x86/mm: Fix {pmd,pud}_{set,clear}_flags()
[pandora-kernel.git] / fs / btrfs / reada.c
1 /*
2  * Copyright (C) 2011 STRATO.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/sched.h>
20 #include <linux/pagemap.h>
21 #include <linux/writeback.h>
22 #include <linux/blkdev.h>
23 #include <linux/rbtree.h>
24 #include <linux/slab.h>
25 #include <linux/workqueue.h>
26 #include "ctree.h"
27 #include "volumes.h"
28 #include "disk-io.h"
29 #include "transaction.h"
30
31 #undef DEBUG
32
33 /*
34  * This is the implementation for the generic read ahead framework.
35  *
36  * To trigger a readahead, btrfs_reada_add must be called. It will start
37  * a read ahead for the given range [start, end) on tree root. The returned
38  * handle can either be used to wait on the readahead to finish
39  * (btrfs_reada_wait), or to send it to the background (btrfs_reada_detach).
40  *
41  * The read ahead works as follows:
42  * On btrfs_reada_add, the root of the tree is inserted into a radix_tree.
43  * reada_start_machine will then search for extents to prefetch and trigger
44  * some reads. When a read finishes for a node, all contained node/leaf
45  * pointers that lie in the given range will also be enqueued. The reads will
46  * be triggered in sequential order, thus giving a big win over a naive
47  * enumeration. It will also make use of multi-device layouts. Each disk
48  * will have its on read pointer and all disks will by utilized in parallel.
49  * Also will no two disks read both sides of a mirror simultaneously, as this
50  * would waste seeking capacity. Instead both disks will read different parts
51  * of the filesystem.
52  * Any number of readaheads can be started in parallel. The read order will be
53  * determined globally, i.e. 2 parallel readaheads will normally finish faster
54  * than the 2 started one after another.
55  */
56
57 #define MAX_MIRRORS 2
58 #define MAX_IN_FLIGHT 6
59
60 struct reada_extctl {
61         struct list_head        list;
62         struct reada_control    *rc;
63         u64                     generation;
64 };
65
66 struct reada_extent {
67         u64                     logical;
68         struct btrfs_key        top;
69         u32                     blocksize;
70         int                     err;
71         struct list_head        extctl;
72         struct kref             refcnt;
73         spinlock_t              lock;
74         struct reada_zone       *zones[MAX_MIRRORS];
75         int                     nzones;
76         struct btrfs_device     *scheduled_for;
77 };
78
79 struct reada_zone {
80         u64                     start;
81         u64                     end;
82         u64                     elems;
83         struct list_head        list;
84         spinlock_t              lock;
85         int                     locked;
86         struct btrfs_device     *device;
87         struct btrfs_device     *devs[MAX_MIRRORS]; /* full list, incl self */
88         int                     ndevs;
89         struct kref             refcnt;
90 };
91
92 struct reada_machine_work {
93         struct btrfs_work       work;
94         struct btrfs_fs_info    *fs_info;
95 };
96
97 static void reada_extent_put(struct btrfs_fs_info *, struct reada_extent *);
98 static void reada_control_release(struct kref *kref);
99 static void reada_zone_release(struct kref *kref);
100 static void reada_start_machine(struct btrfs_fs_info *fs_info);
101 static void __reada_start_machine(struct btrfs_fs_info *fs_info);
102
103 static int reada_add_block(struct reada_control *rc, u64 logical,
104                            struct btrfs_key *top, int level, u64 generation);
105
106 /* recurses */
107 /* in case of err, eb might be NULL */
108 static int __readahead_hook(struct btrfs_root *root, struct extent_buffer *eb,
109                             u64 start, int err)
110 {
111         int level = 0;
112         int nritems;
113         int i;
114         u64 bytenr;
115         u64 generation;
116         struct reada_extent *re;
117         struct btrfs_fs_info *fs_info = root->fs_info;
118         struct list_head list;
119         unsigned long index = start >> PAGE_CACHE_SHIFT;
120         struct btrfs_device *for_dev;
121
122         if (eb)
123                 level = btrfs_header_level(eb);
124
125         /* find extent */
126         spin_lock(&fs_info->reada_lock);
127         re = radix_tree_lookup(&fs_info->reada_tree, index);
128         if (re)
129                 kref_get(&re->refcnt);
130         spin_unlock(&fs_info->reada_lock);
131
132         if (!re)
133                 return -1;
134
135         spin_lock(&re->lock);
136         /*
137          * just take the full list from the extent. afterwards we
138          * don't need the lock anymore
139          */
140         list_replace_init(&re->extctl, &list);
141         for_dev = re->scheduled_for;
142         re->scheduled_for = NULL;
143         spin_unlock(&re->lock);
144
145         if (err == 0) {
146                 nritems = level ? btrfs_header_nritems(eb) : 0;
147                 generation = btrfs_header_generation(eb);
148                 /*
149                  * FIXME: currently we just set nritems to 0 if this is a leaf,
150                  * effectively ignoring the content. In a next step we could
151                  * trigger more readahead depending from the content, e.g.
