Merge branch 'devel' of ssh://master.kernel.org/home/rmk/linux-2.6-arm into devel
[pandora-kernel.git] / fs / btrfs / inode.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/smp_lock.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mpage.h>
32 #include <linux/swap.h>
33 #include <linux/writeback.h>
34 #include <linux/statfs.h>
35 #include <linux/compat.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/xattr.h>
38 #include <linux/posix_acl.h>
39 #include <linux/falloc.h>
40 #include "compat.h"
41 #include "ctree.h"
42 #include "disk-io.h"
43 #include "transaction.h"
44 #include "btrfs_inode.h"
45 #include "ioctl.h"
46 #include "print-tree.h"
47 #include "volumes.h"
48 #include "ordered-data.h"
49 #include "xattr.h"
50 #include "tree-log.h"
51 #include "ref-cache.h"
52 #include "compression.h"
53 #include "locking.h"
54
55 struct btrfs_iget_args {
56         u64 ino;
57         struct btrfs_root *root;
58 };
59
60 static struct inode_operations btrfs_dir_inode_operations;
61 static struct inode_operations btrfs_symlink_inode_operations;
62 static struct inode_operations btrfs_dir_ro_inode_operations;
63 static struct inode_operations btrfs_special_inode_operations;
64 static struct inode_operations btrfs_file_inode_operations;
65 static struct address_space_operations btrfs_aops;
66 static struct address_space_operations btrfs_symlink_aops;
67 static struct file_operations btrfs_dir_file_operations;
68 static struct extent_io_ops btrfs_extent_io_ops;
69
70 static struct kmem_cache *btrfs_inode_cachep;
71 struct kmem_cache *btrfs_trans_handle_cachep;
72 struct kmem_cache *btrfs_transaction_cachep;
73 struct kmem_cache *btrfs_bit_radix_cachep;
74 struct kmem_cache *btrfs_path_cachep;
75
76 #define S_SHIFT 12
77 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
78         [S_IFREG >> S_SHIFT]    = BTRFS_FT_REG_FILE,
79         [S_IFDIR >> S_SHIFT]    = BTRFS_FT_DIR,
80         [S_IFCHR >> S_SHIFT]    = BTRFS_FT_CHRDEV,
81         [S_IFBLK >> S_SHIFT]    = BTRFS_FT_BLKDEV,
82         [S_IFIFO >> S_SHIFT]    = BTRFS_FT_FIFO,
83         [S_IFSOCK >> S_SHIFT]   = BTRFS_FT_SOCK,
84         [S_IFLNK >> S_SHIFT]    = BTRFS_FT_SYMLINK,
85 };
86
87 static void btrfs_truncate(struct inode *inode);
88 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
89 static noinline int cow_file_range(struct inode *inode,
90                                    struct page *locked_page,
91                                    u64 start, u64 end, int *page_started,
92                                    unsigned long *nr_written, int unlock);
93
94 static int btrfs_init_inode_security(struct inode *inode,  struct inode *dir)
95 {
96         int err;
97
98         err = btrfs_init_acl(inode, dir);
99         if (!err)
100                 err = btrfs_xattr_security_init(inode, dir);
101         return err;
102 }
103
104 /*
105  * a very lame attempt at stopping writes when the FS is 85% full.  There
106  * are countless ways this is incorrect, but it is better than nothing.
107  */
108 int btrfs_check_free_space(struct btrfs_root *root, u64 num_required,
109                            int for_del)
110 {
111         u64 total;
112         u64 used;
113         u64 thresh;
114         int ret = 0;
115
116         spin_lock(&root->fs_info->delalloc_lock);
117         total = btrfs_super_total_bytes(&root->fs_info->super_copy);
118         used = btrfs_super_bytes_used(&root->fs_info->super_copy);
119         if (for_del)
120                 thresh = total * 90;
121         else
122                 thresh = total * 85;
123
124         do_div(thresh, 100);
125
126         if (used + root->fs_info->delalloc_bytes + num_required > thresh)
127                 ret = -ENOSPC;
128         spin_unlock(&root->fs_info->delalloc_lock);
129         return ret;
130 }
131
132 /*
133  * this does all the hard work for inserting an inline extent into
134  * the btree.  The caller should have done a btrfs_drop_extents so that
135  * no overlapping inline items exist in the btree
136  */
137 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
138                                 struct btrfs_root *root, struct inode *inode,
139                                 u64 start, size_t size, size_t compressed_size,
140                                 struct page **compressed_pages)
141 {
142         struct btrfs_key key;
143         struct btrfs_path *path;
144         struct extent_buffer *leaf;
145         struct page *page = NULL;
146         char *kaddr;
147         unsigned long ptr;
148         struct btrfs_file_extent_item *ei;
149         int err = 0;
150         int ret;
151         size_t cur_size = size;
152         size_t datasize;
153         unsigned long offset;
154         int use_compress = 0;
155
156         if (compressed_size && compressed_pages) {
157                 use_compress = 1;
158                 cur_size = compressed_size;
159         }
160
161         path = btrfs_alloc_path();
162         if (!path)
163                 return -ENOMEM;
164
165         btrfs_set_trans_block_group(trans, inode);
166
167         key.objectid = inode->i_ino;
168         key.offset = start;
169         btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
170         datasize = btrfs_file_extent_calc_inline_size(cur_size);
171
172         inode_add_bytes(inode, size);
173         ret = btrfs_insert_empty_item(trans, root, path, &key,
174                                       datasize);
175         BUG_ON(ret);
176         if (ret) {
177                 err = ret;
178                 goto fail;
179         }
180         leaf = path->nodes[0];
181         ei = btrfs_item_ptr(leaf, path->slots[0],
182                             struct btrfs_file_extent_item);
183         btrfs_set_file_extent_generation(leaf, ei, trans->transid);
184         btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
185         btrfs_set_file_extent_encryption(leaf, ei, 0);
186         btrfs_set_file_extent_other_encoding(leaf, ei, 0);
187         btrfs_set_file_extent_ram_bytes(leaf, ei, size);
188         ptr = btrfs_file_extent_inline_start(ei);
189
190         if (use_compress) {
191                 struct page *cpage;
192                 int i = 0;
193                 while (compressed_size > 0) {
194                         cpage = compressed_pages[i];
195                         cur_size = min_t(unsigned long, compressed_size,
196                                        PAGE_CACHE_SIZE);
197
198                         kaddr = kmap(cpage);
199                         write_extent_buffer(leaf, kaddr, ptr, cur_size);
200                         kunmap(cpage);
201
202                         i++;
203                         ptr += cur_size;
204                         compressed_size -= cur_size;
205                 }
206                 btrfs_set_file_extent_compression(leaf, ei,
207                                                   BTRFS_COMPRESS_ZLIB);
208         } else {
209                 page = find_get_page(inode->i_mapping,
210                                      start >> PAGE_CACHE_SHIFT);
211                 btrfs_set_file_extent_compression(leaf, ei, 0);
212                 kaddr = kmap_atomic(page, KM_USER0);
213                 offset = start & (PAGE_CACHE_SIZE - 1);
214                 write_extent_buffer(leaf, kaddr + offset, ptr, size);
215                 kunmap_atomic(kaddr, KM_USER0);
216                 page_cache_release(page);
217         }
218         btrfs_mark_buffer_dirty(leaf);
219         btrfs_free_path(path);
220
221         BTRFS_I(inode)->disk_i_size = inode->i_size;
222         btrfs_update_inode(trans, root, inode);
223         return 0;
224 fail:
225         btrfs_free_path(path);
226         return err;
227 }
228
229
230 /*
231  * conditionally insert an inline extent into the file.  This
232  * does the checks required to make sure the data is small enough
233  * to fit as an inline extent.
234  */
235 static int cow_file_range_inline(struct btrfs_trans_handle *trans,
236                                  struct btrfs_root *root,
237                                  struct inode *inode, u64 start, u64 end,
238                                  size_t compressed_size,
239                                  struct page **compressed_pages)
240 {
241         u64 isize = i_size_read(inode);
242         u64 actual_end = min(end + 1, isize);
243         u64 inline_len = actual_end - start;
244         u64 aligned_end = (end + root->sectorsize - 1) &
245                         ~((u64)root->sectorsize - 1);
246         u64 hint_byte;
247         u64 data_len = inline_len;
248         int ret;
249
250         if (compressed_size)
251                 data_len = compressed_size;
252
253         if (start > 0 ||
254             actual_end >= PAGE_CACHE_SIZE ||
255             data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
256             (!compressed_size &&
257             (actual_end & (root->sectorsize - 1)) == 0) ||
258             end + 1 < isize ||
259             data_len > root->fs_info->max_inline) {
260                 return 1;
261         }
262
263         ret = btrfs_drop_extents(trans, root, inode, start,
264                                  aligned_end, start, &hint_byte);
265         BUG_ON(ret);
266
267         if (isize > actual_end)
268                 inline_len = min_t(u64, isize, actual_end);
269         ret = insert_inline_extent(trans, root, inode, start,
270                                    inline_len, compressed_size,
271                                    compressed_pages);
272         BUG_ON(ret);
273         btrfs_drop_extent_cache(inode, start, aligned_end, 0);
274         return 0;
275 }
276
277 struct async_extent {
278         u64 start;
279         u64 ram_size;
280         u64 compressed_size;
281         struct page **pages;
282         unsigned long nr_pages;
283         struct list_head list;
284 };
285
286 struct async_cow {
287         struct inode *inode;
288         struct btrfs_root *root;
289         struct page *locked_page;
290         u64 start;
291         u64 end;
292         struct list_head extents;
293         struct btrfs_work work;
294 };
295
296 static noinline int add_async_extent(struct async_cow *cow,
297                                      u64 start, u64 ram_size,
298                                      u64 compressed_size,
299                                      struct page **pages,
300                                      unsigned long nr_pages)
301 {
302         struct async_extent *async_extent;
303
304         async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
305         async_extent->start = start;
306         async_extent->ram_size = ram_size;
307         async_extent->compressed_size = compressed_size;
308         async_extent->pages = pages;
309         async_extent->nr_pages = nr_pages;
310         list_add_tail(&async_extent->list, &cow->extents);
311         return 0;
312 }
313
314 /*
315  * we create compressed extents in two phases.  The first
316  * phase compresses a range of pages that have already been
317  * locked (both pages and state bits are locked).
318  *
319  * This is done inside an ordered work queue, and the compression
320  * is spread across many cpus.  The actual IO submission is step
321  * two, and the ordered work queue takes care of making sure that
322  * happens in the same order things were put onto the queue by
323  * writepages and friends.
324  *
325  * If this code finds it can't get good compression, it puts an
326  * entry onto the work queue to write the uncompressed bytes.  This
327  * makes sure that both compressed inodes and uncompressed inodes
328  * are written in the same order that pdflush sent them down.
329  */
330 static noinline int compress_file_range(struct inode *inode,
331                                         struct page *locked_page,
332                                         u64 start, u64 end,
333                                         struct async_cow *async_cow,
334                                         int *num_added)
335 {
336         struct btrfs_root *root = BTRFS_I(inode)->root;
337         struct btrfs_trans_handle *trans;
338         u64 num_bytes;
339         u64 orig_start;
340         u64 disk_num_bytes;
341         u64 blocksize = root->sectorsize;
342         u64 actual_end;
343         u64 isize = i_size_read(inode);
344         int ret = 0;
345         struct page **pages = NULL;
346         unsigned long nr_pages;
347         unsigned long nr_pages_ret = 0;
348         unsigned long total_compressed = 0;
349         unsigned long total_in = 0;
350         unsigned long max_compressed = 128 * 1024;
351         unsigned long max_uncompressed = 128 * 1024;
352         int i;
353         int will_compress;
354
355         orig_start = start;
356
357         actual_end = min_t(u64, isize, end + 1);
358 again:
359         will_compress = 0;
360         nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
361         nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
362
363         /*
364          * we don't want to send crud past the end of i_size through
365          * compression, that's just a waste of CPU time.  So, if the
366          * end of the file is before the start of our current
367          * requested range of bytes, we bail out to the uncompressed
368          * cleanup code that can deal with all of this.
369          *
370          * It isn't really the fastest way to fix things, but this is a
371          * very uncommon corner.
372          */
373         if (actual_end <= start)
374                 goto cleanup_and_bail_uncompressed;
375
376         total_compressed = actual_end - start;
377
378         /* we want to make sure that amount of ram required to uncompress
379          * an extent is reasonable, so we limit the total size in ram
380          * of a compressed extent to 128k.  This is a crucial number
381          * because it also controls how easily we can spread reads across
382          * cpus for decompression.
383          *
384          * We also want to make sure the amount of IO required to do
385          * a random read is reasonably small, so we limit the size of
386          * a compressed extent to 128k.
387          */
388         total_compressed = min(total_compressed, max_uncompressed);
389         num_bytes = (end - start + blocksize) & ~(blocksize - 1);
390         num_bytes = max(blocksize,  num_bytes);
391         disk_num_bytes = num_bytes;
392         total_in = 0;
393         ret = 0;
394
395         /*
396          * we do compression for mount -o compress and when the
397          * inode has not been flagged as nocompress.  This flag can
398          * change at any time if we discover bad compression ratios.
399          */
400         if (!btrfs_test_flag(inode, NOCOMPRESS) &&
401             btrfs_test_opt(root, COMPRESS)) {
402                 WARN_ON(pages);
403                 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
404
405                 ret = btrfs_zlib_compress_pages(inode->i_mapping, start,
406                                                 total_compressed, pages,
407                                                 nr_pages, &nr_pages_ret,
408                                                 &total_in,
409                                                 &total_compressed,
410                                                 max_compressed);
411
412                 if (!ret) {
413                         unsigned long offset = total_compressed &
414                                 (PAGE_CACHE_SIZE - 1);
415                         struct page *page = pages[nr_pages_ret - 1];
416                         char *kaddr;
417
418                         /* zero the tail end of the last page, we might be
419                          * sending it down to disk
420                          */
421                         if (offset) {
422                                 kaddr = kmap_atomic(page, KM_USER0);
423                                 memset(kaddr + offset, 0,
424                                        PAGE_CACHE_SIZE - offset);
425                                 kunmap_atomic(kaddr, KM_USER0);
426                         }
427                         will_compress = 1;
428                 }
429         }
430         if (start == 0) {
431                 trans = btrfs_join_transaction(root, 1);
432                 BUG_ON(!trans);
433                 btrfs_set_trans_block_group(trans, inode);
434
435                 /* lets try to make an inline extent */
436                 if (ret || total_in < (actual_end - start)) {
437                         /* we didn't compress the entire range, try
438                          * to make an uncompressed inline extent.
439                          */
440                         ret = cow_file_range_inline(trans, root, inode,
441                                                     start, end, 0, NULL);
442                 } else {
443                         /* try making a compressed inline extent */
444                         ret = cow_file_range_inline(trans, root, inode,
445                                                     start, end,
446                                                     total_compressed, pages);
447                 }
448                 btrfs_end_transaction(trans, root);
449                 if (ret == 0) {
450                         /*
451                          * inline extent creation worked, we don't need
452                          * to create any more async work items.  Unlock
453                          * and free up our temp pages.
454                          */
455                         extent_clear_unlock_delalloc(inode,
456                                                      &BTRFS_I(inode)->io_tree,
457                                                      start, end, NULL, 1, 0,
458                                                      0, 1, 1, 1);
459                         ret = 0;
460                         goto free_pages_out;
461                 }
462         }
463
464         if (will_compress) {
465                 /*
466                  * we aren't doing an inline extent round the compressed size
467                  * up to a block size boundary so the allocator does sane
468                  * things
469                  */
470                 total_compressed = (total_compressed + blocksize - 1) &
471                         ~(blocksize - 1);
472
473                 /*
474                  * one last check to make sure the compression is really a
475                  * win, compare the page count read with the blocks on disk
476                  */
477                 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
478                         ~(PAGE_CACHE_SIZE - 1);
479                 if (total_compressed >= total_in) {
480                         will_compress = 0;
481                 } else {
482                         disk_num_bytes = total_compressed;
483                         num_bytes = total_in;
484                 }
485         }
486         if (!will_compress && pages) {
487                 /*
488                  * the compression code ran but failed to make things smaller,
489                  * free any pages it allocated and our page pointer array
490                  */
491                 for (i = 0; i < nr_pages_ret; i++) {
492                         WARN_ON(pages[i]->mapping);
493                         page_cache_release(pages[i]);
494                 }
495                 kfree(pages);
496                 pages = NULL;
497                 total_compressed = 0;
498                 nr_pages_ret = 0;
499
500                 /* flag the file so we don't compress in the future */
501                 btrfs_set_flag(inode, NOCOMPRESS);
502         }
503         if (will_compress) {
504                 *num_added += 1;
505
506                 /* the async work queues will take care of doing actual
507                  * allocation on disk for these compressed pages,
508                  * and will submit them to the elevator.
509                  */
510                 add_async_extent(async_cow, start, num_bytes,
511                                  total_compressed, pages, nr_pages_ret);
512
513                 if (start + num_bytes < end && start + num_bytes < actual_end) {
514                         start += num_bytes;
515                         pages = NULL;
516                         cond_resched();
517                         goto again;
518                 }
519         } else {
520 cleanup_and_bail_uncompressed:
521                 /*
522                  * No compression, but we still need to write the pages in
523                  * the file we've been given so far.  redirty the locked
524                  * page if it corresponds to our extent and set things up
525                  * for the async work queue to run cow_file_range to do
526                  * the normal delalloc dance
527                  */
528                 if (page_offset(locked_page) >= start &&
529                     page_offset(locked_page) <= end) {
530                         __set_page_dirty_nobuffers(locked_page);
531                         /* unlocked later on in the async handlers */
532                 }
533                 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0);
534                 *num_added += 1;
535         }
536
537 out:
538         return 0;
539
540 free_pages_out:
541         for (i = 0; i < nr_pages_ret; i++) {
542                 WARN_ON(pages[i]->mapping);
543                 page_cache_release(pages[i]);
544         }
545         kfree(pages);
546
547         goto out;
548 }
549
550 /*
551  * phase two of compressed writeback.  This is the ordered portion
552  * of the code, which only gets called in the order the work was
553  * queued.  We walk all the async extents created by compress_file_range
554  * and send them down to the disk.
555  */
556 static noinline int submit_compressed_extents(struct inode *inode,
557                                               struct async_cow *async_cow)
558 {
559         struct async_extent *async_extent;
560         u64 alloc_hint = 0;
561         struct btrfs_trans_handle *trans;
562         struct btrfs_key ins;
563         struct extent_map *em;
564         struct btrfs_root *root = BTRFS_I(inode)->root;
565         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
566         struct extent_io_tree *io_tree;
567         int ret;
568
569         if (list_empty(&async_cow->extents))
570                 return 0;
571
572         trans = btrfs_join_transaction(root, 1);
573
574         while (!list_empty(&async_cow->extents)) {
575                 async_extent = list_entry(async_cow->extents.next,
576                                           struct async_extent, list);
577                 list_del(&async_extent->list);
578
579                 io_tree = &BTRFS_I(inode)->io_tree;
580
581                 /* did the compression code fall back to uncompressed IO? */
582                 if (!async_extent->pages) {
583                         int page_started = 0;
584                         unsigned long nr_written = 0;
585
586                         lock_extent(io_tree, async_extent->start,
587                                     async_extent->start +
588                                     async_extent->ram_size - 1, GFP_NOFS);
589
590                         /* allocate blocks */
591                         cow_file_range(inode, async_cow->locked_page,
592                                        async_extent->start,
593                                        async_extent->start +
594                                        async_extent->ram_size - 1,
595                                        &page_started, &nr_written, 0);
596
597                         /*
598                          * if page_started, cow_file_range inserted an
599                          * inline extent and took care of all the unlocking
600                          * and IO for us.  Otherwise, we need to submit
601                          * all those pages down to the drive.
602                          */
603                         if (!page_started)
604                                 extent_write_locked_range(io_tree,
605                                                   inode, async_extent->start,
606                                                   async_extent->start +
607                                                   async_extent->ram_size - 1,
608                                                   btrfs_get_extent,
609                                                   WB_SYNC_ALL);
610                         kfree(async_extent);
611                         cond_resched();
612                         continue;
613                 }
614
615                 lock_extent(io_tree, async_extent->start,
616                             async_extent->start + async_extent->ram_size - 1,
617                             GFP_NOFS);
618                 /*
619                  * here we're doing allocation and writeback of the
620                  * compressed pages
621                  */
622                 btrfs_drop_extent_cache(inode, async_extent->start,
623                                         async_extent->start +
624                                         async_extent->ram_size - 1, 0);
625
626                 ret = btrfs_reserve_extent(trans, root,
627                                            async_extent->compressed_size,
628                                            async_extent->compressed_size,
629                                            0, alloc_hint,
630                                            (u64)-1, &ins, 1);
631                 BUG_ON(ret);
632                 em = alloc_extent_map(GFP_NOFS);
633                 em->start = async_extent->start;
634                 em->len = async_extent->ram_size;
635                 em->orig_start = em->start;
636
637                 em->block_start = ins.objectid;
638                 em->block_len = ins.offset;
639                 em->bdev = root->fs_info->fs_devices->latest_bdev;
640                 set_bit(EXTENT_FLAG_PINNED, &em->flags);
641                 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
642
643                 while (1) {
644                         spin_lock(&em_tree->lock);
645                         ret = add_extent_mapping(em_tree, em);
646                         spin_unlock(&em_tree->lock);
647                         if (ret != -EEXIST) {
648                                 free_extent_map(em);
649                                 break;
650                         }
651                         btrfs_drop_extent_cache(inode, async_extent->start,
652                                                 async_extent->start +
653                                                 async_extent->ram_size - 1, 0);
654                 }
655
656                 ret = btrfs_add_ordered_extent(inode, async_extent->start,
657                                                ins.objectid,
658                                                async_extent->ram_size,
659                                                ins.offset,
660                                                BTRFS_ORDERED_COMPRESSED);
661                 BUG_ON(ret);
662
663                 btrfs_end_transaction(trans, root);
664
665                 /*
666                  * clear dirty, set writeback and unlock the pages.
