         }
211
212         scrub_fixup(sbio, ix);
213 }
214
215 static int scrub_fixup_check(struct scrub_bio *sbio, int ix)
216 {
217         int ret = 1;
218         struct page *page;
219         void *buffer;
220         u64 flags = sbio->spag[ix].flags;
221
222         page = sbio->bio->bi_io_vec[ix].bv_page;
223         buffer = kmap_atomic(page, KM_USER0);
224         if (flags & BTRFS_EXTENT_FLAG_DATA) {
225                 ret = scrub_checksum_data(sbio->sdev,
226                                           sbio->spag + ix, buffer);
227         } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
228                 ret = scrub_checksum_tree_block(sbio->sdev,
229                                                 sbio->spag + ix,
230                                                 sbio->logical + ix * PAGE_SIZE,
231                                                 buffer);
232         } else {
233                 WARN_ON(1);
234         }
235         kunmap_atomic(buffer, KM_USER0);
236
237         return ret;
238 }
239
240 static void scrub_fixup_end_io(struct bio *bio, int err)
241 {
242         complete((struct completion *)bio->bi_private);
243 }
244
245 static void scrub_fixup(struct scrub_bio *sbio, int ix)
246 {
247         struct scrub_dev *sdev = sbio->sdev;
248         struct btrfs_fs_info *fs_info = sdev->dev->dev_root->fs_info;
249         struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
250         struct btrfs_multi_bio *multi = NULL;
251         u64 logical = sbio->logical + ix * PAGE_SIZE;
252         u64 length;
253         int i;
254         int ret;
255         DECLARE_COMPLETION_ONSTACK(complete);
256
257         if ((sbio->spag[ix].flags & BTRFS_EXTENT_FLAG_DATA) &&
258             (sbio->spag[ix].have_csum == 0)) {
259                 /*
260                  * nodatasum, don't try to fix anything
261                  * FIXME: we can do better, open the inode and trigger a
262                  * writeback
263                  */
264                 goto uncorrectable;
265         }
266
267         length = PAGE_SIZE;
268         ret = btrfs_map_block(map_tree, REQ_WRITE, logical, &length,
269                               &multi, 0);
270         if (ret || !multi || length < PAGE_SIZE) {
271                 printk(KERN_ERR
272                        "scrub_fixup: btrfs_map_block failed us for %llu\n",
273                        (unsigned long long)logical);
274                 WARN_ON(1);
275                 return;
276         }
277
278         if (multi->num_stripes == 1)
279                 /* there aren't any replicas */
280                 goto uncorrectable;
281
282         /*
283          * first find a good copy
284          */
285         for (i = 0; i < multi->num_stripes; ++i) {
286                 if (i == sbio->spag[ix].mirror_num)
287                         continue;
288
289                 if (scrub_fixup_io(READ, multi->stripes[i].dev->bdev,
290                                    multi->stripes[i].physical >> 9,
291                                    sbio->bio->bi_io_vec[ix].bv_page)) {
292                         /* I/O-error, this is not a good copy */
293                         continue;
294                 }
295
296                 if (scrub_fixup_check(sbio, ix) == 0)
297                         break;
298         }
299         if (i == multi->num_stripes)
300                 goto uncorrectable;
301
302         if (!sdev->readonly) {
303                 /*
304                  * bi_io_vec[ix].bv_page now contains good data, write it back
305                  */
306                 if (scrub_fixup_io(WRITE, sdev->dev->bdev,
307                                    (sbio->physical + ix * PAGE_SIZE) >> 9,
308                                    sbio->bio->bi_io_vec[ix].bv_page)) {
309                         /* I/O-error, writeback failed, give up */
310                         goto uncorrectable;
311                 }
312         }
313
314         kfree(multi);
315         spin_lock(&sdev->stat_lock);
316         ++sdev->stat.corrected_errors;
317         spin_unlock(&sdev->stat_lock);
318
319         if (printk_ratelimit())
320                 printk(KERN_ERR "btrfs: fixed up at %llu\n",
321                        (unsigned long long)logical);
322         return;
323
324 uncorrectable:
325         kfree(multi);
326         spin_lock(&sdev->stat_lock);
327         ++sdev->stat.uncorrectable_errors;
328         spin_unlock(&sdev->stat_lock);
329
330         if (printk_ratelimit())
331                 printk(KERN_ERR "btrfs: unable to fixup at %llu\n",
332                          (unsigned long long)logical);
333 }
334
335 static int scrub_fixup_io(int rw, struct block_device *bdev, sector_t sector,
336                          struct page *page)
337 {
338         struct bio *bio = NULL;
339         int ret;
340         DECLARE_COMPLETION_ONSTACK(complete);
341
342         bio = bio_alloc(GFP_NOFS, 1);
343         bio->bi_bdev = bdev;
344         bio->bi_sector = sector;
345         bio_add_page(bio, page, PAGE_SIZE, 0);
346         bio->bi_end_io = scrub_fixup_end_io;
347         bio->bi_private = &complete;
348         submit_bio(rw, bio);
349
350         /* this will also unplug the queue */
351         wait_for_completion(&complete);
352
353         ret = !test_bit(BIO_UPTODATE, &bio->bi_flags);
354         bio_put(bio);
355         return ret;
356 }
357
358 static void scrub_bio_end_io(struct bio *bio, int err)
359 {
360         struct scrub_bio *sbio = bio->bi_private;
361         struct scrub_dev *sdev = sbio->sdev;