152                  * fetch the checksums for the extents in the leaf.
153                  */
154         } else {
155                 /*
156                  * this is the error case, the extent buffer has not been
157                  * read correctly. We won't access anything from it and
158                  * just cleanup our data structures. Effectively this will
159                  * cut the branch below this node from read ahead.
160                  */
161                 nritems = 0;
162                 generation = 0;
163         }
164
165         for (i = 0; i < nritems; i++) {
166                 struct reada_extctl *rec;
167                 u64 n_gen;
168                 struct btrfs_key key;
169                 struct btrfs_key next_key;
170
171                 btrfs_node_key_to_cpu(eb, &key, i);
172                 if (i + 1 < nritems)
173                         btrfs_node_key_to_cpu(eb, &next_key, i + 1);
174                 else
175                         next_key = re->top;
176                 bytenr = btrfs_node_blockptr(eb, i);
177                 n_gen = btrfs_node_ptr_generation(eb, i);
178
179                 list_for_each_entry(rec, &list, list) {
180                         struct reada_control *rc = rec->rc;
181
182                         /*
183                          * if the generation doesn't match, just ignore this
184                          * extctl. This will probably cut off a branch from
185                          * prefetch. Alternatively one could start a new (sub-)
186                          * prefetch for this branch, starting again from root.
187                          * FIXME: move the generation check out of this loop
188                          */
189 #ifdef DEBUG
190                         if (rec->generation != generation) {
191                                 printk(KERN_DEBUG "generation mismatch for "
192                                                 "(%llu,%d,%llu) %llu != %llu\n",
193                                        key.objectid, key.type, key.offset,
194                                        rec->generation, generation);
195                         }
196 #endif
197                         if (rec->generation == generation &&
198                             btrfs_comp_cpu_keys(&key, &rc->key_end) < 0 &&
199                             btrfs_comp_cpu_keys(&next_key, &rc->key_start) > 0)
200                                 reada_add_block(rc, bytenr, &next_key,
201                                                 level - 1, n_gen);
202                 }
203         }
204         /*
205          * free extctl records
206          */
207         while (!list_empty(&list)) {
208                 struct reada_control *rc;
209                 struct reada_extctl *rec;
210
211                 rec = list_first_entry(&list, struct reada_extctl, list);
212                 list_del(&rec->list);
213                 rc = rec->rc;
214                 kfree(rec);
215
216                 kref_get(&rc->refcnt);
217                 if (atomic_dec_and_test(&rc->elems)) {
218                         kref_put(&rc->refcnt, reada_control_release);
219                         wake_up(&rc->wait);
220                 }
221                 kref_put(&rc->refcnt, reada_control_release);
222
223                 reada_extent_put(fs_info, re);  /* one ref for each entry */
224         }
225         reada_extent_put(fs_info, re);  /* our ref */
226         if (for_dev)
227                 atomic_dec(&for_dev->reada_in_flight);
228
229         return 0;
230 }
231
232 /*
233  * start is passed separately in case eb in NULL, which may be the case with
234  * failed I/O
235  */
236 int btree_readahead_hook(struct btrfs_root *root, struct extent_buffer *eb,
237                          u64 start, int err)
238 {
239         int ret;
240
241         ret = __readahead_hook(root, eb, start, err);
242
243         reada_start_machine(root->fs_info);
244
245         return ret;
246 }
247
248 static struct reada_zone *reada_find_zone(struct btrfs_fs_info *fs_info,
249                                           struct btrfs_device *dev, u64 logical,
250                                           struct btrfs_bio *bbio)
251 {
252         int ret;
253         int looped = 0;
254         struct reada_zone *zone;
255         struct btrfs_block_group_cache *cache = NULL;
256         u64 start;