667                  */
668                 extent_clear_unlock_delalloc(inode,
669                                              &BTRFS_I(inode)->io_tree,
670                                              async_extent->start,
671                                              async_extent->start +
672                                              async_extent->ram_size - 1,
673                                              NULL, 1, 1, 0, 1, 1, 0);
674
675                 ret = btrfs_submit_compressed_write(inode,
676                                     async_extent->start,
677                                     async_extent->ram_size,
678                                     ins.objectid,
679                                     ins.offset, async_extent->pages,
680                                     async_extent->nr_pages);
681
682                 BUG_ON(ret);
683                 trans = btrfs_join_transaction(root, 1);
684                 alloc_hint = ins.objectid + ins.offset;
685                 kfree(async_extent);
686                 cond_resched();
687         }
688
689         btrfs_end_transaction(trans, root);
690         return 0;
691 }
692
693 /*
694  * when extent_io.c finds a delayed allocation range in the file,
695  * the call backs end up in this code.  The basic idea is to
696  * allocate extents on disk for the range, and create ordered data structs
697  * in ram to track those extents.
698  *
699  * locked_page is the page that writepage had locked already.  We use
700  * it to make sure we don't do extra locks or unlocks.
701  *
702  * *page_started is set to one if we unlock locked_page and do everything
703  * required to start IO on it.  It may be clean and already done with
704  * IO when we return.
705  */
706 static noinline int cow_file_range(struct inode *inode,
707                                    struct page *locked_page,
708                                    u64 start, u64 end, int *page_started,
709                                    unsigned long *nr_written,
710                                    int unlock)
711 {
712         struct btrfs_root *root = BTRFS_I(inode)->root;
713         struct btrfs_trans_handle *trans;
714         u64 alloc_hint = 0;
715         u64 num_bytes;
716         unsigned long ram_size;
717         u64 disk_num_bytes;
718         u64 cur_alloc_size;
719         u64 blocksize = root->sectorsize;
720         u64 actual_end;
721         u64 isize = i_size_read(inode);
722         struct btrfs_key ins;
723         struct extent_map *em;
724         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
725         int ret = 0;
726
727         trans = btrfs_join_transaction(root, 1);
728         BUG_ON(!trans);
729         btrfs_set_trans_block_group(trans, inode);
730
731         actual_end = min_t(u64, isize, end + 1);
732
733         num_bytes = (end - start + blocksize) & ~(blocksize - 1);
734         num_bytes = max(blocksize,  num_bytes);
735         disk_num_bytes = num_bytes;
736         ret = 0;
737
738         if (start == 0) {
739                 /* lets try to make an inline extent */
740                 ret = cow_file_range_inline(trans, root, inode,
741                                             start, end, 0, NULL);
742                 if (ret == 0) {
743                         extent_clear_unlock_delalloc(inode,
744                                                      &BTRFS_I(inode)->io_tree,
745                                                      start, end, NULL, 1, 1,
746                                                      1, 1, 1, 1);
747                         *nr_written = *nr_written +
748                              (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
749                         *page_started = 1;
750                         ret = 0;
751                         goto out;
752                 }
753         }
754
755         BUG_ON(disk_num_bytes >
756                btrfs_super_total_bytes(&root->fs_info->super_copy));
757
758         btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
759
760         while (disk_num_bytes > 0) {
761                 cur_alloc_size = min(disk_num_bytes, root->fs_info->max_extent);
762                 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
763                                            root->sectorsize, 0, alloc_hint,
764                                            (u64)-1, &ins, 1);
765                 BUG_ON(ret);
766
767                 em = alloc_extent_map(GFP_NOFS);
768                 em->start = start;
769                 em->orig_start = em->start;
770
771                 ram_size = ins.offset;
772                 em->len = ins.offset;
773
774                 em->block_start = ins.objectid;
775                 em->block_len = ins.offset;
776                 em->bdev = root->fs_info->fs_devices->latest_bdev;
777                 set_bit(EXTENT_FLAG_PINNED, &em->flags);
778
779                 while (1) {
780                         spin_lock(&em_tree->lock);
781                         ret = add_extent_mapping(em_tree, em);
782                         spin_unlock(&em_tree->lock);
783                         if (ret != -EEXIST) {
784                                 free_extent_map(em);
785                                 break;
786                         }
787                         btrfs_drop_extent_cache(inode, start,
788                                                 start + ram_size - 1, 0);
789                 }
790
791                 cur_alloc_size = ins.offset;
792                 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
793                                                ram_size, cur_alloc_size, 0);
794                 BUG_ON(ret);
795
796                 if (root->root_key.objectid ==
797                     BTRFS_DATA_RELOC_TREE_OBJECTID) {
798                         ret = btrfs_reloc_clone_csums(inode, start,
799                                                       cur_alloc_size);
800                         BUG_ON(ret);
801                 }
802
803                 if (disk_num_bytes < cur_alloc_size)
804                         break;
805
806                 /* we're not doing compressed IO, don't unlock the first
807                  * page (which the caller expects to stay locked), don't
808                  * clear any dirty bits and don't set any writeback bits
809                  */
810                 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
811                                              start, start + ram_size - 1,
812                                              locked_page, unlock, 1,
813                                              1, 0, 0, 0);
814                 disk_num_bytes -= cur_alloc_size;
815                 num_bytes -= cur_alloc_size;
816                 alloc_hint = ins.objectid + ins.offset;
817                 start += cur_alloc_size;
818         }
819 out:
820         ret = 0;
821         btrfs_end_transaction(trans, root);
822
823         return ret;
824 }
825
826 /*
827  * work queue call back to started compression on a file and pages
828  */
829 static noinline void async_cow_start(struct btrfs_work *work)
830 {
831         struct async_cow *async_cow;
832         int num_added = 0;
833         async_cow = container_of(work, struct async_cow, work);
834
835         compress_file_range(async_cow->inode, async_cow->locked_page,
836                             async_cow->start, async_cow->end, async_cow,
837                             &num_added);
838         if (num_added == 0)
839                 async_cow->inode = NULL;
840 }
841
842 /*
843  * work queue call back to submit previously compressed pages
844  */
845 static noinline void async_cow_submit(struct btrfs_work *work)
846 {
847         struct async_cow *async_cow;
848         struct btrfs_root *root;
849         unsigned long nr_pages;
850
851         async_cow = container_of(work, struct async_cow, work);
852
853         root = async_cow->root;
854         nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
855                 PAGE_CACHE_SHIFT;
856
857         atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
858
859         if (atomic_read(&root->fs_info->async_delalloc_pages) <
860             5 * 1042 * 1024 &&
861             waitqueue_active(&root->fs_info->async_submit_wait))
862                 wake_up(&root->fs_info->async_submit_wait);
863
864         if (async_cow->inode)
865                 submit_compressed_extents(async_cow->inode, async_cow);
866 }
867
868 static noinline void async_cow_free(struct btrfs_work *work)
869 {
870         struct async_cow *async_cow;
871         async_cow = container_of(work, struct async_cow, work);
872         kfree(async_cow);
873 }
874
875 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
876                                 u64 start, u64 end, int *page_started,
877                                 unsigned long *nr_written)
878 {
879         struct async_cow *async_cow;
880         struct btrfs_root *root = BTRFS_I(inode)->root;
881         unsigned long nr_pages;
882         u64 cur_end;
883         int limit = 10 * 1024 * 1042;
884
885         if (!btrfs_test_opt(root, COMPRESS)) {
886                 return cow_file_range(inode, locked_page, start, end,
887                                       page_started, nr_written, 1);
888         }
889
890         clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED |
891                          EXTENT_DELALLOC, 1, 0, GFP_NOFS);
892         while (start < end) {
893                 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
894                 async_cow->inode = inode;
895                 async_cow->root = root;
896                 async_cow->locked_page = locked_page;
897                 async_cow->start = start;
898
899                 if (btrfs_test_flag(inode, NOCOMPRESS))
900                         cur_end = end;
901                 else
902                         cur_end = min(end, start + 512 * 1024 - 1);
903
904                 async_cow->end = cur_end;
905                 INIT_LIST_HEAD(&async_cow->extents);
906
907                 async_cow->work.func = async_cow_start;
908                 async_cow->work.ordered_func = async_cow_submit;
909                 async_cow->work.ordered_free = async_cow_free;
910                 async_cow->work.flags = 0;
911
912                 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
913                         PAGE_CACHE_SHIFT;
914                 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
915
916                 btrfs_queue_worker(&root->fs_info->delalloc_workers,
917                                    &async_cow->work);
918
919                 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
920                         wait_event(root->fs_info->async_submit_wait,
921                            (atomic_read(&root->fs_info->async_delalloc_pages) <
922                             limit));
923                 }
924
925                 while (atomic_read(&root->fs_info->async_submit_draining) &&
926                       atomic_read(&root->fs_info->async_delalloc_pages)) {
927                         wait_event(root->fs_info->async_submit_wait,
928                           (atomic_read(&root->fs_info->async_delalloc_pages) ==
929                            0));
930                 }
931
932                 *nr_written += nr_pages;
933                 start = cur_end + 1;
934         }
935         *page_started = 1;
936         return 0;
937 }
938
939 static noinline int csum_exist_in_range(struct btrfs_root *root,
940                                         u64 bytenr, u64 num_bytes)
941 {
942         int ret;
943         struct btrfs_ordered_sum *sums;
944         LIST_HEAD(list);
945
946         ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
947                                        bytenr + num_bytes - 1, &list);
948         if (ret == 0 && list_empty(&list))
949                 return 0;
950
951         while (!list_empty(&list)) {
952                 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
953                 list_del(&sums->list);
954                 kfree(sums);
955         }
956         return 1;
957 }
958
959 /*
960  * when nowcow writeback call back.  This checks for snapshots or COW copies
961  * of the extents that exist in the file, and COWs the file as required.
962  *
963  * If no cow copies or snapshots exist, we write directly to the existing
964  * blocks on disk
965  */
966 static int run_delalloc_nocow(struct inode *inode, struct page *locked_page,
967                               u64 start, u64 end, int *page_started, int force,
968                               unsigned long *nr_written)
969 {
970         struct btrfs_root *root = BTRFS_I(inode)->root;
971         struct btrfs_trans_handle *trans;
972         struct extent_buffer *leaf;
973         struct btrfs_path *path;
974         struct btrfs_file_extent_item *fi;
975         struct btrfs_key found_key;
976         u64 cow_start;
977         u64 cur_offset;
978         u64 extent_end;
979         u64 disk_bytenr;
980         u64 num_bytes;
981         int extent_type;
982         int ret;
983         int type;
984         int nocow;
985         int check_prev = 1;
986
987         path = btrfs_alloc_path();
988         BUG_ON(!path);
989         trans = btrfs_join_transaction(root, 1);
990         BUG_ON(!trans);
991
992         cow_start = (u64)-1;
993         cur_offset = start;
994         while (1) {
995                 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
996                                                cur_offset, 0);
997                 BUG_ON(ret < 0);
998                 if (ret > 0 && path->slots[0] > 0 && check_prev) {
999                         leaf = path->nodes[0];
1000                         btrfs_item_key_to_cpu(leaf, &found_key,
1001                                               path->slots[0] - 1);
1002                         if (found_key.objectid == inode->i_ino &&
1003                             found_key.type == BTRFS_EXTENT_DATA_KEY)
1004                                 path->slots[0]--;
1005                 }
1006                 check_prev = 0;
1007 next_slot:
1008                 leaf = path->nodes[0];
1009                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1010                         ret = btrfs_next_leaf(root, path);
1011                         if (ret < 0)
1012                                 BUG_ON(1);
1013                         if (ret > 0)
1014                                 break;
1015                         leaf = path->nodes[0];
1016                 }
1017
1018                 nocow = 0;
1019                 disk_bytenr = 0;
1020                 num_bytes = 0;
1021                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1022
1023                 if (found_key.objectid > inode->i_ino ||
1024                     found_key.type > BTRFS_EXTENT_DATA_KEY ||
1025                     found_key.offset > end)
1026                         break;
1027
1028                 if (found_key.offset > cur_offset) {
1029                         extent_end = found_key.offset;
1030                         goto out_check;
1031                 }
1032
1033                 fi = btrfs_item_ptr(leaf, path->slots[0],
1034                                     struct btrfs_file_extent_item);
1035                 extent_type = btrfs_file_extent_type(leaf, fi);
1036
1037                 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1038                     extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1039                         disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1040                         extent_end = found_key.offset +
1041                                 btrfs_file_extent_num_bytes(leaf, fi);
1042                         if (extent_end <= start) {
1043                                 path->slots[0]++;
1044                                 goto next_slot;
1045                         }
1046                         if (disk_bytenr == 0)
1047                                 goto out_check;
1048                         if (btrfs_file_extent_compression(leaf, fi) ||
1049                             btrfs_file_extent_encryption(leaf, fi) ||
1050                             btrfs_file_extent_other_encoding(leaf, fi))
1051                                 goto out_check;
1052                         if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1053                                 goto out_check;
1054                         if (btrfs_extent_readonly(root, disk_bytenr))
1055                                 goto out_check;
1056                         if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
1057                                                   disk_bytenr))
1058                                 goto out_check;
1059                         disk_bytenr += btrfs_file_extent_offset(leaf, fi);
1060                         disk_bytenr += cur_offset - found_key.offset;
1061                         num_bytes = min(end + 1, extent_end) - cur_offset;
1062                         /*
1063                          * force cow if csum exists in the range.
1064                          * this ensure that csum for a given extent are
1065                          * either valid or do not exist.
1066                          */
1067                         if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1068                                 goto out_check;
1069                         nocow = 1;
1070                 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1071                         extent_end = found_key.offset +
1072                                 btrfs_file_extent_inline_len(leaf, fi);
1073                         extent_end = ALIGN(extent_end, root->sectorsize);
1074                 } else {
1075                         BUG_ON(1);
1076                 }
1077 out_check:
1078                 if (extent_end <= start) {
1079                         path->slots[0]++;
1080                         goto next_slot;
1081                 }
1082                 if (!nocow) {
1083                         if (cow_start == (u64)-1)
1084                                 cow_start = cur_offset;
1085                         cur_offset = extent_end;
1086                         if (cur_offset > end)
1087                                 break;
1088                         path->slots[0]++;
1089                         goto next_slot;
1090                 }
1091
1092                 btrfs_release_path(root, path);
1093                 if (cow_start != (u64)-1) {
1094                         ret = cow_file_range(inode, locked_page, cow_start,
1095                                         found_key.offset - 1, page_started,
1096                                         nr_written, 1);
1097                         BUG_ON(ret);
1098                         cow_start = (u64)-1;
1099                 }
1100
1101                 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1102                         struct extent_map *em;
1103                         struct extent_map_tree *em_tree;
1104                         em_tree = &BTRFS_I(inode)->extent_tree;
1105                         em = alloc_extent_map(GFP_NOFS);
1106                         em->start = cur_offset;
1107                         em->orig_start = em->start;
1108                         em->len = num_bytes;
1109                         em->block_len = num_bytes;
1110                         em->block_start = disk_bytenr;
1111                         em->bdev = root->fs_info->fs_devices->latest_bdev;
1112                         set_bit(EXTENT_FLAG_PINNED, &em->flags);
1113                         while (1) {
1114                                 spin_lock(&em_tree->lock);
1115                                 ret = add_extent_mapping(em_tree, em);
1116                                 spin_unlock(&em_tree->lock);
1117                                 if (ret != -EEXIST) {
1118                                         free_extent_map(em);
1119                                         break;
1120                                 }
1121                                 btrfs_drop_extent_cache(inode, em->start,
1122                                                 em->start + em->len - 1, 0);
1123                         }
1124                         type = BTRFS_ORDERED_PREALLOC;
1125                 } else {
1126                         type = BTRFS_ORDERED_NOCOW;
1127                 }
1128
1129                 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1130                                                num_bytes, num_bytes, type);
1131                 BUG_ON(ret);
1132
1133                 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
1134                                         cur_offset, cur_offset + num_bytes - 1,
1135                                         locked_page, 1, 1, 1, 0, 0, 0);
1136                 cur_offset = extent_end;
1137                 if (cur_offset > end)
1138                         break;
1139         }
1140         btrfs_release_path(root, path);
1141
1142         if (cur_offset <= end && cow_start == (u64)-1)
1143                 cow_start = cur_offset;
1144         if (cow_start != (u64)-1) {
1145                 ret = cow_file_range(inode, locked_page, cow_start, end,
1146                                      page_started, nr_written, 1);
1147                 BUG_ON(ret);
1148         }
1149
1150         ret = btrfs_end_transaction(trans, root);
1151         BUG_ON(ret);
1152         btrfs_free_path(path);
1153         return 0;
1154 }
1155
1156 /*
1157  * extent_io.c call back to do delayed allocation processing
1158  */
1159 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1160                               u64 start, u64 end, int *page_started,
1161                               unsigned long *nr_written)
1162 {
1163         int ret;
1164
1165         if (btrfs_test_flag(inode, NODATACOW))
1166                 ret = run_delalloc_nocow(inode, locked_page, start, end,
1167                                          page_started, 1, nr_written);
1168         else if (btrfs_test_flag(inode, PREALLOC))
1169                 ret = run_delalloc_nocow(inode, locked_page, start, end,
1170                                          page_started, 0, nr_written);
1171         else
1172                 ret = cow_file_range_async(inode, locked_page, start, end,
1173                                            page_started, nr_written);
1174
1175         return ret;
1176 }
1177
1178 /*
1179  * extent_io.c set_bit_hook, used to track delayed allocation
1180  * bytes in this file, and to maintain the list of inodes that
1181  * have pending delalloc work to be done.
1182  */
1183 static int btrfs_set_bit_hook(struct inode *inode, u64 start, u64 end,
1184                        unsigned long old, unsigned long bits)
1185 {
1186         /*
1187          * set_bit and clear bit hooks normally require _irqsave/restore
1188          * but in this case, we are only testeing for the DELALLOC
1189          * bit, which is only set or cleared with irqs on
1190          */
1191         if (!(old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
1192                 struct btrfs_root *root = BTRFS_I(inode)->root;
1193                 spin_lock(&root->fs_info->delalloc_lock);
1194                 BTRFS_I(inode)->delalloc_bytes += end - start + 1;
1195                 root->fs_info->delalloc_bytes += end - start + 1;
1196                 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1197                         list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1198                                       &root->fs_info->delalloc_inodes);
1199                 }
1200                 spin_unlock(&root->fs_info->delalloc_lock);
1201         }
1202         return 0;
1203 }
1204
1205 /*
1206  * extent_io.c clear_bit_hook, see set_bit_hook for why
1207  */
1208 static int btrfs_clear_bit_hook(struct inode *inode, u64 start, u64 end,
1209                          unsigned long old, unsigned long bits)
1210 {
1211         /*
1212          * set_bit and clear bit hooks normally require _irqsave/restore
1213          * but in this case, we are only testeing for the DELALLOC
1214          * bit, which is only set or cleared with irqs on
1215          */
1216         if ((old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
1217                 struct btrfs_root *root = BTRFS_I(inode)->root;
1218
1219                 spin_lock(&root->fs_info->delalloc_lock);
1220                 if (end - start + 1 > root->fs_info->delalloc_bytes) {
1221                         printk(KERN_INFO "btrfs warning: delalloc account "
1222                                "%llu %llu\n",
1223                                (unsigned long long)end - start + 1,
1224                                (unsigned long long)
1225                                root->fs_info->delalloc_bytes);
1226                         root->fs_info->delalloc_bytes = 0;
1227                         BTRFS_I(inode)->delalloc_bytes = 0;
1228                 } else {
1229                         root->fs_info->delalloc_bytes -= end - start + 1;
1230                         BTRFS_I(inode)->delalloc_bytes -= end - start + 1;
1231                 }
1232                 if (BTRFS_I(inode)->delalloc_bytes == 0 &&
1233                     !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1234                         list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1235                 }
1236                 spin_unlock(&root->fs_info->delalloc_lock);
1237         }
1238         return 0;
1239 }
1240
1241 /*
1242  * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1243  * we don't create bios that span stripes or chunks
1244  */
1245 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1246                          size_t size, struct bio *bio,
1247                          unsigned long bio_flags)
1248 {
1249         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1250         struct btrfs_mapping_tree *map_tree;
1251         u64 logical = (u64)bio->bi_sector << 9;
1252         u64 length = 0;
1253         u64 map_length;
1254         int ret;
1255
1256         if (bio_flags & EXTENT_BIO_COMPRESSED)
1257                 return 0;
1258
1259         length = bio->bi_size;
1260         map_tree = &root->fs_info->mapping_tree;
1261         map_length = length;
1262         ret = btrfs_map_block(map_tree, READ, logical,
1263                               &map_length, NULL, 0);
1264
1265         if (map_length < length + size)
1266                 return 1;
1267         return 0;
1268 }
1269
1270 /*
1271  * in order to insert checksums into the metadata in large chunks,
1272  * we wait until bio submission time.   All the pages in the bio are
1273  * checksummed and sums are attached onto the ordered extent record.
1274  *
1275  * At IO completion time the cums attached on the ordered extent record
1276  * are inserted into the btree
1277  */
1278 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1279                                     struct bio *bio, int mirror_num,
1280                                     unsigned long bio_flags)
1281 {
1282         struct btrfs_root *root = BTRFS_I(inode)->root;
1283         int ret = 0;
1284
1285         ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1286         BUG_ON(ret);
1287         return 0;
1288 }
1289
1290 /*
1291  * in order to insert checksums into the metadata in large chunks,
1292  * we wait until bio submission time.   All the pages in the bio are
1293  * checksummed and sums are attached onto the ordered extent record.