362         struct btrfs_fs_info *fs_info = sdev->dev->dev_root->fs_info;
363
364         sbio->err = err;
365         sbio->bio = bio;
366
367         btrfs_queue_worker(&fs_info->scrub_workers, &sbio->work);
368 }
369
370 static void scrub_checksum(struct btrfs_work *work)
371 {
372         struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
373         struct scrub_dev *sdev = sbio->sdev;
374         struct page *page;
375         void *buffer;
376         int i;
377         u64 flags;
378         u64 logical;
379         int ret;
380
381         if (sbio->err) {
382                 for (i = 0; i < sbio->count; ++i)
383                         scrub_recheck_error(sbio, i);
384
385                 sbio->bio->bi_flags &= ~(BIO_POOL_MASK - 1);
386                 sbio->bio->bi_flags |= 1 << BIO_UPTODATE;
387                 sbio->bio->bi_phys_segments = 0;
388                 sbio->bio->bi_idx = 0;
389
390                 for (i = 0; i < sbio->count; i++) {
391                         struct bio_vec *bi;
392                         bi = &sbio->bio->bi_io_vec[i];
393                         bi->bv_offset = 0;
394                         bi->bv_len = PAGE_SIZE;
395                 }
396
397                 spin_lock(&sdev->stat_lock);
398                 ++sdev->stat.read_errors;
399                 spin_unlock(&sdev->stat_lock);
400                 goto out;
401         }
402         for (i = 0; i < sbio->count; ++i) {
403                 page = sbio->bio->bi_io_vec[i].bv_page;
404                 buffer = kmap_atomic(page, KM_USER0);
405                 flags = sbio->spag[i].flags;
406                 logical = sbio->logical + i * PAGE_SIZE;
407                 ret = 0;
408                 if (flags & BTRFS_EXTENT_FLAG_DATA) {
409                         ret = scrub_checksum_data(sdev, sbio->spag + i, buffer);
410                 } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
411                         ret = scrub_checksum_tree_block(sdev, sbio->spag + i,
412                                                         logical, buffer);
413                 } else if (flags & BTRFS_EXTENT_FLAG_SUPER) {
414                         BUG_ON(i);
415                         (void)scrub_checksum_super(sbio, buffer);
416                 } else {
417                         WARN_ON(1);
418                 }
419                 kunmap_atomic(buffer, KM_USER0);
420                 if (ret)
421                         scrub_recheck_error(sbio, i);
422         }
423
424 out:
425         scrub_free_bio(sbio->bio);
426         sbio->bio = NULL;
427         spin_lock(&sdev->list_lock);
428         sbio->next_free = sdev->first_free;
429         sdev->first_free = sbio->index;
430         spin_unlock(&sdev->list_lock);
431         atomic_dec(&sdev->in_flight);
432         wake_up(&sdev->list_wait);
433 }
434
435 static int scrub_checksum_data(struct scrub_dev *sdev,
436                                struct scrub_page *spag, void *buffer)
437 {
438         u8 csum[BTRFS_CSUM_SIZE];
439         u32 crc = ~(u32)0;
440         int fail = 0;
441         struct btrfs_root *root = sdev->dev->dev_root;
442
443         if (!spag->have_csum)
444                 return 0;
445
446         crc = btrfs_csum_data(root, buffer, crc, PAGE_SIZE);
447         btrfs_csum_final(crc, csum);
448         if (memcmp(csum, spag->csum, sdev->csum_size))
449                 fail = 1;
450
451         spin_lock(&sdev->stat_lock);
452         ++sdev->stat.data_extents_scrubbed;
453         sdev->stat.data_bytes_scrubbed += PAGE_SIZE;
454         if (fail)
455                 ++sdev->stat.csum_errors;
456         spin_unlock(&sdev->stat_lock);
457
458         return fail;
459 }
460
461 static int scrub_checksum_tree_block(struct scrub_dev *sdev,
462                                      struct scrub_page *spag, u64 logical,
463                                      void *buffer)
464 {
465         struct btrfs_header *h;
466         struct btrfs_root *root = sdev->dev->dev_root;
467         struct btrfs_fs_info *fs_info = root->fs_info;
468         u8 csum[BTRFS_CSUM_SIZE];
469         u32 crc = ~(u32)0;
470         int fail = 0;
471         int crc_fail = 0;
472
473         /*
474          * we don't use the getter functions here, as we
475          * a) don't have an extent buffer and
476          * b) the page is already kmapped
477          */
478         h = (struct btrfs_header *)buffer;
479
480         if (logical != le64_to_cpu(h->bytenr))
481                 ++fail;
482
483         if (spag->generation != le64_to_cpu(h->generation))
484                 ++fail;
485
486         if (memcmp(h->fsid, fs_info->fsid, BTRFS_UUID_SIZE))
487                 ++fail;
488
489         if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
490                    BTRFS_UUID_SIZE))
491                 ++fail;
492
493         crc = btrfs_csum_data(root, buffer + BTRFS_CSUM_SIZE, crc,
494                               PAGE_SIZE - BTRFS_CSUM_SIZE);
495         btrfs_csum_final(crc, csum);
496         if (memcmp(csum, h->csum, sdev->csum_size))
497                 ++crc_fail;
498
499         spin_lock(&sdev->stat_lock);
500         ++sdev->stat.tree_extents_scrubbed;
501         sdev->stat.tree_bytes_scrubbed += PAGE_SIZE;
502         if (crc_fail)
503                 ++sdev->stat.csum_errors;
504         if (fail)
505                 ++sdev->stat.verify_errors;
506         spin_unlock(&sdev->stat_lock);
507
508         return fail || crc_fail;
509 }
510
511 static int scrub_checksum_super(struct scrub_bio *sbio, void *buffer)
512 {