257         u64 end;
258         int i;
259
260 again:
261         zone = NULL;
262         spin_lock(&fs_info->reada_lock);
263         ret = radix_tree_gang_lookup(&dev->reada_zones, (void **)&zone,
264                                      logical >> PAGE_CACHE_SHIFT, 1);
265         if (ret == 1)
266                 kref_get(&zone->refcnt);
267         spin_unlock(&fs_info->reada_lock);
268
269         if (ret == 1) {
270                 if (logical >= zone->start && logical < zone->end)
271                         return zone;
272                 spin_lock(&fs_info->reada_lock);
273                 kref_put(&zone->refcnt, reada_zone_release);
274                 spin_unlock(&fs_info->reada_lock);
275         }
276
277         if (looped)
278                 return NULL;
279
280         cache = btrfs_lookup_block_group(fs_info, logical);
281         if (!cache)
282                 return NULL;
283
284         start = cache->key.objectid;
285         end = start + cache->key.offset - 1;
286         btrfs_put_block_group(cache);
287
288         zone = kzalloc(sizeof(*zone), GFP_NOFS);
289         if (!zone)
290                 return NULL;
291
292         zone->start = start;
293         zone->end = end;
294         INIT_LIST_HEAD(&zone->list);
295         spin_lock_init(&zone->lock);
296         zone->locked = 0;
297         kref_init(&zone->refcnt);
298         zone->elems = 0;
299         zone->device = dev; /* our device always sits at index 0 */
300         for (i = 0; i < bbio->num_stripes; ++i) {
301                 /* bounds have already been checked */
302                 zone->devs[i] = bbio->stripes[i].dev;
303         }
304         zone->ndevs = bbio->num_stripes;
305
306         spin_lock(&fs_info->reada_lock);
307         ret = radix_tree_insert(&dev->reada_zones,
308                                 (unsigned long)zone->end >> PAGE_CACHE_SHIFT,
309                                 zone);
310         spin_unlock(&fs_info->reada_lock);
311
312         if (ret) {
313                 kfree(zone);
314                 looped = 1;
315                 goto again;
316         }
317
318         return zone;
319 }
320
321 static struct reada_extent *reada_find_extent(struct btrfs_root *root,
322                                               u64 logical,
323                                               struct btrfs_key *top, int level)
324 {
325         int ret;
326         int looped = 0;
327         struct reada_extent *re = NULL;
328         struct btrfs_fs_info *fs_info = root->fs_info;
329         struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
330         struct btrfs_bio *bbio = NULL;
331         struct btrfs_device *dev;
332         u32 blocksize;
333         u64 length;
334         int nzones = 0;
335         int i;
336         unsigned long index = logical >> PAGE_CACHE_SHIFT;
337
338 again:
339         spin_lock(&fs_info->reada_lock);
340         re = radix_tree_lookup(&fs_info->reada_tree, index);
341         if (re)
342                 kref_get(&re->refcnt);
343         spin_unlock(&fs_info->reada_lock);
344
345         if (re || looped)
346                 return re;
347
348         re = kzalloc(sizeof(*re), GFP_NOFS);
349         if (!re)
350                 return NULL;
351
352         blocksize = btrfs_level_size(root, level);
353         re->logical = logical;
354         re->blocksize = blocksize;
355         re->top = *top;
356         INIT_LIST_HEAD(&re->extctl);
357         spin_lock_init(&re->lock);
358         kref_init(&re->refcnt);
359
360         /*
361          * map block
362          */
363         length = blocksize;
364         ret = btrfs_map_block(map_tree, REQ_WRITE, logical, &length, &bbio, 0);
365         if (ret || !bbio || length < blocksize)
366                 goto error;
367
368         if (bbio->num_stripes > MAX_MIRRORS) {
369                 printk(KERN_ERR "btrfs readahead: more than %d copies not "
370                                 "supported", MAX_MIRRORS);
371                 goto error;
372         }
373
374         for (nzones = 0; nzones < bbio->num_stripes; ++nzones) {
375                 struct reada_zone *zone;
376
377                 dev = bbio->stripes[nzones].dev;
378                 zone = reada_find_zone(fs_info, dev, logical, bbio);
379                 if (!zone)
380                         break;
381
382                 re->zones[nzones] = zone;