1294  *
1295  * At IO completion time the cums attached on the ordered extent record
1296  * are inserted into the btree
1297  */
1298 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1299                           int mirror_num, unsigned long bio_flags)
1300 {
1301         struct btrfs_root *root = BTRFS_I(inode)->root;
1302         return btrfs_map_bio(root, rw, bio, mirror_num, 1);
1303 }
1304
1305 /*
1306  * extent_io.c submission hook. This does the right thing for csum calculation
1307  * on write, or reading the csums from the tree before a read
1308  */
1309 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1310                           int mirror_num, unsigned long bio_flags)
1311 {
1312         struct btrfs_root *root = BTRFS_I(inode)->root;
1313         int ret = 0;
1314         int skip_sum;
1315
1316         skip_sum = btrfs_test_flag(inode, NODATASUM);
1317
1318         ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
1319         BUG_ON(ret);
1320
1321         if (!(rw & (1 << BIO_RW))) {
1322                 if (bio_flags & EXTENT_BIO_COMPRESSED) {
1323                         return btrfs_submit_compressed_read(inode, bio,
1324                                                     mirror_num, bio_flags);
1325                 } else if (!skip_sum)
1326                         btrfs_lookup_bio_sums(root, inode, bio, NULL);
1327                 goto mapit;
1328         } else if (!skip_sum) {
1329                 /* csum items have already been cloned */
1330                 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1331                         goto mapit;
1332                 /* we're doing a write, do the async checksumming */
1333                 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1334                                    inode, rw, bio, mirror_num,
1335                                    bio_flags, __btrfs_submit_bio_start,
1336                                    __btrfs_submit_bio_done);
1337         }
1338
1339 mapit:
1340         return btrfs_map_bio(root, rw, bio, mirror_num, 0);
1341 }
1342
1343 /*
1344  * given a list of ordered sums record them in the inode.  This happens
1345  * at IO completion time based on sums calculated at bio submission time.
1346  */
1347 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1348                              struct inode *inode, u64 file_offset,
1349                              struct list_head *list)
1350 {
1351         struct btrfs_ordered_sum *sum;
1352
1353         btrfs_set_trans_block_group(trans, inode);
1354
1355         list_for_each_entry(sum, list, list) {
1356                 btrfs_csum_file_blocks(trans,
1357                        BTRFS_I(inode)->root->fs_info->csum_root, sum);
1358         }
1359         return 0;
1360 }
1361
1362 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end)
1363 {
1364         if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
1365                 WARN_ON(1);
1366         return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1367                                    GFP_NOFS);
1368 }
1369
1370 /* see btrfs_writepage_start_hook for details on why this is required */
1371 struct btrfs_writepage_fixup {
1372         struct page *page;
1373         struct btrfs_work work;
1374 };
1375
1376 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1377 {
1378         struct btrfs_writepage_fixup *fixup;
1379         struct btrfs_ordered_extent *ordered;
1380         struct page *page;
1381         struct inode *inode;
1382         u64 page_start;
1383         u64 page_end;
1384
1385         fixup = container_of(work, struct btrfs_writepage_fixup, work);
1386         page = fixup->page;
1387 again:
1388         lock_page(page);
1389         if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1390                 ClearPageChecked(page);
1391                 goto out_page;
1392         }
1393
1394         inode = page->mapping->host;
1395         page_start = page_offset(page);
1396         page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1397
1398         lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
1399
1400         /* already ordered? We're done */
1401         if (test_range_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
1402                              EXTENT_ORDERED, 0)) {
1403                 goto out;
1404         }
1405
1406         ordered = btrfs_lookup_ordered_extent(inode, page_start);
1407         if (ordered) {
1408                 unlock_extent(&BTRFS_I(inode)->io_tree, page_start,
1409                               page_end, GFP_NOFS);
1410                 unlock_page(page);
1411                 btrfs_start_ordered_extent(inode, ordered, 1);
1412                 goto again;
1413         }
1414
1415         btrfs_set_extent_delalloc(inode, page_start, page_end);
1416         ClearPageChecked(page);
1417 out:
1418         unlock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
1419 out_page:
1420         unlock_page(page);
1421         page_cache_release(page);
1422 }
1423
1424 /*
1425  * There are a few paths in the higher layers of the kernel that directly
1426  * set the page dirty bit without asking the filesystem if it is a
1427  * good idea.  This causes problems because we want to make sure COW
1428  * properly happens and the data=ordered rules are followed.
1429  *
1430  * In our case any range that doesn't have the ORDERED bit set
1431  * hasn't been properly setup for IO.  We kick off an async process
1432  * to fix it up.  The async helper will wait for ordered extents, set
1433  * the delalloc bit and make it safe to write the page.
1434  */
1435 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1436 {
1437         struct inode *inode = page->mapping->host;
1438         struct btrfs_writepage_fixup *fixup;
1439         struct btrfs_root *root = BTRFS_I(inode)->root;
1440         int ret;
1441
1442         ret = test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1443                              EXTENT_ORDERED, 0);
1444         if (ret)
1445                 return 0;
1446
1447         if (PageChecked(page))
1448                 return -EAGAIN;
1449
1450         fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1451         if (!fixup)
1452                 return -EAGAIN;
1453
1454         SetPageChecked(page);
1455         page_cache_get(page);
1456         fixup->work.func = btrfs_writepage_fixup_worker;
1457         fixup->page = page;
1458         btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1459         return -EAGAIN;
1460 }
1461
1462 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1463                                        struct inode *inode, u64 file_pos,
1464                                        u64 disk_bytenr, u64 disk_num_bytes,
1465                                        u64 num_bytes, u64 ram_bytes,
1466                                        u8 compression, u8 encryption,
1467                                        u16 other_encoding, int extent_type)
1468 {
1469         struct btrfs_root *root = BTRFS_I(inode)->root;
1470         struct btrfs_file_extent_item *fi;
1471         struct btrfs_path *path;
1472         struct extent_buffer *leaf;
1473         struct btrfs_key ins;
1474         u64 hint;
1475         int ret;
1476
1477         path = btrfs_alloc_path();
1478         BUG_ON(!path);
1479
1480         ret = btrfs_drop_extents(trans, root, inode, file_pos,
1481                                  file_pos + num_bytes, file_pos, &hint);
1482         BUG_ON(ret);
1483
1484         ins.objectid = inode->i_ino;
1485         ins.offset = file_pos;
1486         ins.type = BTRFS_EXTENT_DATA_KEY;
1487         ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1488         BUG_ON(ret);
1489         leaf = path->nodes[0];
1490         fi = btrfs_item_ptr(leaf, path->slots[0],
1491                             struct btrfs_file_extent_item);
1492         btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1493         btrfs_set_file_extent_type(leaf, fi, extent_type);
1494         btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1495         btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1496         btrfs_set_file_extent_offset(leaf, fi, 0);
1497         btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1498         btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1499         btrfs_set_file_extent_compression(leaf, fi, compression);
1500         btrfs_set_file_extent_encryption(leaf, fi, encryption);
1501         btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
1502         btrfs_mark_buffer_dirty(leaf);
1503
1504         inode_add_bytes(inode, num_bytes);
1505         btrfs_drop_extent_cache(inode, file_pos, file_pos + num_bytes - 1, 0);
1506
1507         ins.objectid = disk_bytenr;
1508         ins.offset = disk_num_bytes;
1509         ins.type = BTRFS_EXTENT_ITEM_KEY;
1510         ret = btrfs_alloc_reserved_extent(trans, root, leaf->start,
1511                                           root->root_key.objectid,
1512                                           trans->transid, inode->i_ino, &ins);
1513         BUG_ON(ret);
1514
1515         btrfs_free_path(path);
1516         return 0;
1517 }
1518
1519 /* as ordered data IO finishes, this gets called so we can finish
1520  * an ordered extent if the range of bytes in the file it covers are
1521  * fully written.
1522  */
1523 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
1524 {
1525         struct btrfs_root *root = BTRFS_I(inode)->root;
1526         struct btrfs_trans_handle *trans;
1527         struct btrfs_ordered_extent *ordered_extent;
1528         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1529         int compressed = 0;
1530         int ret;
1531
1532         ret = btrfs_dec_test_ordered_pending(inode, start, end - start + 1);
1533         if (!ret)
1534                 return 0;
1535
1536         trans = btrfs_join_transaction(root, 1);
1537
1538         ordered_extent = btrfs_lookup_ordered_extent(inode, start);
1539         BUG_ON(!ordered_extent);
1540         if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags))
1541                 goto nocow;
1542
1543         lock_extent(io_tree, ordered_extent->file_offset,
1544                     ordered_extent->file_offset + ordered_extent->len - 1,
1545                     GFP_NOFS);
1546
1547         if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
1548                 compressed = 1;
1549         if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1550                 BUG_ON(compressed);
1551                 ret = btrfs_mark_extent_written(trans, root, inode,
1552                                                 ordered_extent->file_offset,
1553                                                 ordered_extent->file_offset +
1554                                                 ordered_extent->len);
1555                 BUG_ON(ret);
1556         } else {
1557                 ret = insert_reserved_file_extent(trans, inode,
1558                                                 ordered_extent->file_offset,
1559                                                 ordered_extent->start,
1560                                                 ordered_extent->disk_len,
1561                                                 ordered_extent->len,
1562                                                 ordered_extent->len,
1563                                                 compressed, 0, 0,
1564                                                 BTRFS_FILE_EXTENT_REG);
1565                 BUG_ON(ret);
1566         }
1567         unlock_extent(io_tree, ordered_extent->file_offset,
1568                     ordered_extent->file_offset + ordered_extent->len - 1,
1569                     GFP_NOFS);
1570 nocow:
1571         add_pending_csums(trans, inode, ordered_extent->file_offset,
1572                           &ordered_extent->list);
1573
1574         mutex_lock(&BTRFS_I(inode)->extent_mutex);
1575         btrfs_ordered_update_i_size(inode, ordered_extent);
1576         btrfs_update_inode(trans, root, inode);
1577         btrfs_remove_ordered_extent(inode, ordered_extent);
1578         mutex_unlock(&BTRFS_I(inode)->extent_mutex);
1579
1580         /* once for us */
1581         btrfs_put_ordered_extent(ordered_extent);
1582         /* once for the tree */
1583         btrfs_put_ordered_extent(ordered_extent);
1584
1585         btrfs_end_transaction(trans, root);
1586         return 0;
1587 }
1588
1589 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
1590                                 struct extent_state *state, int uptodate)
1591 {
1592         return btrfs_finish_ordered_io(page->mapping->host, start, end);
1593 }
1594
1595 /*
1596  * When IO fails, either with EIO or csum verification fails, we
1597  * try other mirrors that might have a good copy of the data.  This
1598  * io_failure_record is used to record state as we go through all the
1599  * mirrors.  If another mirror has good data, the page is set up to date
1600  * and things continue.  If a good mirror can't be found, the original
1601  * bio end_io callback is called to indicate things have failed.
1602  */
1603 struct io_failure_record {
1604         struct page *page;
1605         u64 start;
1606         u64 len;
1607         u64 logical;
1608         unsigned long bio_flags;
1609         int last_mirror;
1610 };
1611
1612 static int btrfs_io_failed_hook(struct bio *failed_bio,
1613                          struct page *page, u64 start, u64 end,
1614                          struct extent_state *state)
1615 {
1616         struct io_failure_record *failrec = NULL;
1617         u64 private;
1618         struct extent_map *em;
1619         struct inode *inode = page->mapping->host;
1620         struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1621         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1622         struct bio *bio;
1623         int num_copies;
1624         int ret;
1625         int rw;
1626         u64 logical;
1627
1628         ret = get_state_private(failure_tree, start, &private);
1629         if (ret) {
1630                 failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
1631                 if (!failrec)
1632                         return -ENOMEM;
1633                 failrec->start = start;
1634                 failrec->len = end - start + 1;
1635                 failrec->last_mirror = 0;
1636                 failrec->bio_flags = 0;
1637
1638                 spin_lock(&em_tree->lock);
1639                 em = lookup_extent_mapping(em_tree, start, failrec->len);
1640                 if (em->start > start || em->start + em->len < start) {
1641                         free_extent_map(em);
1642                         em = NULL;
1643                 }
1644                 spin_unlock(&em_tree->lock);
1645
1646                 if (!em || IS_ERR(em)) {
1647                         kfree(failrec);
1648                         return -EIO;
1649                 }
1650                 logical = start - em->start;
1651                 logical = em->block_start + logical;
1652                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
1653                         logical = em->block_start;
1654                         failrec->bio_flags = EXTENT_BIO_COMPRESSED;
1655                 }
1656                 failrec->logical = logical;
1657                 free_extent_map(em);
1658                 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
1659                                 EXTENT_DIRTY, GFP_NOFS);
1660                 set_state_private(failure_tree, start,
1661                                  (u64)(unsigned long)failrec);
1662         } else {
1663                 failrec = (struct io_failure_record *)(unsigned long)private;
1664         }
1665         num_copies = btrfs_num_copies(
1666                               &BTRFS_I(inode)->root->fs_info->mapping_tree,
1667                               failrec->logical, failrec->len);
1668         failrec->last_mirror++;
1669         if (!state) {
1670                 spin_lock(&BTRFS_I(inode)->io_tree.lock);
1671                 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1672                                                     failrec->start,
1673                                                     EXTENT_LOCKED);
1674                 if (state && state->start != failrec->start)
1675                         state = NULL;
1676                 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
1677         }
1678         if (!state || failrec->last_mirror > num_copies) {
1679                 set_state_private(failure_tree, failrec->start, 0);
1680                 clear_extent_bits(failure_tree, failrec->start,
1681                                   failrec->start + failrec->len - 1,
1682                                   EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1683                 kfree(failrec);
1684                 return -EIO;
1685         }
1686         bio = bio_alloc(GFP_NOFS, 1);
1687         bio->bi_private = state;
1688         bio->bi_end_io = failed_bio->bi_end_io;
1689         bio->bi_sector = failrec->logical >> 9;
1690         bio->bi_bdev = failed_bio->bi_bdev;
1691         bio->bi_size = 0;
1692
1693         bio_add_page(bio, page, failrec->len, start - page_offset(page));
1694         if (failed_bio->bi_rw & (1 << BIO_RW))
1695                 rw = WRITE;
1696         else
1697                 rw = READ;
1698
1699         BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
1700                                                       failrec->last_mirror,
1701                                                       failrec->bio_flags);
1702         return 0;
1703 }
1704
1705 /*
1706  * each time an IO finishes, we do a fast check in the IO failure tree
1707  * to see if we need to process or clean up an io_failure_record
1708  */
1709 static int btrfs_clean_io_failures(struct inode *inode, u64 start)
1710 {
1711         u64 private;
1712         u64 private_failure;
1713         struct io_failure_record *failure;
1714         int ret;
1715
1716         private = 0;
1717         if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1718                              (u64)-1, 1, EXTENT_DIRTY)) {
1719                 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
1720                                         start, &private_failure);
1721                 if (ret == 0) {
1722                         failure = (struct io_failure_record *)(unsigned long)
1723                                    private_failure;
1724                         set_state_private(&BTRFS_I(inode)->io_failure_tree,
1725                                           failure->start, 0);
1726                         clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
1727                                           failure->start,
1728                                           failure->start + failure->len - 1,
1729                                           EXTENT_DIRTY | EXTENT_LOCKED,
1730                                           GFP_NOFS);
1731                         kfree(failure);
1732                 }
1733         }
1734         return 0;
1735 }
1736
1737 /*
1738  * when reads are done, we need to check csums to verify the data is correct
1739  * if there's a match, we allow the bio to finish.  If not, we go through
1740  * the io_failure_record routines to find good copies
1741  */
1742 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
1743                                struct extent_state *state)
1744 {
1745         size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
1746         struct inode *inode = page->mapping->host;
1747         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1748         char *kaddr;
1749         u64 private = ~(u32)0;
1750         int ret;
1751         struct btrfs_root *root = BTRFS_I(inode)->root;
1752         u32 csum = ~(u32)0;
1753
1754         if (PageChecked(page)) {
1755                 ClearPageChecked(page);
1756                 goto good;
1757         }
1758         if (btrfs_test_flag(inode, NODATASUM))
1759                 return 0;
1760
1761         if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
1762             test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1)) {
1763                 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
1764                                   GFP_NOFS);
1765                 return 0;
1766         }
1767
1768         if (state && state->start == start) {
1769                 private = state->private;
1770                 ret = 0;
1771         } else {
1772                 ret = get_state_private(io_tree, start, &private);
1773         }
1774         kaddr = kmap_atomic(page, KM_USER0);
1775         if (ret)
1776                 goto zeroit;
1777
1778         csum = btrfs_csum_data(root, kaddr + offset, csum,  end - start + 1);
1779         btrfs_csum_final(csum, (char *)&csum);
1780         if (csum != private)
1781                 goto zeroit;
1782
1783         kunmap_atomic(kaddr, KM_USER0);
1784 good:
1785         /* if the io failure tree for this inode is non-empty,
1786          * check to see if we've recovered from a failed IO
1787          */
1788         btrfs_clean_io_failures(inode, start);
1789         return 0;
1790
1791 zeroit:
1792         printk(KERN_INFO "btrfs csum failed ino %lu off %llu csum %u "
1793                "private %llu\n", page->mapping->host->i_ino,
1794                (unsigned long long)start, csum,
1795                (unsigned long long)private);
1796         memset(kaddr + offset, 1, end - start + 1);
1797         flush_dcache_page(page);
1798         kunmap_atomic(kaddr, KM_USER0);
1799         if (private == 0)
1800                 return 0;
1801         return -EIO;
1802 }
1803
1804 /*
1805  * This creates an orphan entry for the given inode in case something goes
1806  * wrong in the middle of an unlink/truncate.
1807  */
1808 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
1809 {
1810         struct btrfs_root *root = BTRFS_I(inode)->root;
1811         int ret = 0;
1812
1813         spin_lock(&root->list_lock);
1814
1815         /* already on the orphan list, we're good */
1816         if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
1817                 spin_unlock(&root->list_lock);
1818                 return 0;
1819         }
1820
1821         list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
1822
1823         spin_unlock(&root->list_lock);
1824
1825         /*
1826          * insert an orphan item to track this unlinked/truncated file
1827          */
1828         ret = btrfs_insert_orphan_item(trans, root, inode->i_ino);
1829
1830         return ret;
1831 }
1832
1833 /*
1834  * We have done the truncate/delete so we can go ahead and remove the orphan
1835  * item for this particular inode.
1836  */
1837 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
1838 {
1839         struct btrfs_root *root = BTRFS_I(inode)->root;
1840         int ret = 0;
1841
1842         spin_lock(&root->list_lock);
1843
1844         if (list_empty(&BTRFS_I(inode)->i_orphan)) {
1845                 spin_unlock(&root->list_lock);
1846                 return 0;
1847         }
1848
1849         list_del_init(&BTRFS_I(inode)->i_orphan);
1850         if (!trans) {
1851                 spin_unlock(&root->list_lock);
1852                 return 0;
1853         }
1854
1855         spin_unlock(&root->list_lock);
1856
1857         ret = btrfs_del_orphan_item(trans, root, inode->i_ino);
1858
1859         return ret;
1860 }
1861
1862 /*
1863  * this cleans up any orphans that may be left on the list from the last use
1864  * of this root.
1865  */
1866 void btrfs_orphan_cleanup(struct btrfs_root *root)
1867 {
1868         struct btrfs_path *path;
1869         struct extent_buffer *leaf;
1870         struct btrfs_item *item;
1871         struct btrfs_key key, found_key;
1872         struct btrfs_trans_handle *trans;
1873         struct inode *inode;
1874         int ret = 0, nr_unlink = 0, nr_truncate = 0;
1875
1876         path = btrfs_alloc_path();
1877         if (!path)
1878                 return;
1879         path->reada = -1;
1880
1881         key.objectid = BTRFS_ORPHAN_OBJECTID;
1882         btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
1883         key.offset = (u64)-1;
1884
1885
1886         while (1) {
1887                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1888                 if (ret < 0) {
1889                         printk(KERN_ERR "Error searching slot for orphan: %d"
1890                                "\n", ret);
1891                         break;
1892                 }
1893
1894                 /*
1895                  * if ret == 0 means we found what we were searching for, which
1896                  * is weird, but possible, so only screw with path if we didnt
1897                  * find the key and see if we have stuff that matches
1898                  */
1899                 if (ret > 0) {
1900                         if (path->slots[0] == 0)
1901                                 break;
1902                         path->slots[0]--;
1903                 }
1904
1905                 /* pull out the item */
1906                 leaf = path->nodes[0];
1907                 item = btrfs_item_nr(leaf, path->slots[0]);
1908                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1909
1910                 /* make sure the item matches what we want */
1911                 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
1912                         break;
1913                 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
1914                         break;
1915
1916                 /* release the path since we're done with it */
1917                 btrfs_release_path(root, path);
1918
1919                 /*
1920                  * this is where we are basically btrfs_lookup, without the
1921                  * crossing root thing.  we store the inode number in the
1922                  * offset of the orphan item.