513         struct btrfs_super_block *s;
514         u64 logical;
515         struct scrub_dev *sdev = sbio->sdev;
516         struct btrfs_root *root = sdev->dev->dev_root;
517         struct btrfs_fs_info *fs_info = root->fs_info;
518         u8 csum[BTRFS_CSUM_SIZE];
519         u32 crc = ~(u32)0;
520         int fail = 0;
521
522         s = (struct btrfs_super_block *)buffer;
523         logical = sbio->logical;
524
525         if (logical != le64_to_cpu(s->bytenr))
526                 ++fail;
527
528         if (sbio->spag[0].generation != le64_to_cpu(s->generation))
529                 ++fail;
530
531         if (memcmp(s->fsid, fs_info->fsid, BTRFS_UUID_SIZE))
532                 ++fail;
533
534         crc = btrfs_csum_data(root, buffer + BTRFS_CSUM_SIZE, crc,
535                               PAGE_SIZE - BTRFS_CSUM_SIZE);
536         btrfs_csum_final(crc, csum);
537         if (memcmp(csum, s->csum, sbio->sdev->csum_size))
538                 ++fail;
539
540         if (fail) {
541                 /*
542                  * if we find an error in a super block, we just report it.
543                  * They will get written with the next transaction commit
544                  * anyway
545                  */
546                 spin_lock(&sdev->stat_lock);
547                 ++sdev->stat.super_errors;
548                 spin_unlock(&sdev->stat_lock);
549         }
550
551         return fail;
552 }
553
554 static int scrub_submit(struct scrub_dev *sdev)
555 {
556         struct scrub_bio *sbio;
557         struct bio *bio;
558         int i;
559
560         if (sdev->curr == -1)
561                 return 0;
562
563         sbio = sdev->bios[sdev->curr];
564
565         bio = bio_alloc(GFP_NOFS, sbio->count);
566         if (!bio)
567                 goto nomem;
568
569         bio->bi_private = sbio;
570         bio->bi_end_io = scrub_bio_end_io;
571         bio->bi_bdev = sdev->dev->bdev;
572         bio->bi_sector = sbio->physical >> 9;
573
574         for (i = 0; i < sbio->count; ++i) {
575                 struct page *page;
576                 int ret;
577
578                 page = alloc_page(GFP_NOFS);
579                 if (!page)
580                         goto nomem;
581
582                 ret = bio_add_page(bio, page, PAGE_SIZE, 0);
583                 if (!ret) {
584                         __free_page(page);
585                         goto nomem;
586                 }
587         }
588
589         sbio->err = 0;
590         sdev->curr = -1;
591         atomic_inc(&sdev->in_flight);
592
593         submit_bio(READ, bio);
594
595         return 0;
596
597 nomem:
598         scrub_free_bio(bio);
599
600         return -ENOMEM;
601 }
602
603 static int scrub_page(struct scrub_dev *sdev, u64 logical, u64 len,
604                       u64 physical, u64 flags, u64 gen, u64 mirror_num,
605                       u8 *csum, int force)
606 {
607         struct scrub_bio *sbio;
608
609 again:
610         /*
611          * grab a fresh bio or wait for one to become available
612          */
613         while (sdev->curr == -1) {
614                 spin_lock(&sdev->list_lock);
615                 sdev->curr = sdev->first_free;
616                 if (sdev->curr != -1) {
617                         sdev->first_free = sdev->bios[sdev->curr]->next_free;
618                         sdev->bios[sdev->curr]->next_free = -1;
619                         sdev->bios[sdev->curr]->count = 0;
620                         spin_unlock(&sdev->list_lock);
621                 } else {
622                         spin_unlock(&sdev->list_lock);
623                         wait_event(sdev->list_wait, sdev->first_free != -1);
624                 }
625         }
626         sbio = sdev->bios[sdev->curr];
627         if (sbio->count == 0) {
628                 sbio->physical = physical;
629                 sbio->logical = logical;
630         } else if (sbio->physical + sbio->count * PAGE_SIZE != physical ||
631                    sbio->logical + sbio->count * PAGE_SIZE != logical) {
632                 int ret;
633
634                 ret = scrub_submit(sdev);
635                 if (ret)
636                         return ret;
637                 goto again;
638         }
639         sbio->spag[sbio->count].flags = flags;
640         sbio->spag[sbio->count].generation = gen;
641         sbio->spag[sbio->count].have_csum = 0;
642         sbio->spag[sbio->count].mirror_num = mirror_num;
643         if (csum) {
644                 sbio->spag[sbio->count].have_csum = 1;
645                 memcpy(sbio->spag[sbio->count].csum, csum, sdev->csum_size);
646         }
647         ++sbio->count;
648         if (sbio->count == SCRUB_PAGES_PER_BIO || force) {
649                 int ret;
650
651                 ret = scrub_submit(sdev);
652                 if (ret)
653                         return ret;
654         }
655
656         return 0;
657 }
658
659 static int scrub_find_csum(struct scrub_dev *sdev, u64 logical, u64 len,
660                            u8 *csum)
661 {
662         struct btrfs_ordered_sum *sum = NULL;
663         int ret = 0;
664         unsigned long i;
665         unsigned long num_sectors;
666         u32 sectorsize = sdev->dev->dev_root->sectorsize;
667
668         while (!list_empty(&sdev->csum_list)) {
669                 sum = list_first_entry(&sdev->csum_list,
670                                        struct btrfs_ordered_sum, list);
671                 if (sum->bytenr > logical)
672                         return 0;
673                 if (sum->bytenr + sum->len > logical)