383                 spin_lock(&zone->lock);
384                 if (!zone->elems)
385                         kref_get(&zone->refcnt);
386                 ++zone->elems;
387                 spin_unlock(&zone->lock);
388                 spin_lock(&fs_info->reada_lock);
389                 kref_put(&zone->refcnt, reada_zone_release);
390                 spin_unlock(&fs_info->reada_lock);
391         }
392         re->nzones = nzones;
393         if (nzones == 0) {
394                 /* not a single zone found, error and out */
395                 goto error;
396         }
397
398         /* insert extent in reada_tree + all per-device trees, all or nothing */
399         spin_lock(&fs_info->reada_lock);
400         ret = radix_tree_insert(&fs_info->reada_tree, index, re);
401         if (ret) {
402                 spin_unlock(&fs_info->reada_lock);
403                 if (ret != -ENOMEM) {
404                         /* someone inserted the extent in the meantime */
405                         looped = 1;
406                 }
407                 goto error;
408         }
409         for (i = 0; i < nzones; ++i) {
410                 dev = bbio->stripes[i].dev;
411                 ret = radix_tree_insert(&dev->reada_extents, index, re);
412                 if (ret) {
413                         while (--i >= 0) {
414                                 dev = bbio->stripes[i].dev;
415                                 BUG_ON(dev == NULL);
416                                 radix_tree_delete(&dev->reada_extents, index);
417                         }
418                         BUG_ON(fs_info == NULL);
419                         radix_tree_delete(&fs_info->reada_tree, index);
420                         spin_unlock(&fs_info->reada_lock);
421                         goto error;
422                 }
423         }
424         spin_unlock(&fs_info->reada_lock);
425
426         kfree(bbio);
427         return re;
428
429 error:
430         while (nzones) {
431                 struct reada_zone *zone;
432
433                 --nzones;
434                 zone = re->zones[nzones];
435                 kref_get(&zone->refcnt);
436                 spin_lock(&zone->lock);
437                 --zone->elems;
438                 if (zone->elems == 0) {
439                         /*
440                          * no fs_info->reada_lock needed, as this can't be
441                          * the last ref
442                          */
443                         kref_put(&zone->refcnt, reada_zone_release);
444                 }
445                 spin_unlock(&zone->lock);
446
447                 spin_lock(&fs_info->reada_lock);
448                 kref_put(&zone->refcnt, reada_zone_release);
449                 spin_unlock(&fs_info->reada_lock);
450         }
451         kfree(bbio);
452         kfree(re);
453         if (looped)
454                 goto again;
455         return NULL;
456 }
457
458 static void reada_kref_dummy(struct kref *kr)
459 {
460 }
461
462 static void reada_extent_put(struct btrfs_fs_info *fs_info,
463                              struct reada_extent *re)
464 {
465         int i;
466         unsigned long index = re->logical >> PAGE_CACHE_SHIFT;
467
468         spin_lock(&fs_info->reada_lock);
469         if (!kref_put(&re->refcnt, reada_kref_dummy)) {
470                 spin_unlock(&fs_info->reada_lock);
471                 return;
472         }
473
474         radix_tree_delete(&fs_info->reada_tree, index);
475         for (i = 0; i < re->nzones; ++i) {
476                 struct reada_zone *zone = re->zones[i];
477
478                 radix_tree_delete(&zone->device->reada_extents, index);
479         }
480
481         spin_unlock(&fs_info->reada_lock);
482
483         for (i = 0; i < re->nzones; ++i) {
484                 struct reada_zone *zone = re->zones[i];
485
486                 kref_get(&zone->refcnt);
487                 spin_lock(&zone->lock);
488                 --zone->elems;
489                 if (zone->elems == 0) {
490                         /* no fs_info->reada_lock needed, as this can't be
491                          * the last ref */
492                         kref_put(&zone->refcnt, reada_zone_release);
493                 }
494                 spin_unlock(&zone->lock);
495
496                 spin_lock(&fs_info->reada_lock);
497                 kref_put(&zone->refcnt, reada_zone_release);