1923                  */
1924                 inode = btrfs_iget_locked(root->fs_info->sb,
1925                                           found_key.offset, root);
1926                 if (!inode)
1927                         break;
1928
1929                 if (inode->i_state & I_NEW) {
1930                         BTRFS_I(inode)->root = root;
1931
1932                         /* have to set the location manually */
1933                         BTRFS_I(inode)->location.objectid = inode->i_ino;
1934                         BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY;
1935                         BTRFS_I(inode)->location.offset = 0;
1936
1937                         btrfs_read_locked_inode(inode);
1938                         unlock_new_inode(inode);
1939                 }
1940
1941                 /*
1942                  * add this inode to the orphan list so btrfs_orphan_del does
1943                  * the proper thing when we hit it
1944                  */
1945                 spin_lock(&root->list_lock);
1946                 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
1947                 spin_unlock(&root->list_lock);
1948
1949                 /*
1950                  * if this is a bad inode, means we actually succeeded in
1951                  * removing the inode, but not the orphan record, which means
1952                  * we need to manually delete the orphan since iput will just
1953                  * do a destroy_inode
1954                  */
1955                 if (is_bad_inode(inode)) {
1956                         trans = btrfs_start_transaction(root, 1);
1957                         btrfs_orphan_del(trans, inode);
1958                         btrfs_end_transaction(trans, root);
1959                         iput(inode);
1960                         continue;
1961                 }
1962
1963                 /* if we have links, this was a truncate, lets do that */
1964                 if (inode->i_nlink) {
1965                         nr_truncate++;
1966                         btrfs_truncate(inode);
1967                 } else {
1968                         nr_unlink++;
1969                 }
1970
1971                 /* this will do delete_inode and everything for us */
1972                 iput(inode);
1973         }
1974
1975         if (nr_unlink)
1976                 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
1977         if (nr_truncate)
1978                 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
1979
1980         btrfs_free_path(path);
1981 }
1982
1983 /*
1984  * read an inode from the btree into the in-memory inode
1985  */
1986 void btrfs_read_locked_inode(struct inode *inode)
1987 {
1988         struct btrfs_path *path;
1989         struct extent_buffer *leaf;
1990         struct btrfs_inode_item *inode_item;
1991         struct btrfs_timespec *tspec;
1992         struct btrfs_root *root = BTRFS_I(inode)->root;
1993         struct btrfs_key location;
1994         u64 alloc_group_block;
1995         u32 rdev;
1996         int ret;
1997
1998         path = btrfs_alloc_path();
1999         BUG_ON(!path);
2000         memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
2001
2002         ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
2003         if (ret)
2004                 goto make_bad;
2005
2006         leaf = path->nodes[0];
2007         inode_item = btrfs_item_ptr(leaf, path->slots[0],
2008                                     struct btrfs_inode_item);
2009
2010         inode->i_mode = btrfs_inode_mode(leaf, inode_item);
2011         inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
2012         inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2013         inode->i_gid = btrfs_inode_gid(leaf, inode_item);
2014         btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
2015
2016         tspec = btrfs_inode_atime(inode_item);
2017         inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2018         inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2019
2020         tspec = btrfs_inode_mtime(inode_item);
2021         inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2022         inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2023
2024         tspec = btrfs_inode_ctime(inode_item);
2025         inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2026         inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2027
2028         inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
2029         BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
2030         BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
2031         inode->i_generation = BTRFS_I(inode)->generation;
2032         inode->i_rdev = 0;
2033         rdev = btrfs_inode_rdev(leaf, inode_item);
2034
2035         BTRFS_I(inode)->index_cnt = (u64)-1;
2036         BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2037
2038         alloc_group_block = btrfs_inode_block_group(leaf, inode_item);
2039
2040         BTRFS_I(inode)->block_group = btrfs_find_block_group(root, 0,
2041                                                 alloc_group_block, 0);
2042         btrfs_free_path(path);
2043         inode_item = NULL;
2044
2045         switch (inode->i_mode & S_IFMT) {
2046         case S_IFREG:
2047                 inode->i_mapping->a_ops = &btrfs_aops;
2048                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2049                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
2050                 inode->i_fop = &btrfs_file_operations;
2051                 inode->i_op = &btrfs_file_inode_operations;
2052                 break;
2053         case S_IFDIR:
2054                 inode->i_fop = &btrfs_dir_file_operations;
2055                 if (root == root->fs_info->tree_root)
2056                         inode->i_op = &btrfs_dir_ro_inode_operations;
2057                 else
2058                         inode->i_op = &btrfs_dir_inode_operations;
2059                 break;
2060         case S_IFLNK:
2061                 inode->i_op = &btrfs_symlink_inode_operations;
2062                 inode->i_mapping->a_ops = &btrfs_symlink_aops;
2063                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2064                 break;
2065         default:
2066                 inode->i_op = &btrfs_special_inode_operations;
2067                 init_special_inode(inode, inode->i_mode, rdev);
2068                 break;
2069         }
2070         return;
2071
2072 make_bad:
2073         btrfs_free_path(path);
2074         make_bad_inode(inode);
2075 }
2076
2077 /*
2078  * given a leaf and an inode, copy the inode fields into the leaf
2079  */
2080 static void fill_inode_item(struct btrfs_trans_handle *trans,
2081                             struct extent_buffer *leaf,
2082                             struct btrfs_inode_item *item,
2083                             struct inode *inode)
2084 {
2085         btrfs_set_inode_uid(leaf, item, inode->i_uid);
2086         btrfs_set_inode_gid(leaf, item, inode->i_gid);
2087         btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
2088         btrfs_set_inode_mode(leaf, item, inode->i_mode);
2089         btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2090
2091         btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2092                                inode->i_atime.tv_sec);
2093         btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2094                                 inode->i_atime.tv_nsec);
2095
2096         btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2097                                inode->i_mtime.tv_sec);
2098         btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2099                                 inode->i_mtime.tv_nsec);
2100
2101         btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2102                                inode->i_ctime.tv_sec);
2103         btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2104                                 inode->i_ctime.tv_nsec);
2105
2106         btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
2107         btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
2108         btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
2109         btrfs_set_inode_transid(leaf, item, trans->transid);
2110         btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
2111         btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
2112         btrfs_set_inode_block_group(leaf, item, BTRFS_I(inode)->block_group);
2113 }
2114
2115 /*
2116  * copy everything in the in-memory inode into the btree.
2117  */
2118 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2119                                 struct btrfs_root *root, struct inode *inode)
2120 {
2121         struct btrfs_inode_item *inode_item;
2122         struct btrfs_path *path;
2123         struct extent_buffer *leaf;
2124         int ret;
2125
2126         path = btrfs_alloc_path();
2127         BUG_ON(!path);
2128         ret = btrfs_lookup_inode(trans, root, path,
2129                                  &BTRFS_I(inode)->location, 1);
2130         if (ret) {
2131                 if (ret > 0)
2132                         ret = -ENOENT;
2133                 goto failed;
2134         }
2135
2136         btrfs_unlock_up_safe(path, 1);
2137         leaf = path->nodes[0];
2138         inode_item = btrfs_item_ptr(leaf, path->slots[0],
2139                                   struct btrfs_inode_item);
2140
2141         fill_inode_item(trans, leaf, inode_item, inode);
2142         btrfs_mark_buffer_dirty(leaf);
2143         btrfs_set_inode_last_trans(trans, inode);
2144         ret = 0;
2145 failed:
2146         btrfs_free_path(path);
2147         return ret;
2148 }
2149
2150
2151 /*
2152  * unlink helper that gets used here in inode.c and in the tree logging
2153  * recovery code.  It remove a link in a directory with a given name, and
2154  * also drops the back refs in the inode to the directory
2155  */
2156 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2157                        struct btrfs_root *root,
2158                        struct inode *dir, struct inode *inode,
2159                        const char *name, int name_len)
2160 {
2161         struct btrfs_path *path;
2162         int ret = 0;
2163         struct extent_buffer *leaf;
2164         struct btrfs_dir_item *di;
2165         struct btrfs_key key;
2166         u64 index;
2167
2168         path = btrfs_alloc_path();
2169         if (!path) {
2170                 ret = -ENOMEM;
2171                 goto err;
2172         }
2173
2174         di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2175                                     name, name_len, -1);
2176         if (IS_ERR(di)) {
2177                 ret = PTR_ERR(di);
2178                 goto err;
2179         }
2180         if (!di) {
2181                 ret = -ENOENT;
2182                 goto err;
2183         }
2184         leaf = path->nodes[0];
2185         btrfs_dir_item_key_to_cpu(leaf, di, &key);
2186         ret = btrfs_delete_one_dir_name(trans, root, path, di);
2187         if (ret)
2188                 goto err;
2189         btrfs_release_path(root, path);
2190
2191         ret = btrfs_del_inode_ref(trans, root, name, name_len,
2192                                   inode->i_ino,
2193                                   dir->i_ino, &index);
2194         if (ret) {
2195                 printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
2196                        "inode %lu parent %lu\n", name_len, name,
2197                        inode->i_ino, dir->i_ino);
2198                 goto err;
2199         }
2200
2201         di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
2202                                          index, name, name_len, -1);
2203         if (IS_ERR(di)) {
2204                 ret = PTR_ERR(di);
2205                 goto err;
2206         }
2207         if (!di) {
2208                 ret = -ENOENT;
2209                 goto err;
2210         }
2211         ret = btrfs_delete_one_dir_name(trans, root, path, di);
2212         btrfs_release_path(root, path);
2213
2214         ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2215                                          inode, dir->i_ino);
2216         BUG_ON(ret != 0 && ret != -ENOENT);
2217         if (ret != -ENOENT)
2218                 BTRFS_I(dir)->log_dirty_trans = trans->transid;
2219
2220         ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2221                                            dir, index);
2222         BUG_ON(ret);
2223 err:
2224         btrfs_free_path(path);
2225         if (ret)
2226                 goto out;
2227
2228         btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2229         inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2230         btrfs_update_inode(trans, root, dir);
2231         btrfs_drop_nlink(inode);
2232         ret = btrfs_update_inode(trans, root, inode);
2233         dir->i_sb->s_dirt = 1;
2234 out:
2235         return ret;
2236 }
2237
2238 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2239 {
2240         struct btrfs_root *root;
2241         struct btrfs_trans_handle *trans;
2242         struct inode *inode = dentry->d_inode;
2243         int ret;
2244         unsigned long nr = 0;
2245
2246         root = BTRFS_I(dir)->root;
2247
2248         ret = btrfs_check_free_space(root, 1, 1);
2249         if (ret)
2250                 goto fail;
2251
2252         trans = btrfs_start_transaction(root, 1);
2253
2254         btrfs_set_trans_block_group(trans, dir);
2255         ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2256                                  dentry->d_name.name, dentry->d_name.len);
2257
2258         if (inode->i_nlink == 0)
2259                 ret = btrfs_orphan_add(trans, inode);
2260
2261         nr = trans->blocks_used;
2262
2263         btrfs_end_transaction_throttle(trans, root);
2264 fail:
2265         btrfs_btree_balance_dirty(root, nr);
2266         return ret;
2267 }
2268
2269 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
2270 {
2271         struct inode *inode = dentry->d_inode;
2272         int err = 0;
2273         int ret;
2274         struct btrfs_root *root = BTRFS_I(dir)->root;
2275         struct btrfs_trans_handle *trans;
2276         unsigned long nr = 0;
2277
2278         /*
2279          * the FIRST_FREE_OBJECTID check makes sure we don't try to rmdir
2280          * the root of a subvolume or snapshot
2281          */
2282         if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
2283             inode->i_ino == BTRFS_FIRST_FREE_OBJECTID) {
2284                 return -ENOTEMPTY;
2285         }
2286
2287         ret = btrfs_check_free_space(root, 1, 1);
2288         if (ret)
2289                 goto fail;
2290
2291         trans = btrfs_start_transaction(root, 1);
2292         btrfs_set_trans_block_group(trans, dir);
2293
2294         err = btrfs_orphan_add(trans, inode);
2295         if (err)
2296                 goto fail_trans;
2297
2298         /* now the directory is empty */
2299         err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2300                                  dentry->d_name.name, dentry->d_name.len);
2301         if (!err)
2302                 btrfs_i_size_write(inode, 0);
2303
2304 fail_trans:
2305         nr = trans->blocks_used;
2306         ret = btrfs_end_transaction_throttle(trans, root);
2307 fail:
2308         btrfs_btree_balance_dirty(root, nr);
2309
2310         if (ret && !err)
2311                 err = ret;
2312         return err;
2313 }
2314
2315 #if 0
2316 /*
2317  * when truncating bytes in a file, it is possible to avoid reading
2318  * the leaves that contain only checksum items.  This can be the
2319  * majority of the IO required to delete a large file, but it must
2320  * be done carefully.
2321  *
2322  * The keys in the level just above the leaves are checked to make sure
2323  * the lowest key in a given leaf is a csum key, and starts at an offset
2324  * after the new  size.
2325  *
2326  * Then the key for the next leaf is checked to make sure it also has
2327  * a checksum item for the same file.  If it does, we know our target leaf
2328  * contains only checksum items, and it can be safely freed without reading
2329  * it.
2330  *
2331  * This is just an optimization targeted at large files.  It may do
2332  * nothing.  It will return 0 unless things went badly.
2333  */
2334 static noinline int drop_csum_leaves(struct btrfs_trans_handle *trans,
2335                                      struct btrfs_root *root,
2336                                      struct btrfs_path *path,
2337                                      struct inode *inode, u64 new_size)
2338 {
2339         struct btrfs_key key;
2340         int ret;
2341         int nritems;
2342         struct btrfs_key found_key;
2343         struct btrfs_key other_key;
2344         struct btrfs_leaf_ref *ref;
2345         u64 leaf_gen;
2346         u64 leaf_start;
2347
2348         path->lowest_level = 1;
2349         key.objectid = inode->i_ino;
2350         key.type = BTRFS_CSUM_ITEM_KEY;
2351         key.offset = new_size;
2352 again:
2353         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2354         if (ret < 0)
2355                 goto out;
2356
2357         if (path->nodes[1] == NULL) {
2358                 ret = 0;
2359                 goto out;
2360         }
2361         ret = 0;
2362         btrfs_node_key_to_cpu(path->nodes[1], &found_key, path->slots[1]);
2363         nritems = btrfs_header_nritems(path->nodes[1]);
2364
2365         if (!nritems)
2366                 goto out;
2367
2368         if (path->slots[1] >= nritems)
2369                 goto next_node;
2370
2371         /* did we find a key greater than anything we want to delete? */
2372         if (found_key.objectid > inode->i_ino ||
2373            (found_key.objectid == inode->i_ino && found_key.type > key.type))
2374                 goto out;
2375
2376         /* we check the next key in the node to make sure the leave contains
2377          * only checksum items.  This comparison doesn't work if our
2378          * leaf is the last one in the node
2379          */
2380         if (path->slots[1] + 1 >= nritems) {
2381 next_node:
2382                 /* search forward from the last key in the node, this
2383                  * will bring us into the next node in the tree
2384                  */
2385                 btrfs_node_key_to_cpu(path->nodes[1], &found_key, nritems - 1);
2386
2387                 /* unlikely, but we inc below, so check to be safe */
2388                 if (found_key.offset == (u64)-1)
2389                         goto out;
2390
2391                 /* search_forward needs a path with locks held, do the
2392                  * search again for the original key.  It is possible
2393                  * this will race with a balance and return a path that
2394                  * we could modify, but this drop is just an optimization
2395                  * and is allowed to miss some leaves.
2396                  */
2397                 btrfs_release_path(root, path);
2398                 found_key.offset++;
2399
2400                 /* setup a max key for search_forward */
2401                 other_key.offset = (u64)-1;
2402                 other_key.type = key.type;
2403                 other_key.objectid = key.objectid;
2404
2405                 path->keep_locks = 1;
2406                 ret = btrfs_search_forward(root, &found_key, &other_key,
2407                                            path, 0, 0);
2408                 path->keep_locks = 0;
2409                 if (ret || found_key.objectid != key.objectid ||
2410                     found_key.type != key.type) {
2411                         ret = 0;
2412                         goto out;
2413                 }
2414
2415                 key.offset = found_key.offset;
2416                 btrfs_release_path(root, path);
2417                 cond_resched();
2418                 goto again;
2419         }
2420
2421         /* we know there's one more slot after us in the tree,
2422          * read that key so we can verify it is also a checksum item
2423          */
2424         btrfs_node_key_to_cpu(path->nodes[1], &other_key, path->slots[1] + 1);
2425
2426         if (found_key.objectid < inode->i_ino)
2427                 goto next_key;
2428
2429         if (found_key.type != key.type || found_key.offset < new_size)
2430                 goto next_key;
2431
2432         /*
2433          * if the key for the next leaf isn't a csum key from this objectid,
2434          * we can't be sure there aren't good items inside this leaf.
2435          * Bail out
2436          */
2437         if (other_key.objectid != inode->i_ino || other_key.type != key.type)
2438                 goto out;
2439
2440         leaf_start = btrfs_node_blockptr(path->nodes[1], path->slots[1]);
2441         leaf_gen = btrfs_node_ptr_generation(path->nodes[1], path->slots[1]);
2442         /*
2443          * it is safe to delete this leaf, it contains only
2444          * csum items from this inode at an offset >= new_size
2445          */
2446         ret = btrfs_del_leaf(trans, root, path, leaf_start);
2447         BUG_ON(ret);
2448
2449         if (root->ref_cows && leaf_gen < trans->transid) {
2450                 ref = btrfs_alloc_leaf_ref(root, 0);
2451                 if (ref) {
2452                         ref->root_gen = root->root_key.offset;
2453                         ref->bytenr = leaf_start;
2454                         ref->owner = 0;
2455                         ref->generation = leaf_gen;
2456                         ref->nritems = 0;
2457
2458                         btrfs_sort_leaf_ref(ref);
2459
2460                         ret = btrfs_add_leaf_ref(root, ref, 0);
2461                         WARN_ON(ret);
2462                         btrfs_free_leaf_ref(root, ref);
2463                 } else {
2464                         WARN_ON(1);
2465                 }
2466         }
2467 next_key:
2468         btrfs_release_path(root, path);
2469
2470         if (other_key.objectid == inode->i_ino &&
2471             other_key.type == key.type && other_key.offset > key.offset) {
2472                 key.offset = other_key.offset;
2473                 cond_resched();
2474                 goto again;
2475         }
2476         ret = 0;
2477 out:
2478         /* fixup any changes we've made to the path */
2479         path->lowest_level = 0;
2480         path->keep_locks = 0;
2481         btrfs_release_path(root, path);
2482         return ret;
2483 }
2484
2485 #endif
2486
2487 /*
2488  * this can truncate away extent items, csum items and directory items.
2489  * It starts at a high offset and removes keys until it can't find
2490  * any higher than new_size
2491  *
2492  * csum items that cross the new i_size are truncated to the new size
2493  * as well.
2494  *
2495  * min_type is the minimum key type to truncate down to.  If set to 0, this
2496  * will kill all the items on this inode, including the INODE_ITEM_KEY.
2497  */
2498 noinline int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
2499                                         struct btrfs_root *root,
2500                                         struct inode *inode,
2501                                         u64 new_size, u32 min_type)
2502 {
2503         int ret;
2504         struct btrfs_path *path;
2505         struct btrfs_key key;
2506         struct btrfs_key found_key;
2507         u32 found_type = (u8)-1;
2508         struct extent_buffer *leaf;
2509         struct btrfs_file_extent_item *fi;
2510         u64 extent_start = 0;
2511         u64 extent_num_bytes = 0;
2512         u64 item_end = 0;
2513         u64 root_gen = 0;
2514         u64 root_owner = 0;
2515         int found_extent;
2516         int del_item;
2517         int pending_del_nr = 0;
2518         int pending_del_slot = 0;
2519         int extent_type = -1;
2520         int encoding;
2521         u64 mask = root->sectorsize - 1;
2522
2523         if (root->ref_cows)
2524                 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
2525         path = btrfs_alloc_path();
2526         path->reada = -1;
2527         BUG_ON(!path);
2528
2529         /* FIXME, add redo link to tree so we don't leak on crash */
2530         key.objectid = inode->i_ino;
2531         key.offset = (u64)-1;
2532         key.type = (u8)-1;
2533
2534         btrfs_init_path(path);
2535
2536 search_again:
2537         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2538         if (ret < 0)
2539                 goto error;
2540
2541         if (ret > 0) {
2542                 /* there are no items in the tree for us to truncate, we're
2543                  * done
2544                  */
2545                 if (path->slots[0] == 0) {
2546                         ret = 0;
2547                         goto error;
2548                 }
2549                 path->slots[0]--;
2550         }
2551
2552         while (1) {
2553                 fi = NULL;
2554                 leaf = path->nodes[0];
2555                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2556                 found_type = btrfs_key_type(&found_key);
2557                 encoding = 0;
2558
2559                 if (found_key.objectid != inode->i_ino)
2560                         break;
2561
2562                 if (found_type < min_type)
2563                         break;
2564
2565                 item_end = found_key.offset;
2566                 if (found_type == BTRFS_EXTENT_DATA_KEY) {
2567                         fi = btrfs_item_ptr(leaf, path->slots[0],
2568                                             struct btrfs_file_extent_item);
2569                         extent_type = btrfs_file_extent_type(leaf, fi);
2570                         encoding = btrfs_file_extent_compression(leaf, fi);
2571                         encoding |= btrfs_file_extent_encryption(leaf, fi);
2572                         encoding |= btrfs_file_extent_other_encoding(leaf, fi);
2573
2574                         if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
2575                                 item_end +=
2576                                     btrfs_file_extent_num_bytes(leaf, fi);
2577                         } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
2578                                 item_end += btrfs_file_extent_inline_len(leaf,
2579                                                                          fi);
2580                         }
2581                         item_end--;
2582                 }
2583                 if (item_end < new_size) {
2584                         if (found_type == BTRFS_DIR_ITEM_KEY)
2585                                 found_type = BTRFS_INODE_ITEM_KEY;
2586                         else if (found_type == BTRFS_EXTENT_ITEM_KEY)
2587                                 found_type = BTRFS_EXTENT_DATA_KEY;
2588                         else if (found_type == BTRFS_EXTENT_DATA_KEY)
2589                                 found_type = BTRFS_XATTR_ITEM_KEY;
2590                         else if (found_type == BTRFS_XATTR_ITEM_KEY)
2591                                 found_type = BTRFS_INODE_REF_KEY;
2592                         else if (found_type)
2593                                 found_type--;
2594                         else
2595                                 break;
2596                         btrfs_set_key_type(&key, found_type);
2597                         goto next;
2598                 }
2599                 if (found_key.offset >= new_size)
2600                         del_item = 1;
2601                 else
2602                         del_item = 0;
2603                 found_extent = 0;
2604
2605                 /* FIXME, shrink the extent if the ref count is only 1 */
2606                 if (found_type != BTRFS_EXTENT_DATA_KEY)
2607                         goto delete;
2608
2609                 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
2610                         u64 num_dec;
2611                         extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
2612                         if (!del_item && !encoding) {
2613                                 u64 orig_num_bytes =
2614                                         btrfs_file_extent_num_bytes(leaf, fi);
2615                                 extent_num_bytes = new_size -
2616                                         found_key.offset + root->sectorsize - 1;
2617                                 extent_num_bytes = extent_num_bytes &
2618                                         ~((u64)root->sectorsize - 1);
2619                                 btrfs_set_file_extent_num_bytes(leaf, fi,
2620                                                          extent_num_bytes);
2621                                 num_dec = (orig_num_bytes -
2622                                            extent_num_bytes);
2623                                 if (root->ref_cows && extent_start != 0)
2624                                         inode_sub_bytes(inode, num_dec);
2625                                 btrfs_mark_buffer_dirty(leaf);
2626                         } else {
2627                                 extent_num_bytes =
2628                                         btrfs_file_extent_disk_num_bytes(leaf,
2629                                                                          fi);
2630                                 /* FIXME blocksize != 4096 */
2631                                 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
2632                                 if (extent_start != 0) {
2633                                         found_extent = 1;
2634                                         if (root->ref_cows)
2635                                                 inode_sub_bytes(inode, num_dec);
2636                                 }
2637                                 root_gen = btrfs_header_generation(leaf);
2638                                 root_owner = btrfs_header_owner(leaf);
2639                         }
2640                 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
2641                         /*
2642                          * we can't truncate inline items that have had
2643                          * special encodings
2644                          */
2645                         if (!del_item &&
2646                             btrfs_file_extent_compression(leaf, fi) == 0 &&
2647                             btrfs_file_extent_encryption(leaf, fi) == 0 &&
2648                             btrfs_file_extent_other_encoding(leaf, fi) == 0) {
2649                                 u32 size = new_size - found_key.offset;
2650
2651                                 if (root->ref_cows) {
2652                                         inode_sub_bytes(inode, item_end + 1 -
2653                                                         new_size);
2654                                 }
2655                                 size =
2656                                     btrfs_file_extent_calc_inline_size(size);
2657                                 ret = btrfs_truncate_item(trans, root, path,
2658                                                           size, 1);
2659                                 BUG_ON(ret);
2660                         } else if (root->ref_cows) {
2661                                 inode_sub_bytes(inode, item_end + 1 -
2662                                                 found_key.offset);
2663                         }
2664                 }
2665 delete:
2666                 if (del_item) {
2667                         if (!pending_del_nr) {
2668                                 /* no pending yet, add ourselves */
2669                                 pending_del_slot = path->slots[0];
2670                                 pending_del_nr = 1;
2671                         } else if (pending_del_nr &&
2672                                    path->slots[0] + 1 == pending_del_slot) {
2673                                 /* hop on the pending chunk */
2674                                 pending_del_nr++;
2675                                 pending_del_slot = path->slots[0];
2676                         } else {
2677                                 BUG();
2678                         }
2679                 } else {
2680                         break;
2681                 }
2682                 if (found_extent) {
2683                         ret = btrfs_free_extent(trans, root, extent_start,
2684                                                 extent_num_bytes,
2685                                                 leaf->start, root_owner,
2686                                                 root_gen, inode->i_ino, 0);
2687                         BUG_ON(ret);
2688                 }
2689 next:
2690                 if (path->slots[0] == 0) {
2691                         if (pending_del_nr)
2692                                 goto del_pending;
2693                         btrfs_release_path(root, path);
2694                         if (found_type == BTRFS_INODE_ITEM_KEY)
2695                                 break;
2696                         goto search_again;
2697                 }
2698
2699                 path->slots[0]--;
2700                 if (pending_del_nr &&
2701                     path->slots[0] + 1 != pending_del_slot) {
2702                         struct btrfs_key debug;
2703 del_pending:
2704                         btrfs_item_key_to_cpu(path->nodes[0], &debug,
2705                                               pending_del_slot);
2706                         ret = btrfs_del_items(trans, root, path,
2707                                               pending_del_slot,
2708                                               pending_del_nr);
2709                         BUG_ON(ret);
2710                         pending_del_nr = 0;
2711                         btrfs_release_path(root, path);
2712                         if (found_type == BTRFS_INODE_ITEM_KEY)
2713                                 break;
2714                         goto search_again;
2715                 }
2716         }
2717         ret = 0;
2718 error:
2719         if (pending_del_nr) {
2720                 ret = btrfs_del_items(trans, root, path, pending_del_slot,
2721                                       pending_del_nr);
2722         }
2723         btrfs_free_path(path);
2724         inode->i_sb->s_dirt = 1;
2725         return ret;
2726 }
2727
2728 /*
2729  * taken from block_truncate_page, but does cow as it zeros out
2730  * any bytes left in the last page in the file.