674                         break;
675
676                 ++sdev->stat.csum_discards;
677                 list_del(&sum->list);
678                 kfree(sum);
679                 sum = NULL;
680         }
681         if (!sum)
682                 return 0;
683
684         num_sectors = sum->len / sectorsize;
685         for (i = 0; i < num_sectors; ++i) {
686                 if (sum->sums[i].bytenr == logical) {
687                         memcpy(csum, &sum->sums[i].sum, sdev->csum_size);
688                         ret = 1;
689                         break;
690                 }
691         }
692         if (ret && i == num_sectors - 1) {
693                 list_del(&sum->list);
694                 kfree(sum);
695         }
696         return ret;
697 }
698
699 /* scrub extent tries to collect up to 64 kB for each bio */
700 static int scrub_extent(struct scrub_dev *sdev, u64 logical, u64 len,
701                         u64 physical, u64 flags, u64 gen, u64 mirror_num)
702 {
703         int ret;
704         u8 csum[BTRFS_CSUM_SIZE];
705
706         while (len) {
707                 u64 l = min_t(u64, len, PAGE_SIZE);
708                 int have_csum = 0;
709
710                 if (flags & BTRFS_EXTENT_FLAG_DATA) {
711                         /* push csums to sbio */
712                         have_csum = scrub_find_csum(sdev, logical, l, csum);
713                         if (have_csum == 0)
714                                 ++sdev->stat.no_csum;
715                 }
716                 ret = scrub_page(sdev, logical, l, physical, flags, gen,
717                                  mirror_num, have_csum ? csum : NULL, 0);
718                 if (ret)
719                         return ret;
720                 len -= l;
721                 logical += l;
722                 physical += l;
723         }
724         return 0;
725 }
726
727 static noinline_for_stack int scrub_stripe(struct scrub_dev *sdev,
728         struct map_lookup *map, int num, u64 base, u64 length)
729 {
730         struct btrfs_path *path;
731         struct btrfs_fs_info *fs_info = sdev->dev->dev_root->fs_info;
732         struct btrfs_root *root = fs_info->extent_root;
733         struct btrfs_root *csum_root = fs_info->csum_root;
734         struct btrfs_extent_item *extent;
735         struct blk_plug plug;
736         u64 flags;
737         int ret;
738         int slot;
739         int i;
740         u64 nstripes;
741         struct extent_buffer *l;
742         struct btrfs_key key;
743         u64 physical;
744         u64 logical;
745         u64 generation;
746         u64 mirror_num;
747         struct reada_control *reada1;
748         struct reada_control *reada2;
749         struct btrfs_key key_start;
750         struct btrfs_key key_end;
751
752         u64 increment = map->stripe_len;
753         u64 offset;
754
755         nstripes = length;
756         offset = 0;
757         do_div(nstripes, map->stripe_len);
758         if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
759                 offset = map->stripe_len * num;
760                 increment = map->stripe_len * map->num_stripes;
761                 mirror_num = 0;
762         } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
763                 int factor = map->num_stripes / map->sub_stripes;
764                 offset = map->stripe_len * (num / map->sub_stripes);
765                 increment = map->stripe_len * factor;
766                 mirror_num = num % map->sub_stripes;
767         } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
768                 increment = map->stripe_len;
769                 mirror_num = num % map->num_stripes;
770         } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
771                 increment = map->stripe_len;
772                 mirror_num = num % map->num_stripes;
773         } else {
774                 increment = map->stripe_len;
775                 mirror_num = 0;
776         }
777
778         path = btrfs_alloc_path();
779         if (!path)
780                 return -ENOMEM;
781
782         path->search_commit_root = 1;
783         path->skip_locking = 1;
784
785         /*
786          * trigger the readahead for extent tree csum tree and wait for
787          * completion. During readahead, the scrub is officially paused
788          * to not hold off transaction commits
789          */
790         logical = base + offset;
791
792         wait_event(sdev->list_wait,
793                    atomic_read(&sdev->in_flight) == 0);
794         atomic_inc(&fs_info->scrubs_paused);
795         wake_up(&fs_info->scrub_pause_wait);
796
797         /* FIXME it might be better to start readahead at commit root */
798         key_start.objectid = logical;
799         key_start.type = BTRFS_EXTENT_ITEM_KEY;
800         key_start.offset = (u64)0;
801         key_end.objectid = base + offset + nstripes * increment;
802         key_end.type = BTRFS_EXTENT_ITEM_KEY;
803         key_end.offset = (u64)0;
804         reada1 = btrfs_reada_add(root, &key_start, &key_end);
805
806         key_start.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
807         key_start.type = BTRFS_EXTENT_CSUM_KEY;
808         key_start.offset = logical;
809         key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
810         key_end.type = BTRFS_EXTENT_CSUM_KEY;
811         key_end.offset = base + offset + nstripes * increment;
812         reada2 = btrfs_reada_add(csum_root, &key_start, &key_end);
813
814         if (!IS_ERR(reada1))
815                 btrfs_reada_wait(reada1);
816         if (!IS_ERR(reada2))