498                 spin_unlock(&fs_info->reada_lock);
499         }
500         if (re->scheduled_for)
501                 atomic_dec(&re->scheduled_for->reada_in_flight);
502
503         kfree(re);
504 }
505
506 static void reada_zone_release(struct kref *kref)
507 {
508         struct reada_zone *zone = container_of(kref, struct reada_zone, refcnt);
509
510         radix_tree_delete(&zone->device->reada_zones,
511                           zone->end >> PAGE_CACHE_SHIFT);
512
513         kfree(zone);
514 }
515
516 static void reada_control_release(struct kref *kref)
517 {
518         struct reada_control *rc = container_of(kref, struct reada_control,
519                                                 refcnt);
520
521         kfree(rc);
522 }
523
524 static int reada_add_block(struct reada_control *rc, u64 logical,
525                            struct btrfs_key *top, int level, u64 generation)
526 {
527         struct btrfs_root *root = rc->root;
528         struct reada_extent *re;
529         struct reada_extctl *rec;
530
531         re = reada_find_extent(root, logical, top, level); /* takes one ref */
532         if (!re)
533                 return -1;
534
535         rec = kzalloc(sizeof(*rec), GFP_NOFS);
536         if (!rec) {
537                 reada_extent_put(root->fs_info, re);
538                 return -1;
539         }
540
541         rec->rc = rc;
542         rec->generation = generation;
543         atomic_inc(&rc->elems);
544
545         spin_lock(&re->lock);
546         list_add_tail(&rec->list, &re->extctl);
547         spin_unlock(&re->lock);
548
549         /* leave the ref on the extent */
550
551         return 0;
552 }
553
554 /*
555  * called with fs_info->reada_lock held
556  */
557 static void reada_peer_zones_set_lock(struct reada_zone *zone, int lock)
558 {
559         int i;
560         unsigned long index = zone->end >> PAGE_CACHE_SHIFT;
561
562         for (i = 0; i < zone->ndevs; ++i) {
563                 struct reada_zone *peer;
564                 peer = radix_tree_lookup(&zone->devs[i]->reada_zones, index);
565                 if (peer && peer->device != zone->device)
566                         peer->locked = lock;
567         }
568 }
569
570 /*
571  * called with fs_info->reada_lock held
572  */
573 static int reada_pick_zone(struct btrfs_device *dev)
574 {
575         struct reada_zone *top_zone = NULL;
576         struct reada_zone *top_locked_zone = NULL;
577         u64 top_elems = 0;
578         u64 top_locked_elems = 0;
579         unsigned long index = 0;
580         int ret;
581
582         if (dev->reada_curr_zone) {
583                 reada_peer_zones_set_lock(dev->reada_curr_zone, 0);
584                 kref_put(&dev->reada_curr_zone->refcnt, reada_zone_release);
585                 dev->reada_curr_zone = NULL;
586         }
587         /* pick the zone with the most elements */
588         while (1) {
589                 struct reada_zone *zone;
590
591                 ret = radix_tree_gang_lookup(&dev->reada_zones,
592                                              (void **)&zone, index, 1);
593                 if (ret == 0)
594                         break;
595                 index = (zone->end >> PAGE_CACHE_SHIFT) + 1;
596                 if (zone->locked) {
597                         if (zone->elems > top_locked_elems) {
598                                 top_locked_elems = zone->elems;
599                                 top_locked_zone = zone;
600                         }
601                 } else {
602                         if (zone->elems > top_elems) {
603                                 top_elems = zone->elems;
604                                 top_zone = zone;
605                         }
606                 }
607         }
608         if (top_zone)
609                 dev->reada_curr_zone = top_zone;
610         else if (top_locked_zone)
611                 dev->reada_curr_zone = top_locked_zone;
612         else
613                 return 0;
614
615         dev->reada_next = dev->reada_curr_zone->start;
616         kref_get(&dev->reada_curr_zone->refcnt);
617         reada_peer_zones_set_lock(dev->reada_curr_zone, 1);
618
619         return 1;
620 }
621
622 static int reada_start_machine_dev(struct btrfs_fs_info *fs_info,
623                                    struct btrfs_device *dev)
624 {
625         struct reada_extent *re = NULL;
626         int mirror_num = 0;