2731  */
2732 static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
2733 {
2734         struct inode *inode = mapping->host;
2735         struct btrfs_root *root = BTRFS_I(inode)->root;
2736         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2737         struct btrfs_ordered_extent *ordered;
2738         char *kaddr;
2739         u32 blocksize = root->sectorsize;
2740         pgoff_t index = from >> PAGE_CACHE_SHIFT;
2741         unsigned offset = from & (PAGE_CACHE_SIZE-1);
2742         struct page *page;
2743         int ret = 0;
2744         u64 page_start;
2745         u64 page_end;
2746
2747         if ((offset & (blocksize - 1)) == 0)
2748                 goto out;
2749
2750         ret = -ENOMEM;
2751 again:
2752         page = grab_cache_page(mapping, index);
2753         if (!page)
2754                 goto out;
2755
2756         page_start = page_offset(page);
2757         page_end = page_start + PAGE_CACHE_SIZE - 1;
2758
2759         if (!PageUptodate(page)) {
2760                 ret = btrfs_readpage(NULL, page);
2761                 lock_page(page);
2762                 if (page->mapping != mapping) {
2763                         unlock_page(page);
2764                         page_cache_release(page);
2765                         goto again;
2766                 }
2767                 if (!PageUptodate(page)) {
2768                         ret = -EIO;
2769                         goto out_unlock;
2770                 }
2771         }
2772         wait_on_page_writeback(page);
2773
2774         lock_extent(io_tree, page_start, page_end, GFP_NOFS);
2775         set_page_extent_mapped(page);
2776
2777         ordered = btrfs_lookup_ordered_extent(inode, page_start);
2778         if (ordered) {
2779                 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
2780                 unlock_page(page);
2781                 page_cache_release(page);
2782                 btrfs_start_ordered_extent(inode, ordered, 1);
2783                 btrfs_put_ordered_extent(ordered);
2784                 goto again;
2785         }
2786
2787         btrfs_set_extent_delalloc(inode, page_start, page_end);
2788         ret = 0;
2789         if (offset != PAGE_CACHE_SIZE) {
2790                 kaddr = kmap(page);
2791                 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2792                 flush_dcache_page(page);
2793                 kunmap(page);
2794         }
2795         ClearPageChecked(page);
2796         set_page_dirty(page);
2797         unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
2798
2799 out_unlock:
2800         unlock_page(page);
2801         page_cache_release(page);
2802 out:
2803         return ret;
2804 }
2805
2806 int btrfs_cont_expand(struct inode *inode, loff_t size)
2807 {
2808         struct btrfs_trans_handle *trans;
2809         struct btrfs_root *root = BTRFS_I(inode)->root;
2810         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2811         struct extent_map *em;
2812         u64 mask = root->sectorsize - 1;
2813         u64 hole_start = (inode->i_size + mask) & ~mask;
2814         u64 block_end = (size + mask) & ~mask;
2815         u64 last_byte;
2816         u64 cur_offset;
2817         u64 hole_size;
2818         int err;
2819
2820         if (size <= hole_start)
2821                 return 0;
2822
2823         err = btrfs_check_free_space(root, 1, 0);
2824         if (err)
2825                 return err;
2826
2827         btrfs_truncate_page(inode->i_mapping, inode->i_size);
2828
2829         while (1) {
2830                 struct btrfs_ordered_extent *ordered;
2831                 btrfs_wait_ordered_range(inode, hole_start,
2832                                          block_end - hole_start);
2833                 lock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
2834                 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
2835                 if (!ordered)
2836                         break;
2837                 unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
2838                 btrfs_put_ordered_extent(ordered);
2839         }
2840
2841         trans = btrfs_start_transaction(root, 1);
2842         btrfs_set_trans_block_group(trans, inode);
2843
2844         cur_offset = hole_start;
2845         while (1) {
2846                 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
2847                                 block_end - cur_offset, 0);
2848                 BUG_ON(IS_ERR(em) || !em);
2849                 last_byte = min(extent_map_end(em), block_end);
2850                 last_byte = (last_byte + mask) & ~mask;
2851                 if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) {
2852                         u64 hint_byte = 0;
2853                         hole_size = last_byte - cur_offset;
2854                         err = btrfs_drop_extents(trans, root, inode,
2855                                                  cur_offset,
2856                                                  cur_offset + hole_size,
2857                                                  cur_offset, &hint_byte);
2858                         if (err)
2859                                 break;
2860                         err = btrfs_insert_file_extent(trans, root,
2861                                         inode->i_ino, cur_offset, 0,
2862                                         0, hole_size, 0, hole_size,
2863                                         0, 0, 0);
2864                         btrfs_drop_extent_cache(inode, hole_start,
2865                                         last_byte - 1, 0);
2866                 }
2867                 free_extent_map(em);
2868                 cur_offset = last_byte;
2869                 if (err || cur_offset >= block_end)
2870                         break;
2871         }
2872
2873         btrfs_end_transaction(trans, root);
2874         unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
2875         return err;
2876 }
2877
2878 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
2879 {
2880         struct inode *inode = dentry->d_inode;
2881         int err;
2882
2883         err = inode_change_ok(inode, attr);
2884         if (err)
2885                 return err;
2886
2887         if (S_ISREG(inode->i_mode) &&
2888             attr->ia_valid & ATTR_SIZE && attr->ia_size > inode->i_size) {
2889                 err = btrfs_cont_expand(inode, attr->ia_size);
2890                 if (err)
2891                         return err;
2892         }
2893
2894         err = inode_setattr(inode, attr);
2895
2896         if (!err && ((attr->ia_valid & ATTR_MODE)))
2897                 err = btrfs_acl_chmod(inode);
2898         return err;
2899 }
2900
2901 void btrfs_delete_inode(struct inode *inode)
2902 {
2903         struct btrfs_trans_handle *trans;
2904         struct btrfs_root *root = BTRFS_I(inode)->root;
2905         unsigned long nr;
2906         int ret;
2907
2908         truncate_inode_pages(&inode->i_data, 0);
2909         if (is_bad_inode(inode)) {
2910                 btrfs_orphan_del(NULL, inode);
2911                 goto no_delete;
2912         }
2913         btrfs_wait_ordered_range(inode, 0, (u64)-1);
2914
2915         btrfs_i_size_write(inode, 0);
2916         trans = btrfs_join_transaction(root, 1);
2917
2918         btrfs_set_trans_block_group(trans, inode);
2919         ret = btrfs_truncate_inode_items(trans, root, inode, inode->i_size, 0);
2920         if (ret) {
2921                 btrfs_orphan_del(NULL, inode);
2922                 goto no_delete_lock;
2923         }
2924
2925         btrfs_orphan_del(trans, inode);
2926
2927         nr = trans->blocks_used;
2928         clear_inode(inode);
2929
2930         btrfs_end_transaction(trans, root);
2931         btrfs_btree_balance_dirty(root, nr);
2932         return;
2933
2934 no_delete_lock:
2935         nr = trans->blocks_used;
2936         btrfs_end_transaction(trans, root);
2937         btrfs_btree_balance_dirty(root, nr);
2938 no_delete:
2939         clear_inode(inode);
2940 }
2941
2942 /*
2943  * this returns the key found in the dir entry in the location pointer.
2944  * If no dir entries were found, location->objectid is 0.
2945  */
2946 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
2947                                struct btrfs_key *location)
2948 {
2949         const char *name = dentry->d_name.name;
2950         int namelen = dentry->d_name.len;
2951         struct btrfs_dir_item *di;
2952         struct btrfs_path *path;
2953         struct btrfs_root *root = BTRFS_I(dir)->root;
2954         int ret = 0;
2955
2956         path = btrfs_alloc_path();
2957         BUG_ON(!path);
2958
2959         di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name,
2960                                     namelen, 0);
2961         if (IS_ERR(di))
2962                 ret = PTR_ERR(di);
2963
2964         if (!di || IS_ERR(di))
2965                 goto out_err;
2966
2967         btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
2968 out:
2969         btrfs_free_path(path);
2970         return ret;
2971 out_err:
2972         location->objectid = 0;
2973         goto out;
2974 }
2975
2976 /*
2977  * when we hit a tree root in a directory, the btrfs part of the inode
2978  * needs to be changed to reflect the root directory of the tree root.  This
2979  * is kind of like crossing a mount point.
2980  */
2981 static int fixup_tree_root_location(struct btrfs_root *root,
2982                              struct btrfs_key *location,
2983                              struct btrfs_root **sub_root,
2984                              struct dentry *dentry)
2985 {
2986         struct btrfs_root_item *ri;
2987
2988         if (btrfs_key_type(location) != BTRFS_ROOT_ITEM_KEY)
2989                 return 0;
2990         if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
2991                 return 0;
2992
2993         *sub_root = btrfs_read_fs_root(root->fs_info, location,
2994                                         dentry->d_name.name,
2995                                         dentry->d_name.len);
2996         if (IS_ERR(*sub_root))
2997                 return PTR_ERR(*sub_root);
2998
2999         ri = &(*sub_root)->root_item;
3000         location->objectid = btrfs_root_dirid(ri);
3001         btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
3002         location->offset = 0;
3003
3004         return 0;
3005 }
3006
3007 static noinline void init_btrfs_i(struct inode *inode)
3008 {
3009         struct btrfs_inode *bi = BTRFS_I(inode);
3010
3011         bi->i_acl = NULL;
3012         bi->i_default_acl = NULL;
3013
3014         bi->generation = 0;
3015         bi->sequence = 0;
3016         bi->last_trans = 0;
3017         bi->logged_trans = 0;
3018         bi->delalloc_bytes = 0;
3019         bi->disk_i_size = 0;
3020         bi->flags = 0;
3021         bi->index_cnt = (u64)-1;
3022         bi->log_dirty_trans = 0;
3023         extent_map_tree_init(&BTRFS_I(inode)->extent_tree, GFP_NOFS);
3024         extent_io_tree_init(&BTRFS_I(inode)->io_tree,
3025                              inode->i_mapping, GFP_NOFS);
3026         extent_io_tree_init(&BTRFS_I(inode)->io_failure_tree,
3027                              inode->i_mapping, GFP_NOFS);
3028         INIT_LIST_HEAD(&BTRFS_I(inode)->delalloc_inodes);
3029         btrfs_ordered_inode_tree_init(&BTRFS_I(inode)->ordered_tree);
3030         mutex_init(&BTRFS_I(inode)->extent_mutex);
3031         mutex_init(&BTRFS_I(inode)->log_mutex);
3032 }
3033
3034 static int btrfs_init_locked_inode(struct inode *inode, void *p)
3035 {
3036         struct btrfs_iget_args *args = p;
3037         inode->i_ino = args->ino;
3038         init_btrfs_i(inode);
3039         BTRFS_I(inode)->root = args->root;
3040         return 0;
3041 }
3042
3043 static int btrfs_find_actor(struct inode *inode, void *opaque)
3044 {
3045         struct btrfs_iget_args *args = opaque;
3046         return args->ino == inode->i_ino &&
3047                 args->root == BTRFS_I(inode)->root;
3048 }
3049
3050 struct inode *btrfs_ilookup(struct super_block *s, u64 objectid,
3051                             struct btrfs_root *root, int wait)
3052 {
3053         struct inode *inode;
3054         struct btrfs_iget_args args;
3055         args.ino = objectid;
3056         args.root = root;
3057
3058         if (wait) {
3059                 inode = ilookup5(s, objectid, btrfs_find_actor,
3060                                  (void *)&args);
3061         } else {
3062                 inode = ilookup5_nowait(s, objectid, btrfs_find_actor,
3063                                         (void *)&args);
3064         }
3065         return inode;
3066 }
3067
3068 struct inode *btrfs_iget_locked(struct super_block *s, u64 objectid,
3069                                 struct btrfs_root *root)
3070 {
3071         struct inode *inode;
3072         struct btrfs_iget_args args;
3073         args.ino = objectid;
3074         args.root = root;
3075
3076         inode = iget5_locked(s, objectid, btrfs_find_actor,
3077                              btrfs_init_locked_inode,
3078                              (void *)&args);
3079         return inode;
3080 }
3081
3082 /* Get an inode object given its location and corresponding root.
3083  * Returns in *is_new if the inode was read from disk
3084  */
3085 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
3086                          struct btrfs_root *root, int *is_new)
3087 {
3088         struct inode *inode;
3089
3090         inode = btrfs_iget_locked(s, location->objectid, root);
3091         if (!inode)
3092                 return ERR_PTR(-EACCES);
3093
3094         if (inode->i_state & I_NEW) {
3095                 BTRFS_I(inode)->root = root;
3096                 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
3097                 btrfs_read_locked_inode(inode);
3098                 unlock_new_inode(inode);
3099                 if (is_new)
3100                         *is_new = 1;
3101         } else {
3102                 if (is_new)
3103                         *is_new = 0;
3104         }
3105
3106         return inode;
3107 }
3108
3109 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
3110 {
3111         struct inode *inode;
3112         struct btrfs_inode *bi = BTRFS_I(dir);
3113         struct btrfs_root *root = bi->root;
3114         struct btrfs_root *sub_root = root;
3115         struct btrfs_key location;
3116         int ret, new;
3117
3118         if (dentry->d_name.len > BTRFS_NAME_LEN)
3119                 return ERR_PTR(-ENAMETOOLONG);
3120
3121         ret = btrfs_inode_by_name(dir, dentry, &location);
3122
3123         if (ret < 0)
3124                 return ERR_PTR(ret);
3125
3126         inode = NULL;
3127         if (location.objectid) {
3128                 ret = fixup_tree_root_location(root, &location, &sub_root,
3129                                                 dentry);
3130                 if (ret < 0)
3131                         return ERR_PTR(ret);
3132                 if (ret > 0)
3133                         return ERR_PTR(-ENOENT);
3134                 inode = btrfs_iget(dir->i_sb, &location, sub_root, &new);
3135                 if (IS_ERR(inode))
3136                         return ERR_CAST(inode);
3137         }
3138         return inode;
3139 }
3140
3141 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
3142                                    struct nameidata *nd)
3143 {
3144         struct inode *inode;
3145
3146         if (dentry->d_name.len > BTRFS_NAME_LEN)
3147                 return ERR_PTR(-ENAMETOOLONG);
3148
3149         inode = btrfs_lookup_dentry(dir, dentry);
3150         if (IS_ERR(inode))
3151                 return ERR_CAST(inode);
3152
3153         return d_splice_alias(inode, dentry);
3154 }
3155
3156 static unsigned char btrfs_filetype_table[] = {
3157         DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
3158 };
3159
3160 static int btrfs_real_readdir(struct file *filp, void *dirent,
3161                               filldir_t filldir)
3162 {
3163         struct inode *inode = filp->f_dentry->d_inode;
3164         struct btrfs_root *root = BTRFS_I(inode)->root;
3165         struct btrfs_item *item;
3166         struct btrfs_dir_item *di;
3167         struct btrfs_key key;
3168         struct btrfs_key found_key;
3169         struct btrfs_path *path;
3170         int ret;
3171         u32 nritems;
3172         struct extent_buffer *leaf;
3173         int slot;
3174         int advance;
3175         unsigned char d_type;
3176         int over = 0;
3177         u32 di_cur;
3178         u32 di_total;
3179         u32 di_len;
3180         int key_type = BTRFS_DIR_INDEX_KEY;
3181         char tmp_name[32];
3182         char *name_ptr;
3183         int name_len;
3184
3185         /* FIXME, use a real flag for deciding about the key type */
3186         if (root->fs_info->tree_root == root)
3187                 key_type = BTRFS_DIR_ITEM_KEY;
3188
3189         /* special case for "." */
3190         if (filp->f_pos == 0) {
3191                 over = filldir(dirent, ".", 1,
3192                                1, inode->i_ino,
3193                                DT_DIR);
3194                 if (over)
3195                         return 0;
3196                 filp->f_pos = 1;
3197         }
3198         /* special case for .., just use the back ref */
3199         if (filp->f_pos == 1) {
3200                 u64 pino = parent_ino(filp->f_path.dentry);
3201                 over = filldir(dirent, "..", 2,
3202                                2, pino, DT_DIR);
3203                 if (over)
3204                         return 0;
3205                 filp->f_pos = 2;
3206         }
3207         path = btrfs_alloc_path();
3208         path->reada = 2;
3209
3210         btrfs_set_key_type(&key, key_type);
3211         key.offset = filp->f_pos;
3212         key.objectid = inode->i_ino;
3213
3214         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3215         if (ret < 0)
3216                 goto err;
3217         advance = 0;
3218
3219         while (1) {
3220                 leaf = path->nodes[0];
3221                 nritems = btrfs_header_nritems(leaf);
3222                 slot = path->slots[0];
3223                 if (advance || slot >= nritems) {
3224                         if (slot >= nritems - 1) {
3225                                 ret = btrfs_next_leaf(root, path);
3226                                 if (ret)
3227                                         break;
3228                                 leaf = path->nodes[0];
3229                                 nritems = btrfs_header_nritems(leaf);
3230                                 slot = path->slots[0];
3231                         } else {
3232                                 slot++;
3233                                 path->slots[0]++;
3234                         }
3235                 }
3236
3237                 advance = 1;
3238                 item = btrfs_item_nr(leaf, slot);
3239                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3240
3241                 if (found_key.objectid != key.objectid)
3242                         break;
3243                 if (btrfs_key_type(&found_key) != key_type)
3244                         break;
3245                 if (found_key.offset < filp->f_pos)
3246                         continue;
3247
3248                 filp->f_pos = found_key.offset;
3249
3250                 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
3251                 di_cur = 0;
3252                 di_total = btrfs_item_size(leaf, item);
3253
3254                 while (di_cur < di_total) {
3255                         struct btrfs_key location;
3256
3257                         name_len = btrfs_dir_name_len(leaf, di);
3258                         if (name_len <= sizeof(tmp_name)) {
3259                                 name_ptr = tmp_name;
3260                         } else {
3261                                 name_ptr = kmalloc(name_len, GFP_NOFS);
3262                                 if (!name_ptr) {
3263                                         ret = -ENOMEM;
3264                                         goto err;
3265                                 }
3266                         }
3267                         read_extent_buffer(leaf, name_ptr,
3268                                            (unsigned long)(di + 1), name_len);
3269
3270                         d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
3271                         btrfs_dir_item_key_to_cpu(leaf, di, &location);
3272
3273                         /* is this a reference to our own snapshot? If so
3274                          * skip it
3275                          */
3276                         if (location.type == BTRFS_ROOT_ITEM_KEY &&
3277                             location.objectid == root->root_key.objectid) {
3278                                 over = 0;
3279                                 goto skip;
3280                         }
3281                         over = filldir(dirent, name_ptr, name_len,
3282                                        found_key.offset, location.objectid,
3283                                        d_type);
3284
3285 skip:
3286                         if (name_ptr != tmp_name)
3287                                 kfree(name_ptr);
3288
3289                         if (over)
3290                                 goto nopos;
3291                         di_len = btrfs_dir_name_len(leaf, di) +
3292                                  btrfs_dir_data_len(leaf, di) + sizeof(*di);
3293                         di_cur += di_len;
3294                         di = (struct btrfs_dir_item *)((char *)di + di_len);
3295                 }
3296         }
3297
3298         /* Reached end of directory/root. Bump pos past the last item. */
3299         if (key_type == BTRFS_DIR_INDEX_KEY)
3300                 filp->f_pos = INT_LIMIT(off_t);
3301         else
3302                 filp->f_pos++;
3303 nopos:
3304         ret = 0;
3305 err:
3306         btrfs_free_path(path);
3307         return ret;
3308 }
3309
3310 int btrfs_write_inode(struct inode *inode, int wait)
3311 {
3312         struct btrfs_root *root = BTRFS_I(inode)->root;
3313         struct btrfs_trans_handle *trans;
3314         int ret = 0;
3315
3316         if (root->fs_info->btree_inode == inode)
3317                 return 0;
3318
3319         if (wait) {
3320                 trans = btrfs_join_transaction(root, 1);
3321                 btrfs_set_trans_block_group(trans, inode);
3322                 ret = btrfs_commit_transaction(trans, root);
3323         }
3324         return ret;
3325 }
3326
3327 /*
3328  * This is somewhat expensive, updating the tree every time the
3329  * inode changes.  But, it is most likely to find the inode in cache.