817                 btrfs_reada_wait(reada2);
818
819         mutex_lock(&fs_info->scrub_lock);
820         while (atomic_read(&fs_info->scrub_pause_req)) {
821                 mutex_unlock(&fs_info->scrub_lock);
822                 wait_event(fs_info->scrub_pause_wait,
823                    atomic_read(&fs_info->scrub_pause_req) == 0);
824                 mutex_lock(&fs_info->scrub_lock);
825         }
826         atomic_dec(&fs_info->scrubs_paused);
827         mutex_unlock(&fs_info->scrub_lock);
828         wake_up(&fs_info->scrub_pause_wait);
829
830         /*
831          * collect all data csums for the stripe to avoid seeking during
832          * the scrub. This might currently (crc32) end up to be about 1MB
833          */
834         blk_start_plug(&plug);
835
836         /*
837          * now find all extents for each stripe and scrub them
838          */
839         logical = base + offset;
840         physical = map->stripes[num].physical;
841         ret = 0;
842         for (i = 0; i < nstripes; ++i) {
843                 /*
844                  * canceled?
845                  */
846                 if (atomic_read(&fs_info->scrub_cancel_req) ||
847                     atomic_read(&sdev->cancel_req)) {
848                         ret = -ECANCELED;
849                         goto out;
850                 }
851                 /*
852                  * check to see if we have to pause
853                  */
854                 if (atomic_read(&fs_info->scrub_pause_req)) {
855                         /* push queued extents */
856                         scrub_submit(sdev);
857                         wait_event(sdev->list_wait,
858                                    atomic_read(&sdev->in_flight) == 0);
859                         atomic_inc(&fs_info->scrubs_paused);
860                         wake_up(&fs_info->scrub_pause_wait);
861                         mutex_lock(&fs_info->scrub_lock);
862                         while (atomic_read(&fs_info->scrub_pause_req)) {
863                                 mutex_unlock(&fs_info->scrub_lock);
864                                 wait_event(fs_info->scrub_pause_wait,
865                                    atomic_read(&fs_info->scrub_pause_req) == 0);
866                                 mutex_lock(&fs_info->scrub_lock);
867                         }
868                         atomic_dec(&fs_info->scrubs_paused);
869                         mutex_unlock(&fs_info->scrub_lock);
870                         wake_up(&fs_info->scrub_pause_wait);
871                 }
872
873                 ret = btrfs_lookup_csums_range(csum_root, logical,
874                                                logical + map->stripe_len - 1,
875                                                &sdev->csum_list, 1);
876                 if (ret)
877                         goto out;
878
879                 key.objectid = logical;
880                 key.type = BTRFS_EXTENT_ITEM_KEY;
881                 key.offset = (u64)0;
882
883                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
884                 if (ret < 0)
885                         goto out;
886                 if (ret > 0) {
887                         ret = btrfs_previous_item(root, path, 0,
888                                                   BTRFS_EXTENT_ITEM_KEY);
889                         if (ret < 0)
890                                 goto out;
891                         if (ret > 0) {
892                                 /* there's no smaller item, so stick with the
893                                  * larger one */
894                                 btrfs_release_path(path);
895                                 ret = btrfs_search_slot(NULL, root, &key,
896                                                         path, 0, 0);
897                                 if (ret < 0)
898                                         goto out;
899                         }
900                 }
901
902                 while (1) {
903                         l = path->nodes[0];
904                         slot = path->slots[0];
905                         if (slot >= btrfs_header_nritems(l)) {
906                                 ret = btrfs_next_leaf(root, path);
907                                 if (ret == 0)
908                                         continue;
909                                 if (ret < 0)
910                                         goto out;
911
912                                 break;
913                         }
914                         btrfs_item_key_to_cpu(l, &key, slot);
915
916                         if (key.objectid + key.offset <= logical)
917                                 goto next;
918
919                         if (key.objectid >= logical + map->stripe_len)
920                                 break;
921
922                         if (btrfs_key_type(&key) != BTRFS_EXTENT_ITEM_KEY)
923                                 goto next;
924
925                         extent = btrfs_item_ptr(l, slot,
926                                                 struct btrfs_extent_item);
927                         flags = btrfs_extent_flags(l, extent);
928                         generation = btrfs_extent_generation(l, extent);
929
930                         if (key.objectid < logical &&
931                             (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) {
932                                 printk(KERN_ERR
933                                        "btrfs scrub: tree block %llu spanning "