627         struct extent_buffer *eb = NULL;
628         u64 logical;
629         u32 blocksize;
630         int ret;
631         int i;
632         int need_kick = 0;
633
634         spin_lock(&fs_info->reada_lock);
635         if (dev->reada_curr_zone == NULL) {
636                 ret = reada_pick_zone(dev);
637                 if (!ret) {
638                         spin_unlock(&fs_info->reada_lock);
639                         return 0;
640                 }
641         }
642         /*
643          * FIXME currently we issue the reads one extent at a time. If we have
644          * a contiguous block of extents, we could also coagulate them or use
645          * plugging to speed things up
646          */
647         ret = radix_tree_gang_lookup(&dev->reada_extents, (void **)&re,
648                                      dev->reada_next >> PAGE_CACHE_SHIFT, 1);
649         if (ret == 0 || re->logical >= dev->reada_curr_zone->end) {
650                 ret = reada_pick_zone(dev);
651                 if (!ret) {
652                         spin_unlock(&fs_info->reada_lock);
653                         return 0;
654                 }
655                 re = NULL;
656                 ret = radix_tree_gang_lookup(&dev->reada_extents, (void **)&re,
657                                         dev->reada_next >> PAGE_CACHE_SHIFT, 1);
658         }
659         if (ret == 0) {
660                 spin_unlock(&fs_info->reada_lock);
661                 return 0;
662         }
663         dev->reada_next = re->logical + re->blocksize;
664         kref_get(&re->refcnt);
665
666         spin_unlock(&fs_info->reada_lock);
667
668         /*
669          * find mirror num
670          */
671         for (i = 0; i < re->nzones; ++i) {
672                 if (re->zones[i]->device == dev) {
673                         mirror_num = i + 1;
674                         break;
675                 }
676         }
677         logical = re->logical;
678         blocksize = re->blocksize;
679
680         spin_lock(&re->lock);
681         if (re->scheduled_for == NULL) {
682                 re->scheduled_for = dev;
683                 need_kick = 1;
684         }
685         spin_unlock(&re->lock);
686
687         reada_extent_put(fs_info, re);
688
689         if (!need_kick)
690                 return 0;
691
692         atomic_inc(&dev->reada_in_flight);
693         ret = reada_tree_block_flagged(fs_info->extent_root, logical, blocksize,
694                          mirror_num, &eb);
695         if (ret)
696                 __readahead_hook(fs_info->extent_root, NULL, logical, ret);
697         else if (eb)
698                 __readahead_hook(fs_info->extent_root, eb, eb->start, ret);
699
700         if (eb)
701                 free_extent_buffer(eb);
702
703         return 1;
704
705 }
706
707 static void reada_start_machine_worker(struct btrfs_work *work)
708 {
709         struct reada_machine_work *rmw;
710         struct btrfs_fs_info *fs_info;
711
712         rmw = container_of(work, struct reada_machine_work, work);
713         fs_info = rmw->fs_info;
714
715         kfree(rmw);
716
717         __reada_start_machine(fs_info);
718 }
719
720 static void __reada_start_machine(struct btrfs_fs_info *fs_info)
721 {
722         struct btrfs_device *device;
723         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
724         u64 enqueued;
725         u64 total = 0;
726         int i;
727
728         do {
729                 enqueued = 0;
730                 list_for_each_entry(device, &fs_devices->devices, dev_list) {
731                         if (atomic_read(&device->reada_in_flight) <
732                             MAX_IN_FLIGHT)
733                                 enqueued += reada_start_machine_dev(fs_info,
734                                                                     device);
735                 }
736                 total += enqueued;
737         } while (enqueued && total < 10000);
738
739         if (enqueued == 0)
740                 return;
741
742         /*
743          * If everything is already in the cache, this is effectively single
744          * threaded. To a) not hold the caller for too long and b) to utilize
745          * more cores, we broke the loop above after 10000 iterations and now
746          * enqueue to workers to finish it. This will distribute the load to
747          * the cores.