3330  * FIXME, needs more benchmarking...there are no reasons other than performance
3331  * to keep or drop this code.
3332  */
3333 void btrfs_dirty_inode(struct inode *inode)
3334 {
3335         struct btrfs_root *root = BTRFS_I(inode)->root;
3336         struct btrfs_trans_handle *trans;
3337
3338         trans = btrfs_join_transaction(root, 1);
3339         btrfs_set_trans_block_group(trans, inode);
3340         btrfs_update_inode(trans, root, inode);
3341         btrfs_end_transaction(trans, root);
3342 }
3343
3344 /*
3345  * find the highest existing sequence number in a directory
3346  * and then set the in-memory index_cnt variable to reflect
3347  * free sequence numbers
3348  */
3349 static int btrfs_set_inode_index_count(struct inode *inode)
3350 {
3351         struct btrfs_root *root = BTRFS_I(inode)->root;
3352         struct btrfs_key key, found_key;
3353         struct btrfs_path *path;
3354         struct extent_buffer *leaf;
3355         int ret;
3356
3357         key.objectid = inode->i_ino;
3358         btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
3359         key.offset = (u64)-1;
3360
3361         path = btrfs_alloc_path();
3362         if (!path)
3363                 return -ENOMEM;
3364
3365         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3366         if (ret < 0)
3367                 goto out;
3368         /* FIXME: we should be able to handle this */
3369         if (ret == 0)
3370                 goto out;
3371         ret = 0;
3372
3373         /*
3374          * MAGIC NUMBER EXPLANATION:
3375          * since we search a directory based on f_pos we have to start at 2
3376          * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
3377          * else has to start at 2
3378          */
3379         if (path->slots[0] == 0) {
3380                 BTRFS_I(inode)->index_cnt = 2;
3381                 goto out;
3382         }
3383
3384         path->slots[0]--;
3385
3386         leaf = path->nodes[0];
3387         btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3388
3389         if (found_key.objectid != inode->i_ino ||
3390             btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
3391                 BTRFS_I(inode)->index_cnt = 2;
3392                 goto out;
3393         }
3394
3395         BTRFS_I(inode)->index_cnt = found_key.offset + 1;
3396 out:
3397         btrfs_free_path(path);
3398         return ret;
3399 }
3400
3401 /*
3402  * helper to find a free sequence number in a given directory.  This current
3403  * code is very simple, later versions will do smarter things in the btree
3404  */
3405 int btrfs_set_inode_index(struct inode *dir, u64 *index)
3406 {
3407         int ret = 0;
3408
3409         if (BTRFS_I(dir)->index_cnt == (u64)-1) {
3410                 ret = btrfs_set_inode_index_count(dir);
3411                 if (ret)
3412                         return ret;
3413         }
3414
3415         *index = BTRFS_I(dir)->index_cnt;
3416         BTRFS_I(dir)->index_cnt++;
3417
3418         return ret;
3419 }
3420
3421 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
3422                                      struct btrfs_root *root,
3423                                      struct inode *dir,
3424                                      const char *name, int name_len,
3425                                      u64 ref_objectid, u64 objectid,
3426                                      u64 alloc_hint, int mode, u64 *index)
3427 {
3428         struct inode *inode;
3429         struct btrfs_inode_item *inode_item;
3430         struct btrfs_key *location;
3431         struct btrfs_path *path;
3432         struct btrfs_inode_ref *ref;
3433         struct btrfs_key key[2];
3434         u32 sizes[2];
3435         unsigned long ptr;
3436         int ret;
3437         int owner;
3438
3439         path = btrfs_alloc_path();
3440         BUG_ON(!path);
3441
3442         inode = new_inode(root->fs_info->sb);
3443         if (!inode)
3444                 return ERR_PTR(-ENOMEM);
3445
3446         if (dir) {
3447                 ret = btrfs_set_inode_index(dir, index);
3448                 if (ret)
3449                         return ERR_PTR(ret);
3450         }
3451         /*
3452          * index_cnt is ignored for everything but a dir,
3453          * btrfs_get_inode_index_count has an explanation for the magic
3454          * number
3455          */
3456         init_btrfs_i(inode);
3457         BTRFS_I(inode)->index_cnt = 2;
3458         BTRFS_I(inode)->root = root;
3459         BTRFS_I(inode)->generation = trans->transid;
3460
3461         if (mode & S_IFDIR)
3462                 owner = 0;
3463         else
3464                 owner = 1;
3465         BTRFS_I(inode)->block_group =
3466                         btrfs_find_block_group(root, 0, alloc_hint, owner);
3467         if ((mode & S_IFREG)) {
3468                 if (btrfs_test_opt(root, NODATASUM))
3469                         btrfs_set_flag(inode, NODATASUM);
3470                 if (btrfs_test_opt(root, NODATACOW))
3471                         btrfs_set_flag(inode, NODATACOW);
3472         }
3473
3474         key[0].objectid = objectid;
3475         btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
3476         key[0].offset = 0;
3477
3478         key[1].objectid = objectid;
3479         btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
3480         key[1].offset = ref_objectid;
3481
3482         sizes[0] = sizeof(struct btrfs_inode_item);
3483         sizes[1] = name_len + sizeof(*ref);
3484
3485         ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
3486         if (ret != 0)
3487                 goto fail;
3488
3489         if (objectid > root->highest_inode)
3490                 root->highest_inode = objectid;
3491
3492         inode->i_uid = current_fsuid();
3493
3494         if (dir && (dir->i_mode & S_ISGID)) {
3495                 inode->i_gid = dir->i_gid;
3496                 if (S_ISDIR(mode))
3497                         mode |= S_ISGID;
3498         } else
3499                 inode->i_gid = current_fsgid();
3500
3501         inode->i_mode = mode;
3502         inode->i_ino = objectid;
3503         inode_set_bytes(inode, 0);
3504         inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
3505         inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3506                                   struct btrfs_inode_item);
3507         fill_inode_item(trans, path->nodes[0], inode_item, inode);
3508
3509         ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
3510                              struct btrfs_inode_ref);
3511         btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
3512         btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
3513         ptr = (unsigned long)(ref + 1);
3514         write_extent_buffer(path->nodes[0], name, ptr, name_len);
3515
3516         btrfs_mark_buffer_dirty(path->nodes[0]);
3517         btrfs_free_path(path);
3518
3519         location = &BTRFS_I(inode)->location;
3520         location->objectid = objectid;
3521         location->offset = 0;
3522         btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
3523
3524         insert_inode_hash(inode);
3525         return inode;
3526 fail:
3527         if (dir)
3528                 BTRFS_I(dir)->index_cnt--;
3529         btrfs_free_path(path);
3530         return ERR_PTR(ret);
3531 }
3532
3533 static inline u8 btrfs_inode_type(struct inode *inode)
3534 {
3535         return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
3536 }
3537
3538 /*
3539  * utility function to add 'inode' into 'parent_inode' with
3540  * a give name and a given sequence number.
3541  * if 'add_backref' is true, also insert a backref from the
3542  * inode to the parent directory.
3543  */
3544 int btrfs_add_link(struct btrfs_trans_handle *trans,
3545                    struct inode *parent_inode, struct inode *inode,
3546                    const char *name, int name_len, int add_backref, u64 index)
3547 {
3548         int ret;
3549         struct btrfs_key key;
3550         struct btrfs_root *root = BTRFS_I(parent_inode)->root;
3551
3552         key.objectid = inode->i_ino;
3553         btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
3554         key.offset = 0;
3555
3556         ret = btrfs_insert_dir_item(trans, root, name, name_len,
3557                                     parent_inode->i_ino,
3558                                     &key, btrfs_inode_type(inode),
3559                                     index);
3560         if (ret == 0) {
3561                 if (add_backref) {
3562                         ret = btrfs_insert_inode_ref(trans, root,
3563                                                      name, name_len,
3564                                                      inode->i_ino,
3565                                                      parent_inode->i_ino,
3566                                                      index);
3567                 }
3568                 btrfs_i_size_write(parent_inode, parent_inode->i_size +
3569                                    name_len * 2);
3570                 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
3571                 ret = btrfs_update_inode(trans, root, parent_inode);
3572         }
3573         return ret;
3574 }
3575
3576 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
3577                             struct dentry *dentry, struct inode *inode,
3578                             int backref, u64 index)
3579 {
3580         int err = btrfs_add_link(trans, dentry->d_parent->d_inode,
3581                                  inode, dentry->d_name.name,
3582                                  dentry->d_name.len, backref, index);
3583         if (!err) {
3584                 d_instantiate(dentry, inode);
3585                 return 0;
3586         }
3587         if (err > 0)
3588                 err = -EEXIST;
3589         return err;
3590 }
3591
3592 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
3593                         int mode, dev_t rdev)
3594 {
3595         struct btrfs_trans_handle *trans;
3596         struct btrfs_root *root = BTRFS_I(dir)->root;
3597         struct inode *inode = NULL;
3598         int err;
3599         int drop_inode = 0;
3600         u64 objectid;
3601         unsigned long nr = 0;
3602         u64 index = 0;
3603
3604         if (!new_valid_dev(rdev))
3605                 return -EINVAL;
3606
3607         err = btrfs_check_free_space(root, 1, 0);
3608         if (err)
3609                 goto fail;
3610
3611         trans = btrfs_start_transaction(root, 1);
3612         btrfs_set_trans_block_group(trans, dir);
3613
3614         err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
3615         if (err) {
3616                 err = -ENOSPC;
3617                 goto out_unlock;
3618         }
3619
3620         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
3621                                 dentry->d_name.len,
3622                                 dentry->d_parent->d_inode->i_ino, objectid,
3623                                 BTRFS_I(dir)->block_group, mode, &index);
3624         err = PTR_ERR(inode);
3625         if (IS_ERR(inode))
3626                 goto out_unlock;
3627
3628         err = btrfs_init_inode_security(inode, dir);
3629         if (err) {
3630                 drop_inode = 1;
3631                 goto out_unlock;
3632         }
3633
3634         btrfs_set_trans_block_group(trans, inode);
3635         err = btrfs_add_nondir(trans, dentry, inode, 0, index);
3636         if (err)
3637                 drop_inode = 1;
3638         else {
3639                 inode->i_op = &btrfs_special_inode_operations;
3640                 init_special_inode(inode, inode->i_mode, rdev);
3641                 btrfs_update_inode(trans, root, inode);
3642         }
3643         dir->i_sb->s_dirt = 1;
3644         btrfs_update_inode_block_group(trans, inode);
3645         btrfs_update_inode_block_group(trans, dir);
3646 out_unlock:
3647         nr = trans->blocks_used;
3648         btrfs_end_transaction_throttle(trans, root);
3649 fail:
3650         if (drop_inode) {
3651                 inode_dec_link_count(inode);
3652                 iput(inode);
3653         }
3654         btrfs_btree_balance_dirty(root, nr);
3655         return err;
3656 }
3657
3658 static int btrfs_create(struct inode *dir, struct dentry *dentry,
3659                         int mode, struct nameidata *nd)
3660 {
3661         struct btrfs_trans_handle *trans;
3662         struct btrfs_root *root = BTRFS_I(dir)->root;
3663         struct inode *inode = NULL;
3664         int err;
3665         int drop_inode = 0;
3666         unsigned long nr = 0;
3667         u64 objectid;
3668         u64 index = 0;
3669
3670         err = btrfs_check_free_space(root, 1, 0);
3671         if (err)
3672                 goto fail;
3673         trans = btrfs_start_transaction(root, 1);
3674         btrfs_set_trans_block_group(trans, dir);
3675
3676         err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
3677         if (err) {
3678                 err = -ENOSPC;
3679                 goto out_unlock;
3680         }
3681
3682         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
3683                                 dentry->d_name.len,
3684                                 dentry->d_parent->d_inode->i_ino,
3685                                 objectid, BTRFS_I(dir)->block_group, mode,
3686                                 &index);
3687         err = PTR_ERR(inode);
3688         if (IS_ERR(inode))
3689                 goto out_unlock;
3690
3691         err = btrfs_init_inode_security(inode, dir);
3692         if (err) {
3693                 drop_inode = 1;
3694                 goto out_unlock;
3695         }
3696
3697         btrfs_set_trans_block_group(trans, inode);
3698         err = btrfs_add_nondir(trans, dentry, inode, 0, index);
3699         if (err)
3700                 drop_inode = 1;
3701         else {
3702                 inode->i_mapping->a_ops = &btrfs_aops;
3703                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
3704                 inode->i_fop = &btrfs_file_operations;
3705                 inode->i_op = &btrfs_file_inode_operations;
3706                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3707         }
3708         dir->i_sb->s_dirt = 1;
3709         btrfs_update_inode_block_group(trans, inode);
3710         btrfs_update_inode_block_group(trans, dir);
3711 out_unlock:
3712         nr = trans->blocks_used;
3713         btrfs_end_transaction_throttle(trans, root);
3714 fail:
3715         if (drop_inode) {
3716                 inode_dec_link_count(inode);
3717                 iput(inode);
3718         }
3719         btrfs_btree_balance_dirty(root, nr);
3720         return err;
3721 }
3722
3723 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
3724                       struct dentry *dentry)
3725 {
3726         struct btrfs_trans_handle *trans;
3727         struct btrfs_root *root = BTRFS_I(dir)->root;
3728         struct inode *inode = old_dentry->d_inode;
3729         u64 index;
3730         unsigned long nr = 0;
3731         int err;
3732         int drop_inode = 0;
3733
3734         if (inode->i_nlink == 0)
3735                 return -ENOENT;
3736
3737         btrfs_inc_nlink(inode);
3738         err = btrfs_check_free_space(root, 1, 0);
3739         if (err)
3740                 goto fail;
3741         err = btrfs_set_inode_index(dir, &index);
3742         if (err)
3743                 goto fail;
3744
3745         trans = btrfs_start_transaction(root, 1);
3746
3747         btrfs_set_trans_block_group(trans, dir);
3748         atomic_inc(&inode->i_count);
3749
3750         err = btrfs_add_nondir(trans, dentry, inode, 1, index);
3751
3752         if (err)
3753                 drop_inode = 1;
3754
3755         dir->i_sb->s_dirt = 1;
3756         btrfs_update_inode_block_group(trans, dir);
3757         err = btrfs_update_inode(trans, root, inode);
3758
3759         if (err)
3760                 drop_inode = 1;
3761
3762         nr = trans->blocks_used;
3763         btrfs_end_transaction_throttle(trans, root);
3764 fail:
3765         if (drop_inode) {
3766                 inode_dec_link_count(inode);
3767                 iput(inode);
3768         }
3769         btrfs_btree_balance_dirty(root, nr);
3770         return err;
3771 }
3772
3773 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
3774 {
3775         struct inode *inode = NULL;
3776         struct btrfs_trans_handle *trans;
3777         struct btrfs_root *root = BTRFS_I(dir)->root;
3778         int err = 0;
3779         int drop_on_err = 0;
3780         u64 objectid = 0;
3781         u64 index = 0;
3782         unsigned long nr = 1;
3783
3784         err = btrfs_check_free_space(root, 1, 0);
3785         if (err)
3786                 goto out_unlock;
3787
3788         trans = btrfs_start_transaction(root, 1);
3789         btrfs_set_trans_block_group(trans, dir);
3790
3791         if (IS_ERR(trans)) {
3792                 err = PTR_ERR(trans);
3793                 goto out_unlock;
3794         }
3795
3796         err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
3797         if (err) {
3798                 err = -ENOSPC;
3799                 goto out_unlock;
3800         }
3801
3802         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
3803                                 dentry->d_name.len,
3804                                 dentry->d_parent->d_inode->i_ino, objectid,
3805                                 BTRFS_I(dir)->block_group, S_IFDIR | mode,
3806                                 &index);
3807         if (IS_ERR(inode)) {
3808                 err = PTR_ERR(inode);
3809                 goto out_fail;
3810         }
3811
3812         drop_on_err = 1;
3813
3814         err = btrfs_init_inode_security(inode, dir);
3815         if (err)
3816                 goto out_fail;
3817
3818         inode->i_op = &btrfs_dir_inode_operations;
3819         inode->i_fop = &btrfs_dir_file_operations;
3820         btrfs_set_trans_block_group(trans, inode);
3821
3822         btrfs_i_size_write(inode, 0);
3823         err = btrfs_update_inode(trans, root, inode);
3824         if (err)
3825                 goto out_fail;
3826
3827         err = btrfs_add_link(trans, dentry->d_parent->d_inode,
3828                                  inode, dentry->d_name.name,
3829                                  dentry->d_name.len, 0, index);
3830         if (err)
3831                 goto out_fail;
3832
3833         d_instantiate(dentry, inode);
3834         drop_on_err = 0;
3835         dir->i_sb->s_dirt = 1;
3836         btrfs_update_inode_block_group(trans, inode);
3837         btrfs_update_inode_block_group(trans, dir);
3838
3839 out_fail:
3840         nr = trans->blocks_used;
3841         btrfs_end_transaction_throttle(trans, root);
3842
3843 out_unlock:
3844         if (drop_on_err)
3845                 iput(inode);
3846         btrfs_btree_balance_dirty(root, nr);
3847         return err;
3848 }
3849
3850 /* helper for btfs_get_extent.  Given an existing extent in the tree,
3851  * and an extent that you want to insert, deal with overlap and insert
3852  * the new extent into the tree.
3853  */
3854 static int merge_extent_mapping(struct extent_map_tree *em_tree,
3855                                 struct extent_map *existing,
3856                                 struct extent_map *em,
3857                                 u64 map_start, u64 map_len)
3858 {
3859         u64 start_diff;
3860
3861         BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
3862         start_diff = map_start - em->start;
3863         em->start = map_start;
3864         em->len = map_len;
3865         if (em->block_start < EXTENT_MAP_LAST_BYTE &&
3866             !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
3867                 em->block_start += start_diff;
3868                 em->block_len -= start_diff;
3869         }
3870         return add_extent_mapping(em_tree, em);
3871 }
3872
3873 static noinline int uncompress_inline(struct btrfs_path *path,
3874                                       struct inode *inode, struct page *page,
3875                                       size_t pg_offset, u64 extent_offset,
3876                                       struct btrfs_file_extent_item *item)
3877 {
3878         int ret;
3879         struct extent_buffer *leaf = path->nodes[0];
3880         char *tmp;
3881         size_t max_size;
3882         unsigned long inline_size;
3883         unsigned long ptr;
3884
3885         WARN_ON(pg_offset != 0);
3886         max_size = btrfs_file_extent_ram_bytes(leaf, item);
3887         inline_size = btrfs_file_extent_inline_item_len(leaf,
3888                                         btrfs_item_nr(leaf, path->slots[0]));
3889         tmp = kmalloc(inline_size, GFP_NOFS);
3890         ptr = btrfs_file_extent_inline_start(item);
3891
3892         read_extent_buffer(leaf, tmp, ptr, inline_size);
3893
3894         max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
3895         ret = btrfs_zlib_decompress(tmp, page, extent_offset,
3896                                     inline_size, max_size);
3897         if (ret) {
3898                 char *kaddr = kmap_atomic(page, KM_USER0);
3899                 unsigned long copy_size = min_t(u64,
3900                                   PAGE_CACHE_SIZE - pg_offset,
3901                                   max_size - extent_offset);
3902                 memset(kaddr + pg_offset, 0, copy_size);
3903                 kunmap_atomic(kaddr, KM_USER0);
3904         }
3905         kfree(tmp);
3906         return 0;
3907 }
3908
3909 /*
3910  * a bit scary, this does extent mapping from logical file offset to the disk.
3911  * the ugly parts come from merging extents from the disk with the in-ram
3912  * representation.  This gets more complex because of the data=ordered code,
3913  * where the in-ram extents might be locked pending data=ordered completion.
3914  *
3915  * This also copies inline extents directly into the page.