934                                        "stripes, ignored. logical=%llu\n",
935                                        (unsigned long long)key.objectid,
936                                        (unsigned long long)logical);
937                                 goto next;
938                         }
939
940                         /*
941                          * trim extent to this stripe
942                          */
943                         if (key.objectid < logical) {
944                                 key.offset -= logical - key.objectid;
945                                 key.objectid = logical;
946                         }
947                         if (key.objectid + key.offset >
948                             logical + map->stripe_len) {
949                                 key.offset = logical + map->stripe_len -
950                                              key.objectid;
951                         }
952
953                         ret = scrub_extent(sdev, key.objectid, key.offset,
954                                            key.objectid - logical + physical,
955                                            flags, generation, mirror_num);
956                         if (ret)
957                                 goto out;
958
959 next:
960                         path->slots[0]++;
961                 }
962                 btrfs_release_path(path);
963                 logical += increment;
964                 physical += map->stripe_len;
965                 spin_lock(&sdev->stat_lock);
966                 sdev->stat.last_physical = physical;
967                 spin_unlock(&sdev->stat_lock);
968         }
969         /* push queued extents */
970         scrub_submit(sdev);
971
972 out:
973         blk_finish_plug(&plug);
974         btrfs_free_path(path);
975         return ret < 0 ? ret : 0;
976 }
977
978 static noinline_for_stack int scrub_chunk(struct scrub_dev *sdev,
979         u64 chunk_tree, u64 chunk_objectid, u64 chunk_offset, u64 length)
980 {
981         struct btrfs_mapping_tree *map_tree =
982                 &sdev->dev->dev_root->fs_info->mapping_tree;
983         struct map_lookup *map;
984         struct extent_map *em;
985         int i;
986         int ret = -EINVAL;
987
988         read_lock(&map_tree->map_tree.lock);
989         em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
990         read_unlock(&map_tree->map_tree.lock);
991
992         if (!em)
993                 return -EINVAL;
994
995         map = (struct map_lookup *)em->bdev;
996         if (em->start != chunk_offset)
997                 goto out;
998
999         if (em->len < length)
1000                 goto out;
1001
1002         for (i = 0; i < map->num_stripes; ++i) {
1003                 if (map->stripes[i].dev == sdev->dev) {
1004                         ret = scrub_stripe(sdev, map, i, chunk_offset, length);
1005                         if (ret)
1006                                 goto out;
1007                 }
1008         }
1009 out:
1010         free_extent_map(em);
1011
1012         return ret;
1013 }
1014
1015 static noinline_for_stack
1016 int scrub_enumerate_chunks(struct scrub_dev *sdev, u64 start, u64 end)
1017 {
1018         struct btrfs_dev_extent *dev_extent = NULL;
1019         struct btrfs_path *path;
1020         struct btrfs_root *root = sdev->dev->dev_root;
1021         struct btrfs_fs_info *fs_info = root->fs_info;
1022         u64 length;
1023         u64 chunk_tree;
1024         u64 chunk_objectid;
1025         u64 chunk_offset;
1026         int ret;
1027         int slot;
1028         struct extent_buffer *l;
1029         struct btrfs_key key;
1030         struct btrfs_key found_key;
1031         struct btrfs_block_group_cache *cache;
1032
1033         path = btrfs_alloc_path();
1034         if (!path)
1035                 return -ENOMEM;
1036
1037         path->reada = 2;
1038         path->search_commit_root = 1;
1039         path->skip_locking = 1;
1040
1041         key.objectid = sdev->dev->devid;
1042         key.offset = 0ull;
1043         key.type = BTRFS_DEV_EXTENT_KEY;
1044
1045
1046         while (1) {
1047                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1048                 if (ret < 0)
1049                         break;
1050                 if (ret > 0) {
1051                         if (path->slots[0] >=
1052                             btrfs_header_nritems(path->nodes[0])) {
1053                                 ret = btrfs_next_leaf(root, path);
1054                                 if (ret)
1055                                         break;
1056                         }
1057                 }
1058
1059                 l = path->nodes[0];
1060                 slot = path->slots[0];
1061
1062                 btrfs_item_key_to_cpu(l, &found_key, slot);
1063
1064                 if (found_key.objectid != sdev->dev->devid)
1065                         break;
1066
1067                 if (btrfs_key_type(&found_key) != BTRFS_DEV_EXTENT_KEY)
1068                         break;
1069
1070                 if (found_key.offset >= end)
1071                         break;
1072
1073                 if (found_key.offset < key.offset)
1074                         break;
1075
1076                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1077                 length = btrfs_dev_extent_length(l, dev_extent);
1078
1079                 if (found_key.offset + length <= start) {
1080                         key.offset = found_key.offset + length;
1081                         btrfs_release_path(path);
1082                         continue;
1083                 }