748          */
749         for (i = 0; i < 2; ++i)
750                 reada_start_machine(fs_info);
751 }
752
753 static void reada_start_machine(struct btrfs_fs_info *fs_info)
754 {
755         struct reada_machine_work *rmw;
756
757         rmw = kzalloc(sizeof(*rmw), GFP_NOFS);
758         if (!rmw) {
759                 /* FIXME we cannot handle this properly right now */
760                 BUG();
761         }
762         rmw->work.func = reada_start_machine_worker;
763         rmw->fs_info = fs_info;
764
765         btrfs_queue_worker(&fs_info->readahead_workers, &rmw->work);
766 }
767
768 #ifdef DEBUG
769 static void dump_devs(struct btrfs_fs_info *fs_info, int all)
770 {
771         struct btrfs_device *device;
772         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
773         unsigned long index;
774         int ret;
775         int i;
776         int j;
777         int cnt;
778
779         spin_lock(&fs_info->reada_lock);
780         list_for_each_entry(device, &fs_devices->devices, dev_list) {
781                 printk(KERN_DEBUG "dev %lld has %d in flight\n", device->devid,
782                         atomic_read(&device->reada_in_flight));
783                 index = 0;
784                 while (1) {
785                         struct reada_zone *zone;
786                         ret = radix_tree_gang_lookup(&device->reada_zones,
787                                                      (void **)&zone, index, 1);
788                         if (ret == 0)
789                                 break;
790                         printk(KERN_DEBUG "  zone %llu-%llu elems %llu locked "
791                                 "%d devs", zone->start, zone->end, zone->elems,
792                                 zone->locked);
793                         for (j = 0; j < zone->ndevs; ++j) {
794                                 printk(KERN_CONT " %lld",
795                                         zone->devs[j]->devid);
796                         }
797                         if (device->reada_curr_zone == zone)
798                                 printk(KERN_CONT " curr off %llu",
799                                         device->reada_next - zone->start);
800                         printk(KERN_CONT "\n");
801                         index = (zone->end >> PAGE_CACHE_SHIFT) + 1;
802                 }
803                 cnt = 0;
804                 index = 0;
805                 while (all) {
806                         struct reada_extent *re = NULL;
807
808                         ret = radix_tree_gang_lookup(&device->reada_extents,
809                                                      (void **)&re, index, 1);
810                         if (ret == 0)
811                                 break;
812                         printk(KERN_DEBUG
813                                 "  re: logical %llu size %u empty %d for %lld",
814                                 re->logical, re->blocksize,
815                                 list_empty(&re->extctl), re->scheduled_for ?