3916  */
3917
3918 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
3919                                     size_t pg_offset, u64 start, u64 len,
3920                                     int create)
3921 {
3922         int ret;
3923         int err = 0;
3924         u64 bytenr;
3925         u64 extent_start = 0;
3926         u64 extent_end = 0;
3927         u64 objectid = inode->i_ino;
3928         u32 found_type;
3929         struct btrfs_path *path = NULL;
3930         struct btrfs_root *root = BTRFS_I(inode)->root;
3931         struct btrfs_file_extent_item *item;
3932         struct extent_buffer *leaf;
3933         struct btrfs_key found_key;
3934         struct extent_map *em = NULL;
3935         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
3936         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3937         struct btrfs_trans_handle *trans = NULL;
3938         int compressed;
3939
3940 again:
3941         spin_lock(&em_tree->lock);
3942         em = lookup_extent_mapping(em_tree, start, len);
3943         if (em)
3944                 em->bdev = root->fs_info->fs_devices->latest_bdev;
3945         spin_unlock(&em_tree->lock);
3946
3947         if (em) {
3948                 if (em->start > start || em->start + em->len <= start)
3949                         free_extent_map(em);
3950                 else if (em->block_start == EXTENT_MAP_INLINE && page)
3951                         free_extent_map(em);
3952                 else
3953                         goto out;
3954         }
3955         em = alloc_extent_map(GFP_NOFS);
3956         if (!em) {
3957                 err = -ENOMEM;
3958                 goto out;
3959         }
3960         em->bdev = root->fs_info->fs_devices->latest_bdev;
3961         em->start = EXTENT_MAP_HOLE;
3962         em->orig_start = EXTENT_MAP_HOLE;
3963         em->len = (u64)-1;
3964         em->block_len = (u64)-1;
3965
3966         if (!path) {
3967                 path = btrfs_alloc_path();
3968                 BUG_ON(!path);
3969         }
3970
3971         ret = btrfs_lookup_file_extent(trans, root, path,
3972                                        objectid, start, trans != NULL);
3973         if (ret < 0) {
3974                 err = ret;
3975                 goto out;
3976         }
3977
3978         if (ret != 0) {
3979                 if (path->slots[0] == 0)
3980                         goto not_found;
3981                 path->slots[0]--;
3982         }
3983
3984         leaf = path->nodes[0];
3985         item = btrfs_item_ptr(leaf, path->slots[0],
3986                               struct btrfs_file_extent_item);
3987         /* are we inside the extent that was found? */
3988         btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3989         found_type = btrfs_key_type(&found_key);
3990         if (found_key.objectid != objectid ||
3991             found_type != BTRFS_EXTENT_DATA_KEY) {
3992                 goto not_found;
3993         }
3994
3995         found_type = btrfs_file_extent_type(leaf, item);
3996         extent_start = found_key.offset;
3997         compressed = btrfs_file_extent_compression(leaf, item);
3998         if (found_type == BTRFS_FILE_EXTENT_REG ||
3999             found_type == BTRFS_FILE_EXTENT_PREALLOC) {
4000                 extent_end = extent_start +
4001                        btrfs_file_extent_num_bytes(leaf, item);
4002         } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
4003                 size_t size;
4004                 size = btrfs_file_extent_inline_len(leaf, item);
4005                 extent_end = (extent_start + size + root->sectorsize - 1) &
4006                         ~((u64)root->sectorsize - 1);
4007         }
4008
4009         if (start >= extent_end) {
4010                 path->slots[0]++;
4011                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
4012                         ret = btrfs_next_leaf(root, path);
4013                         if (ret < 0) {
4014                                 err = ret;
4015                                 goto out;
4016                         }
4017                         if (ret > 0)
4018                                 goto not_found;
4019                         leaf = path->nodes[0];
4020                 }
4021                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4022                 if (found_key.objectid != objectid ||
4023                     found_key.type != BTRFS_EXTENT_DATA_KEY)
4024                         goto not_found;
4025                 if (start + len <= found_key.offset)
4026                         goto not_found;
4027                 em->start = start;
4028                 em->len = found_key.offset - start;
4029                 goto not_found_em;
4030         }
4031
4032         if (found_type == BTRFS_FILE_EXTENT_REG ||
4033             found_type == BTRFS_FILE_EXTENT_PREALLOC) {
4034                 em->start = extent_start;
4035                 em->len = extent_end - extent_start;
4036                 em->orig_start = extent_start -
4037                                  btrfs_file_extent_offset(leaf, item);
4038                 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
4039                 if (bytenr == 0) {
4040                         em->block_start = EXTENT_MAP_HOLE;
4041                         goto insert;
4042                 }
4043                 if (compressed) {
4044                         set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
4045                         em->block_start = bytenr;
4046                         em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
4047                                                                          item);
4048                 } else {
4049                         bytenr += btrfs_file_extent_offset(leaf, item);
4050                         em->block_start = bytenr;
4051                         em->block_len = em->len;
4052                         if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
4053                                 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
4054                 }
4055                 goto insert;
4056         } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
4057                 unsigned long ptr;
4058                 char *map;
4059                 size_t size;
4060                 size_t extent_offset;
4061                 size_t copy_size;
4062
4063                 em->block_start = EXTENT_MAP_INLINE;
4064                 if (!page || create) {
4065                         em->start = extent_start;
4066                         em->len = extent_end - extent_start;
4067                         goto out;
4068                 }
4069
4070                 size = btrfs_file_extent_inline_len(leaf, item);
4071                 extent_offset = page_offset(page) + pg_offset - extent_start;
4072                 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
4073                                 size - extent_offset);
4074                 em->start = extent_start + extent_offset;
4075                 em->len = (copy_size + root->sectorsize - 1) &
4076                         ~((u64)root->sectorsize - 1);
4077                 em->orig_start = EXTENT_MAP_INLINE;
4078                 if (compressed)
4079                         set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
4080                 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
4081                 if (create == 0 && !PageUptodate(page)) {
4082                         if (btrfs_file_extent_compression(leaf, item) ==
4083                             BTRFS_COMPRESS_ZLIB) {
4084                                 ret = uncompress_inline(path, inode, page,
4085                                                         pg_offset,
4086                                                         extent_offset, item);
4087                                 BUG_ON(ret);
4088                         } else {
4089                                 map = kmap(page);
4090                                 read_extent_buffer(leaf, map + pg_offset, ptr,
4091                                                    copy_size);
4092                                 kunmap(page);
4093                         }
4094                         flush_dcache_page(page);
4095                 } else if (create && PageUptodate(page)) {
4096                         if (!trans) {
4097                                 kunmap(page);
4098                                 free_extent_map(em);
4099                                 em = NULL;
4100                                 btrfs_release_path(root, path);
4101                                 trans = btrfs_join_transaction(root, 1);
4102                                 goto again;
4103                         }
4104                         map = kmap(page);
4105                         write_extent_buffer(leaf, map + pg_offset, ptr,
4106                                             copy_size);
4107                         kunmap(page);
4108                         btrfs_mark_buffer_dirty(leaf);
4109                 }
4110                 set_extent_uptodate(io_tree, em->start,
4111                                     extent_map_end(em) - 1, GFP_NOFS);
4112                 goto insert;
4113         } else {
4114                 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
4115                 WARN_ON(1);
4116         }
4117 not_found:
4118         em->start = start;
4119         em->len = len;
4120 not_found_em:
4121         em->block_start = EXTENT_MAP_HOLE;
4122         set_bit(EXTENT_FLAG_VACANCY, &em->flags);
4123 insert:
4124         btrfs_release_path(root, path);
4125         if (em->start > start || extent_map_end(em) <= start) {
4126                 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
4127                        "[%llu %llu]\n", (unsigned long long)em->start,
4128                        (unsigned long long)em->len,
4129                        (unsigned long long)start,
4130                        (unsigned long long)len);
4131                 err = -EIO;
4132                 goto out;
4133         }
4134
4135         err = 0;
4136         spin_lock(&em_tree->lock);
4137         ret = add_extent_mapping(em_tree, em);
4138         /* it is possible that someone inserted the extent into the tree
4139          * while we had the lock dropped.  It is also possible that
4140          * an overlapping map exists in the tree
4141          */
4142         if (ret == -EEXIST) {
4143                 struct extent_map *existing;
4144
4145                 ret = 0;
4146
4147                 existing = lookup_extent_mapping(em_tree, start, len);
4148                 if (existing && (existing->start > start ||
4149                     existing->start + existing->len <= start)) {
4150                         free_extent_map(existing);
4151                         existing = NULL;
4152                 }
4153                 if (!existing) {
4154                         existing = lookup_extent_mapping(em_tree, em->start,
4155                                                          em->len);
4156                         if (existing) {
4157                                 err = merge_extent_mapping(em_tree, existing,
4158                                                            em, start,
4159                                                            root->sectorsize);
4160                                 free_extent_map(existing);
4161                                 if (err) {
4162                                         free_extent_map(em);
4163                                         em = NULL;
4164                                 }
4165                         } else {
4166                                 err = -EIO;
4167                                 free_extent_map(em);
4168                                 em = NULL;
4169                         }
4170                 } else {
4171                         free_extent_map(em);
4172                         em = existing;
4173                         err = 0;
4174                 }
4175         }
4176         spin_unlock(&em_tree->lock);
4177 out:
4178         if (path)
4179                 btrfs_free_path(path);
4180         if (trans) {
4181                 ret = btrfs_end_transaction(trans, root);
4182                 if (!err)
4183                         err = ret;
4184         }
4185         if (err) {
4186                 free_extent_map(em);
4187                 WARN_ON(1);
4188                 return ERR_PTR(err);
4189         }
4190         return em;
4191 }
4192
4193 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
4194                         const struct iovec *iov, loff_t offset,
4195                         unsigned long nr_segs)
4196 {
4197         return -EINVAL;
4198 }
4199
4200 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4201                 __u64 start, __u64 len)
4202 {
4203         return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent);
4204 }
4205
4206 int btrfs_readpage(struct file *file, struct page *page)
4207 {
4208         struct extent_io_tree *tree;
4209         tree = &BTRFS_I(page->mapping->host)->io_tree;
4210         return extent_read_full_page(tree, page, btrfs_get_extent);
4211 }
4212
4213 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
4214 {
4215         struct extent_io_tree *tree;
4216
4217
4218         if (current->flags & PF_MEMALLOC) {
4219                 redirty_page_for_writepage(wbc, page);
4220                 unlock_page(page);
4221                 return 0;
4222         }
4223         tree = &BTRFS_I(page->mapping->host)->io_tree;
4224         return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
4225 }
4226
4227 int btrfs_writepages(struct address_space *mapping,
4228                      struct writeback_control *wbc)
4229 {
4230         struct extent_io_tree *tree;
4231
4232         tree = &BTRFS_I(mapping->host)->io_tree;
4233         return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
4234 }
4235
4236 static int
4237 btrfs_readpages(struct file *file, struct address_space *mapping,
4238                 struct list_head *pages, unsigned nr_pages)
4239 {
4240         struct extent_io_tree *tree;
4241         tree = &BTRFS_I(mapping->host)->io_tree;
4242         return extent_readpages(tree, mapping, pages, nr_pages,
4243                                 btrfs_get_extent);
4244 }
4245 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
4246 {
4247         struct extent_io_tree *tree;
4248         struct extent_map_tree *map;
4249         int ret;
4250
4251         tree = &BTRFS_I(page->mapping->host)->io_tree;
4252         map = &BTRFS_I(page->mapping->host)->extent_tree;
4253         ret = try_release_extent_mapping(map, tree, page, gfp_flags);
4254         if (ret == 1) {
4255                 ClearPagePrivate(page);
4256                 set_page_private(page, 0);
4257                 page_cache_release(page);
4258         }
4259         return ret;
4260 }
4261
4262 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
4263 {
4264         if (PageWriteback(page) || PageDirty(page))
4265                 return 0;
4266         return __btrfs_releasepage(page, gfp_flags);
4267 }
4268
4269 static void btrfs_invalidatepage(struct page *page, unsigned long offset)
4270 {
4271         struct extent_io_tree *tree;
4272         struct btrfs_ordered_extent *ordered;
4273         u64 page_start = page_offset(page);
4274         u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
4275
4276         wait_on_page_writeback(page);
4277         tree = &BTRFS_I(page->mapping->host)->io_tree;
4278         if (offset) {
4279                 btrfs_releasepage(page, GFP_NOFS);
4280                 return;
4281         }
4282
4283         lock_extent(tree, page_start, page_end, GFP_NOFS);
4284         ordered = btrfs_lookup_ordered_extent(page->mapping->host,
4285                                            page_offset(page));
4286         if (ordered) {
4287                 /*
4288                  * IO on this page will never be started, so we need
4289                  * to account for any ordered extents now
4290                  */
4291                 clear_extent_bit(tree, page_start, page_end,
4292                                  EXTENT_DIRTY | EXTENT_DELALLOC |
4293                                  EXTENT_LOCKED, 1, 0, GFP_NOFS);
4294                 btrfs_finish_ordered_io(page->mapping->host,
4295                                         page_start, page_end);
4296                 btrfs_put_ordered_extent(ordered);
4297                 lock_extent(tree, page_start, page_end, GFP_NOFS);
4298         }
4299         clear_extent_bit(tree, page_start, page_end,
4300                  EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4301                  EXTENT_ORDERED,
4302                  1, 1, GFP_NOFS);
4303         __btrfs_releasepage(page, GFP_NOFS);
4304
4305         ClearPageChecked(page);
4306         if (PagePrivate(page)) {
4307                 ClearPagePrivate(page);
4308                 set_page_private(page, 0);
4309                 page_cache_release(page);
4310         }
4311 }
4312
4313 /*
4314  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
4315  * called from a page fault handler when a page is first dirtied. Hence we must
4316  * be careful to check for EOF conditions here. We set the page up correctly
4317  * for a written page which means we get ENOSPC checking when writing into
4318  * holes and correct delalloc and unwritten extent mapping on filesystems that
4319  * support these features.
4320  *
4321  * We are not allowed to take the i_mutex here so we have to play games to
4322  * protect against truncate races as the page could now be beyond EOF.  Because
4323  * vmtruncate() writes the inode size before removing pages, once we have the
4324  * page lock we can determine safely if the page is beyond EOF. If it is not
4325  * beyond EOF, then the page is guaranteed safe against truncation until we
4326  * unlock the page.
4327  */
4328 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct page *page)
4329 {
4330         struct inode *inode = fdentry(vma->vm_file)->d_inode;
4331         struct btrfs_root *root = BTRFS_I(inode)->root;
4332         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4333         struct btrfs_ordered_extent *ordered;
4334         char *kaddr;
4335         unsigned long zero_start;
4336         loff_t size;
4337         int ret;
4338         u64 page_start;
4339         u64 page_end;
4340
4341         ret = btrfs_check_free_space(root, PAGE_CACHE_SIZE, 0);
4342         if (ret)
4343                 goto out;
4344
4345         ret = -EINVAL;
4346 again:
4347         lock_page(page);
4348         size = i_size_read(inode);
4349         page_start = page_offset(page);
4350         page_end = page_start + PAGE_CACHE_SIZE - 1;
4351
4352         if ((page->mapping != inode->i_mapping) ||
4353             (page_start >= size)) {
4354                 /* page got truncated out from underneath us */
4355                 goto out_unlock;
4356         }
4357         wait_on_page_writeback(page);
4358
4359         lock_extent(io_tree, page_start, page_end, GFP_NOFS);
4360         set_page_extent_mapped(page);
4361
4362         /*
4363          * we can't set the delalloc bits if there are pending ordered
4364          * extents.  Drop our locks and wait for them to finish
4365          */
4366         ordered = btrfs_lookup_ordered_extent(inode, page_start);
4367         if (ordered) {
4368                 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
4369                 unlock_page(page);
4370                 btrfs_start_ordered_extent(inode, ordered, 1);
4371                 btrfs_put_ordered_extent(ordered);
4372                 goto again;
4373         }
4374
4375         btrfs_set_extent_delalloc(inode, page_start, page_end);
4376         ret = 0;
4377
4378         /* page is wholly or partially inside EOF */
4379         if (page_start + PAGE_CACHE_SIZE > size)
4380                 zero_start = size & ~PAGE_CACHE_MASK;
4381         else
4382                 zero_start = PAGE_CACHE_SIZE;
4383
4384         if (zero_start != PAGE_CACHE_SIZE) {
4385                 kaddr = kmap(page);
4386                 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
4387                 flush_dcache_page(page);
4388                 kunmap(page);
4389         }
4390         ClearPageChecked(page);
4391         set_page_dirty(page);
4392         unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
4393
4394 out_unlock:
4395         unlock_page(page);
4396 out:
4397         return ret;
4398 }
4399
4400 static void btrfs_truncate(struct inode *inode)
4401 {
4402         struct btrfs_root *root = BTRFS_I(inode)->root;
4403         int ret;
4404         struct btrfs_trans_handle *trans;
4405         unsigned long nr;
4406         u64 mask = root->sectorsize - 1;
4407
4408         if (!S_ISREG(inode->i_mode))
4409                 return;
4410         if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4411                 return;
4412
4413         btrfs_truncate_page(inode->i_mapping, inode->i_size);
4414         btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
4415
4416         trans = btrfs_start_transaction(root, 1);
4417         btrfs_set_trans_block_group(trans, inode);
4418         btrfs_i_size_write(inode, inode->i_size);
4419
4420         ret = btrfs_orphan_add(trans, inode);
4421         if (ret)
4422                 goto out;
4423         /* FIXME, add redo link to tree so we don't leak on crash */
4424         ret = btrfs_truncate_inode_items(trans, root, inode, inode->i_size,
4425                                       BTRFS_EXTENT_DATA_KEY);
4426         btrfs_update_inode(trans, root, inode);
4427
4428         ret = btrfs_orphan_del(trans, inode);
4429         BUG_ON(ret);
4430
4431 out:
4432         nr = trans->blocks_used;
4433         ret = btrfs_end_transaction_throttle(trans, root);
4434         BUG_ON(ret);
4435         btrfs_btree_balance_dirty(root, nr);
4436 }
4437
4438 /*
4439  * create a new subvolume directory/inode (helper for the ioctl).