1084
1085                 chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
1086                 chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
1087                 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
1088
1089                 /*
1090                  * get a reference on the corresponding block group to prevent
1091                  * the chunk from going away while we scrub it
1092                  */
1093                 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
1094                 if (!cache) {
1095                         ret = -ENOENT;
1096                         break;
1097                 }
1098                 ret = scrub_chunk(sdev, chunk_tree, chunk_objectid,
1099                                   chunk_offset, length);
1100                 btrfs_put_block_group(cache);
1101                 if (ret)
1102                         break;
1103
1104                 key.offset = found_key.offset + length;
1105                 btrfs_release_path(path);
1106         }
1107
1108         btrfs_free_path(path);
1109
1110         /*
1111          * ret can still be 1 from search_slot or next_leaf,
1112          * that's not an error
1113          */
1114         return ret < 0 ? ret : 0;
1115 }
1116
1117 static noinline_for_stack int scrub_supers(struct scrub_dev *sdev)
1118 {
1119         int     i;
1120         u64     bytenr;
1121         u64     gen;
1122         int     ret;
1123         struct btrfs_device *device = sdev->dev;
1124         struct btrfs_root *root = device->dev_root;
1125
1126         gen = root->fs_info->last_trans_committed;
1127
1128         for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1129                 bytenr = btrfs_sb_offset(i);
1130                 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
1131                         break;
1132
1133                 ret = scrub_page(sdev, bytenr, PAGE_SIZE, bytenr,
1134                                  BTRFS_EXTENT_FLAG_SUPER, gen, i, NULL, 1);
1135                 if (ret)
1136                         return ret;
1137         }
1138         wait_event(sdev->list_wait, atomic_read(&sdev->in_flight) == 0);
1139
1140         return 0;
1141 }
1142
1143 /*
1144  * get a reference count on fs_info->scrub_workers. start worker if necessary
1145  */
1146 static noinline_for_stack int scrub_workers_get(struct btrfs_root *root)
1147 {
1148         struct btrfs_fs_info *fs_info = root->fs_info;
1149
1150         mutex_lock(&fs_info->scrub_lock);
1151         if (fs_info->scrub_workers_refcnt == 0) {
1152                 btrfs_init_workers(&fs_info->scrub_workers, "scrub",
1153                            fs_info->thread_pool_size, &fs_info->generic_worker);
1154                 fs_info->scrub_workers.idle_thresh = 4;
1155                 btrfs_start_workers(&fs_info->scrub_workers, 1);
1156         }
1157         ++fs_info->scrub_workers_refcnt;
1158         mutex_unlock(&fs_info->scrub_lock);
1159
1160         return 0;
1161 }
1162
1163 static noinline_for_stack void scrub_workers_put(struct btrfs_root *root)
1164 {
1165         struct btrfs_fs_info *fs_info = root->fs_info;
1166
1167         mutex_lock(&fs_info->scrub_lock);
1168         if (--fs_info->scrub_workers_refcnt == 0)
1169                 btrfs_stop_workers(&fs_info->scrub_workers);
1170         WARN_ON(fs_info->scrub_workers_refcnt < 0);
1171         mutex_unlock(&fs_info->scrub_lock);
1172 }
1173
1174
1175 int btrfs_scrub_dev(struct btrfs_root *root, u64 devid, u64 start, u64 end,
1176                     struct btrfs_scrub_progress *progress, int readonly)
1177 {
1178         struct scrub_dev *sdev;
1179         struct btrfs_fs_info *fs_info = root->fs_info;
1180         int ret;
1181         struct btrfs_device *dev;
1182
1183         if (btrfs_fs_closing(root->fs_info))
1184                 return -EINVAL;
1185
1186         /*
1187          * check some assumptions
1188          */
1189         if (root->sectorsize != PAGE_SIZE ||
1190             root->sectorsize != root->leafsize ||
1191             root->sectorsize != root->nodesize) {
1192                 printk(KERN_ERR "btrfs_scrub: size assumptions fail\n");
1193                 return -EINVAL;
1194         }
1195
1196         ret = scrub_workers_get(root);
1197         if (ret)
1198                 return ret;
1199
1200         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1201         dev = btrfs_find_device(root, devid, NULL, NULL);
1202         if (!dev || dev->missing) {
1203                 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1204                 scrub_workers_put(root);
1205                 return -ENODEV;
1206         }
1207         mutex_lock(&fs_info->scrub_lock);
1208
1209         if (!dev->in_fs_metadata) {
1210                 mutex_unlock(&fs_info->scrub_lock);
1211                 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1212                 scrub_workers_put(root);
1213                 return -ENODEV;
1214         }
1215
1216         if (dev->scrub_device) {
1217                 mutex_unlock(&fs_info->scrub_lock);
1218                 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1219                 scrub_workers_put(root);
1220                 return -EINPROGRESS;
1221         }
1222         sdev = scrub_setup_dev(dev);
1223         if (IS_ERR(sdev)) {
1224                 mutex_unlock(&fs_info->scrub_lock);
1225                 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1226                 scrub_workers_put(root);
1227                 return PTR_ERR(sdev);