816                                 re->scheduled_for->devid : -1);
817
818                         for (i = 0; i < re->nzones; ++i) {
819                                 printk(KERN_CONT " zone %llu-%llu devs",
820                                         re->zones[i]->start,
821                                         re->zones[i]->end);
822                                 for (j = 0; j < re->zones[i]->ndevs; ++j) {
823                                         printk(KERN_CONT " %lld",
824                                                 re->zones[i]->devs[j]->devid);
825                                 }
826                         }
827                         printk(KERN_CONT "\n");
828                         index = (re->logical >> PAGE_CACHE_SHIFT) + 1;
829                         if (++cnt > 15)
830                                 break;
831                 }
832         }
833
834         index = 0;
835         cnt = 0;
836         while (all) {
837                 struct reada_extent *re = NULL;
838
839                 ret = radix_tree_gang_lookup(&fs_info->reada_tree, (void **)&re,
840                                              index, 1);
841                 if (ret == 0)
842                         break;
843                 if (!re->scheduled_for) {
844                         index = (re->logical >> PAGE_CACHE_SHIFT) + 1;
845                         continue;
846                 }
847                 printk(KERN_DEBUG
848                         "re: logical %llu size %u list empty %d for %lld",
849                         re->logical, re->blocksize, list_empty(&re->extctl),
850                         re->scheduled_for ? re->scheduled_for->devid : -1);
851                 for (i = 0; i < re->nzones; ++i) {
852                         printk(KERN_CONT " zone %llu-%llu devs",
853                                 re->zones[i]->start,
854                                 re->zones[i]->end);
855                         for (i = 0; i < re->nzones; ++i) {
856                                 printk(KERN_CONT " zone %llu-%llu devs",
857                                         re->zones[i]->start,
858                                         re->zones[i]->end);
859                                 for (j = 0; j < re->zones[i]->ndevs; ++j) {
860                                         printk(KERN_CONT " %lld",
861                                                 re->zones[i]->devs[j]->devid);
862                                 }
863                         }
864                 }
865                 printk(KERN_CONT "\n");
866                 index = (re->logical >> PAGE_CACHE_SHIFT) + 1;
867         }
868         spin_unlock(&fs_info->reada_lock);
869 }
870 #endif
871
872 /*
873  * interface
874  */
875 struct reada_control *btrfs_reada_add(struct btrfs_root *root,
876                         struct btrfs_key *key_start, struct btrfs_key *key_end)
877 {
878         struct reada_control *rc;
879         u64 start;
880         u64 generation;
881         int level;
882         struct extent_buffer *node;
883         static struct btrfs_key max_key = {
884                 .objectid = (u64)-1,
885                 .type = (u8)-1,
886                 .offset = (u64)-1
887         };
888
889         rc = kzalloc(sizeof(*rc), GFP_NOFS);
890         if (!rc)
891                 return ERR_PTR(-ENOMEM);
892
893         rc->root = root;
894         rc->key_start = *key_start;
895         rc->key_end = *key_end;
896         atomic_set(&rc->elems, 0);
897         init_waitqueue_head(&rc->wait);
898         kref_init(&rc->refcnt);
899         kref_get(&rc->refcnt); /* one ref for having elements */
900
901         node = btrfs_root_node(root);
902         start = node->start;
903         level = btrfs_header_level(node);
904         generation = btrfs_header_generation(node);
905         free_extent_buffer(node);
906
907         reada_add_block(rc, start, &max_key, level, generation);
908
909         reada_start_machine(root->fs_info);
910
911         return rc;
912 }
913
914 #ifdef DEBUG
915 int btrfs_reada_wait(void *handle)
916 {
917         struct reada_control *rc = handle;
918
919         while (atomic_read(&rc->elems)) {
920                 wait_event_timeout(rc->wait, atomic_read(&rc->elems) == 0,
921                                    5 * HZ);
922                 dump_devs(rc->root->fs_info, rc->elems < 10 ? 1 : 0);
923         }
924
925         dump_devs(rc->root->fs_info, rc->elems < 10 ? 1 : 0);
926
927         kref_put(&rc->refcnt, reada_control_release);
928
929         return 0;
930 }
931 #else
932 int btrfs_reada_wait(void *handle)
933 {
934         struct reada_control *rc = handle;
935
936         while (atomic_read(&rc->elems)) {
937                 wait_event(rc->wait, atomic_read(&rc->elems) == 0);
938         }
939
940         kref_put(&rc->refcnt, reada_control_release);
941
942         return 0;
943 }
944 #endif
945
946 void btrfs_reada_detach(void *handle)
947 {
948         struct reada_control *rc = handle;
949
950         kref_put(&rc->refcnt, reada_control_release);
951 }