4440  */
4441 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
4442                              struct btrfs_root *new_root, struct dentry *dentry,
4443                              u64 new_dirid, u64 alloc_hint)
4444 {
4445         struct inode *inode;
4446         int error;
4447         u64 index = 0;
4448
4449         inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
4450                                 new_dirid, alloc_hint, S_IFDIR | 0700, &index);
4451         if (IS_ERR(inode))
4452                 return PTR_ERR(inode);
4453         inode->i_op = &btrfs_dir_inode_operations;
4454         inode->i_fop = &btrfs_dir_file_operations;
4455
4456         inode->i_nlink = 1;
4457         btrfs_i_size_write(inode, 0);
4458
4459         error = btrfs_update_inode(trans, new_root, inode);
4460         if (error)
4461                 return error;
4462
4463         d_instantiate(dentry, inode);
4464         return 0;
4465 }
4466
4467 /* helper function for file defrag and space balancing.  This
4468  * forces readahead on a given range of bytes in an inode
4469  */
4470 unsigned long btrfs_force_ra(struct address_space *mapping,
4471                               struct file_ra_state *ra, struct file *file,
4472                               pgoff_t offset, pgoff_t last_index)
4473 {
4474         pgoff_t req_size = last_index - offset + 1;
4475
4476         page_cache_sync_readahead(mapping, ra, file, offset, req_size);
4477         return offset + req_size;
4478 }
4479
4480 struct inode *btrfs_alloc_inode(struct super_block *sb)
4481 {
4482         struct btrfs_inode *ei;
4483
4484         ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
4485         if (!ei)
4486                 return NULL;
4487         ei->last_trans = 0;
4488         ei->logged_trans = 0;
4489         btrfs_ordered_inode_tree_init(&ei->ordered_tree);
4490         ei->i_acl = BTRFS_ACL_NOT_CACHED;
4491         ei->i_default_acl = BTRFS_ACL_NOT_CACHED;
4492         INIT_LIST_HEAD(&ei->i_orphan);
4493         return &ei->vfs_inode;
4494 }
4495
4496 void btrfs_destroy_inode(struct inode *inode)
4497 {
4498         struct btrfs_ordered_extent *ordered;
4499         WARN_ON(!list_empty(&inode->i_dentry));
4500         WARN_ON(inode->i_data.nrpages);
4501
4502         if (BTRFS_I(inode)->i_acl &&
4503             BTRFS_I(inode)->i_acl != BTRFS_ACL_NOT_CACHED)
4504                 posix_acl_release(BTRFS_I(inode)->i_acl);
4505         if (BTRFS_I(inode)->i_default_acl &&
4506             BTRFS_I(inode)->i_default_acl != BTRFS_ACL_NOT_CACHED)
4507                 posix_acl_release(BTRFS_I(inode)->i_default_acl);
4508
4509         spin_lock(&BTRFS_I(inode)->root->list_lock);
4510         if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
4511                 printk(KERN_ERR "BTRFS: inode %lu: inode still on the orphan"
4512                        " list\n", inode->i_ino);
4513                 dump_stack();
4514         }
4515         spin_unlock(&BTRFS_I(inode)->root->list_lock);
4516
4517         while (1) {
4518                 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
4519                 if (!ordered)
4520                         break;
4521                 else {
4522                         printk(KERN_ERR "btrfs found ordered "
4523                                "extent %llu %llu on inode cleanup\n",
4524                                (unsigned long long)ordered->file_offset,
4525                                (unsigned long long)ordered->len);
4526                         btrfs_remove_ordered_extent(inode, ordered);
4527                         btrfs_put_ordered_extent(ordered);
4528                         btrfs_put_ordered_extent(ordered);
4529                 }
4530         }
4531         btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
4532         kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
4533 }
4534
4535 static void init_once(void *foo)
4536 {
4537         struct btrfs_inode *ei = (struct btrfs_inode *) foo;
4538
4539         inode_init_once(&ei->vfs_inode);
4540 }
4541
4542 void btrfs_destroy_cachep(void)
4543 {
4544         if (btrfs_inode_cachep)
4545                 kmem_cache_destroy(btrfs_inode_cachep);
4546         if (btrfs_trans_handle_cachep)
4547                 kmem_cache_destroy(btrfs_trans_handle_cachep);
4548         if (btrfs_transaction_cachep)
4549                 kmem_cache_destroy(btrfs_transaction_cachep);
4550         if (btrfs_bit_radix_cachep)
4551                 kmem_cache_destroy(btrfs_bit_radix_cachep);
4552         if (btrfs_path_cachep)
4553                 kmem_cache_destroy(btrfs_path_cachep);
4554 }
4555
4556 struct kmem_cache *btrfs_cache_create(const char *name, size_t size,
4557                                        unsigned long extra_flags,
4558                                        void (*ctor)(void *))
4559 {
4560         return kmem_cache_create(name, size, 0, (SLAB_RECLAIM_ACCOUNT |
4561                                  SLAB_MEM_SPREAD | extra_flags), ctor);
4562 }
4563
4564 int btrfs_init_cachep(void)
4565 {
4566         btrfs_inode_cachep = btrfs_cache_create("btrfs_inode_cache",
4567                                           sizeof(struct btrfs_inode),
4568                                           0, init_once);
4569         if (!btrfs_inode_cachep)
4570                 goto fail;
4571         btrfs_trans_handle_cachep =
4572                         btrfs_cache_create("btrfs_trans_handle_cache",
4573                                            sizeof(struct btrfs_trans_handle),
4574                                            0, NULL);
4575         if (!btrfs_trans_handle_cachep)
4576                 goto fail;
4577         btrfs_transaction_cachep = btrfs_cache_create("btrfs_transaction_cache",
4578                                              sizeof(struct btrfs_transaction),
4579                                              0, NULL);
4580         if (!btrfs_transaction_cachep)
4581                 goto fail;
4582         btrfs_path_cachep = btrfs_cache_create("btrfs_path_cache",
4583                                          sizeof(struct btrfs_path),
4584                                          0, NULL);
4585         if (!btrfs_path_cachep)
4586                 goto fail;
4587         btrfs_bit_radix_cachep = btrfs_cache_create("btrfs_radix", 256,
4588                                               SLAB_DESTROY_BY_RCU, NULL);
4589         if (!btrfs_bit_radix_cachep)
4590                 goto fail;
4591         return 0;
4592 fail:
4593         btrfs_destroy_cachep();
4594         return -ENOMEM;
4595 }
4596
4597 static int btrfs_getattr(struct vfsmount *mnt,
4598                          struct dentry *dentry, struct kstat *stat)
4599 {
4600         struct inode *inode = dentry->d_inode;
4601         generic_fillattr(inode, stat);
4602         stat->dev = BTRFS_I(inode)->root->anon_super.s_dev;
4603         stat->blksize = PAGE_CACHE_SIZE;
4604         stat->blocks = (inode_get_bytes(inode) +
4605                         BTRFS_I(inode)->delalloc_bytes) >> 9;
4606         return 0;
4607 }
4608
4609 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4610                            struct inode *new_dir, struct dentry *new_dentry)
4611 {
4612         struct btrfs_trans_handle *trans;
4613         struct btrfs_root *root = BTRFS_I(old_dir)->root;
4614         struct inode *new_inode = new_dentry->d_inode;
4615         struct inode *old_inode = old_dentry->d_inode;
4616         struct timespec ctime = CURRENT_TIME;
4617         u64 index = 0;
4618         int ret;
4619
4620         /* we're not allowed to rename between subvolumes */
4621         if (BTRFS_I(old_inode)->root->root_key.objectid !=
4622             BTRFS_I(new_dir)->root->root_key.objectid)
4623                 return -EXDEV;
4624
4625         if (S_ISDIR(old_inode->i_mode) && new_inode &&
4626             new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) {
4627                 return -ENOTEMPTY;
4628         }
4629
4630         /* to rename a snapshot or subvolume, we need to juggle the
4631          * backrefs.  This isn't coded yet
4632          */
4633         if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
4634                 return -EXDEV;
4635
4636         ret = btrfs_check_free_space(root, 1, 0);
4637         if (ret)
4638                 goto out_unlock;
4639
4640         trans = btrfs_start_transaction(root, 1);
4641
4642         btrfs_set_trans_block_group(trans, new_dir);
4643
4644         btrfs_inc_nlink(old_dentry->d_inode);
4645         old_dir->i_ctime = old_dir->i_mtime = ctime;
4646         new_dir->i_ctime = new_dir->i_mtime = ctime;
4647         old_inode->i_ctime = ctime;
4648
4649         ret = btrfs_unlink_inode(trans, root, old_dir, old_dentry->d_inode,
4650                                  old_dentry->d_name.name,
4651                                  old_dentry->d_name.len);
4652         if (ret)
4653                 goto out_fail;
4654
4655         if (new_inode) {
4656                 new_inode->i_ctime = CURRENT_TIME;
4657                 ret = btrfs_unlink_inode(trans, root, new_dir,
4658                                          new_dentry->d_inode,
4659                                          new_dentry->d_name.name,
4660                                          new_dentry->d_name.len);
4661                 if (ret)
4662                         goto out_fail;
4663                 if (new_inode->i_nlink == 0) {
4664                         ret = btrfs_orphan_add(trans, new_dentry->d_inode);
4665                         if (ret)
4666                                 goto out_fail;
4667                 }
4668
4669         }
4670         ret = btrfs_set_inode_index(new_dir, &index);
4671         if (ret)
4672                 goto out_fail;
4673
4674         ret = btrfs_add_link(trans, new_dentry->d_parent->d_inode,
4675                              old_inode, new_dentry->d_name.name,
4676                              new_dentry->d_name.len, 1, index);
4677         if (ret)
4678                 goto out_fail;
4679
4680 out_fail:
4681         btrfs_end_transaction_throttle(trans, root);
4682 out_unlock:
4683         return ret;
4684 }
4685
4686 /*
4687  * some fairly slow code that needs optimization. This walks the list
4688  * of all the inodes with pending delalloc and forces them to disk.
4689  */
4690 int btrfs_start_delalloc_inodes(struct btrfs_root *root)
4691 {
4692         struct list_head *head = &root->fs_info->delalloc_inodes;
4693         struct btrfs_inode *binode;
4694         struct inode *inode;
4695
4696         if (root->fs_info->sb->s_flags & MS_RDONLY)
4697                 return -EROFS;
4698
4699         spin_lock(&root->fs_info->delalloc_lock);
4700         while (!list_empty(head)) {
4701                 binode = list_entry(head->next, struct btrfs_inode,
4702                                     delalloc_inodes);
4703                 inode = igrab(&binode->vfs_inode);
4704                 if (!inode)
4705                         list_del_init(&binode->delalloc_inodes);
4706                 spin_unlock(&root->fs_info->delalloc_lock);
4707                 if (inode) {
4708                         filemap_flush(inode->i_mapping);
4709                         iput(inode);
4710                 }
4711                 cond_resched();
4712                 spin_lock(&root->fs_info->delalloc_lock);
4713         }
4714         spin_unlock(&root->fs_info->delalloc_lock);
4715
4716         /* the filemap_flush will queue IO into the worker threads, but
4717          * we have to make sure the IO is actually started and that
4718          * ordered extents get created before we return
4719          */
4720         atomic_inc(&root->fs_info->async_submit_draining);
4721         while (atomic_read(&root->fs_info->nr_async_submits) ||
4722               atomic_read(&root->fs_info->async_delalloc_pages)) {
4723                 wait_event(root->fs_info->async_submit_wait,
4724                    (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
4725                     atomic_read(&root->fs_info->async_delalloc_pages) == 0));
4726         }
4727         atomic_dec(&root->fs_info->async_submit_draining);
4728         return 0;
4729 }
4730
4731 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
4732                          const char *symname)
4733 {
4734         struct btrfs_trans_handle *trans;
4735         struct btrfs_root *root = BTRFS_I(dir)->root;
4736         struct btrfs_path *path;
4737         struct btrfs_key key;
4738         struct inode *inode = NULL;
4739         int err;
4740         int drop_inode = 0;
4741         u64 objectid;
4742         u64 index = 0 ;
4743         int name_len;
4744         int datasize;
4745         unsigned long ptr;
4746         struct btrfs_file_extent_item *ei;
4747         struct extent_buffer *leaf;
4748         unsigned long nr = 0;
4749
4750         name_len = strlen(symname) + 1;
4751         if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
4752                 return -ENAMETOOLONG;
4753
4754         err = btrfs_check_free_space(root, 1, 0);
4755         if (err)
4756                 goto out_fail;
4757
4758         trans = btrfs_start_transaction(root, 1);
4759         btrfs_set_trans_block_group(trans, dir);
4760
4761         err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
4762         if (err) {
4763                 err = -ENOSPC;
4764                 goto out_unlock;
4765         }
4766
4767         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4768                                 dentry->d_name.len,
4769                                 dentry->d_parent->d_inode->i_ino, objectid,
4770                                 BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO,
4771                                 &index);
4772         err = PTR_ERR(inode);
4773         if (IS_ERR(inode))
4774                 goto out_unlock;
4775
4776         err = btrfs_init_inode_security(inode, dir);
4777         if (err) {
4778                 drop_inode = 1;
4779                 goto out_unlock;
4780         }
4781
4782         btrfs_set_trans_block_group(trans, inode);
4783         err = btrfs_add_nondir(trans, dentry, inode, 0, index);
4784         if (err)
4785                 drop_inode = 1;
4786         else {
4787                 inode->i_mapping->a_ops = &btrfs_aops;
4788                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
4789                 inode->i_fop = &btrfs_file_operations;
4790                 inode->i_op = &btrfs_file_inode_operations;
4791                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
4792         }
4793         dir->i_sb->s_dirt = 1;
4794         btrfs_update_inode_block_group(trans, inode);
4795         btrfs_update_inode_block_group(trans, dir);
4796         if (drop_inode)
4797                 goto out_unlock;
4798
4799         path = btrfs_alloc_path();
4800         BUG_ON(!path);
4801         key.objectid = inode->i_ino;
4802         key.offset = 0;
4803         btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
4804         datasize = btrfs_file_extent_calc_inline_size(name_len);
4805         err = btrfs_insert_empty_item(trans, root, path, &key,
4806                                       datasize);
4807         if (err) {
4808                 drop_inode = 1;
4809                 goto out_unlock;
4810         }
4811         leaf = path->nodes[0];
4812         ei = btrfs_item_ptr(leaf, path->slots[0],
4813                             struct btrfs_file_extent_item);
4814         btrfs_set_file_extent_generation(leaf, ei, trans->transid);
4815         btrfs_set_file_extent_type(leaf, ei,
4816                                    BTRFS_FILE_EXTENT_INLINE);
4817         btrfs_set_file_extent_encryption(leaf, ei, 0);
4818         btrfs_set_file_extent_compression(leaf, ei, 0);
4819         btrfs_set_file_extent_other_encoding(leaf, ei, 0);
4820         btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
4821
4822         ptr = btrfs_file_extent_inline_start(ei);
4823         write_extent_buffer(leaf, symname, ptr, name_len);
4824         btrfs_mark_buffer_dirty(leaf);
4825         btrfs_free_path(path);
4826
4827         inode->i_op = &btrfs_symlink_inode_operations;
4828         inode->i_mapping->a_ops = &btrfs_symlink_aops;
4829         inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
4830         inode_set_bytes(inode, name_len);
4831         btrfs_i_size_write(inode, name_len - 1);
4832         err = btrfs_update_inode(trans, root, inode);
4833         if (err)
4834                 drop_inode = 1;
4835
4836 out_unlock:
4837         nr = trans->blocks_used;
4838         btrfs_end_transaction_throttle(trans, root);
4839 out_fail:
4840         if (drop_inode) {
4841                 inode_dec_link_count(inode);
4842                 iput(inode);
4843         }
4844         btrfs_btree_balance_dirty(root, nr);
4845         return err;
4846 }
4847
4848 static int prealloc_file_range(struct inode *inode, u64 start, u64 end,
4849                                u64 alloc_hint, int mode)
4850 {
4851         struct btrfs_trans_handle *trans;
4852         struct btrfs_root *root = BTRFS_I(inode)->root;
4853         struct btrfs_key ins;
4854         u64 alloc_size;
4855         u64 cur_offset = start;
4856         u64 num_bytes = end - start;
4857         int ret = 0;
4858
4859         trans = btrfs_join_transaction(root, 1);
4860         BUG_ON(!trans);
4861         btrfs_set_trans_block_group(trans, inode);
4862
4863         while (num_bytes > 0) {
4864                 alloc_size = min(num_bytes, root->fs_info->max_extent);
4865                 ret = btrfs_reserve_extent(trans, root, alloc_size,
4866                                            root->sectorsize, 0, alloc_hint,
4867                                            (u64)-1, &ins, 1);
4868                 if (ret) {
4869                         WARN_ON(1);
4870                         goto out;
4871                 }
4872                 ret = insert_reserved_file_extent(trans, inode,
4873                                                   cur_offset, ins.objectid,
4874                                                   ins.offset, ins.offset,
4875                                                   ins.offset, 0, 0, 0,
4876                                                   BTRFS_FILE_EXTENT_PREALLOC);
4877                 BUG_ON(ret);
4878                 num_bytes -= ins.offset;
4879                 cur_offset += ins.offset;
4880                 alloc_hint = ins.objectid + ins.offset;
4881         }
4882 out:
4883         if (cur_offset > start) {
4884                 inode->i_ctime = CURRENT_TIME;
4885                 btrfs_set_flag(inode, PREALLOC);
4886                 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
4887                     cur_offset > i_size_read(inode))
4888                         btrfs_i_size_write(inode, cur_offset);
4889                 ret = btrfs_update_inode(trans, root, inode);
4890                 BUG_ON(ret);
4891         }
4892
4893         btrfs_end_transaction(trans, root);
4894         return ret;
4895 }
4896
4897 static long btrfs_fallocate(struct inode *inode, int mode,
4898                             loff_t offset, loff_t len)
4899 {
4900         u64 cur_offset;
4901         u64 last_byte;
4902         u64 alloc_start;
4903         u64 alloc_end;
4904         u64 alloc_hint = 0;
4905         u64 mask = BTRFS_I(inode)->root->sectorsize - 1;
4906         struct extent_map *em;
4907         int ret;
4908
4909         alloc_start = offset & ~mask;
4910         alloc_end =  (offset + len + mask) & ~mask;
4911
4912         mutex_lock(&inode->i_mutex);
4913         if (alloc_start > inode->i_size) {
4914                 ret = btrfs_cont_expand(inode, alloc_start);
4915                 if (ret)
4916                         goto out;
4917         }
4918
4919         while (1) {
4920                 struct btrfs_ordered_extent *ordered;
4921                 lock_extent(&BTRFS_I(inode)->io_tree, alloc_start,
4922                             alloc_end - 1, GFP_NOFS);
4923                 ordered = btrfs_lookup_first_ordered_extent(inode,
4924                                                             alloc_end - 1);
4925                 if (ordered &&
4926                     ordered->file_offset + ordered->len > alloc_start &&
4927                     ordered->file_offset < alloc_end) {
4928                         btrfs_put_ordered_extent(ordered);
4929                         unlock_extent(&BTRFS_I(inode)->io_tree,
4930                                       alloc_start, alloc_end - 1, GFP_NOFS);
4931                         btrfs_wait_ordered_range(inode, alloc_start,
4932                                                  alloc_end - alloc_start);
4933                 } else {
4934                         if (ordered)
4935                                 btrfs_put_ordered_extent(ordered);
4936                         break;
4937                 }
4938         }
4939
4940         cur_offset = alloc_start;
4941         while (1) {
4942                 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
4943                                       alloc_end - cur_offset, 0);
4944                 BUG_ON(IS_ERR(em) || !em);
4945                 last_byte = min(extent_map_end(em), alloc_end);
4946                 last_byte = (last_byte + mask) & ~mask;
4947                 if (em->block_start == EXTENT_MAP_HOLE) {
4948                         ret = prealloc_file_range(inode, cur_offset,
4949                                         last_byte, alloc_hint, mode);
4950                         if (ret < 0) {
4951                                 free_extent_map(em);
4952                                 break;
4953                         }
4954                 }
4955                 if (em->block_start <= EXTENT_MAP_LAST_BYTE)
4956                         alloc_hint = em->block_start;
4957                 free_extent_map(em);
4958
4959                 cur_offset = last_byte;
4960                 if (cur_offset >= alloc_end) {
4961                         ret = 0;
4962                         break;
4963                 }
4964         }
4965         unlock_extent(&BTRFS_I(inode)->io_tree, alloc_start, alloc_end - 1,
4966                       GFP_NOFS);
4967 out:
4968         mutex_unlock(&inode->i_mutex);
4969         return ret;
4970 }
4971
4972 static int btrfs_set_page_dirty(struct page *page)
4973 {
4974         return __set_page_dirty_nobuffers(page);
4975 }
4976
4977 static int btrfs_permission(struct inode *inode, int mask)
4978 {
4979         if (btrfs_test_flag(inode, READONLY) && (mask & MAY_WRITE))
4980                 return -EACCES;
4981         return generic_permission(inode, mask, btrfs_check_acl);
4982 }
4983
4984 static struct inode_operations btrfs_dir_inode_operations = {
4985         .getattr        = btrfs_getattr,
4986         .lookup         = btrfs_lookup,
4987         .create         = btrfs_create,
4988         .unlink         = btrfs_unlink,
4989         .link           = btrfs_link,
4990         .mkdir          = btrfs_mkdir,
4991         .rmdir          = btrfs_rmdir,
4992         .rename         = btrfs_rename,
4993         .symlink        = btrfs_symlink,
4994         .setattr        = btrfs_setattr,
4995         .mknod          = btrfs_mknod,
4996         .setxattr       = btrfs_setxattr,
4997         .getxattr       = btrfs_getxattr,
4998         .listxattr      = btrfs_listxattr,
4999         .removexattr    = btrfs_removexattr,
5000         .permission     = btrfs_permission,
5001 };
5002 static struct inode_operations btrfs_dir_ro_inode_operations = {
5003         .lookup         = btrfs_lookup,
5004         .permission     = btrfs_permission,
5005 };
5006 static struct file_operations btrfs_dir_file_operations = {
5007         .llseek         = generic_file_llseek,
5008         .read           = generic_read_dir,
5009         .readdir        = btrfs_real_readdir,
5010         .unlocked_ioctl = btrfs_ioctl,
5011 #ifdef CONFIG_COMPAT
5012         .compat_ioctl   = btrfs_ioctl,
5013 #endif
5014         .release        = btrfs_release_file,
5015         .fsync          = btrfs_sync_file,
5016 };
5017
5018 static struct extent_io_ops btrfs_extent_io_ops = {
5019         .fill_delalloc = run_delalloc_range,
5020         .submit_bio_hook = btrfs_submit_bio_hook,
5021         .merge_bio_hook = btrfs_merge_bio_hook,
5022         .readpage_end_io_hook = btrfs_readpage_end_io_hook,
5023         .writepage_end_io_hook = btrfs_writepage_end_io_hook,
5024         .writepage_start_hook = btrfs_writepage_start_hook,
5025         .readpage_io_failed_hook = btrfs_io_failed_hook,
5026         .set_bit_hook = btrfs_set_bit_hook,
5027         .clear_bit_hook = btrfs_clear_bit_hook,
5028 };
5029
5030 /*
5031  * btrfs doesn't support the bmap operation because swapfiles
5032  * use bmap to make a mapping of extents in the file.  They assume
5033  * these extents won't change over the life of the file and they
5034  * use the bmap result to do IO directly to the drive.
5035  *
5036  * the btrfs bmap call would return logical addresses that aren't
5037  * suitable for IO and they also will change frequently as COW
5038  * operations happen.  So, swapfile + btrfs == corruption.
5039  *
5040  * For now we're avoiding this by dropping bmap.
5041  */
5042 static struct address_space_operations btrfs_aops = {
5043         .readpage       = btrfs_readpage,
5044         .writepage      = btrfs_writepage,
5045         .writepages     = btrfs_writepages,
5046         .readpages      = btrfs_readpages,
5047         .sync_page      = block_sync_page,
5048         .direct_IO      = btrfs_direct_IO,
5049         .invalidatepage = btrfs_invalidatepage,
5050         .releasepage    = btrfs_releasepage,
5051         .set_page_dirty = btrfs_set_page_dirty,
5052 };
5053
5054 static struct address_space_operations btrfs_symlink_aops = {
5055         .readpage       = btrfs_readpage,
5056         .writepage      = btrfs_writepage,
5057         .invalidatepage = btrfs_invalidatepage,
5058         .releasepage    = btrfs_releasepage,
5059 };
5060
5061 static struct inode_operations btrfs_file_inode_operations = {
5062         .truncate       = btrfs_truncate,
5063         .getattr        = btrfs_getattr,
5064         .setattr        = btrfs_setattr,
5065         .setxattr       = btrfs_setxattr,
5066         .getxattr       = btrfs_getxattr,
5067         .listxattr      = btrfs_listxattr,
5068         .removexattr    = btrfs_removexattr,
5069         .permission     = btrfs_permission,
5070         .fallocate      = btrfs_fallocate,
5071         .fiemap         = btrfs_fiemap,
5072 };
5073 static struct inode_operations btrfs_special_inode_operations = {
5074         .getattr        = btrfs_getattr,
5075         .setattr        = btrfs_setattr,
5076         .permission     = btrfs_permission,
5077         .setxattr       = btrfs_setxattr,
5078         .getxattr       = btrfs_getxattr,
5079         .listxattr      = btrfs_listxattr,
5080         .removexattr    = btrfs_removexattr,
5081 };
5082 static struct inode_operations btrfs_symlink_inode_operations = {
5083         .readlink       = generic_readlink,
5084         .follow_link    = page_follow_link_light,
5085         .put_link       = page_put_link,
5086         .permission     = btrfs_permission,
5087         .setxattr       = btrfs_setxattr,
5088         .getxattr       = btrfs_getxattr,
5089         .listxattr      = btrfs_listxattr,
5090         .removexattr    = btrfs_removexattr,
5091 };