1228         }
1229         sdev->readonly = readonly;
1230         dev->scrub_device = sdev;
1231
1232         atomic_inc(&fs_info->scrubs_running);
1233         mutex_unlock(&fs_info->scrub_lock);
1234         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1235
1236         down_read(&fs_info->scrub_super_lock);
1237         ret = scrub_supers(sdev);
1238         up_read(&fs_info->scrub_super_lock);
1239
1240         if (!ret)
1241                 ret = scrub_enumerate_chunks(sdev, start, end);
1242
1243         wait_event(sdev->list_wait, atomic_read(&sdev->in_flight) == 0);
1244
1245         atomic_dec(&fs_info->scrubs_running);
1246         wake_up(&fs_info->scrub_pause_wait);
1247
1248         if (progress)
1249                 memcpy(progress, &sdev->stat, sizeof(*progress));
1250
1251         mutex_lock(&fs_info->scrub_lock);
1252         dev->scrub_device = NULL;
1253         mutex_unlock(&fs_info->scrub_lock);
1254
1255         scrub_free_dev(sdev);
1256         scrub_workers_put(root);
1257
1258         return ret;
1259 }
1260
1261 int btrfs_scrub_pause(struct btrfs_root *root)
1262 {
1263         struct btrfs_fs_info *fs_info = root->fs_info;
1264
1265         mutex_lock(&fs_info->scrub_lock);
1266         atomic_inc(&fs_info->scrub_pause_req);
1267         while (atomic_read(&fs_info->scrubs_paused) !=
1268                atomic_read(&fs_info->scrubs_running)) {
1269                 mutex_unlock(&fs_info->scrub_lock);
1270                 wait_event(fs_info->scrub_pause_wait,
1271                            atomic_read(&fs_info->scrubs_paused) ==
1272                            atomic_read(&fs_info->scrubs_running));
1273                 mutex_lock(&fs_info->scrub_lock);
1274         }
1275         mutex_unlock(&fs_info->scrub_lock);
1276
1277         return 0;
1278 }
1279
1280 int btrfs_scrub_continue(struct btrfs_root *root)
1281 {
1282         struct btrfs_fs_info *fs_info = root->fs_info;
1283
1284         atomic_dec(&fs_info->scrub_pause_req);
1285         wake_up(&fs_info->scrub_pause_wait);
1286         return 0;
1287 }
1288
1289 int btrfs_scrub_pause_super(struct btrfs_root *root)
1290 {
1291         down_write(&root->fs_info->scrub_super_lock);
1292         return 0;
1293 }
1294
1295 int btrfs_scrub_continue_super(struct btrfs_root *root)
1296 {
1297         up_write(&root->fs_info->scrub_super_lock);
1298         return 0;
1299 }
1300
1301 int btrfs_scrub_cancel(struct btrfs_root *root)
1302 {
1303         struct btrfs_fs_info *fs_info = root->fs_info;
1304
1305         mutex_lock(&fs_info->scrub_lock);
1306         if (!atomic_read(&fs_info->scrubs_running)) {
1307                 mutex_unlock(&fs_info->scrub_lock);
1308                 return -ENOTCONN;
1309         }
1310
1311         atomic_inc(&fs_info->scrub_cancel_req);
1312         while (atomic_read(&fs_info->scrubs_running)) {
1313                 mutex_unlock(&fs_info->scrub_lock);
1314                 wait_event(fs_info->scrub_pause_wait,
1315                            atomic_read(&fs_info->scrubs_running) == 0);
1316                 mutex_lock(&fs_info->scrub_lock);
1317         }
1318         atomic_dec(&fs_info->scrub_cancel_req);
1319         mutex_unlock(&fs_info->scrub_lock);
1320
1321         return 0;
1322 }
1323
1324 int btrfs_scrub_cancel_dev(struct btrfs_root *root, struct btrfs_device *dev)
1325 {
1326         struct btrfs_fs_info *fs_info = root->fs_info;
1327         struct scrub_dev *sdev;
1328
1329         mutex_lock(&fs_info->scrub_lock);
1330         sdev = dev->scrub_device;
1331         if (!sdev) {
1332                 mutex_unlock(&fs_info->scrub_lock);
1333                 return -ENOTCONN;
1334         }
1335         atomic_inc(&sdev->cancel_req);
1336         while (dev->scrub_device) {
1337                 mutex_unlock(&fs_info->scrub_lock);
1338                 wait_event(fs_info->scrub_pause_wait,
1339                            dev->scrub_device == NULL);
1340                 mutex_lock(&fs_info->scrub_lock);
1341         }
1342         mutex_unlock(&fs_info->scrub_lock);
1343
1344         return 0;
1345 }
1346 int btrfs_scrub_cancel_devid(struct btrfs_root *root, u64 devid)
1347 {
1348         struct btrfs_fs_info *fs_info = root->fs_info;
1349         struct btrfs_device *dev;
1350         int ret;
1351
1352         /*
1353          * we have to hold the device_list_mutex here so the device
1354          * does not go away in cancel_dev. FIXME: find a better solution
1355          */
1356         mutex_lock(&fs_info->fs_devices->device_list_mutex);
1357         dev = btrfs_find_device(root, devid, NULL, NULL);
1358         if (!dev) {
1359                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
1360                 return -ENODEV;
1361         }
1362         ret = btrfs_scrub_cancel_dev(root, dev);
1363         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
1364
1365         return ret;
1366 }
1367
1368 int btrfs_scrub_progress(struct btrfs_root *root, u64 devid,
1369                          struct btrfs_scrub_progress *progress)
1370 {
1371         struct btrfs_device *dev;
1372         struct scrub_dev *sdev = NULL;
1373
1374         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1375         dev = btrfs_find_device(root, devid, NULL, NULL);
1376         if (dev)
1377                 sdev = dev->scrub_device;
1378         if (sdev)
1379                 memcpy(progress, &sdev->stat, sizeof(*progress));
1380         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1381
1382         return dev ? (sdev ? 0 : -ENOTCONN) : -ENODEV;
1383 }